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Abstract

This paper presents a novel method based on midpoint-radius interval arithmetic

to deal with uncertainties in the power �ow problem. The proposed technique

aims at �nding a balance between accuracy and computational e�ciency. It

relies on an original decoupling of the interval power �ow equations into mid-

point and radius parts. This representation allows avoiding the factorisation of

an interval Jacobian matrix. Moreover, the proposed formulation is combined

with an optimisation problem in order to prevent overestimation of the inter-

val solution while preserving uncertainty. The proposed technique proves to be

more e�cient than existing approaches based on interval and a�ne arithmetic

and as accurate as the conventional Monte Carlo method.

Keywords: Uncertainty modelling, Power �ow analysis, Interval arithmetic,

Midpoint-radius

1. Introduction

1.1. Motivations

Uncertainty is inherent to any physical systems. This is particularly true for

power systems, where uncertainty can have several causes, e.g., imprecise de-

mand forecast, price variability, renewable energy generation, economic growth,5
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industry placement, and line aging [1, 2]. Failing to properly account for uncer-

tainties can, in some cases, lead to erroneous estimations or insecure operating

conditions. Therefore, a reliable tool to handle several possible scenarios and

combinations of scenarios is crucial to provide a clear understanding of the ex-

pected behaviour of the grid. This paper focuses on how to properly account10

for uncertainties in power �ow (PF) analysis.

1.2. State of Art

In the literature, uncertainty in PF analysis has been handled mainly by two

types of methods: probabilistic and interval-based.

The probabilistic approach relies on solving multiple instances of the PF15

problem for several (typically randomly generated) possible scenarios, and then

aggregate results. The Monte Carlo method is the most common probabilistic

approach. The Monte Carlo method is adequate for o�-line analysis and is

assumed to yield the �correct results�, provided that a su�ciently large amount

of samples are considered [3]. However, the computational burden of the Monte20

Carlo method can be unsuitable for practical purposes, real-time analysis and

preventive and/or corrective control actions [4]. For an extensive survey of

probabilistic PF methods, the interested reader can refer to [3] and [5].

Interval-based methods rely on using intervals to model the system, accord-

ing to a possibility distribution obtained from experience and historical data.25

Sentences such as �load between 0.5 and 1 pu� and �generation around 0.9 pu�

can be easily translated into intervals. In [6], the interval Newton method is di-

rectly applied to a case of PF analysis with 5 buses, assuming small uncertainty

in the nodal injected powers. In [1], the authors use a�ne arithmetic to keep

track of correlation between inputs, a feature that is absent from traditional30

interval arithmetic. While interval arithmetic has a low computational burden

with respect to probabilistic methods, the major drawback is its tendency to

overestimate the intervals of the solution, especially if input parameters are

characterised by wide intervals. Wide intervals can make the solution either of

little practical interest or useless.35
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1.3. Contributions

The technique proposed in this paper deals with uncertainty in PF analysis

and balances computational burden and accuracy of results. With this aim, we

utilise a midpoint-radius representation of intervals and separate the solution

of the PF problem into a standard PF problem for the midpoint and an inter-40

val problem for the radius. The latter is solved through a carefully designed

optimisation problem, where the constraints ensure that the solution re�ects

all the uncertainty of the input, while the objective function helps to prevent

overestimation. The concept of linking the numerical results with uncertainty

in the input data is borrowed from backward error analysis [7].45

The proposed technique enhances the one presented in [8] where the midpoint

and radius problems were solved together, thus leading to a higher computa-

tional burden and lower accuracy than the technique proposed in this paper.

The proposed method is tested on the IEEE 57 bus test case system, proving

to yield results as accurate as the Monte Carlo method. A study of the com-50

putational burden of analogous methods is performed in order to show that the

proposed method is competitive with state-of-the-art interval-based techniques

and much more e�cient than the Monte Carlo method.

1.4. Organisation

The remainder of the article is organised as follows. Section 2 reviews prob-55

abilistic and interval-based approaches to deal with uncertainty in PF analysis.

Section 3 describes the proposed interval method for PF analysis. Section 4

presents a study of the computational complexity of various methods for PF

analysis with uncertainty. Section 5 presents a case-study including a compari-

son in terms of accuracy with the Monte Carlo method. Finally, Section 6 duly60

draws conclusions and outlines future work.

