
Part I

COMPUTER SCIENCE

BIT 33 (1993), 178-189.

A G E N E R A L I Z E D H Y P E R G R E E D Y A L G O R I T H M F O R

W E I G H T E D P E R F E C T M A T C H I N G

CELINA IMIELINSKA 1 and BAHMAN KALANTARI 2

Department of Electrical Engineering Department of Computer Science
and Computer Science Rutger University
Stevens Institute of Technology New Brunswick, NJ 08903, USA
Hoboken, NJ 07030, USA.

Abstract.

We give a generalization of the hypergreedy algorithm for minimum weight perfect matching on
a complete edge weighted graph whose weights satisfy the triangle inequality. With a modified version of
this algorithm we obtain a log n-approximate perfect matching heuristic for points in the Euclidean plane,
in O(n log z n) time.

CR categories: F.2.2, G.2.2, E.5.

Keywords: Perfect matching, Approximation algorithms.

1. Introduction.

Let K(V) be a complete edge weighted graph with an even number, n = IVI, of
vertices. Throughout the paper we shall assume that the edge weights satisfy the
triangle inequality. A perfect matching of V is a set of edges such that each vertex of
V is incident to exactly one edge. An optimal perfect matching of V is a perfect
matching with minimum total edge weight. The optimal perfect matching can be
obtained by Edmonds' algorithm [4, 5], in O(n 3) time for general weights. The fastest
algorithm for the case of Euclidean points in the plane, due to Vaidya [14], runs in
O(n 2"5 log 4 n) time. Special cases of the problem can be solved faster. For example,
Marcotte and Suri [9] proposed an O(n log n) time exact algorithm for the case
where the points ae the vertices of a convex polygon.

For large n, finding approximate solutions, fast and within some error bounds,
has been of both practical and theoretical interest. By the error of a heuristic
algorithm we shall mean the worst case ratio of the weight of an approximate

1 This research was supported in part by the DIMACS Grant No. NSF-STC88-09648.
2 This research was supported in part by the NSF under Grant No. CCR 88-07518.
Received November 1991. Revised November 1992.

A GENERALIZED HYPERGREEDY ALGORITHM FOR W E I G H T E D . . . 179

Fig. 1. The 1-basic g r a p h wi th odd and even connec ted componen t s (odd and even hypervertices).

solution produced by the heuristic to that of the optimal solution. For some perfect
matching heuristics and lower bounds, see Grigoriadis and Kalantari [-6, 7].

The hypergreedy heuristic for perfect matching due to Supowit, Plaisted, and
Reingold [12], and Plaisted [11] runs in O(n 2 log n) time and obtains an approxi-
mate solution with error bound of 2 log3 ~n. We propose a generalization of the
hypergreedy, called the t-hypergreedy, where t is an integer parameter satisfying
1 < t < Llog3 n J, which provides an approximate solution with the error bounded
above by (2t + 1), and the time complexity of O(max{tn 2, n33-t}). For t = Llog3 nj
this heuristic reduces the hypergreedy.

We show that for points in the Euclidean plane the error of a modified t-
hypergreedy is bounded above by ~t(2t + 1), where ~ = 2.42, and its time complexity
is O(max{tn log n, n23-t log n, na3-3t}). In particular, for t = Llog3 n/ the modified
t-hypergreedy has an error bounded above by ~(2~log3n] + 1) and it can be
implemented in O(n log 2 n) time. This time complexity is also favorable with respect
to Vaidya's O(n log 3 n) time heuristic [15], for points in the Euclidean plane, whose
error is bounded above by 3 log3 3n. The t-hypergreedy makes use of the t-basic
graph, which is a collection of sparse connected components of K(V). For points in
the Euclidean plane the t-hypergreedy makes use of an approximate t-basic graph.
The construction of these two graphs and the analysis of the error of the resulting
t-hypergreedy heuristics are described in Section 2 and Section 3, respectively. In
Section 4, we analyze the time complexity of the heuristics.

