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Abstract—This paper discusses the limitations of time-based
equipment maintenance methods and the advantages of predictive
or online maintenance techniques in identifying the onset of equip-
ment failure. The three major predictive maintenance techniques,
defined in terms of their source of data, are described as follows:
1) the existing sensor-based technique; 2) the test-sensor-based
technique (including wireless sensors); and 3) the test-signal-based
technique (including the loop current step response method,
the time-domain reflectrometry test, and the inductance–
capacitance–resistance test). Examples of detecting blockages in
pressure sensing lines using existing sensor-based techniques and
of verifying calibration using existing-sensor direct current out-
put are given. Three Department of Energy (DOE)-sponsored
projects, whose aim is to develop online and wireless hardware and
software systems for performing predictive maintenance on criti-
cal equipment in nuclear power plants, DOE research reactors,
and general industrial applications, are described.

Index Terms—Inductance–capacitance–resistance (LCR) test-
ing, loop current step response (LCSR) method, predictive main-
tenance, time-domain reflectrometry (TDR) test, wireless sensor.

I. INTRODUCTION

P REDICTIVE maintenance—sometimes called “online
monitoring,” “condition-based maintenance,” or “risk-

based maintenance”—has a long history. From visual inspec-
tion, which is the oldest method yet still one of the most
powerful and widely used, predictive maintenance has evolved
to automated methods that use advanced signal processing tech-
niques based on pattern recognition, including neural networks,
fuzzy logic, and data-driven empirical and physical modeling.
As equipment begins to fail, it may display signs that can
be detected if sharp eyes, ears, and noses are used to sense
the failure precursors. Fortunately, sensors are now available
to provide the sharp eyes, ears, and noses and identify the
onset of equipment degradations and failures. Integrating these
sensors with the predictive maintenance techniques described in
this paper can avoid unnecessary equipment replacement, save
costs, and improve process safety, availability, and efficiency.

Despite advances in predictive maintenance technologies,
time-based and hands-on equipment maintenance is still the
norm in many industrial processes. Nowadays, nearly 30% of
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industrial equipment does not benefit from predictive main-
tenance technologies. The annual calibration of equipment
mandated by quality assurance procedures and/or regulatory
regulations is a typical example of these time-based meth-
ods. In 2007, Emerson/Rosemount Company published data
on the performance history of their pressure, level, and flow
transmitters in various industries (excluding the nuclear power
industry), where time-based and hands-on maintenance tech-
niques are still the norm. The data showed that during peri-
odic maintenance actions, technicians in these industries found
transmitters to be experiencing no problems 70% of the time
[1]. By contrast, in nuclear power plants, where online or
predictive maintenance is used, this number is over 90% [2].
The data in [1] also showed that 20% of periodic maintenance
actions revealed calibration shift problems (followed by sensing
line blockage at 6% and failures at 4%). By comparison, only
5%–10% of periodic maintenance actions at nuclear power
plants reveal calibration shift problems (though sensing line
blockages occurred 10% of the time). The lower incidence of
calibration faults in nuclear power plant pressure transmitters
suggests that the online monitoring and predictive maintenance
of equipment can reduce calibration problems in other indus-
tries as well.

II. LIMITATIONS OF TIME-BASED

MAINTENANCE TECHNIQUES

Though time-based and hands-on equipment maintenance is
still the norm in industrial processes, these techniques have
increasingly been seen as flawed and unreliable in recent years
[3]. Fig. 1 shows data on 30 identical bearing elements tested
under identical conditions by SKF Group, a vibration and pre-
dictive maintenance analysis company. SKF engineers stressed
the bearings to cause them to fail, then measured the time to
failure. As Fig. 1 shows, some failed in fewer than 15 h, and
others lasted ten times longer or more; one operated for 300 h.
Despite the identical bearings and identical conditions, the
time-to-failure varied by more than an order of magnitude. The
conclusion to be drawn is that it is impossible to tell how long
a component may last in an industrial process. It is therefore
imprudent to set maintenance schedules based on failure time-
based data like SKFs.

