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Abstract MultiSig is a newly developed mode of anal-

ysis of sedimentation equilibrium (SE) experiments in the

analytical ultracentrifuge, having the capability of taking

advantage of the remarkable precision (*0.1 % of signal)

of the principal optical (fringe) system employed, thus

supplanting existing methods of analysis through reducing

the ‘noise’ level of certain important parameter estimates

by up to orders of magnitude. Long-known limitations of

the SE method, arising from lack of knowledge of the true

fringe number in fringe optics and from the use of unstable

numerical algorithms such as numerical differentiation,

have been transcended. An approach to data analysis, akin

to ‘spatial filtering’, has been developed, and shown by

both simulation and practical application to be a powerful

aid to the precision with which near-monodisperse systems

can be analysed, potentially yielding information on pro-

tein-solvent interaction. For oligo- and poly-disperse sys-

tems the information returned includes precise average

mass distributions over both cell radial and concentration

ranges and mass-frequency histograms at fixed radial

positions. The application of MultiSig analysis to various

complex heterogenous systems and potentially multiply-

interacting carbohydrate oligomers is described.

Keywords Sedimentation equilibrium � Fitting algorithm �
Rayleigh interference optics �Molecular weight histograms �
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Introduction

The analytical ultracentrifuge (AUC) is an instrument that

subjects solutions of macromolecules to high centrifugal

fields (up to 300,0009g) and explores, via a range of

optical modes of analysis, the resultant re-distribution of

solute particles. Its use complements and is orthogonal to

other techniques, in particular to light-scattering (dynamic

or static) and/or column-based methods (SEC, SEC-

MALS). Major advantages of AUC methods are that

matrix-interaction effects (as with SEC or other columns)

are not present, and the optical signal recorded for a given

solute mass concentration is invariant with respect to solute

particle size, unlike light-scattering systems. The dynamic

range of solute size susceptible to AUC analysis is vast:

from a few hundred daltons to tens of mega-daltons.

There are two modes of AUC analysis: sedimentation

velocity (SV) and sedimentation equilibrium (SE). In SV

mode the solute particles are progressively pelleted over a

period of time, during which the solute undergoes diffusion

in addition to migration under the centrifugal field. Mul-

tiple (often 100?) optical scans of the AUC cell are

recorded, from which solute distributions can be derived.

The two optical systems most widely used employ (1)

absorption optics at wavelengths (200–600 nm) user

specifiable or (2) interference fringe optics, based upon the

refraction index increment with respect to solvent of the

solute. For the former, the solutes under analysis there must

possess a usable chromophore; for the latter it is convenient

that all solutes have refraction increments that differ only
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slightly with respect to solute type (e.g. protein or carbo-

hydrate) and even less within those types.

Sedimentation equilibrium is a technique based upon

sound thermodynamics and as such has been seen as a

‘gold standard’ for the characterisation of the size and

interactions of macromolecular solutes. It is simple to

perform: solutions held in a constant centrifugal field attain

after a period of time distributions that are time-invariant

when the sedimentation potential exactly equals the

chemical (diffusive) potential at every position in the AUC

cell. Analysis of such distributions can then yield estimates

for important solute-related parameters, such as range of

solute sizes present, their weight values and possible

interactions. The basic data set recorded by the highest

precision optical system is a set of fringe ‘‘increments’’ (jr)

over 200? radial values (r). Precision in individual jr
values is *0.005 fringe in normal practice, which with the

total signal being *1? fringe suggests that the information

content of the data set must be very high. In specific areas

where full advantage can be taken of this high precision in

recorded data then it is easily possible to define complex

protein interactions at a level that equals or exceeds that

given by any other biophysical technology (Rowe 2011).

In general, however, the method has suffered from three

serious limitations: (1) for most computational purposes,

the relative fringe increments (jr) need to be replaced by

absolute fringe increments (Jr), where Jr = jr ? E; where

E is an unknown ‘baseline offset’ (Harding 2005); (2) the

methods used for computing average molecular weight

values routinely involve numerical differentiation of the

data set, an inherently ‘noisy’ procedure. We have sought

to re-examine these issues and have defined a novel

approach (MultiSig), which on the one hand yields high

precision estimates for solute-solvent interactions of

monodisperse solutes and on the other hand yields solute

size distributions together with the definition of any alge-

braically definable average mass value at any point in a

radial distribution at levels of precision not previously

attainable.

