
RAD Studio (Common)

Copyright(C) 2008 CodeGear(TM). All Rights Reserved.

Table of Contents

Concepts 1
Compiling, Building, and Running Applications 2

Compiling, Building, and Running Applications 2

MSBuild Overview 4

Build Configurations Overview (Delphi) 5

Build Configurations Overview (C++) 6

Named Option Sets Overview 7

Targets files 8

Debugging Applications 10

Overview of Debugging 10

Overview of Remote Debugging 12

General Concepts 14

Managing the Development Cycle Overview 14

Designing User Interfaces 15

Using Source Control 16

Localizing Applications 18

Deploying Applications 19

Getting Started 22

What is RAD Studio? 23

What's New in RAD Studio (Delphi for Microsoft .NET) 24

What's New in RAD Studio (C++Builder) 28

What's New in RAD Studio (Delphi) 32

Tour of the IDE 34

IDE on Windows Vista 40

Tools Overview 41

Code Editor 42

Form Designer 46

Starting a Project 47

Template Libraries 50

Overview of Virtual Folders 50

Help on Help 51

Code Completion 53

Refactoring Applications 55

Add Namespace 57

RAD Studio (Common)

iii

Refactoring Overview 57

Change Parameters 58

Symbol Rename Overview (Delphi, C#, C++) 59

Add or Edit Parameter 60

Extract Method Overview (Delphi) 60

Declare Field 61

Extract Resource String (Delphi) 62

Declare Variable and Declare Field Overview (Delphi) 62

Declare Variable 64

Extract Method 64

Find References Overview (Delphi, C#, C++) 65

Change Parameters Overview (Delphi) 66

Extract Resource String 66

Find Unit 66

Sync Edit Mode (Delphi, C#, C++) 67

Refactorings 67

Undoing a Refactoring (Delphi, C#) 67

Rename Symbol (C++) 68

Rename <symbol name> (C#) 68

Rename <symbol name> (Delphi) 69

Testing Applications 70

Unit Testing Overview 70

DUnit Overview 72

NUnit Overview 76

Modeling Applications with Together 81

Getting Started with Together 83

About Together 83

UML 2.0 Sample Project 84

Code Visualization Overview 87

What's New in Together 88

Modeling Overview 89

Together Project Overview 89

Namespace and Package Overview 89

Together Diagram Overview 90

Supported UML Specifications 90

Model Element Overview 91

Model Annotation Overview 91

Model Shortcut Overview 92

RAD Studio (Common)

iv

Diagram Layout Overview 92

Model Hyperlinking Overview 92

LiveSource Overview 93

Transformation to Source Code Overview 94

OCL Support Overview 95

Patterns Overview 96

Refactoring Overview 98

Quality Assurance Facilities Overview 98

Documentation Generation Facility Overview 100

Model Import and Export Overview 100

Procedures 103
Compiling and Building Procedures 104

Applying the Active Build Configuration for a Project 104

Building Packages 105

Compiling C++ Design-Time Packages That Contain Delphi Source 106

Creating Build Events 107

Creating Named Build Configurations for C++ 107

Creating Named Build Configurations for Delphi 108

Building a Project Using an MSBuild Command 108

Using Targets Files 109

Installing More Computer Languages 110

Linking Delphi Units Into an Application 111

Previewing and Applying Refactoring Operations 111

Renaming a Symbol 112

Working with Named Option Sets 113

Debugging Procedures 114

Adding a Watch 116

Using the CPU View 116

Displaying Expanded Watch Information 117

Attaching to a Running Process 117

Setting and Modifying Breakpoints 118

Debugging VCL for .NET Source Code 121

Using Tooltips During Debugging 122

Inspecting and Changing the Value of Data Elements 122

Modifying Variable Expressions 124

Preparing a Project for Debugging 124

Remote Debugging: Metaprocedure 125

RAD Studio (Common)

v

Installing, Starting, and Stopping the Remote Debug Server 125

Installing a Debugger on a Remote Machine 126

Establishing a Connection for Remote Debugging 127

Preparing Files for Remote Debugging 128

Setting the Search Order for Debug Symbol Tables 129

Resolving Internal Errors 130

Deploying Applications 133

Deploying ASP.NET applications 133

Deploying the AdoDbx Client 134

Editing Code Procedures 136

Using Code Folding 137

Creating Live Templates 138

Creating Template Libraries 138

Customizing Code Editor 141

Finding References 141

Finding Units and Using Namespaces (Delphi, C#) 142

Recording a Keystroke Macro 142

Refactoring Code 143

Using Bookmarks 145

Using Class Completion 145

Using Code Insight 146

Using Live Templates 148

Using the History Manager 149

Using Sync Edit 150

Getting Started Procedures 151

Adding Components to a Form 152

Adding References 153

Adding and Removing Files 153

Adding Templates to the Object Repository 153

Copying References to a Local Path 154

Creating a Component Template 154

Creating a Project 155

Customizing the Form 155

Customizing the Tool Palette 156

Customizing Toolbars 156

Disabling Themes in the IDE and in Your Application 157

Docking Tool Windows 157

Finding Items on the Tool Palette 158

RAD Studio (Common)

vi

Exploring .NET Assembly Metadata Using the Reflection Viewer 158

Exploring Windows Type Libraries 159

Installing Custom Components 160

Renaming Files Using the Project Manager 160

Saving Desktop Layouts 161

Setting Component Properties 161

Setting Dynamic Properties 161

Setting Project Options 162

Setting C++ Project Options 163

Setting Properties and Events 164

Setting The IDE To Mimic Delphi 7 164

Setting Tool Preferences 165

Using Design Guidelines with VCL Components 165

Using the File Browser 166

Using To-Do Lists 166

Using Virtual Folders 167

Writing Event Handlers 168

Localization Procedures 169

Adding Languages to a Project 169

Editing Resource Files in the Translation Manager 170

Setting the Active Language for a Project 171

Setting Up the External Translation Manager 172

Updating Resource Modules 173

Using the External Translation Manager 173

Managing Memory 175

Configuring the Memory Manager 175

Increasing the Memory Address Space 176

Monitoring Memory Usage 177

Registering Memory Leaks 178

Sharing Memory 178

Unit Test Procedures 180

Developing Tests 180

Together Procedures 183

Configuring Together 183

Together Refactoring Procedures 184

Refactoring: Changing Parameters 184

Refactoring: Extracting Interfaces 185

RAD Studio (Common)

vii

Refactoring: Extracting Method 185

Refactoring: Extracting Superclass 186

Refactoring: Creating Inline Variables 186

Refactoring: Introducing Fields 187

Refactoring: Introducing Variables 187

Refactoring: Moving Members 188

Refactoring: “Pull Members Up" and “Push Members Down” 188

Refactoring: Renaming Elements 189

Refactoring: "Safe Delete" 189

Opening the UML 2.0 Sample Project 190

Together Diagram Procedures 190

Annotating a Diagram 195

Creating a Diagram 196

Exporting a Diagram to an Image 197

Printing a Diagram 197

Changing Diagram Notation 197

Using Grid and Other Appearance Options 198

Using the UML in Color Profile 198

Aligning Model Elements 199

Changing Type of a Link 199

Closing a Diagram 200

Copying and Pasting Model Elements 200

Deleting a Diagram 200

Hyperlinking Diagrams 201

Laying Out a Diagram Automatically 202

Moving Model Elements 203

Renaming a Diagram 204

Rerouting a Link 204

Resizing Model Elements 204

Selecting Model Elements 205

Assigning an Element Stereotype 205

Using Drag-and-Drop 206

Working with User Properties 206

Creating a Link with Bending Points 207

Creating Multiple Elements 207

Creating a Shortcut 208

Creating a Simple Link 209

Creating a Single Model Element 209

Searching Diagrams 209

RAD Studio (Common)

viii

Searching Source Code for Usages 210

Creating an Activity for a State 211

Designing a UML 1.5 Activity Diagram 211

Instantiating a Classifier 211

Designing a UML 1.5 Component Diagram 212

Designing a UML 1.5 Deployment Diagram 212

Adding a Conditional Block 213

Associating an Object with a Classifier 214

Branching Message Links 215

Converting Between UML 1.5 Sequence and Collaboration Diagrams 215

Working with a UML 1.5 Message 215

Designing a UML 1.5 Statechart Diagram 217

Creating a Pin 217

Designing a UML 2.0 Activity Diagram 218

Grouping Actions into an Activity 219

Working with an Object Flow or a Control Flow 219

Designing a UML 2.0 Component Diagram 220

Creating a Delegation Connector 221

Creating an Internal Structure for a Node 221

Creating a Referenced Part 221

Creating a Port 222

Working with a Collaboration Use 222

Designing a UML 2.0 Deployment Diagram 223

Associating a Lifeline with a Classifier 224

Copying and Pasting an Execution or Invocation Specification 224

Creating a Sequence or Communication Diagram from an Interaction 225

Creating a State Invariant 225

Designing a UML 2.0 Sequence or Communication Diagram 226

Linking Another Interaction from an Interaction Diagram 227

Working with a UML 2.0 Message 227

Working with a Combined Fragment 228

Working with a Tie Frame 229

Associating a Transition or a State with an Activity 230

Creating a Guard Condition for a Transition 230

Creating a History Element 230

Creating a Member for a State 231

Creating a State 231

Designing a UML 2.0 State Machine Diagram 232

Browsing a Diagram with Overview Pane 232

RAD Studio (Common)

ix

Hiding and Showing Model Elements 232

Using View Filters 233

Zooming a Diagram 234

Working with a Complex State 234

Creating a Deferred Event 235

Creating an Internal Transition 235

Creating a Multiple Transition 235

Creating a Self-Transition 236

Specifying Entry and Exit Actions 236

Working with an Instance Specification 237

Working with a Provided or Required Interface 238

Creating an Association Class 239

Creating an Inner Classifier 239

Using a Class Diagram as a View 240

Working with an Interface 240

Working with a Relationship 241

Adding a Member to a Container 241

Changing Appearance of Compartments 242

Changing Appearance of Interfaces 242

Working with a Constructor 243

Working with a Field 243

Associating a Message Link with a Method 244

Generating an Incremental Sequence Diagram 245

Creating a Browse-Through Sequence of Diagrams 246

Creating an Extension Point 246

Designing Use Case Hierarchy 246

Together Documentation Generation Procedures 247

Configuring the Documentation Generation Facility 247

Generating Project Documentation 248

Using Online Help 248

Together Object Constraint Language (OCL) Procedures 248

Creating an OCL Constraint 249

Editing an OCL Expression 249

Showing and Hiding an OCL Constraint 250

Working with a Namespace or a Package 250

Together Pattern Procedures 251

Adding Participants to the Patterns as First Class Citizens 253

Creating a Pattern 253

Deleting Patterns as First Class Citizens from the Model 254

RAD Studio (Common)

x

Using the Pattern Registry 254

Creating a Link by Pattern 255

Creating a Model Element by Pattern 255

Using the Stub Implementation Pattern 255

Exporting a Pattern 257

Importing a Legacy Pattern 257

Sharing Patterns 258

Assigning Patterns to Shortcuts 258

Copying and Pasting Shortcuts, Folders or Pattern Trees 258

Creating a Folder in the Pattern Organizer 259

Creating a Shortcut to a Pattern 259

Creating a Virtual Pattern Tree 259

Deleting shortcuts, folders or pattern trees 260

Editing Properties 260

Opening the Pattern Organizer 260

Saving Changes in the Pattern Registry 261

Sorting Patterns 261

Using the Pattern Organizer 261

Together Project Procedures 262

Activating Together Support for Projects 263

Creating a Project 264

Exporting a Project to XMI Format 264

Importing a Project in IBM Rational Rose (MDL) Format 265

Importing a Project Created in TVS, TEC, TJB, or TPT 265

Importing a Project in XMI Format 266

Opening an Existing Project for Modeling 267

Synchronizing the Model View, Diagram View, and Source Code 267

Transforming a Design Project to Source Code 269

Troubleshooting a Model 269

Working with a Referenced Project 270

Together Quality Assurance Procedures 271

Exporting Audit Results 271

Printing Audit Results 272

Running Audits 273

Viewing Audit Results 274

Working with a Set of Audits 274

Creating a Metrics Chart 275

Running Metrics 276

Viewing Metric Results 276

RAD Studio (Common)

xi

Working with a Set of Metrics 277

Reference 279
Delphi Reference 280

Delphi Compiler Directives (List) 280

Delphi compiler directives 282

Align fields (Delphi) 283

Application type (Delphi) 283

Assert directives (Delphi) 284

Autoboxing (Delphi for .NET) 284

Boolean short-circuit evaluation (Delphi compiler directive) 285

Conditional compilation (Delphi) 285

Debug information (Delphi) 287

DEFINE directive (Delphi) 287

DENYPACKAGEUNIT directive (Delphi) 287

Description (Delphi) 288

DESIGNONLY directive (Delphi) 288

ELSE (Delphi) 288

ELSEIF (Delphi) 289

ENDIF directive 289

Executable extension (Delphi) 289

Export symbols (Delphi) 290

Extended syntax (Delphi) 290

External Symbols (Delphi) 290

Floating Point Exception Checking (Delphi) 291

Hints (Delphi) 291

HPP emit (Delphi) 292

IFDEF directive (Delphi) 292

IF directive (Delphi) 292

IFEND directive (Delphi) 293

IFNDEF directive (Delphi) 294

IFOPT directive (Delphi) 294

Image base address 294

Implicit Build (Delphi) 295

Imported data 295

Include file (Delphi) 295

Input output checking (Delphi) 296

Compiler directives for libraries or shared objects (Delphi) 296

RAD Studio (Common)

xii

Link object file (Delphi) 297

Local symbol information (Delphi) 297

Long strings (Delphi) 298

Memory allocation sizes (Delphi) 298

MESSAGE directive (Delphi) 299

METHODINFO directive (Delphi) 299

Minimum enumeration size (Delphi) 299

Open String Parameters (Delphi) 300

Optimization (Delphi) 300

Overflow checking (Delphi) 301

Pentium-safe FDIV operations (Delphi) 301

NODEFINE 302

NOINCLUDE (Delphi) 302

Range checking 302

Real48 compatibility (Delphi) 302

Regions (Delphi and C#) 303

Resource file (Delphi) 303

RUNONLY directive (Delphi) 304

Runtime type information (Delphi) 304

Symbol declaration and cross-reference information (Delphi) 305

Type-checked pointers (Delphi) 305

UNDEF directive (Delphi) 306

Unsafe Code (Delphi for .NET) 306

Var-string checking (Delphi) 306

Warning messages (Delphi) 307

Warnings (Delphi) 308

Weak packaging 308

Stack frames (Delphi) 309

Writeable typed constants (Delphi) 309

PE (portable executable) header flags (Delphi) 310

Reserved address space for resources (Delphi) 310

Delphi Compiler Errors 311

Error Messages 311

Delphi Runtime Errors 509

I/O Errors 510

Fatal errors 511

Operating system errors 512

Delphi Language Guide 512

Classes and Objects 513

RAD Studio (Common)

xiii

Data Types, Variables, and Constants 552

.NET Topics 593

Generics (Parameterized Types) 595

Inline Assembly Code (Win32 Only) 609

Object Interfaces 624

Libraries and Packages 634

Memory Management 644

Delphi Overview 656

Procedures and Functions 662

Program Control 678

Programs and Units 682

Standard Routines and I/O 692

Fundamental Syntactic Elements 700

RAD Studio Dialogs and Commands 730

Code Visualization 730

Code Visualization Diagram 730

Export Diagram to Image 731

Components 732

Create Component Template 732

Import Component 733

Packages 734

Assembly Search Paths 734

Installed .NET Components 734

.NET VCL Components 735

New Component 735

New VCL Component Wizard 736

Database 737

Add Fields 739

Assign Local Data 739

Columns Collection Editor 740

Constraints Collection Editor 740

Relations Collection Editor 740

Tables Collection Editor 741

CommandText Editor 741

Command Text Editor 742

Configure Data Adapter 742

Connection Editor 743

Connection Editor 743

Connection String Editor (ADO) 744

RAD Studio (Common)

xiv

Data Adapter Dataset 744

DataAdapter Preview 744

Database Editor 745

Database Form Wizard 745

Dataset Properties 746

Driver Settings 746

Field Link Designer 746

Fields Editor 746

Foreign Key Constraint 747

Generate Dataset 748

New Connection 748

New Field 748

Relation 749

Rename Connection 749

SQL Monitor 749

Sort Fields Editor 750

Stored Procedures Dialog 751

TableMappings Collection Editor 751

Unique Constraint 752

IBDatabase Editor dialog box 752

IBTransaction Editor dialog box 753

IBUpdateSQL and IBDataSet Editor dialog box 753

Edit 754

Alignment 756

Creation Order 756

Edit Tab Order 756

Scale 757

Size 757

Align to Grid 757

Bring to Front 757

Copy 758

Cut 758

Delete 758

Flip Children 758

Lock Controls 758

Paste 758

Select All 759

Send to Back 759

Undo 759

RAD Studio (Common)

xv

Redo 759

Select All Controls 759

Error Messages 760

Data Breakpoint is set on a stack location 762

Misaligned Data Breakpoint 762

Error address not found 762

Another file named <FileName> is already on the search path 763

Could not stop due to hard mode 763

Error creating process: <Process> (<ErrorCode>) 763

A component class named <name> already exists 763

A field or method named <name> already exists 763

The project already contains a form or module named <Name> 763

Incorrect field declaration in class <ClassName> 763

Field <Field Name> does not have a corresponding component. Remove the declaration? 764

Field <Field Name> should be of type <Type1> but is declared as <Type2>. Correct the declaration? 764

Declaration of class <ClassName> is missing or incorrect 764

Module header is missing or incorrect 764

IMPLEMENTATION part is missing or incorrect 765

Insufficient memory to run 765

Breakpoint is set on line that contains no code or debug information. Run anyway? 765

<IDname> is not a valid identifier 765

<Library Name>is already loaded, probably as a result of an incorrect program termination. Your system
may be unstable and you should exit and restart Windows now.

765

Incorrect method declaration in class <ClassName> 765

Cannot find implementation of method <MethodName> 766

The <Method Name> method referenced by <Form Name>.<Event Name> has an incompatible parameter
list. Remove the reference?

766

The <Method Name> method referenced by <Form Name> does not exist. Remove the reference? 766

No code was generated for the current line 766

Property and method <MethodName> are not compatible 767

Cannot find <FileName.PAS> or <FileName.DCU> on the current search path 767

Source has been modified. Rebuild? 767

Symbol <BrowseSymbol> not found. 767

Debug session in progress. Terminate? 767

Uses clause is missing or incorrect 767

Invalid event profile <Name> 768

File 768

Active Form Wizard 771

Active Server Object wizard 772

Add 773

RAD Studio (Common)

xvi

Automation Object Wizard 773

Browse With Dialog box 774

Browse With Dialog box 775

COM Object Wizard 775

COM+ Event Interface Selection dialog box 776

COM+ Event Object Wizard 776

COM+ Subscription Object Wizard 776

Customize New Menu 777

Change Destination File Name 777

FTP Connection Options 778

Interface Selection Wizard 778

New ASP.NET Application 779

New ASP.NET Content Page 779

New ASP.NET Generic Handler 779

New ASP.NET Master Page 780

New ASP.NET Master Page 780

New ASP.NET User Control 780

New ASP.NET Web Service 780

New Console Application 780

New DBWeb Control Wizard 781

New Dynamic-link Library 781

New Items 781

New Application 782

New Remote Data Module Object 782

New Thread Object 783

Open 784

Package 784

Print Selection 785

Project Upgrade 785

Project Updated 785

Remote Data Module Wizard 786

Satellite Assembly Wizard 787

Revert to Previous Revision 787

Add New WebService 787

SOAP Data Module Wizard 788

New SOAP Server Application 788

Save As 788

Select Directory 789

Transactional Object Wizard 789

RAD Studio (Common)

xvii

Use Unit 790

WSDL Import Options 791

WSDL Import Wizard 792

New Web Server Application 793

Add New WebService 793

Application Module Page Options/New WebSnap Page Module 794

New WebSnap Application 795

New WebSnap Data Module 796

Web App Components 796

XML Data Binding Wizard Options 797

XML Data Binding Wizard, page 1 797

XML Data Binding Wizard, page 2 798

XML Data Binding Wizard, page 3 799

Close 799

Exit 799

New 800

HTML Elements 801

A (Anchor) HTML Element 801

Unit 803

DIV HTML Element 803

HR HTML Element 804

IMG HTML Element 805

INPUT HTML Element 806

SELECT HTML Element 808

SPAN HTML Element 809

TABLE HTML Element 810

TEXTAREA HTML Element 811

Insert 813

Insert User Control 813

Insert Image 813

Insert Input 814

Insert Table 814

Color Selector 815

Testing Wizards 815

Unit Test Case Wizard 816

Unit Test Case Wizard 816

Unit Test Project Wizard 816

Unit Test Project Wizard 817

NET_VS 817

RAD Studio (Common)

xviii

Advanced Data Binding 818

AutoFormat 818

Collection Editor 818

Databindings 818

Dynamic Properties 818

Properties 819

Project 819

ASP.NET Deployment Manager 821

Project Options 822

COM Imports 846

C++ Project Options 847

.NET Assemblies 900

Project References 901

Add to Repository 901

UDDI Browser 902

Change Package 902

Project Dependencies 903

Add Languages 903

Remove Language 903

Set Active Language 903

New Category Name 904

Information 904

Project Page Options 904

Remove from Project 904

Options 905

Select Icon 906

Web Deploy Options 906

Build All Projects 907

Build Project 908

Compile and Make All Projects 908

Add to Project 908

Add New Project 909

Clean Package 909

Default Options 909

Options 909

Syntax Check for Project 910

Update Localized Projects 910

View Source 910

Propeditors 910

RAD Studio (Common)

xix

Delete Templates 914

Insert Template 915

Select Menu 915

Browse dialog box 915

Change Icon dialog box 916

Color editor 917

DDE Info dialog box 918

Filter editor 918

Font editor 919

Action Manager editor 919

Action List editor 921

Add Page dialog box 922

Collection Editor 922

Edit Page dialog box 923

IconView Items editor 924

Image List Editor 925

ListView Items Editor 926

New Standard Action Classes dialog box 927

String List editor 927

TreeView Items Editor 927

Value List editor 928

Input Mask editor 929

Insert Object dialog box 930

Loading an image at design time 931

Load Picture dialog box 931

Load String List dialog box 932

Masked Text editor 932

Notebook editor 933

Open dialog box 933

Paste Special dialog box 934

Picture editor 934

Save Picture As dialog box 935

Save String List dialog box 936

Run 936

Add Address Breakpoint or Add Data Breakpoint 938

Add Source Breakpoint 940

Attach to Process 941

Change 941

Debug Inspector 942

RAD Studio (Common)

xx

Debugger Exception Notification 943

Evaluate/Modify 944

Find Package Import 944

Inspect 945

Load Process Environment Block 945

Load Process Local 946

Load Process Remote 946

Load Process Symbol Tables 947

New Expression 948

Debug session in progress. Terminate? 948

Type Cast 948

Watch Properties 948

Detach From Program 949

Load Process 949

Parameters 950

Program Reset 950

Register ActiveX Server 950

Run 950

Run To Cursor and Run Until Return 950

Show Execution Point 951

Step Over 951

Trace Into 951

Trace to Next Source Line 951

Unregister ActiveX Server 951

Search 952

Find 952

Find in Files 953

Find References 954

Enter Address to Position 954

Go to Line Number 954

Replace Text 955

Search Again 955

Find Class 955

Find Local References 956

Find Original Symbol 956

Find References 956

Incremental Search 956

Together 957

Add New Diagram dialog box 960

RAD Studio (Common)

xxi

Add/Remove Parameters for Operation dialog box 961

Add/Remove User Properties dialog box 961

Change Parameters dialog box 961

Choose Destination (or: Source) dialog box 962

Diagram Layout Algorithms 963

Edit Hyperlinks for Diagram dialog box 963

Export Diagram to Image dialog box 964

Extract Interface or Superclass dialog box 964

Extract Method dialog box 965

Generate Documentation dialog box 966

Generate Sequence Diagram dialog box 966

Inline Variable dialog box 967

Introduce Field dialog box 968

Introduce Variable dialog box 968

Model Support 969

Move dialog box 969

Together Options dialog window 969

Print Audit dialog box 970

Print Diagram dialog box 971

Pull Members Up and Push Members Down dialog boxes 972

QA Audits dialog window 972

QA Metrics dialog window 974

Rename 975

Safe Delete dialog box 975

Save Audit and Metric Results dialog box 976

Search for Usages dialog box 977

Select element dialog box 977

Selection Manager 978

XMI Export dialog box 978

XMI Import dialog box 979

Tools 979

CodeGuard Configuration 980

Tools Options 982

Configure Tools 1008

Edit Object Info 1008

Edit Tools 1008

Export Visual Studio Project 1009

History Manager 1009

Object Repository 1010

RAD Studio (Common)

xxii

Template Libraries 1010

Tools Properties 1011

XML Mapper 1011

Web App Debugger 1013

View 1014

Add to Repository 1017

Debug Windows 1018

Code Explorer 1033

Customize Toolbars 1033

Data Explorer 1034

Delete Saved Desktop 1036

Desktop Toolbar 1036

File Browser 1036

Add to Repository 1037

Message View 1038

Object Inspector 1038

Project Manager 1038

Save Desktop 1047

Select Debug Desktop 1047

Structure View 1047

Templates Window 1048

To-Do List 1049

Add or Edit To-Do Item 1049

Filter To-Do List 1050

Table Properties 1050

Tool Palette 1051

Translation Manager 1052

Multi-line Editor 1054

Type Library Editor 1054

View Form 1057

View Units 1057

Window List 1057

New Edit Window 1057

Toggle Form/Unit 1058

Model View Window 1058

CodeGuard Log 1059

Desktops 1059

Dock Edit Window 1060

Find Reference Results 1060

RAD Studio (Common)

xxiii

Help Insight 1060

Show Borders 1060

Show Grid 1061

Show Tag Glyphs 1061

Snap To Grid 1061

Toolbars 1061

Translation Editor 1062

Welcome Page 1062

Win View 1062

Assembly Metadata Explorer (Reflection viewer) 1063

Type Library Explorer 1065

Search 1066

Keyboard Mappings 1068

Key Mappings 1068

BRIEF Keyboard Shortcuts 1069

IDE Classic Keyboard Shortcuts 1070

Default Keyboard Shortcuts 1073

Epsilon Keyboard Shortcuts 1076

Visual Basic Keyboard Shortcuts 1078

Visual Studio Keyboard Shortcuts 1079

Command Line Switches and File Extensions 1082

IDE Command Line Switches and Options 1082

File Extensions of Files Generated by RAD Studio 1084

Together Reference 1086

Together Configuration Options 1086

Configuration Levels 1088

Together Option Categories 1088

Option Value Editors 1101

Together Sequence Diagram Roundtrip Options 1102

Together Source Code Options 1103

System macros 1103

Together Keyboard Shortcuts 1104

GUI Components for Modeling 1105

Diagram View 1106

Pattern GUI Components 1107

Menus 1110

Quality Assurance GUI Components 1110

Model View 1112

RAD Studio (Common)

xxiv

Object Inspector 1113

Tool Palette 1114

Together Refactoring Operations 1115

Project Types and Formats with Support for Modeling 1116

UML 1.5 Reference 1116

UML 1.5 Activity Diagrams 1117

UML 1.5 Class Diagrams 1121

UML 1.5 Component Diagrams 1128

UML 1.5 Deployment Diagrams 1129

UML 1.5 Interaction Diagrams 1131

UML 1.5 Statechart Diagrams 1135

UML 1.5 Use Case Diagrams 1137

Together Glossary 1139

UML 2.0 Reference 1140

UML 2.0 Activity Diagrams 1140

UML 2.0 Class Diagrams 1143

UML 2.0 Component Diagrams 1145

UML 2.0 Composite Structure Diagrams 1146

UML 2.0 Deployment Diagrams 1148

UML 2.0 Interaction Diagrams 1149

UML 2.0 State Machine Diagrams 1155

UML 2.0 Use Case Diagrams 1157

Together Wizards 1158

Create Pattern Wizard 1159

New Together Project Wizards 1159

Pattern Wizard 1162

Index a

RAD Studio (Common)

xxv

1 Concepts

The application development life cycle involves designing, developing, testing, debugging, and deploying applications. RAD
Studio provides powerful tools to support this iterative process, including form design tools, the Delphi for compiler, an integrated
debugging environment, and installation and deployment tools.

Topics

Name Description

Compiling, Building, and Running Applications (see page 2) This section describes essential information about compiling, building, and
running applications. As of 2007, the new build engine in the IDE is MSBuild.exe.
You can now create and manage build configurations, named option sets, and
targets files that enhance your ability to control your development environment.

Debugging Applications (see page 10) Many of the same techniques are used for debugging applications in different
environments. RAD Studio provides an integrated debugging environment that
enables you to debug Win32 application and .NET applications. In addition, you
can use the debugger to debug an application running on a remote machine that
does not have RAD Studio installed.

General Concepts (see page 14) This section provides an overview of basic concepts.

Getting Started (see page 22) The RAD Studio integrated development environment (IDE) provides many tools
and features to help you build powerful applications quickly. Not all features and
tools are available in all editions of RAD Studio. For a list of features and tools
included in your edition, refer to the feature matrix on http://www.codegear.com.

Refactoring Applications (see page 55) Refactoring is a technique you can use to restructure and modify your code in
such a way that the intended behavior of your code stays the same. RAD Studio
provides a number of refactoring features that allow you to streamline, simplify,
and improve both performance and readability of your application code.

Testing Applications (see page 70) Unit testing is an integral part of developing reliable applications. The following
topics discuss unit testing features included in RAD Studio.

Modeling Applications with Together (see page 81) This section provides an overview of the features provided by Together.
Note: The product version you have determines which Together features are
available.

1 RAD Studio (Common)

1

1

http://www.borland.com/delphi

1.1 Compiling, Building, and Running
Applications

This section describes essential information about compiling, building, and running applications. As of 2007, the new build
engine in the IDE is MSBuild.exe. You can now create and manage build configurations, named option sets, and targets files that
enhance your ability to control your development environment.

Topics

Name Description

Compiling, Building, and Running Applications (see page 2) As you develop your application in the IDE, you can compile (or make), build, and
run the application in the IDE. All three operations can produce an executable
(such as .exe, .dll, .obj, or .bpl). However, the three operations differ
slightly in behavior:

• Compile (Project Compile) or, for C++, Make (
Project Make) compiles only those files that have
changed since the last build as well as any files that
depend on them. Compiling or making does not execute
the application (see Run).

• Build (Project Build) compiles all of the... more (see
page 2)

MSBuild Overview (see page 4) To build projects, the IDE now uses MSBuild instead of the previous internal build
system. The build, compile, and make commands available in the IDE call the
new build engine from Microsoft: MSBuild, which provides thorough dependency
checking. MSBuild project files are XML-based, and contain sections that
describe specific Items, Properties, Tasks, and Targets for the project.
For more information about MSBuild, see the Microsoft documentation at
http://msdn.microsoft.com.

Build Configurations Overview (Delphi) (see page 5) Build configurations consist of options that you can set on all the build-related
pages of the Project Options dialog box. Build configuration information is
saved in the MSBuild project file (.dproj or .groupproj).

Build Configurations Overview (C++) (see page 6) Build configurations consist of options that you can set on all the build-related
pages of the Project Options dialog box. Build configurations are saved in the
project file (.cbproj or .groupproj).

Named Option Sets Overview (see page 7) Named option sets consist of options that you can create from and apply to the
build-related pages of the Project Options dialog box. Named option sets are
saved in files with the extension .optset.

Targets files (see page 8) A .targets file is an MSBuild-compliant XML file you can add to a project to allow
customizing the build process. A .targets file can have <Target> nodes
containing MSBuild scripts.
You can also add or modify project property values with a .targets file. You can
leverage the large variety of MSBuild tasks available in the .NET Framework
SDK and on the internet, such as "Zip", "SVNCheckout", and "Mail", or write
custom tasks yourself.
In summary:

• A .targets file is an XML file with <Target> nodes that
contain MSBuild scripts with lists of tasks to perform.

• You can create, add, enable,... more (see page 8)

1.1.1 Compiling, Building, and Running Applications

As you develop your application in the IDE, you can compile (or make), build, and run the application in the IDE. All three

Compiling, Building, and Running RAD Studio (Common) 1.1 Compiling, Building, and Running

2

1

operations can produce an executable (such as .exe, .dll, .obj, or .bpl). However, the three operations differ slightly in
behavior:

• Compile (Project Compile) or, for C++, Make (Project Make) compiles only those files that have changed since the last
build as well as any files that depend on them. Compiling or making does not execute the application (see Run).

• Build (Project Build) compiles all of the source code in the current project, regardless of whether any source code has
changed. Building is useful when you are unsure which files have changed, or if you have changed project or compiler
options.

• Run (Run Run (F9) compiles any changed source code and, if the compile is successful, executes your application, allowing
you to use and test it in the IDE .

To delete all the generated files from a previous build, use the Clean command, available on the context menu of the project
node in the Project Manager.

Compiler Options

You can set many of the compiler options for a project by choosing Project Options and selecting a compiler-related page.
For example, most of the options on both the Delphi Delphi Compiler page and the C++ Compiler page correspond to compiler
options that are described in the online Help for that page.

To specify additional compiler options, you can invoke the compiler from the command line. For a complete list of the Delphi
compiler options and information about running the Delphi compiler from the command line, see Delphi Language Guide in the
Contents pane.

Compiler Status and Information

To display the current compiler options in the Messages window each time you compile your project, choose
Tools Options Environment Options and select Show command line. The next time you compile a project, the Messages
window displays the command used to compile the project and the response file. The response file lists the compiler options and
the files to be compiled.

After you compile a project, you can display information about it by choosing Project Information. The resulting Information
dialog box displays the number of lines of source code compiled, the byte size of your code and data, the stack and file sizes,
and the compile status of the project.

Compiler Errors

As you compile a project, compiler messages are displayed in the Messages window. For an explanation of a message, select
the message and press F1.

Build Configurations

You can save certain project options as a named build configuration. You can specify the active build configuration for each of
your projects, and you can change the active build configuration during project development. For example, you can set project
options specific to debugging your project, save the options as the Debug build configuration, and then apply them as the active
configuration while you debug the project.

The options in a build configuration are available on the Compiler, Compiler Messages, Linker, and Conditionals/Directories
pages of the Project Options dialog box.

By default, the IDE includes a Debug configuration and a Release configuration. You can modify the options in both of these
default configurations, and you can create new build configurations of your own. To apply a selected build configuration to
specific projects or project groups, use the Build Configuration Manager.

Using MSBuild to Build Your Project

When you explicitly build a project, the IDE calls MSBuild, the Microsoft build engine. The build process is entirely transparent to
developers. MSBuild is called as part of the Compile,Build, and Run commands available on the Project and Run menus.
However, you can also invoke MSBuild.exe from the command line or using the MSBuild Console available on the Start menu.

1.1 Compiling, Building, and Running RAD Studio (Common) Compiling, Building, and Running

3

1

See Also

MSBuild Overview (see page 4)

Build Configurations Overview (Delphi) (see page 5)

Build Configurations Overview (C++) (see page 6)

Building Packages (see page 105)

Build Configuration Manager (see page 828)

Creating Named Build Configurations (C++) (see page 107)

Creating Named Build Configurations (Delphi) (see page 108)

Building a Project from the Command Line (see page 108)

1.1.2 MSBuild Overview

To build projects, the IDE now uses MSBuild instead of the previous internal build system. The build, compile, and make
commands available in the IDE call the new build engine from Microsoft: MSBuild, which provides thorough dependency
checking. MSBuild project files are XML-based, and contain sections that describe specific Items, Properties, Tasks, and Targets
for the project.

For more information about MSBuild, see the Microsoft documentation at http://msdn.microsoft.com.

Migrating Projects to MSBuild

If you open a pre-existing Delphi project (such as one with.bdsproj extension), the IDE automatically converts the project to
use MSBuild and changes the project extension to .dproj for a Delphi project or to .cbproj for a C++ project.

Project groups are also converted to MSBuild and given the project-group extension .groupproj.

Building Projects

You can build projects without knowing anything about MSBuild because the IDE handles all the details for you. The
Project Compile and Project Build commands both invoke MSBuild, but the scope of each command is different.

You can also explicitly build projects from the command line by running MSBuild.exe with your .dproj file.

To invoke MSBuild in a custom command environment, choose Start menu RAD Studio Command Prompt. This command
window automatically sets both the path to the executable and the variable for your installation directory.

If you want to use MSBuild from the command line outside of the RAD Studio Command Prompt, you should set the following
environment variables yourself:

BDS=c:\program files\CodeGear\RAD Studio\5.0 FrameworkDir=c:\Windows\Microsoft.NET\Framework
FrameworkVersion=v2.0.50727

Applying Your Own Custom Build Configurations

Several pages of the Project Options dialog box allow you to save groups of options into a named build configuration. Two
default build configurations are Debug and Release. C++Builder supports a Base configuration as well. You can use the
Configuration Manager to selectively apply any named build configuration as the active build configuration for your project or
project group.

Setting Build Events and Viewing Build Output

When you build a project, the results of the build appear in the Messages window, on the Output tab. You can specify pre-build

MSBuild Overview RAD Studio (Common) 1.1 Compiling, Building, and Running

4

1

and post-build events using the Project Options Build Events dialog box (C++Builder supports pre-link events as well). If
you specify build events, the commands you specified and their results also appear in the Messages window. To control the
level of output from MSBuild, use the Verbosity field on the Tools Options Environment Options page.

File Type Determines Build Order

MSBuild builds a project using the following order:

1. .RC files

2. .ASM files

3. .PAS files

4. .CPP files

The build proceeds downward through the directory or folder nodes in the Project Manager. Within each folder, files are built in
order according to their file type. You can control build order by placing files within different folders or within virtual folders in
the Project Manager.

See Also

Compiling (see page 2)

Setting Project Options (C++) (see page 163)

Build Events Dialog Box (see page 829)

Running MSBuild on the Command Line (see page 108)

Overview of Build Configurations (Delphi) (see page 5)

Overview of Build Configurations (C++) (see page 6)

Creating Named Build Configurations (C++) (see page 107)

Applying the Active Build Configuration (see page 104)

Virtual Folders Overview (see page 50)

1.1.3 Build Configurations Overview (Delphi)

Build configurations consist of options that you can set on all the build-related pages of the Project Options dialog box. Build
configuration information is saved in the MSBuild project file (.dproj or .groupproj).

IDE Contains Three Default Build Configurations

Base, Debug, and Release are the three default build configurations. Base acts as a base set of option values that is used in all
the configurations you subsequently create. The Debug configuration enables optimization and debugging, as well as setting
specific syntax options. The Release configuration doesn't produce symbolic debugging information as well as the code is not
generated for TRACE and ASSERT calls, meaning the size of your executable is reduced.

You can change option values in any configuration, including Base. You can delete the Debug and Release configurations, but
you cannot delete the Base configuration.

You can change the options for the three default configurations, and you can create and name your own custom build
configurations on numerous build-related pages of the Project Options dialog box.

You Can Specify the Active Configuration for Your Projects

Every project in RAD Studio has an active build configuration associated with it, as well as any number of other inactive build
configurations that you have created.

1.1 Compiling, Building, and Running RAD Studio (Common) Build Configurations Overview (Delphi)

5

1

The active build configuration is used in Compile and Build commands for the project. Use the Build Configuration Manager to
specify the active configuration for a selected project or project group (choose Project Configuration Manager).

See Also

MSBuild Overview (see page 4)

Creating Named Build Configurations (Delphi) (see page 108)

Applying the Active Build Configuration (see page 104)

1.1.4 Build Configurations Overview (C++)

Build configurations consist of options that you can set on all the build-related pages of the Project Options dialog box. Build
configurations are saved in the project file (.cbproj or .groupproj).

Each Project Contains Default Build Configurations

Base, Debug, and Release are the three default build configurations. Base acts as a base set of option values that is used in all
the configurations you subsequently create. The Debug configuration enables optimization and debugging, as well as setting
specific syntax options. The Release configuration doesn't produce symbolic debugging information as well as the code is not
generated for TRACE and ASSERT calls, meaning the size of your executable is reduced.

You can change option values in any configuration, including Base. You can delete the Debug and Release configurations, but
you cannot delete the Base configuration.

You can change option values in any configuration, including Base. You can delete the Debug and Release configurations, but
you cannot delete the Base configuration.

You Can Specify the Active Configuration for Your Projects

Every project has an active build configuration associated with it, as well as any number of other inactive build configurations that
you have created.

The active build configuration is used in Compile and Build commands for the project. Use the Build Configuration Manager to
specify the active configuration for a selected project or project group (choose Project Configuration Manager).

Build Configurations

Each configuration, except Base, is based on another configuration from which it inherits its values. The Debug and Release
configurations inherit their values from Base.

You can, in turn, create a new configuration based on any configuration, and the new configuration inherits values from its
parent. After creating a configuration, you can change its values to whatever you want, and you can make it the active
configuration for a project or projects. You can also delete any configuration except Base.

Unless it is changed, a configuration inherits its option values from its parent configuration. This inheritance is not static: if the
parent configuration changes, so do its children for all inherited values.

The default value of an option is its value in its parent configuration. You can revert an option to its default value.

Comparing Configurations and Option Sets

You can also save a configuration's option values to a file as a named option set using a file save dialog. You can apply option
set values to any configuration in any project.

Note that a configuration is different from an option set, though they are related. Both consist of sets of option values. The main
distinction is that configurations are associated with projects, whereas option sets are saved in files independent of projects.
Build configuration values are stored in the project file, so saving a project saves changes to configurations, but option sets are

Build Configurations Overview (C++) RAD Studio (Common) 1.1 Compiling, Building, and Running

6

1

unaffected. Changing a project's configurations and adding or deleting configurations does not affect option sets. Similarly,
saving option sets does not change configurations.

The Build Configuration drop-down menu lists configurations for that project—not option sets. Each project has its own list of
configurations, independent of other projects. However, you can access any option set from any project.

Configuration and Option Set Values

Note that configurations and option sets may not contain values for all possible project options--they contain only the options that
are different from the parent configuration. Base also does not contain values for all possible options.

If an option value is not in a configuration, the IDE looks in its parent configuration, then the parent's parent configuration, and so
on. If not found in any of the configurations in the inheritance chain, the value comes from the appropriate tool that is being
configured.

For instance, if a configuration inheritance chain does not include a value for a particular compiler option, the default value is
specified by the compiler itself. When you save a configuration or option set, only its values are saved--not values for every
option.

You Can Merge Some Options from Parent Configuration

Some options that contain a list of items, such as defines or paths, have a Merge check box.

If Merge is checked, the IDE merges the option's list with that of its immediate ancestor's configuration's list for that option. Note
that the IDE does not actually change the contents of the option, but acts as if the list included the ancestor's list. If the
ancestor's Merge check box is also checked, the IDE merges this ancestor's list for that option, and so on up the inheritance
chain.

If Merge is unchecked, the IDE uses only the items in the option.

Some Options are No Longer Available

Some options available in previous releases are no longer available, except possibly through the tool option flags. See
Unavailable Options (see page 893) for more information.

See Also

MSBuild Overview (see page 4)

Creating Named Build Configurations (C++) (see page 107)

Applying the Active Build Configuration (see page 104)

Working With Named Option Sets (see page 113)

Setting C++ Project Options (see page 163)

Unavailable Options (see page 893)

1.1.5 Named Option Sets Overview

Named option sets consist of options that you can create from and apply to the build-related pages of the Project Options
dialog box. Named option sets are saved in files with the extension .optset.

Creating Option Sets

You can save a project's option values to a file as a named option set using the context menu in the Project Manager and the
Save button in Project Option dialogs.

1.1 Compiling, Building, and Running RAD Studio (Common) Named Option Sets Overview

7

1

Comparing Option Sets and Configurations

Option sets are different from configurations, though they are related. Both consist of sets of option values. The main distinction
is that configurations are part of the project file; option sets are saved in files independent of projects. Saving a project saves
changes to configurations, but option sets are unaffected. Changing a project's configurations and adding or deleting
configurations does not affect option sets. Similarly, saving option sets does not change configurations. Each project has its own
list of configurations--not option sets--independent of other projects. You can access any option set from any project.

Configuration and Option Set Values

Configurations and option sets may not contain values for all possible project options. When you save a configuration or option
set, only the values that are different from the parent configuration are saved--not values for every option. An option set file does
not refer to any project's configuration, since option sets are independent of configurations.

For instance, suppose you had a project open in the IDE and the active configuration was the Base configuration. You change
one option and then save the option set. The only option values saved in the option set file are the one option value you changed
plus the option values in the Base configuration that are different from the defaults.

Applying Option Sets

You can apply option set values to any configuration in any project using the Apply Option Set dialog. You have three choices
for how you apply values: Overwrite, Replace, or Preserve.

• Overwrite replaces the current configuration with the values from the option set entirely; values not in the option set get their
default values.

• Replace writes all the values from the option set to the current configuration, but no other values are changed.

• Preserve writes only the values from the option set that are not already set in the active configuration.

See Also

Working With Named Option Sets (see page 113)

Apply Option Set dialog (see page 828)

Setting C++ Project Options (see page 163)

Creating Named Build Configurations (see page 107)

Applying the Active Build Configuration (see page 104)

1.1.6 Targets files

A .targets file is an MSBuild-compliant XML file you can add to a project to allow customizing the build process. A .targets file
can have <Target> nodes containing MSBuild scripts.

You can also add or modify project property values with a .targets file. You can leverage the large variety of MSBuild tasks
available in the .NET Framework SDK and on the internet, such as "Zip", "SVNCheckout", and "Mail", or write custom tasks
yourself.

In summary:

• A .targets file is an XML file with <Target> nodes that contain MSBuild scripts with lists of tasks to perform.

• You can create, add, enable, or remove .targets files in a project with the IDE.

Adding .targets files

You create and add a .targets file to the project using either menu commands or the Project Manager context menu. The IDE
generates a minimal .targets file containing only the <Project> root node and namespace attribute. You can then add MSBuild

Targets files RAD Studio (Common) 1.1 Compiling, Building, and Running

8

1

scripts inside the <Project> node.

By default, .targets files are added to the project but not used by it. You enable a .targets file with the Project Manager, which
adds the .targets file as an MSBuild <Import> to your project. All .targets files must contain valid MSBuild scripts free of errors. If
the file has any errors, you are notified and, if the project references the invalid .targets file, it is disabled and cannot be
re-enabled until the errors are corrected. Because MSBuild can only read <Import>s directly from disk, the .targets file must be
saved to disk before a Make, Build, or invoking any of its targets.

Target element in .targets files

The target element in the .targets file contains a set of tasks for MSBuild to execute. Here is its format:

<Target Name="Target Name"
 DependsOnTargets="DependentTarget"
 Inputs="Inputs"
 Outputs="Outputs"
 Condition="'String A' == 'String B'">
 <Task>... </Task>
 <OnError... />
</Target>

See http://msdn2.microsoft.com/en-us/library/t50z2hka.aspx for more information on target elements.

Using .targets files

When a .targets file contains valid <Target> elements, you can invoke those targets using MSBuild from the Project Manager,
provided the .targets file is enabled.

The .targets file can declare its own properties, targets, and item groups for use by its targets and tasks. It can also refer to
properties and item groups in the project file, including those imported from the standard Codegear .targets file in the Windows
directory at microsoft.net\Framework\v2.0.xxx\Borland.Cpp.Targets. You should not modify any .targets files in this directory,
since improper edits may cause the IDE to stop functioning correctly.

Tip: For more information about .targets files, see http://msdn2.microsoft.com/en-us/library/ms164312.aspx.

See Also

Using Targets Files (see page 109)

1.1 Compiling, Building, and Running RAD Studio (Common) Targets files

9

1

http://msdn2.microsoft.com/en-us/library/t50z2hka.aspx
http://msdn2.microsoft.com/en-us/library/ms164312.aspx

1.2 Debugging Applications
Many of the same techniques are used for debugging applications in different environments. RAD Studio provides an integrated
debugging environment that enables you to debug Win32 application and .NET applications. In addition, you can use the
debugger to debug an application running on a remote machine that does not have RAD Studio installed.

Topics

Name Description

Overview of Debugging (see page 10) RAD Studio includes both the CodeGear .NET Debugger and CodeGear Win32
Debugger. The IDE automatically uses the appropriate debugger based on the
active project type. Cross-platform debugging within a project group is supported
and, where possible, the debuggers share a common user interface.
The integrated debuggers let you find and fix both runtime errors and logic errors
in your RAD Studio application. Using the debuggers, you can step through code,
set breakpoints and watches, and inspect and modify program values. As you
debug your application, the debug windows are available to help you manage the
debug session and provide information... more (see page 10)

Overview of Remote Debugging (see page 12) Remote debugging enables you to debug one or more applications on a remote
machine when the IDE is running only on your local machine. This allows
debugging on a machine where it is impractical to install the entire IDE and
rebuild a project. Remote debugging is useful for applications that run differently
on your local machine than on an end user's machine.

1.2.1 Overview of Debugging

RAD Studio includes both the CodeGear .NET Debugger and CodeGear Win32 Debugger. The IDE automatically uses the
appropriate debugger based on the active project type. Cross-platform debugging within a project group is supported and, where
possible, the debuggers share a common user interface.

The integrated debuggers let you find and fix both runtime errors and logic errors in your RAD Studio application. Using the
debuggers, you can step through code, set breakpoints and watches, and inspect and modify program values. As you debug
your application, the debug windows are available to help you manage the debug session and provide information about the
state of your application.

