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Abstract. 

We give a generalization of the hypergreedy algorithm for minimum weight perfect matching on 
a complete edge weighted graph whose weights satisfy the triangle inequality. With a modified version of 
this algorithm we obtain a log n-approximate perfect matching heuristic for points in the Euclidean plane, 
in O(n log z n) time. 
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1. Introduction. 

Let K(V) be a complete edge weighted graph with an even number, n = IVI, of 
vertices. Throughout the paper we shall assume that the edge weights satisfy the 
triangle inequality. A perfect matching of V is a set of edges such that each vertex of 
V is incident to exactly one edge. An optimal perfect matching of V is a perfect 
matching with minimum total edge weight. The  optimal perfect matching can be 
obtained by Edmonds' algorithm [4, 5], in O(n 3) time for general weights. The fastest 
algorithm for the case of Euclidean points in the plane, due to Vaidya [14], runs in 
O(n 2"5 log 4 n) time. Special cases of the problem can be solved faster. For example, 
Marcotte and Suri [9] proposed an O(n log n) time exact algorithm for the case 
where the points ae the vertices of a convex polygon. 

For large n, finding approximate solutions, fast and within some error bounds, 
has been of both practical and theoretical interest. By the error of a heuristic 
algorithm we shall mean the worst case ratio of the weight of an approximate 
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Fig. 1. The  1-basic g r a p h  wi th  odd  and  even connec ted  componen t s  (odd and  even hypervertices).  

solution produced by the heuristic to that of the optimal solution. For some perfect 
matching heuristics and lower bounds, see Grigoriadis and Kalantari [-6, 7]. 

The hypergreedy heuristic for perfect matching due to Supowit, Plaisted, and 
Reingold [12], and Plaisted [11] runs in O(n 2 log n) time and obtains an approxi- 
mate solution with error bound of 2 log3 ~n. We propose a generalization of the 
hypergreedy, called the t-hypergreedy, where t is an integer parameter satisfying 
1 < t < Llog3 n J, which provides an approximate solution with the error bounded 
above by (2t + 1), and the time complexity of O(max{tn 2, n33-t}). For t = Llog3 nj 
this heuristic reduces the hypergreedy. 

We show that for points in the Euclidean plane the error of a modified t- 
hypergreedy is bounded above by ~t(2t + 1), where ~ = 2.42, and its time complexity 
is O(max{tn log n, n23-t log n, na3-3t}). In particular, for t = Llog3 n/ the  modified 
t-hypergreedy has an error bounded above by ~(2~log3n] + 1) and it can be 
implemented in O(n log 2 n) time. This time complexity is also favorable with respect 
to Vaidya's O(n log 3 n) time heuristic [15], for points in the Euclidean plane, whose 
error is bounded above by 3 log3 3n. The t-hypergreedy makes use of the t-basic 
graph, which is a collection of sparse connected components of K(V). For points in 
the Euclidean plane the t-hypergreedy makes use of an approximate t-basic graph. 
The construction of these two graphs and the analysis of the error of the resulting 
t-hypergreedy heuristics are described in Section 2 and Section 3, respectively. In 
Section 4, we analyze the time complexity of the heuristics. 

2. The t-basic graph and the t-hypergreedy heuristic. 

In this section we describe the construction of the t-basic graph, a subgraph of 
K(V), where t is an integer satisfying 1 < t < [log3 nJ. We deonote it by BGt(V). 
BGt(V) is obtained recursively from BG~_ 1(1/) using edges in K(V), and BGz_ 1(~ is 
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Fig. 2. The nearest neighbor graph of odd hypervertices. 

a subgraph of BGt(V). To construct BGt(IO from BGt_ I(V), we have to consider 
connected components with odd and even number of vertices. BGI(V) is the nearest 
neighbor graph of K(V), i.e. each vertex in V will be connected to a nearest neighbor 
via the corresponding edge. In case of duplication of an edge only one copy is 
retained. Next we classify connected components in BG~(V) with respect to the 
number of vertices they span. Let O~(V) and El(V) be the odd and even connected 
components of BG,(V), with odd and even number of vertices, respectively, see 
Fig. 1. We shall refer to the components as hypervertices. 