The MultiSig algorithm

Our approach starts with the observation that for any solute

distribution at equilibrium and, in the absence of specific

interactions (i.e. at low concentration), the final distribution

of concentration or fringe values (Jr) with respect to radius

(r) is given by

Jr ¼
Xi¼n

i¼1

ciJref exp½0:5riðr2 � r2
refÞ� ð1Þ

for a system of a large number (n) of components, where ri

is the reduced flotational mass of the ith component, and

Jref is an initial, estimated reference value at a radial

position rref. This estimate serves simply as a scaling

constant in the ci values, and the product ci Jref is a measure

of the amplitude of the weight seen at the particular ri.

This reference position can be at any position in the cell:

often a useful radial value to employ is that of the exper-

imentally observed or ‘consensus’ hinge point, easily found

from radial scans during the approach to equilibrium.

The averages evaluated found at this radial value can,

for low speed equilibrium, be related to the solution as

loaded into the cell. The parameter r is defined by

r ¼ Mð1� viqsolvÞx2=RT ð2Þ

where M is the molecular weight of the solute, R the gas

constant, T the temperature (K), vi the partial specific

volume of the solute component, qsolv the density of the

solvent and x the angular velocity (rad/s) of the rotor. For

other than simulated data sets a baseline offset (E) as

defined earlier must be added. This reduced flotational

weight (r) is, rather than the molecular weight (M), the

actual parameter that is yielded by the SE method: and all

averages of all types are referred to it.

We could, theoretically, using classical non-linear least-

squares algorithms, fit an empirical (or simulated) data set

[Jr, r] to a function of the type given by Eq. (1) employing

n terms at equal intervals in the argument (ri), where n is a

number equal to or larger than the number of solute com-

ponents. This procedure of non-linear fitting may be

regarded as the use of an operator (the NLF operator) under

which a mapping from the data set [Jr, r] to a data set

[ci(rI), rI] is effected. The latter set can then be used to

define (1) the weight distribution of the system [a simple

plot of ci(rI) vs. ri] and (2) the principal averages (num-

ber, weight and z) from standard formulae:

rn ¼ 1=
Xi¼n

i¼1

ðci=riÞ=
X

ci

( )

rw ¼
Xi¼n

i¼1

ðciriÞ=
X

ci rz ¼
Xi¼n

i¼1

ðcir
2
i Þ=
X
ðciriÞ:

Thus, in principle at least, these three averages—or

indeed any other which can be defined by the set

[ci(ri),ri]—can be computed for a given radial value

(r) or a given radial concentration (Jr) without resorting to

numerical differentiation procedures, which have to date

been regarded as unavoidable. Furthermore, the

distribution ci = f(ri) should describe the distribution of

weight values within the total solute.

However, it is clear that the problem with applying the

above algorithm lies in the fact that n will be an unknown
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and (for polydisperse systems) a potentially very large

number. To circumvent this problem, we have taken

advantage of the well-known fact that the fitting of multiple

exponential terms, where the exponents are closely related,

is a notoriously ‘ill-conditioned’ procedure. This does not

of course mean that data defined by the summation of

multiple exponential terms cannot be fitted using standard

procedures: it means that the values of the individual

exponents generally cannot be retrieved with any degree of

precision (see the review by Petersson and Holmström

1998). In other terms, the mapping from the data set to the

parameter set under the NLF operator is one-many. Our

solution to this problem has been to actually take advantage

of this ‘ill conditioning’. We fit data sets to a function

(MultiSig) defined by the summation of a series of 17

exponential terms, where the value of each ith exponent is

defined by

ri ¼ 1:15ri�1: ð3Þ

This spacing of the values of successive exponents,

which is logarithmic as defined by Eq. (3), is chosen—and

has been confirmed by detailed simulation—such that any

attempted resolution of their values would fail (i.e. would

be wholly ill conditioned). The choice of 17 terms is

dictated by practical computational considerations: fitting

data to a multi-exponential series is a slow process, and the

employment of a larger set of terms would render the

programme—which routinely takes 20–30 min to run—

impossibly slow.