The Debug Inspector enables you to examine various data types such as arrays, classes, constants, functions, pointers, scalar
variables, and interfaces. To use the Debug Inspector, select Run Inspect.

Stepping Through Code

Stepping through code lets you run your program one line of code at a time. After each step, you can examine the state of the
program, view the program output, modify program data values, and continue executing the next line of code. The next line of
code does not execute until you tell the debugger to continue.

The Run menu provides the Trace Into and Step Over commands. Both commands tell the debugger to execute the next line of
code. However, if the line contains a function call, Trace Into executes the function and stops at the first line of code inside the
function. Step Over executes the function, then stops at the first line after the function.

Evaluate/Modify

The Evaluate/Modify functionality allows you to evaluate an expression. You can also modify a value for a variable and insert
that value into the variable. The Evaluate/Modify functionality is customized for the language you are using:

• For a C++ project, the Evaluate/Modify dialog accepts only C++ expressions.

Overview of Debugging RAD Studio (Common) 1.2 Debugging Applications

10

1

• For a C# project, the Evaluate/Modify dialog accepts only C# expressions.

• For a Delphi project, the Evaluate/Modify dialog accepts only Delphi expressions.

Breakpoints

Breakpoints pause program execution at a certain point in the program or when a particular condition occurs. You can then use
the debugger to view the state of your program, or step over or trace into your code one line or machine instruction at a time.
The debugger supports four types of breakpoints:

• Source breakpoints pause execution at a specified location in your source code.

• Address breakpoints pause execution at a specified memory address.

• Data breakpoints allow you to pause execution when memory at a particular address changes.

• Module load breakpoints pause execution when the specified module loads.

Note: Data breakpoints are available only for the Win32 debugger.

Watches

Watches lets you track the values of program variables or expressions as you step over or trace into your code. As you step
through your program, the value of the watch expression changes if your program updates any of the variables contained in the
watch expression.

Debug Windows

The following debug windows are available to help you debug your program. By default, most of the windows are displayed
automatically when you start a debugging session. You can also view the windows individually by selecting View Debug
Windows.

Each window provides one or more right-click context menus. The F1 Help for each window provides detailed information about
the window and the context menus.

Debug Window Description

Breakpoint List Displays all of the breakpoints currently set in the Code Editor or CPU window.

Call Stack Displays the current sequence of function calls.

Watch List Displays the current value of watch expressions based on the scope of the execution point.

Local Variables Displays the current function’s local variables, enabling you to monitor how your program
updates the values of variables as the program runs.

Modules Displays processes under control of the debugger and the modules currently loaded by each
process. It also provides a hierarchical view of the namespaces, classes, and methods used in
the application.

Threads Status Displays the status of all processes and threads of execution that are executing in each
application being debugged. This is helpful when debugging multi-threaded applications.

Event Log Displays messages that pertain to process control, breakpoints, output, threads, and module.

CPU Displays the low-level state of your program, including the assembly instructions for each line of
source code and the contents of certain registers.

FPU Displays the contents of the Floating-point Unit and SSE registers in the CPU.

Remote Debugging

Remote debugging lets you debug an application running on a remote computer. Your computer must be connected to the
remote computer through TCP/IP and the remote debugger must be installed on the remote machine. After you create and copy
the required application files to the remote computer, you can connect to that computer and begin debugging.

1.2 Debugging Applications RAD Studio (Common) Overview of Debugging

11

1

See Also

Overview of Remote Debugging (see page 12)

Preparing a Project for Debugging (see page 124)

Setting and Modifying Breakpoints (see page 118)

Adding a Watch (see page 116)

Modifying Variable Expressions (see page 124)

Inspecting and Changing the Value of Data Elements (see page 122)

Debugging Remote Applications (see page 125)

Attaching to a Running Process (see page 117)

1.2.2 Overview of Remote Debugging

Remote debugging enables you to debug one or more applications on a remote machine when the IDE is running only on your
local machine. This allows debugging on a machine where it is impractical to install the entire IDE and rebuild a project. Remote
debugging is useful for applications that run differently on your local machine than on an end user's machine.

The Remote Debugger Executable

The remote debugger executable is named rmtdbg105.exe. The executable and its supporting files must be present on the
remote machine. The easiest way to install the executable is directly from the RAD Studio installation disk. However, if the
installation disk is not available, you can copy the required files from a machine that has the full RAD Studio IDE installed.

Local and Remote Files

Three types of files are involved in remote debugging:

• Source files

• Executable files

• Symbol files

Source files are compiled using the IDE on the local machine. The executable files and symbol files produced after compilation
must be copied to the remote machine.

Source Files

When you debug a project on a remote machine, the source files for the project must be open on the local machine. The source
files display in the editor window to show a program's current execution point. You do not use source files on the remote
machine.

Overview of Remote Debugging RAD Studio (Common) 1.2 Debugging Applications

12

1

Executable Files

Executable files are the .dll files and .exe files that are mapped into the application's address space. You generate these files on
the local machine, then copy them to the remote machine.

Symbol Files

Symbol files are generated on the local machine at compile time. These are used by the debugger to get information such as the
mapping of machine instructions to source line numbers or the names and types of variables declared in the source files. The
extension for the symbol files depends on the language, as shown in the following table:

Language Debug symbol file extension

Delphi for Win32 .rsm

Delphi for .NET .rsm and .pdb

C++ .tds

C# .pdb

You must set up specific options to generate symbol files on the local machine, then copy the files to the remote machine.

Local and Remote Machines

To use remote debugging, you must be able to log on to the remote machine and you must have write access to at least one
directory.

Note: The remote debugger does not provide a mechanism for interacting with an application on the remote machine. If you
need to interact with the application, you must establish a remote desktop connection.

See Also

Debugging a Remote Application (see page 125)

Installing a Debugger on a Remote Machine (see page 126)

Establishing a Connection for Remote Debugging (see page 127)

Preparing Files for Remote Debugging (see page 128)

1.2 Debugging Applications RAD Studio (Common) Overview of Remote Debugging

13

1

1.3 General Concepts
This section provides an overview of basic concepts.

Topics

Name Description

Managing the Development Cycle Overview (see page 14) The development cycle as described here is a subset of Application Lifecycle
Management (ALM), dealing specifically with the part of the cycle that includes
the implementation and control of actual development tasks. The development
cycle described here does not include such things as modeling applications.
The tools of ALM include:

• Requirements management

• Source control

• User interface design

• Code visualization capabilities

• Project building, compilation, and debugging capabilities

Designing User Interfaces (see page 15) A graphical user interface (GUI) consists of one or more windows that let users
interact with your application. At designtime, those windows are called forms.
RAD Studio provides a designer for creating Windows Forms, Web Forms, VCL
Forms, and HTML pages. The Designer and forms help you create
professional-looking user interfaces quickly and easily.

Using Source Control (see page 16) This topic provides an overview of general source control concepts that are
consistent among a number of source control systems, also known as automated
change and software configuration management (SCM) systems. .

Localizing Applications (see page 18) RAD Studio includes a suite of Translation Tools to facilitate localization and
development of .NET and Win32 applications for different locales. The
Translation Tools include the following:

• Satellite Assembly Wizard (for .NET)

• Resource DLL Wizard (for Win32)

• Translation Manager

• Translation Repository

The Translation Tools are available for Delphi VCL Forms
applications (both .NET and Win32), and Win32 console
applications, packages, and DLLs. You can access the
Translation Tools configuration options by choosing
Tools Options Translation Tools Options.

Deploying Applications (see page 19) After you have written, tested, and debugged your application, you can make it
available to others by deploying it. Depending on the size and complexity of the
application, you can package it as one or more assemblies, as compressed
cabinet (.cab) files, or in an installer program format (such as .msi). After the
application is packaged, you can distribute it by using XCOPY, FTP, as a
download, or with an installer program.
For additional information about deploying specific types of applications, refer to
the list of links at the end of this topic.

1.3.1 Managing the Development Cycle Overview

The development cycle as described here is a subset of Application Lifecycle Management (ALM), dealing specifically with the
part of the cycle that includes the implementation and control of actual development tasks. The development cycle described

Managing the Development Cycle Overview RAD Studio (Common) 1.3 General Concepts

14

1

here does not include such things as modeling applications.

The tools of ALM include:

• Requirements management

• Source control

• User interface design

• Code visualization capabilities

• Project building, compilation, and debugging capabilities

Requirements Management

Requirements management tools enable you to add, remove, and update requirements for your software project. A fully
integrated tool also enables you to create links between the requirement specification and the portions of the code within your
software project that fulfill the requirement.

Source Control

A source control system allows you to manage versions or renditions of your project files. Most source control systems maintain
a central repository of code and allow you to check-in, check-out, update, commit, and otherwise manage your source files.

User Interface Design

RAD Studio provides a rich environment for designing a .NET user interface. In addition to the Windows Form Designer, which
includes a full set of visual components, the IDE gives you tools to build ASP.NET Web Forms, along with a set of Web Controls.

The IDE also includes a VCL.NET Forms design tool, which allows you to build .NET applications using VCL components. The
Designer offers a variety of alignment tools, font tools, and visual components for building many types of applications, including
MDI and SDI applications, tabbed dialogs, and data aware applications.

Code Visualization

The Code Visualization feature of RAD Studio provides the means to document and debug your class designs using a visual
paradigm. As you load your projects and code files, you can use the Model View to get both a hierarchical graphical view of all
of the objects represented in your classes, as well as a UML-like model of your application objects. This feature can help you
visualize the relationships between objects in your application, and can assist you in developing and implementing.

Compile, Build, Run, and Debug

RAD Studio provides MSBuild, the industry standard build engine, along with an integrated debugger. You can build only the
changed elements of the project by using the Compile command. To build the entire project regardless of changes, use the Build
command. Projects with subprojects and multiple source files can be built all together, or you can build each project individually.

The integrated debugger allows you to set watches and breakpoints, and to step through, into, and over individual lines of code.
A set of debugger windows provides details on variables, processes, and threads, and lets you drill down deeply into your code
to find and fix errors.

See Also

Compiling (see page 2)

Building Packages (see page 105)

Debugging Applications (see page 10)

1.3.2 Designing User Interfaces

A graphical user interface (GUI) consists of one or more windows that let users interact with your application. At designtime,

1.3 General Concepts RAD Studio (Common) Designing User Interfaces

15

1

those windows are called forms. RAD Studio provides a designer for creating Windows Forms, Web Forms, VCL Forms, and
HTML pages. The Designer and forms help you create professional-looking user interfaces quickly and easily.

Using the Designer

When you create a Windows, Web, or Web Services application, the IDE automatically displays the appropriate type of form on
the Design tab in the IDE. As you drop components, such as labels and text boxes, from the Tool Palette on to the form, RAD
Studio generates the underlying code to support the application. You can use the Object Inspector to modify the properties of
components and the form. The results of those changes appear automatically in the source code on the Code tab. Conversely,
as you modify code with Code Editor, the changes you make are immediately reflected on the Design tab.

The Tool Palette provides dozens of controls to simplify the creation of Windows Forms, Web Forms, and HTML pages. When
creating a Windows Form, for example, you can use the MainMenu component to create a customized main menu in minutes.
After placing the component on a Windows Form, you type the main menu entries and commands in the boxes provided. The
ContextMenu component provides similar functionality for creating context menus. There are also several dialog box
components for commonly performed functions, such as opening and saving files, setting fonts, selecting colors, and printing.
Using these components saves time and provides a consistent look and feel for the dialogs in your application.

As you design your user interface, you can undo and repeat previous changes to a form by choosing Edit Undo and
Edit Redo. When you are satisfied with the appearance of the form, you can lock the components and form to prevent
accidental changes by right-clicking the form and choosing Lock Controls.

Setting Designer Options

You can set options that effect the appearance and behavior of the Designer. For example, you can adjust the grid settings, and
the style of generated code and HTML. To set these options, choose Tools Options and then use the Windows Form
Designer and HTML Option dialog boxes.

Setting Designer Guidelines with VCL Components

You can use VCL or VCL.NET (with Delphi or C++) to setup components that are "aware" of their relation to other components
on a form. For instance, when you drop a component on a form, it will leave a certain amount of space from the border of the
form, depending on how the 'padding' property is set.

You can set properties to specify the distance between controls, shortcuts, focus labels, tab order, and maximum number of
items (listboxes, menus).

The Code Developer can then use these components to create forms. when the Use Designer Guidelines option is enabled. If
the Snap to Grid option is enabled, and Use Designer Guidelines is also enabled, the designer guidelines will take precedence.

See the Creating Designer Guidelines link at the end of this topic, to view the procedure for setting these guidelines.

See Also

ASP .NET Overview

Adding Components to a Designer (see page 152)

Using Design Guidelines with VCL Components (see page 165)

1.3.3 Using Source Control

This topic provides an overview of general source control concepts that are consistent among a number of source control
systems, also known as automated change and software configuration management (SCM) systems. .

Using Source Control RAD Studio (Common) 1.3 General Concepts

16

1

Source Control Basics

Each source control system consists of one or more centralized repositories and a number of clients. A repository is a database
that contains not only the actual data files, but also the structure of each project you define.

Most source control systems adhere to a concept of a logical project, within which files are stored, usually in one or more tree
directory structures. A source control system project might contain one or many RAD Studio projects in addition to other
documents and artifacts. The system also enforces its own user authentication or, very often, takes advantage of the
authentication provided by the underlying operating system. Doing so allows the source control system to maintain an audit trail
or snapshot of updates to each file. These snapshots are typically referred to as diffs, for differences. By storing only the
differences, the source control system can keep track of all changes with minimal storage requirements. When you want to see a
complete copy of your file, the system performs a merge of the differences and presents you with a unified view. At the physical
level, these differences are kept in separate files until you are ready to permanently merge your updates, at which time you can
perform a commit action.

This approach allows you and other team members to work in parallel, simultaneously writing code for multiple shared projects,
without the danger of an individual team member's code changes overwriting another's. Source control systems, in their most
basic form, protect you from code conflicts and loss of early sources. Most source control systems give you the tools to manage
code files with check-in and check-out capabilities, conflict reconciliation, and reporting capabilities. Most systems do not include
logic conflict reconciliation or build management capabilities. For details about your particular source control system capabilities,
refer to the appropriate product documentation provided by your source control system vendor.

Commonly, source control systems only allow you to compare and merge revisions for text-based files, such as source code
files, HTML documents, and XML documents. Some source control systems allow you to include binary files, such as images or
compiled code, in the projects you place under control. You cannot, however, compare or merge revisions of binary files. If you
need to do more than store and retrieve specific revisions of of these types of files, you might consider creating a manual system
for keeping tracking of the changes you make to binary files.

Repository Basics

Source control systems store copies of source files and difference files in some form of database repository. In some systems,
such as CVS or VSS, the repository is a logical structure that consists of a set of flat files and control files. In other systems, the
repositories are instances of a particular database management system (DBMS) such as InterBase, Microsoft Access, MS SQL
Server, IBM DB2, or Oracle.

Repositories are typically stored on a remote server, which allows multiple users to connect, check files in and out, and perform
other management tasks simultaneously. You need to make sure that you establish connectivity not only with the server, but also
with the database instance. Check with your network, system, and database administrators to make sure your machine is
equipped with the necessary drivers and connectivity software, in addition to the client-side source control software.

Some source control systems allow you to create a local repository in which you can maintain a snapshot of your projects. Over
time the local image of your projects differs from the remote repository. You can establish a regular policy for merging and
committing changes from your local repository to the remote repository.

Generally, it is not safe to give each member of your team a separate repository on a shared project. If you are each working on
completely separate projects and you want to keep each project under source control locally, you can use individual local
repositories. You can also create these multiple repositories on a remote server, which provides centralized support, backup,
and maintenance.

Working with Projects

Source control systems, like development environments, use the project concept to organize and track groups of related files. No
matter which source control system you use, you create a project that maintains your file definitions and locations. You also
create projects in RAD Studio to organize the various assemblies and source code files for any given application. RAD Studio
stores the project parameters in a project file. You can store this file in your source control system project, in addition to the
various code files you create. You might share your project file among all the developers on your team, or you might each

1.3 General Concepts RAD Studio (Common) Using Source Control

17

1

maintain a separate project file.

Most source control systems consider development environment project files to be binary, whether they are actually binary files
or not. As a consequence, when you check a project file into a source control system repository, the source control system
overwrites older versions of the file with the newer one without attempting to merge changes. The same is true when you pull a
project, or check out the project file; the newer version of the project file overwrites the older version without merging.

Working with Files

The file is the lowest-level object that you can manage in a source control system. Any code you want to maintain under source
control must be contained in a file. Most source control systems store files in a logical tree structure. Some systems, such as
CVS, actually use terms like branch, to refer to a directory level. You can create files in a RAD Studio project and include them in
your source control system, or you can pull existing files from the source control system. You can put an entire directory into the
source control system, then you can check out individual files, multiple files, or entire subdirectory trees. RAD Studio gives you
control over your files at two levels—at the project level within RAD Studio and in the source control system, through the RAD
Studio interface to the source control system.

Note: The History View

provides revision information for your local source files. The History View can be used to track changes you make to files as
you work on them in the Designer or the Code Editor.

See Also

Using the History Manager (see page 149)

1.3.4 Localizing Applications

RAD Studio includes a suite of Translation Tools to facilitate localization and development of .NET and Win32 applications for
different locales. The Translation Tools include the following:

• Satellite Assembly Wizard (for .NET)

• Resource DLL Wizard (for Win32)

• Translation Manager

• Translation Repository

The Translation Tools are available for Delphi VCL Forms applications (both .NET and Win32), and Win32 console applications,
packages, and DLLs. You can access the Translation Tools configuration options by choosing Tools Options Translation
Tools Options.

The Wizards

Before you can use the Translation Manager or Translation Repository, you must add languages to your project by running either
the Satellite Assembly Wizard for .NET projects or the Resource DLL Wizard for Win32 projects. The Satellite Assembly Wizard
creates a .NET satellite assembly for each language you add. The Resource DLL Wizard creates a Win32 resource DLL for each
language. For simplicity, this documentation uses the term resource module to refer to either a satellite assembly or a resource
DLL.

While running either wizard, you can include extra files, such as .resx or .rc files, that are not normally part of a project. You
can add new resource modules to a project at any time. If you have multiple projects open in the IDE, you can process several at
once.

You can also use the wizards to remove languages from a project and restoring languages to a project.

Translation Manager

After resource modules have been added to your project, you can use the Translation Manager to view and edit VCL forms and

Localizing Applications RAD Studio (Common) 1.3 General Concepts

18

1

resource strings. After modifying your translations, you can update all of your application’s resource modules.

The External Translation Manager (ETM) is a version of the Translation Manager that you can set up and use without the IDE.
ETM has the same functionality as the Translation Manager, with some additional menus and toolbars.

Translation Repository

The Translation Repository provides a database for translations that can be shared across projects, by different developers.
While working in the Translation Manager, you can store translated strings in the Repository and retrieve translated strings from
the Repository.

By default, each time your assemblies are updated, they will be populated with translations for any matching strings that exist in
the Repository. You can also access the Repository directly, through its own interface, to find, edit, or delete strings.

The Translation Repository stores data in XML format. By default, the file is named default.tmx and is located in the RAD
Studio\bin directory.

Files Generated by the Translation Tools

The files generated by the Translation Tools include the following:

File extension Description

.nfn (.NET)

.dfn (Win32)

The Translation Tools maintain a separate file for each form in your application and each target
language. These files contain the data (including translated strings) that you see in the Translation
Manager.

.resx (.NET) The Satellite Assembly Wizard uses the compiler-generated .drcil file to create an .resx file for each
target language. These .resx files contain special comments that are used by the Translation Tools.

.rc (Win32) The Resource DLL Wizard uses the compiler-generated .drc file to create an .resx file for each target
language. These .resx files contain special comments that are used by the Translation Tools.

.tmx The Translation Repository stores data in an .tmx file. You can maintain more than one repository by
saving multiple .tmx files.

.bdsproj The External Translation Manager lists the assemblies (languages) and resources to be translated into a
.bdsproj project file. When third-party translators add and remove languages from a project, they can
save these changes in an .bdsproj file, which they return to the developer.

Note: You should not edit any of these files manually.

See Also

Adding Languages to a Project (see page 169)

Updating Resource Modules (see page 173)

Editing Resource Files in the Translation Manager (see page 170)

Setting the Active Language (see page 170)

Setting Up the External Translation Manager (see page 172)

1.3.5 Deploying Applications

After you have written, tested, and debugged your application, you can make it available to others by deploying it. Depending on
the size and complexity of the application, you can package it as one or more assemblies, as compressed cabinet (.cab) files,
or in an installer program format (such as .msi). After the application is packaged, you can distribute it by using XCOPY, FTP,
as a download, or with an installer program.

1.3 General Concepts RAD Studio (Common) Deploying Applications

19

1

For additional information about deploying specific types of applications, refer to the list of links at the end of this topic.

Deploying .NET Applications

Assuming that the target computer already has the .NET Framework installed on it, deploying a simple application that consists
of a single executable is as easy as copying the .exe file to the target computer. You don't need to register the application and
deleting the application files effectively uninstalls it.

Applications That Include Shared Assemblies

If your application includes an assembly that will be shared by other applications, you will need to uniquely identify the assembly
with a strong name and then install it in the Global Assembly Cache (GAC). The strong name consists of the assembly's text
name, version number, optional culture information, and the public key and digital signature to ensure uniqueness. The .NET
Framework SDK provides command line utilities for creating a public/private key (sn.exe), assigning a strong name (al.exe),
and installing an assembly in the GAC (gacutil.exe). For more information about these utilities, see the Framework SDK
online Help.

Deploying VCL.NET Applications

When building applications that use the VCL .NET framework, the way you build the application determines what files you need
to distribute with it. If you build the application by compiling VCL for .NET units directly into the program executable file, the
application will have external dependencies only on the .NET Framework.

However, if you build the application by compiling the application to have external references to VCL for .NET assemblies, the
application will have external dependencies on the .NET Framework, the Borland.Delphi.dll, and whatever RAD Studio
packages you have added to the project references, for example, Borland.VclRtl.dll or Borland.Vcl.dll.

Deploying ASP.NET Applications

RAD Studio includes the ASP.NET Deployment Manager to assist you in deploying ASP.NET applications. You can use it to
deploy to a remote computer by using a share or an FTP connection, or to your local computer. When you add a Deployment
Manager to your project, an XML file (.bdsdeploy) is added to the project directory and a Deploy tab is added to the IDE. You
provide destination and connection information on the Deploy tab and optionally modify the suggested list of files to copy, then
the Deployment Manager copies the files to the deployment destination.

Redistributing the .NET Framework

If you plan to deploy your application to a computer that does not have the .NET Framework installed on it, you will need to
redistribute and install the .NET Framework with your application. Microsoft provides a redistributable installer called
dotnetfx.exe, which contains the common language runtime and .NET Framework components required to run .NET
applications. For more information about dotnetfx.exe, see the .NET Framework SDK online Help.

Before Deploying a C# Application

Typically, while developing a C# application, you compile it with debugging information to facilitate testing. When you create a
new project, it uses the default Debug option set, which creates the executable files and the program database file (.pdb) for
debugging in the project\bin\Debug directory.

When you are ready to deploy the C# application, you can compile it using the default or a user-defined Release option set to
create an optimized version of the application in the project\bin\Release directory. The optimized application is smaller, faster,
and more efficient. To change the Debug/Release option sets, choose Project Options.

Deploying Win32 Applications

For information on deploying Win32 applications, refer to the Deploying Win32 Applications link at the end of this topic.

Using Installation Programs

For complex applications that consist of multiple files, you can use an installation program. Installation programs perform various

Deploying Applications RAD Studio (Common) 1.3 General Concepts

20

1

tasks, such as copying executable and supporting files to the target computer and making Windows registry entries.

Setup toolkits, such as InstallAware, automate the process of creating installation programs, often without the need to write any
code. InstallAware is based on Windows Installer (MSI) technology and can be installed from the RAD Studio installation DVD.
After installing it, refer to the InstallAware online Help for information about using the product.

Redistributing RAD Studio Files

Many of the files associated with RAD Studio applications are subject to redistribution limitations or cannot be redistributed at all.
Refer to the following documents for the legal stipulations regarding the redistribution of these files.

File Description

deploy.htm Contains deployment considerations for each edition of RAD Studio.

license.txt Addresses legal rights and obligations concerning RAD Studio.

readme.htm Contains last minute information about RAD Studio, possibly including information
that could affect the redistribution rights for RAD Studio files.

These files are located, by default, at C:\Program Files\CodeGear\RAD Studio\5.0.

Redistributing Third Party Software

The redistribution rights for third party software, such as components, utilities, and helper applications, are governed by the
vendor that supplies the software. Before you redistribute any third party software with your RAD Studio application, consult the
third party vendor or software documentation for information regarding redistribution.

See Also

Deploying Database Applications for the .NET Framework

Deploying ASP.NET Applications for the .NET Framework

Deploying COM Interop Applications

Deploying Win32 Applications

1.3 General Concepts RAD Studio (Common) Deploying Applications

21

1

1.4 Getting Started
The RAD Studio integrated development environment (IDE) provides many tools and features to help you build powerful
applications quickly. Not all features and tools are available in all editions of RAD Studio. For a list of features and tools included
in your edition, refer to the feature matrix on http://www.codegear.com.

Topics

Name Description

What is RAD Studio? (see page 23) RAD Studio is an integrated development environment (IDE) for building Delphi
Win32 applications. The RAD Studio IDE provides a comprehensive set of tools
that streamline and simplify the development life cycle. The tools available in the
IDE depend on the version of RAD Studio you are using. The following sections
briefly describe these tools.

What's New in RAD Studio (Delphi for Microsoft .NET) (see page 24) RAD Studio provides key new features for developing Delphi for Microsoft .NET
applications.

What's New in RAD Studio (C++Builder) (see page 28) RAD Studio provides key new features for developing C++ applications.

What's New in RAD Studio (Delphi) (see page 32) RAD Studio provides key new features for developing Delphi applications for
Win32.

Tour of the IDE (see page 34) When you start RAD Studio, the integrated development environment (IDE)
launches and displays several tools and menus. The IDE helps you visually
design user interfaces, set object properties, write code, and view and manage
your application in various ways.
The default IDE desktop layout includes some of the most commonly used tools.
You can use the View menu to display or hide certain tools. You can also
customize and save the desktop layouts that work best for you.
The tools available in the IDE depend on the edition of RAD Studio you are using
and include the following:

• Welcome Page... more (see page 34)

IDE on Windows Vista (see page 40) The IDE includes support for many new Vista user interface features including:

• Vista-style Open File, Save File, and Task dialog boxes.

• Vista theming.

• AERO glass effects in controls.

Tools Overview (see page 41) RAD Studio provides several developer tools that are available in the IDE and as
standalone executables, as described in the following table.

Code Editor (see page 42) The Code Editor occupies the center pane of the IDE window. The Code Editor
is a full-featured, customizable, UTF8 editor that provides syntax highlighting,
multiple undo capability, and context-sensitive Help for language elements.
As you design the user interface for your application, RAD Studio generates the
underlying code. When you modify object properties, your changes are
automatically reflected in the source files.
Because all of your programs share common characteristics, RAD Studio
auto-generates code to get you started. You can think of the auto-generated
code as an outline that you can examine to create your program.
The Code Editor provides... more (see page 42)

Form Designer (see page 46) The Form Designer or Designer, is displayed automatically when you are
creating or editing a form. To access the Designer, click the Design tab at the
bottom of the main editing window.
The appearance and functionality of the Designer depends on the type of form
you are creating or editing. For example, if you are using an HTML Element, you
can display the HTML Tag Editor in the Designer by selecting View Tag
Editor.

RAD Studio (Common) 1.4 Getting Started

22

1

http://www.borland.com/delphi

Starting a Project (see page 47) A project is a collection of files that is used to create a target application. This
collection consists of the files you include and modify directly, such as source
code files and resources, and other files that RAD Studio maintains to store
project settings, such as the .dproj project file. Projects are created at design
time, and they produce the project target files (.exe, .dll, .bpl, etc.) when you
compile the project.To assist in the development process, the Object Repository
offers many pre-designed templates, forms, files, and other items that you can
use to create applications.
To create a project,... more (see page 47)

Template Libraries (see page 50) RAD Studio allows you to create multiple custom template libraries to use as the
basis for creating future projects. Template libraries let you declare how a project
can look, and enable you to add new types of projects to the New Items dialog
box.
Creating a template library is a two-step process.

1. First, you create a RAD Studio project to use as the basis
for the template, and an XML file with a
.bdstemplatelib extension that describes the project.
This project can be any kind of project that RAD Studio
supports.

2. Next, you add the project to the list of... more (see page
50)

Overview of Virtual Folders (see page 50) For C++ only, the Project Manager allows any file entry in the project to be
arranged and displayed in an arbitrary grouping of your choice called a virtual
folder. These folders persist in the project file and make no reference to the file's
actual location on disk.
Virtual folders can only contain file system entries or other virtual folders. Virtual
folders can be reordered within the project, be renamed, and be deleted. Deleting
a virtual folder does not delete the contained files--they simply resume their
normal Project Manager location prior to their inclusion in the virtual folder.
Note that... more (see page 50)

Help on Help (see page 51) This section includes information about the:

• RAD Studio Help

• Microsoft .NET Framework SDK Help

• CodeGear Developer Support Services and Web Sites

• RAD Studio Quick Start Guide

• Typographic Conventions Used in the Help

Code Completion (see page 53) Code Completion is a Code Insight feature available in the Code Editor. Code
Completion displays a resizable “hint” window that lists valid elements that you
can select to add to your code. You can control the sorting of items in the Code
Completion hint window by right-clicking the box and choosing Sort by Name or
Sort by Scope.
Different items appear in different colors in the list. For example, by default,
procedures are teal, functions are dark blue, and abstract methods are shown in
red.
Automatic code completion is on by default. Options for enabling and disabling
Code Completion... more (see page 53)

1.4.1 What is RAD Studio?

RAD Studio is an integrated development environment (IDE) for building Delphi Win32 applications. The RAD Studio IDE
provides a comprehensive set of tools that streamline and simplify the development life cycle. The tools available in the IDE
depend on the version of RAD Studio you are using. The following sections briefly describe these tools.

Modeling Applications

Modeling can help you can improve the performance, effectiveness, and maintainability of your applications by creating a
detailed visual design before you ever write a line of code. RAD Studio provides the Together modeling tool, which works with

1.4 Getting Started RAD Studio (Common) What is RAD Studio?

23

1

the IDE.

Designing User Interfaces

On the RAD Studio visual designer surface, you can create graphical user interfaces by dragging and dropping components from
the Tool Palette to a form. Using the designers, you can create Windows Forms applications that use the extensive Visual
Component Library (VCL). You can also customize your applications for different versions of Windows, including Windows Vista.

Generating and Editing Code

RAD Studio auto-generates much of your application code as soon as you begin a project. To help you complete the remaining
application logic, the text-based Code Editor provides features such as refactoring, synchronized editing, code completion,
recorded keystroke macros, and custom key mappings. Syntax highlighting and code folding make your code easier to read and
navigate.

Compiling, Debugging, and Deploying Applications

Within the IDE, you can set compiler options, compile and run your application, and view compiler messages. RAD Studio
integrates MSBuild as a build engine, and both the compile and build commands invoke MSBuild. You can explicitly run MSBuild
either by using the command line, or by using the RAD Studio Command Prompt on the Start menu. The RAD Studio
Command Prompt opens a command console window and automatically sets the path to point to the MSBuild excecutable and
sets the environment variable BDS to point to your installation directory.

Compiler options, and several other Project Options, can be saved as named build configurations, which you can apply to
specific projects. By default, the IDE provides a Debug and a Release build configuration.

The integrated Win32 debugger helps you find and fix runtime and logic errors, control program execution, and step through
code to watch variables and modify data values. RAD Studio includes InstallAware for creating Windows Installer setups.

See Also

Designing User Interfaces (see page 15)

Code Editor (see page 42)

Compiling and Building Applications (see page 2)

Debugging Applications (see page 10)

Deploying Applications (see page 19)

1.4.2 What's New in RAD Studio (Delphi for Microsoft .NET)

RAD Studio provides key new features for developing Delphi for Microsoft .NET applications.

Delphi for Microsoft .NET

The following key features are new or significantly changed:

• This release includes a new .NET personality that provides full support for ASP.NET and VCL.NET, as well as inline updates
for Delphi 2007 for Win32 and C++Builder 2007.

• Generics (also known as parameterized types) are now supported by the Delphi for .NET compiler. Generics allow you to
define a class or record without specifying all the data types to be used within it. You then supply the unspecified types as
parameters when you create an instance of the generic type. You can create and consume generics in Delphi for .NET,
although the debugger does not evaluate generics. For more information, see Overview of Generics (see page 596).

• For C#, functionality has been rolled back to match that for Visual Basic for .NET. That is, you can open, edit, compile, and
do basic debugging of C# applications. However, the IDE does not offer design-time support for C#.

• Refactorings for Delphi for .NET will not support generics, and Delphi does not support refactoring C# code.

What's New in RAD Studio (Delphi for RAD Studio (Common) 1.4 Getting Started

24

1

• Template libraries (“starter kits”) enable you to add your own project types to the New Items gallery. A template library lets
you declare how your project will look. Sample template libraries are included in RAD Studio, including:

• A template library for creating an ASP.NET project that uses ASP.NET 2.0 AJAX Extensions 1.0. This template library is
further described under the ASP.NET heading in this topic.

• A template library that supports inserting HTML/CSS layouts such as 3-column, 2-column, header, footer, and so on. For
more information about template libraries, see Template Libraries Overview.

• Live Templates support ASP.NET controls. For more information, see Using Live Templates (see page 148).

• Your projects can have a Project Page, which is an HTML file that contains a description of the project, along with various
other notes and information that you want to add. The project page is displayed when you open the project in the IDE. You set
the Project Page by selecting Project Project Page Options.

• Windows forms are no longer supported in RAD Studio.

ASP.NET

This implementation supports .NET 2.0.

You can create both ASP.NET 2.0 applications, and ASP.NET-based Web Services application. ASP.NET supports the
Code-Behind model only.

The Designer provides MasterPages and design-time support for all standard ASP.NET 2.0 controls.

You can drag and drop data connections from the Data Explorer to the WebForms Designer.

Site navigation tools will be provided, such as sitemaps, sitemap paths, and sitemap menus.

User controls are supported.

Also supported is login functionality – membership, roles, and associated providers.

ECO support is included for ASP.NET.

An AJAX template library now appears in the File New dialog box. The AJAX library is called AJAX-Enabled ASP.NET Web
Application. Use this gallery item to create a new ASP.NET project that is set up for use with ASP.NET 2.0 AJAX Extensions
1.0. For more information about Microsoft's ASP.NET AJAX technology, see http://www.asp.net/ajax/.

You can use both the Cassini web server and the IIS webserver while developing your project and you can run your application
using F9 when using Cassini.

RAD Studio also provides a DBX4 implementation of the ASP.NET Provider model, which allows you to use a DBX4 database
for storing membership, roles, session information, and so forth.

Debugger

The following key features are new or significantly changed:

• You can specify whether Microsoft Managed Debug Assistants (MDAs) will display notifications in the event log. For more
information, see Event Log Options (see page 995).

• The debugger can now handle components and classes that contain the new generic types but cannot evaluate generics. For
more information about generics, see Overview of Generics (see page 596).

• The Debug Inspector has a new context menu command, Bind to Object, which binds the Inspector to the specific object.
For more information, see Debug Inspector (see page 942).

Together Modeling

Support for the Together modeling tool has the following new features:

• Together modeling features have been updated to sujpport generic types in Delphi for .NET.

• Refactorings that depend on Together will not work for code that contains generic types.

1.4 Getting Started RAD Studio (Common) What's New in RAD Studio (Delphi for

25

1

http://www.asp.net/ajax

Database

Many changes have been made to improve support for database application development in RAD Studio.

Active Query Builder

The SQL window available from the context menu of the Data Explorer is now a separate product, Active Query Builder, which
provides a full set of visual query-building features. For documentation on the Active Query Builder, see
http://www.activequerybuilder.com/hs15.html.

dbExpress

dbExpress has the following new features:

• dbExpress has been entirely rewritten in Delphi.

• A new API is available. This allows you to connect to databases. It also provides a framework for writing dbExpress drivers.

• The dbExpress VCL component's implementation has changed with minimal change to the API. Most applications are not
affected by changes to the dbExpress VCL. However, there are some new methods, properties, events, constants, and
enums.

For more information about changes in dbExpress, see dbExpress 4 New Feaure Overview.

dbExpress Metadata Improvements

The DBX3 metadata was not rich enough for database tooling and did not support all of the metadata types expected from an
ADO.NET 2.0 driver. A new MetaData providers architecture provides much greater capability.

• New metadata providers for 9 different database backends are available.

• Each provider is composed of a separate metadata reader and writer implementation.

• The MetaData providers are detached from the driver so that one metadata provider can be used for multiple driver
implementations.

• A new unit DBXMetaDataNames provides classes to describe and provide access to metadata.

• dbExpress exposes a DbxMetaDataProvider class to write metadata.

ADODbx Client

This implements the ADO.NET 2.0 interface. It replaces BDP.NET, based on ADO.NET 1.1, which is being deprecated. AdoDbx
Client exposes any existing dbExpress 4 driver as an ADO.NET 2.0 provider.

Instructions on connecting and deploying this provider have been included in the summary documentation at the top of the
Borland.Data.AdoDbxClientProvider.pas unit as well as in the product documentation.

DBXClient Driver

DBXClient is a DBX4 driver that remotes the DBX4 framework interface over a pluggable network based transport. In this
release, a TCP/IP transport is supported.

In this release, DBXClient can only connect to Blackfish SQL.

Blackfish SQL

Blackfish SQL is the Delphi for .NET version of JBuilder's JDataStore. Blackfish SQL is a high-performance transactional
database for the .NET platform, and also supports the .NET Compact Framework. Blackfish SQL will hook to ADO.NET 2.0, and
to any DBX4 driver.

Blackfish SQL exposes an API that is documented in a companion help volume. For a high-level summary, see Blackfish SQL
Overview.

What's New in RAD Studio (Delphi for RAD Studio (Common) 1.4 Getting Started

26

1

http://www.activequerybuilder.com/hs15.html

The implementation is in the unit Borland.Data.DataStore.

Blackfish SQL is written entirely in C# and provides the following features and benefits:

• Support for industry standards

• Transaction management

• Support for use of managed code in stored procedures, user-defined functions (UDFs), and triggers

• Simple deployment

• Database portability

• High performance and reliability

• Developer tool integration

ASP.NET Provider

These providers implement the ASP.NET provider model in dbExpress 4 and Blackfish SQL and provide support for
management of machine.config and web.config for updating the provider assemblies. They also provide tooling for creating a
new instance of the provider database for a website.

DBXProvider and Blackfish SQLProvider

These providers implement the ASP.NET provider model in DBX4 and SQLDataStore and will provide support for management
of machine.config and web.config for updating the provider assemblies. They also provide tooling for creating a new instance of
the provider database for a website.

VCL.NET

New features:

• Support for .NET 2.0 and 64-bit managed components.

• Support for components, classes, methods, and properties that are compatible with the look and feel of the Microsoft Vista
operating system.

New VCL components: The following new classes have been added to the Visual Component Library:

• TDBXConnectionEx

• TDBXCursorValue

• TDBXMemoryConnectionFactory

• TDBXMetaDatabaseColumnNames

• TDBXMetaDataCommandsEx

• TDBXMetaDataCommands

• TDBXMetaDataTableTypesEx

• TDBXPropertyNames

• TDBXPropertyNamesEx

• TDBXStreamReader

• TDBXByteStreamReader

• TDBXLookAheadStreamReader

• TDBXValueTypeFlagsEx

• TDBXWideStringValueEx

• TDBXDatabaseMetaDataEx

1.4 Getting Started RAD Studio (Common) What's New in RAD Studio (Delphi for

27

1

ECO

ECO now supports VCL.NET in addition to ASP.NET.

ECO online help is now separate from RAD Studio online help.

1.4.3 What's New in RAD Studio (C++Builder)

RAD Studio provides key new features for developing C++ applications.

C++Builder 2007

The following key features are new or significantly changed:

• MSBuild is the new build engine: When you build a C++ project, MSBuild now performs the build process. The structure of
the project file has also changed to XML and now contains the options needed for MSBuild. The project file extension has
changed to .cbproj. You can build projects from the command line using the MSBuild command syntax. For more
information, see MSBuild Overview.

• The Project Options dialog box has been reorganized: New pages have been added to the Project Options dialog box,
and some existing pages have been renamed in order to better organize the options. New options have also been added,
such as —Vb options that support C++ constructs that are no longer supported in the standard. The new Project Properties
page allows you to specify that the C++ compiler is to manage library paths, verify package imports, show header
dependencies, or use auto-dependency checking. For more information, see Setting Project Options (see page 162). For
information on project options that are no longer available in the IDE, see Unavailable Options (see page 893).

• You can merge Project Options: Some project options have a Merge check box. When checked, the IDE includes the
option values from the current build configuration's immediate ancestor. The options for the current configuration are not
actually changed. See Project Options (see page 842) for more information on Merge.

• Build configurations are more extensive: Build configurations have changed. A build configuration contains the options that
you set on many pages of Project Options. Build configurations store sets of command-line options for build tools such as
the compiler, linker, and MSBuild. You can create your own configurations, and there are three default configurations (Base,
Debug, and Release). For more information, see Build Configurations Overview (C++) (see page 6).

• Named option sets are new: You can create and apply named option sets from the build-related pages of the
Project Options dialog box. Named option sets are saved in files with the extension .optset. For more information, see
Named Option Sets Overview (see page 7).

• Build order has changed: MSBuild builds files according to file type (extension) rather than the user-modifiable order
previously used. The new build order is Delphi (.pas), C/C++ (.c/.cpp), assembler (.asm), then resource (.rc). Within
each folder or virtual folder, files are built in order according to their file type. For more information, see Overview of Virtual
Folders (see page 50).

• New Build Configuration Manager activates a build configuration: Use Project Configuration Manager to select the
build configuration that you want to be active for a selected project or projects. The Configuration Manager replaces the
existing way of specifying the active configuration for C++ projects. For more information, see Build Configuration Manager (
see page 828).

• You can specify build events: You can specify commands to execute at specific points in the build process (pre-link events
are new; pre-build and post-build events existed in previous releases). Right-click a buildable file in the Project Manager and
choose Build Events. For more information, see Build Events Dialog (see page 829).

• You can create and add .targets files to a project: A .targets file is an XML file that can contain MSBuild scripts, such as
lists of tasks to perform. For more information, see Targets files (see page 8).

• Location of demo code has changed: Demo code is now in MyDocuments\RAD Studio\Demos. Demos were moved out
of the Program Files directory due to Microsoft Vista restrictions.

• You can compile C++ packages with Delphi: C++Builder supports compiling design-time packages that contain Delphi
source files. However, if any of those Delphi sources make reference to IDE-supplied design-time units such as DesignIntf,
DesignEditors, and ToolsAPI that exist in DesignIDE100.bpl, you must take steps to ensure that the references can be

What's New in RAD Studio (C++Builder) RAD Studio (Common) 1.4 Getting Started

28

1

resolved by the C++Builder package. See Compiling C++ Design-Time Packages That Contain Delphi Source (see page
106) to learn how to do this.

Unit testing for C++

Support for Unit Testing is integrated with the DUnit Testing Framework. The DUnit framework is based on the JUnit test
framework, and shares much of the same functionality.

You can use the C++Builder Unit Testing wizards to quickly generate skeleton templates for the test project, setup and teardown
methods, and basic tests. You can then modify the templates, adding the specific test logic to test your particular methods.

You can run tests using either the Console Test Runner or the DUnit GUI Test Runner. The Console Test Runner directs test
output to the Console. The DUnit GUI Test Runner displays test results interactively in a GUI window, with results color-coded to
indicate success or failure.

C++Builder Web Services support enhancements

C++Builder Web Services support now includes the following:

• unbounded elements

• optional elements

• nullable elements

• WSDL and schema that import external schemas

These enhancements bring C++Builder Web Services support up-to-date with that of Delphi, enabling your applications to
interact with the more robust Web Services like eBay, Amazon, MapPoint, and so forth.

IDE

The following key features are new or significantly changed in the integrated development environment (IDE):

• Vista and XP Themes: The IDE now supports Windows Vista and XP themes. Themes are on by default, but you can disable
themes for either the IDE or for individual applications. For more information, see IDE on Windows Vista (see page 40).

• Duplicate file names: A project is now allowed to contain any number of files with the same name. For example, you can
have both the files Common\source1.cpp and Product\source1.cpp in your project. The IDE handles generating the object
files so that there is no confusion, and the object from both files is used in building the project.

• Expanded help about the Memory Manager: The new memory manager, released with Borland Developer Studio 2006, is
documented fully in this release of RAD Studio. Topics include: Configuring the memory manager, Monitoring the memory
manager, and Using ShareMem and SimpleShareMem to share the memory manager. The Memory Manager routines and
variables are listed under VCL in this topic. For more information, see Memory Management Overview (see page 644).

• Multi-select in Project Manager: Hold the CTRL key to multi-select files for the Open, Save, Save As, and Remove from
Project context-menu commands in the Project Manager.

• New File Browser: Use View File Browser to invoke the File Browser to perform basic file commands or to view a file's
SVN status. For more information, see File Browser (see page 1036).

• New toolbar in the Structure view: A new toolbar available only for C++ allows you to Sort Alphabetically, Group by Type,
Group by Visibility, Show Type, and Show Visibility. For more information, see View>Structure.

• Virtual folders in the Project Manager: You can create virtual associations between items in the tree structure. You can use
virtual folders to influence the build order. For more information, see Overview of Virtual Folders (see page 50).

Debugger

The following key features are new or significantly changed:

• Prevent scrolling of the event log: A new option on the Tools Options Debugger Options Event Log page prevents
the event log from scrolling new events into view as they occur.

• CPU windows: You can now open individual panes of the CPU window, such as the Disassembly, CPU Stack, and
Registers panes. These single panes of the CPU window are dockable; you can undock the panes and dock them elsewhere
in the IDE according to your needs. The CPU window also now automatically closes when you end the debugging session,
and the Disassembly pane contains two new options (Show Opcodes and Show Addresses). For more information, see

1.4 Getting Started RAD Studio (Common) What's New in RAD Studio (C++Builder)

29

1

CPU Window (see page 1022).

• Call Stack Window: You can now set a breakpoint on a particular frame. For more information, see Call Stack Window (
see page 1021).

• Ignore non-user breakpoints: You can now specify that the debugger is to ignore breakpoints that you did not specifically
set using the IDE. For more information, see CodeGear Debuggers (see page 986).

• Debug Source Path: The source path for debugging is now a global setting that you create on the
Project Options Debugger page. For more information, see Setting the Search Order for Debug Symbol Tables (see
page 129).

• New toolbar button: The Notify on Language Exceptions command is now an icon on the
View Toolbars Customize Commands Categories Run page. You can click and drag the icon to your toolbar for
quick access. For more information, see Language Exceptions (see page 999).

• Transparent tooltips: To make a debugger evaluator tooltip transparent, press the CTRL key when the tooltip is displayed.
Making a tooltip transparent enables you to read the screen behind the tooltip.

Together Modeling

Support for the Together modeling tool is new for C++:

• C++Builder 2007 provides limited modeling support from Together, the fully integrated modeling tool in the IDE. Note that only
the code visualization (read-only), documentation generation, and diagram printing features are available in C++ Builder 2007,
but the online help describes the full set of Together features.

• C++ Class Diagrams (Code Visualization): The C++ class diagram is only available in read-only mode. You can create
design diagrams in your C++ projects, but you cannot create classes, interfaces, and so forth in the Model View.

• Design Diagrams: The complete set of design diagrams are available only in the Enterprise edition of the product. This
includes sequence diagrams, collaboration diagrams, state charts, deployment diagrams, use case diagrams, activity
diagrams, and component diagrams.

• Printing diagrams and generating documentation: Both the Professional and Enterprise editions support the printing of
diagrams. The Enterprise edition also supports the generation of documentation.

For more information, see Getting Started With Together (see page 83) or Modeling Applications With Together (see page
81).

Note: Only specific editions of the product contain all the features described in the Together portions of this help system. The
current release contains a limited set of features.

Database

Many changes have been made to improve support for database application development in RAD Studio.

dbExpress

Unicode support has been added to the Oracle, Interbase, and MySQL dbExpress drivers.

New driver clients have been added: Interbase 2007 and MySQL 4.1 and 5.

A new dbExpress framework has been created. You can use this framework both to interface with existing drivers and to write
new drivers by extending dbExpress framework's abstract classes. You can use the framework directly for both native and
managed applications.

A delegate driver is a driver between the application and the actual driver. Delegate drivers allow for pre and post processing of
all public methods and properties of the dbExpress 4 framework. Delegate drivers are useful for connection pooling, driver
profiling, tracing, and auditing. Sample delegate drivers area provided.

The dbExpress VCL component's API has changed slightly. Most applications are not affected by changes to the dbExpress
VCL. However, there are some methods, properties, events, constants, and enums that were removed or replaced with
equivalent functionality.

You can also use the dbExpress VCL components that are layered on top of the framework for both native and managed

What's New in RAD Studio (C++Builder) RAD Studio (Common) 1.4 Getting Started

30

1

applications. There are some minor API changes in the VCL components to the TSQLConnection class (method changes),
TSQLDataSet (new property), and data structures (some are removed or replaced). See dbExpress Framework Compatibility for
more information.

