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Abstract—Representation and reasoning with spatial proper-
ties is essential in several application domains where ontologies
are being successfully applied; e.g., Information Fusion systems.
This requires a full characterization of the semantics of relations
such as adjacent, included, overlapping, etc. Nevertheless, on-
tologies are not expressive enough to directly support widely-use
spatial or topological theories, such as the Region Connection
Calculus (RCC). In addition, these properties must be properly
instantiated in the ontology, which may require expensive cal-
culations. This paper presents a practical approach to represent
and reason with topological properties in ontology-based systems,
as well as some optimization techniques that have been applied
in a video-based Information Fusion application.

Index Terms—Information Fusion; Ontology-based Systems;
Spatial Properties; Topological Reasoning

I. INTRODUCTION

The representation of spatial properties with ontologies has

received a notable interest in the last years. An ontological

spatial knowledge model uses a formal vocabulary to describe

qualitative spatial relations between the entities of the domain.

Qualitative spatial representations have become more impor-

tant because of their proximity to the way humans define

the spatial knowledge. Abstract representations of spatial and

topological properties –e.g.,‘A is inside B’ or ‘A is above

B’– are close to the natural language, and can be exploited

to bridge the semantic gap between symbolic and numerical

representations.

Topological properties of spatial objects can be represented

with the Region Connection Calculus (RCC) [1]. RCC is a

logic-based theory that allows qualitative representation of

spatial properties and automatic inference of implicit knowl-

edge from explicit assertions. Nevertheless, most Description

Logics –the formalisms underpinning ontologies– are not

expressive enough to capture the semantics of RCC and, when

possible, it comes at a very high computational cost.

This paper proposes Dynamic RCC, an approach to incorpo-

rate qualitative topological relations based on the RCC theory

in a previous framework for the contextual interpretation of

data acquired from a visual sensor network [2]. The cor-

nerstone of the framework is an ontological model designed

according to the Joint Directors of Laboratories (JDL) fusion

model [3] that represents sensor and context information in

several levels –from low-level tracking data to high-level

situation knowledge. Dynamic RCC solves two problems: (i)

representation and reasoning with spatial properties in the

ontological model; (ii) efficient instantiation and update of

spatial properties of detected objects.

Dynamic RCC provides support for the representation, dis-

covery, and maintenance of spatial relations between entities

of the scene model. Essentially, Dynamic RCC defines an ad-

ditional layer to the main ontology specifically aimed to store

spatial entities and topological relations in an Euclidean planar

linear geometric submodel. These relations are instantiated

as a result of changes detected in the numerical positions of

the scene objects. To do so, Dynamic RCC uses an auxiliary

data structure where quantitative position values are stored.

When object positions change, Dynamic RCC recalculates

the geospatial arrangement of the entities of the auxiliary

data structure, and updates the qualitative geometric submodel

by translating the obtained results into symbolic topological

relations.

It is worth to notice that in order to keep the spatial

relationships updated, it is necessary to perform a pairwise

comparison between all the scene objects instantiated at a

given instant. This process, which will be frequently executed,

has a quadratic complexity, and may be unacceptable in several

applications –as a matter of fact, it is unaffordable in video-

based object tracking, where almost real time results are

usually required. To solve this problem, Dynamic RCC creates

a partition of the space in the auxiliary data structure in order

to reduce the number of checks by comparing only close

objects. To illustrate the functioning of Dynamic RCC, a case

study based on a multi-camera sport scenario is presented.

The paper is organized as follows. Section 2 reviews related

approaches that apply topological theories into ontology-based

applications. Section 3 presents the overall architecture of the

ontology-based computer vision framework and the Dynamic

RCC extension. An explanation of the implementation is

given in Section 4, where the architecture to manage dynamic

topological relations is showed. Section 5 depicts an example

to detect interesting situations in sport videos by applying

this approach. Last but not least, Section 6 summarizes the

conclusions obtained and present some prospective directions

for future work.
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II. RELATED WORKS

There are several research works in the literature that study

the cognitive aspects of Euclidean spatial properties –e.g.,

topology, direction, distance–, as well as formal theories that

focus on the symbolic representation of their semantics and the

features of related reasoning procedures –e.g., decidability.