2. Uncertainty in PF analysis

This section reviews two main approaches used for dealing with uncertainty

in PF analysis. These are the probabilistic approach and the interval-based
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approach.65

2.1. Probabilistic approach

The probabilistic approach models uncertainty as random variables with a

certain probability distribution. The above relies on statistical data to obtain

the probability distribution of the inputs. A probabilistic PF model is de�ned

by extending the PF equations to random variables. The equations are solved70

to obtain the distribution of the unknown variables. The solution method can

be numerical, such as Monte Carlo method, or analytic. In the following, we

focus exclusively on the Monte Carlo method as it is the most commonly used

and is considered to be the most accurate approach [3].

Monte Carlo method. This is a numerical method to approximate the distri-75

bution of an unknown random variable. The method relies on the law of large

numbers and sampling and consists of the following steps:

1. Create a number of scenarios by taking samples of known random vari-

ables.

2. For every scenario, compute a sample of the unknown variables using a80

deterministic model, e.g., simulation.

3. Aggregate the results into some relevant parameters.

Algorithm 1 illustrates the Monte Carlo method for probabilistic PF analysis.

The algorithm computes the sample mean vector of bus voltages v, given the

distribution functions of bus power injections FS(·). The function rng(·) returns85

a random number in the interval [0, 1], and is used for sampling purposes.

Typically, a high number of samples is needed to achieve accurate results.

For this reason, the method can become cumbersome if applied to real-world

problems involved in the operation of power systems. Common applications are

power system planning and reliability analysis [9], or as a validation tool to test90

other techniques. Several examples can be found of the latter, in which the

results from Monte Carlo method are considered the �correct� ones, e.g., [10]

and [11].
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Algorithm 1 Monte Carlo method for probabilistic PF analysis.

Input: Number of samples, ns. Distribution functions of bus power injections,

FS(·). Deterministic PF equations, s = f(v).

Output: Sample mean of bus voltages, v.

1: for h in 1, . . . , ns do

2: r = rng()

3: s(h) = F−1S (r) {Sampling}

4: v(h) = f−1
(
s(h)

)
{Deterministic PF}

5: end for

6: v = 1
n

∑
h

v(h) {Sample mean}

2.2. Interval-based approach

The interval-based approach models uncertainty as intervals without a prob-95

ability distribution. This allows using expert knowledge in the de�nition of input

intervals, in case statistical data is lacking. An interval PF model is de�ned

by extending the PF equations to interval variables. The equations are solved

in order to compute interval bus voltages. These methods are self-validated, as

interval operations respect the property of isotonicity [12].100

Interval-based Newton method. This is a method for bounding the zeros of a

di�erentiable function f(·) : Rn → Rn. Given an initial interval guess [x]
(0)
,

the method computes a series [x]
(k)

, k = 1, 2, . . ., such that,

x ∈ [x]
(0)
, f(x) = 0 =⇒ x ∈ [x]

(k) ⊂ [x]
(k−1) ⊂ . . . ⊂ [x]

(0)
. (1)

The method relies on the mean value theorem, which is applied with vectors

in the current interval. This leads to a new interval that include all the zeros.

However, the new interval might be overlapping the current one. Therefore,

both are intersected in order to compute the next interval in the series. Given

the current interval [x]
(k)

, the mean value theorem states that,

f(x) ∈ f(y) + Jf

∣∣∣
x∈[x](k)

(x− y), ∀x,y ∈ [x]
(k)
, (2)
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where Jf is the Jacobian matrix of f(·). Note that the Jacobian matrix is

evaluated on the whole interval [x]
(k)

. Thus, the result is an interval matrix.

Enforcing f(x) = 0, and choosing y as the midpoint of [x]
(k)

(denoted by x̌(k)),

yields the following expression.

x ∈ x̌(k) −
(
Jf

∣∣∣
x∈[x](k)

)−1
f(x̌(k)), (3)

which leads to the interval Newton iteration,

[x]
(k+1)

= [x]
(k)
⋂(

x̌(k) −
(
Jf

∣∣∣
x∈[x](k)

)−1
f(x̌(k))

)
. (4)

The interval Newton method is applied to interval PF analysis in the same

way as the Newton-Raphson (NR) method is applied to deterministic PF anal-

ysis. This idea was introduced in [6].