The MultiSig equation, as fitted, is then given by

jr ¼
Xi¼17

i¼1

cijref exp½0:5 � 0:5ri1:15ði�1Þðr2 � r2
refÞ� þ E ð4Þ

where an initial value of rI is user-specified. The range in

r extends from 0.5rI—from whence the second term 0.5

derives—to 4.48rI, and this dictates the range of solute

sizes that can currently be accommodated. A ‘starting set’

of parameter values must be supplied—and we routinely

use a ‘typical log-normal distribution’ set—for all systems,

including analysis of single-component, monodisperse

proteins. This we have validated by numerous simulations.

MultiSig is a Pascal language scripting plug-in written

within the general curve-fitting and plotting programme

ProFitTM (Quantum Soft, Zürich), implemented under

Apple OS-X using an Intel� CoreTM i7 Processor. The

output file is a spreadsheet (whose contents can be pasted

into MS-Excel if required) summarising the input data and

all computed parameters, including the estimates for

number, weight and z averages, for E and for the individual

estimated c(ri) sets and the computed average set derived

from the latter.

Because of the one-many nature of the mapping from

data set to parameter set, there can ‘never be the same fit

twice’. We thus routinely take a series of fits—usually

10–20—and average the output final parameter sets

([r1 - r17], rn, rw, rz, E). The fitting procedure, which

we have previously used in other contexts (Ang and Rowe

2010), involves an initial ROBUST fit followed by a

Levenberg-Marquardt fit. The latter is not a suitable ‘first

fit’ routine, as with poor initial estimates of parameters,

singularities are frequently encountered. Although the

improvement of fit resulting from the second fit is mar-

ginal, there is little time penalty involved, so this is our

routine procedure. For each initial fit the starting set of

parameters is randomised by use of a routine that applies

normal random percentage variation to each parameter

individually. As all the rI values floated are constrained to

be positive algebraically, the use of percentage variation

(usually ±7 % but can be user-specified) minimises the

danger of the programme being terminated because of

algebraic invalidity of the values supplied by the ran-

domisation routine.

The final output of MultiSig is a table of individual and

averaged values for the three principal averages, for the

baseline offset (E) and for the 17 coefficients. A plot of the

latter (averaged) amplitudes against r gives a profile that is

an estimation of the size (weight) distribution of the sample

at the radial position selected. This plot of c(r) vs. r can

readily be transformed into a plot of c(M) vs. M via Eq. (2),

provided that all components of the sample have the same

partial specific volume.

We currently restrict application of the MultiSig algo-

rithm to data acquired at low speed equilibrium

(r\*10). This is partly because to date we only have,

through simulation, validated MultiSig under these condi-

tions—and partly because if a study of a polydisperse

system is intended to return meaningful average weight

values referred to the system as loaded, then high speed

analysis will be liable to distort the distribution by selective

depletion or even removal of higher mass species.

An extension of the MultiSig programme, Multi-

Sig_radius, allows for a user-specified series of fits to be

performed at fixed radial intervals. As this programme

would take an unfeasible length of time to run if every fit

was to be over 20 fit averages, the programme Multi-

Sig_radius employs only a single fit at each radial position.

Although this is non-optimal, the noise level is so very

markedly superior to earlier algorithms employing

numerical differentiation procedures that it is acceptable. It

should be kept in mind that finding output values for rn,r,

rw,r, rz,r over a series of radial values, which can be fitted

to a trend line, is itself a noise reduction (smoothing)

procedure.
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Based upon simulation, the potential importance of

knowledge of radial point-average values of r for char-

acterising complex macromolecular systems has long been

appreciated (Roark and Yphantis 1969; Teller 1973).