The dbExpress driver framework:

• Is written entirely in the Delphi language and allows drivers to be written in Delphi.

• Uses strongly typed data access instead of pointers. For instance, the framework uses String types rather than pointers to
strings.

• Is single sourced. This means that a single copy of the source can be compiled with either the native DCC32 or managed
DCCIL compilers.

• Has only Abstract base classes that are used for drivers, connections, commands, readers, and so on.

• Uses exception-based error handling rather than returning error codes.

VCL and RTL

New components: The following new components have been added to the Visual Component Library:

AJAX: RAD Studio supports AJAX-based RAD VCL for the Web development.

Microsoft Vista Compatibility: RAD Studio provides components, classes, methods, and properties that are compatible with
the look and feel of the Vista operating system.

New VCL components: The following new classes have been added to the Visual Component Library:

• TFileOpenDialog

• TFileSaveDialog

• TTaskDialog

• TCustomFileDialog

• TCustomFileOpenDialog

• TCustomFileSaveDialog

• TCustomTaskDialog

• TFavoriteLinkItem

• TFavoriteLinkItems

• TFavoriteLinkItemsEnumerator

• TFileTypeItem

• TFileTypeItems

• TTaskDialogBaseButtonItem

• TTaskDialogButtonItem

• TTaskDialogButtons

• TTaskDialogButtonsEnumerator

• TTaskDialogProgressBar

• TTaskDialogRadioButtonItem

New Memory Manager routines and variables: The following new System routines and variables have been added to support
the Memory Manager:

• AttemptToUseSharedMemoryManager

• GetMemoryManagerState

• GetMemoryMap

1.4 Getting Started RAD Studio (Common) What's New in RAD Studio (C++Builder)

31

1

• GetMinimumBlockAlignment

• RegisterExpectedMemoryLeak

• SetMinimumBlockAlignment

• ShareMemoryManager

• UnregisterExpectedMemoryLeak

• NeverSleepOnMMThreadContention

• ReportMemoryLeakOnShutdown

See Also

MSBuild Overview (see page 4)

Build Configurations Overview (Delphi) (see page 5)

Build Configurations Overview (C++) (see page 6)

Build Configuration Manager (see page 828)

Project Options (see page 842)

Using the Command Line to Build a Project (see page 108)

Memory Management Overview (see page 644)

File Browser (see page 1036)

Modeling Overview (see page 89)

Targets Files (see page 8)

Overview of Virtual Folders (see page 50)

dbExpress Framework

1.4.4 What's New in RAD Studio (Delphi)

RAD Studio provides key new features for developing Delphi applications for Win32.

IDE

• MSBuild: The IDE now supports the MSBuild build engine instead of the previous internal make system. When you open a
pre-existing project, the IDE automatically converts the project to the MSBuild format and changes the project extension. You
can also use the MSBuild Console (on the Start menu) or MSBuild.exe to build projects from the command line.

• Build events: You can specify both DOS commands and macros that are to be performed either before or after compiling
your project.

• Build Configurations: You can now create named build configurations on the Project Options window. To apply a named
build configuration to a project or project group, use the new Build Configuration Manager, available on the Project menu.

• Vista and XP Themes: The IDE now supports Vista and XP themes. Themes are on by default, but you can disable themes
for either the IDE or for individual applications.

• Multi-select in Project Manager: You can select multiple files for commands such as Open, Save, Save As, and Remove
from Project in the Project Manager context menu.

• New File Browser: You can invoke the new File Browser to view files on disk and interact with the Windows shell.

Debugger

• Prevent scrolling of the event log: A new option on the Tools Options Debugger Options Event Log page prevents

What's New in RAD Studio (Delphi) RAD Studio (Common) 1.4 Getting Started

32

1

the event log from scrolling new events into view as they occur.

• CPU windows: You can now open individual panes of the CPU window, such as the Disassembly, CPU Stack, and
Registers panes. These single panes of the CPU window are dockable; you can undock the panes and dock them elsewhere
in the IDE according to your needs. The CPU window also now automatically closes when you end the debugging session,
and the Disassembly pane contains two new options (Show Opcodes and Show Addresses).

• Call Stack Window: You can now set a breakpoint on a particular frame.

• Ignore non-user breakpoints: You can now specify that the debugger is to ignore breakpoints that you did not specifically
set using the IDE.

• Debug Source Path: The source path for debugging is now a global setting that you create on the
Project Options Debugger page.

• New toolbar button: The Notify on Language Exceptions command is now an icon on the
View Toolbars Customize Categories Run page. You can click and drag the icon to your toolbar for quick access.

• Transparent tooltips: To make a debugger evaluator tooltip transparent, press the CTRL key when the tooltip is displayed.
Making a tooltip transparent enables you to read the screen behind the tooltip.

Database

Many changes have been made to improve support for database application development in RAD Studio.

dbExpress

Unicode support has been added to the Oracle, Interbase, and MySQL dbExpress drivers.

New driver clients have been added: Interbase 2007 and MySQL 4.1 and 5.

A new dbExpress framework has been created. You can use this framework both to interface with existing drivers and to write
new drivers by extending dbExpress framework's abstract classes. You can use the framework directly for both native and
managed applications.

A delegate driver is a driver between the application and the actual driver. Delegate drivers allow for pre and post processing of
all public methods and properties of the dbExpress 4 framework. Delegate drivers are useful for connection pooling, driver
profiling, tracing, and auditing. Sample delegate drivers area provided.

The dbExpress VCL component's API has changed slightly. Most applications are not affected by changes to the dbExpress
VCL. However, there are some methods, properties, events, constants, and enums that were removed or replaced with
equivalent functionality.

You can also use the dbExpress VCL components that are layered on top of the framework for both native and managed
applications. There are some minor API changes in the VCL components to the TSQLConnection class (method changes),
TSQLDataSet (new property), and data structures (some are removed or replaced). See dbExpress Framework Compatibility for
more information.

The dbExpress driver framework:

• is written entirely in the Delphi language and allows drivers to be written in Delphi.

• uses strongly typed data access instead of pointers. For instance, the framework uses String types rather than pointers to
strings.

• is single sourced. This means that a single copy of the source can be compiled with either the native DCC32 or managed
DCCIL compilers.

• has only Abstract base classes that are used for drivers, connections, commands, readers, and so on.

• uses exception-based error handling rather than returning error codes.

VCL

AJAX: RAD Studio supports AJAX-based RAD VCL for the Web development.

Microsoft Vista Compatibility: RAD Studio provides components, classes, methods, and properties that are compatible with

1.4 Getting Started RAD Studio (Common) What's New in RAD Studio (Delphi)

33

1

the look and feel of the Vista operating system.

New components: The following new components have been added to the Visual Component Library:

• TFileOpenDialog

• TFileSaveDialog

• TTaskDialog

New classes: The following new classes have been added:

• TCustomFileDialog

• TCustomFileOpenDialog

• TCustomFileSaveDialog

• TCustomTaskDialog

• TFavoriteLinkItem

• TFavoriteLinkItems

• TFavoriteLinkItemsEnumerator

• TFileTypeItem

• TFileTypeItems

• TTaskDialogBaseButtonItem

• TTaskDialogButtonItem

• TTaskDialogButtons

• TTaskDialogButtonsEnumerator

• TTaskDialogProgressBar

• TTaskDialogRadioButtonItem

See Also

MSBuild Overview (see page 4)

Creating Build Events (see page 107)

Build Configuration Manager (see page 828)

Disabling Themes for the IDE and for the Application (see page 157)

dbExpress Framework Compatibility

File Browser (see page 1036)

1.4.5 Tour of the IDE

When you start RAD Studio, the integrated development environment (IDE) launches and displays several tools and menus. The
IDE helps you visually design user interfaces, set object properties, write code, and view and manage your application in various
ways.

The default IDE desktop layout includes some of the most commonly used tools. You can use the View menu to display or hide
certain tools. You can also customize and save the desktop layouts that work best for you.

The tools available in the IDE depend on the edition of RAD Studio you are using and include the following:

• Welcome Page

Tour of the IDE RAD Studio (Common) 1.4 Getting Started

34

1

• Accessibility Options

• Forms

• Form Designer

• Tool Palette

• Object Inspector

• Object Repository

• Project Manager

• Data Explorer

• Structure View

• History Manager

• Code Editor

• File Browser

• Themes for Windows Vista

The following sections describe each of these tools.

Themes for Windows Vista

The IDE uses Windows Vista or Windows XP themes. If you prefer the classic look in the IDE and in your application, you can
turn off theming on the Project Options dialog box.

Welcome Page

When you open RAD Studio, the Welcome Page appears with a number of links to developer resources, such as
product-related articles, training, and online Help. As you develop projects, you can quickly access them from the list of recent
projects at the top of the page. If you close the Welcome Page, you can reopen it by choosing View Welcome Page.

Accessibility Options

The IDE's main menu supports MS Active Accessibility (MSAA). This means that you can use the Windows accessibility tools
from the Start Menu via All Programs Accessories Accessibility.

Forms

Typically, a form represents a window or HTML page in a user interface. At design-time, a form is displayed on the Designer
surface. You add components from the Tool Palette to a form to create your user interface.

RAD Studio provides several types of forms, as described in the following sections. Select the form that best suits your
application design, whether it’s a Web application that provides business logic functionality over the Web, or a Windows
application that provides processing and high-performance content display. To switch between the Designer and Code Editor,
click their associated tabs below the IDE.

To access forms, choose File New Other.

Windows Forms

Use Windows Forms to build native Windows applications that run in a managed environment. You use the .NET classes to build
Windows clients, which presents two major advantages—it allows application clients to use features unavailable to browser
clients, and it leverages the .NET Framework infrastructure. Windows Forms present a programming model that takes advantage
of a unified .NET Framework (for security and dynamic application updates, for instance) and the richness of GUI Windows
clients. You use Windows controls, such as buttons, list boxes, and text boxes, to build your Windows applications.

To access a Windows Form, choose File New Other Delphi for .NET Projects Windows Forms Application.

1.4 Getting Started RAD Studio (Common) Tour of the IDE

35

1

VCL Forms

Use VCL Forms to create native applications using VCL components or to create applications that use VCL.NET components to
run in the .NET Framework.

VCL Forms are useful if you want to port an existing Delphi application containing VCL controls to the .NET environment, or if
you are already familiar with the VCL and prefer to use it.

You use the classes in the CodeGear Visual Component Library for .NET to create a VCL Forms application.

To access a VCL Forms, choose File New Other VCL Forms Application.

ASP.NET Web Forms

Use ASP.NET Web Forms to create applications that can be accessed from any Web browser on any platform. You use the
.NET classes to create a ASP.NET Web Forms application. The form consists of the visual representation of the HTML, the
actual HTML, and a code-behind file.

To access an ASP.NET Web Form, choose File New Other Delphi for .NET Projects Windows Forms Application.

Form Designer

The Form Designer, or Designer, is displayed automatically in the center pane when you are using a form. The appearance and
functionality of the Designer depends on the type of form you are using. For example, if you are using an ASP.NET Web Form,
the Designer displays an HTML tag editor. To access the Designer, click the Design tab at the bottom of the IDE.

Visual Components

Visual components appear on the form at design-time and are visible to the end user at runtime. They include such things as
buttons, labels, toolbars, and listboxes.

Form Preview

A preview icon at the bottom right of the Designer (for VCL Forms) shows the positioning of your form as it appears on the
screen at runtime. This allows you to position the forms of your application in relation to each other as you design them.

HTML Designer

Use the HTML Designer to view and edit ASP.NET Web Forms or HTML pages. This Designer provides a Tag Editor for editing
HTML tags alongside the visual representation of the form or page. You can also use the Object Inspector to edit properties of
the visible items on the HTML page and to display the properties of any current HTML tag in the Tag Editor. A combo box
located above the Tag Editor lets you display and edit SCRIPT tags.

To create a new HTML file, choose File New Other Web Documents HTML Page.

Nonvisual Components and the Component Tray

Nonvisual components are attached to the form, but they are only visible at design-time; they are not visible to end users at
runtime. You can use nonvisual components as a way to reuse groups of database and system objects or isolate the parts of
your application that handle database connectivity and business rules.

When you add a nonvisual component to a form, it is displayed in the component tray at the bottom of the Designer surface. The
component tray lets you distinguish between visual and nonvisual components.

Design Guidelines

If you are creating components for a form, you can register an object type and then indicate various points on or near a
component's bounds that are "alignment" points. These "alignment" points are vertical or horizontal lines that cut across a visual
control's bounds.

Tour of the IDE RAD Studio (Common) 1.4 Getting Started

36

1

When you have the alignment points in place, you can supply UI guideline information so that each component adheres to rules
such as distance between controls, shortcuts, focus labels, tab order, maximum number of items (listboxes, menus), etc. In this
way, the Form Designer can assist the Code Developer in adhering to established UI guidelines.

If the Snap to Grid option is enabled, and Use Designer Guidelines is also enabled, the designer guidelines take precedence.
This means that if a grid point is within the tolerance of the new location and a guideline is also within that distance away, then
the control snaps to the guideline instead of the grid position, even if the guideline does not fall on the grid position. The snap
tolerance is determined by the grid size. Even if the Snap to Grid and Show Grid options are disabled, the Designer still uses the
grid size in determining the tolerance.

This feature is currently only available in VCL and VCL.NET only (This includes C++). See the link at the end of this topic for
more information about setting Designer Guidelines.

Tool Palette

The Tool Palette, located on the right-hand column, contains items to help you develop your application. The items displayed
depend on the current view. For example, if you are viewing a form on the Designer, the Tool Palette displays components that
are appropriate for that form. You can double-click a control to add it to your form. You can also drag it to a desired position on
the form. If you are viewing code in the Code Editor, the Tool Palette displays code segments that you can add to your
application.

Customized Components

In addition to the components that are installed with RAD Studio, you can add customized or third party components to the Tool
Palette and save them in their own category.

Component Templates

You can create templates that are made up of one or more components. After arranging components on a form, setting their
properties, and writing code for them, you can save them as a component template. Later, by selecting the template from the
Tool Palette, you can place the preconfigured components on a form in a single step; all associated properties and
event-handling code are added to your project at the same time. You can reposition the components independently, reset their
properties, and create or modify event handlers for them just as if you had placed each component in a separate operation.

Object Inspector

The Object Inspector, located on the left, lets you set design time properties and create event handlers for components. This
provides the connection between your application’s visual appearance and the code that makes the application run. The Object
Inspector contains two tabs: Properties and Events.

Use the Properties tab to change physical attributes of your components. Depending on your selection, some category options
let you enter values in a text box while others require you to select values from a drop-down box. For Boolean operations, you
toggle between True or False. After you change your components’ physical attributes, you create event handlers that control how
the components function.

Use the Events tab to specify the events for a specific object you select. If there is an existing event handler, use the drop-down
box to select it. By default, some options in the Object Inspector are collapsed. To expand the options, click the plus sign (+)
next to the category.

Certain nonvisual components, for example, the Borland Data Providers, allow quick access to editors such as the Connection
Editor and Command Text Editor. You can access these editors in the Designer Verb area at the bottom of the Object
Inspector. To open the editors, place your cursor over the name of the editor until your cursor changes into a hand and the
editor turns into a link. Alternatively, you can right-click the nonvisual component, scroll down to its associated editor and select
it. Note that not all nonvisual components have associated editors. In addition to editors, this area can also display hyperlinks to
show custom component editors, launch a web page, and show dialog boxes.

1.4 Getting Started RAD Studio (Common) Tour of the IDE

37

1

Object Repository

To simplify development, RAD Studio offers pre-designed templates, forms, and other items that you can access and use in your
application.

Inside the Object Repository

The Object Repository contains items that address the types of applications you can develop. It contains templates, forms, and
many other items. You can create projects such as class library, control library, console applications, HTML pages, and many
others by accessing the available templates.

To open the Object Repository , choose File New Other. A New Items dialog box appears, displaying the contents of the
Object Repository . You can also edit or remove existing objects from the Object Repository by right-clicking the Object
Repository to view your editing options.

Object Repository Templates

You can add your own objects to the Object Repository as templates to reuse or share with other developers. Reusing objects
lets you build families of applications with common user interfaces and functionality to reduce development time and improve
quality.

You can add a starter project, demo, template, or other useful file to the Object Repository and then make it available through
the New menu. Choose Project Add to Repository. Select your file. Now when you select the FileNew command, you can
choose the file you just added and work with a new copy of it.

RAD Studio allows you to create multiple custom template libraries to use as the basis for creating future projects. Template
libraries let you to declare how projects can look, and they enable you to add new types of projects to the Object Repository.

Project Manager

A project is made up of several application files. The Project Manager, located in the top right-hand column, lets you view and
organize your project files such as forms, executables, assemblies, objects, and library files. Within the Project Manager, you
can add, remove, and rename files. You can also combine related projects to form a project group, which you can compile at the
same time.

Add References

You can integrate your legacy COM servers and ActiveX controls into managed applications by adding references to unmanaged
DLLs to your project and then browse the types, just as you would with managed assemblies. Choose Project Add Reference
to integrate your legacy COM servers or ActiveX controls. Alternatively, right-click the Reference folder in the Project Manager
and click Add Reference. You can add other .NET assemblies, COM/ActiveX components, or type libraries using the Add
Reference feature.

Copy References to a Local Path

During runtime, assemblies must be in the output path of the project or in the Global Assembly Cache (GAC) for deployment. In
the Project Manager, you can right-click an assembly and use the Copy Local setting to copy the reference to the local output
path. Follow these guidelines to determine whether a reference must be copied.

• If the reference is to an assembly created in another project, select the Copy Local setting.

• If the assembly is in the GAC, do not select the Copy Local setting.

Add Web References

You can quickly add a Web Reference to your client application and access the Web Service you want to use. When you add a
Web Reference, you are importing a WSDL document into your client application, which describes a particular Web Service.

Tour of the IDE RAD Studio (Common) 1.4 Getting Started

38

1

Once you import the WSDL document, RAD Studio generates all the interfaces and class definitions you need for calling that
Web Service. To use the Add Web Reference feature, from your Project Manager, right-click the Web Services node.

Data Explorer

The Data Explorer lets you browse database server-specific schema objects, including tables, fields, stored procedure
definitions, triggers, and indexes. Using the context menus, you can create and manage database connections. You can also
drag and drop data from a data source to most forms to build your database application quickly.

Structure View

The Structure View shows the hierarchy of source code or HTML displayed in the Code Editor, or components displayed on
the Designer. When displaying the structure of source code or HTML, you can double-click an item to jump to its declaration or
location in the Code Editor. When displaying components, you can double-click a component to select it on the form.

If your code contains syntax errors, they are displayed in the Errors folder in the Structure View. You can double-click an error
to locate its source in the Code Editor.

You can control the content and appearance of the Structure View by choosing Tools Options Environment
Options Explorer and changing the settings.

History Manager

The History Manager, located in the center pane, lets you see and compare versions of a file, including multiple backup
versions, saved local changes, and the buffer of unsaved changes for the active file. If the current file is under version control, all
types of revisions are available in the History Manager. The History Manager is displayed to the right of the Code tab and
contains the following tabbed pages:

• The Contents page displays current and previous versions of the file.

• The Diff page displays differences between selected versions of the file.

• The Info page displays all labels and comments for the active file.

You can use the History Manager toolbar to refresh revision information, revert a selected version to the most current version,
and synchronize scrolling between the source viewers in the Contents or Diff pages and the Code Editor and for window
navigation (such as Go to next diff).

Code Editor

The Code Editor, located in the center pane, provides a convenient way to view and modify your source code. It is a
full-featured, customizable, UTF8 editor that provides refactoring, automatic backups, Code Insight, syntax highlighting, multiple
undo capability, context-sensitive Help, Live Templates, Smart Block Completion, Find Class, Find Unit/Import Namespace, and
more. Choose the Code Editor link in the section below to view descriptions for each of these Code Editor features.

File Browser

You can perform basic file operations using the File Browser, a dockable Windows style browser pane. Open the File Browser
to search, rename, or perform source control operations on a file.

To perform an operation on a file, choose View File Browser, browse to the file, right-click the file, and select the operation to
perform.

See Also

Starting a Project (see page 47)

Form Designer (see page 46)

Adding Components to a Form (see page 152)

Setting Component Properties (see page 161)

Code Editor (see page 42)

1.4 Getting Started RAD Studio (Common) Tour of the IDE

39

1

Customizing the Code Editor (see page 141)

Building an ASP.NET Application

Disabling Windows Vista or Windows XP Themes (see page 157)

File Browser (see page 1036)

Using the History Manager (see page 149)

1.4.6 IDE on Windows Vista

The IDE includes support for many new Vista user interface features including:

• Vista-style Open File, Save File, and Task dialog boxes.

• Vista theming.

• AERO glass effects in controls.

New Dialogs for Vista

Windows Vista introduces three new types of dialog boxes supported by the IDE. Task dialogs are similar to Message dialogs,
but have added functionality. Windows Vista File Dialog and Windows Vista Save Dialog provide new and changed
functionality. RAD Studio provides support for the new Vista dialogs in the Tool Palette as well as in the VCL components
TTaskDialog, TFileOpenDialog, and TFileSaveDialog.

You can also upgrade existing Message, File, and Save dialogs to the newer Vista dialogs by setting the
UseLatestCommonDialogs flag. If the flag is set, and you are running Vista, and you have theming enabled, the old-style
dialogs will be promoted to Vista-style dialogs. If these conditions are false, Task dialogs are downgraded to Message dialogs.
Vista-style File and Save dialogs do not share all of the functionality of the old File and Save dialogs, however, so the IDE
provides upgrade capability but no downgrade capability for these controls.

Task dialog boxes include all the functionality of the old Message dialog as well as the following new features and controls:

• A new message title.

• Support for hyperlinks in dialog box.

• User-defined buttons.

• Command link button style.

• Button hints for command link buttons.

• Ordinary progress bars and marquee progress bars.

• Expanded dialog text (SeeDetails and HideDetails).

• A verification box.

• Controls with elevated security requirements (ElevationRequired property).

• Main and footer icons.

Vista-style File and Save dialogs provide similar functionality as the old-style dialogs, but have some substantial changes that
can affect existing applications.

The new dialog boxes do not provide user-specified context-sensitive help, but always display Microsoft help. If you need to have
application-specific context-sensitive help for your File and Save dialogs, you should continue to use the old-style dialogs.

The Vista File and Save dialogs also have eliminated support for the events OnShow, OnIncludeItem, and OnClose. If your
application depends on those events, you should continue to use the old-style dialogs.

IDE on Windows Vista RAD Studio (Common) 1.4 Getting Started

40

1

Themes in Windows Vista

Windows Vista uses themes in the user interface. For example, TCustomForm is themed for Vista. FileDialog and SaveDialog
exist in both classic and themed versions.

Themed versions have some differences from unthemed versions, such as no support for OnShow, IncludeItem, or OnClose
events. The new file dialogs do not support custom help but do support Microsoft help.

To upgrade existing projects to use themes, set the Vista flag On. This is a one-way setting; you cannot downgrade to the classic
look after upgrading to themes.

By default, themes are On in the IDE and in your application, but you can disable the use of themes.

AERO Glass Effects in Controls

Vista AERO provides an optional glass effect that makes windows and dialogs translucent, so that you can see the graphics
below them.

Windows can either have a customizable glass frame or become completely translucent with the SheetOfGlass property.
Controls in a glassed area can be difficult to see unless you set the DoubleBuffered property.

Many controls available in RAD Studio support glass, but some do not.

See Also

MSBuild Overview (see page 4)

Disabling Themes in the IDE and in the Application (see page 157)

1.4.7 Tools Overview

RAD Studio provides several developer tools that are available in the IDE and as standalone executables, as described in the
following table.

Tool Purpose Executable File Name

Data
Explorer

Browse and edit database server-specific schema objects, including tables,
fields, stored procedure definitions, triggers, and indexes.

dbexplor.exe

XML
Mapper

Map nodes in an XML document to fields in a data packet used by a client
dataset.

xmlmapper.exe

Package
Collection
Editor

View and edit Delphi packages and other files associated with a package
collection (.dpc files).

pce.exe

Reflection
Tool

Inspect types contained within a .NET assembly. reflection.exe

See Also

Data Explorer (see page 1034)

XML Mapper (see page 1011)

Package Collection Editor

1.4 Getting Started RAD Studio (Common) Code Editor

41

1

1.4.8 Code Editor

The Code Editor occupies the center pane of the IDE window. The Code Editor is a full-featured, customizable, UTF8 editor
that provides syntax highlighting, multiple undo capability, and context-sensitive Help for language elements.

As you design the user interface for your application, RAD Studio generates the underlying code. When you modify object
properties, your changes are automatically reflected in the source files.

Because all of your programs share common characteristics, RAD Studio auto-generates code to get you started. You can think
of the auto-generated code as an outline that you can examine to create your program.

The Code Editor provides the following features to help you write code:

• Change Bars

• Code Insight

• Code Completion

• Code Browsing

• Help Insight

• Live Templates

• Code Folding

• Refactoring

• Sync Edit

• To-Do Lists

• Keystroke Macros

• Bookmarks

• Block comments

• Template Libraries

Change Bars

The left margin of the Code Editor displays a green change bar to indicate lines that have not been changed in the current
editing session. A yellow change bar indicates that changes have been made since the last File->Save operation.

You can, however, customize the change bars to display in colors other than the default green and yellow.

Code Insight

Code Insight refers to a subset of features embedded in the Code Editor (such as Code Parameter Hints, Code Hints, Help
Insight, Code Completion, Class Completion, Block Completion, and Code Browsing) that aid in the code writing process. These
features help identify common statements you wish to insert into your code, and assist you in the selection of properties and
methods. Some of these features are described in more detail in the sub-sections below.

To invoke Code Insight, press CTRL+SPACE while using the Code Editor. A pop-up window displays a list of symbols that are
valid at the cursor location.

To enable and configure Code Insight features, choose Tools Options Editor Options and click Code Insight.

When you're using the Delphi Language, the pop-up window filters out all interface method declarations that are referred to by
property read or write clauses. The window displays only properties and stand-alone methods declared in the interface type.
Code insight supports WM_xxx, CM_xxx, and CN_xxx message methods based on like named constants from all units in the
uses clause.

Code Editor RAD Studio (Common) 1.4 Getting Started

42

1

Code Parameter Hints

Displays a hint containing argument names and types for method calls. Available between the parenthesis of a call i.e.
ShowMessage (|);

You can invoke Code Parameter Hints by pressing CTRL+SHIFT+SPACE.

Code Hints

Display a hint containing information about the symbol such as type, file and line # declared at.

You can display Code Hints by hovering the mouse over an identifier in your code, while working in the Code Editor.

Note: Code Hints only work when you have disabled the Help Insight feature.

Help Insight

Help Insight displays a hint containing information about the symbol such as type, file, line # declared at, and any XML
documentation associated with the symbol (if available).

Invoke Help Insight by hovering the mouse over an identifier in your code, while working in the Code Editor. You can also invoke
Help Insight by pressing CTRL+SHIFT+H.

Code Completion

The Code Completion feature displays a drop-down list of available symbols at the current cursor location. You invoke Code
Completion for your specific language in the following way:

Delphi — CTRL + SPACE + .

C# — CTRL + SPACE + .

C++ — CTRL + SPACE + —>

Class Completion

Class completion simplifies the process of defining and implementing new classes by generating skeleton code for the class
members that you declare. By positioning the cursor within a class declaration in the interface section of a unit and pressing
CTRL+SHIFT+C, any unfinished property declarations are completed. For any methods that require an implementation, empty
methods are added to the implementation section. They are also on the editor context menu.

Block Completion

When you press ENTER while working in the Code Editor and there is a block of code that is incorrectly closed, the Code Editor
enters the closing block token at the next available empty line after the current cursor position. For instance, if you are using the
Code Editor with the Delphi language, and you type the token begin and then press ENTER, the Code Editor automatically
completes the statement so that you now have: begin end; . This feature also works for the C# and C++ languages.

Code Browsing

While using the Code Editor to edit a VCL Form application, you can hold down the CTRL key while passing the mouse over the
name of any class, variable, property, method, or other identifier. The mouse pointer turns into a hand and the identifier appears
highlighted and underlined; click on it, and the Code Editor jumps to the declaration of the identifier, opening the source file, if
necessary. You can do the same thing by right-clicking on an identifier and choosing Find Declaration.

Code browsing can find and open only units in the project Search path or Source path, or in the product Browsing or Library
path. Directories are searched in the following order:

1. The project Search path (Project Options Directories/Conditionals).

1.4 Getting Started RAD Studio (Common) Code Editor

43

1

2. The project Source path (the directory in which the project was saved).

3. The global Browsing path (Tools Options Library).

4. The global Library path (Tools Options Library Environment Options Delphi Options for Delphi).

The Library path is searched only if there is no project open in the IDE.

Code Navigation

The sections below describe features that you can use to navigate through your code while you are using the Code Editor.

Method Hopping

You can navigate between methods using a series of editor hotkeys. You can also lock the hopping to occur only within the
methods of the current class. For example, if class lock is enabled and you are in a method of TComponent, then hopping is only
available within the methods of TComponent.

The keyboard shortcuts for Method Hopping are as follows:

• CTRL+Q^L - toggles class lock

• CTRL+ALT+UP - moves to the top of the current method, or the previous method

• CTRL+ALT+DOWN - moves to the next method

• CTRL+ALT+HOME - first method in source

• CTRL+ALT+END - last method in source

• CTRL+ALT+MOUSE_WHEEL - scrolls through methods

Finding Classes

Allows you to find classes (using C# regular expressions). Use the Search Find Class... command to see a list of available
classes that you can select. After you choose one, the IDE navigates to its declaration.

Finding Units

Depending on which language you are programming in, you can use a refactoring feature to locate namespaces or units. If you
are using C#, you can use the Use the Import Namespace command to import namespaces into your code. If you are using the
Delphi language, you can use the Find Unit... command to locate and add units to your code file. For code that is written using
the .NET framework, the Assembly Browser opens if the expression is not found. The Assembly Browser allows you to browse
for a type. The Find Type window allows regular expressions.

Live Templates

Live Templates allow you to have a dictionary of pre-written code that can be inserted into your programs while you're working
with the Code Editor. This reduces the amount of typing that you must do.

Use the links at the end of this topic to learn more about creating and using Live Templates.

Code Folding

Code folding lets you collapse sections of code to create a hierarchical view of your code and to make it easier to read and
navigate. The collapsed code is not deleted, but hidden from view. To use code folding, click the plus and minus signs next to
the code.

Refactoring

Refactoring is the process of improving your code without changing its external functionality. For example, you can turn a
selected code fragment into a method by using the extract method refactoring. The IDE moves the extracted code outside of the
current method, determines the needed parameters, generates local variables if necessary, determines the return type, and
replaces the code fragment with a call to the new method. Several other refactoring methods, such as renaming a symbol and

Code Editor RAD Studio (Common) 1.4 Getting Started

44

1

declaring a variable, are also available.

SyncEdit

The Sync Edit feature lets you simultaneously edit identical identifiers in code. As you change the first identifier, the same
change is performed automatically on the other identifiers. You can also set jump points to navigate to specific sections of your
code.

To-Do Lists

A To-Do List records tasks that need to be completed for a project. After you add a task to the To-Do List, you can edit the task,
add it to your code as a comment, indicate that it has been completed, and then remove it from the list. You can filter the list to
display only those tasks that interest you.

Keystroke Macros

You can record a series of keystrokes as a macro while editing code. After you record a macro, you can play it back to repeat the
keystrokes during the current IDE session. Recording a macro replaces the previously recorded macro.

Bookmarks

Bookmarks provide a convenient way to navigate long files. You can mark a location in your code with a bookmark and jump to
that location from anywhere in the file. You can use up to ten bookmarks, numbered 0 through 9, within a file. When you set a
bookmark, a book icon is displayed in the left gutter of the Code Editor.

Block Comments

You can comment-out a section of code by selecting the code in the Code Editor and pressing CTRL+/ (slash). Each line of the
selected code is prefixed with // and is ignored by the compiler. Pressing CTRL+/ adds or removes the slashes, based on
whether the first line of the code is prefixed with //. When using the Visual Studio or Visual Basic key mappings, use CTRL+K+C
to add and remove comment slashes.

Custom Template Libraries

RAD Studio allows you to create multiple custom template libraries to use as the basis for creating future projects. Template
libraries let you to declare how projects can look, and they enable you to add new types of projects to the Object Repository.

See Also

Customizing Code Editor (see page 141)

Using Code Insight (see page 146)

Using Class Completion (see page 145)

Using Live Templates (see page 148)

Creating LiveTemplates (see page 138)

Using Sync Edit (see page 150)

Using Code Folding (see page 137)

Using To-Do Lists (see page 166)

Recording a Keystroke Macro (see page 142)

Using Bookmarks (see page 145)

Creating Template Libraries (see page 138)

1.4 Getting Started RAD Studio (Common) Form Designer

45

1

1.4.9 Form Designer

The Form Designer or Designer, is displayed automatically when you are creating or editing a form. To access the Designer,
click the Design tab at the bottom of the main editing window.

The appearance and functionality of the Designer depends on the type of form you are creating or editing. For example, if you
are using an HTML Element, you can display the HTML Tag Editor in the Designer by selecting View Tag Editor.

Visual Components

You can add Visual components to your form, by dragging them from the Tool Palette, in the lower-right section of the IDE, onto
the form you are creating. These are the components that will be visible to the end user at runtime. The objects on the Tool
Palette change dynamically, depending on the type of application or form you are designing.

The tool palette includes controls such as buttons, labels, toolbars, and listboxes for each of the various tool categories; types of
applications if you're working at the project level, such as DLL wizards, console or logo applications; and web controls, HTML
elements, and data components when you're working on a web application.

Form Preview

A preview icon at the bottom right of the Designer (for VCL Forms) shows the positioning of your form as it will appear on the
screen at runtime. This allows you to position the forms of your application in relation to each other as you design them.

Nonvisual Components and the Component Tray

Nonvisual components are attached to the form, but they are only visible at design-time; they are not visible to end users at
runtime. You can use nonvisual components as a way to reuse groups of database and system objects or isolate the parts of
your application that handle database connectivity and business rules.

When you add an nonvisual component to a form, they are displayed in the component tray at the bottom of the Designer
surface. The component tray lets you distinguish between visual and nonvisual components.

HTML Designer

Use the HTML Designer to view and edit ASP.NET Web Forms or HTML pages. You can change the default layout in the HTML
Designer to be either 'Grid Layout' or 'Flow Layout'. Choose Tools Options and then select HTML/ASP.NET Options from the
tree on the left side. Now you will see the Default Page Layout Options that allows you to select either the Grid Layout or Flow
Layout radio button option. This Designer provides a Tag Editor for editing HTML tags alongside the visual representation of the
form or page. You can also use the Object Inspector to edit properties of the visible items on the HTML page and to display the
properties of any current HTML tag in the Tag Editor. A combo box located above the Tag Editor lets you display and edit
SCRIPT tags.

To create a new HTML file, choose File New Other Web Documents HTML Page.

Design Guidelines

If you are creating components for a form, you can register an object type and then indicate various points on or near a
component's bounds that are "alignment" points. These "alignment" points are vertical or horizontal lines that cut across the
bounds of a visual control.

When you have the alignment points in place, you can supply UI guideline information so that each component will adhere to
rules such as distance between controls, shortcuts, focus labels, tab order, maximum number of items (listboxes, menus), etc. In
this way, the Form Designer can assist the Code Developer in adhering to established UI guidelines.

If the Snap to Grid option is enabled, and Use Design Guidelines is also enabled, the design guidelines will take precedence.
This means that if a grid point is within the tolerance of the new location and a guideline is also within that distance away, then
the control will snap to the guideline instead of the grid position, even if the guideline does not fall on the grid position. The snap

Form Designer RAD Studio (Common) 1.4 Getting Started

46

1

tolerance is determined by the grid size. Even if the Snap to Grid and Show Grid options are disabled, the Designer will still use
the grid size in determining the tolerance.

This feature is currently only available in VCL and VCL.NET only (This includes C++). See the link at the end of this topic for
more information about setting up Design Guidelines.

See Also

Starting a Project (see page 47)

Tour of the IDE (see page 34)

Adding Components to a Form (see page 152)

Setting Component Properties (see page 161)

Using Design Guidelines (see page 165)

Building an ASP.NET Application

1.4.10 Starting a Project

A project is a collection of files that is used to create a target application. This collection consists of the files you include and
modify directly, such as source code files and resources, and other files that RAD Studio maintains to store project settings, such
as the .dproj project file. Projects are created at design time, and they produce the project target files (.exe, .dll, .bpl, etc.)
when you compile the project.To assist in the development process, the Object Repository offers many pre-designed
templates, forms, files, and other items that you can use to create applications.

To create a project, click New from the Welcome Page and select the type of application you want to create, or choose
File New Other. To open an existing project, click Project from the Welcome Page or choose File Open Project.

This section includes information about

• Types of projects

• Working with unmanaged code

Type of Projects

Depending on the edition of RAD Studio that you are using, you can create traditional Windows applications, ASP.NET Web
applications, ADO.NET database applications, Web Services applications, and many others. RAD Studio also supports
assemblies, custom components, multi-threading, and COM. For a list of the features and tools included in your edition, refer to
the feature matrix on either the CodeGear Delphi web page or the CodeGear C#Builder web page.

Windows Applications

You can create Windows applications using the VCL to provide processing and high-performance content display. In addition to
traditional uses for Windows applications, a Windows application can be used with constructs from the .NET framework. For
instance, a Windows application can function as a front end to an ADO.NET database.

ASP.NET Web Applications

You can create Web applications using ASP.NET Web Forms to provide Web access to databases and Web Services. Web
Forms provide the user interface for Web applications and consist of HTML, server controls, and application logic in code-behind
files. RAD Studio lets you drag and drop components and provides in-place HTML editing.

In addition to drag and drop components and visual designers, CodeGear provides an easy way to create application menus and
submenus. The .NET Menu Designers MainMenu and ContextMenu are components that work like editors to let you visually

1.4 Getting Started RAD Studio (Common) Starting a Project

47

1

design menus and quickly code their functionality.

ASP.NET Web Services Applications

You can create Web Services applications that deliver content, such as HTML pages or XML documents, over the Web. Web
Services is an Internet-based integration methodology that allows applications to connect through the Web and exchange
information using standard messaging protocols.

RAD Studio simplifies the creation of Web Services by providing methods for creating a SOAP Server application. The .asmx
and .dll files are created automatically, and you can test the Web Service within the IDE, without writing a client application for
it.

When writing a client application that uses, or consumes, a published Web Service, you can use the UDDI Browser to locate and
import WSDL that describes the Web Service into your client application.

VCL.NET Applications

You can use VCL Forms to create a .NET Windows application that uses components from the VCL.NET framework.

RAD Studio simplifies the task of building .NET-enabled applications by supporting VCL components that have been augmented
to run on the .NET Framework. This eliminates the need for you to create custom components to provide standard VCL
component capabilities. This makes the process of porting Win32 applications to .NET much simpler and more reliable.

Database Applications

Whether your application uses Web Forms or VCL Forms, RAD Studio has several tools that make it easy to connect to a
database, browse and edit a database, execute SQL queries, and display live data at design time.

dbExpress allows you to connect to Interbase, Oracle, MS SQL, Informix, DB2, Sybase, and MySQL databases. You can also
write database drivers by extending the classes in the dbExpress framework. You can use both native and managed code.

The ADO.NET framework data providers let you access MS SQL, Oracle, and ODBC and OLE DB-accessible databases. The
Borland Data Providers (BDP.NET) let you access MS SQL, Oracle, DB2, and InterBase databases. You can connect to any of
these data sources, expose their data in datasets, and use SQL commands to manipulate the data. Using BDP.NET provides the
following advantages:

• Portable code that's written once and connects to any supported database.

• Open architecture that allows you to provide support for additional database systems.

• Logical data types that map easily to .NET native types.

• Consistent data types that map across databases, where applicable.

• Unlike OLE DB, there is no need for a COM/Interop layer.

When using VCL Forms and the VCL.NET framework components, you can extend database support even further by using the
BDE.NET, dbExpress.NET, and Midas Client for .NET connection technologies.

Model-Driven Applications

Modeling is a term used to describe the process of software design. Developing a model of a software system is roughly
equivalent to an architect creating a set of blueprints for a large development project. Like a set of blueprints, a model not only
depicts the system as a whole, but also allows you to focus in on specifics such as structural and behavioral details. Abstracted
away from any particular programming language (and at some levels, even from specific technology), the model allows all
participants in the development cycle to communicate in the same language.

CodeGear's Model Driven Architecture (MDA) describes an approach to software engineering where the modeling tools are
completely integrated within the development environment itself. The MDA is designed around CodeGear’s Enterprise Core
Objects (ECO) framework. The ECO framework is a set of interface, classes, and custom attributes that provide the
communication conduit between your application and the modeling-related features of the IDE.

Starting a Project RAD Studio (Common) 1.4 Getting Started

48

1

The ECO features include:

• Automatic mapping of the model classes, with their attributes and relationships, to a relational schema.

• Automatic evolution of schema when the model changes.

• Specification of the persistence backend. You can choose to store objects in a relational database or in an XML file.

• Design-time structural validation of the model and its Object Constraint Language (OCL) expressions.

• Runtime validation of the OCL expressions.

• An event mechanism that allows you to receive notifications whenever objects are added, changed, or removed.

RAD Studio IDE leverages the ECO framework to provide an integrated surface on which to develop your application model. The
IDE and its modeling surface features include:

• Creating model-driven applications as a new kind of project.

• Creating class diagrams, and manipulating model elements (packages, and classes) directly on the surface.

• Adding, removing, and changing class attributes and methods on the class diagram.

• Two-way updating between source code and the modeling surface. Changes in source code are reflected in the graphical
depiction, and vice versa.

• Two-way navigating between model elements and source code. You can navigate from the graphical depiction of a model
element directly to its corresponding source code. Similarly, you can navigate from a modeled class in source code directly to
its graphical diagram on the modeling surface.

• Exporting and importing models using XMI 1.1.

Note: Not all modeling features are available in all editions of RAD Studio. To determine the modeling features supported in
your product edition, refer to the feature matrix on either the CodeGear Delphi web page or the CodeGear C#Builder web
page.

Assemblies

An assembly is a logical package, much like a DLL file, that consists of manifests, modules, portable executable (PE) files, and
resources (.html, .jpeg, .gif) and is used for deployment and versioning. An application can have one or more assemblies
that are referenced by one or more applications, depending on whether the assemblies reside in an application directory or in a
global assembly cache (GAC).

Additional Projects

In addition to the project types described above, RAD Studio provides templates to create class libraries, control libraries,
console applications, Visual Basic applications, reports, text files, and more. These templates are stored in the Object
Repository and you can access them by choosing File New Other.

Unmanaged Code and COM/Interop

Unmanaged code refers to applications that do not target the .NET Framework Common Language Runtime (CLR).
COM/Interop is a .NET service that allows seamless interoperation between managed and unmanaged code. The COM/Interop
service allows you to leverage existing COM servers and ActiveX controls in your .NET applications, and expose .NET
components in legacy unmanaged applications. The RAD Studio IDE includes tools to help you integrate your legacy COM
servers and ActiveX controls into managed applications. Additionally, you can add references to unmanaged DLLs to your
project, and then browse the types contained, just as you would with managed assemblies.

See Also

Creating a Project (see page 155)

Building an ASP.NET Application

Building an ASP.NET "HelloWorld" Web Services Application

Adding References to a COM Server

1.4 Getting Started RAD Studio (Common) Template Libraries

49

1

1.4.11 Template Libraries

RAD Studio allows you to create multiple custom template libraries to use as the basis for creating future projects. Template
libraries let you declare how a project can look, and enable you to add new types of projects to the New Items dialog box.

Creating a template library is a two-step process.

1. First, you create a RAD Studio project to use as the basis for the template, and an XML file with a .bdstemplatelib
extension that describes the project. This project can be any kind of project that RAD Studio supports.

2. Next, you add the project to the list of template libraries in the IDE by pointing to the .bdstemplatelib template library file
in the Template Libraries dialog box, accessed with Tools Template Libraries.

Adding a template library does not create a project. It simply adds metadata information to the development environment that
tells the IDE how you create this kind of project, and it adds an icon for it to the specified New Items dialog box page. Once
the custom template library is in the New Items dialog box, you can use it to create a new project.

You can create your own template libraries, and you can use those created by other developers. RAD Studio delivers a default
template library which cannot be removed, however you can add and remove custom template libraries.

Note: When creating a project to use with a template library, make sure the project is located in a subdirectory that contains
no other projects. All of the files that are in the project should be located within the subdirectory or child subdirectories.

You can either create a single .bdstemplatelib template library file for each template library project, or list several related
template projects in the same .bdstemplatelib template library file by assigning each project a separate unique item
number.

See Also

Creating Template Libraries (see page 138)

1.4.12 Overview of Virtual Folders

For C++ only, the Project Manager allows any file entry in the project to be arranged and displayed in an arbitrary grouping of
your choice called a virtual folder. These folders persist in the project file and make no reference to the file's actual location on
disk.

Virtual folders can only contain file system entries or other virtual folders. Virtual folders can be reordered within the project, be
renamed, and be deleted. Deleting a virtual folder does not delete the contained files--they simply resume their normal Project
Manager location prior to their inclusion in the virtual folder.

Note that changing the order of entries in a virtual folder changes the build order of the contained buildable entries. In general,
the order files appear in the project manager specifies the order in which they are built. All files that are processed by a tool are
built in batches — each type is done separately. The file type processing order is:

• Delphi (.pas)

• C/C++ (.c/.cpp)

• Assembler (.asm)

• Resource (.rc)

In other words, all Delphi files are compiled first, then C/C++ files in the order they appear in the project manager, and so on.

You can drag any file entry in the Project Manager into and out of any virtual folder in the project. You can also right-click a
virtual folder and use the context menu commands to add items to the virtual folder.

Overview of Virtual Folders RAD Studio (Common) 1.4 Getting Started

50

1

See Also

Using Virtual Folders (see page 167)

1.4.13 Help on Help

This section includes information about the:

• RAD Studio Help

• Microsoft .NET Framework SDK Help

• CodeGear Developer Support Services and Web Sites

• RAD Studio Quick Start Guide

• Typographic Conventions Used in the Help

RAD Studio Help

The RAD Studio Help includes conceptual overviews, procedural how-to's, and reference information, allowing you to navigate
from general to more specific information as needed.

Additionally, the persistent navigation panes in the Help window make it easier to locate and filter information. By default, no filter
is set, allowing you to view all of the installed Help. However, to narrow the focus when searching the Help or using the index,
use the Filter by: drop-down list on the Content, Search, and Index panes. To display the navigation panes, use the
View Navigation menu command.

Tip: When navigating to a topic by using a link from another topic, the context of the topic you are viewing might not be obvious.
To find the context of that topic within the Content

pane, click the Sync Contents button on the toolbar of the CodeGear Help viewer.

Conceptual Overviews

The conceptual overviews provide information about product architecture, components, and tools that simplify development. If
you are new to a particular area of development, such as modeling or ADO.NET, see the overview topic at the beginning of each
section in the online Help.

At the end of most of the overviews, you will find links to related, more detailed information. Icons are used to indicate that a link
leads to the .NET SDK, partner Help, or to a web site. The icons are explained later in this topic.

Procedures (How-To)

The how-to procedures provide step-by-step instructions. For development tasks that include several subtasks, there are core
procedures, which include the subtasks required to accomplish a larger task. If you are beginning a development project and
want to know what steps are involved, see the core procedure for the area you are working on. In addition to the core
procedures, there are several single-task procedures.

All the procedures are listed under Procedures in the Content pane of the Help window. Additionally, most of the conceptual
overviews provide links to the pertinent procedures.

Reference Topics

The reference topics provides detailed information on subjects such as API elements, the Delphi language, and compiler
directives.

All of the reference topics are located under Reference in the Content pane of the Help window. Additionally, most API

1.4 Getting Started RAD Studio (Common) Help on Help

51

1

references are underlined and link directly to the appropriate reference topic.

Context Sensitive F1 Help

Context sensitive Help is available throughout the IDE by selecting an item and pressing F1:

• In the Code Editor, select and highlight the entire element, such as a namespace, keyword, or method

• On a form Design tab, select the component

• In the Messages window, select a message

• Within IDE windows, such as the Project Manager or Model View, click within the window

Note: Pressing F1

on an element that is part of the VCL.NET framework displays the RAD Studio Help. Pressing F1 on an element that is part
of the .NET framework displays the Microsoft .NET Help.

Microsoft SDK Help

RAD Studio is distributed with the both the Microsoft .NET Framework SDK and the Microsoft Platform SDK, which include
extensive online Help. Where appropriate, the RAD Studio Help provides links to the SDK online Help. Alternatively, you can
access the SDK Help directly from the Content pane of this Help system.

CodeGear Developer Support Services and Web Site

CodeGear offers a variety of support options to meet the needs of its diverse developer community. To find out about support,
refer to www.borland.com/devsupport. From the web site, you can access many newsgroups where developers exchange
information, tips, and techniques. The site also includes a list of books, technical documents, and Frequently Asked Questions
(FAQ). Additionally, you can access the CodeGear Developer Network.

RAD Studio Quick Start Guide

The RAD StudioQuick Start guide provides an overview of the RAD Studio development environment to help you install and start
using the product right away. The Quick Start guide is shipped along with your product.