The first modern formalizations are due to Clarke [4], [5].

These approaches are based on the extension of the basic

connection relationship and the application of logical theories

to obtain additional well-defined relations. RCC is one of

this axiomatizations made in first order logic [1]. The basic

RCC theory assumes just one primitive dyadic relation C(x,

y) –read as ‘x connects with y’–, where x and y denote

spatial regions. This relation is reflexive and symmetric. Many

different subsets of relations extending the connection relation

have been defined in the context of the RCC theory. The

most popular is a set of eight relations called RCC-8, since

it can be encoded in propositional modal logic [6], and

therefore it is decidable. An alternative approach to RCC

is the 9-intersection [7], which defines nine binary relations

including exterior, interior, and boundary relations between

regions. Unfortunately, the 9-intersection has not proved to be

decidable.

Not surprisingly, these factors have favoured the use of

RCC-8 in ontology-based approaches. First attempt was from

Katz and Grau [8], who carried out a translation from the

feature relations of RCC-8 to the OWL language –which

is based on the Description Logic SHOIN [9]. The main

problem of this approach is that it cannot completely capture

the semantics of RCC-8 because of the absence of reflexive

roles in OWL, which is one of the key assumptions of the

RCC relations. According to the authors, the problem could

be easily solved by using an extension of the language. This

approach has additional drawbacks, as described in [10]: a

huge amount of TBox axioms are generated as a result of the

definition of the RCC-8 roles and the axioms specifying the

non-emptiness of some regions.

Next version of the language, OWL 2 –based on the

Description Logic SROIQ [11]–, includes reflexive roles.

Grütter and Bauer-Messme propose in [12], [13] a translation

of RCC-8 into OWL 2. This approach faced new problems.

For example, OWL 2 does not allow the definition of a

concept as an individual, and therefore regions have to be

represented as individuals. As a result, the spatial domain

cannot be represented as a strict set of concepts and relations.

Another issue is that OWL 2 does not support all the role

inclusion axioms used in the composition tables needed for the

RCC reasoning. According to [14], RCC-8 also requires role

negation, conjunction, and disjunction, as well as complex role

inclusion axioms. Using SROIQBs logic [15], which adds

role boolean operators to SROIQ, some of these needs can

be covered. Unfortunately, this logic does not support complex

role inclusion axioms on the right hand side nor boolean role

operators on complex roles.

Other proposals have faced the problem at a knowledge

representation level, instead of at a formalism level. Specific

components named RCCBoxes have been defined to manage

spatial relationships in ontology supporting tools. These RCC-

Boxes have predefined RCC relationships and composition

tables, and use OWL 2 –they need support for negation roles

to define a disconnected relation if none of the other relations

are detected. RCCBoxes have been implemented in Pellet [10]

and RACER [16] reasoners.

Geographical information systems (GIS) are one of the

most common applications that require intensive use of spatial

properties are. GIS have been applying ontologies during the

last years in a a wide variety of applications; e.g., disaster

management [17], data retrieval [18], etc. Most of them are

focused on representation issues, since they use ontologies

to improve interoperability between heterogeneous systems.

Recently, new systems to query over spatial objects and

features have appeared, though their expressiveness is quite

limited; this is the case of AllegroGraph [19] and Geospatial-

web [20]. A more general approach is [21], which offers a tight

integration with OWL reasoning procedures and implements

geometric operations supported by external libraries. To the

best of our knowledge, there are no vision systems to recognize

situations that use ontology-based spatial representation and

reasoning.

III. SYSTEM ARCHITECTURE

The extended framework encompasses three main modules:

the tracking module, the annotation module, and the knowl-

edge module (see Figure 1). The inputs to the system are three:

the sequence of video frames (to the tracking module), and a

priori data expressed in a predefined data formalism (to the

knowledge module).

The data formalism consists on a set of terminological boxes

(TBoxes). Each one of them contains a hierarchical definition

of computer vision real world concepts and relations at dif-

ferent abstraction levels. This formalism can be accompanied

with predefined data, such as knowledge base assertions com-

ing from previous analysis, and context information inserted

by the user supervisor. This data is introduced as instances of

the ontologies of the knowledge module (ABoxes).