However, it has been very clear that in practice, using the

analytical techniques then available (twofold pre-smooth-

ing of raw data prior to numerical differentiation), the

resultant noise level in output values was too high for

quality interpretation. Moreover, probably due to over-

smoothing, apparent trends appeared in the output value set

that had no genuine basis in reality (Teller 1973).

Methods

Sedimentation equilibrium experiments

These were carried out in a Beckman-Coulter AUC using

the ProteomeLab control system at speeds and for dura-

tions selected with the aid of locally written software

(SE_Speeds.xls). Radial scans were logged using Rayleigh

fringe optics. Four initial and four final scans at equilib-

rium were logged and averaged. The final data set selected

for analysis was obtained by subtraction of these two

averaged data sets, removing any points near the meniscus

or the cell base where evidence of re-distribution could be

detected. This procedure (Ang and Rowe 2010) largely

eliminates baseline gradients or other irregularities in the

trace, and is superior to methods based upon use of a

dummy cell. The baseline offset (E), defined as uniform in

value over the selected radial interval, cannot however be

eliminated in this way.

Corrected data sets have been analysed using the Mul-

tiSig programme, with a starting value for rI that should be

in the region of, for choice slightly below, the expected

mid-region of r values. An initial fit using only two iter-

ations is performed and the distribution of r values

inspected. If need be, the rI employed in the final

20-iteration fit is amended. The criterion for a ‘good’ value

is that the final distribution of r values should be wholly

within the window (from 0.5rI to 4.48rI) used by the

programme.

The precision of the final profile, which normally

employs only 17 values for r on the x axis, can be

improved to a degree by carrying out the MultiSig fit two

extra times, with two extra values for the starting value for

r producing a logarithmically interpolated set of

3 9 17 = 51 x values in the distribution. Only three iter-

ations are now employed for each fit, to keep the total

compute time manageable. An example of this modified

MultiSig procedure is shown below (Fig. 3).

The radial-dependence programme MultiSig_radius is

normally only employed on a system after it has been

characterised using MultiSig. Thus the choice of initial rI

value is trivial.

Solutions of chicory root inulin were prepared by direct

dissolution of the powdered product (kindly donated by

Kelloggs UK) into 90 % aqueous DMSO. Solute concen-

tration was checked using a digital refractometer (Atago

DD-5).

Generation of simulated data sets

We have followed our normal routine in generating data

sets via the Tabulate function within ProFitTM (Ang and

Rowe 2010). Normally distributed random error is added

via a locally written plug-in (AddError): our default option

is to use ±0.005 fringes, this being at a level normally

found in practice with fringe optics (Ang and Rowe 2010).

We have also computed parameter values from simulated

data with ±0.002 fringe precision, these being the

approximated limit to which error in Raleigh interference

fringe data in the AUC might potentially be reduced (Ang

and Rowe 2010). As MultiSig returns estimates for point-

averaged rI values at defined radial position, it is conve-

nient for testing purposes to be able to compute those

averages from the initial (i.e. no added error) data set. This

is simple to perform algebraically for polydisperse systems

if the simulated data are generated by the addition of the

members of a set (of any size) of multiple discrete com-

ponents. In all cases the simulation was of fringe optical

data. Normally 200 data points were generated over a

2-mm column length. Although this is a *2 times smaller

data set than is yielded experimentally by the XL-I, the

restriction is necessary to avoid unfeasibly long pro-

gramme run times. Our findings will thus be conservative

with regard to the level of precision to be expected in

returned parameters when real data, with many more data

points, are analysed.

Results

Analysis of polydisperse systems

We have simulated a data set (no error) for a polydisperse

system of log-normal distribution, total load concentration

1 fringe, column length 2 mm (6.9–7.1 cm), at low speed

equilibrium. In the absence of simulated error, the retrieval

of the input parameters [c(r) vs. r] and of the theoretically

computed averages is close to perfect (Fig. 1). The ‘base-

line offset’ (E) is retrieved with a precision of \2e-6

fringe. As an additional check on this finding, we have

undertaken the same fit using a FORTRAN routine (NAG

Fortran Library Routine E04JYF) on a different platform,

and this shows complete agreement. When normal random
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error at ±0.005 fringe is added to the simulated data set we

can still demonstrate retrieval of number- (–2.8 % error),

weight- (-0.6 % error) and z-average (-0.01 % error)

values for a fixed radial position (Fig. 1). It is notable is

that errors in the z-average values are very small indeed.