2. The t-basic graph and the t-hypergreedy heuristic.

In this section we describe the construction of the t-basic graph, a subgraph of
K(V), where t is an integer satisfying 1 < t < [log3 nJ. We deonote it by BGt(V).
BGt(V) is obtained recursively from BG~_ 1(1/) using edges in K(V), and BGz_ 1(~ is

180 CELINA IMIELINSKA AND BAHMAN KALANTARI

Fig. 2. The nearest neighbor graph of odd hypervertices.

a subgraph of BGt(V). To construct BGt(IO from BGt_ I(V), we have to consider
connected components with odd and even number of vertices. BGI(V) is the nearest
neighbor graph of K(V), i.e. each vertex in V will be connected to a nearest neighbor
via the corresponding edge. In case of duplication of an edge only one copy is
retained. Next we classify connected components in BG~(V) with respect to the
number of vertices they span. Let O~(V) and El(V) be the odd and even connected
components of BG,(V), with odd and even number of vertices, respectively, see
Fig. 1. We shall refer to the components as hypervertices.

BG2(V) is constructed by finding the nearest neighbor graph of the odd hyperver-
tices in BGx(V), where each odd hypervertex in 01(V) is connected to a nearest odd
hypervertex, either by an edge or a set of edges forming a shortest path in K(V)
passing through even hypervertices of E~(V), and again we keep only one copy of
any duplicated edge, see Fig. 2. BG2(V) is a collection of old and new even
hypervertices, E2(V), and new odd hypervertices, 02(V). In general, given BGi(V) we
obtain B Gi ÷ I(V) by repeating the same process. The set of edges in K(11) added in
the process has total weight bounded above by the following lemma.

LEMMA 2.1. For each 1 < i < t, the total weight of alt edges to BG~(V) to form
BGi+I(V) is bounded above by 2to(M*(V)), where M*(V) and o(M*(V)) denote an
optimal perfect matching of V and its total edge weight, respectively. In particular, the
weight of edges in BGt(V) is bounded above by 2too(M*(V)).

PROOF. For a given i, consider the union of the edges in the subgraph BGi(V) and
those of M*(V). The edges of M*(V) partition the set of the odd hypervertices, Oi(V),
into pairs which are connected either by an edge in M*(V) or a chain of edges in
M*(1I) passing through even components of Ei(V). In Fig. 3 we show one such pair of
odd hypervertices, A and B. Let A 1 and B1 be the nearest odd hypervertices of A and
B, respectively. The weight of the shortest path connecting A and A1 is less than or

A GENERALIZED HYPERGREEDY ALGORITHM FOR W E I G H T E D . . .

I~GE D4 TIE I~ARESr IqEIGHBOR GRAPtt

EIX~E ~ ~ OFrD4AL PERFECT MATC:I]~NG

181

Fig. 3. A pa i r of odd hyperver t ices and thei r neares t odd neighbors .

equal to the weight of the chain of the edges in M*(V) connecting A to B. Similarly,
the weight of the shortest path connecting B and B1 is less than or equal to the weight
of this chain.

Since the weight of each such chain formed by the edges in M*(V) is compared to
the weight of at most two shortest paths connecting odd hypervertices, it follows
that the total weight of the nearest neighbor graph of the odd hypervertices of
BGi(V) is bounded above by 2 times the weight of M*(V). Hence the total weight of
BGt(V) is bounded above by 2t times the weight of M*(V). II

We now describe the t-hypergreedy heuristic. First, we construct the t-basic
graph, BGt(V) This graph contains even and (possibly) odd hypervertices. If there
are any odd hypervertices in the t-basic graph, we match them using an optimal
perfect matching algorithm. This requires a preprocessing which consists of the
computation of the shortest paths, possibly passing through even hypervertices,
between every pair of odd hypervertices. Each shortest path is replaced by an edge
which has the same weight as the weight of the path. This gives a complete graph
whose nodes are the odd hypervertices. Next we compute an optimal perfect
matching on the reduced graph. This type of problem reduction was exploited in
Grigoriadis and Kalantari I7]. The matching is then replaced by the corresponding
set of paths. The edges in the paths are added to BGt(V). The new graph contains
only even connected components. Each component admits a perfect matching and is
processed separately. The matching is obtained in a similar fashion as the minimum
spanning tree heuristic for the traveling salesman problem [10]: The edges in each
connected component are doubled. This results in a new graph, where each compo-
nent is Eulerian. We extract an Euler tour in every connected component. An Euler
tour is a closed walk where each edge is visited exactly once. Using the triangle
inequality, we replace Euler tours with Hamiltonian cycles of lesser weight.
A Hamiltonian cycle of a connected component is a cycle where each vertex is visited
exactly once. Each Hamiltonian cycle is the union of two disjoint perfect matchings.