Fig. 1: Architecture of the extended framework

The video stream is managed by the tracking module. The

processing in the framework starts when a new frame is

captured by the video camera. Frame data is processed by the

tracking system in order to detect and segment moving objects
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of the scene. As a result, the tracker obtains data representing

the moving entities –e.g., id number, position or size–, which

is sent to the annotation module. The annotation module also

receives a scene interpretation from the previous frame. Cur-

rent tracking data and previous interpretations are presented

as scene annotations to the a human user –e.g., objects are

marked with squares and labelled when they participate in a

detected activity. The user can monitor the performance of

the tracker and introduce new context information through

the annotation interface. Once the information is checked

by the user, the annotation module sends the validated data,

encompassing tracking and user information, to the knowledge

module. This input triggers the knowledge module reasoning

abilities which finally obtain a new interpretation of the video

scene and some recommendations about how the tracking

module should behave during the processing of the next frame.

The knowledge module includes the knowledge model of

the system, represented with an ontology, and an ontologi-

cal reasoner. The model, based on the JDL data processing

model for Information Fusion systems, is stepped in several

levels ranging from low-level track data to high-level scene

situations [2]. These levels are:

• Tracking Entities (TREN) level, to model input data com-

ing from the tracking module: track information (color,

position, speed, etc.) and frames (to support the temporal

consistency).

• Scene Objects (SCOB) level, to model real-world enti-

ties, properties, and relations: moving and static objects,

topological relations, etc.

• Activities (ACTV) level, to model behavior descriptions:

grouping, approaching, picking an object, etc.

• Impact (IMPC) level, to model the association between a

cost value and an activity description.

These abstract ontologies are the building blocks of

application-specific knowledge models. Each ontology level

provides a skeleton that includes general concepts and relations

to describe very general computer vision entities and relations,

in such a way that they can be extended with more concrete

concepts and relations to suit to the requirements of a specific

domain.

Ontologies in the knowledge module may contain both

perceptual and context data. Perceptual data is automatically

extracted by the tracking algorithm, while the context data is

external knowledge used to complete the comprehension of the

scene. Context data includes information about scene environ-

ment, the parameters of the recording, information previously

computed and user-requested information. For example, the

description of a static object (size, position, kind of object,

etc.) is regarded as context data.

IV. IMPLEMENTATION OF THE KNOWLEDGE MODULE

A system prototype has been built to implement the spec-

ifications of the architecture presented in Section 3. As ex-

plained, the cornerstone of this architecture is the knowledge

module. The implementation of the module is based on the

RACER reasoner [16] (see Figure 2). RACER has been chosen

because it includes support for different kind of inference rules

such as deductive, abductive, spatial, temporal, etc. [2]. In ad-

dition, RACER manages the spatial knowledge using the RCC

theory as a substrate. A substrate associates an assertional

box (ABox), which store statements about domain individuals,

with an additional representation layer. RCC substrate also

offers querying facilities, such as spatial queries and combined

spatial and non-spatial queries.

Fig. 2: Implementation of the Knowledge Module

In this implementation, the reasoner hosts the computer

vision symbolic representation (CVSR), which includes the

three lowest levels of the ontology-based model; namely,

TREN, SCOB, and ACTV. The corresponding instances of these

ontologies are also included. These individual assertions may

come from a priori contextual sources (given by the user or

obtained in previous executions) or from internal reasoning

mechanisms.

Beyond the standard ontology reasoning mechanism based

on subsumption, RACER also support abductive and deductive

rule-based inference. During the execution, abductive nRQL

(new Racer Query Language) rules defined in a sub-ontology

create new instances in the same level or to an upper level.

Eventually, the creation of new instances as defined in the

consequents of the rules will draw instances corresponding to

an interpretation of the scene in terms of the ACTV ontology.

Deductive rules, in turn, are used to maintain the logical

consistency of the scene. Both types of rules support the

creation of feedback information to improve the behavior of

the tracking system. The management of recommendations has

been partially adapted to the prototype. The current devel-

opment implements direct modifications of track properties

according to predefined situations, such as occlusions.