Typographic Conventions Used in the Help

The following typographic conventions are used throughout the RAD Studio online Help.

Typographic conventions

Convention Used to indicate

Monospace type Source code and text that you must type.

Boldface Reserved language keywords or compiler options, references to dialog boxes and
tools.

Italics RAD Studio identifiers, such as variables or type names. Italicized text is also used for
book titles and to emphasize new terms.

KEYCAPS Keyboard keys, for example, the CTRL or ENTER key.

 A link to Web resources.

 An external link to Microsoft SDK documentation.

 An external link to documentation provided by CodeGear partners.

See Also

Microsoft Help on Help

Finding Information with the Index

Code Completion RAD Studio (Common) 1.4 Getting Started

52

1

http://www.CodeGear.com/devsupport

1.4.14 Code Completion

Code Completion is a Code Insight feature available in the Code Editor. Code Completion displays a resizable “hint” window that
lists valid elements that you can select to add to your code. You can control the sorting of items in the Code Completion hint
window by right-clicking the box and choosing Sort by Name or Sort by Scope.

Different items appear in different colors in the list. For example, by default, procedures are teal, functions are dark blue, and
abstract methods are shown in red.

Automatic code completion is on by default. Options for enabling and disabling Code Completion are located on the Code
Insight page of the Tools->Options->Editor Options dialog box.

Using Code Completion

Following are ways to use Code Completion in the IDE:

• To display the properties, methods, and events available in a class, press Ctrl+Space after the name of a variable that
represents either a class instance or a pointer to a class instance.

• To invoke code completion for a pointer type, the pointer must first be dereferenced. For example, type:self.in Delphi, or
this-> in C++.

• Type an arrow for a pointer to an object.

• You can also type the name of non-pointer types followed by a period (.) to see the list of inherited and virtual properties,
methods, and events.

• For example, in Delphi type: TRect test; test. In C++, type: var test: TRect;
:
:
begin test..

• Type an assignment operator or the beginning of an assignment statement, and press Ctrl+Space to display a list of
possible values for the variable.

• Type a procedure, function, or method call and press Ctrl+Space to display a list of arguments that are valid for assignment to
the variable entered. Select a list item followed by an ellipsis (…) to open a second list of related arguments compatible with
the variable entered in the assignment statement.

• Type a record (in Delphi) or a structure (in C++) to display a list of fields.

• Type an array property (not a genuine array), and press Ctrl+Space to display an index expression.

• In C++, you can also press Ctrl+Space on a blank statement line to display symbols from additional RTL units even if they
are not used by the current unit.

Browsing to a Declaration

When the Code Completion list is displayed, you can hold down Ctrl and click any identifier in the list to browse to its
declaration.

Also, if you hover the mouse pointer over the identifier in the Code Editor, a hint window tells where the identifier is declared.
You can press Ctrl, point to the identifier in the code (it changes to blue underline, by default, and the insertion point changes
to a hand pointing), and then click to move to its declaration.

Note: Code Insight works only in the compilation unit. Code Completion supports WM_xxx, CM_xxx, and CN_xxx message
methods based on like named constants from all units in the uses clause.

Note: For C++, Code Completion features work best when you have already built your application and have created a
precompiled header. Otherwise, you need to wait for the compiler to generate the required information. It is recommended that
you check the Use pre-compiled headers

option on the Project->Options->Compiler dialog box.

1.4 Getting Started RAD Studio (Common) Code Completion

53

1

See Also

Code Editor (see page 42)

Code Completion RAD Studio (Common) 1.4 Getting Started

54

1

1.5 Refactoring Applications
Refactoring is a technique you can use to restructure and modify your code in such a way that the intended behavior of your
code stays the same. RAD Studio provides a number of refactoring features that allow you to streamline, simplify, and improve
both performance and readability of your application code.

Topics

Name Description

Add Namespace (see page 57) Refactor Import Namespace
Use this dialog box to import namespaces into the using clause of your code file
based on objects in code that are contained in that namespace, but for which no
namespace has yet been declared.

Refactoring Overview (see page 57) Refactoring is a technique you can use to restructure and modify your existing
code in such a way that the intended behavior of your code stays the same.
Refactoring allows you to streamline, simplify, and improve both performance
and readability of your application code.
Each refactoring operation acts upon one specific type of identifier. By performing
a number of successive refactorings, you build up a large transformation of the
code structure, and yet, because each refactoring is limited to a single type of
object or operation, the margin of error is small. You can always back out of a
particular... more (see page 57)

Change Parameters (see page 58) Refactor Change Params
Adds, edits, removes, and rearranges the parameters of a method.

Symbol Rename Overview (Delphi, C#, C++) (see page 59) Renames identifiers and all references to the target identifier. You can rename an
identifier if the original declaration identifier is in your project or in a project your
project depends on, in the Project Group. You can also rename an identifier if it is
an error identifier, for instance, an undeclared identifier or type.
The refactoring engine enforces a few renaming rules:

• You cannot rename an identifier to a keyword.

• You cannot rename an identifier to the same identifier
name unless its case differs.

• You cannot rename an identifier from within a dependent
project when the project where the original... more (see
page 59)

Add or Edit Parameter (see page 60) Use the Add Parameter or Edit Parameter dialog box to add a parameter to a
method signature or to edit a parameter that you have already added.

Extract Method Overview (Delphi) (see page 60) Use the Extract Method refactoring operation to change a code fragment into a
method whose name describes the purpose of the method. The Extract Method
feature analyzes any highlighted code. If that code is not extractable to a method,
the refactoring engine warns you. If the method can be refactored, the refactoring
engine creates a new method outside of the current method. The refactoring
engine then determines any parameters, generates local variables, determines
the return type, and prompts the user for a new name. The refactoring engine
inserts a method call to the new method in the location of the... more (see
page 60)

Declare Field (see page 61) Refactor Declare Field
Use this dialog box to declare a field in your code.

1.5 Refactoring Applications RAD Studio (Common)

55

1

Extract Resource String (Delphi) (see page 62) Extracting resource strings helps centralize string definitions which can then be
more easily translated, if necessary. You can extract string values to resource
strings that are defined in the resourcestring section of your code file. If there is
no resourcestring section in your code, the refactoring engine creates one
following either the implementation keyword or the uses list.
You cannot create a resource string from the following elements:

• Constants. For example, const A = 'abcdefg';
cannot be extracted to a resource string.

• Constants in Parameters. For example, in MyProc(A,
B:Integer; C: string='test'); the string cannot
be extracted to a resource... more (see page 62)

Declare Variable and Declare Field Overview (Delphi) (see page 62) You can use the Refactoring feature to create variables and fields. This feature
allows you to create and declare variables and fields while coding without
planning ahead. This topic includes information about:

• Declare Variable

• Initial Type Suggestion

• Declare Field

Declare Variable (see page 64) Refactor Declare Variable
Use this dialog box to declare a local variable in a procedure. If the cursor in the
Code Editor is not positioned on an undeclared variable, the
Refactor Declare Variable command in unavailable.

Extract Method (see page 64) Refactor Extract Method
Turns a selected code fragment into a method. RAD Studio moves the extracted
code outside of the current method, determines the needed parameters,
generates local variables if necessary, determines the return type, and replaces
the code fragment with a call to the new method.

Find References Overview (Delphi, C#, C++) (see page 65) Sometimes, you may not want to change code, but want to find references to a
particular identifier. The refactoring engine provides Find References, Find
Local References, and Find Declaration Symbol commands.
Both Find References and Find Local References commands provide you with
a hierarchical list in a separate Find References window, showing you all
occurrences of a selected reference. If you choose the Find References
command, you are presented with a treeview of all references to your selection in
the entire project. If you want to see local references only, meaning those in the
active code file, you... more (see page 65)

Change Parameters Overview (Delphi) (see page 66) Adding or removing a parameter from a function is a commonly performed and
tedious programming task. RAD Studio provides the Change Parameters
refactoring to automate this task. You can use Change Parameters to add,
remove, and rearrange function parameters.
To use this refactoring, select a function name in the Code Editor and choose
Refactor Change Params.
When you use the Change Parameters refactoring, the following function
signature conflicts can occur:

• A descendant class contains an override for the function
you are refactoring. When you refactor the function, any
functions that override the refactored function will also be
refactored.

• A... more (see page 66)

Extract Resource String (see page 66) Refactor Extract Resource String
Use this dialog box to convert the string currently selected in the Code Editor to
a resource string. The resourcestring keyword and the resource string will be
added to the implementation section of your code, and the original string will be
replaced with the new resource string name.

Find Unit (see page 66) Refactor Find Unit
Use this dialog to locate units and add them to the uses clause of your Delphi
code file.

Sync Edit Mode (Delphi, C#, C++) (see page 67) Sync Edit mode allows you to change all occurrences of an identifier when you
change one instance of that identifier. When you enter Sync Edit mode, you can
tab to each highlighted identifier in your current Code Editor window. If you
change an identifier that appears elsewhere in the file, all occurrences transform
to whatever you type, character by character.

RAD Studio (Common) 1.5 Refactoring Applications

56

1

Refactorings (see page 67) View Refactorings
Performs the listed refactorings.

Undoing a Refactoring (Delphi, C#) (see page 67) The refactoring engine takes advantage of a versioning mechanism, known as
local striping, to allow you to undo renames in source code files. The IDE records
the current timestamp of each file included in the current refactoring changeset.
The timestamp corresponds to a specific local revision of the file. When you
select the undo command, the IDE copies the local backup file that matches that
timestamp back over the refactored file.
The important point to understand is that any changes that you make to the files
after the refactoring will also be rolled back when you perform an Undo.... more
(see page 67)

Rename Symbol (C++) (see page 68) Refactor Rename
Use this dialog box to specify a new name for the selected symbol before
refactoring your code.

Rename <symbol name> (C#) (see page 68) Refactor Rename <symbol name>
Use this dialog box to perform rename refactoring on a symbol, such as a
variable, type, field, method, or parameter, currently selected in the Code Editor.
The first field in the dialog varies based on the type of symbol you are renaming.

Rename <symbol name> (Delphi) (see page 69) Refactor Rename <symbol name>
Use this dialog box to perform rename refactoring on a symbol, such as a
variable, type, field, method, or parameter, currently selected in the Code Editor.
The first field in the dialog varies based on the type of symbol you are renaming.

1.5.1 Add Namespace

Refactor Import Namespace

Use this dialog box to import namespaces into the using clause of your code file based on objects in code that are contained in
that namespace, but for which no namespace has yet been declared.

Item Description

Search Prefilled with the selected object. You can enter another object name to display a completely new list
of namespaces. If you clear the textbox, the Matching Results field displays all available
namespaces.

Matching Results Displays a list of appropriate namespaces for the specified object. One namespace is highlighted as
the most likely namespace containing the object. You can, however, select other namespaces, or
multi-select namespaces in the list.

1.5.2 Refactoring Overview

Refactoring is a technique you can use to restructure and modify your existing code in such a way that the intended behavior of
your code stays the same. Refactoring allows you to streamline, simplify, and improve both performance and readability of your
application code.

Each refactoring operation acts upon one specific type of identifier. By performing a number of successive refactorings, you build
up a large transformation of the code structure, and yet, because each refactoring is limited to a single type of object or
operation, the margin of error is small. You can always back out of a particular refactoring, if you find that it gives you an
unexpected result. Each refactoring operation has its own set of constraints. For example, you cannot rename symbols that are
imported by the compiler. These are described in each of the specific refactoring topics.

RAD Studio includes a refactoring engine that evaluates and executes the refactoring operation. The engine also displays a
preview of what changes will occur in a refactoring pane that appears at the bottom of the Code Editor. The potential refactoring
operations are displayed as tree nodes, which can be expanded to show additional items that might be affected by the

1.5 Refactoring Applications RAD Studio (Common) Refactoring Overview

57

1

refactoring, if they exist. Warnings and errors also appear in this pane. You can access the refactoring tools from the Main menu
and from context-sensitive drop down menus.

RAD Studio provides the following refactoring operations:

• Symbol Rename (Delphi, C#, C++)

• Extract Method (Delphi)

• Declare Variable and Field (Delphi)

• Sync Edit Mode (Delphi, C#)

• Find References (Delphi, C#, C++)

• Extract Resourcestring (Delphi)

• Find Unit (Delphi)

• Use Namespace (C#)

• Undo (Delphi, C#)

• Change Parameters (Delphi)

See Also

Symbol Rename Overview (see page 59)

Refactoring Code (see page 143)

Previewing and Applying Refactoring Operations (see page 111)

Sync Edit Mode (see page 67)

Extract Method Overview (see page 60)

Find References Overview (see page 65)

Declare Variable and Declare Field Overview (see page 62)

Extract Resource String Overview (see page 62)

Finding References (see page 141)

Undo Rename (see page 67)

Finding Namespaces and Finding Units (see page 142)

1.5.3 Change Parameters

Refactor Change Params

Adds, edits, removes, and rearranges the parameters of a method.

Item Description

Class Displays the class in which the selected method is defined.

Method Displays the method that you are refactoring.

Parameters Lists information about the parameters declared in the method.

Add Displays the Add Parameter dialog box, which you use to add a parameter to the method signature.

Edit Displays the Edit Parameter dialog box, which you use to edit a parameter that you have created.

Change Parameters RAD Studio (Common) 1.5 Refactoring Applications

58

1

Remove Removes the selected parameter.

Move Up Moves the selected parameter up in the parameter declaration list.

Move Down Moves the selected parameter down in the parameter declaration list.

Note: If you remove a parameter, you need to manually remove any method code that uses the removed parameter.

See Also

Change Parameters Overview (see page 66)

Parameter Types (see page 672)

Fundamental Syntactic Elements (see page 701)

1.5.4 Symbol Rename Overview (Delphi, C#, C++)

Renames identifiers and all references to the target identifier. You can rename an identifier if the original declaration identifier is
in your project or in a project your project depends on, in the Project Group. You can also rename an identifier if it is an error
identifier, for instance, an undeclared identifier or type.

The refactoring engine enforces a few renaming rules:

• You cannot rename an identifier to a keyword.

• You cannot rename an identifier to the same identifier name unless its case differs.

• You cannot rename an identifier from within a dependent project when the project where the original declaration identifier
resides is not open.

• You cannot rename symbols imported by the compiler.

• You cannot rename an overridden method when the base method is declared in a class that is not in your project.

• If an error results from a refactoring, the engine cannot apply the change. For example, you cannot rename an identifier to a
name that already exists in the same declaration scope. If you still want to rename your identifier, you need to rename the
identifier that already has the target name first, then refresh the refactoring. You can also redo the refactoring and select a
new name. The refactoring engine traverses parent scopes, searching for an identifier with the same name. If the engine finds
an identifier with the same name, it issues a warning.

Rename Method

Renaming a method, type, and other objects is functionally the same as renaming an identifier. If you select a procedure name in
the Code Editor, you can rename it. If the procedure is overloaded, the refactoring engine renames only the overloaded
procedure and only calls to the overloaded procedure. An example of this rule follows:

procedure Foo; overload;
procedure Foo(A:Integer); overload;
Foo();
Foo;
Foo(5);

If you rename the first procedure Foo in the preceding code block, the engine renames the first, third, and fourth items.

If you rename an overridden identifier, the engine renames all of the base declarations and descendent declarations, which
means the original virtual identifier and all overridden symbols that exist. An example of this rule follows:

TFoo = class
 procedure Foo; virtual;
end;

1.5 Refactoring Applications RAD Studio (Common) Symbol Rename Overview (Delphi, C#,

59

1

TFoo2 = class(TFoo)
 procedure Foo; override;
end;

TFoo3 = class(TFoo)
 procedure Foo; override;
end;

TFoo4 = class(TFoo3)
 procedure Foo; override;
end;

Performing a rename operation on Foo renames all instances of Foo shown in the preceding code sample.

See Also

Refactoring Overview (see page 57)

Extract Method Overview (see page 60)

Renaming a Symbol (see page 112)

1.5.5 Add or Edit Parameter

Use the Add Parameter or Edit Parameter dialog box to add a parameter to a method signature or to edit a parameter that you
have already added.

Item Description

Parameter Name Specifies the name of the new parameter. You must enter a legal Delphi identifier.

Data type Specifies the type of the new parameter.

Matching Results Lists data types that match the text you enter in the Data type field.

Literal Value Specifies the value for the new parameter. Refactoring uses this literal as the value of the new
parameter in existing calls to this procedure.

Parameter Type Specifies the parameter type.

Value Passes the parameter by value.

Var Passes the parameter by reference.

Out Passes the parameter by reference and discards the initial value.

Const Passes the parameter by value and disallows assignment to the parameter.

See Also

Change Parameters Overview (see page 66)

Parameter Types (see page 672)

Fundamental Syntactic Elements (see page 701)

1.5.6 Extract Method Overview (Delphi)

Use the Extract Method refactoring operation to change a code fragment into a method whose name describes the purpose of

Extract Method Overview (Delphi) RAD Studio (Common) 1.5 Refactoring Applications

60

1

the method. The Extract Method feature analyzes any highlighted code. If that code is not extractable to a method, the
refactoring engine warns you. If the method can be refactored, the refactoring engine creates a new method outside of the
current method. The refactoring engine then determines any parameters, generates local variables, determines the return type,
and prompts the user for a new name. The refactoring engine inserts a method call to the new method in the location of the old
method.

There are certain limitations to the extract method refactoring. They include:

• Cannot extract expressions, only statements.

• Cannot extract statements that include a call to inherited in Delphi.

• Cannot extract statements that are contained within a with statement.

• Cannot extract statements that call a local procedure or function.

If you select an expression and choose the Extract Method command, your selection will be expanded to include the entire
statement. If the expression in your statement is used as a result, the extracted code returns a function result in place of the
expression.

See Also

Refactoring Overview (see page 57)

Refactoring Code (see page 143)

Renaming a Symbol (see page 112)

1.5.7 Declare Field

Refactor Declare Field

Use this dialog box to declare a field in your code.

Item Description

Current Class Displays the class from which the field will be derived.

Field Name Displays the name of the field to be declared. By default the name you typed in the Code Editor is
displayed.

If you enter an invalid name in this field, such a reserved word, an exclamation icon is displayed in
the dialog box, prompting you to correct it.

Type Specifies the data type of the field.

Array Specifies that the field should be declared a an array.

Dimensions Specifies the dimensions for the array.

Visibility Specifies the accessibility of the field.

If the value in Field Name conflicts with an existing field name in the same scope, the Refactorings
dialog box is displayed, indicating the conflict.

See Also

Refactoring Overview (see page 57)

1.5 Refactoring Applications RAD Studio (Common) Extract Resource String (Delphi)

61

1

1.5.8 Extract Resource String (Delphi)

Extracting resource strings helps centralize string definitions which can then be more easily translated, if necessary. You can
extract string values to resource strings that are defined in the resourcestring section of your code file. If there is no
resourcestring section in your code, the refactoring engine creates one following either the implementation keyword or the
uses list.

You cannot create a resource string from the following elements:

• Constants. For example, const A = 'abcdefg'; cannot be extracted to a resource string.

• Constants in Parameters. For example, in MyProc(A, B:Integer; C: string='test'); the string cannot be
extracted to a resource string.

• Resource Strings. For example, resourcestring A = 'test'; is already a resource string.

See Also

Refactoring Overview (see page 57)

Refactoring Code (see page 143)

1.5.9 Declare Variable and Declare Field Overview (Delphi)

You can use the Refactoring feature to create variables and fields. This feature allows you to create and declare variables and
fields while coding without planning ahead. This topic includes information about:

• Declare Variable

• Initial Type Suggestion

• Declare Field

Declare Variable

You can create a variable when you have an undeclared identifier that exists within a procedure block scope. This feature gives
you the capability to select an undeclared identifier and create a new variable declaration with a simple menu selection or
keyboard shortcut. When you invoke the Declare Variable dialog, the dialog contains a suggested name for the variable, based
on the selection itself. If you choose to name the variable something else, the operation succeeds in creating the variable,
however, the undeclared identifier symbol (Error Insight underlining) remains.

Variable names must conform to the language rules for an identifier. In Delphi, the variable name:

• Cannot be a keyword.

• Cannot contain a space.

• Cannot be the same as a reserved word, such as if or begin.

• Must begin with a Unicode alphabetic character or an underscore, but can contain Unicode alphanumeric characters or
underscores in the body of the variable name.

• In the Delphi language, the type name can also be the keyword string.

Note: The .NET SDK recommends against using leading underscores in identifiers, as this pattern is reserved for system
use.

Declare Variable and Declare Field RAD Studio (Common) 1.5 Refactoring Applications

62

1

Note: On the dialog that appears when you choose to declare a variable, you can set or decline to set an initial value for the
variable.

Initial Type Suggestion

The refactoring engine attempts to suggest a type for the variable that it is to create. The engine evaluates binary operations of
the selected statement and uses the type of the sum of the child operands as the type for the new variable. For example,
consider the following statement:

myVar := x + 1;

The refactoring engine automatically assumes the new variable myVar should be set to type Integer, provided x is an Integer.

Often, the refactoring engine can infer the type by evaluating a statement. For instance, the statement If foo Then...
implies that foo is a Boolean. In the example If (foo = 5) Then... the expression result is a Boolean. Nonetheless, the
expression is a comparison of an ordinal (5) and an unknown type (foo). The binary operation indicates that foo must be an
ordinal.

Declare Field

You can declare a field when you have an undeclared identifier that exists within a class scope. Like the Declare Variable
feature, you can refactor a field you create in code and the refactoring engine will create the field declaration for you in the
correct location. To perform this operation successfully, the field must exist within the scope of its parent class. This can be
accomplished either by coding the field within the class itself, or by prefixing the field name with the object name, which provides
the context for the field.

The rules for declaring a field are the same as those for declaring a variable:

• Cannot be a keyword.

• Cannot contain a space.

• Cannot be the same as a reserved word, such as if or begin.

• Must begin with a Unicode alphabetic character or an underscore, but can contain Unicode alphanumeric characters or
underscores in the body of the field name.

• In the Delphi language, the type name can also be the keyword string.

Note: Leading underscores on identifiers are reserved in .NET for system use.

You can select a visibility for the field. When you select a visibility that is not private or strict private, the refactoring engine
performs the following operations:

• Searches to find all child classes.

• Searches each child class to find the field name.

• Displays a red error item if the field name conflicts with a field in a descendant class.

• You cannot apply the refactoring if it conflicts with an existing item name.

Sample Refactorings

The following examples show what will happen when declaring variables and fields using the refactoring feature.

Consider the following code:

TFoo = class
private
 procedure Foo1;
end;
...

implementation

procedure TFoo.Foo1;
begin
 FTestString := 'test'; // refactor TestString, assign field

1.5 Refactoring Applications RAD Studio (Common) Declare Variable and Declare Field

63

1

end;

Assume you apply a Declare Field refactoring. This would be the result:

TFoo = class
private
 FTestString: string;
 procedure Foo1;
end;

If you apply a Declare Variable refactoring instead, the result is:

procedure TFoo.Foo1;
var // added by refactor
 TestString: string; // added by refactor
begin
 TestString := 'test'; // added by refactor
 TestString := 'whatever';
end;

See Also

Refactoring Overview (see page 57)

Symbol Rename Overview (see page 59)

Refactoring Code (see page 143)

1.5.10 Declare Variable

Refactor Declare Variable

Use this dialog box to declare a local variable in a procedure. If the cursor in the Code Editor is not positioned on an undeclared
variable, the Refactor Declare Variable command in unavailable.

Item Description

Name Displays the name of the currently selected variable.

Type Specifies the type of variable. By default the name you typed in the Code Editor is displayed.

If you enter an invalid name in this field, such a reserved word, an exclamation icon is displayed in
the dialog box, prompting you to correct it.

Array Specifies that the variable should be declared as an array.

Dimensions Specifies the dimensions of the array.

Set Value Initializes the variable with specified value.

See Also

Refactoring Overview (see page 57)

1.5.11 Extract Method

Refactor Extract Method

Turns a selected code fragment into a method. RAD Studio moves the extracted code outside of the current method, determines
the needed parameters, generates local variables if necessary, determines the return type, and replaces the code fragment with

Extract Method RAD Studio (Common) 1.5 Refactoring Applications

64

1

a call to the new method.

Item Description

Current Method Displays the name of the method in which the code fragment currently resides.

New method name Specifies the name to be used for the newly extracted method. ExtractedMethod is displayed by
default, but you can overtype it.

Sample extracted code Displays the code that will be generated for the newly extracted method.

See Also

Refactoring Overview (see page 57)

1.5.12 Find References Overview (Delphi, C#, C++)

Sometimes, you may not want to change code, but want to find references to a particular identifier. The refactoring engine
provides Find References, Find Local References, and Find Declaration Symbol commands.

Both Find References and Find Local References commands provide you with a hierarchical list in a separate Find
References window, showing you all occurrences of a selected reference. If you choose the Find References command, you
are presented with a treeview of all references to your selection in the entire project. If you want to see local references only,
meaning those in the active code file, you can select the Find Local References command from the Search menu. If you want
to find the original declaration within the active Delphi code file, you can use the Find Declaration Symbol command. The Find
Declaration Symbol command is only valid in Delphi and does not apply to C#.

Sample Refactoring

The following sample illustrates how the Find References refactoring will proceed:

1 TFoo = class
2 loc_a: Integer; // Find references on loc_a finds only
3 procedure Foo1; // this line (Line 2) and the usage
4 end; // in TFoo.Foo1 (Line 15)

5 var
6 loc_a: string; // Find references on loc_a here
 // finds only this line (Line 6) and
 // the usage in procedure Foo (Line11)
7 implementation

8 {$R *.nfm}

9 procedure Foo;
10 begin
11 loc_a := 'test';
12 end;

13 procedure TFoo.Foo1;
14 begin
15 loc_a:=1;
16 end;

See Also

Refactoring Overview (see page 57)

Refactoring Code (see page 143)

1.5 Refactoring Applications RAD Studio (Common) Change Parameters Overview (Delphi)

65

1

1.5.13 Change Parameters Overview (Delphi)

Adding or removing a parameter from a function is a commonly performed and tedious programming task. RAD Studio provides
the Change Parameters refactoring to automate this task. You can use Change Parameters to add, remove, and rearrange
function parameters.

To use this refactoring, select a function name in the Code Editor and choose Refactor Change Params.

When you use the Change Parameters refactoring, the following function signature conflicts can occur:

• A descendant class contains an override for the function you are refactoring. When you refactor the function, any functions
that override the refactored function will also be refactored.

• A descendent class contains an overloaded version of the function that has the same signature as the refactored version.
When you refactor the function, the overload is changed to an override.

• A descendent class has an overridden method that matches the original signature. When you refactor the function, the
override is changed to an overload.

Note: If you remove a parameter, you need to manually remove any method code that uses the removed parameter.

See Also

Refactoring Overview (see page 57)

1.5.14 Extract Resource String

Refactor Extract Resource String

Use this dialog box to convert the string currently selected in the Code Editor to a resource string. The resourcestring
keyword and the resource string will be added to the implementation section of your code, and the original string will be replaced
with the new resource string name.

Item Description

String Displays the name of string to be extracted as a resource string.

Name Displays a suggested string name. You can change it as needed.

See Also

Refactoring Overview (see page 57)

Isolating Resources

1.5.15 Find Unit

Refactor Find Unit

Use this dialog to locate units and add them to the uses clause of your Delphi code file.

Find Unit RAD Studio (Common) 1.5 Refactoring Applications

66

1

Item Description

Search Displays the selected search identifier. You can change the identifier in this text box. The search
automatically restricts the results based on what you type.

Matching Results Displays all of the potentially appropriate units. Select or multiselect units in the list to add the unit
references to your uses clause.

Add to the Interface Select this to add the unit reference to the interface section.

Add to the
Implementation

Select this to add the unit reference to the implementation section.

1.5.16 Sync Edit Mode (Delphi, C#, C++)

Sync Edit mode allows you to change all occurrences of an identifier when you change one instance of that identifier. When you
enter Sync Edit mode, you can tab to each highlighted identifier in your current Code Editor window. If you change an identifier
that appears elsewhere in the file, all occurrences transform to whatever you type, character by character.

See Also

Refactoring Overview (see page 57)

Using Sync Edit (see page 150)

Refactoring Code (see page 143)

1.5.17 Refactorings

View Refactorings

Performs the listed refactorings.

Item Description

Refactor Performs the refactoring operation on the entries.

Undo Refactoring Undoes any refactorings that were performed immediately prior to selecting this command.

Remove Refactoring Removes selected references from the list.

Remove Refactorings Removes all refactorings from the list.

See Also

Refactoring Overview (see page 57)

1.5.18 Undoing a Refactoring (Delphi, C#)

The refactoring engine takes advantage of a versioning mechanism, known as local striping, to allow you to undo renames in
source code files. The IDE records the current timestamp of each file included in the current refactoring changeset. The
timestamp corresponds to a specific local revision of the file. When you select the undo command, the IDE copies the local

1.5 Refactoring Applications RAD Studio (Common) Undoing a Refactoring (Delphi, C#)

67

1

backup file that matches that timestamp back over the refactored file.

The important point to understand is that any changes that you make to the files after the refactoring will also be rolled back
when you perform an Undo. Before the Undo is applied, you will get a warning message confirming that you want to apply the
Undo. Applying the Undo reverts changes back to before the refactoring was originally applied in all modified files. You will lose
any changes made in those files since the refactoring was originally applied.

Undo performs local striping only for Rename because Rename is the only refactoring operation that affects multiple files.

If you want to undo Extract Method, Declare Field, or Declare Variable refactorings, use Ctrl-z (regular Undo) in the Code
Editor, or the Undo button in the Refactoring window, which accomplishes the same thing.

See Also

Refactoring Overview (see page 57)

Refactoring Code (see page 143)

1.5.19 Rename Symbol (C++)

Refactor Rename

Use this dialog box to specify a new name for the selected symbol before refactoring your code.

Item Description

Old name Displays the current symbol name.

New name Specifies the new name for the symbol.

View references before
refactoring

Displays the Refactorings dialog box, enabling you to preview the proposed changes and selectively
rename the symbol.

If this option is unchecked, the rename refactoring is performed immediately.

1.5.20 Rename <symbol name> (C#)

Refactor Rename <symbol name>

Use this dialog box to perform rename refactoring on a symbol, such as a variable, type, field, method, or parameter, currently
selected in the Code Editor. The first field in the dialog varies based on the type of symbol you are renaming.

Item Description

Namespace Displayed when renaming a type. Indicates the namespace in which the type is defined.

Procedure Displayed when renaming a variable. Indicates the procedure in which the variable is selected.

Class Displayed when renaming a field, method, or parameter. Indicates the class in which the field,
method, or parameter is defined.

Old name The current name of the selected symbol.

New name Enter the new name for the selected symbol.

View references before
refactoring

Displays the Refactorings dialog, enabling you to preview the proposed changes and selectively
rename the symbol.

If this option is unchecked, the rename refactoring is performed immediately.

Rename <symbol name> (C#) RAD Studio (Common) 1.5 Refactoring Applications

68

1

Tip: The Refactor->Rename <symbol name>

command is also available from the Code Editor context menu.

See Also

Refactoring Overview (see page 57)

1.5.21 Rename <symbol name> (Delphi)

Refactor Rename <symbol name>

Use this dialog box to perform rename refactoring on a symbol, such as a variable, type, field, method, or parameter, currently
selected in the Code Editor. The first field in the dialog varies based on the type of symbol you are renaming.

Item Description

Unit Displayed when renaming a type. Indicates the unit in which the type is defined.

Procedure Displayed when renaming a variable. Indicates the procedure in which the variable is selected.

Class Displayed when renaming a field, method, or parameter. Indicates the class in which the field,
method, or parameter is defined.

Old name The current name of the selected symbol.

New name Enter the new name for the selected symbol.

View references before
refactoring

Displays the Refactorings dialog box, enabling you to preview the proposed changes and selectively
rename the symbol.

If this option is unchecked, the rename refactoring is performed immediately.

Tip: The Refactor->Rename <symbol name>

command is also available from the Code Editor context menu.

See Also

Refactoring Overview (see page 57)

1.5 Refactoring Applications RAD Studio (Common) Rename <symbol name> (Delphi)

69

1

1.6 Testing Applications
Unit testing is an integral part of developing reliable applications. The following topics discuss unit testing features included in
RAD Studio.

Topics

Name Description

Unit Testing Overview (see page 70) RAD Studio integrates two open-source testing frameworks, DUnit and NUnit, for
developing and running automated test cases for your applications. The DUnit
framework is available for Delphi and C++. The NUnit framework is available for
Delphi for .NET and C# only. These frameworks simplify the process of
developing tests for classes and methods in your application. Using unit testing in
combination with refactoring can improve your application stability. Testing a
standard set of tests every time a small change is made throughout the code
makes it more likely that you will catch any problems early in the development
cycle.... more (see page 70)

DUnit Overview (see page 72) DUnit is an open-source unit test framework based on the JUnit test framework.
The DUnit framework enables you to build and execute tests against Delphi
Win32 applications. The RAD Studio integration of DUnit framework enables you
to develop and execute tests against Delphi Win32, Delphi .NET, and C++Builder
applications.
Each testing framework provides its own set of methods for testing conditions.
The methods represent common assertions. You can also create your own
custom assertions. You can use the provided methods to test a large number of
conditions.

NUnit Overview (see page 76) NUnit is an open-source unit test framework based on the JUnit test framework.
The NUnit framework allows you to develop and execute tests against .NET
Framework applications. The RAD Studio integration of NUnit allows you to
develop and execute tests for both Delphi for .NET and C# applications. The
NUnit framework is not supported in C++Builder or Delphi for Win32.
This topic includes information about:

• Developing NUnit Tests.

• NUnit Asserts.

• NUnit Test Runners.

1.6.1 Unit Testing Overview

RAD Studio integrates two open-source testing frameworks, DUnit and NUnit, for developing and running automated test cases
for your applications. The DUnit framework is available for Delphi and C++. The NUnit framework is available for Delphi for .NET
and C# only. These frameworks simplify the process of developing tests for classes and methods in your application. Using unit
testing in combination with refactoring can improve your application stability. Testing a standard set of tests every time a small
change is made throughout the code makes it more likely that you will catch any problems early in the development cycle.

Both testing frameworks are based on the JUnit test framework and share much of the same functionality.

This topic includes the following information:

• What Is Installed

• Test Projects

• Test Cases

• Test Fixtures

Unit Testing Overview RAD Studio (Common) 1.6 Testing Applications

70

1

What Is Installed

By default, both frameworks are installed during the complete RAD Studio installation. When installing individual personalities,
the test framework(s) supported by those personalities will be installed.

DUnit

For Delphi and C++Builder, the DUnit framework is installed automatically by the RAD Studio installer. You can find many DUnit
resources in the \source\DUnit directory, under your installation root directory. These resources include source files,
documentation, and test examples. For C++Builder, the following C++ header and library files are also provided for use as C++
test projects:

• GUITestRunner.hpp

• XMLTestRunner.hpp

• TextTestRunner.hpp

• TestFramework.hpp

• DUnitMainForm.hpp

• DUnitAbout.hppdir

• dunitrtl.lib

Note: These files are not part of the standard DUnit distribution. These files are prebuilt by CodeGear and included with
C++Builder for your convenience.

In general when using DUnit, include at least one test case and one or more test fixtures. Test cases typically include one or
more assertion statements to verify the functionality of the class being tested.

DUnit is licensed under the Mozilla Public License 1.0 (MPL).

NUnit

The NUnit framework is available for the Delphi for .NET and C# personalities only.

During the installation process, you are prompted to install NUnit, which you can accept or decline. You can change the location
for installing NUnit, or you can accept the default; the default is C:\Program Files\NUnit V2.x, where x is a point release
number. The installation directory includes a number of resources including documentation and example tests.

NUnit is the name of the .NET testing framework and can be used with both Delphi for .NET and C# projects. There are some
subtle but important differences between the way NUnit and DUnit work. For example, NUnit does not link in .dcu files, but DUnit
does.

In general when using NUnit, include at least one test case and one or more test fixtures. Test cases typically include one or
more assertion statements to verify the functionality of the class being tested.

Test Projects

A test project encapsulates one or more test cases and is represented by a node in the IDE Project Manager. RAD Studio
provides the Test Project Wizard, which you can use to create a basic test project. Once you have a test project that is
associated with a code project, you can create test cases and add them to the test project.

Test Cases

In a typical unit test project, each class to be tested has a corresponding test class; however, this is not required. The test class
is also referred to as a test case. Depending on which framework you are using, the test class may be derived from a specific
test case base class. In general, a test case has a set of one or more methods that correspond to one of the methods in the
class to be tested. More than one test case can be included in a test project. This ability to group and combine tests into test
cases—and test cases into test projects—is what sets a test case apart from simpler forms of testing (such as using print
statements or evaluating debugger expressions). Each test case and test project can be reused and rerun, and can be
automated through the use of batch files, build scripts, or other types of testing systems.

1.6 Testing Applications RAD Studio (Common) Unit Testing Overview

71

1

Generally, it is recommended that you create your tests in a project separate from the source file project. That way, you do not
have to go through the process of removing your tests from your production application. RAD Studio provides the Test Case
Wizard to help you create basic test cases, which you can then customize as needed.

Test Fixtures

The term test fixture refers to the combination of multiple test cases, which test logically related functionality. You can define test
fixtures in your test case. Typically, you will instantiate your objects, initialize variables, set up database connection, and perform
maintenance tasks in the SetUp and TearDown sections. As long as your tests all act upon the same objects, you can include a
number of tests in any given test fixture.

See Also

DUnit Overview (see page 72)

NUnit Overview (see page 76)

Developing Tests (see page 180)

Mozilla Public License 1.0

zlib/libpng License

1.6.2 DUnit Overview

DUnit is an open-source unit test framework based on the JUnit test framework. The DUnit framework enables you to build and
execute tests against Delphi Win32 applications. The RAD Studio integration of DUnit framework enables you to develop and
execute tests against Delphi Win32, Delphi .NET, and C++Builder applications.

Each testing framework provides its own set of methods for testing conditions. The methods represent common assertions. You
can also create your own custom assertions. You can use the provided methods to test a large number of conditions.

Developing Delphi DUnit Tests

Every DUnit test implements a class of type TTestCase.

The following sample Delphi Win32 program defines two functions that perform simple addition and subtraction:

unit CalcUnit;

interface

type

{ TCalc }

 TCalc = class
 public
 function Add(x, y: Integer): Integer;
 function Sub(x, y: Integer): Integer;
 end;

implementation

{ TCalc }

function TCalc.Add(x, y: Integer): Integer;
begin
 Result := x + y;
end;

DUnit Overview RAD Studio (Common) 1.6 Testing Applications

72

1

http://www.mozilla.org/MPL/MPL-1.0.html
http://www.opensource.org/licenses/zlib-license.php

function TCalc.Sub(X, Y: Integer): Integer;
begin
 Result := x + y;
end;

end.

The following example shows the test case skeleton file that you need to modify to test the two functions, Add and Sub, in the
preceding code.

unit TestCalcUnit;

interface

uses
 TestFramework, CalcUnit;
type
 // Test methods for class TCalc
 TestTCalc = class(TTestCase)
 strict private
 aTCalc: TCalc;
 public
 procedure SetUp; override;
 procedure TearDown; override;
 published
 procedure TestAdd;
 procedure TestSub;
 end;

implementation

procedure TestTCalc.SetUp;
begin
 aTCalc := TCalc.Create;
end;

procedure TestTCalc.TearDown;
begin
 aTCalc := nil;
end;

procedure TestTCalc.TestAdd;
var
 _result: System.Integer;
 y: System.Integer;
 x: System.Integer;
begin
 _result := aTCalc.Add(x, y);
 // TODO: Add testcode here
end;

procedure TestTCalc.TestSub;
var
 _result: System.Integer;
 y: System.Integer;
 x: System.Integer;
begin
 _result := aTCalc.Sub(x, y);
 // TODO: Add testcode here
end;

initialization
 // Register any test cases with the test runner
 RegisterTest(TestTCalc.Suite);
end.

1.6 Testing Applications RAD Studio (Common) DUnit Overview

73

1

Developing C++ DUnit Tests

Every DUnit test implements a class of type TTestCase.

The following sample C++ Win32 header file and program define two functions that perform simple addition and subtraction:

#ifndef Unit7H
#define Unit7H
//---

class TCalc
{
public:
 int Add(int x, int y);
 int Sub(int x, int y);
};

#endif

The following example (TestUnit7.cpp) contains a Testcase for the TCalc class. The Wizard generated this example, but the user
is expected to write tests that exercise the functions Add and Sub. The example illustrates the DUnit scaffolding for Unit Tests.

#include <vcl.h>
#pragma hdrstop

#include <TestFramework.hpp>

class TTestTCalc : public TTestCase
{
public:
 __fastcall virtual TTestTCalc(AnsiString name) : TTestCase(name) {}
 virtual void __fastcall SetUp();
 virtual void __fastcall TearDown();

__published:
 void __fastcall TestAdd();
 void __fastcall TestSub();
};

void __fastcall TTestTCalc::SetUp()
{
}

void __fastcall TTestTCalc::TearDown()
{
}

void __fastcall TTestTCalc::TestAdd()
{
 // int Add(int x, int y)
}

void __fastcall TTestTCalc::TestSub()
{
 // int Sub(int x, int y)
}

static void registerTests()
{
 _di_ITestSuite iSuite;
 TTestSuite* testSuite = new TTestSuite("Testing Unit7.h");

DUnit Overview RAD Studio (Common) 1.6 Testing Applications

74

1

 if (testSuite->GetInterface(iSuite)) {
 testSuite->AddTests(__classid(TTestTCalc));
 Testframework::RegisterTest(iSuite);
 } else {
 delete testSuite;
 }
}
#pragma startup registerTests 33

/* [For debug purposes only - To be removed soon!!]
GenerateHeaderComment=true
DefaultExtension=.cpp
FileName=C:\Users\bbabet\Documents\RAD Studio\Projects\DUnitSample\Test\TestUnit7.cpp
TestFramework=DUnit / C++ Win32
OutputPersonality=CPlusPlusBuilder.Personality
TestProject=C:\Users\bbabet\Documents\RAD Studio\Projects\DUnitSample\Test\Project3Tests.cbproj
UnitUnderTest=C:\Users\bbabet\Documents\RAD Studio\Projects\DUnitSample\Unit7.h
NameOfUnitUnderTest=Unit7.h
TestCaseBaseClass=TTestCase
TestCasePrefix=Test
UnitName=TestUnit7
Namespace=TestUnit7
TestClasses=
 <0>
 Name=TCalc
 Methods=
 <0>
 Name=Add
 Signature=int Add(int x, int y)
 <1>
 Name=Sub
 Signature=int Sub(int x, int y)
TestClass=
Method=
*/

DUnit Functions

DUnit provides a number of functions that you can use in your tests.

Function Description

Check Checks to see if a condition was met.

CheckEquals Checks to see that two items are equal.

CheckNotEquals Checks to see if items are not equal.

CheckNotNull Checks to see that an item is not null.

CheckNull Checks to see that an item is null.

CheckSame Checks to see that two items have the same value.

EqualsErrorMessage Checks to see that an error message emitted by the application matches a specified error message.

Fail Checks that a routine fails.

FailEquals Checks to see that a failure equals a specified failure condition.

FailNotEquals Checks to see that a failure condition does not equal a specified failure condition.

FailNotSame Checks to see that two failure conditions are not the same.

NotEqualsErrorMessage Checks to see that two error messages are not the same.

NotSameErrorMessage Checks that one error message does not match a specified error message.

For more information on the syntax and usage of these and other DUnit functions, see the DUnit help files in

1.6 Testing Applications RAD Studio (Common) DUnit Overview

75

1

\source\dunit\doc.

DUnit Test Runners

A test runner allows you to run your tests independently of your application. In a DUnit test project, the test runner code from the
DUnit framework is compiled directly into the generated executable making the test project itself a test runner. This is different
from the NUnit framework, which uses a separate test runner executable for running tests. The integrated DUnit framework
provides two test runners:

• The GUI Test Runner — This displays test results interactively in a GUI window, with results color-coded to indicate success
or failure.

• The Console Test Runner — This sends all test output to the console.

The DUnit GUI Test Runner is very useful when actively developing unit tests for the code you are testing. The DUnit GUI Test
Runner displays a green bar over a test that completes successfully, a red bar over a test that fails, and a yellow bar over a
test that is skipped.

The DUnit Console Test Runner is useful when you want to run completed code and tests from automated build scripts.

See Also

Unit Testing Overview (see page 70)

NUnit Overview (see page 76)

Developing Tests (see page 180)

1.6.3 NUnit Overview

NUnit is an open-source unit test framework based on the JUnit test framework. The NUnit framework allows you to develop and
execute tests against .NET Framework applications. The RAD Studio integration of NUnit allows you to develop and execute
tests for both Delphi for .NET and C# applications. The NUnit framework is not supported in C++Builder or Delphi for Win32.

This topic includes information about:

• Developing NUnit Tests.

• NUnit Asserts.

• NUnit Test Runners.

Developing NUnit Tests

Each testing framework provides its own set of methods for testing conditions. The methods support common assertions. You
can also create your own custom assertions. You will be able to use the provided methods to test a large number of conditions.

If you want to create tests for an application, you first create a test project. The test project contains the test case files, which
contain one or more tests. A test case is analogous to a class. Each test is analogous to a method. Typically, you might create
one test for each method in your application. You can test each method in your application classes to make sure that the method
performs the task you expect.

You can use the Test Project Wizard to generate a test project file, which builds a .NET assembly that must be run by one of
the NUnit test runners. You can then use the Test Case Wizard to generates a skeleton test method for each method in the
class being tested. This includes local variable declarations for each of the parameters to the method being called. You will need
to write the code required to set up the parameters for the call, and the code to verify the return values or other state that is
appropriate following the call.

The following example shows a small C# program that performs simple addition and subtraction:

using System;

NUnit Overview RAD Studio (Common) 1.6 Testing Applications

76

1

namespace CSharpCalcLib
{
 /// <summary>
 /// Simple Calculator Library
 /// </summary>
 public class Calc
 {
 public int Add(int x, int y)
 {
 return x + y;
 }

 public int Sub(int x, int y)
 {
 return x + y;
 }
 }
}

The following example shows the test case skeleton file that you need to modify to test the two methods, Add and Sub, in the
preceding code.

namespace TestCalc
{
 using System;
 using System.Collections;
 using System.ComponentModel;
 using System.Data;
 using NUnit.Framework;
using CSharpCalcLib;

// Test methods for class Calc
[TestFixture]
public class TestCalc
{

private Calc aCalc;

[SetUp]
public void SetUp()
{
aCalc = new Calc();
}

[TearDown]
public void TearDown()
{
aCalc = null;
}

[Test]
public void TestAdd()
{
int x;
int y;
int returnValue;
// TODO: Setup call parameters
returnValue = aCalc.Add(x, y);
// TODO: Validate return value
}

[Test]
public void TestSub()
{

1.6 Testing Applications RAD Studio (Common) NUnit Overview

77

1

int x;
int y;
int returnValue;
// TODO: Setup call parameters
returnValue = aCalc.Sub(x, y);
// TODO: Validate return value
}
}
}

Note: Each test method is automatically decorated with the [Test]

attribute in C# projects. In addition, in C# the test methods are defined as functions returning void. The following example
shows a small Delphi for .NET program that performs simple addition and subtraction:

unit CalcUnit;

// .Net Version

interface

type

{ TCalc }

 TCalc = class
 public
 function Add(x, y: Integer): Integer;
 function Sub(x, y: Integer): Integer;
 end;

implementation

{ TCalc }

function TCalc.Add(x, y: Integer): Integer;
begin
 Result := x + y;
end;

function TCalc.Sub(X, Y: Integer): Integer;
begin
 Result := x + y;
end;

end.

The following example shows the test case skeleton file that you need to modify to test the two functions, Add and Sub, in the
preceding code.

unit TestCalcUnit;

interface

uses
 NUnit.Framework, CalcUnit;

type
 // Test methods for class TCalc
 [TestFixture]
 TestTCalc = class
 strict private
 FCalc: TCalc;
 public
 [SetUp]
 procedure SetUp;
 [TearDown]

NUnit Overview RAD Studio (Common) 1.6 Testing Applications

78

1

 procedure TearDown;
 published
 [Test]
 procedure TestAdd;
 [Test]
 procedure TestSub;
 end;

implementation

procedure TestTCalc.SetUp;
begin
 FCalc := TCalc.Create;
end;

procedure TestTCalc.TearDown;
begin
 FCalc := nil;
end;

procedure TestTCalc.TestAdd;
var
 ReturnValue: Integer;
 y: Integer;
 x: Integer;
begin
 // TODO: Setup call parameters
 ReturnValue := FCalc.Add(x, y);
 // TODO: Validate return value
end;

procedure TestTCalc.TestSub;
var
 ReturnValue: Integer;
 y: Integer;
 x: Integer;
begin
 // TODO: Setup call parameters
 ReturnValue := FCalc.Sub(x, y);
 // TODO: Validate return value
end;

end.

Note: In Delphi for .NET the test methods are defined as procedures.

Each test method must:

• be public

• be a procedure for Delphi for .NET or a function with a void return type for C#

• take no arguments

Setup

Use the SetUp procedure to initialize variables or otherwise prepare your tests prior to running. For example, this is where you
would set up a database connection, if needed by the test.

TearDown

The TearDown method can be used to clean up variable assignments, clear memory, or perform other maintenance tasks on
your tests. For example, this is where you would close a database connection.

1.6 Testing Applications RAD Studio (Common) NUnit Overview

79

1

NUnit Asserts

NUnit provides a number of asserts that you can use in your tests.