182 CELINA IMIELINSKA AND BAHMAN KALANTARI

(,)

Q

Fig. 4. (a) Voronoi diagram, (b) Delaunay triangulation.

We select the one with the smaller weight. The union of the selected perfect
matchings of the components forms a perfect matching of E The weight of the
optimal perfect matching of the odd hypervertices is bounded above by o~(M*(V)).

In a similar fashion, as in the proof of Lemma 2.1, we consider the union of M*(V)
and the optimal perfect matching of the odd hypervertices. This union gives even
cycles on the odd hypervertices. Now it is easy to argue that in each cycle the total
weight of edges from the optimal perfect matching of the odd hypervertices is less
than or equal to the total weight of edges from M*(V). Thus

THEOREM 2.1. The error of the t-hypergreedy for weights satisfying the triangle
inequality, is bounded above by (2t + 1),for 1 < t < [loga nJ. •

3. An approximate t-basic graph and the t-hypergreedy for the Euclidean case.

Suppose V is a set of points in the Euclidean plane. In this case the t-hypergreedy
. o

builds an approximate t-basic graph, denoted by B Gt(V), which is a subgraph of the
Delaunay triangulation. For i = 1, the subgraph BGI(V) coincides with BGI(V), the
nearest neighbor graph of K(V). For i > 1, in obtaining B~i ÷ ~(V) from ffGi(F), we
construct the nearest neighbor graph of the odd hypervertices with respect to the
Delaunay triangulation of E This allows an efficient compuiation of an approxi-
mate nearest neighbor graph of the odd hypervertices within a constant error
bound.

The Delaunay triangulation, which is a sparse graph with O(n) edges, is obtained
from the Foronoi diagram, see Fig. 4(a). The Voronoi diagram is a partition of the
plane into Foronoi regions of points closer to one point of V than to others, see
Preparata and Shamos [13]. The Voronoi region of a point v ~ V is a set of points in
the plane closer to v than to any other point u e 1~, v ~ u. Two Voronoi regions are

A G E N E R A L I Z E D H Y P E R G R E E D Y A L G O R I T H M F O R W E I G H T E D . . . 183

¢

¢ 0

¢
O

C

bc

Fig. 5. G e n e r a l i z e d V o r o n o i d i a g r a m .

adjacent if they share a Voronoi edge. The Delaunay triangulation of V can be
derived from the corresponding Voronoi diagram by joining each two points whose
Voronoi regions are adjacent, see Fig. 4(b), in O(n) time. Chew [1] and Dobkin and
Friedman [3] showed that complete Euclidean graphs can be approximated by
Delaunay graphs. The best bound on this approximation has been recently shown
by Keil and Gutwin in [8], proving that the Delaunay triangulation has the
property that the weight of the shortest path between each pair of vertices is
bounded above by ~ = 2.42 times the Euclidean distance between the two vertices.

Consider an odd hypervertex A. Let B be the nearest odd hypervertex of A with
respect to K(V), and let (vx, v2), (I) 3 , 1)4) (1)k- 1, Vk) be the edges of this shortest path.
From the above, for each edge (v~,vi+~), there exists a path in the Delaunay
triangulation whose weight is bounded above by ~ times the straight line distance
between v~ and vi + ~. Thus

LEMMA 3.1. The weight of the shortest path from an odd hypervertex to the nearest
odd hypervertex with respect to the Delaunay triangulation, is bounded above by

times the weight of the shortest path from that odd hypervertex to its nearest odd
hyper/)ertex with respect to K(V).

Using Lemma 2.1 and the above lemma, we conclude the following for points in
the Euclidean plane.

C O R O L L A R Y 3 . 1 . The weight of edges of Bl"~t(V) is bounded above by 2cttco(M*(V)).