BG2(V) is constructed by finding the nearest neighbor graph of the odd hyperver- 
tices in BGx(V), where each odd hypervertex in 01(V) is connected to a nearest odd 
hypervertex, either by an edge or a set of edges forming a shortest path in K(V) 
passing through even hypervertices of E~(V), and again we keep only one copy of 
any duplicated edge, see Fig. 2. BG2(V) is a collection of old and new even 
hypervertices, E2(V), and new odd hypervertices, 02(V). In general, given BGi(V) we 
obtain B Gi ÷ I(V) by repeating the same process. The set of edges in K(11) added in 
the process has total weight bounded above by the following lemma. 

LEMMA 2.1. For each 1 < i < t, the total weight of alt edges to BG~(V) to form 
BGi+I(V) is bounded above by 2to(M*(V)), where M*(V) and o(M*(V)) denote an 
optimal perfect matching of V and its total edge weight, respectively. In particular, the 
weight of edges in BGt(V) is bounded above by 2too(M*(V)). 

PROOF. For a given i, consider the union of the edges in the subgraph BGi(V) and 
those of M*(V). The edges of M*(V) partition the set of the odd hypervertices, Oi(V), 
into pairs which are connected either by an edge in M*(V) or a chain of edges in 
M*(1I) passing through even components of Ei(V). In Fig. 3 we show one such pair of 
odd hypervertices, A and B. Let A 1 and B1 be the nearest odd hypervertices of A and 
B, respectively. The weight of the shortest path connecting A and A1 is less than or 
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Fig. 3. A pa i r  of odd  hyperver t ices  and  thei r  neares t  odd  neighbors .  

equal to the weight of the chain of the edges in M*(V) connecting A to B. Similarly, 
the weight of the shortest path connecting B and B1 is less than or equal to the weight 
of this chain. 

Since the weight of each such chain formed by the edges in M*(V) is compared to 
the weight of at most two shortest paths connecting odd hypervertices, it follows 
that the total weight of the nearest neighbor graph of the odd hypervertices of 
BGi(V) is bounded above by 2 times the weight of M*(V). Hence the total weight of 
BGt(V) is bounded above by 2t times the weight of M*(V). II 

We now describe the t-hypergreedy heuristic. First, we construct the t-basic 
graph, BGt(V) This graph contains even and (possibly) odd hypervertices. If there 
are any odd hypervertices in the t-basic graph, we match them using an optimal 
perfect matching algorithm. This requires a preprocessing which consists of the 
computation of the shortest paths, possibly passing through even hypervertices, 
between every pair of odd hypervertices. Each shortest path is replaced by an edge 
which has the same weight as the weight of the path. This gives a complete graph 
whose nodes are the odd hypervertices. Next we compute an optimal perfect 
matching on the reduced graph. This type of problem reduction was exploited in 
Grigoriadis and Kalantari I7]. The matching is then replaced by the corresponding 
set of paths. The edges in the paths are added to BGt(V). The new graph contains 
only even connected components. Each component admits a perfect matching and is 
processed separately. The matching is obtained in a similar fashion as the minimum 
spanning tree heuristic for the traveling salesman problem [10]: The edges in each 
connected component are doubled. This results in a new graph, where each compo- 
nent is Eulerian. We extract an Euler tour in every connected component. An Euler 
tour is a closed walk where each edge is visited exactly once. Using the triangle 
inequality, we replace Euler tours with Hamiltonian cycles of lesser weight. 
A Hamiltonian cycle of a connected component is a cycle where each vertex is visited 
exactly once. Each Hamiltonian cycle is the union of two disjoint perfect matchings. 
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Fig. 4. (a) Voronoi diagram, (b) Delaunay triangulation. 

We select the one with the smaller weight. The union of the selected perfect 
matchings of the components forms a perfect matching of E The weight of the 
optimal perfect matching of the odd hypervertices is bounded above by o~(M*(V)). 