A significant amount of knowledge of SCOB and ACTV

is obtained by rules that include spatial properties in their

antecedent. It must be noticed that abductive reasoning with

spatial entities is very expensive in terms of computation time,
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since it grows with the number of entities and the complexity

of the scene increases. The Dynamic RCC module, integrated

into the system prototype, solves this problem.

A. Dynamic RCC

Dynamic RCC includes three main components: a knowl-

edge base with spatial features from individuals corresponding

to the SCOB abstraction level; an optimized geometric model

composed of a geometric model and an auxiliary data struc-

ture; and a RCC implementation which stores the qualitative

spatial relationships. The overall architecture is depicted in

Figure 3.

Fig. 3: Dynamic RCC architecture

The knowledge base of Dynamic RCC contains representa-

tions of both dynamic and static objects. Geometric features

of each individual, such as position or size, are used as the

input to the geometric model. These features are instantiated

into the geometric model only in two cases: (i) when they do

not exist previously in the model; (ii) when they were already

instantiated, but its position or size has been modified during

the last update. To obtain the new topological relationships

when the situation changes, it is necessary to perform a full

topological analysis between the newly instantiated or updated

geometries and the remaining geometries. This implies that the

geometries which have changed their position or size have to

be checked against the static (M) and dynamic geometries (N).

The total amount of checks (X) can be seen in (1).

X = N · (M +N − 1) (1)

Notice that topological relationships are symmetric. There-

fore, the total amount of checks is (2).

X =
N

2 +N · (2M − 1)

2
(2)

Accordingly, the checking procedure has a quadratic com-

plexity. This situation can turn out into a decrease of the

system performance. In order to avoid this problem, it is

recommendable to reduce the number of checks by choosing

only those geometries that are candidates to modify the spatial

relations of a given geometry. An auxiliary data structure can

be used to determine these candidates (see next subsection),

which usually form a clearly distinguished subgroup of the

scene objects. Once the candidates have been obtained by

querying the auxiliary data structure, the topological relations

of a geometry can be updated by analysing only a few

candidates. The topological relations which change from the

previous state in the geometric model are then updated in the

RCC system. Interestingly enough, changes in the ABox of

the CVSR are not necessary, because the instance properties

and topological relationships are stored in separated substrate.

The consistency between them is achieved by using a common

identifier.

B. Optimized Geometric Model

The optimized geometric model is composed of two com-

plementary sub-modules: a geometric model and an auxiliary

data structure.

The geometric model is a system that represents spatial 2-

dimensional entities in an Euclidean plane and obtain their

spatial relationships quickly, as explained in the previous

subsection. The geometric model is implemented according to

the OpenGIS Simple Features standard, which also includes

supporting libraries and tools. This standard is a specification

for digital storage of geographical data with spatial and non-

spatial attributes. It defines a set of methods to evaluate the

spatial relationships, like overlaps, contains, etc.; a set of meth-

ods to support spatial analysis, like distance, union, difference,

etc.; relational operators between entities; and several kinds

of representation point, such like multipoint, curve, surface,

etc. Although OpenGIS spatial predicates and RCC-8 are not

directly compatible, the output from the geometric model can

be easily mapped from the OpenGIS format –in some cases,

it only involves translating the name of the relationships. Cor-

respondence between OpenGIS spatial predicates and RCC-8

can be found in [22].

The spatial data structure maintains a hierarchical topo-

logical sort on the Euclidean space of the geometries of the

scene. It supports queries to retrieve the candidate geometries

involved into a topological analysis; e.g., ‘which geometries

share area 2 with geometry 2?’. By default, these candidate

geometries are the nearest geometries of the one in the query.

The sorting of the auxiliary spatial data structure is not

predefined by the architecture. It is required, however, to fulfill

the following restrictions: (i) the spatial structure must be

able to define a recursive spatial hierarchy; (ii) the spatial

structure must handle the overlap between entities; (iii) search,

deletion, insertion and update operations must not imply a high

overhead. A recursive and regular cell hierarchy can be used;

some advantages of this structure are the ability to adapt to
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the entity size, and the support for proximity-based sorting

through a restructuring of the hierarchy.

