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From Perception to Action and vice versa: a new architecture showing 
how perception and action can modulate each other simultaneously*

Antonio Jesús Palomino1, Ángel Garcı́a-Olaya2, Fernando Fernández2 and Juan Pedro Bandera1

Abstract— Artificial vision systems can not process all the
information that they receive from the world in real time
because it is highly expensive and inefficient in terms of
computational cost. However, inspired by biological perception
systems, it is possible to develop an artificial attention model
able to select only the relevant part of the scene, as human
vision does. From the Automated Planning point of view, a
relevant area can be seen as an area where the objects involved
in the execution of a plan are located. Thus, the planning system
should guide the attention model to track relevant objects. But,
at the same time, the perceived objects may constrain or provide
new information that could suggest the modification of a current
plan. Therefore, a plan that is being executed should be adapted
or recomputed taking into account actual information perceived
from the world. In this work, we introduce an architecture that
creates a symbiosis between the planning and the attention
modules of a robotic system, linking visual features with high
level behaviours. The architecture is based on the interaction of
an oversubscription planner, that produces plans constrained
by the information perceived from the vision system, and an
object-based attention system, able to focus on the relevant
objects of the plan being executed.

I. INTRODUCTION

In biological vision systems, the attention mechanism is

responsible for selecting the relevant information from the

sensed field of view. In robotics, this ability is specially

useful because of the restrictions in computational resources

which are necessary to simultaneously perform different

vision related tasks [1].

From a deliberative point of view, there are several be-

haviours to be accomplished that depend on the perception of

a specific set of objects. From that definition, we can deduce

the effects on deliberative planning: we have partial observ-

ability, since the attention model constrains the information

that the robot perceives; we have uncertainty, because we

can not expect that elements perceived in the past remain as

they were in the past (sometimes not even for a small period

of time).

In other words, there exists a very close relationship

between an attention-driven perception system and a delib-

erative planner typically included in the reasoning phase of
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the classical perception-reasoning-action loop. This loop is

usually addressed in an unidirectional way: the deliberative

layer proposes a set of visual features to be found and

the perception system only needs to look for them. But

in this work, we focus on the bidirectional perception-

planning connection. Specifically, we analyse the application

of automated planning in the attention model of the vision

module of a robot and we introduce an architecture that

permits their mutual interaction.

The connection between perception and action, specially

when an artificial attention system is employed, is still an

open question. Besides, the problem has been addressed from

different points of view because it is a meeting point between

Computer Vision and Planning lines of research.

On the one hand, people working on developing attention

models have faced the problem by including a task-dependant

component in saliency computation. Thus, [2], [3] and [4]

add a top-down saliency map able to pop out objects or

regions that fit with the current task. However, none of them

explicitly defines how to obtain those task-dependant maps

(i.e., there is no link with a deliberative model that points

out what elements in scene are relevant to the task).

On the other hand, models such as [5] and [6] deal with the

classical unidirectional assumption of perception-action loop.

They use hierarchical planning and Bayesian approaches

respectively to specify the features to be searched in the

scene in order to accomplish a specific task (where and
what to look?). But these models do not take into account

the appearance of new objects which could modify the task

to be executed because they are bounded to very specific

behaviours. Moreover, they do not apply the visual attention

concept so they can not use the advantages of focussing only

in relevant parts of the whole image.

The proposed approach addresses the perception-planning-

action loop in a bidirectional way, coping with the drawbacks

of the aforementioned models. On the one hand, we can

define different top-down templates depending on the expec-

tations or requirements of a multi-purpose planner. Thus, we

can change the relevance of an object depending on its utility

for the ongoing task. On the other hand, the introduction

of new objects in scene triggering new tasks (e.g. critical

or higher priority tasks) is taken into account. Thereby, a

continuous adaptation of the plan depending on the perceived

objects is allowed.

In summary, the attention model returns only information

from relevant areas and only that information can be used to

generate an action plan. But planning should also affect the

attention module, since the planning system defines what to
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do. Therefore, it must suggest what type of information is

relevant or not to the attention module. Such information is

derived from the task that the robot must solve and hence,

from the objects involved in the execution of such plan.

The underlying idea of this work comes from neurophys-

iological observations that suggest that particular perceptual

characteristics, such as location or shape, engage actions

related to those characteristics, such as reaching and pre-

hension networks, and those activating action systems may

prime the processing of stimuli defined by the perceptual

characteristics related to these actions [7], [8].

The remainder of this paper describes the proposed visual

attention and planning systems used and introduces the

architecture which connects them in order to close and

solve the perception-reasoning-action loop proposed. Finally,

the approach is evaluated using a coloured card ordering

problem, where the different colours of the cards are the

basis of the attention model.