Function Description Syntax

AreEqual Checks to see that two items are equal. Assert.AreEqual(expected, actual [, string
message])

IsNull Checks to see that an item is null. Assert.IsNull(object [, string message])

IsNotNull Checks to see that an item is not null. Assert.IsNotNull(object [, string message])

AreSame Checks to see that two items are the same. Assert.AreSame(expected, actual [, string
message])

IsTrue Checks to see that an item is True. Assert.IsTrue(bool condition [, string message])

IsFalse Checks to see that an item is False. Assert.IsFalse(bool condition [, string
message])

Fail Fails the test. Assert.Fail([string message])

You can use multiple asserts in any test method. This collection of asserts should test the common functionality of a given
method. If an assert fails, the entire test method fails and any other assertions in the method are ignored. Once you fix the failing
test and rerun your tests, the other assertions will be executed, unless one of them fails.

NUnit Test Runners

A test runner allows you to run your tests independently of your application. The NUnit test runners work by loading an assembly
that contains the unit tests. The test runners identify the tests in the assembly from the [TEST] attributes generated by the Test
Case Wizard.

NUnit includes two test runner executables:

• NUnitConsole.exe — This is the Console Test Runner, a text-based test runner that sends test output to the console.

• NUnitGUI.exe — This is the GUI Test Runner, an interactive GUI-based test runner, with results color-coded for success or
failure.

The GUI Test Runner is very useful when actively developing unit tests or the code you are testing. The GUI Test Runner
displays a green indicator for a test that completes successfully, a red indicator for a test that fails, and a yellow indicator for a
test that is skipped.

The Console Test Runner is useful when you need to run completed code and tests from automated build scripts. If you want to
redirect the output to a file, use the redirection command parameter. The following example shows how to redirect test results
to a TestResult.txt text file:

 nunit-console nunit.tests.dll /out:TestResult.txt

Note: You may need to set the path to your host application in the Project Options

dialog. Set the Host Application property to the location of the test runner you want to use.

See Also

Unit Testing Overview (see page 70)

DUnit Overview (see page 72)

Building Test Cases (see page 180)

NUnit.org Documentation

NUnit Overview RAD Studio (Common) 1.6 Testing Applications

80

1

http://www.nunit.org/documentation.html

1.7 Modeling Applications with Together
This section provides an overview of the features provided by Together.

Note: The product version you have determines which Together features are available.

Topics

Name Description

Getting Started with Together (see page 83) The two sample projects are designed to help you explore Together features
while working with projects. Some of the special features include: UML modeling,
patterns, generating project documentation.

Modeling Overview (see page 89) Effective modeling with Together simplifies the development stage of your
project. Smooth integration to RAD Studio provides developers with easy
transition from models to source code.
The primary objective of modeling is to organize and visualize the structure and
components of software intensive systems. Models visually represent
requirements, subsystems, logical and physical elements, and structural and
behavioral patterns.
While contemporary software practices stress the importance of developing
models, Together extends the benefits inherent to modeling by fully
synchronizing diagrams and source code.

Together Project Overview (see page 89) Work in Together is done in the context of a project. A project is a logical
structure that holds all resources required for your work. Together works with the
following project types: design and implementation. Each of them includes
several project formats.
It is up to you to define which directories, archives, and files should be included in
your project. You can set up project properties when the project is being created,
and modify them further, using the Object InspectorProperties Window.

Namespace and Package Overview (see page 89) A namespace is an element in a model that contains a set of named elements
that can be identified by name.
A project consists of one or more namespaces (or packages). A namespace and
a package are almost synonyms: the term “namespace” is used for
implementation projects, the term “package” is used for design projects.
A namespace (or a package) is like a box where you put diagrams and model
elements. Contents of a namespace (package) can be displayed on a special
type of the Class Diagram.
Each project contains the default namespace (or package) just after its creation.

Together Diagram Overview (see page 90) Diagrams can be thought of as graphs with vertices and edges that are arranged
according to a certain algorithm.
Each diagram belongs to a certain diagram type (for example, UML 2.0 Class
Diagram). A set of model elements available for use on a diagram depends on
the diagram type.
Diagrams exist within the context of a namespace (or a package). You have to
create or open a project or project groupsolution before creating a new diagram.
When Together support is activated, the project-level package diagram is created
by default. You can create the various UML diagrams in the... more (see page
90)

Supported UML Specifications (see page 90) The Object Management Group’s Unified Modeling Language (UML) is a
graphical language for visualizing, specifying, constructing, and documenting the
artifacts of distributed object systems.
Together supports UML to help you specify, visualize, and document models of
your software systems, including their structure and design.
Refer to UML documentation for the detailed information about UML semantics
and notation. The UML (version): Superstructure document defines the user level
constructs required for UML. It is complemented by the UML (version):
Infrastructure document which defines the foundational language constructs
required for UML. The two complementary specifications constitute a complete
specification for the UML modeling... more (see page 90)

Model Element Overview (see page 91) Model element is any component of your model that you can put on a diagram.
Model elements include nodes and links between them.
A set of available model elements depends on a current diagram type. Available
model elements are displayed in the Tool PaletteToolbox.
A link can have a label. You can move a label to any point of the link line.

1.7 Modeling Applications with Together RAD Studio (Common)

81

1

Model Annotation Overview (see page 91) The Tool PaletteToolbox for UML diagram elements displays note and note link
buttons for all UML diagrams. Use these elements to place annotation nodes and
their links on the diagram.
Notes can be free floating or you can draw a note link to some other element to
show that a note pertains specifically to it.
You can attach a note link to another link.
The text of notes linked to class diagram elements does not appear in the source
code.

Model Shortcut Overview (see page 92) A shortcut is a representation of an existing node element placed on the same
or a different diagram.
Shortcuts facilitate reuse of elements, make it possible to display library classes
on diagrams, and demonstrate relationships between the diagrams within the
model.
You can create a shortcut to an element of any other project in the current project
groupsolution. You can create a shortcut to an inner class or interface of another
classifier. It is also possible to add a shortcut to an element from project
References, including binary (.dll, .exe) files.
The small special... more (see page 92)

Diagram Layout Overview (see page 92) You can customize arrangement of model elements on your diagrams
automatically or manually.
Together enables you to manage diagrams with automated layout features that
optimize the diagram layout for viewing or printing. Nodes and links on a diagram
are arranged according to a certain algorithm.
There are several diagram layout algorithms available. You can apply the same
algorithm for the entire model, or different algorithms to separate diagrams.
Each algorithm has a set of specific options defined in the
Together (level) Diagram Layout category of the Options dialog window.
It is also possible to lay out a diagram manually by... more (see page 92)

Model Hyperlinking Overview (see page 92) You can create hyperlinks from diagrams or diagram elements to other system
artifacts and browse directly to them.

LiveSource Overview (see page 93) LiveSource™ is the key feature of Together that keeps your model and source
code in sync. That is why it applies to implementation projects only.
When a Class diagram is created in an implementation project, it is immediately
synchronized with the implementation code. When you change a Class diagram,
Together updates the corresponding source code.
Together allows you to synchronize different aspects of your project in several
ways.
Use the Reload command to refresh the Together model from the source code.

Transformation to Source Code Overview (see page 94) Together enables you to generate source code based on a language-neutral
design project.

OCL Support Overview (see page 95)

Patterns Overview (see page 96) Patterns provide software developers with powerful reuse facilities. Rather than
trying to tackle each design problem from the very outset, you can use the
predefined patterns supplied with Together. The hierarchy of patterns is defined
in the Pattern Registry. You can manage and logically arrange your patterns
using the Pattern Organizer.
Patterns are intended to:

• Create frequently used elements

• Modify existing elements

• Implement useful source code constructions or project
groupsolutions in your model

Refactoring Overview (see page 98) Together provides extensive support for refactoring your implementation projects.
Refactoring means rewriting existing source code with the intent of improving its
design rather than changing its external behavior. The focus of refactoring is on
the structure of the source code, changing the design to make the code easier to
understand, maintain, and modify.
The refactoring features provided by Together affect both source code and
model. As a result, your project is consisting after refactoring, even if it includes
UML diagrams.
The primary resource book on refactoring is Refactoring - Improving the Design
of Existing Code by Martin Fowler (Addison -... more (see page 98)

RAD Studio (Common) 1.7 Modeling Applications with Together

82

1

Quality Assurance Facilities Overview (see page 98) Together provides audits and metrics as Quality Assurance features to
unobtrusively help you enforce company standards and conventions, capture real
metrics, and improve what you do. Although audits and metrics are similar in that
they both analyze your code, they serve different purposes.
Audits and metrics are run as separate processes. Because the results of these
two processes are different in nature,Together provides different features for
interpreting and organizing the results. Note that some of the features and
procedures described in this section apply to both audits and metrics while some
are specific to one or the other.

Documentation Generation Facility Overview (see page 100) This feature automatically generates documentation for your project. Use this
feature to illustrate you programme with the documentation in the HTML format.
You can update this automatically generated documentation when your project
changes, or edit this documentation manually afterwards.

Model Import and Export Overview (see page 100) You can share model information with other systems by importing and exporting
model information, or by sharing project files:
Import and export features

1.7.1 Getting Started with Together

The two sample projects are designed to help you explore Together features while working with projects. Some of the special
features include: UML modeling, patterns, generating project documentation.

Topics

Name Description

About Together (see page 83) Welcome to CodeGear® Together®, the award-winning, design-driven
environment for modeling applications. Together includes features such as
support for UML 2.0, OCL, patterns, Quality Assurance audits and metrics,
source code refactoring and generation, IBM Rational Rose (MDL) format import,
XMI format import and export, and automated documentation generation.
A key feature of Together, LiveSource™, keeps your Together diagrams
synchronized with your source code in the RAD Studio Editor.
The Together features are tightly integrated with the RAD Studio environment.
When Together support is activated, the following items are added or modified:

• Diagram View

• Model View

• Object InspectorProperties Window

• Tool... more (see page 83)

UML 2.0 Sample Project (see page 84) This section contains a UML 2.0 sample project guide.
Important: This sample project is available for RAD Studio Architect version only.
Follow the steps:

Code Visualization Overview (see page 87) The Code Visualization feature is available in both the Enterprise and Architect
versions of RAD Studio. All other modeling tools and information related to
modeling relates only to the Architect version of RAD Studio.

What's New in Together (see page 88) This version includes the following new and improved features.

• Support for Microsoft VS .NET 2005 (instead of 2003)

• .NET 2.0 support for C# .NET and VB .NET

• Structured XML documentation technology

1.7.1.1 About Together
Welcome to CodeGear® Together®, the award-winning, design-driven environment for modeling applications. Together
includes features such as support for UML 2.0, OCL, patterns, Quality Assurance audits and metrics, source code refactoring
and generation, IBM Rational Rose (MDL) format import, XMI format import and export, and automated documentation

1.7 Modeling Applications with Together RAD Studio (Common) Getting Started with Together

83

1

generation.

A key feature of Together, LiveSource™, keeps your Together diagrams synchronized with your source code in the RAD Studio
Editor.

The Together features are tightly integrated with the RAD Studio environment. When Together support is activated, the following
items are added or modified:

• Diagram View

• Model View

• Object InspectorProperties Window

• Tool PaletteToolbox

In addition, specific commands are added to the main menu and the context menus of the Project ManagerSolution Explorer and
Structure ViewClass View.

Warning: Not all features described in this Help are available in all editions of the product.

If your Internet access is limited by network security, or if your computer is protected by a personal firewall, the Web-based
links in this Help system might not function properly.

See Also

Modeling Overview (see page 89)

Help on Help (see page 51)

Together Documentation Set

Together Glossary (see page 1139)

Keyboard Shortcuts (see page 1104)

1.7.1.2 UML 2.0 Sample Project
This section contains a UML 2.0 sample project guide.

Important: This sample project is available for RAD Studio Architect version only.

Follow the steps:

Topics

Name Description

UML 2.0 Sample Project, Behavior Package (see page 85) This package contains diagrams:

• Activity diagram

• State Machine diagram

• Use Case diagram

• Interaction diagram

UML 2.0 Sample Project, Structure Package (see page 86) The default diagram on the top level of the project contains two packages
intended to demonstrate the structural and behavioral modeling.
This package contains the following diagrams:

• Class diagram

• Component diagram

• Composite Structure diagram

• Deployment diagram

Getting Started with Together RAD Studio (Common) 1.7 Modeling Applications with Together

84

1

1.7.1.2.1 UML 2.0 Sample Project, Behavior Package
This package contains diagrams:

• Activity diagram

• State Machine diagram

• Use Case diagram

• Interaction diagram

Activity diagram

Activity diagram features are presented by three diagrams:

• Data Activity

• Final Nodes

• Process Order

Data Activity diagram

Data Activity diagram demonstrates object flow via actions and pins, and the usage of central buffer.

Final Nodes diagram

Final Nodes diagram represents a process of building an application, using multiple control flows and terminal blocks. During the
process the application components should be assembled. If there are no more components to be built, the building flow is
terminated (Flow Final), while the installation flow goes on working. If all the components are built and installed, the Deliver
action is performed, and thus the whole activity is terminated (Activity Final).

Process Order diagram

Process Order demonstrates the usage of interaction of the various actions by means of the control flows, transferring
information via object flows, and the usage of signal send and receive elements.

State Machine diagram

State Machine diagram features are presented by two diagrams:

• Course Attempt

• Submachine State.

Course Attempt diagram

Course Attempt demonstrates the usage of substates and regions. Since the states cannot have children of the same type, the
nested substates are inserted into the regions.

Submachine State diagram

Submachine State shows how one can refer to a different diagram from a state. In the case ReadAmountSM is a standalone
state that represents a whole diagram, and ReadAmount:ReadAmountSM is a state that implements the behavior of
ReadAmountSM. Both states are hyperlinked.

Use Case diagram

Use Case diagram is represented by Main Use Cases, which demonstrates the usage of subjects and stereotypes links.

1.7 Modeling Applications with Together RAD Studio (Common) Getting Started with Together

85

1

Interaction diagrams

Interaction diagrams show interaction between objects represented by their lifelines, by ways of messages. Each lifeline
instantiates a class or represents a part. An interaction can be shown in two ways: as a sequence diagram or as a
communication diagram. The sample interaction ShowAlbumsDialog is represented by the ShowAlbumsDialog diagram
(sequence) and cd_ShowAlbumsDialog diagram (communication).

See Also

UML 2.0 Sample Project (see page 84)

UML 2.0 Sample Project (see page 86)

Modeling overview (see page 89)

OpenUML20Sample.xml (see page 190)

1.7.1.2.2 UML 2.0 Sample Project, Structure Package
The default diagram on the top level of the project contains two packages intended to demonstrate the structural and behavioral
modeling.

This package contains the following diagrams:

• Class diagram

• Component diagram

• Composite Structure diagram

• Deployment diagram

Class diagram

Class diagram is represented by three samples: Class, Classes and Associations, Classes and Features.

Class Diagram

This diagram shows the usage of patterns as first class citizens. Abstract Factory is created by a GoF pattern. Explore the
specific features of adding and removing participants and pattern objects.

Classes and Associations diagram

This diagram demonstrates the following features:

• Generalization of classes

• Implementation of interfaces by classes

• Usage of association classes and n-ary associations. Note that n-ary association can only be created by means of an
association class

• Usage of binary associations

• Usage of association links properties (directed and non-directed associations, link labels, client and supplier multiplicities,
roles, qualifiers, constraints, and so on)

Classes and Features diagram

This diagram demonstrates the following features:

• Usage of operations and attributes in the classes and interfaces

• Usage of properties of the operations, attributes and slots (visibility, multiplicity, constraints, initial values of the attributes and

Getting Started with Together RAD Studio (Common) 1.7 Modeling Applications with Together

86

1

slots, return types and arguments of the operations)

• Instantiating classes by means of instance specifications

• Defining features by means of the slots

Component diagram

Component diagram is represented by the Store Components diagram, which demonstrates:

• Inner components

• Usage of the required and provided interfaces via ports

• Delegation connectors that delegate calls to a component to its subcomponents.

Composite Structure diagram

Composite Structure diagram demonstrates the usage of collaborations and parts.

Deployment diagram

Deployment diagram is represented by the Application Server diagram that demonstrates the usage of deployment specifications
and artifacts.

See Also

UML 2.0 Sample Project (see page 84)

UML 2.0 Sample Project (see page 85)

Modeling overview (see page 89)

OpenUML20Sample.xml (see page 190)

1.7.1.3 Code Visualization Overview
The Code Visualization feature is available in both the Enterprise and Architect versions of RAD Studio. All other modeling tools
and information related to modeling relates only to the Architect version of RAD Studio.

Code Visualization and UML Static Structure Diagrams

RAD Studio has a code visualization diagram that presents a graphical view of your source code, which is reflected directly from
the code itself. When you make changes in source code, the graphical depiction on the diagram is updated automatically. The
code visualization diagram corresponds to a UML static structure diagram. A structural view of your project focuses on UML
packages, data types such as classes and interfaces, and their attributes, properties, and operations. A static structure diagram
also shows the relationships that exist between these entities.

This section will explain the relationship between source code and the code visualization diagram.

Note: Code visualization, and the integrated UML modeling tools are two separate and distinct features of RAD Studio. Code
visualization refers to the ability to scan an arbitrary set of source code, and map the declarations within that code onto UML
notation. The resulting diagram is "live", in the sense that it always reflects the current state of the source code, but you cannot
make changes directly to the code visualization diagram itself. RAD Studio's model driven UML tools go a step further, giving you
the ability to design your application on the diagramming surface. The model driven tools are built on Borland Together
technologies, plus the Enterprise Core Objects framework. This document covers only the code visualization diagram; please
use the online Help table of contents for more information on the ECO framework.

Understanding the Relationship between Source Code and Code Visualization

RAD Studio's code visualization tools use the UML notation and conventions to graphically depict the elements declared in
source code. The Code Visualization diagram shows you the logical relationships, or static structure in UML terms, of the
classes, interfaces and other types defined in your project. The IDE creates the Code Visualization diagram by mapping

1.7 Modeling Applications with Together RAD Studio (Common) Getting Started with Together

87

1

certain source code constructs (such as class declarations, and implementation of interfaces) onto their UML counterparts, which
are then displayed on the diagram.

Top-Level Organization: Projects and UML Packages

To begin, code visualization consists of two parts of the IDE working together: The Model View window, and the Diagram
View. The Model View window shows you the logical structure of your projects in a tree, as opposed to the file-centric view of
the Project Manager window. Each project in a project group is a top-level node in the Model View tree.

Nested within each project tree-node, you will find UML packages. Each UML package corresponds to a .NET namespace or
Delphi unit declaration in your source code (.NET namespaces can span multiple source files). You can expand the UML
package to reveal the types declared within.

Inheritance and Interface Implementation

The UML term for the relationship formed when one class inherits from a superclass is generalization. When the IDE sees an
inheritance relationship in your source code, it creates a generalization link within the child class node in the Model View tree.
On the Diagram View, the generalization link will be shown the using standard UML notation of a solid line with a hollow
arrowhead pointing at the superclass.

The UML term for interface implementation is realization. Similar to the case of inheritance, the IDE creates a realization link
when it sees a class declaration that implements an interface. The realization link appears within the implementor class in the
Model View tree, and on the diagram as a dotted line with a hollow arrowhead pointing at the interface. There will be one such
realization link for every interface implemented by the class.

Associations

In the UML, an association is a navigational link produced when one class holds a reference to another class (for example, as an
attribute or property). Code visualization creates association links when one class contains an attribute or property that is a
non-primitive data type. On the diagram the association link exists between the class containing the non-primitive member, and
the data type of that member.

Class Members: Attributes, Operations, Properties, and Nested Types

Code visualization can also map class and interface member declarations to their UML equivalents. Within the elements on the
Code Visualization diagram, members are grouped into four distinct categories:

• Fields: Contains field declarations. The type, and optional default value assignment are shown on the diagram.

• Methods: Contains method declarations. Visibility, scope, and return value are shown.

• Properties: Contains Delphi property declarations. The type of the property is shown.

• Classes: Contains nested class type declarations.

Standard UML syntax is used to display the UML declaration of attributes, operations, and properties. Each of the four categories
can be independently expanded or collapsed to show or hide the members within.

See Also

Code Visualization Diagrams (see page 730)

Class Diagram Elements (see page 1144)

Using the Model View

1.7.1.4 What's New in Together
This version includes the following new and improved features.

Getting Started with Together RAD Studio (Common) 1.7 Modeling Applications with Together

88

1

• Support for Microsoft VS .NET 2005 (instead of 2003)

• .NET 2.0 support for C# .NET and VB .NET

• Structured XML documentation technology

See Also

About Together (see page 83)

Using Online Help

1.7.2 Modeling Overview

Effective modeling with Together simplifies the development stage of your project. Smooth integration to RAD Studio provides
developers with easy transition from models to source code.

The primary objective of modeling is to organize and visualize the structure and components of software intensive systems.
Models visually represent requirements, subsystems, logical and physical elements, and structural and behavioral patterns.

While contemporary software practices stress the importance of developing models, Together extends the benefits inherent to
modeling by fully synchronizing diagrams and source code.

See Also

About Together (see page 83)

Together Project Overview (see page 89)

Together Diagram Procedures (see page 190)

1.7.3 Together Project Overview

Work in Together is done in the context of a project. A project is a logical structure that holds all resources required for your
work. Together works with the following project types: design and implementation. Each of them includes several project
formats.

It is up to you to define which directories, archives, and files should be included in your project. You can set up project properties
when the project is being created, and modify them further, using the Object InspectorProperties Window.

See Also

UML 2.0 Sample Project (see page 84)

Creating a Project (see page 264)

Supported Project Formats (see page 1116)

1.7.4 Namespace and Package Overview

A namespace is an element in a model that contains a set of named elements that can be identified by name.

A project consists of one or more namespaces (or packages). A namespace and a package are almost synonyms: the term

1.7 Modeling Applications with Together RAD Studio (Common) Namespace and Package Overview

89

1

“namespace” is used for implementation projects, the term “package” is used for design projects.

A namespace (or a package) is like a box where you put diagrams and model elements. Contents of a namespace (package)
can be displayed on a special type of the Class Diagram.

Each project contains the default namespace (or package) just after its creation.

See Also

Working with a Namespace or Package (see page 250)

Class Diagram Types (see page 1124)

1.7.5 Together Diagram Overview

Diagrams can be thought of as graphs with vertices and edges that are arranged according to a certain algorithm.

Each diagram belongs to a certain diagram type (for example, UML 2.0 Class Diagram). A set of model elements available for
use on a diagram depends on the diagram type.

Diagrams exist within the context of a namespace (or a package). You have to create or open a project or project groupsolution
before creating a new diagram. When Together support is activated, the project-level package diagram is created by default. You
can create the various UML diagrams in the project.

In addition to the standard properties of diagrams and their elements, you can create user properties, represented by the
Name-Value pair.

See Also

Diagram Format Overview

Creating a Diagram (see page 196)

Working with User Properties (see page 206)

1.7.6 Supported UML Specifications

The Object Management Group’s Unified Modeling Language (UML) is a graphical language for visualizing, specifying,
constructing, and documenting the artifacts of distributed object systems.

Together supports UML to help you specify, visualize, and document models of your software systems, including their structure
and design.

Refer to UML documentation for the detailed information about UML semantics and notation. The UML (version): Superstructure
document defines the user level constructs required for UML. It is complemented by the UML (version): Infrastructure document
which defines the foundational language constructs required for UML. The two complementary specifications constitute a
complete specification for the UML modeling language.

UML 1.5 and UML 2.0

The set of available diagrams depends on your project type.

For design projects, both UML 1.5 and 2.0 are supported.

For implementation projects, UML 1.5 is only supported.

Supported UML Specifications RAD Studio (Common) 1.7 Modeling Applications with Together

90

1

The version of UML is selected when a project is created. It cannot be changed later.

UML In Color

“UML In Color” is an optional profile to support the modeling in color methodology. Color modeling makes it possible to
analyze a problem domain and easily spot certain classes during analysis. Together supports the use of the four main groups of
the color-modeling stereotypes:

• Role

• MomentInterval, Mi-detail

• Party, Place, Thing

• Description

For each of these stereotypes you can choose a specific color to make your model more understandable at a glance. Note that
the other stereotypes do not have associated colors.

See also "Java Modeling in Color with UML: Enterprise Components and Process" by Coad, Lefebvre and De Luca.

See Also

http://www.uml.org/

Diagram Appearance Options (see page 1089)

1.7.7 Model Element Overview

Model element is any component of your model that you can put on a diagram.

Model elements include nodes and links between them.

A set of available model elements depends on a current diagram type. Available model elements are displayed in the Tool
PaletteToolbox.

A link can have a label. You can move a label to any point of the link line.

See Also

Creating a Single Model Element (see page 209)

Tool Palette (see page 1114)

1.7.8 Model Annotation Overview

The Tool PaletteToolbox for UML diagram elements displays note and note link buttons for all UML diagrams. Use these
elements to place annotation nodes and their links on the diagram.

Notes can be free floating or you can draw a note link to some other element to show that a note pertains specifically to it.

You can attach a note link to another link.

The text of notes linked to class diagram elements does not appear in the source code.

See Also

Annotating a Diagram (see page 195)

1.7 Modeling Applications with Together RAD Studio (Common) Model Shortcut Overview

91

1

http://www.uml.org

1.7.9 Model Shortcut Overview

A shortcut is a representation of an existing node element placed on the same or a different diagram.

Shortcuts facilitate reuse of elements, make it possible to display library classes on diagrams, and demonstrate relationships
between the diagrams within the model.

You can create a shortcut to an element of any other project in the current project groupsolution. You can create a shortcut to an
inner class or interface of another classifier. It is also possible to add a shortcut to an element from project References, including
binary (.dll, .exe) files.

The small special symbol appears over a node to indicate a shortcut. It appears only if this node belongs to a different
namespace or package.

Select a shortcut on your diagram and choose Navigate To Element on the context menu to navigate to the source element in
the Model View.

See Also

Creating a Shortcut (see page 208)

1.7.10 Diagram Layout Overview

You can customize arrangement of model elements on your diagrams automatically or manually.

Together enables you to manage diagrams with automated layout features that optimize the diagram layout for viewing or
printing. Nodes and links on a diagram are arranged according to a certain algorithm.

There are several diagram layout algorithms available. You can apply the same algorithm for the entire model, or different
algorithms to separate diagrams.

Each algorithm has a set of specific options defined in the Together (level) Diagram Layout category of the Options
dialog window.

It is also possible to lay out a diagram manually by moving and resizing nodes and reshaping links. You can also lay out your
diagram automatically, and then adjust arrangement manually.

See Also

Laying Out a Diagram Automatically (see page 202)

Diagram Layout Algorithms (see page 963)

Diagram Layout Options (see page 1091)

1.7.11 Model Hyperlinking Overview

You can create hyperlinks from diagrams or diagram elements to other system artifacts and browse directly to them.

Why use hyperlinking?

Use hyperlinks for the following purposes:

Model Hyperlinking Overview RAD Studio (Common) 1.7 Modeling Applications with Together

92

1

• Link diagrams that are generalities or overviews to specifics and details.

• Create browse sequences leading through different but related views in a specific order; create hierarchical browse
sequences.

• Link descendant classes to ancestors; browse hierarchies.

• Link diagrams or elements to standards or reference documents or generated documentation.

• Facilitate collaboration among team members.

Create a hyperlink from an existing diagram or one of its elements to any other diagram or diagram element in the project, or
create a new diagram that will be hyperlinked to the current diagram.

You can also create hyperlinks from your diagrams to external documents such as files or URLs. For most users, such
hyperlinking will probably take the form of documents on a LAN or document server or URLs on the company intranet.
However, you can also easily link to online information such as newsgroups or discussion forums. If it is available online, you
can link to it.

Hyperlink types

You can create hyperlinks to:

• An existing diagram or diagram element anywhere in the project groupsolution

• A new diagram (it will be created on-the-fly)

• A document or file on a local or remote storage device

• A URL on your company intranet or the Internet

Browse-through sequence

The hyperlinking feature of Together allows you to create browse-through sequences comprised of any number of use case or
any other diagrams.

By browsing the hyperlink sequence, you can follow the relationships between the use case diagrams.

Together does not confine hyperlinking to such sequences, however. You can use hyperlinking to link diagrams and elements
based on your requirements. For example, you can create a hierarchical browse-through sequence of use case diagrams,
creating hyperlinks within the diagrams that follow a specific actor through all use cases that reference the actor.

See Also

Hyperlinking Diagrams (see page 201)

Creating a Browse-Through Sequence of Diagrams (see page 246)

1.7.12 LiveSource Overview

LiveSource™ is the key feature of Together that keeps your model and source code in sync. That is why it applies to
implementation projects only.

When a Class diagram is created in an implementation project, it is immediately synchronized with the implementation code.
When you change a Class diagram, Together updates the corresponding source code.

Together allows you to synchronize different aspects of your project in several ways.

Use the Reload command to refresh the Together model from the source code.

About MDA

Together supports the OMG’s Model Driven Architecture (MDA) initiative.

MDA is an evolving conceptual architecture for a set of industry-wide technology specifications that will support a model-driven

1.7 Modeling Applications with Together RAD Studio (Common) LiveSource Overview

93

1

approach to software development.

MDA is supported by UML, XMI, and other technologies.

Doc comment properties

Some properties that are defined for the model elements and members in the Object InspectorProperties Window, are presented
in the source code as language-specific doc comments. In particular, these properties are: author, since, version, stereotype,
associates, and so on. When such comments are encountered in the source code, they are reverse engineered to model
properties.

Doc comments are presented as XML tags, preceeded by /// (for C# projects) or ' (for Visual Basic) However, for the sake of
backward compatibility with Together ControlCenter, Together recognizes doc comment properties created in TCC for the Visual
Basic projects, where the legacy format '@property value was used..

So doing, if the properties of an element are presented in the legacy format and one of these properties is changed to the new
format '<property> value</property>, all the other properties are also converted.

See Also

Roundtrip Engineering Overview

Synchronizing the Model View (see page 267)

LiveSource Rules (see page 1125)

Reload Command (Model View) (see page 1112)

1.7.13 Transformation to Source Code Overview

Together enables you to generate source code based on a language-neutral design project.

About transformation to source code

You can generate source code from the Class Diagrams of your UML 1.5 or 2.0 design project and add this source code to a
project in one of the supported languages. The target implementation project must already exist in the same project
groupsolution.

Alternatively, you can import source code from an external design project into your current implementation project.

Name mapping

You can force Together to generate different names for your model elements in the source code. For example, you can have
ClassItem in your source code for the Class1 element in your model.

This feature is especially useful, if your model names are not English. You can use names in Japanese and other languages on
your diagrams, but keep names in Latin alphabet in your code.

If you enable this feature, the file codegen_map.xml is created in the model support folder of the source design project. You
can edit it with any XML or text editor. This file contains a mapping table, where each entry (model element) has two names: one
for the source design project (attribute name), and another one for the destination implementation project (attribute alias).
There are several sections in this file: Class, Attribute, Operation and Package for UML 1.5 projects, and Class and Package
for UML 2.0 projects. Attributes name must be unique for all entries in a section.

You can optionally create an XML file with the same name and structure in a folder of any package.

Then, if you transform your project to source code and the name mapping feature is enabled, Together searches for the
codegen_map.xml file for each model element. If the file is absent for a current package, Together searches in a parent
package, and so on.

Transformation to Source Code Overview RAD Studio (Common) 1.7 Modeling Applications with Together

94

1

Note: If you add a new element to your model later and then transform the project to source code, Together adds a new entry
for this item to the corresponding codegen_map.xml file. The existing entries are not changed.

See Also

LiveSource Overview (see page 93)

Transforming a Design Project to Source Code (see page 269)

1.7.14 OCL Support Overview

About OCL

The Object Constraint Language (OCL) is a textual language, especially designed for use in the context of diagrammatic
languages such as the UML. OCL was added to UML, as it turned out a visual diagram-based language is limited in its
expressiveness.

OCL 2.0 is the newest version of the OMG’s constraint language to accompany their suit of Object Oriented modelling languages.

The use of OCL as an accompanying constraint and query language for modelling with these languages is essential.

Note: Portions of this product include the Object Constraint Language Library, courtesy of Kent University, United Kingdom. See
http://www.cs.kent.ac.uk/projects/ocl/

OCL constraint and expression

OCL constraint

The Tool PaletteToolbox on some types of diagrams (for example, UML 2.0 Class Diagram) contains buttons that enable you to
create OCL constraints as design elements on diagrams, and link these constraints with the desired context.

You can show or hide constraint elements for the better presentation of your diagrams.

OCL support for constraints provides error highlighting. The text of the constraint is validated when the constraint is linked to its
context. The valid constraints are displayed in the regular font; invalid constraints, or OCL expressions with syntax errors, are
displayed in a red font.

Constrained elements are marked with the decorators. The decorators are small icons attached to the context elements of
constraints. If a constraint is valid the decorator is green; otherwise the decorator is red. If the constraints are concealed, you can
still monitor the validity of constraints by means of the decorators.

Any OCL constraint contains an OCL expression.

OCL expression

For OCL expressions without object constraints (expressions as properties of other nodes), no validation is performed since no
valid OCL context can be set for these elements.

Supported diagram types

OCL is supported for the following diagram types:

Diagram types with OCL support

1.7 Modeling Applications with Together RAD Studio (Common) OCL Support Overview

95

1

http://www.cs.kent.ac.uk/projects/ocl

Diagram type Version
of UML

How support is provided

Class (class,
namespace, package)

UML 1.5,
2.0

Creating object constraints is supported.

Interaction (Sequence
and Communication)

UML 2.0 State invariant constraints for lifelines and constraints for the operands of the combined
fragments as OCL expressions.

State Machine UML 2.0 Guard conditions of transitions as OCL expressions.

Use Case UML 2.0 Pre- and post-condition constraints for the behavior associated with the use cases as
OCL expressions. For example, an interaction chosen as a behavior.

See Also

Modeling Overview (see page 89)

Together Object Constraint Language (OCL) Procedures (see page 248)

OCL Editor (Diagram View) (see page 1106)

1.7.15 Patterns Overview

Patterns provide software developers with powerful reuse facilities. Rather than trying to tackle each design problem from the
very outset, you can use the predefined patterns supplied with Together. The hierarchy of patterns is defined in the Pattern
Registry. You can manage and logically arrange your patterns using the Pattern Organizer.

Patterns are intended to:

• Create frequently used elements

• Modify existing elements

• Implement useful source code constructions or project groupsolutions in your model

Pattern Registry

The Pattern Registry defines the virtual hierarchy of patterns. You can create virtual folders and group the patterns logically to
meet your specific requirements. All operations with the contents of the Pattern Registry are performed in the Pattern
Organizer and synchronized with the Pattern Registry.

Pattern Organizer

The Pattern Organizer enables you to logically organize patterns (using virtual trees, folders and shortcuts), and view and edit
the pattern properties. You will be working with shortcuts, not with the actual patterns. Because of this, shortcuts to the same
pattern may be included in several folders.

Templates

Together supports templates as a way to provide backward compatibility with the legacy Together ControlCenter projects. You
can copy the folders with your legacy source code templates to the Patterns subfolder of your Together installation directory,
and use these templates to create elements in implementation projects.

Templates are text files with the language-specific extensions that use macros to be substituted with real values when the
templates are applied. Therefore, templates can be regarded as forms ready for "filling in" for a specific instance. A template
consists of a template file containing source code, and a properties file that contains macro descriptions and their default values.

Templates are stored in the Patterns\templates directory of your Together installation using the following structure:

/<language>/<category>/<template name>

Patterns Overview RAD Studio (Common) 1.7 Modeling Applications with Together

96

1

where <category> is CLASS, LINK or MEMBER. Each <template_name> folder contains the following files:

• %Name%.<ext>

• <template_name>,properties (optional)

Design patterns

A design pattern is an XML file that contains a sequence of statements or actions, required to create entities and links and set
their properties. Each statement creates either one model element or one link between the model elements.

In addition to creating new elements, you can use design patterns to add members to a container element. The pattern that you
are applying to the specified container element should have its Use Existent property set as True. You can then apply the pattern
to the container element you want to modify. For example, if you want to add several methods stored in a class as pattern to an
existing class, then you have to apply that pattern to the diagram where that class exists.

The design patterns are stored as XML files in the Patterns directory of your Together installation.

Patterns as First Class Citizens

A First Class Citizen (FCC) pattern is a specific type of design pattern that contains information about the pattern name and the
role of each participant. When applied to a diagram, FCC patterns create their own entities and display on the diagram with links
to the created entities. Such patterns enable further modification by means of adding new participants.

Patterns as First Class Citizens are represented by GoF patterns.

A pattern is displayed on a diagram as an oval with the pattern name and an expandable list of participants. Each participant is
connected with the pattern oval by a link, labeled with the participant's role.

FCC patterns generate source code, but the oval FCC pattern elements do not. The entities created by patterns are stored in the
diagram files.

Stub implementation pattern

When you create an inheritance link between a class and another abstract class or interface, the methods and members are not
automatically added to the child class. This problem is solved using the Stub implementation pattern. You can also create an
implementation link and stub implementation in one step by using the Implementation link and stub pattern.

If the destination of a link is an interface, the pattern makes the class-source implement that interface, and creates in a class the
stubs for all of the methods found in the interface and all of its parent interfaces.

If the destination link is an abstract class, this pattern makes the class-source extend the class-destination, and makes stubs for
all of the constructors found in the class-destination. These constructor stubs call the corresponding constructors in the
class-destination.

You can find the Implementation link and stub pattern in the Pattern Wizard by clicking the Link by Pattern or Node by Pattern
buttons in the Tool PaletteToolbox, or by using the Create by Pattern context menu for a class.

The Implementation link and stub pattern creates the following members of interfaces and abstract classes:

• Methods

• Functions

• Subroutines

• Properties

• Indexers

• Events

See Also

Together Pattern Procedures (see page 251)

Pattern Organizer (see page 1107)

1.7 Modeling Applications with Together RAD Studio (Common) Patterns Overview

97

1

Pattern Registry (see page 1109)

1.7.16 Refactoring Overview

Together provides extensive support for refactoring your implementation projects.

Refactoring means rewriting existing source code with the intent of improving its design rather than changing its external
behavior. The focus of refactoring is on the structure of the source code, changing the design to make the code easier to
understand, maintain, and modify.

The refactoring features provided by Together affect both source code and model. As a result, your project is consisting after
refactoring, even if it includes UML diagrams.

The primary resource book on refactoring is Refactoring - Improving the Design of Existing Code by Martin Fowler (Addison -
Wesley, 1999).

See Also

Using Refactor Operations (see page 184)

Refactor Operations Reference (see page 1115)

1.7.17 Quality Assurance Facilities Overview

Together provides audits and metrics as Quality Assurance features to unobtrusively help you enforce company standards and
conventions, capture real metrics, and improve what you do. Although audits and metrics are similar in that they both analyze
your code, they serve different purposes.

Audits and metrics are run as separate processes. Because the results of these two processes are different in nature,Together
provides different features for interpreting and organizing the results. Note that some of the features and procedures described in
this section apply to both audits and metrics while some are specific to one or the other.

Audits

When you run audits, you select specific rules to which your source code should conform. The results display only the violations
of those rules so that you can examine each problem and decide whether to correct the source code. Together provides a wide
variety of audits to choose from, ranging from design issues to naming conventions, along with descriptions of what each audit
looks for and how to fix violations. You can create, save, and reuse sets of audits to run. Together ships with a predefined saved
audit set (current.adt) and you can create your own custom sets of audits to use.

Warning: This feature is available for implementation projects only.

Metrics

Metrics evaluate object model complexity and quantify your code. It is up to you to examine the results and decide whether they
are acceptable. Metrics results can highlight parts of code that need to be redesigned, or they can be used for creating reports
and for comparing the overall impact of changes in a project.

Together supports a wide range of metrics. See the descriptions of available metrics in the Metrics dialog window.

You can define, save, and reuse sets of metrics.

Along with the full set of metrics, Together provides tips for using metrics and interpreting results.

Warning: This feature is available for implementation projects only.

Quality Assurance Facilities Overview RAD Studio (Common) 1.7 Modeling Applications with Together

98

1

Bar chart

Metrics results can also be viewed graphically. Two graphic views allow you to summarize metrics results: bar charts and Kiviat
charts. Both charts are invoked from the context menu of the table. Use the Kiviat chart for rows and the bar chart for columns.

The bar chart displays the results of a selected metric for all packages, classes, and/or operations.

The bar color reflects conformance to the limiting values of the metric in reference:

• Green represents values that fall within the permissible range.

• Red represents values that exceed the upper limit.

• Blue represents values that are lower than the minimal permissible value.

• A thin vertical red line represents the upper limit and a thin vertical blue line represents the lower limit.

Kiviat chart

Use the Kiviat chart for rows and the bar chart for columns.

The Kiviat chart demonstrates the analysis results of the currently selected class or package for all the metrics that have
predefined limiting values. The metrics results are arranged along the axes that originate from the center of the graph.

Each axis has a logarithmic scale with the logarithmic base being the axis metric upper limit so that all upper limit values are
equidistant from the center. In this way, limits and values are displayed using the following notation:

• Upper limits are represented by a red circle. Any points outside the red circle violate the upper limit.

• Lower limits are represented by blue shading, showing that any points inside the blue area violate the lower limit. Note that
blue shading does not show up in areas of the graph with lower limits of 1 or 0.

As the mouse cursor hovers over the chart, the Visual Studio status bar displays information about the metrics or metrics values
that correspond to the tick marks.

• The actual metrics show up in the form of a star with metric values drawn as points.

• Green points represent acceptable values.

• Blue points represent values below the lower limit.

• Red points represent values exceeding the upper limit.

• Scale marks are displayed as clockwise directional ticks perpendicular to the Kiviat ray.

• Lower limit labels are displayed as counterclockwise directional blue ticks perpendicular to the Kiviat ray.

Sets of audits and metrics

Both Audits and Metrics dialog boxes display the set of all available audits and metrics. When you open a project, a default
subset is active. Active audits and metrics are indicated by checkmarks. If you open the desired dialog and click Start, all of the
active audits/metrics are processed.

You will not want to run every audit or metric in the default active set every time, but rather some specific subset. Together
enables you to create saved sets of active audits and metrics that can be loaded and processed as you choose. To do that, use
the Load Set and Save Set buttons on the toolbar of the Audits and Metrics dialog windows. You can always restore the default
active set using the Set Defaults button in the Audits dialog. Refer to the Audits dialog for description of controls.

Use the default active audits set or any saved set as the basis for creating a new saved set. By default, audit sets are saved in
the QA folder under the Together installation.

See Also

Running Audits (see page 273)

Running Metrics (see page 276)

1.7 Modeling Applications with Together RAD Studio (Common) Documentation Generation Facility

99

1

1.7.18 Documentation Generation Facility Overview

This feature automatically generates documentation for your project. Use this feature to illustrate you programme with the
documentation in the HTML format. You can update this automatically generated documentation when your project changes, or
edit this documentation manually afterwards.

Documentation files

All the documentation that Together generates is written to a single directory that you specify in the Output folder of the
Generate HTML dialog box. By default, the generated documentation opens in your external web browser. The browser opens
with a frameset to display the generated documentation. If you choose not to open the documentation immediately, you can
open it later using the index.html file found on the root of the documentation directory specified in the Generate HTML dialog
box.

HTML documentation frames

The HTML documentation contains three frames:

• Diagram frame, when Include diagrams option is turned on

• Project and Overview frame, when Include navigation tree option is turned on

• PackageList and PackageOverview frame, when Include navigation tree option is turned off

• Documentation frame

You can click the Project tab in the lower left frame and expand the nodes in the project tree view. Notice that clicking a class
name in the Project tab opens the documentation in the lower right pane (the Documentation frame). When you select a
diagram in the Project tab, it opens in the Diagram frame. Elements in the Diagram frame are hyperlinked to the
Documentation frame. If you select an element in the Diagram frame, its contents are displayed in the Documentation
frame.

The Documentation frame displays the documentation of your source code and diagrams, and includes everything you would
expect when generating HTML documentation. The top of the Documentation frame contains a navigation bar for browsing
your project documentation.

The Project tab contains a tree representation of the project. Expand the nodes to reveal individual diagrams and elements.
Clicking a class or interface opens the related documentation in the Documentation frame.

See Also

Generating Project Documentation (see page 248)

Configuring the Documentation Generation Facility (see page 247)

1.7.19 Model Import and Export Overview

You can share model information with other systems by importing and exporting model information, or by sharing project files:

Import and export features

Model Import and Export Overview RAD Studio (Common) 1.7 Modeling Applications with Together

100

1

Feature Description

Exporting
diagrams to
images

You can save diagrams in several formats, including:

Bitmap image (BMP)

Enhanced windows metafile (EMF)

Graphics interchange (GIF)

JPEG file interchange (JPG)

W3C portable network graphics (PNG)

Tag image file (TIFF)

Windows metafile (WMF)

Importing IBM
Rational Rose
(MDL) models

It is possible to convert models designed in IBM Rational Rose 2003 to the format of Together. The
following file formats are supported: .mdl, .ptl, .cat, and .sub.

For import, you create a new design UML 1.5 project based on the IBM Rational Rose project.

Importing from
XMI

Exporting to XMI

XMI (XML Metadata Interchange) enables the exchange of metadata information. Using XMI, you can
exchange models across languages and applications. For example, if you have a modeling project created
with a tool other than Together, you can import it to Together as an XMI file for extension or as the basis of
a new project. Likewise, you can export Together projects for use in other applications. The result in each
case is a single, portable .xml file.

Together supports UML 1.3 Unisys XMI interchange for 8 types of UML diagrams.

This feature is available for design projects that comply with the UML 1.5 specification.

Importing from
other versions of
Together

Sharing with
other versions of
Together

You can reuse models created in other editions and versions of Borland Together. This feature is known
as interoperability.

Export a Quality
Assurance
metric chart to
image

Create a chart and then export it to image.

See Also

Interoperability Overview

Exporting Diagram to Image (see page 197)

Importing a Project in IBM Rational Rose (MDL) Format (see page 265)

Importing a Project to XMI Format (see page 266)

Exporting a Project to XMI Format (see page 264)

Creating a Chart (see page 275)

Supported Project Formats (see page 1116)

1.7 Modeling Applications with Together RAD Studio (Common) Model Import and Export Overview

101

1

2 Procedures

This section provides how-to information for various areas of RAD Studio development.

Topics

Name Description

Compiling and Building Procedures (see page 104) This section provides how-to information on building packages and localizing
applications.

Debugging Procedures (see page 114) This section provides how-to information on debugging applications.

Deploying Applications (see page 133) This section provides how-to information on deploying applications. There are
two ways to deploy an application — manually, or using the Deployment
Manager. Currently, the Deployment manager is only for use with ASP.NET
applications. Manual procedures for deploying applications are described in the
appropriate Win32 area in this help system (for example, Delphi, ECO, or COM).

Editing Code Procedures (see page 136) This section provides how-to information on using the features of the Code
Editor.

Getting Started Procedures (see page 151) This section provides how-to information on configuring the IDE, working with
forms and projects, and more.

Localization Procedures (see page 169) This section provides how-to information on localizing applications by using the
RAD Studio translation tools.

Managing Memory (see page 175) This section provides how-to information on using the Memory Manager,
covering how to configure the Memory Manager, increase the memory address
space, monitor the Memory Manager, use the memory map, share memory, and
report and manage memory leaks.

Unit Test Procedures (see page 180) This section provides how-to information on using the features of DUnit and
NUnit.

Together Procedures (see page 183) This section provides how-to information on using the Together features.

2 RAD Studio (Common)

103

2

2.1 Compiling and Building Procedures
This section provides how-to information on building packages and localizing applications.

Topics

Name Description

Applying the Active Build Configuration for a Project (see page 104)

Building Packages (see page 105) You can create packages in RAD Studio and include them in your projects.

Compiling C++ Design-Time Packages That Contain Delphi Source (see page
106)

C++Builder supports compiling design-time packages that contain Delphi source
files. However, if any of those Delphi sources make reference to IDE-supplied
design-time units such as DesignIntf, DesignEditors, and ToolsAPI that exist in
DesignIDE100.bpl, you must take steps to ensure that the references can be
resolved by the C++Builder package.

Creating Build Events (see page 107) You can use the build events dialog to create a list of events that occur in various
stages of the build process. Depending on the type of project, you can create
events for the pre-build, pre-link, and post-build stages. You add events for any
of these stages in exactly the same way.

Creating Named Build Configurations for C++ (see page 107)

Creating Named Build Configurations for Delphi (see page 108)

Building a Project Using an MSBuild Command (see page 108) The IDE uses Microsoft's MSBuild engine to build a project. You can build
projects without knowing anything about MSBuild; the IDE handles all the details
for you. However, you can also directly build the project using MSBuild
command-line syntax as described here. When you build a project, the results of
the build appear in the Output pane of the Messages window. If you have
entered build events, the build output pane displays the commands you specified
and their results.
MSBuild command-line syntax has the form:
MSBuild <projectname> [/t:<target
name>][/p:configuration=<configuration name>]

Using Targets Files (see page 109)

Installing More Computer Languages (see page 110) If you have installed RAD Studio with only one or two computer languages
(Delphi, C#, C++), and you later decide to add a language that was not originally
installed, follow the steps below.

Linking Delphi Units Into an Application (see page 111) When compiling an application that references a Delphi-produced assembly, you
can link the Delphi units for that assembly into your application. The compiler will
link in the binary DCUIL files, which will eliminate the need to distribute the
assembly with your application.