Fig. 2 shows six curves that are currently considered as
failure models for industrial equipment such as pressure trans-
mitters, all of which can be managed by periodic time-based
maintenance activities. The three curves on the left-hand
side—bath tub, wear-out, and fatigue—show the percentage of
time that the failure characteristics of equipment may follow
each of the three failure types. According to U.S. Department
of Defense (DOD) data, however, these types of failures ac-
count for only about 11% of all failures [4]. The plots on the
right-hand side of Fig. 2 show the following three more recent
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Fig. 1. Flawed time-based maintenance.

Fig. 2. Failure curves.

failure models that move past the time-based failure models:
1) initial break-in period model; 2) random failure model; and
3) infant mortality failure model. The DOD’s data suggest that
89% of failures involve these three types, with infant mortality
failures constituting by far the single largest type (68% of
failures).

Although bath tub curve failures can be managed by periodic
time-based maintenance activities, these activities are unreli-
able. The bath tub curve is an intuitive concept based on com-
mon sense and empirical knowledge rather than engineering or
scientific principles. It was used for many years to formulate
aging management programs in industrial processes and to
establish equipment replacement schedules. The idea behind
the bathtub curve is that the probability of failure of equipment
is high when equipment is new (“infant mortality”). This is
followed by a period of stable performance and lower failures
(in which there are only random failures), which eventually
leads to increased failure probability (known as the end-of-
life or wear-out period). The bath tub curve is useful in that it
suggests that to avoid infant mortality, equipment should be put

through a “burn-in” process before they are installed in plants
and that increased monitoring is desirable during equipment’s
end-of-life or wear-out period.

However, the bath tub curve cannot be used as the dominant
model for equipment degradation and failure. According to
Moubray, Nolan, and Heap, its accuracy in predicting the aging
and eventual failure of equipment is only about 4%. Like
other time-based failure models, the bath tub curve provides no
precision regarding when end-of-life occurs [5]. The length of
an equipment’s stable period is never accurately known and will
clearly vary for different types of equipment and the different
conditions in which that equipment is used. For an industrial
component such as a process sensor, a shaft in a motor, or tubes
in a heat exchanger, maintenance and replacement schedules
are not easy to establish. Following the bath tub curve, some
plants replace equipment periodically (e.g., every 5–10 years)
to avoid reaching the end-of-life. However, when a piece of
equipment is replaced prematurely, the failure rate can actually
increase because the new equipment may experience infant
mortality.
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Fig. 3. Integrated system employing three categories of techniques for predictive maintenance of industrial sensors and equipment.

III. PREDICTIVE OR ONLINE MAINTENANCE

As noted, predictive maintenance is the preferred mainte-
nance method in 89% of cases, compared to time-based main-
tenance, which is prudent in only 11% of cases. Because of
the unreliability of time-based maintenance methods, industrial
processes should use online monitoring not only when equip-
ment is old but throughout the life of equipment to identify the
onset of degradation and failure of equipment.

One form of predictive maintenance, online calibration mon-
itoring, provides an example of how predictive maintenance
works. Online calibration monitoring involves observing for
drift and identifying the transmitters that have drifted beyond
acceptable limits. When the plant shuts down, technicians cal-
ibrate only those transmitters that have drifted. This approach
reduces by 80%–90% the effort currently expended on calibrat-
ing pressure transmitters. This is according to data published by
the author in a report he wrote for the U.S. Nuclear Regulatory
Commission [6].

Predictive or online maintenance can be divided into the
following three basic techniques (Fig. 3), based on their data
sources: 1) the existing sensor-based maintenance technique;
2) the test-sensor-based maintenance technique; and 3) the test-
signal-based maintenance technique. The first category consists
of maintenance methods that use data from existing process
sensors—such as pressure sensors, thermocouples, and resis-
tance temperature detectors (RTDs)—that measure variables
like temperature, pressure, level, and flow. In other words, the
output of a pressure sensor in an operating plant can be used not

only to indicate the pressure, but also to verify the calibration
and response time of the sensor itself and to identify anomalies
in the process such as blockages, voids, and leaks that can
interfere with accurate measurement of process parameters or
disturb the plant’s operation, safety, or reliability. The second
category of predictive maintenance methods uses data from
test sensors such as accelerometers for measuring vibration and
acoustic sensors for detecting leaks. This group of methods is
where wireless sensors can play a major role.