II. THE ATTENTION MODEL

In this section, we introduce an object-based model of

visual attention for a social robot which works in a dy-

namic scenario [1]. Over the past few years, computer

vision researchers have been trying to take inspiration from

biological visual systems, which are able to filter out the

irrelevant information in the scene to focus all its resources

in processing only relevant parts. A complete survey about

existing artificial attention models can be found in [9] and

[10].

The psychological basis to develop artificial visual at-

tention systems are mainly two complementary theories:

Treisman’s Feature Integration Theory [11] and Wolfe’s

Guided Search [12]. The first one suggests that the human

vision system detects separable features in parallel in an early

step of the attention process (the pre-attentive stage, which is

totally task-independent) to finally integrate them through a

bottom-up process into a single saliency map. Several years

later, Wolfe proposed that a top-down component in attention

can increase the speed of the process giving more relevance

to those parts of the image corresponding to the current task.

Furthermore, attention theories introduce another important

concept: the Inhibition of Return. This mechanism implies

that an already attended object should not be selected again

until some time later. Otherwise, the most relevant object

would be always selected.

The used attention system integrates task-independent

bottom-up processing and task-dependent top-down selec-

tion. In this model, the units of attention are the so-called

proto-objects [13], that are defined as units of visual infor-

mation that can be bounded into a coherent and stable object.

On the one hand, the bottom-up component determines the

set of proto-objects present in the image, describing them

by a set of low-level features that are considered relevant to

determine their corresponding saliency values. On the other

hand, the top-down component weights the low-level features

that characterize each proto-object to obtain a single saliency

value depending on the task to perform.

Fig. 1. Overview of the Object-Based Attention Model

An overview of the system is shown in fig. 1. In the

pre-attentive stage, the different proto-objects present in

the image are extracted, using a perceptual segmentation

algorithm based on a hierarchical framework [14]. Then, the

relevance of each proto-object is computed taking into ac-

count different low-level features (concretely, colour contrast,

intensity contrast and dominant colour -red, blue, green or

yellow-) weighted by a set of parameters (λi) stored in a

Perception-Modulation Memory (PMM). Depending on the

value of these parameters, the system is able to modify the

influence of each low-level feature in the global saliency

computation. The idea of perception-modulation parameters

is supported by the biological concept of “attentional sets”

proposed by Corbetta et al. [15]. As a result of this stage, a

set of proto-objects ordered by their saliency is obtained.

The next stage, the semi-attentive stage, deals with the

management of the Working Memory (WM) and the Inhibi-
tion of Return (IOR). The WM establishes the maximum

number of attended elements that can be maintained at

once. It is a short-term memory where the system stores the

recently attended objects and it has a reduced capacity, up to

5 elements [16]. Each proto-object in WM is characterized

by a set of descriptors: its saliency value, its position in the

image, the different low-level features values and a time-
to-live value which establishes the maximum time that the

proto-object can stay in WM. A proto-object’s saliency also

depends on this last parameter, so the longer an element is

kept in WM, the lower its saliency is. A new proto-object

gets into the WM if and only if it has bigger saliency than

the currently stored elements. If the memory is full, the

least salient element is dropped out. Regarding the IOR, a

tracker module keeps permanently updated the position of

each element in WM, allowing to manage not only moving

objects but also camera and robot movements. Thereby, it

is avoided to attend an already selected proto-object. If a

proto-object is lost, it is also removed from WM.

Both WM and PMM are the interface between early

attention stages and the rest of the system, including the

deliberative level. This interface incorporates a categorizer

which is able to classify the perceived proto-objects into cat-
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egories corresponding to high-level predicates. Besides, the

PMM has been modified to translate high-level instructions

into a new set of perception parameters λi, so it is allowed

to change the way the vision system perceives the world in

terms of a high-level decision.

III. THE PLANNING FRAMEWORK

Since the attention model limits perception, we need to

plan with only partial information about the initial state,

being able to use sensing actions to increase our knowledge

about it. This has been usually addressed by using contingent

planning [17]. A contingent planning problem is a tuple

P = {F,A, I,G}, where F is the set of literals and fluents,

A is the set of actions, I ⊆ F is the initial state and G ⊆ F
is the set of goals. Actions in contingent planning include

conditional effects, allowing the effects of actions to depend

on the real state to which the action is applied. Sensing

actions discover the value of a certain previously unknown

literal. We assume deterministic actions, though our approach

can be extended to non-deterministic ones [18], [19].