The error in E is now appreciably greater (±0.005 to

±0.010) than it is in the absence of simulated error, to an

extent depending on the particular data set, or on the

number of the iteration. Such an error level is acceptable.

A surprising fact is that the estimates for the z-average

values, generally regarded as the most difficult of all to

define at any level of precision, are by this methodology

the most precise of the three estimates.

Can data from a real polymer system yield data at the

same level of precision as in the above simulation? To test

this, we have analysed data from an SE run on a sample of

the well-defined standard polysaccharide pullulan of stated

molecular weight 404 kDa and polydispersity ratio

Mw/Mn = 1.13 (Polymer Laboratories, sample batch no.

20907-2). The results show clearly that a log-normal dis-

tribution is given in the c(r) vs. r profile (Fig. 2) and the

estimated molecular weight at a radial value estimated as

being close to the consensus hinge point and using a value

for the partial specific volume = 0.602 ml/g (Kawahara

et al. 1984) is 390 kDa, in good agreement with stated

value, as was the polydispersity ratio, estimated as 1.13.

We have undertaken MultiSig analysis on a range of

other polydisperse biopolymers. Values yielded for the

principal averages are routinely of the magnitude expected,

based upon different techniques. A particular feature of the

MultiSig output however is that the profile of c(r) vs. r
yielded can be compared with a plot of c(s) vs. s or

ls_g*(s) vs. s as computed by SEDFIT (Schuck 2000) from

a sedimentation velocity study of the same sample (s is the

sedimentation coefficient). We illustrate this for a sample

of inulin (Fig. 3).

The overall shape of the two distributions is similar:

both show a component having a narrow distribution

(r = 1.65, s20,b = 0.255S) and a series of lower r/s value

minor components, which may well be degradation prod-

ucts (Windfield et al. 2003). There is no valid way in which

the bi- (or possibly tri-) modal c(s) distribution (right) can

be transformed to yield even the relative masses of the two

components, whereas with an estimate (0.60 ml/g) for the

partial specific volume of the solute available, the (aver-

age) absolute molecular weights of the two species can be

defined from the r values associated with the peaks and

their relative concentrations obtained even without that

knowledge. Inulins, widely studied and used, usually have

a major component with a molecular weight in the region

of 5–6 kDa, sedimentation coefficient s20,w *0.7S (Imran

et al. 2012; Azis et al. 1999). They readily degrade to

smaller species, particularly at acidic pH levels (Windfield

et al. 2003). The value for the molecular weight of the

(higher molecular weight, putatively intact) component is

5.9 kDa—within the accepted range quoted—and for the

two lower weight species identified (Fig. 3, left) estimates

of 2.65 and 1.99 kDa are computed. A comparison with the

results from the c(s) profile (Fig. 3, right) is difficult,

inasmuch as we are working at very low s values and are

dependent on near-meniscus data and on the precise esti-

mated position of the meniscus. There is however good
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Fig. 1 Plot of simulated data values for a log-normal distribution

(vertical lines) together with values retrieved by the MultiSig

programme (circles). Theoretical values are given, together with the

results yielded for estimates of the principal averages, and with the

errors found (which would be subject to slight stochastic variation in

results from repeated runs of the software). The effect of addition of

normal random error to the simulated data is also shown, as are the

two conventionally calculated ratios of averages, or ‘polydispersity

indices’ (bottom)

0 1 2 3 4 5
0.0

0.2

0.4

0.6

c(
) 0 1 2

0.0

0.2

0.4

0.6

ln( )

c(
)

Fig. 2 The figure profile obtained by MultiSig analysis of data from

an SE run on a sample of pullulan. The inset profile shows the data

plotted on a logarithmic scale, showing a normal Gaussian

distribution
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qualitative agreement between the results from the two

methods, if we are prepared to reject the exact (ultra-low,

i.e. \0.05S) values for the lowest s value ‘components’.