Note that the interval Newton iteration requires inverting an interval matrix

(or, alternatively, solving a system of interval linear equations). Typical fac-105

torisation techniques include interval Gaussian elimination and the Krawczyk's

method [13]. However, depending on the structure of the matrix, these methods

can either not converge, take too long or simply deliver an impractical result [14].

A�ne arithmetic method. A novel method for interval PF analysis has been

proposed in [1]. The method relies on a�ne arithmetic, a re�nement of interval

arithmetic which translates intervals into a�ne forms as follows:

[x] = x̌+ x1ε1 + x2ε2 + . . .+ xnεn, (5)

where x̌ is the midpoint of [x], the xi's are known partial deviations, and the

εi's are noise symbols representing sources of uncertainty. By de�nition, xi ∈ R110

and εi ∈ [−1, 1]. In a�ne arithmetic, the same noise symbol may appear in

di�erent expressions thus referring to the same source of uncertainty. Therefore,

a�ne arithmetic is able to circumvent the so-called dependency problem, unlike

traditional interval arithmetic (see Appendix 7).

In [1], the interval PF equations are re-written using a�ne forms for bus

voltage magnitudes and phases, so that the problem is reduced to the interval
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computation of the noise symbols through solving a linear system:

A [x] = [y]− [b] , (6)

where A is a real matrix of known partial deviations, [x] is an interval vector115

of unknown noise symbols, [y] is an interval vector of speci�ed nodal power

injections, and [b] is an interval vector of known noise symbols introduced by the

a�ne arithmetic computational process. Note that knowing the noise symbols

allows one to compute intervals for all the dependent variables by using the a�ne

forms. The solution of (6) is obtained as the solution of two linear optimisation120

problems, one for the lower bounds and one for the upper bounds.

The method is tested on the IEEE-57 bus test case system, and the resulting

intervals are found to be fairly good approximations of the ones computed with

the Monte Carlo method, with a little overestimation introduced by the a�ne

arithmetic formulation.125

Range arithmetic method. Yet another approach has been recently presented in

[10], by the same authors of [1], this time using range arithmetic. Once again,

the method is tested on the IEEE-57 bus test case system and results are a little

more accurate than with a�ne arithmetic.

3. Proposed method for interval PF analysis130

The proposed method for interval PF analysis relies on the midpoint-radius

representation, which allows the PF equations to be solved separately for the

midpoint and for the radius. For an introduction to midpoint-radius interval

arithmetic, see Appendix 7.

In order to introduce our method, let us �rst recall the crisp PF equations

as follows:

si = vi

∑
k∈N

(Yikvk)∗, ∀ i ∈ N , (7)

where si is the complex power injection at bus i, vi is the complex voltage at

bus i, Yik is the element of the admittance matrix linking buses i and k, and N
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is the set of system buses. Let us also recall the de�nitions of complex power

and voltage, as follows:

s = p+ jq, (8)

v = v∠θ, (9)

where p is the real power injection, q is the reactive power injection, v is the135

voltage magnitude, θ is the voltage phase angle, and j is the imaginary unit.

Equation (7) is translated in interval form as follows:

[si] = [vi]
∑
k∈N

(Yik [vk])∗, ∀ i ∈ N , (10)

where [si] and [vi] are now complex intervals. The proposed method assumes

that there is no uncertainty associated with line parameters, so that the element

of the admittance matrix Yik is crisp. Note that this is a common assumption

in similar approaches [10].140

Using the midpoint-radius representation, [s] and [v] are expressed in the

following form:

[s] = 〈š, ρs〉, (11)

[v] = 〈v̌, ρv〉, (12)

where

š = p̌+ jq̌, (13)

v̌ = v̌∠θ̌, (14)

and ρs, ρv ∈ R.