Contingent planning aims to find complete plans achieving

all the goals by intercalating sensing actions whenever it is

needed. This works well when the uncertainty about the

initial state is small, but does not scale well in general.

Recent approaches do not aim to produce complete plans but

only to return at least a valid action to be executed [18], [19].

Generally speaking, they create a belief state by selecting

a small subset of the possible initial states and create a

plan according to this belief state. Plan is executed until an

unexpected observation occurs or the preconditions of the

next action to be applied do not hold. In this point, the belief

state is updated and a new plan is generated.

We use a similar approach, but starting only from the

currently perceived state. Instead of a belief state we have a

single initial state containing the perception plus some static

known facts. It is very likely that no plan achieving all goals

will exist given the limited available information. We model

our problem as an oversubscription planning [20] (OSP) one,

where the planner is able to return a plan reaching just a

subset of all the goals. OSP is a special case of planning

with soft goals, where it is assumed that no plan achieving

all soft goals exists. Usual causes making impossible to reach

all the soft goals are limitation of resources or mutex goals.

In our case, the lack of information is what makes some

goals unachievable. There are some advantages in solving

our problem in this way. First, it results in a simpler model

of actions, as no conditional effects are needed. Second, it

allows to overcome the problem of non-deterministic sensing

actions by not reasoning about them; we just apply a sensing

action after each planning cycle. Third, oversubscription

planners tend to scale better than contingent ones. This is

specially true in real environments with limited perception,

where the number of objects for which the state is unknown

is quite large and the results of the sensing actions are non

predictable.

To solve the oversubscription problem we use the proce-

dure introduced in [21]. First, goals are selected and a new

Fig. 2. Two-level architecture connecting planning and attention.

problem is constructed removing all the non-selected goals.

Summarizing their approach, relaxed plans are constructed

from the initial state to each goal and from every goal to each

other. If a relaxed plan achieving a goal is found, the goal

is added to the set of possibly achievable goals. Once goals

are selected the new problem is solved using any classical

planner. If after a certain time no plan is found for the new

problem, one of the goals is removed and a new problem is

created. If a plan is found, it is executed and the environment

is perceived again. If no goal remains, a new perception cycle

is initiated.

In addition to actions reaching the goals, the domain

includes actions to guide the attention model for the next

step. Given the current perceived state, the perception module

is biased to obtain the information needed for the next

planning cycle. This is specially important when no goal

can be reached with the current information. The procedure

will be detailed in the evaluation section.

IV. THE PERCEPTION-PLANNING-ACTION LOOP

In order to define the relationship between the previ-

ously described attention model and the oversubscription

planner, we introduce a new two-level architecture based

on Rasmussen’s psychological proposal [22]. In terms of

attention systems, the planner implements the top-down part

of attention.

As it is shown in fig. 2 and it was aforementioned,

the connection with the attention system is made through

both Working Memory (WM) and Perception Modulation

Memory (PMM). On the one hand, the different tasks that

the system has to perform are located in the Rule-Based level.
In this level, each task has a set of needs in form of categories

that must be covered (e.g. the task “look for a red card” needs

the categories “red things” and “square things”). Depending

on the number of satisfied needs due to the elements present

in the WM, the influence of the task in the modulation of

the perception parameters stored in the PMM will be greater

(fully covered) or smaller (weakly satisfied).

On the other hand, the oversubscription planner is placed

in the Knowledge-based level. In this case, the planner has to
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TABLE I

THE PERCEPTION-PLANNING-ACTION LOOP

• Given

1) The domain description, D
2) The static part of the problem description, Ps

3) An oversubscription planner, OPlanner
4) The vector �λ of perception parameters

• Repeat

– PerceiveState(�λ) → s
– ComposeProblem(Ps, s, �λ) → P
– P lan(OPlanner,D, P ) → P lan
– Execute(P lan)
– UpdateAttentionParameters(�λ, P lan)

• Until a goal state is achieved

manage the tasks in the system by activating or deleting them

and setting their priority in terms of the different achievable

goals. Additional high-level information such as scene under-

standing, human interaction or object recognition, can also

be used by the planner in order to accomplish its behaviour.

The double imbrication between planning and perception

is easily observable: depending on the categories perceived

(needs covered), different tasks are triggered; and vice versa,

depending on the dominant tasks, the perception system

modifies its parameters so the most relevant objects in the

scene can change.

Finally, the concept of different features or categories in

early-vision stages triggering different tasks is closely related

to the affordances proposed by Gibson [23] or the Reference
Features postulated by Pryor [24]. In both cases, the presence

of specific features or categories of objects involves the

execution (or the possibility of executing) of certain tasks.