These first two classes of predictive maintenance techniques
are passive. In contrast, the third category of predictive main-
tenance technology depends on signals that are injected into
the equipment to test them. This category includes active mea-
surements such as insulation resistance tests and inductance,
capacitance, and resistance measurements, also known as LCR
testing. These methods are used to detect defects such as cracks,
corrosion, and wear for the predictive maintenance of cables,
motors, sensors, and other equipment. This third category of
predictive maintenance techniques also includes the loop cur-
rent step response (LCSR) method, which was developed in the
mid-1970s by graduate students, professors, and technicians at
the University of Tennessee (including the author). The LCSR
method is routinely used in nuclear power plants for in situ
response-time testing of RTDs and thermocouples as well as
in other applications [7].

Table I lists the typical types of industrial equipment that
can benefit from these three predictive maintenance technolo-
gies and the parameters that may be monitored. Table II lists
examples of industries that can use the three types of online
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TABLE I
PARAMETERS RELATED TO EQUIPMENT CONDITION

TABLE II
APPLICATIONS OF EQUIPMENT CONDITION MONITORING

or predictive maintenance and the typical purposes for which
each industry may use them. In 20–30 years, most industrial
processes will have an integrated online condition monitoring
system for performing automated predictive maintenance.

A. Category 1 Online or Predictive Maintenance Techniques:
Existing Sensors

At frequencies usually below 30 Hz, existing process sensors
can not only measure a process parameter, but can also provide

plants with performance information. For example, pressure
sensors can be used to monitor thermal hydraulic effects in
addition to measuring pressure. Furthermore, standing waves,
turbulence, and flow-induced vibration effects can be diagnosed
using the normal output of existing pressure sensors in an
operating process.

Fig. 4 shows how plants can use the output of existing
sensors—the first group of online or predictive maintenance
techniques—to verify the performance of the sensors them-
selves. The figure shows the normal output of a process sensor,
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Fig. 4. (a) Typical output of a process sensor. (b) Separating the ac and dc
components of a sensor output.

such as a pressure, level, or flow transmitter, plotted as a
function of time. The dc component of the output is used to
monitor for drift for online calibration monitoring, and the ac
component of the output (referred to as noise) is used to verify
the dynamic performance of the sensor (e.g., response time) and
to identify sensing line blockages.

Fig. 4 also shows how the ac component of a sensor output is
separated from its dc component and sampled into a computer
through an antialiasing filter and then analyzed. The analysis
usually involves performing a fast Fourier transform of the
noise data. The results are presented in terms of a spectrum that
is known as the power spectral density (PSD) of the ac signal.
The PSD is actually the variance of the noise signal in a narrow
frequency band plotted as a function of frequency.

After the noise data are analyzed, the PSD is used to calculate
the response time of the pressure transmitter. An approximate
value for response time can be estimated by noting the break
frequency. To accurately measure response time, the PSD
should be fit to a transfer function model of the sensor from
which the response time is calculated.

1) Example—Using Existing Sensor AC Output to Detect
Blockages in Pressure Sensing Lines: As noted, sensing line
blockages are the second most common problem affecting
pressure transmitters. Using existing sensor-based predictive
maintenance techniques, one can identify the sensing lines that
must be purged and cleared rather than having to purge all
of them. This technique makes it possible to detect blockages
while the plant is online using the normal output of pressure
transmitters at the end of the sensing line [8].

Fig. 5. Effect of sensing line blockage on dynamic performance of a pressure
transmitter.

Fig. 5 shows an application of this method. Two PSDs are
shown in the lower right-hand plot—one for a partially blocked
sensing line and the other for the same sensing line after it was
purged of the blockage. These PSDs are taken from an analysis
of actual noise data from a nuclear plant pressure transmitter.
Observing the break frequency, it is clear that the blockage
reduced the dynamic response of the sensor by an order of
magnitude.