Note that the above de�nitions imply that both [s] and [v] de�ne discs

in the complex plane. In this way, the uncertainty associated with both real

and reactive power is jointly de�ned by the power radius ρs. Similarly, the

uncertainty associated with both voltage magnitude and phase angle is jointly145

de�ned by the voltage radius ρv (see [15] for a complete description of complex

intervals in the midpoint-radius format).
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At this point we adapt traditional notions of crisp PF analysis to interval

PF, resulting in the following assumptions:

• the real power injection and voltage magnitude midpoints, p̌ and v̌, are150

speci�ed on all generator buses;

• the real and reactive power injection midpoints, p̌ and q̌, are speci�ed on

all load buses;

• the voltage magnitude and phase angle midpoints, v̌ and θ̌, are speci�ed

on the slack bus.155

In addition, we introduce the following novel assumptions speci�cally re-

garding interval PF:

• the power injection radius, ρs, is speci�ed on all system buses;

• the voltage radius, ρv, is speci�ed on all generator buses.

The above set of assumptions is summarised in Table 1.160

Table 1: Known and unknown variables for each type of bus in the proposed interval PF

analysis method.

Bus type Knowns Unknowns

Slack v̌, θ̌, ρs, ρv p̌, q̌

Generator p̌, v̌, ρs, ρv θ̌, q̌

Load p̌, q̌, ρs v̌, θ̌, ρv

By applying the rules of midpoint-radius interval arithmetic (see Appendix 7),

equation (10) is split in midpoint and radius parts. This yields the following

system of equations:

ši = v̌i

∑
k∈N

(Yikv̌k)∗, ∀ i ∈ N , (15a)

ρsi = (|v̌i|+ ρvi)
∑
k∈N

|Yik|ρvk + ρvi

∣∣∣ ∑
k∈N

Yikv̌k

∣∣∣, ∀ i ∈ N . (15b)
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Note that equation (15a) represents a crisp PF problem on the midpoints of

all variables. Solving this problem, e.g., by using the NR method, yields v̌i, the

midpoint of the interval solution. In order to compute the radius ρvi on load

buses, we propose the following multi-objective optimisation problem:

min ρvi, ∀ i ∈ N (16a)

s.t. (|v̌i|+ ρvi)
∑
k∈N

|Yik|ρvk + ρvi

∣∣∣ ∑
k∈N

Yikv̌k

∣∣∣ ≥ ρsSP
i , ∀ i ∈ N , (16b)

ρvi ≥ ρvSP
i , ∀ i ∈ NPV (16c)

ρvi ≥ 0, ∀ i ∈ NPQ (16d)

where NPV is the subset of generator buses, NPQ is the subset of load buses,

ρsSP
i is the power injection radius speci�ed at bus i ∈ N , and ρvSP

i is the

voltage radius speci�ed at bus i ∈ NPV .

The problem presented above is the core of our method for interval PF

analysis, as follows. Starting from the bottom, constraint (16d) states that the165

voltage radius on load buses must be non-negative, following a basic assumption

in interval algebra. Constraint (16c) states the voltage radius on generator

buses must be greater than or equal to the speci�ed, so that the interval PF

solution e�ectively takes into account all the uncertainty on the bus voltages.

Similarly, constraint (16b) states that the computed power injection radius on170

all system buses must be greater than or equal to the speci�ed, so that the

solution e�ectively takes into account all the uncertainty on the power injections.

Note that the left-hand side of (16b) is directly taken from (15b). Finally,

the objective function (16a) intends to prevent overestimation of the solution

intervals through minimizing the radius.175

We can �nd similarities and di�erences between the proposed method (16)

and the one from [1]. For example, the non-negativity of the voltage radius in

our method seems to have the same e�ect as the bounds on the noise symbols

in the method from [1]. A clear di�erence is that in the proposed method, the

intervals are expressed in the midpoint-radius format, whereas in [1] they are180

expressed in the lower-upper format. This allows us to solve one optimisation
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problem rather than two. Another big di�erence lies in the representation of

complex intervals, as disks in the proposed method, and rectangles in the method

from [1].

4. Complexity analysis185

This section studies the time complexity of the proposed method as well

as the Monte Carlo, classic interval arithmetic and a�ne arithmetic methods.

In the remainder of the section, nb denotes the number of buses in the power

system.