Previewing and Applying Refactoring Operations (see page 111) You can preview most refactoring operations in the Refactoring pane. Some
refactorings occur immediately and allow no preview. You might want to use the
preview feature when you first begin to perform refactoring operations. The
preview shows you how the refactoring engine evaluates and applies refactoring
operations to various types of symbols and other refactoring targets. Previewing
is set as the default behavior. When you preview a refactoring operation, the
engine gathers refactoring information in a background thread and fills in the
information as the information is collected.
If you apply a refactoring operation right away, it is performed in... more (see
page 111)

Renaming a Symbol (see page 112) You can rename symbols if the original declaration symbol is in your project, or if
a project depended upon by your project contains the symbol and is in the same
open project group. You can also rename error symbols.

Working with Named Option Sets (see page 113)

2.1.1 Applying the Active Build Configuration for a Project

To use the Configuration Manager to apply an active build configuration to a project or projects

1. Open the Configuration manager either by choosing Project Configuration Manager or by right-clicking a project group in
the Project Manager and selecting Configuration Manager from the context menu.

Applying the Active Build Configuration for RAD Studio (Common) 2.1 Compiling and Building Procedures

104

2

2. On the Build Configuration Manager, select a configuration from the Configuration name list. The list includes all the
available configurations you have created in the project group, including the default configurations (Debug and Release).

3. In Available projects, select the project or projects that you want to use the selected configuration. Selecting a configuration
name causes the Available projects list to display the names of the projects that are associated with that configuration. The
Available projects list also includes the Active Configuration for each project.

4. To designate the selected Configuration name as the active configuration for the projects you've selected, click Apply.

Tip: To select all the available projects, click Select All

.

Tip: To clear all selections in the Available Projects

list, click Clear All.

To use the Project Manager to activate a build configuration

1. In the Project Manager, either double-cliick the name of a build configuration (such as Debug or Release) or right-click the
name and select Activate from the context menu.

2. The name of the configuration changes to boldface to indicate that it is now the current active build configuration.

See Also

MSBuild Overview (see page 4)

Build Configurations Overview (see page 5)

Compiling (see page 2)

Creating Named Build Configurations for C++ (see page 107)

Build Configuration Manager (see page 828)

2.1.2 Building Packages

You can create packages in RAD Studio and include them in your projects.

To create a new package

1. File New Other to display the New Items object gallery.

2. Depending on your type of project, select either the Delphi Projects node, the Delphi for .NET Projects node, or the
C++Builder Projects node.

3. Double-click the Package icon. This creates a new empty package and makes an entry for it in the Project Manager, along
with two folders: one marked Contains and one marked Requires.

Note: If you want to add required files to the package, you must add compiled packages (.dcpil

, .dll) to the Required folder. Add uncompiled code files (.pas, .cpp, .h) to the Contains folder.

4. Select the package name in the Project Manager.

5. Right-click to display the drop-down context menu and choose Add to display the Add dialog box.

6. Browse to locate the file or files you want to add.

7. Select one or more files, and click Open.

8. Click OK. This adds the selected files to the package.

9. Choose Project Build <Package Name> to build the package.

2.1 Compiling and Building Procedures RAD Studio (Common) Building Packages

105

2

To add a package to a project

1. Choose File New Other VCL Forms Application.

2. Select the project name in the Project Manager.

3. Right-click to display the drop-down context menu.

4. Choose Add.

5. Browse to locate a package file.

6. Select the file and click Open.

7. Click OK. This adds the package to the project.

8. Choose Project Build <Project Name> to build the project.

To add a component package to the Tool Palette

1. Choose Components Installed .NET Components.

2. Click the .NET VCL Components tab.

3. Click Add.

4. Locate the package file you want to add to the Tool Palette.

5. Click Open. This displays the available components from the package.

6. Click OK. The components appear in the Tool Palette.

See Also

Compiling (see page 2)

2.1.3 Compiling C++ Design-Time Packages That Contain
Delphi Source

C++Builder supports compiling design-time packages that contain Delphi source files. However, if any of those Delphi sources
make reference to IDE-supplied design-time units such as DesignIntf, DesignEditors, and ToolsAPI that exist in
DesignIDE100.bpl, you must take steps to ensure that the references can be resolved by the C++Builder package.

To compile design-time packages that contain Delphi source

1. The Delphi compiler must be able to resolve units in the DesignIDE package. To enable this, in the C++Builder package
project, go to Project Options Delphi Compiler Other Options.

2. Add —LUDesignIDE to the Additional Options field.

3. The C++ linker must be able to resolve the reference inside the compiled design-time .obj to link. To allow this, in the
C++Builder package project, select the Project Add To Project Requires tab.

4. In the Package name field, enter designide.bpi and click OK.

You can now compile and install your C++Builder package.

See Also

Design-time Packages

Creating Build Events RAD Studio (Common) 2.1 Compiling and Building Procedures

106

2

2.1.4 Creating Build Events

You can use the build events dialog to create a list of events that occur in various stages of the build process. Depending on the
type of project, you can create events for the pre-build, pre-link, and post-build stages. You add events for any of these stages in
exactly the same way.

To create a list of build events

1. Choose Project Options Build Events.

2. Click Commands in the build phase to which you want to add events (Pre-Build, Pre-Link, or Post-Build).

3. Enter the build commands, one command per line, and press Return after entering each command. Commands consist of
any valid DOS command, such as: copy $(<OutputPath>) c:\Built\$(<OutputName>)

4. To display the Events List dialog box to help you enter commands, click Edit. In the Commands box on the Events List
dialog box, enter build commands. You can edit the commands in this box.

5. To add a predefined macro on the Events List dialog box, scroll to the desired macro in the Macros list and double-click the
macro name.

6. After you have finished entering commands in the Events List dialog box, click OK.

7. After you have finished entering commands for all the build phases, click OK.

8. The commands and their results are displayed in the Output pane of the Messages window.

See Also

Build Events Dialog Box (see page 829)

Pre-Build Event or Post-Build Event Dialog Box (see page 844)

2.1.5 Creating Named Build Configurations for C++

To create a new build configuration

1. In the Project Manager, locate the Build configurations node. This node represents the settings of the Base build
configuration. The node lists all the build configurations.

2. To create a new build configuration based on an existing build configuration, right-click the name of the configuration (such as
Debug or Release) and select Add new.

3. The new configuration appears in the Project Manager and is named Configuration1 if it is the first new configuration you
create. New configurations are numbered sequentially.

4. To rename the new configuration, right-click the name and select Rename.

To change an existing build configuration

1. Choose Project Options and locate Build configuration, the first field on all the build-related pages, such as the Paths
and Defines page.

2. On any of the pages that contains the Build configuration field, select the name of the build configuration you want to
change.

3. Adjust the project options on each of the build-related pages as appropriate for your needs.

4. Click OK to save

Tip: To apply a build configuration to a project or project group, either right-click a configuration in the Project Manager

2.1 Compiling and Building Procedures RAD Studio (Common) Creating Named Build Configurations for

107

2

and select Activate, or choose Project Configuration Manager and click Apply.

See Also

MSBuild Overview (see page 4)

Build Configurations Overview (C++) (see page 6)

Build Configuration Manager (see page 828)

Applying the Active Build Configuration (see page 104)

Working With Named Option Sets (C++) (see page 113)

Setting C++ Project Options (see page 163)

2.1.6 Creating Named Build Configurations for Delphi

To create a new build configuration

1. In the Project Manager, locate the Build configurations node. All the existing build configurations are listed here.

2. Do either of the following:

• To create a new build configuration based on the current settings in the Project Options dialog box, right-click the Build
Configurations node and select Add new.

• To create a new build configuration based on an existing build configuration, right-click the name of the configuration (such as
Debug or Release) and select Add new.

To change an existing build configuration

1. Choose Project Options. Build configuration is the first field on all the build-related pages.

2. On any of the pages that contains the Build configuration field, select the name of the Build configuration you want to
change.

3. Adjust the project options on each of the build-related pages as appropriate for your needs.

Tip: To apply a build configuration to a project or project group, choose Project->Configuration Manager

and click Apply.

See Also

MSBuild Overview (see page 4)

Build Configurations Overview (see page 5)

Build Configuration Manager (see page 828)

Applying the Active Build Configuration (see page 104)

2.1.7 Building a Project Using an MSBuild Command

The IDE uses Microsoft's MSBuild engine to build a project. You can build projects without knowing anything about MSBuild; the
IDE handles all the details for you. However, you can also directly build the project using MSBuild command-line syntax as
described here. When you build a project, the results of the build appear in the Output pane of the Messages window. If you
have entered build events, the build output pane displays the commands you specified and their results.

Building a Project Using an MSBuild RAD Studio (Common) 2.1 Compiling and Building Procedures

108

2

MSBuild command-line syntax has the form:

MSBuild <projectname> [/t:<target name>][/p:configuration=<configuration name>]

To build a project using the command line

1. From the Start menu, select CodeGear RAD Studio RAD Studio Command Prompt. The command prompt window
automatically sets the environment for using RAD Studio tools such as MSBuild.exe.

2. Navigate to the directory that contains your project, such as C:\Documents and Settings\<myname>\My Documents\RAD
Studio\Projects.

3. Type msbuild but do not press Return yet.

4. Enter your project name, such as TelePoll.dproj (a Delphi project) or UserInfo.cbproj (a C++ project). If the project is
not in the current directory, you must include the full path name to the project directory.

5. To specify a target, enter the /t: tag followed by one of the targets specified in your project file. The three standard target
names are clean, make, and build:

• Clean means to clean the project, removing generated files such as object code. Clean corresponds to the Project Manager
context menu item Clean.

• Make means to compile the project. Make corresponds to the context menu item Compile.

• Build means to build the project. Build corresponds to the context menu item Build. The three targets are similar to the
Clean, Compile, and Build commands on the context menu in the Project Manager. The default target is build.

6. To specify a configuration, enter the configuration name after /p:configuration =. If you do not specify a configuration,
MSBuild uses the current active configuration. To specify a configuration, use the name of one of the existing build
configurations in your project. This can be either a default configuration, such as Debug, or a configuration you have added to
the project. If the configuration name has a space in it, enter the name bounded by double quotes, such as:
/p:configuration =“My config”

7. Enter any other options and press Return to begin the build.

To display online help for MSBuild (including a full example command line), open the RAD Studio Command Prompt (see Step
1) and enter MSBuild /help.

For more information about MSBuild, see the Microsoft documentation at http:\\msdn.microsoft.com.

See Also

MSBuild Overview (see page 4)

Compiling (see page 2)

IDE Command Line Switches and Options (see page 1082)

Build Configuration Manager (see page 828)

Creating Named Build Configurations

Files Generated by RAD Studio (see page 1084)

2.1.8 Using Targets Files

To create a new .targets file in the project from the menu

1. Choose File NewOther....

2. In C++Builder Projects click C++Builder Files.

3. On that page, click MSBuild Targets File.

4. A new .targets XML file is created and displayed in the IDE window. It contains only a <Project> node.

2.1 Compiling and Building Procedures RAD Studio (Common) Using Targets Files

109

2

To add a .targets file to the project from the menu

1. Choose Project Add To Project.

2. In the Add to project dialog, select MSBuild targets file (*.targets) from the Files of type:pull down menu.

3. Navigate to the .targets file.

4. Click Open to add the file to the project and close the dialog. Click Cancel to not add the file and close the dialog.

To add a .targets file to the project from the Project Manager

1. Right-click the project in the Project Manager.

2. Click Add... in the context menu.

3. In the Add to project dialog, select MSBuild targets file (*.targets) from the Files of type:pull down menu.

4. Navigate to the .targets file.

5. Click Open to add the file to the project and close the dialog. Click Cancel to not add the file and close the dialog.

To enable a .targets file

1. Right-click the .targets file in the Project Manager.

2. Click Enable in the context menu.

To ensure a .targets file is conformant and error free

1. Right-click the .targets file in the Project Manager.

2. Click Validate in the context menu.

To remove a .targets file from the project

1. Right-click the .targets file in the Project Manager.

2. Click Remove From Project in the context menu.

See Also

Targets files (see page 8)

2.1.9 Installing More Computer Languages

If you have installed RAD Studio with only one or two computer languages (Delphi, C#, C++), and you later decide to add a
language that was not originally installed, follow the steps below.

To add more computer languages to your IDE:

1. Choose Start Settings Control Panel Add or Remove Programs.

2. Select RAD Studio

3. Click the Change button.

4. When the Installation Wizard comes up, it will ask you if you want to Modify, Repair, or Remove the program. Select the
Modify radio button.

5. Follow the rest of the steps in the Installation Wizard to choose the languages that you want to add.

6. Click the Finish button.

Linking Delphi Units Into an Application RAD Studio (Common) 2.1 Compiling and Building Procedures

110

2

2.1.10 Linking Delphi Units Into an Application

When compiling an application that references a Delphi-produced assembly, you can link the Delphi units for that assembly into
your application. The compiler will link in the binary DCUIL files, which will eliminate the need to distribute the assembly with your
application.

To link in a Delphi unit

1. With your application open in the IDE, choose Project Add Reference.

2. In the Add Reference dialog box, select a Delphi-produced assembly DLL from the list of .NET assemblies and click the Add
Reference button. If the assembly you want to link to is not in the list, use the Browse button to find and select it.

3. Click OK. The assembly is listed in the References node of the Project Manager.

4. In the Project Manager, right-click the assembly and choose Link in Delphi Units. The menu command is disabled if the
reference is not a Delphi-produced assembly. In the Object Inspector, the corresponding Link Units property is set to True.

5. Choose Project Compile to compile the application.

2.1.11 Previewing and Applying Refactoring Operations

You can preview most refactoring operations in the Refactoring pane. Some refactorings occur immediately and allow no
preview. You might want to use the preview feature when you first begin to perform refactoring operations. The preview shows
you how the refactoring engine evaluates and applies refactoring operations to various types of symbols and other refactoring
targets. Previewing is set as the default behavior. When you preview a refactoring operation, the engine gathers refactoring
information in a background thread and fills in the information as the information is collected.

If you apply a refactoring operation right away, it is performed in a background thread also, but a modal dialog blocks the UI
activity. If the refactoring engine encounters an error during the information gathering phase of the operation, it will not apply the
refactoring operation. The engine only applies the refactoring operation if it finds no errors during the information gathering
phase.

To preview a refactoring operation

1. Open a project.

2. Locate a symbol name in the Code Editor.

3. Select the symbol name.

4. Right-click to display the context menu.

5. Select Refactoring Rename 'symbol type' where symbol type is one of the valid types, such as method, variable, or field.
This displays the Rename Symbol dialog.

6. Type a new name in the New name text box.

7. Select the View references before refactoring check box.

8. Click OK. This displays a hierarchical list of the potentially refactored items, in chronological order as they were found. You
can jump to each item in the Code Editor.

Note: If you want to remove an item from the refactoring operation, select the item and click the Delete Refactoring

icon in the toolbar.

2.1 Compiling and Building Procedures RAD Studio (Common) Previewing and Applying Refactoring

111

2

To jump to a refactoring target from the Message Pane

1. Expand any of the nodes that appear in the Message Pane.

2. Click on the target refactoring operation that you would like to view in the Code Editor.

3. Make any changes you would like in the Code Editor.

Warning: If you change an item in the Code Editor

, the refactoring operation is prevented. You need to reapply the refactoring after making changes to any files during the
process, while the Message Pane contains refactoring targets.

To apply refactorings

1. Open a project.

2. Locate a symbol name in the Code Editor.

3. Select the symbol name.

4. Right-click to display the context menu.

5. Select Refactoring Rename 'symbol type' where symbol type is one of the valid types, such as method, variable, or field.
This displays the Rename Symbol dialog.

6. Type a new name in the New name text box.

7. Click OK. As long as the View references before refactoring check box is not selected, the refactoring occurs immediately.

Warning: If the refactoring engine encounters errors, the refactoring is not applied. The errors are displayed in the Message
Pane

.

See Also

Refactoring Overview (see page 57)

2.1.12 Renaming a Symbol

You can rename symbols if the original declaration symbol is in your project, or if a project depended upon by your project
contains the symbol and is in the same open project group. You can also rename error symbols.

To rename a symbol

1. Select the symbol name in the Code Editor.

2. Right-click to display the drop-down context menu.

3. Select Refactoring Rename 'symbol type' ' symbol name' where symbol type is either method, variable, or field, and
symbol name is the actual name of the selected symbol. This displays the Rename dialog box.

4. Enter the new name in the New Name text box.

5. If you want to preview the changes to your project files, select the View References Before Refactoring check box.

Note: The menu commands are context-sensitive. If you select a method, the command will read Rename Methodmethod
name where method name is the actual name of the method you have selected. This context-sensitivity holds true for all other
object types, as well.

See Also

Refactoring Overview (see page 57)

Working with Named Option Sets RAD Studio (Common) 2.1 Compiling and Building Procedures

112

2

2.1.13 Working with Named Option Sets

To create a new named option set from Project Options

1. Choose Project Options.

2. Build configuration is the first field on the page. Select from the drop-down menu the configuration on which you want to
base the named option set.

3. Adjust the options on any one or more of the pages associated with the build configuration.

4. Click the Save As... button.

5. In the Save Options Set dialog box, enter a name for the named option set you are creating.

6. Click OK to save the option set to a file.

To create a new named option set from Project Manager

1. In the Project Manager, right-click the configuration from which you want to save an option set.

2. On the context menu, click Save As....

3. In the Save Options Set dialog box, enter a name for the named option set you are creating.

4. Click OK to save the option set to a file.

To load a named option set from Project Options

1. Choose Project Options.

2. Select the name of the Build configuration from the pull down menu to which you want to apply the option set.

3. Click the Load... button to display the Apply Option Set dialog.

4. Navigate to the desired file for the named option set.

5. Choose how you load the values from the named option set: Overwrite, Replace, or Preserve.

6. Click OK to apply the option set and close the dialog. Click Cancel to not apply it and close the dialog.

To load a named option set from Project Manager

1. In the Project Manager, right-click the configuration to which you want to apply an option set.

2. On the context menu, click Apply Option Set... to display the Apply Option Set dialog.

3. Navigate to the desired file for the named option set.

4. Choose how you load the values from the named option set: Overwrite, Replace, or Preserve.

5. Click OK to apply the option set and close the dialog. Click Cancel to not apply it and close the dialog.

See Also

Apply Option Set dialog (see page 828)

MSBuild Overview (see page 4)

C++ Build Configurations Overview (see page 6)

Build Configuration Manager (see page 828)

Setting C++ Project Options (see page 163)

Creating Named Build Configurations (C++) (see page 107)

Applying the Active Build Configuration (see page 104)

2.1 Compiling and Building Procedures RAD Studio (Common) Working with Named Option Sets

113

2

2.2 Debugging Procedures
This section provides how-to information on debugging applications.

Topics

Name Description

Adding a Watch (see page 116) Add a watch to track the values of program variables or expressions as you step
over or trace into code. Each time program execution pauses, the debugger
evaluates all the items listed on the Active tab (or ActiveWatchGroup) in the
Watch List window and updates their displayed values.
You can organize watches into groups. When you add a watch group, a new tab
is added to the Watch List window and all watches associated with that group
are shown on that tab. When a group tab is displayed, only the watches in that
group are evaluated during debugging. By grouping... more (see page 116)

Using the CPU View (see page 116) The CPU view displays the assembly language code for your program.

Displaying Expanded Watch Information (see page 117) When you debug an application, you can inspect the values of members within a
watched object whose type is a complex data object (such as a class, record, or
array). These values display in the Watch List window when you expand a
watched object. Additionally, you can expand the elements within an object,
displaying its sub-elements and their values. You can expand all levels in the
object. Members are grouped by ancestor.

Attaching to a Running Process (see page 117) You can attach to a process that is running on your computer or on a remote
computer. This is useful for debugging a program that was not created with RAD
Studio.

Setting and Modifying Breakpoints (see page 118) Breakpoints pause program execution at a certain location or when a particular
condition occurs. You can set source breakpoints and module load breakpoints in
the Code Editor before and during a debugging session. You can set data
breakpoints and address breakpoints only when the application is running in
debug mode (F9),
Procedures described in this Topic:

• To set a source breakpoint

• To set an address breakpoint

• To set a data breakpoint

• To set a module load breakpoint

• To create a breakpoint group

• To enable or disable a breakpoint or a breakpoint group

• To create a conditional breakpoint

• To associate actions... more (see page 118)

Debugging VCL for .NET Source Code (see page 121) To debug VCL for .NET source code, you must set certain project options that
are not needed when debugging other types of applications. The options are off
by default and must be specifically set.

Using Tooltips During Debugging (see page 122) When you debug an application, you can display the values of members within a
watched object whose type is a complex data object (such as a class, record, or
array). These values display in the code editor window when you expand a
watched object. Additionally, you can expand the elements within an object,
displaying its sub-elements and their values. You can expand all levels in the
object. Members are grouped by ancestor.

Inspecting and Changing the Value of Data Elements (see page 122) The Debug Inspector lets you inspect data elements by automatically formatting
the type of data it is displaying. The Debug Inspector is especially useful for
examining compound data objects, such as arrays and linked lists. Because you
can inspect individual items displayed in the Debug Inspector, you can perform
a walkthrough of compound data objects by opening a Debug Inspector on a
component of the compound object.
Note: The Debug Inspector
is only available when the process is stopped in the debugger.

RAD Studio (Common) 2.2 Debugging Procedures

114

2

Modifying Variable Expressions (see page 124) After you have evaluated a variable or data structure item, you can modify its
value. When you modify a value through the debugger, the modification is
effective for the program run only. Changes you make through the
Evaluate/Modify dialog box do not affect your source code or the compiled
program. To make your change permanent, you must modify your source code in
the Code Editor, then recompile your program.

Preparing a Project for Debugging (see page 124) While most debugging options are set on by default, you can use the following
procedures to review and change those options. There are both general IDE
options and project specific options. The project specific options vary based on
the active project type, for example, Delphi, Delphi .NET, or C#.

Remote Debugging: Metaprocedure (see page 125) Remote debugging lets you debug a RAD Studio application running on a remote
computer. Once the remote debug server is running on the remote computer, you
can use RAD Studio to connect to that computer and begin debugging.

Installing, Starting, and Stopping the Remote Debug Server (see page 125) Remote debugging lets you debug a RAD Studio application running on a remote
computer. Once the remote debug server is running on the remote computer, you
can use RAD Studio to connect to that computer and begin debugging.
Prerequisites and security considerations for remote debugging

• The local and remote computers must be connected
through TCP/IP.

• All of the files required for debugging the application must
be available on the remote computer before you begin
debugging. This includes executables, DLLs, assemblies,
data files, and PDB (debug) files.

• In addition to the port that the remote debug server listens
on, a connection... more (see page 125)

Installing a Debugger on a Remote Machine (see page 126) To debug a project on a machine that does not have RAD Studio installed, you
must install the remote debugger executable files. You can install these files
either directly from the installation disk or by copying them from a machine that
has RAD Studio installed.

Establishing a Connection for Remote Debugging (see page 127) You must establish a TCP/IP connection between the local and remote machines
in preparation for remote debugging. This connection uses multiple ports that are
chosen dynamically by Windows. The remote debug server listens on one port,
and a separate port is opened for each application that is being debugged. A
firewall that only allows connections to the listening port will prevent the remote
debugger from working.
Note: If the remote machine uses the firewall included with Windows XP service
pack 2, you will receive a message asking whether CodeGear remote debugging
service should be allowed. You must indicate that this... more (see page 127)

Preparing Files for Remote Debugging (see page 128) Executable files and symbol files must be copied to the remote machine after
they are compiled. You must set the correct options on your local machine in
order to generate these files.

Setting the Search Order for Debug Symbol Tables (see page 129) Symbol tables are used internally during debugging. By default, RAD Studio
locates and uses all symbol tables available. However, you can control the order
in which these symbol tables are searched. You can also limit the search to
specific symbol tables, which can speed up the debugging process.
The extensions for symbol table files vary by personality.

• Delphi Win32, does not use external symbol files because
the compiler holds the symbols tables in memory.
However, if you are debugging a remote application, you
must generate symbol files with the .RSM extension.

• Delphi.NET, VB.NET and C# symbol files use the .PDB...
more (see page 129)

Resolving Internal Errors (see page 130) The error message, Internal Error: X1234 indicates that the compiler has
encountered a condition, other than a syntax error, that it cannot successfully
process.
Tip: Internal error numbers indicate the file and line number in the compiler
where the error occurred. This information may help Technical Support services
track down the problem. Be sure to record this information and include it with
your internal error description.

2.2 Debugging Procedures RAD Studio (Common) Adding a Watch

115

2

2.2.1 Adding a Watch

Add a watch to track the values of program variables or expressions as you step over or trace into code. Each time program
execution pauses, the debugger evaluates all the items listed on the Active tab (or ActiveWatchGroup) in the Watch List window
and updates their displayed values.

You can organize watches into groups. When you add a watch group, a new tab is added to the Watch List window and all
watches associated with that group are shown on that tab. When a group tab is displayed, only the watches in that group are
evaluated during debugging. By grouping watches, you can also prevent out-of-scope expressions from slowing down stepping.

To add a watch

1. Choose Run Add Watch to display the Watch Properties dialog box.

2. In the Expression field, enter the expression you want to watch. An expression consists of constants, variables, and values
contained in data structures, combined with language operators. Almost anything you can use as the right side of an
assignment operator can be used as a debugging expression, except for variables not accessible from the current execution
point.

3. Optionally, enter a name in the Group Name field to create the watch in a new group, or select a group name from the list of
previously defined groups.

4. Specify other options as needed (click Help on the Watch Properties dialog for a description of the options). For example,
you can request the debugger to evaluate the watch, even if doing so causes function calls, by selecting the Allow Function
Calls option.

5. Click OK.

The watch is added to the Watch List window.

See Also

Watch Properties (see page 948)

Watch List Window (see page 1031)

2.2.2 Using the CPU View

The CPU view displays the assembly language code for your program.

To use the CPU view

1. Run your program.

2. Choose Run Program Pause from the menu. The CPU view displays. Note that up to five separate panes might display.
Click the CPU Window link at the end of this topic for information about these panes.

See Also

Debugging Applications (see page 10)

CPU Window (see page 1022)

Displaying Expanded Watch Information RAD Studio (Common) 2.2 Debugging Procedures

116

2

2.2.3 Displaying Expanded Watch Information

When you debug an application, you can inspect the values of members within a watched object whose type is a complex data
object (such as a class, record, or array). These values display in the Watch List window when you expand a watched object.
Additionally, you can expand the elements within an object, displaying its sub-elements and their values. You can expand all
levels in the object. Members are grouped by ancestor.

To display expanded watch information in the Watch List window

1. Set a breakpoint on a valid source line within your project. A breakpoint icon displays in the gutter next to the selected line.

2. Choose Run Add Watch to add a watch for an object in your application. The watch displays in the Watch List window.

3. Choose Run Run to begin running the program. If needed, use the feature of the program that will cause it to run to the
breakpoint you set. The IDE automatically switches to the Debug layout and the program stops at the breakpoint.

4. Click the + next to the name of the object that you added to the watch list. The names and values of elements of the watched
object display in the Watch List window.

See Also

Debugging Applications (see page 10)

Adding a Watch (see page 116)

Setting and Modifying Source Breakpoints (see page 118)

Inspecting and Changing the Value of Data Elements (see page 122)

2.2.4 Attaching to a Running Process

You can attach to a process that is running on your computer or on a remote computer. This is useful for debugging a program
that was not created with RAD Studio.

To attach to a running process

1. Choose Run Attach to Process to display the Attach to Process dialog box.

2. Select either CodeGear .NET Debugger or CodeGear Win32 Debugger from the Debugger drop-down list, depending on
whether you want to attach to a .NET or Win32 process. The list of Running Processes is refreshed to display the
appropriate processes. For Win32 processes, you can also check Show System Processes to include system processes in
the list.

3. If the process is running on a remote computer, enter the name the computer in the Remote Machine field

Note: The remote debug server must be running on the remote computer.

4. Select a process from the list of Running Processes.

5. If you do not want the process to pause after you have attached to it, uncheck Pause After Attach.

6. Click Attach.

See Also

Attach to Process (see page 941)

2.2 Debugging Procedures RAD Studio (Common) Setting and Modifying Breakpoints

117

2

2.2.5 Setting and Modifying Breakpoints

Breakpoints pause program execution at a certain location or when a particular condition occurs. You can set source breakpoints
and module load breakpoints in the Code Editor before and during a debugging session. You can set data breakpoints and
address breakpoints only when the application is running in debug mode (F9),

Procedures described in this Topic:

• To set a source breakpoint

• To set an address breakpoint

• To set a data breakpoint

• To set a module load breakpoint

• To create a breakpoint group

• To enable or disable a breakpoint or a breakpoint group

• To create a conditional breakpoint

• To associate actions with a breakpoint

• To change the colors associated with breakpoints

During a debugging session, any line of code that is eligible for a breakpoint is marked with a blue dot in the left gutter of the
Code Editor.

You can also set breakpoints on frames displayed in the Call Stack window. The breakpoint icons in the Call Stack window are
similar to those in the Code Editor, except that the blue dot indicates only that debug information is available for the frame,
not whether a breakpoint can be set on that frame.

Breakpoints are displayed in the Breakpoint List window, available by selecting View Debug windows Breakpoints.

The following icons are used to represent breakpoints in the Code Editor gutter.

Icon Description

 The breakpoint is valid and enabled. The debugger is inactive.

 The breakpoint is valid and enabled. The debugger is active.

 The breakpoint is invalid and enabled. The breakpoint is set at an
invalid location, such as a comment, a blank line, or invalid
declaration.

 The breakpoint is valid and disabled. The debugger is inactive.

 The breakpoint is valid and disabled. The debugger is active.

 The breakpoint is invalid and disabled. The breakpoint is set at an
invalid location.

To set a source breakpoint

1. To prefill the line number in the dialog box, click the line of source in the Code Editor at the point where you want to stop
execution.

2. Choose Run Add Breakpoint Source Breakpoint to display the Add Source Breakpoint dialog box.

Tip: To change the Code Editor

Setting and Modifying Breakpoints RAD Studio (Common) 2.2 Debugging Procedures

118

2

gutter, choose Tools Options Editor Options Display and adjust the Gutter width option.

3. In the Add Source Breakpoint dialog box, the file name is prefilled with the name of the file, and Pass count is set to 0
(meaning that the breakpoint fires on the first pass). In the Line number field, enter the line in the Code Editor where you
want to set the breakpoint.

4. To apply a condition to the address breakpoint, enter a conditional expression in the Condition field. The conditional
expression is evaluated each time the breakpoint is encountered, and program execution stops when the expression
evaluates to True.

5. To associate the source breakpoint with a breakpoint group, enter the name of a group or select from the Group dropdown
list.

6. To set any of the Advanced options, see the help topic (see page 938) for the Add Address Breakpoint or Add Data
Breakpoint dialog box.

Note: To quickly set a breakpoint on a line of source code, click the left gutter of the Code Editor

next to the line of code where you want to pause execution.

To set an address breakpoint

1. Choose Run Add Breakpoint Address Breakpoint to display the Add Address Breakpoint dialog box.

2. In the Address field, enter the address in memory (such as $00011111) at which you want to set the breakpoint.

3. To apply a condition to the address breakpoint, enter a conditional expression in the Condition field. The conditional
expression is evaluated each time the breakpoint is encountered, and program execution stops when the expression
evaluates to true.

4. To specify that the address breakpoint will only fire after a number of passes, enter the number in the Pass count field.

5. To associate the address breakpoint with an existing breakpoint group, enter the group name in the Group field, or select the
name of an existing group from the dropdown list.

6. To set any of the Advanced options, see the help topic (see page 938) for the Add Address Breakpoint or Add Data
Breakpoint dialog box.

Note: You can also set an address breakpoint in the CPU view

or the Disassembly view by clicking in the gutter.

To set a data breakpoint

1. The application must be running in debug mode (for example, use F9, F8, F7, or F4).

2. Choose Run Add Breakpoint Data Breakpoint to display the Add Data Breakpoint dialog box.

3. In the Address field, enter the address of the data you want to function as the data breakpoint.

4. In the Length field, specify the length of the data operand that is to constitute the breakpoint. Note that a warning is displayed
for the following issues:

• The length of the data breakpoint should not cross an even-byte boundary. (A data breakpoint with a 1-byte length has no
alignment problems, but 2-byte and 4-byte data breakpoints might cover more or fewer addresses than you intend.)

• The data breakpoint should not be set on a stack location. (The breakpoint might be hit so often that the program cannot run
properly.)

5. To apply a condition to the address breakpoint, enter a conditional expression in the Condition field. The conditional
expression is evaluated each time the breakpoint is encountered, and program execution stops when the expression
evaluates to true.

6. To specify that the address breakpoint only fires after a number of passes, enter the number in the Pass count field.

7. To associate the data breakpoint with an existing breakpoint group, enter the group name in the Group field, or select the
name of an existing group from the dropdown list.

8. To set any of the Advanced options, see the help topic (see page 938) for the Add Address Breakpoint or Add Data
Breakpoint dialog box.

2.2 Debugging Procedures RAD Studio (Common) Setting and Modifying Breakpoints

119

2

To set a module load breakpoint

1. Choose Run Add Breakpoint Module Load Breakpoint to display the Add Module Load Breakpoint dialog box.

2. In the Module name field, enter the name of the DLL, package, or other module type that you want to monitor, or select a
name from the drop down list.

Note: You can also use the Modules view

to set a module load breakpoint.

When the module you specify is loaded during program execution, the breakpoint is hit and program execution pauses.

To modify a breakpoint

1. Open the Breakpoints List by selecting View Debug Windows Breakpoints. Right-click the icon for the breakpoint you
want to modify. For a source breakpoint, you can right-click the breakpoint icon in the Code Editor gutter, and choose
Breakpoint Properties.

2. Set the options in the Breakpoint Properties dialog box to modify the breakpoint. For example, you can set a condition,
create a breakpoint group, or specify an action that is to occur when execution reaches the breakpoint.

3. Click Help for more information about the options on the dialog box.

4. Click OK.

To create a breakpoint group

1. Open the Breakpoints List by choosing View Debug Windows Breakpoints.

2. Right-click the breakpoint and choose Breakpoint Properties.

3. To create a breakpoint group, enter a group name in the Group field. To add the breakpoint to an existing group, select a
name from the dropdown list box.

4. Click OK.

To enable or disable a breakpoint or a breakpoint group

1. Right-click the breakpoint icon in the Code Editor or in the Breakpoint List window and choose Enabled to toggle between
enabled and disabled. In the Breakpoint List, you can click the checkbox at the left of the icon.

2. To enable or disable all breakpoints, right-click a blank area (not on a breakpoint) in the Breakpoint List window and choose
Enable All or Disable All.

3. To enable or disable a breakpoint group, right-click a blank area (not on a breakpoint) in the Breakpoint List window and
choose Enable Group or Disable Group.

Tip: Press the Ctrl

key while clicking a breakpoint in the Code Editor gutter to toggle between enabled and disabled. Disabling a breakpoint or
breakpoint group prevents it from pausing execution, but retains the breakpoint settings, so that you can enable it later.

To create a conditional breakpoint

1. Choose Run Add Breakpoint and select the type of breakpoint you want from the submenu.

2. Complete the fields in the dialog box as described in the procedure given earlier for that breakpoint type.

3. In the Condition field, enter a conditional expression to be evaluated each time this breakpoint is encountered during
program execution. The breakpoint pauses execution when the expression evaluates to True.

4. Complete other fields as appropriate.

5. Click OK.

Conditional breakpoints are useful when you want to see how your program behaves when a variable falls into a certain range or
what happens when a particular flag is set.

If the conditional expression evaluates to true (or not zero), the debugger pauses the program at the breakpoint location. If the

Setting and Modifying Breakpoints RAD Studio (Common) 2.2 Debugging Procedures

120

2

expression evaluates to false (or zero), the debugger does not stop at the breakpoint location.

To associate actions with a breakpoint

1. On the Breakpoint List, right-click the breakpoint and choose Breakpoint Properties.

2. Click Advanced to display additional options.

3. Check the actions that you want to occur when the breakpoint is encountered. For example, you can specify an expression to
be evaluated and write the result of the evaluation to the Event Log.

4. Click OK.

To change the color of the text at the execution point or the color of breakpoints

1. Choose Tools Options Editor Options Color.

2. In the code sample window, select the appropriate language tab. For example, to change the breakpoint color for Delphi code,
select the Delphi tab.

3. Scroll the code sample window to display the execution and breakpoint icons in the left gutter of the window.

4. Click anywhere on the execution point or breakpoint line that you want to change.

5. Use the Foreground Color and Background Color dropdown lists to change the colors associated with the selected
execution point or breakpoint.

6. Click OK.

Note: You can also set breakpoints in the Breakpoint List

, the CPU window (and the Disassembly view), the Call Stack view, and the Modules window.

See Also

Add Address Breakpoint or Add Data Breakpoint dialog box (see page 938)

Add Module Load Breakpoint dialog box (see page 1019)

Add Source Breakpoint dialog box (see page 940)

Breakpoint List window (see page 1019)

CPU window (see page 1022)

Modules window (see page 1028)

Call Stack window (see page 1021)

2.2.6 Debugging VCL for .NET Source Code

To debug VCL for .NET source code, you must set certain project options that are not needed when debugging other types of
applications. The options are off by default and must be specifically set.

To enable options for debugging VCL for .NET source code

1. Open a VCL for .NET project.

2. Choose Project Options Compiler.

3. Check the Use debug DCUILs check box.

4. Click OK.

5. Select any Borland-produced assembly under References in the Project Manager.

2.2 Debugging Procedures RAD Studio (Common) Debugging VCL for .NET Source Code

121

2

6. Right-click the assembly and choose Link in Delphi Units. This sets the Link Units property to True in the Object Inspector.

7. Repeat the previous two steps for each CodeGear assembly that you want to debug.

You are now able to debug VCL for .NET source code.

Tip: You can use this procedure to debug VCL for .NET assemblies produced by a third party if the debug DCUILs for those
assemblies are available.

See Also

Linking Delphi Units Into an Application (see page 111)

.NET Assemblies (see page 900)

Compiler (see page 831)

Project Manager (see page 1038)

2.2.7 Using Tooltips During Debugging

When you debug an application, you can display the values of members within a watched object whose type is a complex data
object (such as a class, record, or array). These values display in the code editor window when you expand a watched object.
Additionally, you can expand the elements within an object, displaying its sub-elements and their values. You can expand all
levels in the object. Members are grouped by ancestor.

To expand tooltips during debugging

1. Create a new VCL for Win32 application or open an existing application.

2. Choose Project Options Compiler and verify that the Use debug DCUs option is selected.

3. Choose Tools Options Editor Options Code Insight and verify that the Tooltip expression evaluation option is
selected.

4. Choose Run Step Over.

Tip: Alternatively, press F8

. This opens the Code page of the main source file for the project.

5. Choose Run Step Over again. This initializes the project.

6. Move the cursor over the Application keyword. This displays the tooltip in a single block.

7. Click the + next to the Application keyword within the tooltip. The tooltip expands to a scrollable box that contains each child
property and its value. The + appears next to each property that has one or more child properties. You can expand any
member to display properties and values hierarchically within the tooltip.

See Also

Debugging Applications (see page 10)

Compiler (see page 831)

Code Insight (see page 988)

2.2.8 Inspecting and Changing the Value of Data Elements

The Debug Inspector lets you inspect data elements by automatically formatting the type of data it is displaying. The Debug

Inspecting and Changing the Value of Data RAD Studio (Common) 2.2 Debugging Procedures

122

2

Inspector is especially useful for examining compound data objects, such as arrays and linked lists. Because you can inspect
individual items displayed in the Debug Inspector, you can perform a walkthrough of compound data objects by opening a
Debug Inspector on a component of the compound object.

Note: The Debug Inspector

is only available when the process is stopped in the debugger.

To inspect a data element directly from the Code Editor

1. In the Code Editor, place the insertion point on the data element that you want to inspect.

2. Right-click and choose Debug Inspect to display the Debug Inspector.

To inspect a data element from the menu

1. Choose Run Inspect to display the Inspect dialog box.

2. In the Inspect dialog box, type the expression you want to inspect.

3. Click OK. The Debug Inspector is displayed.

Unlike watch expressions, the scope of a data element in the Debug Inspector is fixed at the time you evaluate it. If you use the
Inspect command from the Code Editor, the debugger uses the location of the insertion point to determine the scope of the
expression you are inspecting. This makes it possible to inspect data elements that are not within the current scope of the
execution point.

If you use Run Inspect, the data element is evaluated within the scope of the execution point.

If the execution point is in the scope of the expression you are inspecting, the value appears in the Debug Inspector. If the
execution point is outside the scope of the expression, the value is undefined and the Debug Inspector becomes blank.

To view members of the object you are inspecting

1. Click the Data tab to view strings, boolean values, and other values for such things as variable name, expression, and owner.

Tip: If you want to see the hexadecimal representation of a string, sub-inspect the string value in the Debug Inspector

.

2. Click the Methods tab to view all of the methods that are members of the object's class.

Tip: If you want to see the return type for any method, select the method and look at the status bar of the Debug Inspector

, where the syntax line for the method, including the return type is displayed.

3. Click the Properties tab to view all of the properties for the active object.

4. Click any property name to see its type displayed in the status bar of the Debug Inspector.

5. Click the question mark (?) icon to see the actual value for that property at this point of the execution of the application.

To change the value of a data element

1. In the Debug Inspector, select a data element that has an ellipsis (…) next to it. The ellipsis indicates that the data element
can be modified.

2. Click the ellipsis (…), or right-click the element and choose Change.

3. Type a new value, then click OK.

To inspect local variable values

1. While running in Debug mode, double-click any variable that appears in the Local Variables window. This displays the
Debug Inspector for that local variable.

2. Inspect the variable's value. Change the value by clicking the button with an ellipsis (…) on it.

2.2 Debugging Procedures RAD Studio (Common) Modifying Variable Expressions

123

2

2.2.9 Modifying Variable Expressions

After you have evaluated a variable or data structure item, you can modify its value. When you modify a value through the
debugger, the modification is effective for the program run only. Changes you make through the Evaluate/Modify dialog box do
not affect your source code or the compiled program. To make your change permanent, you must modify your source code in the
Code Editor, then recompile your program.

To change the value of an expression

1. Choose Run Evaluate/Modify.

2. Specify the expression in the Expression edit box. To modify a component property, specify the property name, for example,
this.button1.Height or Self.button1.Height.

3. Enter a value in the New Value edit box. The expression must evaluate to a result that is assignment-compatible with the
variable you want to assign it to. Typically, if the assignment would cause a compile or runtime error, it is not a legal
modification value.

4. Choose Modify. The new value is displayed in the Result box. You cannot undo a change to a variable after you choose
Modify. To restore a value, however, you can enter the previous value in the Expression box and modify the expression
again.

Note: You can change individual variables or elements of arrays and data structures, but you cannot change the contents of
an entire array or data structure with a single expression.

Warning: Modifying values (especially pointer values and array indexes), can have undesirable effects because you can
overwrite other variables and data structures. Use caution whenever you modify program values from the debugger.

2.2.10 Preparing a Project for Debugging

While most debugging options are set on by default, you can use the following procedures to review and change those options.
There are both general IDE options and project specific options. The project specific options vary based on the active project
type, for example, Delphi, Delphi .NET, or C#.

To activate the integrated debugger

1. Choose Tools Options Debugger Options.

2. Select the Integrated Debugging option.

3. Click OK.

4. Optionally review the settings on the other debugging pages.

To set debug options

1. Choose Project Options.

2. Review the debugging options on the various pages of the Project Options dialog box. In particular, review the following
pages: Compiler, Linker, Directories/Conditionals, Version Info, and Debugger. Note that not all pages are available for
all project types. For example, the Version Info page is only displayed for Delphi Win32 projects.

3. Click OK.

Preparing a Project for Debugging RAD Studio (Common) 2.2 Debugging Procedures

124

2

See Also

Debugger Options (see page 836)

2.2.11 Remote Debugging: Metaprocedure

Remote debugging lets you debug a RAD Studio application running on a remote computer. Once the remote debug server is
running on the remote computer, you can use RAD Studio to connect to that computer and begin debugging.

Use the following set of procedures to debug an application running on a remote machine

1. To enable debugging on a machine without the full IDE installation, see Installing a Debugger on a Remote Machine (see
page 126)

2. To connect the local machine to the remote machine, see , Establishing a Connection for Remote Debugging (see page
127)

3. To generate program files to be copied to the remote machine, see , Preparing Files for Remote Debugging (see page 128)

See Also

Remote Debugging Overview

2.2.12 Installing, Starting, and Stopping the Remote Debug
Server

Remote debugging lets you debug a RAD Studio application running on a remote computer. Once the remote debug server is
running on the remote computer, you can use RAD Studio to connect to that computer and begin debugging.

Prerequisites and security considerations for remote debugging

• The local and remote computers must be connected through TCP/IP.

• All of the files required for debugging the application must be available on the remote computer before you begin debugging.
This includes executables, DLLs, assemblies, data files, and PDB (debug) files.

• In addition to the port that the remote debug server listens on, a connection is opened for each application that is being
debugged. Additional port numbers are chosen dynamically by Windows; a firewall that only allows connections to the
listening port will prevent the remote debugger from working.

Warning: The connection between RAD Studio and the remote debug server is a simple TCP/IP socket, with neither
encryption nor authentication support. Therefore, the remote debug server should not be run on a computer that can be
accessed over the network by untrusted clients.

To install and start the remote debug server

1. If RAD Studio is installed on the remote computer, skip to step 4. In this case, the remote debug server (rmtdbg105.exe) is
already available, by default, at C:\Program Files\CodeGear\RAD Studio\5.0\Bin.

2. Copy rmtdbg105.exe from the RAD Studio\bin directory on your local computer to the directory of your choice on the
remote computer. If you are debugging a managed application, also copy dbkpro105.dll

3. If you are debugging a managed application, register dbkpro105.dll on the remote computer by running the
regsvr32.exe registration utility. For example, on Windows XP, enter C:\Windows\System32\regsvr32.exe
dbkdebugproide100.bpl at the command prompt.

4. On the remote computer, run rmtdbg105.exe using the following syntax: rmtdbg105.exe [-listen

2.2 Debugging Procedures RAD Studio (Common) Installing, Starting, and Stopping the

125

2

[hostname:]port] where:

1. hostname is an optional host name or TCP/IP address for binding to a particular host, for example, somehost or
127.0.0.1. If you specify hostname, you must also specify :port.

2. port is an optional (required if hostname is specified) port number or standard protocol name, for example, 8000 or ftp. If
omitted, 64447 is used as the port number. Examples:

3. rmtdbg105.exe

4. rmtdbg105.exe -listen 8000

5. rmtdbg105.exe -listen somehost:8000

6. rmtdbg105.exe -listen 127.0.0.1:8000

After the remote debug server is started, its icon appears in the Windows taskbar.

To shut down the remote debug server

1. On the remote computer, in the Windows taskbar, right-click the CodeGear Remote Debugger Listener icon.

2. In the shortcut menu, choose Exit.

Shutting down the remote debug server does not affect active debugging sessions.

See Also

Overview of Remote Debugging (see page 12)

Establishing a Connection for Remote Debugging (see page 127)

Preparing Files for Remote Debugging (see page 128)

2.2.13 Installing a Debugger on a Remote Machine

To debug a project on a machine that does not have RAD Studio installed, you must install the remote debugger executable
files. You can install these files either directly from the installation disk or by copying them from a machine that has RAD Studio
installed.

To install the remote debugger

1. Use the installation disk if it is available.

2. Use files from the machine that has the IDE installed if the installation disk is not available.

To install the remote debugger from the installation disk

1. Insert the installation disk into the remote machine.

2. Choose Install Remote Debugger.

3. Follow the instructions provided by the wizard.

To install the remote debugger if the installation disk is not available

1. Create a directory on the remote machine for the installation files.

2. Locate the following files on the local machine (by default, the files are in C:\Program Files\CodeGear\RAD
Studio\5.0\Bin):

• rmtdbg105.exe

• bccide.dll

• bordbk105.dll

Installing a Debugger on a Remote Machine RAD Studio (Common) 2.2 Debugging Procedures

126

2

• bordbk105N.dll

• comp32x.dll

• dbkpro100.dll

• DCC100.DLL

3. Copy the files from your local machine to the directory you created on the remote machine.

4. On the remote computer, register bordbk105.dll and bordbk105n.dllby running the regsvr32.exe registration utility.
For example, on Windows XP, enter C:\Windows\System32\regsvr32.exe bordbk105.dll at the command prompt,
then enter C:\Windows\System32\regsvr32.exe bordbk105n.dll.

5. If you are debugging an ASP.NET application, copy Borland.dbkasp.dll to the Install\GlobalAssemblyCache directory on the
remote machine. If you are debugging an ASP.NET application, register the Borland.dbkasp.dll in the GlobalAssemblyCache
using the Microsoft .NET gacutil.exe utility. For example, on Windows XP with Microsoft .NET Framework SDK, enter
C:\Program Files\Microsoft.NET\SDK\v1.1\Bin\gacutil Borland.dbkasp.dll.

See Also

Overview of Remote Debugging (see page 12)

Establishing a Connection for Remote Debugging (see page 127)

Preparing Files for Remote Debugging (see page 128)

2.2.14 Establishing a Connection for Remote Debugging

You must establish a TCP/IP connection between the local and remote machines in preparation for remote debugging. This
connection uses multiple ports that are chosen dynamically by Windows. The remote debug server listens on one port, and a
separate port is opened for each application that is being debugged. A firewall that only allows connections to the listening port
will prevent the remote debugger from working.