2) Example—Using Existing Sensor DC Output to Verify
Sensor Calibration: Another example of existing sensor-based
predictive maintenance techniques is verifying the calibration
of process sensors using the dc output of the sensors. Fig. 6
shows the dc output of four redundant pressure transmitters
from a nuclear power plant. The plot represents the deviation
of each transmitter from the average of the four transmitters. It
can be seen that the dc output of these transmitters did not drift
over the two years shown. This fact could be used to argue that
these four transmitters do not need to be calibrated. However,
these data are based on only a one-point calibration check at the
plant operating point. To verify calibration over the entire range
of the transmitter, data should be taken not only at the operating
point, but also at startup and shutdown periods. Fig. 7 shows
calibration monitoring results for a pressure transmitter over a
wide operating range. The limits shown in this figure represent
the acceptance criteria for the allowable drift of this particular
transmitter in this particular plant. These limits are calculated
by accumulating the uncertainty values for the components that
are involved in measuring this process parameter. The limits



HASHEMIAN AND BEAN: STATE-OF-THE-ART PREDICTIVE MAINTENANCE TECHNIQUES 3485

Fig. 6. DC output of four redundant pressure transmitters in a power plant.

Fig. 7. Online monitoring results for calibration check of a pressure transmit-
ter as a function of pressure range.

will differ for different transmitters in different plants, depend-
ing on the methodology used to calibrate the instruments.

To facilitate the use of existing sensor-based predictive
maintenance, the author and his colleagues have developed
software for measuring sensor calibration online. Fig. 8 shows
the software screen, which consists of four windows of data.
The window on the top left presents the raw data for nine
transmitters during a plant shutdown. Below this is a plot of
the deviation of each of the transmitters from the average of
the nine. The calibration limits are also shown in this deviation
plot. The bottom-right window is a plot of calibration error for
each transmitter as a function of its operating range. The table in
the upper right shows the results of the calibration monitoring:
eight transmitters passed the calibration monitoring test; one
failed it.

3) Using Empirical or Physical Modeling to Verify Calibra-
tion: In some cases, a process will not have enough redundant
existing sensors to provide a reference for online calibration
monitoring. In these cases, in addition to averaging the redun-
dant sensors, the process can be modeled empirically to create
analytical sensors [9]. This method is illustrated in Fig. 9. Note
that both physical and empirical models can be used to create
analytical sensors.

Using empirical modeling, plants can identify not only cal-
ibration problems, but also other instrument anomalies such
as fouling of venturi flow elements in power plants. This is

illustrated in Fig. 10, which shows reactor power as a function
of time. Two traces are shown. One is from empirical modeling
of the reactor for the purpose of calculating actual power, and
another is from the plant power-level indication system. The
indicated power trends upward, erroneously, while the actual
power is stable, as it should be. The reason for the discrepancy
is fouling of the venturi flow element. As venturi fouls, the
indicated flow rate rises and causes the power indication to
rise accordingly. Analytical modeling, such as by empirically
modeling the plant process using neural networks, enables
plants to identify the onset of venturi fouling and to see the
extent of error in the indicated power. Fig. 10 shows that in this
example, at 500 days of operation, the error is about 2.5% in
power.

B. Category 2 Online or Predictive Maintenance Techniques:
Test Sensors, Including Wireless

The second category of online or predictive maintenance
techniques is, like the first, passive. However, rather than re-
lying on existing sensors for its data, they use data from test
or diagnostic sensors. Typical examples of test sensors are
accelerometers for measuring vibration and acoustic sensors
for detecting leaks. For example, acoustic sensors installed
downstream of valves can establish whether the valve is op-
erating as expected: if a valve is completely open or completely
closed, there is normally no detectable acoustic signal above the
background noise.

When existing test sensors are not available to provide the
necessary data, wireless sensors can be deployed to fill the
gap. For example, wireless sensors can be implemented in such
a way as to combine vibration, acoustic, and other data with
environmental information such as humidity and ambient tem-
perature to yield a comprehensive assessment of the condition
of the process’s equipment and health.

Wireless sensors can facilitate difficult measurements in
industrial processes where wiring is a weak link, such as
flame temperature and high furnace-temperature measure-
ments. Wireless sensors also facilitate measurement in haz-
ardous environments and in applications where space for wiring
installation is limited. Wireless sensors can also be the answer
to the threat posed by rust, corrosion, steam, dirt, dust, and
water to wires in industrial facilities. With wireless sensors,
data can be collected from anywhere and routed on to the In-
ternet where they can easily be accessed and analyzed. Finally,
wiring costs in an industrial process can be as high as $2000
per foot versus $20 per foot if wireless equipment were used
for the same applications. Wireless sensors promise to enhance
industrial productivity, lower energy and material costs, and
increase equipment availability.