In the Monte Carlo method, the running time is given by the number of190

samples multiplied by the running time of each instance of PF analysis. For

illustration, let us assume that individual instances are solved through the NR

method. At each iteration of the NR method, the LU factorisation of the Jaco-

bian matrix dominates all other calculations with a running time proportional

to the time of multiplying two matrices, i.e., O(n2.376), as shown in recent stud-195

ies [16]. Under the very weak assumption that the number of iterations needed

to converge is much lower than the problem size, we obtain a time complexity

of O(ns · n2.376), where ns is the number of samples. Generally speaking, ns

should be chosen in accordance with the standard deviation of results in order

to achieve a target level of con�dence. However, ns is often determined empir-200

ically by looking at the standard deviation of results for increasing number of

samples. When the standard deviation ceases to change, it means that enough

samples have been taken. For instance, in the case study presented in Section 5,

the �ideal� number of samples for a network of 57 buses is determined to be

about 5,000 (i.e., two orders of magnitude larger than nb). In the Monte Carlo205

method, n is the size of the PF problem, which is about 2nb. For example, if

we assume ns ≈ 100 · nb, the running time of the Monte Carlo method can be

estimted as 5.19 · ns · n2.376b ≈ 519 · n3.376b .

Regarding the classic interval-based Newton method, calculation time is

dominated by solving an interval linear system. This can be done with the210
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algorithm described in [17], which has an asymptotic complexity of O(n3) and a

running time of 5n3. In this case, n is the number of unknowns of the PF anal-

ysis, i.e., 2nb. Hence, the running time of the interval-based Newton method is

40 · n3b .

The a�ne arithmetic PF method proposed in [1] requires to solve two multi-215

objective optimisation problems. For illustration, let us assume that the interior

point algorithm is used to solve these problems [18]. This algorithm has a time

complexity of O(n3.5), where n is the number of decision variables. In the a�ne

arithmetic PF method described in [1], the number of decision variables is equal

to the size of the PF problem, i.e., 2nb. Thus, the running time of the two multi-220

objective optimization problems can be stimated as 2 · (2nb)3.5 ≈ 22.6 · n3.5b .

Finally, for the proposed method based on interval analysis, we need to solve

one multi-objective optimisation problem with nb decision variables. Assuming

once again that the interior point algorithm is used, our method has an asymp-

totic complexity of O(n3.5) and an estimated running time of n3.5b . To this time,225

one has to add the time required to solve the crisp PF problem for midpoint

values of the intervals, which is n2.376b .

It is worth noticing that both our method and the a�ne arithmetic PF

method described in [1] have the same asymptotic time complexity. However,

we expect our method to be faster than the a�ne arithmetic approach, for the230

following reasons:

• Our method only needs to solve one standard PF problem and one opti-

misation problem, whereas the method in [1] requires to solve two optimi-

sation problems.

• The number of decision variables in [1] is strictly higher than the number235

of decision variables in our problem (twice as large, in the worst case).

Table 2 summarises the above discussion. The Monte Carlo method is the

slowest one as, typically, one has that ns � nb. The interval-based Newton

method is the fastest one but its convergence cannot be always guaranteed.

This fact consistently limit applications of the interval-based approach to the240
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PF problem. Finally, the a�ne arithmetic method and the one proposed in this

paper are comparable, with our method being slightly faster.

Table 2: Asymptotic time complexity of di�erent methods for PF analysis with inclusion of

uncertainty.

Method Asymptotic complexity Running time

Monte Carlo O(ns · n2.376) 5.19 · ns · n2.376b

Interval Newton O(n3) 40 · n3b
A�ne arithmetic O(n3.5) 22.6 · n3.5b

Proposed method O(n3.5) n2.376b + n3.5b

n: problem size, nb: number of buses, ns: number of Monte Carlo

samples.

5. Case study

This section studies the accuracy of the proposed method in comparison

with Monte Carlo and (whenever possible) other approaches from literature.245

Experiments are carried on the IEEE-57 and IEEE-118 bus test systems [19],

where uncertainty is introduced by assuming that generator and load bus power

injections, and generator bus voltages, oscillate within an interval. The mid-

point of these intervals is speci�ed as the value from the original case de�nition,

whereas the radius is speci�ed so as to re�ect an arbitrary level of uncertainty,250

as discussed below.