The process described above can be explained through an

algorithm (see Table I). This algorithm receives the domain

description, D, and the static part of the problem, Ps. With

the static part of the problem we mean all the elements of

the problem that do not change during the resolution of

the problem: the header, the types and objects definition,

the goals, and all the static predicates that do not need to

be perceived. We also assume an oversubscription planner

which will be able to generate partial plans depending

on the perceived information and the vector of perception

parameters, which constrain perception, and that can be

modified by the planning actions.

The algorithm is a repeat loop until all the goals are

achieved. In the first step of the loop, the current state, s, is

perceived. Such step depends on the perception parameters,
�λ. With the static part of the problem, Ps, the perceived state,

s, and the attention parameters, �λ, the new planning problem,

P , is composed. Next, the oversubscription planner is called,

generating a plan able to reach those goals, if any, that can be

solved with the perceived information. The generated plan is

then executed and the attention parameter vector �λ is updated

according to such plan.

Although the architecture presented here shows a general

solution for the problem of linking attention and planning

in robotics systems, the way the perception parameters are

computed from the solution plan is strongly dependent on

each particular robot application. Therefore, there exists a

particular high-to-low interpreter for each concrete problem.

V. EVALUATION

The proposed architecture is evaluated through a domain

compound by a set of coloured cards labelled with letters.

The experiment presented here is mainly a proof-of-concept

study about the proposed solution to integrate attention and

planning.

The static predicates of the planning domain, expressed in

PDDL (Planning Domain Definition Language) [25], [26],

contain the information about the correct ordering of cards

(order A B) and also about the colour of each card

(colour A yellow). The initial state is completed by

the perception module by marking as visible the cards that

are stored in the WM: (visible ?x). A fourth predicate,

(stack ?x ?y) stores information about the top and the

bottom of the already created stacks. In the initial state, all

the cards form a one-card stack. We assume deterministic

non-sensing actions, so the information about already stacked

cards can be rolled over next iterations. There are only two

actions in the planning domain. The first one stacks the

visible cards in order if they can be stacked, namely, if two

consecutive cards or stacks are visible. As a side effect, every

time a card is stacked the salience of its colour is increased,

so in the next perception step it is very likely to be perceived

again. The second action is applied when no card can be

stacked in an iteration. It randomly selects one of the visible

cards and increases both the salience of its colour and the

next card’s colour. To avoid this action to be executed unless

nothing else can be done, its cost is 300 times higher than

the stack action’s one. Since the aim of this work is to show

the relationship between perception and planning, the action

proposed by the planner is executed by a human.

Fig. 3 shows the different configurations of the domain

analysed in the evaluation. The actions in the domain are

able to take all the possible advantages from the scenario

described in fig. 3.a. In this case, there are 4 sets of letters

with the same colour: A-F (yellow), G-M (blue), N-S (green)

and T-Z (red). Consecutive letters have the same colour. On

the contrary, we define another scenario (fig. 3.b) where there

are no consecutive letter with the same colour. Concretely,

the four sets are:

• Yellow letters: A,E,I,M,Q,U,Y

• Blue letters: B,F,J,N,R,V,Z

• Green letters: C,G,K,O,S,W

• Red letters: D,H,L,P,T,X

Finally, a last configuration where all cards have the same

colour is introduced (fig. 3.c) in order to cancel the influence

of the planner over the perception system.

With respect of the attention system, a set of 4 feature

maps (RED, GRN, BLU and YLW, one per colour) is

obtained for each proto-object in the image. If the mean

colour of the proto-object is similar to red, green, blue or

yellow (measured in terms of HSV-colour space distance),

the corresponding map receive a value of 255; otherwise,
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Fig. 3. The three different scenarios for evaluation. In (a), consecutive
letters have the same colour. In (b), two consecutive letters never have the
same colour. In (c), all letters are blue.

Fig. 4. The image processing.

the value is 0. Then, the global saliency of each proto-

object (sali) is computed as a linear combination of each

feature map, being the weights the perception parameters,

λi, provided by the PMM

sali = λredRED + λgreenGRN +

+λblueBLU + λyellowY LW

and verifying
∑

i λi = 1.

In this case, we are not using other features also available

in the attention model in order to clarify the interpretation

of the results. Therefore, all the cards have the same a priori
saliency, i.e., the influence of bottom-up attention is highly

reduced.

Fig. 4 shows the image processing involved in obtaining

the saliency map. Once the WM is filled up with the most

relevant proto-objects, an OCR (Optical Character Recogni-

tion) algorithm is employed to assign a category to each one.