According to a 2007 survey of engineering professionals in
the International Society of Automation’s InTech magazine,
wireless technologies are the largest area of technology growth
in the near future [1].

To promote the growth of wireless-based predictive main-
tenance, the Analysis and Measurement Services (AMS) Cor-
poration has developed a software package, called “Bridge,”
that is able to read data from wireless sensors from different
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Fig. 8. Software screen with results of online calibration monitoring.

Fig. 9. Conceptual design of analytical sensor for online calibration monitoring.

Fig. 10. Detection of venturi fouling.

manufacturers, bringing all of a plant’s wireless data together
in one place in one format so it can be analyzed and compared.

C. Category 3 Predictive or Online Maintenance Techniques:
Test Signals

The first two categories of predictive maintenance tech-
niques were mostly passive, do not involve perturbations of the
equipment being tested, and can be performed in most cases
while the plant is operating. The third category of predictive
maintenance methods can be described as methods that depend
on active measurements from test signals.

One form of test-signal-based predictive maintenance in-
volves injecting a signal into the equipment to measure their
performance. For example, a method called the LCSR test can
remotely measure the response time of temperature sensors as
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Fig. 11. Principle of LCSR test for in situ measurement of an RTD response time.

installed in a plant while the plant is online [7]. This method
sends an electrical signal to the sensor in the form of a step
change. Fig. 11 shows the setup for performing LCSR on an
RTD. A Wheatstone bridge is used to send a step charge in
current to the RTD. The current causes heating in the RTD
sensing element and produces an exponential transient at the
bridge output. This transient can be analyzed to give the re-
sponse time of the RTD. The LCSR test can be used for other
purposes such as finding water levels in a pipe. It can also be
used to verify that temperature sensors are properly installed
in their thermowells in a process and that they respond to
temperature changes in a timely manner. Similarly, the LCSR
method can be used to determine if aging causes degradation
in the dynamic performance of temperature sensors so sensor
replacement schedules can thereby be established. In 1979, the
author helped use the LCSR technique during the Three Mile
Island nuclear plant accident to assist the plant to determine
water level in the primary coolant pipes. Finally, the LCSR
method can also be used to detect the bonding of sensors such
as RTDs and strain gauges to solid surfaces (Fig. 12).

Fig. 13 shows the response time of several thermocouples
measured by the LCSR test. There is one outlier, which had a
secondary junction that was not at the tip of the thermocouple,
causing its response time to be much higher than the others.
The LCSR method helped identify that this thermocouple’s
measuring junction is not where it should be and thus indicated
an erroneous temperature.

Test-signal-based predictive maintenance methods also in-
clude the time-domain reflectrometry (TDR) test. It is used
to locate problems along a cable, in a connector, or at an
end device by injecting a test signal through the conductors
in the cable and measuring its reflection. The TDR technique
has also served the power and process industries in testing
instrumentation circuits, motors, heater coils, and a variety of
other components. In a TDR test, a step signal is sent through

Fig. 12. (a) LCSR can determine the degree of bonding of temperature sensors
to solid surfaces. (b) LCSR can determine the degree of bonding of strain
gauges to solid surfaces.

the cable, and its reflection is plotted versus time. The plot will
show any changes in impedance along the cable, including at
the end of the cable.
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Fig. 13. LCSR for in situ testing of a thermocouple problem.

Fig. 14. (a) RTD circuit. (b) TDR test results of the RTD circuit.

Fig. 14 shows the TDR of a three-wire RTD as installed in
a plant. It clearly shows all locations where there is a change
in impedance, including the end of the cable that has an RTD.
If the TDR is trended, problems that may develop along the
cable or at the end device can be identified and located. The
simplest application of TDR is locating an open circuit along a
cable. You can tell if the circuit is open by measuring its loop
resistance, but only a TDR would tell you where the circuit
is open. Fig. 15 shows how TDR identified a failed RTD in a
nuclear power plant, where knowing if the open circuit is inside
the reactor containment or outside the reactor containment is

critical. Fig. 16 shows a TDR of a thermocouple measured in
1999 and 2008. The 2008 data indicate that the thermocouple
impedance has changed significantly.