The proposed method is implemented in the Julia programming language

[20], using the package for mathematical programming JuMP [21] and the

interior-point solver Ipopt [22]. The multiple objective in (16a) is implemented

using a min-max approach, where the maximum voltage radius is minimized.255

The Monte Carlo method is implemented using Dome [23] and assuming that all

inputs follow a uniform distribution over the complex disks de�ned in Section

3.
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5.1. IEEE-57 bus test system

Figure 1 shows the one-line diagram of the IEEE-57 bus system, which has260

7 generators, 42 loads and 80 branches including transmission lines and trans-

formers. On this system, three uncertainty scenarios are considered as presented

in Table 3. Note that scenario (a) corresponds to the case analyzed in [1] and

[10], where the uncertain variables are assumed to vary over rectangles in the

complex plane. For this scenario, results of the Monte Carlo, a�ne arithmetic265

and range arithmetic methods are obtained from [10]. Furthermore, the mid-

point of the interval PF solution in the proposed method is computed as the

midpoint of the Monte Carlo solution from [10]. For scenarios (b) and (c), the

midpoint of the interval solution and the Monte Carlo solution are computed

using Dome [23].270

Table 3: Uncertainty scenarios and speci�ed radius (as percentage of the midpoint) for the

IEEE-57 bus system case study.

Scenario Uncertainty level Power injection radius Voltage radius

(a) Medium 20% 0%

(b) Low 10% 1%

(c) High 50% 2%

Figure 2(a) shows the bus voltage magnitude intervals obtained with the

proposed method, the a�ne arithmetic method, the range arithmetic method

and the Monte Carlo method for the medium uncertainty scenario (a). We

observe that the intervals computed by the proposed method are very close to

the ones by Monte Carlo at the vast majority of buses, whereas with the a�ne275

and range arithmetic methods there seems to be a consistent overestimation.

Nonetheless, the proposed method is unable to match the 0% oscillation speci�ed

for the voltage magnitude at generator buses (namely, buses 2, 3, 6, 8, 9 and 12),

whereas this feature is guaranteed by default in the a�ne and range arithmetic

methods. All in all, the performance of the proposed method in this scenario is280
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Figure 1: One-line diagram of the IEEE 57 bus test case system.
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Figure 2: Bus voltage magnitude intervals obtained with di�erent methods on the IEEE-57

bus test system. (a): medium uncertainty scenario (see Table 3).
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Figure 2: Bus voltage magnitude intervals obtained with di�erent methods on the IEEE-57

bus test system. (b): low uncertainty scenario, (c): high uncertainty scenario (see Table 3).
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Figure 3: Bus voltage magnitude intervals obtained with di�erent methods on the IEEE-118

bus test system for a scenario of medium uncertainty, i.e., 20% oscillation on the generator

and load bus power injections, and 1% oscillation on the generator bus voltages.

quite acceptable.

Figures 2(b) and 2(c) show the bus voltage magnitude intervals obtained

with the proposed method and the Monte Carlo method for the low uncertainty

scenario (b) and high uncertainty scenario (c), respectively. Note that the in-

tervals computed by the proposed method for scenario (b) are very accurate.285

However, in scenario (c) there is a clear overestimation of the interval results at

buses of low identi�er. By looking at Fig. 1, we observe that buses with lower

identi�er are typically closer to generators, which in practice may help keeping

the voltage magnitude within controlled bounds. Unfortunately, the proposed

method is unable to capture this peculiarity which in turn becomes clear by290

running the heavy Monte Carlo method.

5.2. IEEE-118 bus test system

The IEEE-118 bus test system has 54 generators, 91 loads and 186 branches

including transmission lines and transformers. On this system we consider only
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one scenario of medium uncertainty, i.e., 20% oscillation on the generator and295

load bus power injections, and 1% oscillation on the generator bus voltages.

Figure 3 shows the bus voltage magnitude intervals obtained with the proposed

method and the Monte Carlo method for this scenario. Note that the di�erence

between the two is very small, which demonstrates the accuracy and scalability

of the proposed approach.300

6. Conclusion and future works

The paper proposes a novel method for PF analysis allowing to capture un-

certainties through an interval-based approach. The proposed solution proves

to be as e�cient as but less demanding than methods previously proposed in the

literature, such as the interval-based Newton and a�ne arithmetic approaches.305

The proposed method can be as accurate as the Monte Carlo method in situa-

tions of moderate uncertainty, with a consistently lower computational burden.

Indeed, a case study based on the IEEE-57 and IEEE-118 bus systems indicates

that, if the uncertainty is below a given threshold (namely, 20%), the results

obtained with the proposed method are very close to those provided by Monte310

Carlo.