Therefore, the planner will receive the corresponding letter as

a predicate. It can be seen in fig. 4 that the biggest relevance

is given to blue color (λblue is bigger than the others) so

in the saliency map, blue proto-objects are brighter (more

salient).

The whole system is evaluated using 4 different ap-

proaches:

case 1 We use the scenario from fig. 3.a and the planner

provides the solution as aforementioned.

case 2 The configuration from fig. 3.b is employed and the

planner tries to follow the same strategy as in case

1.

case 3 Same scenario as in case 2 but the colour proposed

by the planner is marked as less relevant than the

others, instead of the strategy followed before.

Fig. 5. Two consecutive iterations in the evaluation task

Fig. 6. Evolution of perception parameters, λi, over time

case 4 All the cards are blue (fig. 3.c) so the planner is

not able to highlight a specific colour as the most

relevant.

In fig. 5, two significant consecutive iterations of eval-

uation (case 1) are shown (the complete video sequence

is available in http://youtu.be/1fZWBJMnzXc). In

the first one (upper in the figure), only letters T and S can

be sorted from the objects in the WM (marked with black

bounding-boxes). Consequently, the solution plan consists on

putting in order these letters and giving more relevance to

the card-in-the-top’s colour (in this case, red) varying the

related λi. As a result, in the next iteration, the most salient

objects are the red ones, allowing the planner to obtain more

solutions at once. The variation over time of the different

perception parameters depending on the plan to execute is

shown on fig. 6. As depicted in the figure, the system began

putting in order the green cards, followed by the red ones,

the blue ones and, finally, the remaining loose stacks. When

all the letters of the same colour are stacked, that colour loses

relevance because the planner guides the attention system to

look for the rest of colours.

Table II shows the results of the experiments and fig. 7

represents the number of iterations needed in each case to

solve the problem. As it was expected, the best results are

obtained for case 1 because the planner is able to guide the
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TABLE II

EXPERIMENTAL RESULTS

Case Iterations Total Time Efficiency
μi σi μt σt μe σe

1 11,9 2,025 2,864 0,558 2,154 0,346
2 55 12,944 13,929 3,161 0,476 0,127
3 27,3 7,675 7,125 2,122 0,981 0,3
4 43,7 13,158 11,175 3,532 0,629 0,217

Fig. 7. Number of iterations on average needed in each case to solve the
whole problem. The standard deviation is also included in the graph.

perception system in an efficient way. On the contrary, case
2 produces the worst results due to the fact that the planner

guides the vision system in a wrong manner. This solution

is even worse than the one in case 4 where the planner can

not highlight any colour to speed up the process. Thus, a

bad guiding of the perception system is even worse than

the no guiding option. The column corresponding to case 3
shows that a little modification looking for a more intelligent

strategy of the planner is enough to increase significantly

the response of the system, reducing the iterations needed to

solve the problem almost to the half.

VI. CONCLUSIONS

In this paper, we describe a new architecture for integrating

Automated Planning, specifically, oversubscription planning

(OSP), with an attention model in the classical perception-

planning-action loop of an intelligent system. Attention mod-

els allow to process images efficiently, introducing the cost of

partial observability, since only relevant areas are processed.

Only partial information is processed, thus, only partial plans

can be built. In addition, the planner can guide the attention

model by modifying the attention parameters and, hence,

guiding the perception to focus on the objects required to

solve the whole task. The architecture have been successfully

evaluated in a real scenario, where we demonstrate that both

perception and planning are perfectly integrated.
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Science, J. Lozano, J. Gómez, and J. Moreno, Eds. Springer Berlin-
Heidelberg, 2011, vol. 7023, pp. 183–192.

[22] J. Rasmussen, “Skills, rules, and knowledge; signals, signs, and sym-
bols, and other distinctions in human performance models,” Systems,
Man and Cybernetics, IEEE Transactions on, vol. SMC-13, no. 3, pp.
257–266, 1983.

[23] J. Gibson, The ecological Approach to Visual Perception. Houghton
Mifflin (Boston), 1979.

[24] L. Pryor, “Perceptual and functional representations: Bridging the
gap,” in Notes of the AISB Workshop on Computational Models of
Cognition and Cognitive Functions. Citeseer, 1994.

[25] D. McDermott, “PDDL the planning domain definition language,”
Yale Center for Computational Vision and Control, Tech. Rep. CVC
TR-98-003/DCS TR-1165, 1998.

[26] A. Gerevini, P. Haslum, D. Long, A. Saetti, and Y. Dimopoulos,
“Deterministic planning in the fifth international planning competi-
tion: Pddl3 and experimental evaluation of the planners,” Artificial
Intelligence, vol. 173, no. 5, pp. 619–668, 2009.

6