Note: If the remote machine uses the firewall included with Windows XP service pack 2, you will receive a message asking
whether CodeGear remote debugging service should be allowed. You must indicate that this is allowed.

Warning: The connection between RAD Studio and the remote debug server is a simple TCP/IP socket, with neither encryption
nor authentication support. Therefore, the remote debug server should not be run on a computer that can be accessed over the
network by untrusted clients.

To connect the local machine and the remote machine

1. Ensure that the remote debugger is installed on the remote machine.

2. Ensure that the executable files and symbol files (.tds. .rsm and .pdb) have been copied to the remote machine.

3. On the remote machine, start rmtdbg105.exe with the -listen argument. rmtdbg105.exe -listen This starts the remote
debugger's listener and directs it to wait for a connection from your host machine's IDE.

4. On the local machine, choose Run Attach to Process. This displays the Attach to Process dialog.

5. Specify the host name or TCP/IP address for the remote machine, then click Refresh. A list of processes running on the
remote machine is displayed. This verifies the connectivity between the local and remote machines.

6. On the local machine, choose Run Load Process Remote. This displays the Remote page of the Load Process dialog.

7. In the Remote path field, specify the full path for the directory on the remote machine into which you copied the executable
files and symbol files. The name of the executable must be included. For example, if you are debugging a program1.exe, and
you copy this to a directory named RemoteDebugFiles\Program1 on the remote machine, specify
C:\RemoteDebugFiles\Program1\program1.exe.

8. In the Remote host field, specify the host name or TCP/IP address for the remote machine.

2.2 Debugging Procedures RAD Studio (Common) Establishing a Connection for Remote

127

2

9. Click the Load button. This connects the IDE on the local machine to the debugger on the remote machine.

Once this connection is established, you can use the IDE on the local machine to debug the application as it runs on the remote
machine.

Note: You cannot interact directly with the remote application through the remote debugger. For interactive debugging, you
can establish a remote desktop connection.

See Also

Overview of Remote Debugging (see page 12)

Installing a Debugger on a Remote Machine (see page 126)

Preparing Files for Remote Debugging (see page 128)

Debugger (see page 836)

Linker (see page 840)

2.2.15 Preparing Files for Remote Debugging

Executable files and symbol files must be copied to the remote machine after they are compiled. You must set the correct
options on your local machine in order to generate these files.

To prepare files for debugging on a remote machine

1. Open the project on your local machine.

2. For Delphi, choose Project Options Linker and verify that the Include remote debug symbols option is checked. This
directs the compiler to generate a symbol file. The following extensions are used in symbol files (for Delphi projects):

Language Debug symbol file extension

Delphi for Win32 .rsm

Delphi for .NET .rsm and .pdb

C++ .tds

C# .pdb

3. Compile the project on your local machine.

4. Copy the executable files and symbol files for the project to the remote machine.

5. Choose Run Load Process

6. Specify the directory into which you copied the symbol files in the Debug symbols search path field.

7. Click OK.

See Also

Overview of Remote Debugging (see page 12)

Installing a Debugger on a Remote Machine (see page 126)

Establishing a Connection for Remote Debugging (see page 127)

Setting the Search Order for Debug Symbol Tables (see page 129)

Debugger Options (see page 836)

Linker (see page 840)

Preparing Files for Remote Debugging RAD Studio (Common) 2.2 Debugging Procedures

128

2

Symbol Tables (see page 845)

2.2.16 Setting the Search Order for Debug Symbol Tables

Symbol tables are used internally during debugging. By default, RAD Studio locates and uses all symbol tables available.
However, you can control the order in which these symbol tables are searched. You can also limit the search to specific symbol
tables, which can speed up the debugging process.

The extensions for symbol table files vary by personality.

• Delphi Win32, does not use external symbol files because the compiler holds the symbols tables in memory. However, if you
are debugging a remote application, you must generate symbol files with the .RSM extension.

• Delphi.NET, VB.NET and C# symbol files use the .PDB extension.

• C++ symbol files use the .TDS extension. However, if debug information is contained in the PE file, external symbol tables are
not used.

To set the order in which symbol tables are searched

1. Specify the general project search path.

2. Specify the global path for all projects.

3. Specify the language-specific path for the project.

4. Specify the language-specific global path.

To specify the general project search path

1. Choose Project Options Debugger Symbol Tables.

2. In the Debug symbols search path field, type or navigate to the path to the symbols table that you want the debugger to use.

Note: If you want to limit the search to specific symbol tables, proceed to the next step. If you want the debugger to search all
paths, click OK

to finish specifying the general project search path.

3. Uncheck the Load all symbols check box.

4. Click New. The Add Symbol Table Search Path dialog displays.

5. Enter the name of the module you are debugging and one or more paths that contain the symbol table for that module. If you
specify multiple paths, use a semicolon to separate them.

6. Click OK. The Add Symbol Table Search Path dialog closes and the module and path you added are displayed in the table.

Note: You can use this list to specify modules and paths that the debugger is to avoid searching by using a blank path and
checking the Load symbols for unspecified modules

check box.

7. Click OK.

To specify the global path for all projects (for Delphi and C++ only)

1. Choose Tools Options Debugger Options CodeGear Debuggers.

2. In the Debug symbols search path field, type or navigate to the path to the symbols table that you want the debugger to use.

3. Click OK.

To specify the language-specific path for the project

1. Choose Project Options Directories/Conditionals . The Directories/Conditionals page contains four fields in which you

2.2 Debugging Procedures RAD Studio (Common) Setting the Search Order for Debug

129

2

can specify a path for Win32 and .NET symbol tables. They are searched in the following order during debugging:

1. Search path

2. Package output directory

3. DCP output directory

4. Output directory

2. In each of these fields, type or navigate to the path to the symbols table that you want the debugger to use.

3. Click OK.

To specify global paths

1. Choose Tools Options Delphi Options Library (Win32 or NET). Depending on the language, the Library page contains
two or three fields in which you can specify a path for Win32 and .NET symbol tables. They are searched in the following
order during debugging:

1. Browsing path

2. DCP output directory (not used for C++)

3. Package output directory

2. In each of these fields, type or navigate to the path to the symbols table that you want the debugger to use.

3. Click OK.

See Also

Overview of Debugging (see page 10)

Overview of Remote Debugging (see page 12)

Symbol Tables (see page 845)

Add Symbol Table Search Path (see page 826)

CodeGear Debuggers (see page 986)

Directories/Conditionals (see page 838)

Library (see page 991)

2.2.17 Resolving Internal Errors

The error message, Internal Error: X1234 indicates that the compiler has encountered a condition, other than a syntax
error, that it cannot successfully process.

Tip: Internal error numbers indicate the file and line number in the compiler where the error occurred. This information may help
Technical Support services track down the problem. Be sure to record this information and include it with your internal error
description.

To resolve an internal error

1. If the error occurs immediately after you have modified code in the editor, go back to the place where you made your changes
and make a note of what was changed.

2. If you can undo or comment out the change and then recompile your application successfully, it is possible that the
programming construct that you introduced exposed a problem with the compiler. If so, follow the procedure on reviewing
code below.

Resolving Internal Errors RAD Studio (Common) 2.2 Debugging Procedures

130

2

If the problem still exists

1. Delete all of the .dcuil files associated with your project.

2. Close your project completely using File Close All.

3. Reopen your project. This will clear the unit cache maintained in the IDE. Alternatively, you can close the IDE and restart.

4. Another option is to try and recompile your application using the Project Build option so that the compiler will regenerate all
of your dcuils.

5. If the error is still present, exit the IDE and try to compile your application using the command line version of the compiler
(dccil.exe) from a command prompt. This will remove the unit caching of the IDE from the picture and could help to resolve
the problem.

Review your code at the last modification point

1. If the problem still exists, go back to the place where you last made modifications to your file and review the code. Typically,
most internal errors can be reproduced with only a few lines of code and frequently the code involves syntax or constructs that
are rather unusual or unexpected. If this is the case, try modifying the code to do the same thing in a different way. For
example, if you are typecasting a value, try declaring a variable of the cast type and do an assignment first.

begin
 if Integer(b) = 100 then...
end;
var
 a: Integer;
begin
 a := b;
 if a = 100 then...
end;

Here is an example of unexpected code that you can correct to resolve the error:

var
 A : Integer;
begin
 { Below the second cast of A to Int64 is unnecessary; removing it can avoid the Internal
Error. }
 if Int64(Int64(A))=0 then
end;

2. In this case, the second cast of A to an Int64 is unnecessary and removing it corrects the error. If the problem seems to be a
while...do loop, try using a for...do loop instead. Although this does not actually solve the problem, it may help you to
continue work on your application. If this resolves the problem, it does not mean that either while loops or for loops are
broken but more likely it means that the manner in which you wrote your code was unexpected.

3. Once you have identified the problem, we ask that you create the smallest possible test case that still reproduces the error
and submit it to Borland.

Other techniques for resolving internal errors

1. If error seems to be on code contained within a while...do loop try using a for...do loop instead or vice versa.

2. If it uses a nested function or procedure (a procedure/function contained within a procedure/function) try unnesting them.

3. If it occurs on a typecast look for alternatives to typecasting like using a local variable of the type you need.

4. If the problem occurs within a with statement try removing the with statement altogether.

5. Try turning off compiler optimizations under Project Options Compiler.

When all else fails

1. Typically, there are many different ways to write any single piece of code. You can try and resolve an internal error by
changing the code. While this may not be the best solution, it may help you to continue to work on your application. If this
resolves the problem, it does not mean that either while loops or for loops are broken but perhaps that the manner in which
you have written your code was unexpected and therefore resulted in an error.

2.2 Debugging Procedures RAD Studio (Common) Resolving Internal Errors

131

2

2. If you've tried your code on the latest release of the compiler and it is still reproducible, create the smallest possible test case
that will still reproduce the error and submit it to CodeGear. If it is not reproducible on the latest version, it is likely that the
problem has already been fixed.

Configuring the IDE to avoid internal errors

1. Create a single directory where all of your .dcpil files (precompiled package files) are placed. For example, create a
directory called C:\DCPIL and under Tools Environment Options select the Library tab and set the DCPIL output directory
to C:\DCPIL. This setting will help ensure that the .dcpil files the compiler generates are always up-to-date. This is useful
when you move a package from one directory to another. You can create a .dcuil directory on a per-project basis using
ProjectOptions Directories/Conditionals Unit output directory.

2. The key is to use the most up-to-date versions of your .dcuil and .dcpil files. Otherwise, you may encounter internal
errors that are easily avoidable.

See Also

Runtime errors (see page 509)

Fatal errors (see page 511)

I/O errors (see page 510)

Operating system errors (see page 512)

List of all Delphi compiler errors and messages (see page 311)

Resolving Internal Errors RAD Studio (Common) 2.2 Debugging Procedures

132

2

2.3 Deploying Applications
This section provides how-to information on deploying applications. There are two ways to deploy an application — manually, or
using the Deployment Manager. Currently, the Deployment manager is only for use with ASP.NET applications. Manual
procedures for deploying applications are described in the appropriate Win32 area in this help system (for example, Delphi,
ECO, or COM).

Topics

Name Description

Deploying ASP.NET applications (see page 133) The Deployment Manager can be used with ASP.NET applications to collect all
of the .aspx, asax, Web.config and other assembly files, as well as related
assemblies.

Deploying the AdoDbx Client (see page 134) You can deploy AdoDbx Client applications in several ways.

2.3.1 Deploying ASP.NET applications

The Deployment Manager can be used with ASP.NET applications to collect all of the .aspx, asax, Web.config and other
assembly files, as well as related assemblies.

To deploy an ASP.NET application

1. Open the ASP.NET project that you want to deploy. In the Project Manager window, right-click the Deployment option under
the library that corresponds to your project name.

2. Select New ASP.NET Deployment. This opens the Deployment Manager window. There are three main categories of files:
ASP.NET Markup Files, Executables, and Config Files.

3. The strong name assemblies Borland.Data.Common.dll and Borland.Data.Provider.dll have traditionally existed in the Global
Assembly Cache (GAC). Add these two files to the project directory by right-clicking References under the library that
corresponds to your project name and then selecting Add Reference. Click each of the file names and then click Add
Reference. After both references appear in the lower section of the Add Reference window, choose the OK button.

4. Open the References node of the library tree, and the new .dll files are listed. Select each of the .dll files that you added in
the previous step, and set the Copy Local Assembly Property in the Project Manager to True.

5. Right-click References again to add your database-specific .dll file(s) to the assembly. For instance, if you are running
MySQL Server, you would add the Borland.Data.Mysql driver and set the Copy Local Assembly Property in the Project
Manager to True.

6. Recompile your project.

7. Highlight your deployment window again under the Deployment option of the Project Manager window.

8. Browse or enter a path to the target machine, where you want to deploy your application. Then click the icon next to each file
name. This moves each file to the 'Destination' side of the window. When all of your source files appear on the 'Destination'
side of the window, they have been deployed to the target computer.

See Also

Deploying Applications (see page 19)

Using the Deployment Manager

2.3 Deploying Applications RAD Studio (Common) Deploying the AdoDbx Client

133

2

2.3.2 Deploying the AdoDbx Client

You can deploy AdoDbx Client applications in several ways.

To deploy updating machine.config

1. Register the following files in the Global Assembly Cache (GAC) or have them in the same directory as the project .exe:

• Borland.Data.AdoDbxClient.dll

• Borland.Data.DbxCommonDriver.dll

• Borland.Data.DbxDynalinkDriver.dll

• Borland.Data.DbxReadOnlyMetaData.dll

• Borland.Delphi.dll

• Borland.VclDbRtl.dll

2. The Microsoft .NET machine.config file must have an entry added for the provider. Locate the machine.config file in the
Windows\Microsoft.NET directory and add the following entry to the <DbProviderFactories> section:

<add name="AdoDbx Data Provider"
invariant="Borland.Data.AdoDbxClient"
description=".Net Framework Data Provider for dbExpress Drivers"
type="Borland.Data.TAdoDbxProviderFactory, Borland.Data.AdoDbxClient,
Version=11.0.5000.0,Culture=neutral,PublicKeyToken=91d62ebb5b0d1b1b"/>

3. The machine.config file must have an entry added for the connection string. Add an entry to the <connectionStrings>
section similar to this one for an Interbase connection:

<add name="IBConnection"
connectionString="SomeName=IBCONNECTION;
drivername=Interbase;
database=someDatabasePathName\database.gdb;
rolename=RoleName;user_name=UserName;password=password;
sqldialect=3;localecode=0000;blobsize=-1;commitretain=False;waitonlocks=True;
interbase transisolation=ReadCommited;
trim char=False"
providerName="Borland.Data.AdoDbxClient"/>

To deploy without updating machine.config

1. An application can also deploy without updating the machine.config by directly using the TAdoDbxProviderFactory class in
the Borland.Data.AdoDbxClientProvider unit.

2. Register the following files in the Global Assembly Cache (GAC) or have them in the same directory as the project .exe:

• Borland.Data.AdoDbxClient.dll

• Borland.Data.DbxCommonDriver.dll

• Borland.Data.DbxDynalinkDriver.dll

• Borland.Data.DbxReadOnlyMetaData.dll

• Borland.Delphi.dll

• Borland.VclDbRtl.dll

3. Your project needs to reference Borland.Data.AdoDbxClient.dll. Click Project Add Reference. In the Add Reference
dialog, click Browse and select the file Borland.Data.AdoDbxClient.dll, which is in the Program Files\CodeGear\RAD
Studio\5.0\bin directory.

4. Create a <projectname>.exe.config file. For example, if the project is named Project1, the file name is Project1.exe.config.
Add the following text to the file:

Deploying the AdoDbx Client RAD Studio (Common) 2.3 Deploying Applications

134

2

<configuration>
 <system.data>
 <DbProviderFactories>
 <add name="AdoDbx Data Provider"
invariant="Borland.Data.AdoDbxClient"
description=".Net Framework Data Provider for dbExpress Drivers"
type="Borland.Data.TAdoDbxProviderFactory, Borland.Data.AdoDbxClient, Version=11.0.5000.0,
Culture=neutral, PublicKeyToken=a91a7c5705831a4f"/>
 </DbProviderFactories>
 </system.data>
 <connectionStrings>
 <add name="IBConnection"
connectionString="SomeName=IBCONNECTION;
drivername=Interbase;
database=someDatabasePathName\database.gdb;
rolename=RoleName;user_name=UserName;password=password;
sqldialect=3;localecode=0000;blobsize=-1;commitretain=False;waitonlocks=True;
interbase transisolation=ReadCommited;
trim char=False"
providerName="Borland.Data.AdoDbxClient"/>
 </connectionStrings>
</configuration>

Note: Although this approach makes deployment easier, the TAdoDbxProviderFactory

can only create ADO.NET 2.0 objects for the AdoDbx Client provider.

See Also

AdoDbx Client Overview

2.3 Deploying Applications RAD Studio (Common) Deploying the AdoDbx Client

135

2

2.4 Editing Code Procedures
This section provides how-to information on using the features of the Code Editor.

Topics

Name Description

Using Code Folding (see page 137) Code folding lets you collapse (hide) and expand (show) your code to make it
easier to navigate and read. RAD Studio generates code that contains code
folding regions, but you can add your own regions as needed.

Creating Live Templates (see page 138) While using the Code Editor, you can add your favorite code constructs to the
Template Manager to create a library of the templates you use most often.

Creating Template Libraries (see page 138) Template libraries are custom project templates that specify how a project should
look and what it should contain. When you create a custom template library, it is
placed in the New Files dialog box where is accessible for creating a project
using File New.
You can create template library projects from scratch, or you can use projects
previously created by you or other developers as the basis for template libraries.
To use an existing project, you simply create an XML file with the extension
.bdstemplatelib which describes the project and is used to create the
template library using that... more (see page 138)

Customizing Code Editor (see page 141) CodeGear RAD Studio lets you customize your Code Editor by using the
available settings to modify keystroke mappings, fonts, margin widths, colors,
syntax highlighting, and indentation styles.

Finding References (see page 141) The Find References refactoring feature helps you locate any connections
between a file containing a symbol you intend to rename and other files where
that symbol also appears. A preview allows you to decide how you want the
refactoring to operate on specific targets or on the group of references as a
whole.

Finding Units and Using Namespaces (Delphi, C#) (see page 142) Depending on which language you are using, you can use a refactoring feature
to locate namespaces or units. If you are using C#, you can use the Use
Namespace command to import namespaces into your code files, based on an
object in your code. If you are using Delphi, you can use the Find Unit command
to locate and add units to your code file based on objects in your code.
The Use Namespace dialog appears when you select a C# object name and
select the Use Namespace command. The import operation attempts to identify
and display the most likely... more (see page 142)

Recording a Keystroke Macro (see page 142) You can record a series of keystrokes as a macro while editing code. After you
record a macro, you can play it back to repeat the keystrokes during the current
IDE session.

Refactoring Code (see page 143) Refactoring refers to the capability to make structural changes to your code
without changing the functionality of the code. Code can often be made more
compact, more readable, and more efficient through selective refactoring
operations. RAD Studio provides a set of refactoring operations that can help you
re-architect your code in the most effective and efficient manner possible.
Refactoring operations are available for Delphi, C#, and C++. However, the
refactorings for C# and C++ are limited in number. You can access the
refactoring commands from the Refactoring menu or from a right-click context
menu while in the Code Editor.... more (see page 143)

Using Bookmarks (see page 145) You can mark a location in your code with a bookmark and jump directly to it from
anywhere in the file. You can set up to ten bookmarks. Bookmarks are preserved
when you save the file and available when you reopen the file in the Code Editor.

Using Class Completion (see page 145) Class completion automates the definition of new classes by generating skeleton
code for Delphi class members that you declare.

Using Code Insight (see page 146) Code Insight (sometimes referred to as Code Completion) is a set of features
in the Code Editor and the HTML Tag Editor that provide code completion,
display code parameter lists, and show tool tips for expressions and symbols.
The hint window list box filters out all interface method declarations that are
referred to by property read or write clauses. The list box displays only properties
and stand-alone methods declared in the interface type.

RAD Studio (Common) 2.4 Editing Code Procedures

136

2

Using Live Templates (see page 148) Live templates are reusable code statements that are accessible from the Code
Editor. You can insert pre-defined code segments into your code or add your
own code snippets to the Template window.
Note: If a template has one or more jump points that are editable, it will
automatically enter SyncEdit mode when you are inserting it into your code. The
jump points allow you to navigate between different areas of the template, using
the Tab
key and SHIFT+Tab keys. Pressing ESC, Enter,(or pressing theTab key) from
the last jump point exits SyncEdit mode and puts the... more (see page 148)

Using the History Manager (see page 149) The History Manager lets you view and compare versions of a file, including
multiple backup versions, saved local changes, and the edit buffer of unsaved
changes.
For simplicity, the following procedures uses a small text file to introduce the
functionality of the History Manager. However, the History Manager is available
for most files, including source code and HTML files.

Using Sync Edit (see page 150) The Sync Edit feature lets you simultaneously edit indentical identifiers in
selected code. For example, in a procedure that contains three occurrences of
label1, you can edit just the first occurrence and all the other occurrences will
change automatically.

2.4.1 Using Code Folding

Code folding lets you collapse (hide) and expand (show) your code to make it easier to navigate and read. RAD Studio
generates code that contains code folding regions, but you can add your own regions as needed.

To collapse and expand code

1. In the Code Editor, click the minus (-) sign to the left of a code block to collapse the code.

2. Click the plus (+) sign to expand the code block.

Tip: To turn off code folding for the current edit session, press and hold Ctrl+Shift

, and then K, and then O. To collapse the nearest code block, press and hold Ctrl+Shift, and then K, and E. To expand
the nearest code block, press and hold Ctrl+Shift, and then K, and U. To expand all code, press and hold Ctrl+Shift
and then press K, and A.

To add a code folding region

1. In the Code Editor, use the following preprocessor directives to surround a block of code:

{$region 'Optional text that appears when the code block is folded'}
.
.
.
{$endregion}
#region Optional text that appears when the code block is folded
.
.
.
#endregion
#pragma region optional text
.
.
.
#pragma end_region

The region is marked with a minus (-) sign.

2. Click the minus sign (-) to collapse the region.

See Also

Customizing Code Editor (see page 141)

2.4 Editing Code Procedures RAD Studio (Common) Using Code Folding

137

2

Using Code Insight (see page 146)

2.4.2 Creating Live Templates

While using the Code Editor, you can add your favorite code constructs to the Template Manager to create a library of the
templates you use most often.

To add a Live Template using the Menu Commands

1. While you are working in the Code Editor, choose File New Other Other Files and then select the Live Template icon.

2. Fill in the template name, description, author, and code language attributes. Then type in the code for your template between
the <![CDATA[]]> tag and the </code> tag.

Note: The Name

and Language fields in the template are required.

3. Choose the Save command from the File pull-down menu in the Code Editor (or type CTRL + S). Your new template now
appears in the IDE tree of the Template Manager window. It is saved, by default, into the
\5.0\Objrepos\code_templates\ directory.

To add a Live Template using the Template Manager window

1. In the Code Editor, choose View Templates.

2. In the Template Manager window, click the New button. This will put an XML outline for a code template in the Code Editor
main window. You can also select code in the editor before you click the New button.

3. Fill in the template name, description, author, and code language attributes. Then type in the code for your template between
the <![CDATA[]]> tag and the </code> tag.

Note: The Name

and Language fields in the template are required.

4. Choose the Save command from the File pull-down menu in the Code Editor (or type CTRL + S). Your new template now
appears in the IDE tree of the Template Manager window. It is saved, by default, in the
\5.0\Objrepos\code_templates\ directory.

See Also

Using Live Templates (see page 148)

Customizing the Code Editor (see page 141)

2.4.3 Creating Template Libraries

Template libraries are custom project templates that specify how a project should look and what it should contain. When you
create a custom template library, it is placed in the New Files dialog box where is accessible for creating a project using
File New.

You can create template library projects from scratch, or you can use projects previously created by you or other developers as
the basis for template libraries. To use an existing project, you simply create an XML file with the extension .bdstemplatelib
which describes the project and is used to create the template library using that project.

Note: When creating a project to use with a template library, the project should be located in a subdirectory that contains no
other projects. Also, all of the files that are in the project should be located within the subdirectory or its child subdirectories.

Creating Template Libraries RAD Studio (Common) 2.4 Editing Code Procedures

138

2

To create a Template Library

1. Create a new project or open an existing project which will be the basis for the custom template library. Make any
modifications to the project to customize it for the template library.

2. Save and close the project.

3. Choose File New Other WebDocuments and double-click the XML File icon.

4. Replace the default contents of the new XML file with the following sample content:

<TemplateLibrary Version="1.0" id="">
 <Name><Name/>
 <Description><Description/>
 <Items>
 <Item id="" Creator="">
 <Name>Name of template library here <Name/>
 <Description>Custom Project Template<Description/>
 <Author><Author/>
 <Icon>MyTemplate\MyTemplateIcon.ico<Icon/>
 <Projectfile>MyTemplate.dproj</Projectfile>
 <DefaultProjectName>MyTemplate<DefaultProjectName/>
 <FilePath>MyTemplate<FilePath/>
 </Item>
 </Items>
</TemplateLibrary>

Important:

• The id="" attribute of the <TemplateLibrary> element should be something unique to avoid conflicts with other template
libraries. A good practice is to include your name or the name of your company as part of the id.

• The Creator="" attribute in the <Item> element specifies which page of the New Items dialog box displays the icon for this
template library. You can put the project icon on a specific page for the type of project it creates. Below are the possible
Creator="" attribute values:

Project Type Item Creator Attribute Value

C++ Projects Creator="CBuilderProjectRepositoryCreator"

Delphi Projects Creator="DelphiProjectRepositoryCreator"

Delphi for .NET Projects Creator="DelphiDotNetProjectRepositoryCreator"

Delphi for ASP .NET Projects Creator="AspDelphiProjectRepositoryCreator"

5. Save the .bdstemplatelib.xml file to a directory above the project directory.

Note: The <FilePath> element in the .bdstemplatelib file indicates the location of the project directory relative to the
location of the .bdstemplatelib file.

6. Edit the.bdstemplatelib.xml content to customize it for your own template library:

• Add the template library name, description, and Creator attribute value.

• Edit the project name, project path information, icon path, and file name. Optionally, you can add your name as author.

• Specify the relative path to the .bdstemplatelib.xml in the <FilePath> value. For example, if your project is in
C:\MyProjects\TemplateLibraries\MyTemplate, and you put the XML file in
C:\MyProjects\TemplateLibraries, the <FilePath> value in the XML file would be
<FilePath>TemplateLibraries\MyTemplate</FilePath>.

7. Choose Tools Template Libraries to open the Template Libraries dialog box.

8. Click the Add button, browse to and select the .bdstemplatelib.xml file you just created, and click Open. The new
template library is added to the list in the Template Libraries dialog box. It is also added to the specified page of the New
Files dialog box. Click OK to close the Template Libraries dialog box.

2.4 Editing Code Procedures RAD Studio (Common) Creating Template Libraries

139

2

To use this template library for creating a new project, choose File New Other, and select your template library in the New
files dialog box.

Example

<TemplateLibrary Version="1.0" id="CompanyXYZASPWebSiteProject">
 <Name>ASPWebSiteProject<Name/>
 <Description>ASP.NET WebSite Project Template<Description/>
 <Items>
 <Item id="ASPWebSiteProject" Creator="AspDelphiProjectRepositoryCreator">
 <Name>ASP.NET WebSite Project<Name/>
 <Description>ASP.NET WebSite<Description/>
 <Author>John Smith<Author/>
 <Icon>ASPWebsiteProject\ASPWebsiteProjectIcon.ico<Icon/>
 <Projectfile>ASPWebSiteProject.dproj</Projectfile>
 <DefaultProjectName>ASPWebSiteProject<DefaultProjectName/>
 <FilePath>ASPWebSiteProject<FilePath/>
 </Item>
 </Items>
</TemplateLibrary>

If you have several related projects, you can use a single .bdstemplatelib template library file to list all the projects.

To combine multiple projects in one template library file

1. Put all the project folders at the same level in the same project sub-folder.

2. Create the .bdstemplatelib template library file at the level above the folder containing all the projects.

3. Add the content for the first project as described above.

4. Add an additional <Item></Item> to the <Items></Items> element for each project in the group, giving each
<Item></Item> a unique id=" attribute.

Example

<TemplateLibrary Version="1.0" id="CodeGearASPWebSiteProject">
 <Name>ASPWebSiteProject<Name/>
 <Description>ASP.NET WebSite Project Template<Description/>
 <Items>
 <Item id="ASPWebSiteProject" Creator="AspDelphiProjectRepositoryCreator">
 <Name>ASP.NET WebSite Project<Name/>
 <Description>ASP.NET WebSite Project<Description/>
 <Author>CodeGear<Author/>
 <Icon>ASPWebsiteProject\ASPWebsiteProjectIcon.ico<Icon/>
 <Projectfile>ASPWebSiteProject.dproj</Projectfile>
 <DefaultProjectName>ASPWebSiteProject<DefaultProjectName/>
 <FilePath>ASPWebSiteProject<FilePath/>
 </Item>
 <Item id="ASPWebSiteProjectMP" Creator="AspDelphiProjectRepositoryCreator">
 <Name>ASP.NET WebSite Project Master Page<Name/>
 <Description>ASP.NET WebSite Project Master Page<Description/>
 <Author>CodeGear<Author/>
 <Icon>ASPWebsiteProjectMP\ASPWebsiteProjectMPIcon.ico<Icon/>
 <Projectfile>ASPWebSiteProjectMP.dproj</Projectfile>
 <DefaultProjectName>ASPWebSiteProjectMP<DefaultProjectName/>
 <FilePath>ASPWebSiteProjectMP<FilePath/>
 </Item>
 <Item id="ASPWebSiteProjectForm" Creator="AspDelphiProjectRepositoryCreator">
 <Name>ASP.NET WebSite Project Information Form<Name/>
 <Description>ASP.NET WebSite Information Form<Description/>
 <Author>CodeGear<Author/>
 <Icon>ASPWebsiteProjectForm\ASPWebsiteProjectFormIcon.ico<Icon/>
 <Projectfile>ASPWebSiteProjectForm.dproj</Projectfile>
 <DefaultProjectName>ASPWebSiteProjectForm<DefaultProjectName/>
 <FilePath>ASPWebSiteProjectForm<FilePath/>
 </Item>
 </Items>

Creating Template Libraries RAD Studio (Common) 2.4 Editing Code Procedures

140

2

</TemplateLibrary>

See Also

Overview of Template Libraries (see page 50)

2.4.4 Customizing Code Editor

CodeGear RAD Studio lets you customize your Code Editor by using the available settings to modify keystroke mappings, fonts,
margin widths, colors, syntax highlighting, and indentation styles.

To customize general Code Editor options

1. Choose Tools Options.

2. Click Editor Options.

3. Select any of the customization options and make modifications.

4. Click OK to apply the modifications to the Code Editor.

See Also

Using Code Folding (see page 137)

Using Code Insight (see page 146)

2.4.5 Finding References

The Find References refactoring feature helps you locate any connections between a file containing a symbol you intend to
rename and other files where that symbol also appears. A preview allows you to decide how you want the refactoring to operate
on specific targets or on the group of references as a whole.

To create a Find References list

1. Open a project.

2. Select an identifier in the Code Editor.

3. Choose Search Find References.

Note: You can also invoke Find References with the keyboard shortcut Shift+Ctrl+Enter

.

4. Double-click a node in the window to go to that location in the Code Editor.

Note: If you continue to perform Find References operations without clearing the results, the new results are appended in
chronological order to the existing results in the window.

To clear results from the Find References window

1. Select a single reference or a node.

Note: No matter which you select, you get the same results. The entire node will be cleared.

2. Click the Refactor Delete icon at the top of the Find References window, to delete the selected item and any item in that

2.4 Editing Code Procedures RAD Studio (Common) Finding References

141

2

result set.

Note: Deleting items from the Find References

window does not delete them from your actual code files or your project.

To clear all results from the Find References window

1. Select any item in the window.

2. Click the Remove All References icon at the top of the Find References window. This action clears all results from the
window.

Note: Deleting items from the Find References

window does not delete them from your actual code files or your project.

See Also

Refactoring Overview (see page 57)

Find References Overview (see page 65)

2.4.6 Finding Units and Using Namespaces (Delphi, C#)

Depending on which language you are using, you can use a refactoring feature to locate namespaces or units. If you are using
C#, you can use the Use Namespace command to import namespaces into your code files, based on an object in your code. If
you are using Delphi, you can use the Find Unit command to locate and add units to your code file based on objects in your code.

The Use Namespace dialog appears when you select a C# object name and select the Use Namespace command. The import
operation attempts to identify and display the most likely namespaces. You can select multiple namespaces to add to the using
clause. The feature works identically in Delphi, although in a Delphi project, the operation attempts to find the appropriate unit
containing the definition of the selected object, then adds the selected unit to the uses clause.

See Also

Refactoring Overview (see page 57)

Refactoring Code (see page 143)

2.4.7 Recording a Keystroke Macro

You can record a series of keystrokes as a macro while editing code. After you record a macro, you can play it back to repeat the
keystrokes during the current IDE session.

To record a macro

1. In the Code Editor, click the record macro button at the bottom of the code window to begin recording.

2. Type the keystrokes that you want to record.

3. When you have finished typing the keystroke sequence, click the stop recording button .

4. To record another macro, repeat the previous steps.

Note: Recording a macro replaces the previously recorded macro.

The macro is now available to use during the current IDE session.

Recording a Keystroke Macro RAD Studio (Common) 2.4 Editing Code Procedures

142

2

To run a macro

1. In the Code Editor, position the cursor in the code where you want to run the macro.

2. Click the macro playback button to run the macro. If the button is dimmed, no macro is available.

2.4.8 Refactoring Code

Refactoring refers to the capability to make structural changes to your code without changing the functionality of the code. Code
can often be made more compact, more readable, and more efficient through selective refactoring operations. RAD Studio
provides a set of refactoring operations that can help you re-architect your code in the most effective and efficient manner
possible.

Refactoring operations are available for Delphi, C#, and C++. However, the refactorings for C# and C++ are limited in number.
You can access the refactoring commands from the Refactoring menu or from a right-click context menu while in the Code
Editor.

The Undo capability is available for all refactoring operations. Some operations can be undone using the standard Undo
(CTRL+Z) menu command, while the rename refactorings provide a specific Undo feature.

To rename a symbol

1. In the Code Editor, click the identifier to be renamed. The identifier can be a method, variable, field, class, record, struct,
interface, type, or parameter name.

2. From either the main menu or the Code Editor context menu, choose Refactor Rename.

3. In the Rename dialog box, enter the new identifier in the New Name field.

4. Leave View references before refactoring checked. If this option is unchecked, the refactoring is applied immediately,
without a preview of the changes.

5. Click OK. The Refactorings dialog box displays every occurrence of the identifier to be changed.

6. Review the proposed changes in the Refactorings dialog box and use the Refactor button at the top of the dialog box to
perform all of the refactorings listed. Use the Remove Refactoring button to remove the selected refactoring from the dialog
box.

To declare a variable

1. In the Code Editor, click anywhere in a variable name that has not yet been declared.

Note: Any undeclared variable will be highlighted with a red wavy underline by Error Insight.

2. From either the main menu or the Code Editor context menu, choose Refactor Declare Variable. If the variable has
already been declared in the same scope, the command is not available.

3. Fill in the Declare New Variable dialog box as needed.

4. Click OK.

The variable declaration is added to the procedure, based on the values you entered in the Declare New Variable dialog box.

To declare a field

1. In the Code Editor, click anywhere in a field name that has not yet been declared.

2. From either the main menu or the Code Editor context menu, choose Refactor Declare Field.

3. Fill in the Declare New Field dialog box as needed.

2.4 Editing Code Procedures RAD Studio (Common) Refactoring Code

143

2

4. Click OK.

The new field declaration is added to the type section of your code, based on the values you entered in the Declare New Field
dialog box.

Note: If the new field conflicts with an existing field in the same scope, the Refactorings

dialog box is displayed, prompting you to correct the conflict before continuing.

To create a method from a code fragment

1. In the Code Editor, select the code fragment to be extracted to a method.

2. From either the main menu or the Code Editor context menu, choose Refactor Extract Method. The Extract Method
dialog box is displayed.

3. Enter a name for the method in the New method name field, or accept the suggested name.

4. Review the code in the Sample extracted code window.

5. Click OK.

RAD Studio moves the extracted code outside of the current method, determines the needed parameters, generates local
variables if necessary, determines the return type, and replaces the original code fragment with a call to the new method.

To convert a string constant to a resource string (for the Delphi language only)

1. In the Code Editor, select the quoted string to be converted to a resource string, for example, in the following code, insert the
cursor into the constant Hello World:

procedure foo;
begin
 writeLn('Hello World');
end;

2. From either the main menu or the Code Editor context menu, choose Refactor Extract Resource String.

Note: You can also use the Shift+Ctrl+L

keyboard shortcut. The Extract Resource String dialog box is displayed.

3. Enter a name for the resource string or accept the suggested name (the Str, followed by the string).

4. Click OK.

The resourcestring keyword and the resource string are added to the implementation section of your code, and the original
string is replaced with the new resource string name.

resourcestring
 strHelloWorld = 'Hello World';

procedure foo;
begin
 writeLn(StrHelloWorld);
end.

To find and add a namespace or unit to the uses clause

1. In the Code Editor, click anywhere in a the variable name whose unit you want to add to the uses clause (Delphi) or the
namespace you want to add to the using clause (C#).

2. From either the main menu or the Code Editor context menu, choose Refactor Find Unit. The Find Unit dialog box
displays a selection list of applicable Delphi units.

Note: If you are coding in C#, the dialog box is called the Use Namespace

dialog box.

3. Select the unit or namespace that you want to add to the uses or using clause in the current scope. You can select as many
units or namespaces as you want.

4. If you are coding in Delphi, choose where to insert the reference, either in the

Refactoring Code RAD Studio (Common) 2.4 Editing Code Procedures

144

2

interface section or in the implementation section.

Note: This choice is not relevant for C# and so the selection is not available when refactoring C# code.

5. Click OK.

The uses or using clause is updated with the selected units or namespaces.

See Also

Refactoring Overview (see page 57)

2.4.9 Using Bookmarks

You can mark a location in your code with a bookmark and jump directly to it from anywhere in the file. You can set up to ten
bookmarks. Bookmarks are preserved when you save the file and available when you reopen the file in the Code Editor.

To set a bookmark

1. In the Code Editor, right-click the line of code where you want to set a bookmark. The Code Editor context menu is
displayed.

2. Choose Toggle Bookmarks Bookmark n, where n is a number from 0 to 9. A bookmark icon is displayed in the left
gutter of the Code Editor.

Tip: To set a bookmark using the shortcut keys, press CTRL+SHIFT

and a number from 0 to 9.

To jump to a bookmark

1. In the Code Editor, right-click to display the context menu.

2. Choose GoTo Bookmarks Bookmark n, where n is a number from 0 to 9.

Tip: To jump to a bookmark using the shortcut keys, press CTRL

and the number of the bookmark. For example, CTRL+1 will jump you to the line of code set at bookmark 1.

To remove a bookmark

1. In the Code Editor, right-click to display the context menu.

2. Choose Toggle Bookmarks Bookmark n, where n is the number of the bookmark you want to remove. The bookmark icon
is removed from the left gutter of the Code Editor.

Tip: To remove all bookmarks from a file, choose Clear Bookmarks

.

2.4.10 Using Class Completion

Class completion automates the definition of new classes by generating skeleton code for Delphi class members that you
declare.

To use class completion

1. In the Code Editor, declare a class in the interface section of a unit. For example, you might enter the following:

2.4 Editing Code Procedures RAD Studio (Common) Using Class Completion

145

2

type TMyButton = class(TButton)
 property Size: Integer;
 procedure DoSomething;
end;

2. Right-click on the class declaration and choose Complete Class at Cursor.

Tip: You can also invoke Class Completion by placing the cursor within the class declaration and pressing CTRL+SHIFT+C

.

Class Completion automatically adds the read and write specifiers to the declarations for any properties that require them, and
then adds skeleton code in the implementation section for each class method.

Tip: You can also use class completion to fill in interface declarations for methods that you define in the implementation
section.

After invoking class completion, the sample code above appears as follows:

type TMyButton = class(TButton)
 private
 FSize: Integer;
 procedure SetSize(const Value: Integer);
 published
 property Size: Integer read FSize write set_Size;
 procedure DoSomething;
end;

The following skeleton code is added to the implementation section:

{ TMyButton }

procedure TMyButton.DoSomething;
begin

end;

procedure TMyButton.SetSize(const Value: Integer);
begin
 FSize := Value;
end;

If your declarations and implementations are sorted alphabetically, class completion maintains their sorted order. Otherwise, new
routines are placed at the end of the implementation section of the unit and new declarations are placed in private sections at the
beginning of the class declaration.

Tip: The Finish Incomplete Properties

option on the Tools Options Explorer page determines whether class completion completes property declarations.

2.4.11 Using Code Insight

Code Insight (sometimes referred to as Code Completion) is a set of features in the Code Editor and the HTML Tag Editor
that provide code completion, display code parameter lists, and show tool tips for expressions and symbols.

The hint window list box filters out all interface method declarations that are referred to by property read or write clauses. The list
box displays only properties and stand-alone methods declared in the interface type.

To enable Code Insight (general task)

1. Choose Tools Options Code Insight.

2. On the Code Insight page, review and set the Code Insight options and color preferences as needed. Tasks that follow this

Using Code Insight RAD Studio (Common) 2.4 Editing Code Procedures

146

2

one in this help topic give more details about some of the Code Insight settings.

3. Click OK.

To enable and use Code completion

1. Choose Tools Options Code Insight.

2. On the Code Insight page, check Code Completion.

3. To display a list of types, properties, methods, and events in the Code Editor, type either a dot (.) (for Delphi or C++) or an
arrow (—>) (for C++) following the name of an object or class name. To display the properties, methods, and events available
in a class, type the name of a variable and then press Ctrl + Space.

4. Select the displayed element that you want to complete the class or object, and press ENTER. To cancel the code completion,
either Backspace or press Esc.

Code Insight Examples

1. If you're using the C++ language, type the name of a variable that represents a pointer to a class instance followed by Ctrl
+ Space to display the properties, methods, and events available in the class. To invoke code completion for a pointer type,
the pointer must first be de-referenced. For example, type this for C++ or selffor Delphi.

2. If you're using the C++ language, type an arrow (->) for a pointer to an object. You can also type the name of non-pointer
types followed by a period (.) to see its list of inherited and virtual properties, methods, and events. For example, for Delphi,
type: var test: TRect;: : begintest. For C++, type TRect test; test.

3. Type an assignment operator or the beginning of an assignment statement and press Ctrl + Space to display a list of
possible values for the variable.

4. Type a procedure, function, or method call and press Ctrl + Space to display the method and it's list of arguments.

5. Type a record to display a list of fields. (This is the same as Step 1, but uses records instead of classes.)

To enable and use Code parameters

1. Choose Tools Options Code Insight.

2. Check the Code parameters check box.

3. To use Code completion to display the method arguments in the Code Editor, type a method name and an open parenthesis
(().

To enable and use ToolTip expression evaluation

1. Choose Tools Options Code Insight.

2. Check the ToolTip expression evaluation check box.

3. To display the current value of a variable while your program has paused during debugging, point the mouse cursor to any
variable name displayed on the Code Editor.

To enable and use ToolTip Symbol Insight

1. Choose Tools Options Code Insight.

2. Check the ToolTip symbol insight check box.

3. While editing your code in the Code Editor, point the mouse cursor to any identifier to display its declaration.

See Also

Using Live Templates (see page 148)

Using Code Folding (see page 137)

Customizing Code Editor (see page 141)

Using the HTML Tag Editor

2.4 Editing Code Procedures RAD Studio (Common) Using Code Insight

147

2

usingcodeinsight.xml

2.4.12 Using Live Templates

Live templates are reusable code statements that are accessible from the Code Editor. You can insert pre-defined code
segments into your code or add your own code snippets to the Template window.

Note: If a template has one or more jump points that are editable, it will automatically enter SyncEdit mode when you are
inserting it into your code. The jump points allow you to navigate between different areas of the template, using the Tab

key and SHIFT+Tab keys. Pressing ESC, Enter,(or pressing theTab key) from the last jump point exits SyncEdit mode and
puts the Code Editor back into regular edit mode. See the link at the end of this topic for more information about SyncEdit.

To insert an existing Live Template into your code:

1. In the Code Editor, choose View Templates .

2. Expand the tree in the Template Manager for the language you are using, by clicking the plus sign in front of language name.

3. Put the cursor at the place in your code where you want to add the template.

4. Choose the template you want to use in the Template Manager window.

5. Click the Execute button in the Template Manager window.

After you have inserted a template, you will probably need to fill in data, variables, methods, or other information that is specific
to your code. You can use the Code Completion feature with some of the templates, as described below.

To use Code Completion with your template:

1. Place your cursor at a jump point in your template.

2. Pres Ctrl + Space to invoke the Code Completion window.

To surround text with a template using the mouse:

1. Select the code in the Code Editor that you want the template to surround.

2. Click the right mouse button and choose the Surround command. This will give you a choice of 'surround-able' templates.

3. Choose a template from the list.

To surround text with a template using the Template Manager window:

1. In the Code Editor, choose View Templates.

2. Expand the tree in the Template Manager for the language you are using, by clicking the plus sign in front of language name.

3. Choose the template you want to use in the Template Manager window.

4. Select the code in the Code Editor that you want the template to surround.

5. Click the Execute button in the Template Manager window.

See Also

Creating Live Templates (see page 138)

Using SyncEdit (see page 150)

Using Code Folding (see page 137)

Customizing the Code Editor (see page 141)

Using Code Insight (see page 146)

Using Live Templates RAD Studio (Common) 2.4 Editing Code Procedures

148

2

Using the HTML Tag Editor

2.4.13 Using the History Manager

The History Manager lets you view and compare versions of a file, including multiple backup versions, saved local changes,
and the edit buffer of unsaved changes.

For simplicity, the following procedures uses a small text file to introduce the functionality of the History Manager. However, the
History Manager is available for most files, including source code and HTML files.

To create and display file versions in the Contents page

1. Choose Tools Options Editor Options page and verify that the Create Backup Files option is checked.

2. Choose File New Other Other Files Text and click OK to display a blank text file in the Code Editor.

3. On line one of the file, type First line of text and save the file using any name and location.

4. On line two, type Second line of text and save the file.

5. On line three, type Third line of text and save the file. There are now three versions of the file stored in the current
directory in a hidden directory named __history.

6. Click the History tab, which is next to the Code tab. The revision list at the top of the Contents tab displays three versions of
the file. The first version is named ~1~, the second is named ~2~, and the current version is named File. The source viewer
at the bottom of the tab displays the source for the selected version.

7. Select the different versions to display their source in the source viewer.

8. Click the Code tab to return to the Code Editor and on line four of the file, type Fourth line of text but do not save the
file. Your change is stored in the editor buffer, but not saved to the file.

9. Review the following toolbar and icon descriptions and then use the next procedure to compare the file versions that you just
created.

Tip: To sort a column on any page of the History Manager

, click the column heading. The toolbar at the top of the History Manager contains the following buttons. Not all buttons are
available on all pages of the History Manager.

Tip: The toolbar button functions are also available of the right-click context menus of the History Manager

pages.

To compare file versions using the Diff page

1. Using the file that you created in the previous procedure, click the History tab.

2. Click the Diff tab at the bottom of the History Manager. The Differences From and To panes at the top of the page shows
the file versions that you can compare. At the bottom of the page, source lines that were deleted are highlighted and marked
with a minus sign (–). Lines that were added are highlighted and marked with a plus sign (+). The highlighting colors depend
on the Code Editor colors.

3. Select the different file versions in both the Differences From pane and the To pane to see the results in source viewer.

To make a prior file version the current version

1. Using the file from the previous procedures, click the Contents tab.

2. Right-click the ~2~ version of the file and select Revert, or click the toolbar button. The Confirm dialog box indicates that
reverting the file will lose any unsaved changes in the buffer.

3. Click Yes on Confirm dialog box. The ~2~ version becomes the current version.

4. Return to the Code Editor and save the change.

2.4 Editing Code Procedures RAD Studio (Common) Using the History Manager

149

2

Tip: The Revert command is also available on the Info

page.

See Also

IDE Tour (see page 34)

History Manager

2.4.14 Using Sync Edit

The Sync Edit feature lets you simultaneously edit indentical identifiers in selected code. For example, in a procedure that
contains three occurrences of label1, you can edit just the first occurrence and all the other occurrences will change
automatically.

To use Sync Edit

1. In the Code Editor, select a block of code that contains identical identifiers.

2. Click the Sync Edit Mode icon that appears in the left gutter. The first identical identifier is highlighted and the others are
outlined. The cursor is positioned on the first identifier. If the code contains multiple sets of indentical identifiers, you can press
TAB to move between each identifier in the selection.

3. Begin editing the first identifier. As you change the identifier, the same change is performed automatically on the other
identifiers. By default, the identifier is replaced. To change the identifier without replacing it, use the arrow keys before you
begin typing.

4. When you have finished changing the identifiers, you can exit Sync Edit mode by clicking the Sync Edit Mode icon, or by
pressing theEsc key.