Future works will focus on enhancing the proposed optimisation problem

(16) in order to:

a) properly deal with high uncertainty levels;

b) incorporate stability considerations and reactive power limits.315

In addition, tests on larger networks, both academic and non-academic, will

also be performed so as to keep investigating the accuracy and scalability of the

proposed method.

7. Appendix

7.1. Midpoint-radius interval arithmetic320

Intervals are convex sets of real numbers. They can be represented in sev-

eral formats, e.g., lower bound-upper bound, midpoint-radius, and even lower

18



bound-diameter. This article considers the midpoint-radius representation.

Definition 1 (Midpoint-radius representation) Let [x] be an interval de�ned

by

[x] = {x ∈ R : |x− x̌| ≤ ρx},

where x̌, ρx ∈ R, ρx ≥ 0. Then [x] is noted 〈x̌, ρx〉.

7.2. Interval operations and rounding325

Interval operations are de�ned so as to respect the basic property of inclusion

isotonocity, de�ned below.

Definition 2 (Inclusion isotonicity) Let ◦ be a basic arithmetic operation, i.e.,

◦ ∈ {+,−, ·, /}, [x] and [y] intervals. If

x ◦ y ⊆ [x] ◦ [y] , ∀x ∈ [x] , ∀ y ∈ [y] ,

then ◦ is said to be inclusion isotone.

Inclusion isotonicity ensures that no possible values are �left behind� when

performing interval operations. If �oating-point numbers are used, the above330

means handling rounding errors inherent to �oating-point arithmetic.

The IEEE-754 Standard for �oating-point computation allows for self-validated

interval arithmetic implementations by de�ning the following three rounding

attributes: rounding upwards (towards in�nity), rounding downwards (towards

minus in�nity), and rounding to nearest [24]. The IEEE-754 Standard also de-335

�nes the relative rounding error and the smallest representable (unnormalised)

�oating-point number, which are particularly useful when the midpoint-radius

representation is used [15, 25].

Midpoint-radius interval arithmetic requires rounding to nearest when com-

puting the midpoint, and rounding upwards when computing the radius. In340

addition, the error in computing the midpoint is to the radius in order to satisfy

inclusion isotonicity. Midpoint-radius interval operations are de�ned as follows.
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Definition 3 (Midpoint-radius interval operations) Let [x] = 〈x̌, ρx〉 and [y] = 〈y̌, ρy〉.

Let �(·) and 4(·) be the rounding attributes to nearest and towards plus in-

�nity, respectively. Let ε be the relative rounding error, ε′ = 1
2ε and η be the

smallest representable (unnormalised) �oating-point positive number. Then,

[x]± [y] = 〈z,4(ε′|z|+ ρx+ ρy)〉, z = �(x̌± y̌), (17a)

[x] · [y] = 〈z,4(η + ε′|z|+ (|x̌|+ ρx)ρy + |y̌|ρx)〉, z = �(x̌y̌), (17b)

1

[y]
=

〈
z,4

(
η + ε′|z|+ −ρy

|y̌|(ρy − |y̌|)

)〉
, z = �

(
1

y̌

)
, 0 /∈ [y] . (17c)

It is important to note that both equations (17b) and (17c) introduce a

bounded overestimation into the result. In the case of the multiplication, the

overestimation is bounded by a factor of 1.5 [15].345

The impact of rounding on performance depends on the computing archi-

tecture. For example, for most CPU architectures, the rounding attribute is a

processor �mode�, and thus changes in rounding mode cause the entire instruc-

tion pipeline to be �ushed.

7.3. The dependency problem350

The so-called dependency problem causes overestimation in interval compu-

tations where the same variable occurs more than once. Since all the instances

of the same variable are taken independently by the rules of interval arithmetic,

the radius of the result might be expanded to unrealistic values. For example,

consider the function, f(x) = x2 − 1, where x ∈ [−1, 1]. Then, f(x) ∈ [−1, 0].355

However, using interval arithmetic, f([−1, 1]) = [−1, 1] · [−1, 1]− 1 = [−2, 0].

This can become a major issue to the application of interval arithmetic to

real-world problems, especially to non-linear ones. Accordingly, speci�c mea-

sures have to be taken to preserve the relevance of the results.
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