Fig. 4: Example of structured spatial information

Finally, it is important to highlight that data structures

assume that spatial entities are represented by axis-aligned

bounding boxes, even though tracked object do not satisfy

this condition. Consequently, it is necessary to implement an

algorithm to calculate the smallest rectangle which enclose

the corresponding object. The geometry inserted into the

data structure is not the track, but the smallest axis-aligned

rectangle that includes it.

V. CASE STUDY: SPORTS

The prototype presented can be used to improve multi-

camera tracking applications in sports environments. In this

context, it is desirable to know which is the most reliable

camera perspective for situation assessment during a multi-

camera video tracking analysis. By using the topological

relationships between tracks, it is possible to reason which

is the camera or cameras that can offer a greater accuracy.

Tracking analysis loses accuracy and quality when grouping

or occlusion situations occur; i.e., when tracks are related with

the RCC relations partial overlap (po), proper part (pp), or

externally connected (ec).

A suitable criteria to make a good camera selection is the

following:

• The camera must detect a topological relation of lower

degree of overlap between the entities than the previous

camera.

• The camera visual field must activate a proper part

relationship with the entities involved into the analysis.

(To perform this reasoning procedure it is necessary to

know the context information related with the camera

visual field.)

Some other conditions can be used to tune the behavior of

the system; for instance, to require a minimum track size to

carry out the analysis. Notice that cameras must be calibrated,

in such a way that local objects coordinates can be transformed

into the global coordinates space.

The images below show a situation where the overhead

camera (5a) might suffer a lost of accuracy, as the labelled

tracks are grouped. In this conditions, the confidence of the

lateral camera (5b) could be increased, since it meets the

conditions mentioned above.

A simple rule can detect the conditions and update the

confidence value of each camera. The rule antecedent identifies

situations with two tracks and a lateral point of view camera

without a confidence value. If both tracks are in a proper part

relationship with the field view area of the lateral camera and,

at the same time, the tracks are in a disconnected relationship

(dr), then the rule consequent generates a new assertion which

assigns a confidence value to the lateral camera.

(firerule

(and //Antecedent

(?track1 #!tren:Track)

(?track2 #!tren:Track)

(?lateralCam #!scob:CameraFieldView)

(?lateralCam #!scob:conf #!scob:IsNotReliable))

(?*lateralCam ?*track1 :pp) //First criterion

(?*lateralCam ?*track2 :pp) //First criterion

(?*track1 ?*track2 :dr) //Second criterion

)

( //Consequent

(related ?lateralCam #!scob:conf #!scob:IsReliable))

)

For the sake of simplicity, the second condition has been

directly reduced to a disconnected relationship between the

entities. Identification statements have been deleted, and RCC-

5 relations has been used instead of RCC-8 .

Scenarios with a high number of cameras could use a mixed

approach to detect the orientation of the topology relation-

ships. There are several approaches to manage orientation as

qualitative relationships. The best known are the cone-based

and projection-based techniques, which model the cardinal

directions (n, ne, e, se, s, sw, w, nw, equal) depending on the

located object, the reference object, and the frame of reference.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have discussed some of the challenges that

must be faced to incorporate spatial and topological represen-

tation and reasoning features to ontological formalisms. We

have reviewed some current approaches and have discussed

their features and limitations. In addition, we have proposed

a hybrid approach that is used in a framework for ontology-

based interpretation of multi-camera data. Topological rela-

tions among the individuals of a scene are discovered thanks

to a combination of standard tools for spatial representations

and an ontology reasoner powered with a RCC substrate. Some

optimizations techniques have been applied to improve the

performance of the prototype; namely, the use of specialized

data structures to minimize model update.
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(a) Situation showed from the overhead point of view. Frame 135. (b) Situation showed from the lateral point of view. Frame 135.

Fig. 5: Overlapping situation

Future works will include a complete study about which

spatial structures may be more appropriate for our problem.

Data structure implementation and performance results of the

approach are also pending for future research, as well as the

applicability of the current implementation to more complex

scene recognition problems.
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