In a similar fashion, as in the proof of Lemma 2.1, we consider the union of M*(V) 
and the optimal perfect matching of the odd hypervertices. This union gives even 
cycles on the odd hypervertices. Now it is easy to argue that in each cycle the total 
weight of edges from the optimal perfect matching of the odd hypervertices is less 
than or equal to the total weight of edges from M*(V). Thus 

THEOREM 2.1. The error of the t-hypergreedy for weights satisfying the triangle 
inequality, is bounded above by (2t + 1),for 1 < t < [loga nJ. • 

3. An approximate t-basic graph and the t-hypergreedy for the Euclidean case. 

Suppose V is a set of points in the Euclidean plane. In this case the t-hypergreedy 
. o 

builds an approximate t-basic graph, denoted by B Gt(V), which is a subgraph of the 
Delaunay triangulation. For i = 1, the subgraph BGI(V) coincides with BGI(V), the 
nearest neighbor graph of K(V). For i > 1, in obtaining B~i ÷ ~(V) from ffGi(F), we 
construct the nearest neighbor graph of the odd hypervertices with respect to the 
Delaunay triangulation of E This allows an efficient compuiation of an approxi- 
mate nearest neighbor graph of the odd hypervertices within a constant error 
bound. 

The Delaunay triangulation, which is a sparse graph with O(n) edges, is obtained 
from the Foronoi diagram, see Fig. 4(a). The Voronoi diagram is a partition of the 
plane into Foronoi regions of points closer to one point of V than to others, see 
Preparata and Shamos [13]. The Voronoi region of a point v ~ V is a set of points in 
the plane closer to v than to any other point u e 1~, v ~ u. Two Voronoi regions are 
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Fig.  5. G e n e r a l i z e d  V o r o n o i  d i a g r a m .  

adjacent if they share a Voronoi edge. The Delaunay triangulation of V can be 
derived from the corresponding Voronoi diagram by joining each two points whose 
Voronoi regions are adjacent, see Fig. 4(b), in O(n) time. Chew [1] and Dobkin and 
Friedman [3] showed that complete Euclidean graphs can be approximated by 
Delaunay graphs. The best bound on this approximation has been recently shown 
by Keil and Gutwin in [8], proving that the Delaunay triangulation has the 
property that the weight of the shortest path between each pair of vertices is 
bounded above by ~ = 2.42 times the Euclidean distance between the two vertices. 

Consider an odd hypervertex A. Let B be the nearest odd hypervertex of A with 
respect to K(V), and let (vx, v2), ( I ) 3 ,  1)4) . . . .  (1)k- 1, Vk) be the edges of this shortest path. 
From the above, for each edge (v~,vi+~), there exists a path in the Delaunay 
triangulation whose weight is bounded above by ~ times the straight line distance 
between v~ and vi + ~. Thus 

LEMMA 3.1. The weight of the shortest path from an odd hypervertex to the nearest 
odd hypervertex with respect to the Delaunay triangulation, is bounded above by 

times the weight of the shortest path from that odd hypervertex to its nearest odd 
hyper/)ertex with respect to K(V). 

Using Lemma 2.1 and the above lemma, we conclude the following for points in 
the Euclidean plane. 

C O R O L L A R Y  3 . 1 .  The weight of edges of Bl"~t(V) is bounded above by 2cttco(M*(V)). 
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The approximation of BGt(I/) by B~t(l/) results in a corresponding approximate 
t-hypergreedy, for points in the Euclidean plane, which satisfies the following 

THEOREM 3.1. The error of the approximate t-hypergreedy for points in the Euclid- 
ean plane is bounded above by g(2t + 1),for 1 < t < Llog3 nJ. 

4. Time complexities. 

In this section we analyze the worst case time complexities for constructing 
BG,(V), its approximation BGt(V) for points in the Euclidean plane, and the corre- 
sponding heuristics. 

As in the case of hypergreedy [11] the construction of the nearest neighbor graph 
of odd hypervertices consists of two stages. In the first stage, we construct the 
Generalized Voronoi Diagram, (G VD), relative to the set of odd hypervertices, which is 
a partition of all hypervertices with respect to which odd hypervertex they are closest 
to, see Fig. 5. Then, in the second stage, a nearest odd neighbor is found for each odd 
hypervertex. To construct the GVD, for every hypervertex we find a shortest path to 
its nearest odd hypervertex, possibly passing through other even hypervertices. 
Each odd hypervertex and all the even hypervertices, which are closer to it than to 
any odd hypervertex, form a Generalized Voronoi Region, (GVR). For general 
weights satisfying the triangle inequality, GVD is constructed using edges in K(10, 
while for points in the Euclidean plane GVD only edges in the Delaunay triangula- 
tion are used. For the Euclidean case two G VR's are adjacent if there is an edge in the 
Delauney triangulation with endpoints in the G VR's. For complete graphs each two 
GVR's are adjacent because there is always an edge in K(V) with endpoints in the 
G VR's. 