Perhaps surprisingly, however, the results from the c(r) vs.

r (Fig. 3, left) do show that those ultra-low s value

‘components’ seen in the c(s) profile are real, albeit with

apparent s values that are not reliable.

Simulation of the use of the MutliSig_radius routine

We now consider the use of the MultiSig_radius routine for

the analysis of polydisperse systems to explore the level of

precision that would be expected from the analysis via a

MultiSig_radius of a simple two-component 1–1 mixture of

monomer and dimer, employing only a single estimate for

the average s value at each radial position. Simulated data

sets have been computed, based on (1) machine precision,

(2) ±0.002 fringe or (3) ±0.005 fringe. Figure 4 shows the

results from a MultiSig_radius n analysis of a simulated

data set.

It is clear that for the last of these sets, i.e. the ‘worst

case scenario’, the rz and rw values are very close to

theoretical, and this also was so for cases (1), (2) and (3),

not shown. However the rn values with a precision of

±0.005 fringe show a limited degree of both scatter and

systematic deviation, as would be expected from the results

yielded for a simulated log-normal distribution (Fig. 1).

For practical work, the agreement between theoretical

expectation and actual output is at a high level, certainly

adequate for most practical purposes.

Analysis of oligodisperse systems

This is an interesting area, which we are currently studying

in some detail. There is the potential using the Multi-

Sig_radius routine for defining not only the range of spe-

cies present in a complex system, but also for gaining

insight into any reversible equilibria that may be present. In

a study of a range of aminopolysaccharides (Heinze et al.

2011), we have demonstrated that a pseudo-monomeric

state can exist, apparently close to, but probably not truly,

monodisperse. This ‘monomer’ was shown to be capable of

assembling to a series of oligomeric states. We have con-

tinued our analysis in this area and now report results from

another aminopolysaccharide, M902TODA.

Our general approach has been to take the SE experi-

ment up to a rotor speed where components higher than

small oligomers will be mostly or entirely pelleted. This

enables us to ‘probe’ the state of association of lower

molecular weight species. We achieve this by specifying in

MultiSig cell radial positions within the solution column,

covering regions close to the meniscus and nearer to the

cell base. In Fig. 5 we show that two principal components
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Fig. 3 Plot of c(r) vs. r (left) and of c(s) vs. s20,b (right) distributions

computed via the routines MultiSig and SEDFIT respectively from

the equilibrium distribution of a sample of the polysaccharide chicory

root inulin at cell loading concentration of 1.0 mg/ml. For the

MultiSig analysis three fits were performed, with two additional

starting r values interpolated logarithmically between the 17 starting

r values normally employed (see ‘‘Methods’’)
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Fig. 4 Plots of the estimates yielded for three principal averages

using the routine MultiSig_radius applied to simulated data for a 1–1

monomer–dimer mixture, where rmonomer = 1. The ‘continuous’

(dotted) lines are specified by the absolute algebraically computed

values expected, whereas the open symbols are the results from the

MultiSig_radius routine, applied to data of ±0.005 fringe precision,

total cell load 1 fringe
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are present in the c(r) vs. r profile, with the smaller

species predominating in the solution column close to the

meniscus, the larger species—approximately 49 greater in

weight—increasing markedly as the cell base is

approached.

In interpreting these results, it is important to be aware

that if any rapid chemical equilibria are present between

species, this fact will not be evidenced by the c(r) vs. r
profile, which is simply a histogram showing ‘what species

are present’. If however species intermediate in mass are

present, then only if they are sufficiently long-lived to

contribute to the range of species present on a time-aver-

aged basis would they appear in a c(r) vs. r profile. The

estimated molecular weights for the two species from this

profile are 3.85 kDa (from r = 0.89) and 16.22 kDa (from

r = 3.75), suggesting a monomer-tetramer relationship

These results can be interpreted either in terms of

(1) the existence of a dynamic equilibrium between a

‘monomeric’ species and an oligomeric form (prob-

ably tetrameric) or

(2) a simple mixture of the two forms.