A complementary set of cable tests that measure impedance,
called LCR testing, is often used in addition to TDR to identify
whether a circuit problem is caused by an open circuit, a
short circuit, a shunt, a moisture intrusion, or other problems.
Alternatively, one can perform an LCR test by itself to mea-
sure cable inductance and capacitance and trend the values to
identify problems or compare against a baseline. Typical cable
circuits can be characterized both by series inductance and
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Fig. 15. Failed RTD detected by TDR.

Fig. 16. Results of TDR monitoring of a thermocouple.

resistance and by parallel capacitance of the dielectric. Fig. 17
shows capacitance measurement results for ten RTDs as well as
dissipation factor calculations. These are all normal values.

Although using TDR and LCR measurements is not compli-
cated and they have been used for many years, their applications
in industrial processes are still new.

IV. PREDICTIVE MAINTENANCE R&D PROJECTS

The three predictive maintenance technologies discussed in
this paper are part of three U.S. DOE projects under the Small
Business Innovation Research program to subsidize R&D work
at small (under 500 employees) high-technology firms that can
convert the R&D results into commercial products. The goal
of the first of these projects, namely, “On-Line Monitoring of
Accuracy and Reliability of Instrumentation,” is to develop
systems for online condition monitoring of equipment and
processes in industrial plants. As noted previously, the goals of
the second project, namely, “Wireless Sensors for Equipment
Health and Condition Monitoring in Nuclear Power Plants,”
are to develop data qualification and data processing techniques
for wireless sensors, to identify which parameters these sensors
should measure, and to determine the correlation between these
parameters and the actual condition of the equipment being
monitored. The goal of the third project, namely, “Wireless
Sensors for Predictive Maintenance of Rotating Equipment in

Fig. 17. (a) Capacitance measurement results for ten RTDs and dissipation
factor calculations (for lead X1 to ground). (b) RTD circuit for the results shown
in this table.

DOE’s Research Reactors,” is to determine the feasibility of
using wireless sensors to monitor the condition of equipment in
research reactors such as the high-flux isotope reactor (HFIR)
at the Oak Ridge National Laboratory.

Since the wireless and HFIR projects are still under way, we
will focus here on the progress made in the Online monitoring
(OLM) project. The OLM project is aimed at developing new
technology that uses signals from existing process sensors to
verify the performance of the sensors and assess the health of
the process. The work involves both software and hardware
development, testing, and validation using existing hardware
and software that have been adapted to the project. The soft-
ware packages we developed are for data acquisition, data
qualification, and data analysis equipment. This equipment is
designed for fast data acquisition and will be used for ac and dc
data acquisition. The AMS Corporation is currently adapting
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Fig. 18. (a) and (b) Screenshots of OLM software.

National Instruments Company’s new data acquisition product
CompactRio to the OLM project. Writing the algorithm and
software packages and testing and implementing a prototype
system in an operating plant constitute the bulk of the OLM
project’s current work. Fig. 18 shows software screenshots of
an ac signal analysis to detect dynamic anomalies in equipment
and processes, and Fig. 19 shows software screens of data
qualification results before they are analyzed. Under the OLM
project, the AMS Corporation is developing statistical packages
for data qualification. For example, we calculate the amplitude
probability density of the data and look for nonlinearity and
other problems in the data before we send the data through for
analysis. We also calculate signal skewness, kurtosis, and other
measurements and trend them to identify problems in data.

V. CONCLUSION

Industrial plants should no longer assume that equipment
failures will only occur after some fixed amount of time in
service; they should deploy predictive and online maintenance
strategies that assume that any failure can occur at any time
(randomly). The onset of equipment failure may manifest itself
in data generated by the methods used to monitor the equip-
ment, providing clues as to whether the equipment should be
repaired, replaced, or left to continue in operation. Ongoing
research into the three major types of predictive or online
maintenance technologies discussed in this paper promises to
deliver technologies that may be applied remotely, passively,
and online in industrial processes to improve equipment re-
liability, predict failures before they occur, and contribute to
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Fig. 19. (a) and (b) Data qualification results.

process safety and efficiency. Integrating the predictive mainte-
nance techniques described in this paper with the latest sensor
technologies will enable plants to avoid unnecessary equipment
replacement, save costs, and improve process safety, availabil-
ity, and efficiency.
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