184 CELINA IMIELINSKA AND BAHMAN KALANTARI

The approximation of BGt(I/) by B~t(l/) results in a corresponding approximate
t-hypergreedy, for points in the Euclidean plane, which satisfies the following

THEOREM 3.1. The error of the approximate t-hypergreedy for points in the Euclid-
ean plane is bounded above by g(2t + 1),for 1 < t < Llog3 nJ.

4. Time complexities.

In this section we analyze the worst case time complexities for constructing
BG,(V), its approximation BGt(V) for points in the Euclidean plane, and the corre-
sponding heuristics.

As in the case of hypergreedy [11] the construction of the nearest neighbor graph
of odd hypervertices consists of two stages. In the first stage, we construct the
Generalized Voronoi Diagram, (G VD), relative to the set of odd hypervertices, which is
a partition of all hypervertices with respect to which odd hypervertex they are closest
to, see Fig. 5. Then, in the second stage, a nearest odd neighbor is found for each odd
hypervertex. To construct the GVD, for every hypervertex we find a shortest path to
its nearest odd hypervertex, possibly passing through other even hypervertices.
Each odd hypervertex and all the even hypervertices, which are closer to it than to
any odd hypervertex, form a Generalized Voronoi Region, (GVR). For general
weights satisfying the triangle inequality, GVD is constructed using edges in K(10,
while for points in the Euclidean plane GVD only edges in the Delaunay triangula-
tion are used. For the Euclidean case two G VR's are adjacent if there is an edge in the
Delauney triangulation with endpoints in the G VR's. For complete graphs each two
GVR's are adjacent because there is always an edge in K(V) with endpoints in the
G VR's.

The construction of BGI(I/) clearly requires O(n 2) operations in the general case.
For the Euclidean case, the construction of the Voronoi diagram of V requires
O(n log n) time, where BGI(V) which coincides with BGI(V) can be obtained in O(n)
operations, see [13].

Now consider the following problem. Let G = (V, E) be a weighted graph with
I VI = n vertices and IEI = m edges and whose weights are nonnegative. Suppose that
V is partitioned into A and B labeled as odd and even vertices, respectively. If we
define GVD as before, i.e. as clusters of even vertices connected to their nearest odd
vertices by the corresponding shortest paths, then we have

LEMMA 4.1. The GVD of G = (V, E) can be constructed in O(min {n 2, m log n)) time.

PrtOOF. Consider the following modified Dijkstra's shortest path algorithm (see
[10], [11]).

Voronoi edge

A GENERALIZED HYPERGREEDY ALGORITHM FOR WEIGHTED . . . 185

Fig. 6. Voronoi region of a hypervertex (VRH).

Dijkstra's modified algorithm for GVD.

Input: Agraph G = (V,E) with nonnegative edge weights and with Vpartitioned
into two subsets A and B, where A = {vertices labeled as even} and B = {vertices
labeled as odd}. Initially each vertex v E A has a label p(v) = ~ .

Output: The weight of the shortest path from each even vertex v to its nearest odd
vertex, possibly passing through intermediate even vertices, stored in p(v). Also each
even vertex will store the next vertex in its shortest path.
begin

for all v ~ A such that there is an edge (v, o) ~ E, where o ~ B do
p(v) = min{og(v, o): o ~ B and (v, o) ~ E};

while A # 0;
begin find min{p(v); v ~ A}, say p(q);

B = B u {q};
A = A \ { q } ;
for all y e a s.t. (v ,q)~E do

p(v) = min{p(v), p(q) + ~o(v, q)}
end

end

For G = (V, E) dense, there are n iterations in the main loop of the algorithm,
where each iteration is proportional to the number of vertices in A. Thus, the time
complexity is O(n2). For sparse graphs, we can store all the labels p(v) on a heap to
maintain a priority queue which returns and removes the label with the smallest
value, see [2]. The size of the heap is O(n) and it can be constructed in O(n) time. The
algorithm will require m operations on the priority queue where each operation
takes O(log n) time. Thus the time complexity is O(m log n). •

The following was proved in [11].

186 CELINA IMIELINSKA AND BAHMAN KALANTARI

Fig. 7. Representation of a GVR as a cluster of VRH's.