The construction of BGI(I/) clearly requires O(n 2) operations in the general case. 
For the Euclidean case, the construction of the Voronoi diagram of V requires 
O(n log n) time, where BGI(V) which coincides with BGI(V) can be obtained in O(n) 
operations, see [13]. 

Now consider the following problem. Let G = (V, E) be a weighted graph with 
I VI = n vertices and IEI = m edges and whose weights are nonnegative. Suppose that 
V is partitioned into A and B labeled as odd and even vertices, respectively. If we 
define GVD as before, i.e. as clusters of even vertices connected to their nearest odd 
vertices by the corresponding shortest paths, then we have 

LEMMA 4.1. The GVD of G = (V, E) can be constructed in O(min {n 2, m log n)) time. 

PrtOOF. Consider the following modified Dijkstra's shortest path algorithm (see 
[10], [11]). 
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Fig. 6. Voronoi region of a hypervertex (VRH). 

Dijkstra's modified algorithm for GVD. 

Input: Agraph G = (V,E) with nonnegative edge weights and with Vpartitioned 
into two subsets A and B, where A = {vertices labeled as even} and B = {vertices 
labeled as odd}. Initially each vertex v E A has a label p(v) = ~ .  

Output: The weight of the shortest path from each even vertex v to its nearest odd 
vertex, possibly passing through intermediate even vertices, stored in p(v). Also each 
even vertex will store the next vertex in its shortest path. 
begin 

for all v ~ A such that there is an edge (v, o) ~ E, where o ~ B do 
p(v) = min{og(v, o): o ~ B and (v, o) ~ E}; 

while A # 0; 
begin find min{p(v); v ~ A}, say p(q); 

B = B u {q}; 
A = A \ { q } ;  
for all y e a  s.t. (v ,q)~E do 

p(v) = min{p(v), p(q) + ~o(v, q)} 
end 

end 

For G = (V, E) dense, there are n iterations in the main loop of the algorithm, 
where each iteration is proportional to the number of vertices in A. Thus, the time 
complexity is O(n2). For sparse graphs, we can store all the labels p(v) on a heap to 
maintain a priority queue which returns and removes the label with the smallest 
value, see [2]. The size of the heap is O(n) and it can be constructed in O(n) time. The 
algorithm will require m operations on the priority queue where each operation 
takes O(log n) time. Thus the time complexity is O(m log n). • 

The following was proved in [11]. 
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Fig. 7. Representation of a GVR as a cluster of VRH's. 

LEMMA 4.2. Given an odd hypervertex y and G VR(y), the GVR containing y, assume 
z is a nearest odd neighbor ofy. Then, there exists an edge (u, v), such that the shortest 
path from y to z consists of the path from y to u, u G G V R(y), the edge (u, v), v G G V R(z), 
and the path from v to z. 

By the above lemma, given GVD we can determine in O(n 2) operations the nearest 
odd neighbor for each odd hypervertex in BGI(V) with respect to K(V). We examine 
all the edges in K(V) and regard those with endpoints in different GVR's, and select 
for each pair of G VR's such an edge which minimizes the length of the shortest path 
between the corresponding odd hypervertices. 

For points in the Euclidean plane, if instead of K(V) we consider the nearest odd 
neighbor with respect to the Delaunay triangulation, then the above Lemma implies 
that the computation of the nearest odd neighbors, given G VD, can be done in O(n) 
operations. Each vertex from the set V defines its Voronoi region of points closer to 
it than to any other vertex in V. We represent each hypervertex, odd and even, of 
BGI(V), by a cluster of Voronoi regions of all the vertices in the hypervertex. We 
denote this representation by the Voronoi region ofa hypervertex, (VRH), see Fig. 6. 