This issue can be resolved by plotting point-average

estimates for averages, yielded by the MultiSig_radius,

against the fringe number (i.e. concentration) and repeating

the procedure for different cell loading concentrations (0.4

and 2.0 mg/ml in the present case). In the case of a

reversible equilibrium, present on a time scale short in

relation to the duration (1–2 days) of the SE experiment,

then all values of the estimates at the two concentrations

must lie on a common regression line w.r.t. J(r). This

follows from simple logic: there cannot at any locus for

given Ka value and total solute concentration be two dif-

fering equilibrium states (see Teller 1973).

When we plot the three principal averages for the two

different loading concentrations it is very clear that (for this

sample at least) there cannot be a reversible, dynamic

equilibrium state present (Fig. 6).

These two sets of values do not even come close to

being on common regression lines, but rather are typical of

a non-interacting mixture. In the limit of two species being

present, then at infinitely low concentration only the lower

mass species will be found, whilst at infinitely high con-

centration (infinitely long column) the oligomer species

will be totally dominant. There is no simple way in which

these extrapolated values can be estimated with any pre-

cision, but from the plots shown (Fig. 6) we can say that

such values would at least be very consistent with those

obtained from the c(r) vs. r profile (Fig. 5).

Analysis of mono- (or near-mono-) disperse systems

For systems that are monodisperse (i.e. single component)

a MultiSig analysis with ‘17-sigma’ fitting (Eq. [4]) must

in theory yield a distribution of c(r) values that is
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populated in two bins only as a single bin population could

only arise if the value of s for the solute corresponded

precisely with 1 of the 17 values being employed; fur-

thermore the ‘experimental’ parameter values would have

to be of infinite precision. Thus in practice, and even for

data sets simulated without added error at machine preci-

sion, there will almost always be three bins populated,

albeit maybe at very low intensity, for one of the bins

flanking the main signal. This can be clearly seen in the

simulated data (Fig. 7).

However, when significant ‘noise’ is present in the data

set, then additional bins in the distributions become pop-

ulated at low intensity relative to the main peak(s), as

evidenced in Fig. 7. This is not surprising. The mapping of

the [c, r] data set onto the c(r) vs. s distribution under the

NLF operator will be noise sensitive and will result in the

appearance of artefactual signal in the lower regions of r.

Thus we have a situation very similar to that familiar in

spectral analysis of noisy images, where a transform

(usually a discrete Fourier transform) of the image displays

both signal arising from the image in one spectral location

and from noise in different part(s) of the spectrum; see

Lugt (1964) for the basic theory of ‘spatial filtering’ and

Ockleford et al. (2002) for a simple application. Recon-

struction of the image—or in our case of the various

average r parameter values—can be achieved by selective

employment of only those signal values that are deemed to

arise from signal rather than from noise. This general

process is termed ‘spatial filtering’. In our case, illustrated

in Fig. 7, we employ only the amplitudes (c(r) values)

associated with the main peak in the distribution for the

computation of the principal r-averages, ignoring values

located in the lower region of the distribution, which have

been shown by our simulation to arise from the presence of

added noise. The ‘true’ values are well retrieved by means

of this ‘spatial filtering’ approach.

This simulated situation we have found to be well mir-

rored in real data. We have re-analysed data from an RNase

A sample whose properties, including both dynamic (Ka)

and thermodynamic (2nd and 3rd virial terms), have been

fully described (Ang and Rowe 2010). Knowledge of these

interaction terms enables us to predict, knowing the partial

specific volume, the expected rw value at the concentration

(determined from the true fringe value) present at the radial

value employed. The results are shown in Fig. 8.

From the data given by Ang and Rowe (2010) the pre-

dicted rw value for the monomeric species would be

0.8652, only slightly higher than the value found above

(0.8599). We can infer that the value for the partial specific

volume of RNAse computed using SEDNTERP and used

in the prediction is very close to that yielded by our

empirical analysis; however the slight mis-matching is

potentially explicable in terms of a difference in the

strength of protein-solvent interaction between the

assumed and the actual level; see Chalikian (2003) for a

general treatment of this topic.