LEMMA 4.2. Given an odd hypervertex y and G VR(y), the GVR containing y, assume
z is a nearest odd neighbor ofy. Then, there exists an edge (u, v), such that the shortest
path from y to z consists of the path from y to u, u G G V R(y), the edge (u, v), v G G V R(z),
and the path from v to z.

By the above lemma, given GVD we can determine in O(n 2) operations the nearest
odd neighbor for each odd hypervertex in BGI(V) with respect to K(V). We examine
all the edges in K(V) and regard those with endpoints in different GVR's, and select
for each pair of G VR's such an edge which minimizes the length of the shortest path
between the corresponding odd hypervertices.

For points in the Euclidean plane, if instead of K(V) we consider the nearest odd
neighbor with respect to the Delaunay triangulation, then the above Lemma implies
that the computation of the nearest odd neighbors, given G VD, can be done in O(n)
operations. Each vertex from the set V defines its Voronoi region of points closer to
it than to any other vertex in V. We represent each hypervertex, odd and even, of
BGI(V), by a cluster of Voronoi regions of all the vertices in the hypervertex. We
denote this representation by the Voronoi region ofa hypervertex, (VRH), see Fig. 6.

Two VRH's are adjacent if at least one pair of their constituent Voronoi regions,
each in different VHR, is adjacent. We represent each GVR as a cluster of VRH's of
all the hypervertices in the GVR, see Fig. 7. Two GVR's are adjacent if at least one
pair of their constituent VRH's, each in different GVR, is adjacent. To find for each
odd hypervertex its nearest odd hypervertex with respect to the Delaunay triangula-
tion, given the above representation of GVD, see Fig. 8, we examine all the edges in
the Delaunay triangulation and consider those edges with endpoints in different
GVR's. Then we select for each pair of adjacent G VR's such an edge which minimizes
the length of the shortest path between the corresponding odd hypervertices. Thus

A GENERALIZED HYPERGREEDY ALGORITHM FOR "vVEIGHTED . . . 187

Fig. 8. Generalized Voronoi diagram with its GVR's represented as dus ters of VRH's.

THEOREM 4.1. The nearest neighbor oraph of odd hypervertices can be computed in
O(n 2) t ime with respect to K(V), and in 0 (n log n) time for points in the Euclidean plane
with respect to the Delaunay trianoulation.

To construct BGi(V) from BG~_ a(V), we have to find for every hypervertex its
nearest odd hypervertex. By Theorem 4.1, this requires O(n 2) and O(n log n) time for
general complete graphs and for points in the Euclidean plane, respectively. Thus

COROLLARY 4.1. The time complexity of constructin9 B G ~) is O(tn2). For points
in the Euclidean plane the time complexity for constructin9 BGt(V) is O(t [V[log [V[),

We now analyze the time complexity of the second stage of the t-hypergreedy, i.e.
the time needed to find the optimal perfect matching of the odd hypervertices either
in BGt(V) or B'G~(V). There is an even number of odd hypervertices in BGt(V) or
B"~t(V), if any. Having found an optimal perfect matching of the odd hypervertices,
we add the corresponding edges. This will result in a graph with hypervertices which
are even only.

For each t, the number of vertices in each odd hypervertex of BG,(V) or ~ t (V) is
at least 3 3. This follows from the fact that at each stage a new odd hypervertex is
formed by an odd number of odd hypervertices (at least 3 of them); thus the number
of vertices in an odd hypervertex grows by a factor of at least 3. In particular, when
t = Llog3 nJ the heuristic reduces to the hypergreedy heuristic. For this t, there could
be at most two remaining odd hypervertices. Otherwise, the graph would have at

188 CELINA IMIELINSKA AND BAHMAN KALANTARI

least 3 °°g3"j+ 1 vertices, which is impossible. Thus, for this t, the construction of the
second part of the t-hypergreedy, i.e., the construction of the optimal perfect
matching of the odd hypervertices is essentially the construction of the shortest path
between the two odd hypervertices. This can be done in O(n 2) time for general
weights and O(n log n) time for the Euclidean case.