Two VRH's are adjacent if at least one pair of their constituent Voronoi regions, 
each in different VHR, is adjacent. We represent each GVR as a cluster of VRH's of 
all the hypervertices in the GVR, see Fig. 7. Two GVR's are adjacent if at least one 
pair of their constituent VRH's, each in different GVR, is adjacent. To find for each 
odd hypervertex its nearest odd hypervertex with respect to the Delaunay triangula- 
tion, given the above representation of GVD, see Fig. 8, we examine all the edges in 
the Delaunay triangulation and consider those edges with endpoints in different 
GVR's. Then we select for each pair of adjacent G VR's such an edge which minimizes 
the length of the shortest path between the corresponding odd hypervertices. Thus 
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Fig. 8. Generalized Voronoi diagram with its GVR's represented as dus ters  of VRH's. 

THEOREM 4.1. The nearest neighbor oraph of odd hypervertices can be computed in 
O(n  2) t ime with respect to K(V), and in 0 (n log n) time for points in the Euclidean plane 
with respect to the Delaunay trianoulation. 

To construct BGi(V) from BG~_ a(V), we have to find for every hypervertex its 
nearest odd hypervertex. By Theorem 4.1, this requires O(n 2) and O(n log n) time for 
general complete graphs and for points in the Euclidean plane, respectively. Thus 

COROLLARY 4.1. The time complexity of constructin9 B G ~ )  is O(tn2). For points 
in the Euclidean plane the time complexity for constructin9 BGt(V) is O(t [V[ log [ V[), 

We now analyze the time complexity of the second stage of the t-hypergreedy, i.e. 
the time needed to find the optimal perfect matching of the odd hypervertices either 
in BGt(V) or B'G~(V). There is an even number of odd hypervertices in BGt(V) or 
B"~t(V), if any. Having found an optimal perfect matching of the odd hypervertices, 
we add the corresponding edges. This will result in a graph with hypervertices which 
are even only. 

For each t, the number of vertices in each odd hypervertex of BG,(V) or ~ t ( V )  is 
at least 3 3. This follows from the fact that at each stage a new odd hypervertex is 
formed by an odd number of odd hypervertices (at least 3 of them); thus the number 
of vertices in an odd hypervertex grows by a factor of at least 3. In particular, when 
t = Llog3 nJ the heuristic reduces to the hypergreedy heuristic. For this t, there could 
be at most two remaining odd hypervertices. Otherwise, the graph would have at 
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least 3 °°g3"j+ 1 vertices, which is impossible. Thus, for this t, the construction of the 
second part of the t-hypergreedy, i.e., the construction of the optimal perfect 
matching of the odd hypervertices is essentially the construction of the shortest path 
between the two odd hypervertices. This can be done in O(n 2) time for general 
weights and O(n log n) time for the Euclidean case. 

Given BG~(V), where odd and even hypervertices are treated as nodes, the 
t-hypergreedy proceeds as follows. We form a graph with those edges in K(V), whose 
endpoints are in different hypervertices. In this graph, for all its 0(n3-7) odd nodes, 
the shortest paths between every pair of vertices is found• This can be done in 
O(n33-~) time by applying the shortest path algorithm of Dijkstra O(n3-t) times. We 
replace each such shortest path by an edge whose weight is equal to that of the path, 
and we match odd hypervertices in the complete graph using an exact perfect 
matching algorithm, in 0(n33- 3t) time. Now all the connected components are even. 
The construction of Euler and Hamiltonian cycles requires O(n) time. Each Hamil- 
tonian gives rise to two different perfect matchings on its vertices, and the better of 
the two is selected. Thus we have 

THEOREM 4.2. The time complexity of the t-hypergreedy is T(n)= 
O(max{tn2,na3-t}), where 1 < t < Llogan]. 

• A 

Given BGt(V) for points in the Euclidean plane, the second part of the modified 
t-heuristic is implemented as follows. We form a graph where nodes are all even and 
odd hypervertlces of BGt(V), and they are connected by those edges in the Delaunay 
triangulation whose endpoints are in different hypervertices. In this graph for each 
odd hypervertex we find a shortest path to all other odd hypervertices in 
O(n23-tlogn) time using Dijkstra's shortest path algorithm O(n3 -z) times. As 
before, we form a complete graph whose nodes are all the odd hypervertices and 
edges correspond to the shortest paths between the hypervertices, followed by the 
computation of an optimal perfect matching. Thus we have 

THEOREM 4.3. For points in the Euclidean plane, the time complexity of the modified 
t-hypergreedy is T(n) = O(max {tnlogn, nE3-tlog n, na3-a~}), where 1 <_ t < [log3 n]. 
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