Discussion

Interest in the analysis of complexity in macromolecular

systems is a current area of interest and importance,
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moving on from and building upon the detailed knowledge

that we now have of the solution properties of many

purified systems. It has long been realised that SE methods

have very real potential for the definition of such complex

systems, especially through their ability to define distri-

bution parameters over a concentration range within a

single experiment (Roark and Yphantis 1969; Teller 1973).

However practical application of these methods has lagged

because of the very poor level of precision (often ±20 % or

worse) of individual parameters retrieved by the use of

numerical differentiation procedures, even after heavy

‘smoothing’. We now show how the fitting of raw data with

an infinite series of exponential terms would produce a set

of terms from which appropriate summation would yield a

set (up to 200? in number) of point parameter values. This

we achieve, in practice and to a very adequate approxi-

mation, by taking advantage of the (notorious) ill condi-

tioning of multiple exponential fits for closely related

exponential terms; we have constructed a 17-term expo-

nential series (Eq. [4]) in which each term is separated

from its successor term by an increment in the coefficient

(Eq. 3) of a magnitude that ensures near-total ill condi-

tioning so far as resolution is concerned. The MultiSig

programme can average over many fits by random varia-

tion of starting estimates for all exponential parameters—

essentially a (less usual) form of boot-strapping. However,

for study of parameters as a function of fringe value

(concentration), a single fit at each locus suffices. By

simulation and by application to real data, it is clear that

individual values for point-average parameters of a preci-

sion never previously approached (e.g. ±\0.1 % for z-

average) can be retrieved for polydisperse systems, whilst

for oligo-disperse systems information on the relationships

between identified species can be retrieved.

A significant but almost incidental achievement of the

MultiSig algorithm is that for the first time quality esti-

mates (normally \0.01 fringe) can be retrieved for the

baseline offset, E, and hence that true fringe numbers can

now be assigned to all radial positions sampled, without

need for any auxiliary practical methodology. This solves

one of the oldest problems in the use of Rayleigh fringe

optics for SE analysis (Laue 1992; Rowe 2004).

Perhaps surprisingly, MultiSig finds application to the

study of systems that are close to monodisperse. Noise

removal by a form of spatial filtering is novel and allows

for unprecedentedly high levels of precision to be attained

in retrieval of r values (Figs. 7, 8), allowing insight to be

attained into the nature of protein-solvent interaction.

There are currently certain limitations on the use of

MultiSig. The range of r values specified should not

exceed ninefold (largest to smallest) and should optimally

be slightly less. The programme, with 20 iterations, cur-

rently takes 20–30 min to run. However, both these

limitations are susceptible to solution by the use of a more

powerful computing platform, a current topic of investi-

gation. There is thus the expectation that even broader

ranges of polydispersity will yield to investigation in the

near future, subject to the obvious limitation that for a

given SE experiment only a limited ‘window’ of r (and

hence molecular weight values) values can be accommo-

dated for given rotor speed. For mondisperse solutes,

sensitivity has now been demonstrated at a level where for

a solute (usually protein) of known composition solute-

solvent interactions (Chalikian 2003) should be susceptible

to delineation in ways not previously possible. All these

results have been obtained using simulations and practical

data that refer to cell loadings of only 1–3 fringes, hence

minimising non-ideality (c dependence) effects. Of course,

even at solutes present at \0.5 mg/ml such effects cannot

be totally absent, and all r values reported are ‘apparent’;

however levels of precision have been attained that make it

possible to ascertain c dependence effects by direct anal-

ysis of multiple samples over a range of concentrations.

Finally, the future implementation of our routines on a

much more powerful computer facility will enable the use

of a full data set, a wider range of r values to cover the full

‘window’ of molecular weight values needed and—if

needed—the averaging of more iterations in our fitting

routine. The full potential of Rayleigh interference fringe

optics for the analysis of complex biomolecular systems

using SE methodology should then be realised.
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