Given BG~(V), where odd and even hypervertices are treated as nodes, the
t-hypergreedy proceeds as follows. We form a graph with those edges in K(V), whose
endpoints are in different hypervertices. In this graph, for all its 0(n3-7) odd nodes,
the shortest paths between every pair of vertices is found• This can be done in
O(n33-~) time by applying the shortest path algorithm of Dijkstra O(n3-t) times. We
replace each such shortest path by an edge whose weight is equal to that of the path,
and we match odd hypervertices in the complete graph using an exact perfect
matching algorithm, in 0(n33- 3t) time. Now all the connected components are even.
The construction of Euler and Hamiltonian cycles requires O(n) time. Each Hamil-
tonian gives rise to two different perfect matchings on its vertices, and the better of
the two is selected. Thus we have

THEOREM 4.2. The time complexity of the t-hypergreedy is T(n)=
O(max{tn2,na3-t}), where 1 < t < Llogan].

• A

Given BGt(V) for points in the Euclidean plane, the second part of the modified
t-heuristic is implemented as follows. We form a graph where nodes are all even and
odd hypervertlces of BGt(V), and they are connected by those edges in the Delaunay
triangulation whose endpoints are in different hypervertices. In this graph for each
odd hypervertex we find a shortest path to all other odd hypervertices in
O(n23-tlogn) time using Dijkstra's shortest path algorithm O(n3 -z) times. As
before, we form a complete graph whose nodes are all the odd hypervertices and
edges correspond to the shortest paths between the hypervertices, followed by the
computation of an optimal perfect matching. Thus we have

THEOREM 4.3. For points in the Euclidean plane, the time complexity of the modified
t-hypergreedy is T(n) = O(max {tnlogn, nE3-tlog n, na3-a~}), where 1 <_ t < [log3 n].

Acknowledgement.

We wish to thank the referees for their constructive comments. In particular, we
thank one of the referees for making us aware of the recent result by Keil and Gutwin
[8] which allowed us to improve the error bound of our heuristic, originally based
on Chew's result [1].

A GENERALIZED HYPERGREEDY ALGORITHM FOR WEIGHTED . . . 189

REFERENCES

1. L. P. Chew, There is a planar graph almost as good as the complete graph, Proceedings of the 2nd
Symposium on Computational Geometry, Yorktown Heights, NY, 169-177, (1986).

2. T. H. Cormen, C. E. Leiserson and R. L Rivest, Introduction to Algorithms, The MIT Press and
McGraw-Hilt, Cambridge, (1989).

3. D. P. Dobkin, S. J. Friedman and K. J. Supowit, Delaunay graphs are almost as good as complete
graphs, FOCS, 20-26, (1987).

4. J. Edmonds, Paths, trees and flowers, Canadian Journal of Mathematics, (17), 449-467, (1965).
5. H. N. Gabow, Implementation of algorithms on nonbipartite graphs, Ph.D. thesis, Department of

Electrical Engineering, Stanford University, (1973).
6. M. D. Grigoriadis and B. Kalantari, A lower bound to the complexity of Euclidean and rectilinear

matching algorithms, Information Processing Letters, (22), 73-76, (1986).
7. M.D. Grigoriadis and B. Kalantari, A new class of heuristic algorithms for weighted perfect matching,

JACM, (35), 769-776, (1988).
8. J. M. Keil and C. A. Gutwin, Classes of graphs which approximate the complete Euclidean graphs,

Discrete and Computational Geometry, (7), 13-28, (1992).
9. O. Marcotte and S. Suri, Fast matching algorithms for points on a polygon, FOCS, 60-65, (1989).

10. C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity,
Prentice Hall, Englewood Cliffs, New Jersey, (1982).

11. D.A.Plaisted•Heuristicmatchingf•rgraphssatisfyingthetriangleinequality•J•urnal•fAlg•rithms•
5 (5), 163-179, (1984).

12. K.J. Supowit, D. A. Plaisted and E. M. Reingold, Heuristic for weighted matching, STOC, 398-419,
(1980).

13. F. P. Preparata and K. J. Shamos, Computational Geometry, Springer-Verlag, New York, (1985).
14. P. Vaidya, Geometry helps in matching, (extended abstract), STOC, 422-425, (1988).
15. P. Vaidya, Approximate minimum weight matching on points in k-dimensional space, Algoritmica, 4,

569-583, (1989).