Note: Sync Edit determines indentical identifiers by matching text strings; it does not analyze the identifiers. For example, it
does not distinguish between two like-named identifiers of different types in different scopes. Therefore, Sync Edit is intended
for small sections of code, such as a single method or a page of text. For changing larger sections of code, consider using
refactoring.

Using Sync Edit RAD Studio (Common) 2.4 Editing Code Procedures

150

2

2.5 Getting Started Procedures
This section provides how-to information on configuring the IDE, working with forms and projects, and more.

Topics

Name Description

Adding Components to a Form (see page 152)

Adding References (see page 153) You can integrate your legacy COM servers and ActiveX controls into managed
applications by adding references to unmanaged DLLs to your project, and then
browse the types just as you would with managed assemblies.

Adding and Removing Files (see page 153) You can add and remove a variety of file types to your projects.

Adding Templates to the Object Repository (see page 153) You can add your own objects to the Object Repository as templates to reuse
or share with other developers. Reusing objects lets you build families of
applications with common user interfaces and functionality to reduce
development time and improve quality.

Copying References to a Local Path (see page 154) During runtime, assemblies must be in the output path of the project or in the
GAC for deployment. If your project contains a reference to an object that is not
in one of the two locations, the reference must be copied to the appropriate
output path.

Creating a Component Template (see page 154) You can save selected, preconfigured components on the current form as a
reusable component template accessible from the Tool Palette.

Creating a Project (see page 155)

Customizing the Form (see page 155)

Customizing the Tool Palette (see page 156)

Customizing Toolbars (see page 156)

Disabling Themes in the IDE and in Your Application (see page 157) Both Windows Vista and Windows XP support themes in the user interface. By
default, the IDE uses themes, and runtime themes are enabled for the application
itself. If you prefer or if you require the classic user interface style, you can
disable the use of themes in the IDE and in your application.

Docking Tool Windows (see page 157) The Auto-Hide feature lets you undock and hide tool windows, such as the
Object Inspector, Tool Palette, and Project Manager, but still have access to
them.

Finding Items on the Tool Palette (see page 158)

Exploring .NET Assembly Metadata Using the Reflection Viewer (see page
158)

You can open and explore the namespaces and types contained with a .NET
assembly. The assembly metadata is displayed in the Reflection viewer, whose
left pane contains a tree structure of the namespaces and types within the
assembly. The right pane displays specific information on the selected item in the
tree. The Call Graph tab shows you a list of the methods called by the selected
method, as well as a list of the methods that call the selected method.
You can open multiple .NET assemblies in the Reflection viewer. Each open
assembly is displayed in the tree in the... more (see page 158)

Exploring Windows Type Libraries (see page 159) You can open and inspect the interfaces and other types contained within a
Windows type library. The type library contents are displayed in a Windows
Explorer-style presentation, with a left pane containing a tree of the interface and
type definitions within the type library. The right pane displays specific
information on the selected item in the tree. The Type Library Explorer can
open a .TLB file, as well as OCX controls, and .DLL and .EXE files that have
type libraries as embedded resources.

Installing Custom Components (see page 160)

Renaming Files Using the Project Manager (see page 160) Renaming a file changes the name of the file in both the Project Manager and
on disk.

Saving Desktop Layouts (see page 161) To switch between desktop layouts, choose a layout from the drop-down list box
located on the Desktop toolbar.
This procedure describes how to save your current desktop layout so that your
own layout is available from the View Desktops submenu and from the toolbar.

Setting Component Properties (see page 161) After you place your components on your Designer, set their properties using the
Object Inspector. By setting a component’s properties, you can change the way
a component appears and behaves in your application. Because properties
appear during designtime, you have more control over a component’s properties
and can easily modify them without having to write additional code.

2.5 Getting Started Procedures RAD Studio (Common)

151

2

Setting Dynamic Properties (see page 161) Many of the .NET Framework objects support dynamic properties. Dynamic
properties provide a way to change property values without recompiling an
application. The dynamic properties and their values are stored in a configuration
file, along with the application's executable file. Changing a property value in the
configuration file causes the change to take effect the next time the applications
runs. Dynamic properties are useful for changing an application after it has been
deployed.

Setting Project Options (see page 162) You can manage application and compiler options for your project. Making
changes to your project only affects the current project. However, you can also
save your selections as the default settings for new projects.

Setting C++ Project Options (see page 163) You can manage application and compiler options for your project. Making
changes to your project only affects the current project. However, you can also
save your selections as the default settings for new projects.

Setting Properties and Events (see page 164) Properties, methods, and events are attributes of a component.

Setting The IDE To Mimic Delphi 7 (see page 164) Use this procedure to set the IDE to mimic Delphi 7 or C++Builder, where each
pane is its own window.

Setting Tool Preferences (see page 165) You can customize the appearance and behavior of many tools and features,
such as the Object Inspector, Code Editor, and integrated debugger.

Using Design Guidelines with VCL Components (see page 165) You can use VCL or VCL.NET (with Delphi or C++) to setup components that are
"aware" of their relation to other components on a form. You can set properties to
specify the distance between controls, shortcuts, focus labels, tab order, and
maximum number of items (listboxes, menus).

Using the File Browser (see page 166) The File Browser is a standard Windows-style browser that you can undock
within the IDE. The context menu on the File Browser enables you to perform file
operations such as Cut, Copy, Delete and Rename. You can also add a file to
your project using the Add to project command.

Using To-Do Lists (see page 166) A to-do list records and displays tasks that need to be completed for a project.

Using Virtual Folders (see page 167) For C++ only, the IDE provides the ability to organize your project files with virtual
folders in the Project Manager tree. Virtual folders only affect the display of the
folder structure in the IDE. Moving files into virtual folders does not change their
actual location on disc.
Note: Virtual folders can only contain file system entries or other virtual folders.
Note: Changing the order of entries in a virtual folder changes the build order of
the contained buildable entries.

Writing Event Handlers (see page 168) Your source code usually responds to events that might occur to a component at
runtime, such as a user clicking a button or choosing a menu command. The
code that responds to an occurrence is called an event handler. The event
handler code can modify property values and call methods.

2.5.1 Adding Components to a Form

To add components to a form

1. On the Tool Palette, select a visual or nonvisual component.

2. Double-click the component to place it on the form or drag the component onto the form. If you add a nonvisual component to
the form, the component tray appears at the bottom of the Designer surface.

3. Repeat steps 1 and 2 to add additional components.

4. Use the dotted grid on the form to align your components.

See Also

Getting Started

Starting a Project (see page 47)

Creating a Project (see page 155)

Setting Project Options (see page 162)

Setting Properties and Events (see page 164)

Adding References RAD Studio (Common) 2.5 Getting Started Procedures

152

2

2.5.2 Adding References

You can integrate your legacy COM servers and ActiveX controls into managed applications by adding references to unmanaged
DLLs to your project, and then browse the types just as you would with managed assemblies.

To add references

1. From the main menu, choose Project Add Reference. The Add Reference dialog box appears.

2. Select either a legacy COM type library or ActiveX control to integrate into your managed application.

3. Click Add Reference. The reference is added to the text box.

4. Click OK.

Tip: You can also right-click the References

folder in the Project Manager, and choose Add Reference.

2.5.3 Adding and Removing Files

You can add and remove a variety of file types to your projects.

To add a file to a project

1. Choose Project Add to Project. The Add to Project dialog box appears.

2. Select a file to add and click Open. The file appears below the Project.exe node of the Project Manager.

To remove a file from a project

1. Choose Project Remove From Project. A Remove From Project dialog box appears.

2. Select the file or files you want to remove and click OK.

See Also

Getting Started

Creating a Project (see page 155)

2.5.4 Adding Templates to the Object Repository

You can add your own objects to the Object Repository as templates to reuse or share with other developers. Reusing objects
lets you build families of applications with common user interfaces and functionality to reduce development time and improve
quality.

To add a template to the Object Repository

1. Save your project.

2. Choose Project Add to Repository.

3. Enter the project name, description, and author information in the dialog box.

2.5 Getting Started Procedures RAD Studio (Common) Adding Templates to the Object Repository

153

2

4. Click Browse to select an icon to represent the project you saved.

5. Click OK.

See Also

Getting Started

Adding and Removing Files (see page 153)

2.5.5 Copying References to a Local Path

During runtime, assemblies must be in the output path of the project or in the GAC for deployment. If your project contains a
reference to an object that is not in one of the two locations, the reference must be copied to the appropriate output path.

To a copy reference to a local path

1. In the Project Manager, right-click an assembly DLL in the References folder.

2. Set the Copy Local option to copy the file to the output directory.

Note: The IDE maintains the Copy Local

setting until you change it.

See Also

Tour of the IDE (see page 34)

2.5.6 Creating a Component Template

You can save selected, preconfigured components on the current form as a reusable component template accessible from the
Tool Palette.

To create a component template

1. Place and arrange components on a form.

2. In the Object Inspector, set the component properties and events as desired.

3. Select the components that you want to save as a component template. To select several components, drag the mouse over
them.

Tip: To select all of the components on the form, choose Edit->Select All

. Gray handles appear at the corners of each selected component.

4. Choose Component Create Component Template. The Create Component Template dialog box appears.

5. Specify a name, a Tool Palette category, and an icon for the template.

6. Click OK.

Your new template appears immediately on the Tool Palette, in the category that you specified.

To use a component template

1. Display the form to which you want to add the components from the component template.

2. On the Tool Palette, double-click the component template icon. The components in the component template are added to the
form, along with their preconfigured properties and events. You can reposition the components independently, reset their

Creating a Component Template RAD Studio (Common) 2.5 Getting Started Procedures

154

2

properties, and create or modify event handlers for them, just as if you had placed each component in a separate operation.

To delete a component template

1. On the Tool Palette, right-click the component template to display a context menu.

2. Choose the Delete [template name] Button command. The component template is deleted immediately from the Tool Palette.

2.5.7 Creating a Project

To add a new project

1. Choose Project Add New Project. The New Items dialog box appears.

2. Select a project and click OK. The project is added to the Project Manager.

To add an existing project

1. Choose Project Add Existing Project. The Open Project dialog box appears.

2. Select an existing project to add and click Open.

See Also

Starting a Project (see page 47)

Adding and Removing Files (see page 153)

Adding Components (see page 152)

Setting Project Options (see page 162)

Setting Properties (see page 164)

2.5.8 Customizing the Form

To customize the form

1. Choose Tools Options.

2. From the Options dialog box, click Windows Forms Designer.

3. Enable or disable the snap to grid and show grid features by selecting and deselecting the check boxes.

4. Choose one of the bracing styles.

5. Click OK.

Tip: The changes will affect only forms created after these options are changed. To change the settings for existing forms,
set the GridSize, DrawGrid, and SnapToGrid properties of the form.

See Also

Tour of the IDE (see page 34)

Starting a Project (see page 47)

Adding Components (see page 152),

2.5 Getting Started Procedures RAD Studio (Common) Customizing the Tool Palette

155

2

2.5.9 Customizing the Tool Palette

To arrange individual components

1. Click the component.

2. Drag the component anywhere within the Tool Palette.

To arrange an entire category of components

1. Click a category name .

2. Drag the category anywhere within the Tool Palette.

3. Release your mouse button to place the category in the desired location.

To add additional categories

1. Right-click the Tool Palette.

2. Choose the Add New Category command. The Create a new Category dialog box appears.

3. Enter a name for the category in the New Category Name text box.

4. Click OK. The new category appears at the bottom of the Tool Palette.

See Also

Creating a Component Template (see page 154)

2.5.10 Customizing Toolbars

To arrange your toolbars

1. Click the grab bar on the left side of any toolbar.

2. Drag the toolbar to another location or onto your desktop.

To delete icons from the toolbar

1. Choose View Toolbars Customize.

2. From the toolbar, not the Customize dialog box, drag the tool from the toolbar until its icon displays an X and then release the
mouse button.

3. When completed, click Close.

To add icons to the toolbar

1. Choose View Toolbars Customize.

2. Click the Commands tab.

3. In the Categories list, select a category to view its tool icons.

4. From the Commands list, drag the selected icon onto the toolbar of your choice.

5. When completed, click Close.

See Also

Tour of the IDE (see page 34)

Customizing Toolbars RAD Studio (Common) 2.5 Getting Started Procedures

156

2

Customizing the Tool Palette (see page 156)

2.5.11 Disabling Themes in the IDE and in Your Application

Both Windows Vista and Windows XP support themes in the user interface. By default, the IDE uses themes, and runtime
themes are enabled for the application itself. If you prefer or if you require the classic user interface style, you can disable the
use of themes in the IDE and in your application.

To disable themes for the IDE

1. Close the IDE.

2. Open the file bds.exe.manifest located in your $(IDE)\bin directory.

3. Remove or comment out the following entry in the XML file bds.exe.manifest:

 <dependency>
 <dependentAssembly>
 <assemblyIdentity
 type="win32"
 name="Microsoft.Windows.Common-Controls"
 version="6.0.0.0"
 publicKeyToken="6595b64144ccf1df"
 language="*"
 processorArchitecture="*" />
 </dependentAssembly>
</dependency>

4. Save the changes to the bds.exe.manifest file.

5. Restart the IDE.

To disable theming for an application

1. Choose Project Options Application.

2. Uncheck Enable runtime themes.

See Also

Starting a Project (see page 34)

2.5.12 Docking Tool Windows

The Auto-Hide feature lets you undock and hide tool windows, such as the Object Inspector, Tool Palette, and Project
Manager, but still have access to them.

To use Auto-Hide to hide your tools

1. Click the push pin in the upper right corner of a tool window. The tool window is replaced by one or more tabs at the outer
edge of the IDE window.

2. To display the tool window, position the cursor over the tab. The tool window slides into view.

3. To slide the tool window out of view, move the cursor away from the tool window.

4. To redock the tool window, click the push pin until it points down.

2.5 Getting Started Procedures RAD Studio (Common) Docking Tool Windows

157

2

To dock the tools with one another

1. Click the tool window title bar and drag the window into another tool window.

2. Select a location to drop the tool window and release the mouse button.

To undock the tools from one another

1. Click the tool window title bar and drag the window away from the other tool window.

2. Select a location to drop the tool window and release the mouse button.

See Also

Saving Desktop Layouts (see page 161)

Setting Tool Preferences (see page 165)

2.5.13 Finding Items on the Tool Palette

To find items on the Tool Palette

1. Click anywhere on the Tool Palette and start typing the name of the item that you want to find. The Tool Palette is filtered to
display only those item names that match what you are typing. The characters that you have typed appear in bold in the item
names.

2. Double-click an item to perform the default action for that item. For example, double-clicking a component adds it to your form,
whereas double-clicking a code snippet adds it to your code.

3. To remove the search filter from the Tool Palette, click the filter icon .

See Also

Adding Components to the Tool Palette (see page 160)

2.5.14 Exploring .NET Assembly Metadata Using the
Reflection Viewer

You can open and explore the namespaces and types contained with a .NET assembly. The assembly metadata is displayed in
the Reflection viewer, whose left pane contains a tree structure of the namespaces and types within the assembly. The right
pane displays specific information on the selected item in the tree. The Call Graph tab shows you a list of the methods called by
the selected method, as well as a list of the methods that call the selected method.

You can open multiple .NET assemblies in the Reflection viewer. Each open assembly is displayed in the tree in the left-pane;
the top-level node for a .NET assembly is denoted by the icon.

There are several ways to open the Reflection viewer:

• Choose File Open and selecting any managed assembly.

• Use the Open context-menu command in the Project Manager.

• Use the context-menu Browse Class command in the debugger Modules window.

• Use the standalone application (Reflection.exe).

To close a particular .NET assembly, right-click the top-level icon and select Close.

Exploring .NET Assembly Metadata Using RAD Studio (Common) 2.5 Getting Started Procedures

158

2

To open the Reflection viewer from the menu

1. Choose File Open.

2. In the Open dialog box, from the Files of type drop-down list, select Assembly Metadata.

3. Navigate to the folder where a .NET assembly is located. Select the assembly and click Open.

Tip: You can use the Browser buttons on the toolbar to navigate backwards and forwards to previously selected items in the
left pane.

To open the Reflection viewer from the Project Manager

1. Open a .NET application, such as an application for Delphi for .NET, for ASP.NET Web, or for VCL for .NET.

2. In the Project Manager, right-click an assembly such as System.Data.dll.

3. Select Open from the context menu.

The Reflection viewer, displayed in the Code Editor pane, contains tabs that correspond to the type of the item that is currently
selected in the lefthand column of the viewer. When opened from the Project Manager, the Reflection viewer itself has a tab
labeled with the class name, such as System.Data.dll.

To open the Reflection viewer from the debugger

1. Open a .NET application, such as an application for Delphi for .NET, ASP.NET, or VCL for .NET.

2. Press F8 to start the debugger.

3. Select View Debug Windows Modules.

4. Select any item in the Modules view. This populates the scope browser.

5. In the scope browser, right-click a class, represented by the class icon:

6. Select the Browse Class command from the context menu.

The Reflection viewer, displayed in the Code Editor pane, contains tabs that correspond to the type of the item that is currently
selected in the Modules window. When opened from the Modules window, the Reflection viewer itself has a tab labeled
Browse<itemname>.

Using the Call Graph tab

1. Select a method node in the left pane.

2. Select the Call Graph tab. The top half of the Call Graph tab shows you a list of methods that call the method you selected in
the left pane. The bottom half of the Call Graph tab shows you the methods called by the method you selected in the left
pane. Methods that exist in the same assembly as the currently selected method appear as clickable links, and are displayed
in blue underlined text. Clicking on a link causes that method to become selected in the tree in the left-hand pane.

Note: The standalone Reflection

viewer (Reflection.exe) has a Find button for searching an assembly, and two arrow buttons that move the viewer forward
and backward in the viewer history.

See Also

Assembly Metadata Explorer (IDE Reference) (see page 1063)

2.5.15 Exploring Windows Type Libraries

You can open and inspect the interfaces and other types contained within a Windows type library. The type library contents are
displayed in a Windows Explorer-style presentation, with a left pane containing a tree of the interface and type definitions within
the type library. The right pane displays specific information on the selected item in the tree. The Type Library Explorer can

2.5 Getting Started Procedures RAD Studio (Common) Exploring Windows Type Libraries

159

2

open a .TLB file, as well as OCX controls, and .DLL and .EXE files that have type libraries as embedded resources.

To Inspect a Windows Type Library

1. Choose File Open.

2. In the Open dialog box, from the Files of type drop-down list, select Type Library. This sets the file filter to display files with
extensions of .TLB, .OLB, .OCX, .DLL, and .EXE.

3. Navigate to the folder where the type library is located.

4. Select the file and click Open.

You can open multiple type libraries in the explorer. Each open type library is displayed in the tree in the left pane; the top-level
node for a type library is denoted by the icon.

To close a particular type library, right-click on the top-level icon and select Close.

See Also

Type Library Explorer (IDE Reference) (see page 1065)

2.5.16 Installing Custom Components

To install custom components

1. Choose Component Installed .NET Components.

2. Click Select an Assembly.

3. Navigate to the folder containing the component assembly. Alternatively, you can enter the name of the full path to the
assembly in the File Name field.

4. Select the assembly.

5. Click Open. The Installed .NET Components dialog box displays the components from the assembly.

6. Verify that the components you want to install on the Tool Palette are checked.

7. Click OK.

See Also

Adding Components (see page 152)

2.5.17 Renaming Files Using the Project Manager

Renaming a file changes the name of the file in both the Project Manager and on disk.

To rename a file

1. In the Project Manager, right-click the file that you want to rename. The context menu is displayed.

2. Choose Rename.

3. Enter the new name for the file. If the file has associated files that appear as child nodes in the Project Manager tree, those
files are automatically renamed.

See Also

Tour of the IDE (see page 34)

Saving Desktop Layouts RAD Studio (Common) 2.5 Getting Started Procedures

160

2

2.5.18 Saving Desktop Layouts

To switch between desktop layouts, choose a layout from the drop-down list box located on the Desktop toolbar.

This procedure describes how to save your current desktop layout so that your own layout is available from the View Desktops
submenu and from the toolbar.

To save a desktop layout

1. Choose View Desktops Save Desktop.

2. Enter the name you want for the desktop.

3. Click OK.

To set a Debug desktop layout

1. Choose View Desktops Set Debug Desktop.

2. From the dropdown list, select the layout you want to use as your Debug desktop layout.

3. Click OK.

See Also

Setting Project Options (see page 162)

Overview of Debugging (see page 10)

Desktop Toolbar (see page 1036)

View Desktops Command (see page 1059)

2.5.19 Setting Component Properties

After you place your components on your Designer, set their properties using the Object Inspector. By setting a component’s
properties, you can change the way a component appears and behaves in your application. Because properties appear during
designtime, you have more control over a component’s properties and can easily modify them without having to write additional
code.

To set component properties

1. On the Object Inspector, click the Properties tab.

2. Set the component properties by entering values in the text box or through an editor. Boolean properties like True and False
can be toggled.

See Also

Creating a Project (see page 155)

2.5.20 Setting Dynamic Properties

Many of the .NET Framework objects support dynamic properties. Dynamic properties provide a way to change property values

2.5 Getting Started Procedures RAD Studio (Common) Setting Dynamic Properties

161

2

without recompiling an application. The dynamic properties and their values are stored in a configuration file, along with the
application's executable file. Changing a property value in the configuration file causes the change to take effect the next time
the applications runs. Dynamic properties are useful for changing an application after it has been deployed.

To set a dynamic property in the Object Inspector

1. In a form on the Design tab, click the object for which you want to set dynamic properties.

2. In the Object Inspector, expand (DynamicProperties) and click (Advanced). If the object does not support dynamic
properties, (DynamicProperties) is not displayed.

Tip: If the Object Inspector

is arranged by category, (DynamicProperties) is displayed under Configurations.

3. Click the ellipsis (...) button next to (Advanced) to display the Dynamic Properties dialog box. This dialog lists all of the
properties that can be stored in the configuration file.

4. Select the properties you want to store in the configuration file.

5. Optionally, you can override the default key name listed in the Key mapping field.

6. Click OK. The dynamic properties are marked with an icon in the Object Inspector. RAD Studio creates an XML file named
app.config (for a Windows application) or Web.config (for a Web application) in the project directory. This file lists the
dynamic properties and their current values.

7. Compile the application. RAD Studio creates a file named <projectname>.exe.config (for a Windows application) or
<projectname>.dll.config (for a Web application) in the same directory as the application's executable or DLL file.

To change a dynamic property value in the configuration file

1. In the directory that contains the application's executable or DLL file, locate the configuration file.

2. Open the file in a text editor.

3. Locate the add key= statement for the property to be changed and edit the value.

4. Save your changes and close the file.

The next time the application runs, the changed property value will be in effect.

See Also

Introduction to Dynamic Properties

2.5.21 Setting Project Options

You can manage application and compiler options for your project. Making changes to your project only affects the current
project. However, you can also save your selections as the default settings for new projects.

To change compiler options

1. Choose Project Options. The Options dialog box appears.

2. Select Compiler and set your options to modify how you want your program to compile.

3. Click OK.

To change application options

1. Choose Project Options. The Options dialog box appears.

2. Select Application and specify a title and extension for your application.

3. Click OK.

Setting Project Options RAD Studio (Common) 2.5 Getting Started Procedures

162

2

To change debugger options

1. Choose Project Options. The Options dialog box appears.

2. Use the Debugger page to pass command-line parameters to your application, specify a host executable for testing a DLL, or
load an executable into the debugger.

3. Use the Environment Block page to indicate which environment variables are passed to your application while you are
debugging it.

4. Click OK.

See Also

Tour of the IDE (see page 34)

Adding Components (see page 152)

Adding and Removing Files (see page 153)

Creating a Project (see page 155)

Setting Properties (see page 164)

Build Configurations Overview (Delphi) (see page 5)

Build Configurations Overview (C++) (see page 6)

Named Option Sets Overview (see page 7)

2.5.22 Setting C++ Project Options

You can manage application and compiler options for your project. Making changes to your project only affects the current
project. However, you can also save your selections as the default settings for new projects.

To change option values

1. Choose Project Options. The Options dialog box appears.

2. Select a page from the list in the left pane.

3. If you leave the cursor over text describing an option, a tool tip gives you an option description, its default value, and a switch
for the option if one exists.

4. If an option's value differs from its parent configuration's value, its associated text is boldface.

5. Set options on the page to determine how your project is built. Depending on the option, you may enter text, check or uncheck
a box, or make a selection from a pull down menu. Some options have an ellipsis box that you click to display a dialog to
choose a file or directory or a dialog to manage a list of items, such as paths.

6. Some options that contain a list of items, such as defines or paths, have a Merge check box. If checked, the IDE merges the
option's list with that of its immediate ancestor's configuration's list for that option. Note that the IDE does not actually change
the contents of the option, but acts as if the list included the ancestor's list. If the ancestor's Merge check box is also checked,
the IDE also merges this ancestor's list for that option, and so on up the inheritance chain. If unchecked, the IDE uses only the
items in the current configuration.

7. Click OK to accept the changes and close the dialog. Click Cancel to ignore the changes and close the dialog.

To revert option values to the parent configuration's value

1. Choose Project Options. The Options dialog box appears.

2. Select a page from the list in the left pane and set your options to determine how you want your project to be built.

2.5 Getting Started Procedures RAD Studio (Common) Setting C++ Project Options

163

2

3. If an option's value differs from its parent configuration's value, its associated text is boldface.

4. Right-click the option and click Revert on the context menu. The option value changes to the parent configuration's value.

5. Click OK to accept the changes and close the dialog. Click Cancel to ignore the changes and close the dialog.

See Also

Tour of the IDE (see page 34)

Adding Components (see page 152)

Adding and Removing Files (see page 153)

Creating a Project (see page 155)

Setting Properties (see page 164)

2.5.23 Setting Properties and Events

Properties, methods, and events are attributes of a component.

To set object properties

1. On your form, click once on the object to select it.

2. In the Object Inspector, click the Properties tab.

3. Select the property that you want to change and either enter a value in the text box, select a value from the drop-down list, or
click the ellipsis (...) next to the text box to use the associated property editor, depending on which update technique is
available for the property.

To set an event handler

1. On your form, click once on the object to select it.

2. On the Object Inspector, click the Events tab.

3. If an event handler already exists, select it from the drop-down box. Otherwise, double-click the event to switch to Code view.

4. Type the code you want to execute when the event occurs.

See Also

Tour of the IDE (see page 34)

Adding Components (see page 152)

Adding and Removing Files (see page 153)

Creating a Project (see page 155)

Setting Project Options (see page 162)

2.5.24 Setting The IDE To Mimic Delphi 7

Use this procedure to set the IDE to mimic Delphi 7 or C++Builder, where each pane is its own window.

To turn off the Embedded Designer layout

1. Choose Tools Options Environment Options VCL Designer.

Setting The IDE To Mimic Delphi 7 RAD Studio (Common) 2.5 Getting Started Procedures

164

2

2. Uncheck Embedded Designer.

3. Click OK.

4. Restart RAD Studio for the change to take effect.

2.5.25 Setting Tool Preferences

You can customize the appearance and behavior of many tools and features, such as the Object Inspector, Code Editor, and
integrated debugger.

To set tool preferences

1. Choose Tools Options.

2. Review the options in each tool category and customize the settings to suit your needs.

3. Click OK.

See Also

Customizing the Form (see page 155)

Customizing the Tool Palette (see page 156)

Setting Project Options (see page 162)

2.5.26 Using Design Guidelines with VCL Components

You can use VCL or VCL.NET (with Delphi or C++) to setup components that are "aware" of their relation to other components
on a form. You can set properties to specify the distance between controls, shortcuts, focus labels, tab order, and maximum
number of items (listboxes, menus).

To see and use the design guidelines:

1. Register an object type.

2. Indicate various points on or near a component's bounds that are "alignment" points. These "alignment" points are vertical or
horizontal lines that cut across a visual control's bounds.

3. Supply UI guideline information so that each component will adhere to rules such as distance between controls, shortcuts,
focus labels, tab order, maximum number of items (listboxes, menus),

Your new Error Reconcile Form will display four columns in the upper portion of the window, and six radio buttons in the bottom
portion of the window. The following table describes each of the columns.

Component Default Value when 'Use Design Guidelines' is Set

Alignment The names of the columns of the table in which an error has occurred.

Margins Bottom = 3, Left = 3, Right = 3, Right = 3, Top = 3

Padding The last update that was saved to the Server. (This represents what the row contains on the server.)

See Also

UI Design (see page 15)

Tour of the IDE (see page 34)

2.5 Getting Started Procedures RAD Studio (Common) Using the File Browser

165

2

2.5.27 Using the File Browser

The File Browser is a standard Windows-style browser that you can undock within the IDE. The context menu on the File
Browser enables you to perform file operations such as Cut, Copy, Delete and Rename. You can also add a file to your project
using the Add to project command.

To open and use the File Browser

1. In the IDE, choose View File Browser.

2. Right-click a file name and select the appropriate command from the context menu. You can open files within RAD Studio,
add selected files to the current project, or perform standard Windows operations on files.

To filter the file list

1. Click the Set Filter icon in the menu bar of the File Browser.

2. In the Set Filterdialog box, enter file names or wild-card expressions, separated by semicolons. The File Browser displays
any files that match the wild-card expansion of any of the filter criteria you entered.

See Also

File Browser (see page 1036)

2.5.28 Using To-Do Lists

A to-do list records and displays tasks that need to be completed for a project.

To create a to-do list and add an item to it

1. Choose View To-Do List.

2. In the To-Do List dialog box, right-click and choose Add.

3. In the Add To-Do Item dialog box, enter a description of the task and adjust the other fields as necessary.

4. Click OK.

To add a to-do list item as a comment in code

1. In the Code Editor, position your cursor where you want to add the comment.

2. Right-click and choose Add To-Do List Item.

3. In the Add To-Do Item dialog box, select the item that you want to add.

4. Click OK.

The item is added as a comment to your code, beginning with the word TODO.

To mark a to-do list item as completed

1. Choose View To-Do List.

2. In the To-Do List dialog box, check the check box next to the item to indicate completion. The item remains in the list, but the
text is crossed out. If the item was added as a comment to code, the comment is updated to indicate DONE instead of TODO.

Using To-Do Lists RAD Studio (Common) 2.5 Getting Started Procedures

166

2

To filter the items in a to-do list

1. Choose View To-Do List.

2. Right-click the To-Do List dialog box and choose Filter.

3. Choose either Categories, Owner, or Item types, depending on which you want to filter.

4. In the Filter To-Do List dialog box, uncheck the items that you want to hide in the to-do list.

5. Click OK. The to-do list is redisplayed, with the filtered items hidden. The status bar at the bottom of the To-Do List dialog
box indicates how many items are hidden due to filtering.

To delete an item from a to-do list

1. Choose View To-Do List.

2. In the To-Do List dialog box, select the item to delete.

3. Right-click and choose Delete. The item is removed from the to-do list. If the item was added as a comment to code, the
comment is also removed.

2.5.29 Using Virtual Folders

For C++ only, the IDE provides the ability to organize your project files with virtual folders in the Project Manager tree. Virtual
folders only affect the display of the folder structure in the IDE. Moving files into virtual folders does not change their actual
location on disc.

Note: Virtual folders can only contain file system entries or other virtual folders.

Note: Changing the order of entries in a virtual folder changes the build order of the contained buildable entries.

To add a root-level virtual folder

1. Choose View Project Manager to display the Project Manager if it is not already visible in the IDE.

2. Create a new project or open an existing one.

3. Right-click the project node in the Project Manager tree and choose Add New Virtual Folder. This opens the Add new
folder dialog box and displays the default folder name Virtual folder 1

4. Type a new name for the virtual folder if you do not want to use the default.

5. Click OK to add the folder. Click Cancel to not add the folder. The virtual folder appears as a greyed folder under the project
node.

6. Drag files from the project structure into the virtual folder, or use the context menu commands to add items to the virtual
folder.

To add a virtual sub-folder to an existing virtual folder

1. Right-click an existing virtual folder in the Project Manager tree.

2. Choose Add New Virtual Folder.

To change the order of files in a virtual folder

1. Click or right-click on a file in a virtual folder and drag the file. The cursor changes to an arrow with a rectangle at the end to
indicate you are moving the file.

2. Drag the file to the right until a horizontal blue line appears. This line shows the new location of the file in the virtual folder and
only appears between files. If the cursor changes to a slashed circle for some location, you can't move the file there.

2.5 Getting Started Procedures RAD Studio (Common) Using Virtual Folders

167

2

3. Drag the file to the desired location in the virtual folder and release the mouse button.

To delete a virtual folder

1. Select a virtual folder in the Project Manager tree.

2. Right-click and choose Delete.

3. Click Yes in the Confirm dialog box to delete the folder. Click No or press the Esc key to cancel the delete.

Note: Deleting a virtual folder does not delete any of its files on the disk. It simply removes the folder from the Project
Manager

tree and leaves the files in their original locations.

See Also

Overview of Virtual Folders (see page 50)

Adding and Removing Files (see page 153)

2.5.30 Writing Event Handlers

Your source code usually responds to events that might occur to a component at runtime, such as a user clicking a button or
choosing a menu command. The code that responds to an occurrence is called an event handler. The event handler code can
modify property values and call methods.

To write an event handler

1. On your form, click the component for which you want to write an event handler.

2. To create the default event for the component, double-click the component on the form. To choose another event for the
component, click the Events tab in the Object Inspector, locate the event, and double-click its text box. The Code Editor
appears.

3. Type the code that will execute when the event occurs at runtime.

See Also

Creating a Project (see page 155)

Setting Component Properties (see page 161)

Writing Event Handlers RAD Studio (Common) 2.5 Getting Started Procedures

168

2

2.6 Localization Procedures
This section provides how-to information on localizing applications by using the RAD Studio translation tools.

Topics

Name Description

Adding Languages to a Project (see page 169) You can add languages to your project by using the Satellite Assembly Wizard
(.NET) or Resource DLL Wizard (Win32). For each language that you add, the
wizard generates a resource module project in your project group. Each resource
module project is given an extension based on the language’s locale.

Editing Resource Files in the Translation Manager (see page 170) After you have added languages to your project by using the Satellite Assembly
Wizard or Resource DLL Wizard, you can use the Translation Manager to view
and edit your resource files. You can edit resource strings directly, add translated
strings to the Translation Repository, or get strings from the Translation
Repository.

Setting the Active Language for a Project (see page 171) After adding languages to your project with the Satellite Assembly Wizard or
the Resource DLL Wizard, the base language module is loaded when you
choose Run Run. However, you can load a different language module by
setting the active language for the project.

Setting Up the External Translation Manager (see page 172) If you do not have the RAD Studio IDE, you can use the External Translation
Manager (ETM) to localize an application. To use ETM, the developer must
provide you with the required ETM files and project files.
Note: The Microsoft .NET Framework must be installed on your computer before
you install ETM.

Updating Resource Modules (see page 173) When you add an additional resource, such as a button on a form, you must
update your resource modules to reflect your changes.

Using the External Translation Manager (see page 173) Translators who do not have the RAD Studio IDE can use the External
Translation Manager (ETM) instead of the Translation Manager. The steps for
using the ETM are similar to those for the internal Translation Manager.
Note: ETM must be set up and operational on your computer before using the
following procedure. See in the link listed at the end of this topic for details.

2.6.1 Adding Languages to a Project

You can add languages to your project by using the Satellite Assembly Wizard (.NET) or Resource DLL Wizard (Win32). For
each language that you add, the wizard generates a resource module project in your project group. Each resource module
project is given an extension based on the language’s locale.

To add a language to a project

1. Save and build your project.

2. With your project open in the IDE, choose Project Languages Add. Alternatively, you can choose either
File New Other Delphi for .NET Projects Satellite Assembly Wizard for a .NET application or
File New Other Delphi Projects Resource DLL Wizard for a Win32 application. The wizard is displayed.

3. Make sure your project is selected in the list that appears in the dialog and then click Next.

4. Click the check box next to the languages that you want to add to your project and then click Next.

5. Review the directory path information that the wizard will use for the language’s resource modules.

Tip: To change the path, click the path, and then click the ellipsis (...) button to browse to a different directory.

When you are satisfied with the path information, click Next.

6. If no satellite assembly for the language exists yet, Create New appears in the Update Mode column. Click Next. If a
resource module exists for the language in the directory you have specified, click in the Update Mode column to select

2.6 Localization Procedures RAD Studio (Common) Adding Languages to a Project

169

2

Update or Overwrite. Choose Update to keep and modify the existing satellite assembly project. Choose Overwrite to create
a new, empty project and to delete the old project and any translations it contains. Click Next.

7. Review the summary of what the wizard will do and click Finish to create or update the resource modules for the languages
you have selected. If the wizard asks to generate a .drcil (.NET) or .drc (Win32) file, click Yes. Any project that uses its
own resource strings (instead of previously compiled .rc files) needs a .drcil or .drc file. If you are sure that no new files
are needed (because your project does not introduce any resource strings of its own), select Skip drcil files that are not
found in the final dialog. This prevents the wizard from generating, or asking to generate, files.

8. Click Yes to compile. Click OK to save your project group.

The generated projects contain untranslated copies of the resource strings in your original project. By default, the Translation
Manager is displayed, enabling you to begin translating the resource files.

To remove a language from a project

1. Open your project.

2. Select Project Languages Remove.

3. Check the languages that you want to remove and then click Next.

4. Click Finish.

The wizard removes the selected resource module from your project file, but does not delete the assemblies, the source of the
assemblies, or the directories in which they reside.

To restore a language to a project

1. Choose Project Languages Add to start the Satellite Assembly Wizard or Resource DLL Wizard.

2. Specify the directory path of the old resource module in the appropriate dialog.

3. In the Update Mode column, select Update. If a resource module already exists for the language (in the directory you have
specified), click in the Update Mode column to select Update or Overwrite. Choose Update to keep and modify the existing
assembly project. Choose Overwrite to create a new, empty project and to delete the old project and any translations it
contains.

4. Click Finish.

See Also

Localizing Applications (see page 18)

Editing Resource Files in the Translation Manager (see page 170)

Setting Up the External Translation Manager (see page 172)

2.6.2 Editing Resource Files in the Translation Manager

After you have added languages to your project by using the Satellite Assembly Wizard or Resource DLL Wizard, you can
use the Translation Manager to view and edit your resource files. You can edit resource strings directly, add translated strings to
the Translation Repository, or get strings from the Translation Repository.

To edit resource strings

1. Open a project that includes languages.

2. Choose View Translation Manager Translation Editor.

3. Expand the project tree view to display the resource files that you want to edit.

Tip: Use the expand and collapse icons on the toolbar above the tree view.

Editing Resource Files in the Translation RAD Studio (Common) 2.6 Localization Procedures

170

2

4. Click the resource file you want to edit. The resource strings in the file are displayed in a grid in the right pane.

5. Click the field that you want to edit and type the new text directly in the grid, right-click the field and choose Edit to edit the
string in a dialog box, or click the Multi-line editor icon on the toolbar above the grid.

6. Optionally, enter a comment in the Comment field.

7. Optionally, set the translation status for the string by using the drop-down list in the Status field.

8. Click the Save Translation icon on the toolbar above the grid to update the resource file.

Tip: To display the original form or translated form, click the Show original form

and Show translated form icons in the toolbar above the grid.

To add a resource string to the Translation Repository

1. After editing a resource string in the Translation Manager, right-click the string that you want to add to the Translation
Repository.

2. Choose Repository Add strings to repository. The resource string is added to the Translation Repository and can be
viewed by closing the Translation Manager and choosing Tools Translation Repository.

To get a resource string from the Translation Repository

1. In the Translation Manager, click the Workspace tab.

2. Expand the project tree view to display the resource files that you want to edit. The .resx files are listed under the .NET
Resources node. The .nfm files are listed under the Forms node.

3. Click the resource file you want to edit. The resource strings in the file are displayed in a grid in the right pane.

4. Right-click the field that you want to update and choose Repository Get strings from repository. If the Translation
Repository contains only one translation that matches the selected source string, it copies that translation into the target
language column. If the Repository contains more than one match for the selected resource, its default behavior is to retrieve
the first matching translation it finds.

Tip: To change this behavior, close the Transaction Manager and choose Tools->Translation Tools Options

, click the Repository tab, and change the Multiple Find Action setting.

To open the resource file in a text editor

1. In the Translation Manager, click the Project tab.

2. Click the Files tab.

3. Double-click the resource file that you want to update. The file opens in a text editor.

4. Change the file as needed and save it.

Tip: To change the text editor used by the Translation Manager, choose Tools->Translation Tools Options

and change executable file specified in the External Editor field.

See Also

Localizing Applications (see page 18)

Adding Languages to a Project (see page 169)

2.6.3 Setting the Active Language for a Project

After adding languages to your project with the Satellite Assembly Wizard or the Resource DLL Wizard, the base language

2.6 Localization Procedures RAD Studio (Common) Setting the Active Language for a Project

171

2

module is loaded when you choose Run Run. However, you can load a different language module by setting the active
language for the project.

To set the active language

1. In the IDE, recompile the resource module for the language you want to use.

2. Choose Project Languages Set Active. The Set Active Language wizard displays a list of the languages in the project.
The base language appears in angle brackets at the top of the language list, for example, <English (United States)>.

3. Select a language from the list and click Finish.

See Also

Localizing Applications (see page 18)

Adding Languages to a Project (see page 169)

2.6.4 Setting Up the External Translation Manager

If you do not have the RAD Studio IDE, you can use the External Translation Manager (ETM) to localize an application. To use
ETM, the developer must provide you with the required ETM files and project files.

Note: The Microsoft .NET Framework must be installed on your computer before you install ETM.

To set up and register the ETM files

1. Obtain the following ETM files from the developer. By default these files are in either the Program Files\CodeGear\RAD
Studio\5.0\Bin or the Windows\system32 directory on the developer's computer.

Note: If the developer chose to install only the Delphi for Win32 personality of RAD Studio, the files marked with an asterisk
(*) will not be available on the developer's computer.

Borland.Delphi.dll *
Borland.Globalization.dll *
Borland.ITE.dll *
Borland.ITE.FormDesigner.dll *
Borland.SCI2.dll *
Borland.Vcl.dll *
Borland.VclRtl.dll *
Borland.VclX.dll *
designide100.bpl
dfm100.bpl
DotnetCoreAssemblies100.bpl *
etm.exe
IDECtrls100.bpl
itecore100.bpl
itedotnet100.bpl *
rc100.bpl
ResX100.bpl *
rtl00.bpl
vclide100.bpl
xmlrtl100.bpl

2. Create a directory, such as C:\ETM.

3. Copy the ETM files from the developer into the directory.

4. Open ETM. From Windows Explorer, double-click etm.exe. From the command line, enter etm.exe.

5. Choose Tools Options Packages.

6. Click the Add button to display the Open dialog box.

Setting Up the External Translation RAD Studio (Common) 2.6 Localization Procedures

172

2

7. Navigate to the directory that contains the ETM files. Make sure that the Files of type filter is set to Designtime packages
(dcl*.bpl).

8. Select all of the designtime packages in the directory and click OK.

The designtime packages are registered and you can now begin using ETM.

To set up the project to be translated

1. Obtain a zipped translation kit of the project to be translated from the developer. The kit should include the following:

• a satellite assembly or resource DLL for each language to be translated

• the .dproj project file generated by using File Save as in the ETM project

• the standalone translation repository (*.tmx) files

2. Unzip the translation kit into a directory of your choice.

See Also

Localizing Applications (see page 18)

Adding Languages to a Project (see page 169)

Editing Resource Files in the Translation Manager (see page 170)

2.6.5 Updating Resource Modules

When you add an additional resource, such as a button on a form, you must update your resource modules to reflect your
changes.

To update resource modules

1. Save and build your project. If you are using the ETM, reopen the saved project.

2. Update the resource modules:

• In the IDE, choose Project Languages Update Localized Projects.

• In ETM, choose Project Run Updaters (or press F9) or click the Files tab and then click the Run Updaters button (F9).

3. After updating in the internal Translation Manager, rebuild each resource module project by opening the project in the IDE and
choosing Project Compile.

Tip: To simplify this process, you can maintain all the projects, along with the application itself, in a single project group that
can be compiled from the Project Manager

by choosing Project Compile All.

See Also

Adding Languages to a Project (see page 169)

Editing Resource Files in the Translation Manager (see page 170)

Setting Up the External Translation Manager (see page 172)

2.6.6 Using the External Translation Manager

Translators who do not have the RAD Studio IDE can use the External Translation Manager (ETM) instead of the Translation

2.6 Localization Procedures RAD Studio (Common) Using the External Translation Manager

173

2

Manager. The steps for using the ETM are similar to those for the internal Translation Manager.

Note: ETM must be set up and operational on your computer before using the following procedure. See in the link listed at the
end of this topic for details.

To run the ETM

1. To run the ETM from the command line, enter: etm.exe [files] where [files] is the optional project group file or the
project files.

2. To run the ETM from Windows Explorer, double-click etm.exe

To localize an application using the ETM

1. In ETM, choose File Open and open the project to be translated.

2. Click the Workspace tab.

3. Expand the project tree view to display the resource files that you want to edit.

Tip: Use the expand and collapse icons on the toolbar above the tree view.

4. Click the unit file that you want to edit. The resource strings in the file are displayed in a grid in the right pane.

5. Click the field that you want to edit and do one of the following:

• type the new text directly in the grid

• right-click the field and choose Edit to edit the string in a dialog box

• click the Multi-line editor icon on the toolbar above the grid

6. Optionally, enter a comment in the Comment field.

7. Optionally, set the translation status for the string by using the drop-down list in the Status field.

8. Click the Save Translation icon on the toolbar above the grid to update the resource file.

After you have finished the translations, you can send the translated files back to the developer to add to the project.

To remove languages from your project

1. Open your project.

2. On the Languages tab, uncheck the check box for the language you want to remove.

3. Click the Files tab and click the Run Updaters button.

ETM removes the selected assemblies or DLLs from your project, but it does not delete them, the source of them, or the
directories they reside in.

See Also

Setting Up the External Translation Manager (see page 172)

Using the External Translation Manager RAD Studio (Common) 2.6 Localization Procedures

174

2

2.7 Managing Memory
This section provides how-to information on using the Memory Manager, covering how to configure the Memory Manager,
increase the memory address space, monitor the Memory Manager, use the memory map, share memory, and report and
manage memory leaks.

Topics

Name Description

Configuring the Memory Manager (see page 175) This section describes how to configure the Memory Manager.
Note: You can change some memory manager configuration settings while the
Memory Manager is in use. All the configuration settings are global settings and
affect all threads that are using the Memory Manager. Unless otherwise stated,
all functions and procedures are thread safe.
These configuration options are for the local Memory Manager only. Setting
these options inside a library when the library is sharing the Memory Manager of
the main application will have no effect.

Increasing the Memory Address Space (see page 176) This section describes how to extend the address space of the Memory Manager
beyond 2 GB.
Note: The default size of the user mode address space for a Win32 application is
2GB, but this can optionally be increased to 3GB on 32-bit Windows and 4GB on
64-bit Windows. The address space is always somewhat fragmented, so it is
unlikely that a GetMem request for a single contiguous block much larger than
1GB will succeed – even with a 4GB address space.

Monitoring Memory Usage (see page 177) This section describes how to monitor the state of the Memory Manager.
The Memory Manager provides two procedures that allow the application to
monitor its own memory usage and the state of the process’ address space. Both
functions are thread safe.

Registering Memory Leaks (see page 178) This section describes how to register and unregister expected memory leaks.
When you allocate memory that you don't expect to free, you can register it with
the Memory Manager. The Memory Manager adds it to a list of areas to ignore
when it checks for memory leaks. When you unregister a memory location, the
Memory Manager removes it from its list of expected memory leaks.

Sharing Memory (see page 178) This section describes how to share memory using the Memory Manager. On
Win32, if a DLL exports routines that pass long strings or dynamic arrays as
parameters or function results (whether directly or nested in records or objects),
then the DLL and its client applications (or DLLs) must all share the same
memory manager. The same is true if one application or DLL allocates memory
with New or GetMem which is deallocated by a call to Dispose or FreeMem in
another module. There are two mutually exclusive methods through which the
Memory Manager can be shared between an application and... more (see
page 178)

2.7.1 Configuring the Memory Manager

This section describes how to configure the Memory Manager.

Note: You can change some memory manager configuration settings while the Memory Manager is in use. All the configuration
settings are global settings and affect all threads that are using the Memory Manager. Unless otherwise stated, all functions and
procedures are thread safe.

These configuration options are for the local Memory Manager only. Setting these options inside a library when the library is
sharing the Memory Manager of the main application will have no effect.

To set the minimum block alignment for the Memory Manager

1. Use the function GetMinimumBlockAlignment to fetch the current minimum block alignment.

2.7 Managing Memory RAD Studio (Common) Configuring the Memory Manager

175

2

2. Select the appropriate memory block alignment for your application. Available block alignments are 8-byte (mba8byte) and
16-byte (mba16byte).

3. To change the memory block alignment, use the procedure SetMinimumBlockAlignment.

Note: Memory allocated through the Memory Manager is guaranteed to be aligned to at least 8-byte boundaries. 16-byte
alignment is useful when memory blocks will be manipulated using SSE instructions, but may increase the memory usage
overhead.

To report memory leaks on shutdown

1. Set the global variable ReportMemoryLeaksOnShutdown to True.

2. When the Memory Manager shuts down, it scans the memory pool and report all unregistered memory leaks in a message
dialog. To register and unregister expected memory leaks, use the RegisterExpectedMemoryLeak and
UnregisterExpectedMemoryLeak procedures.

Note: The Memory Manager can report memory that was allocated but not freed at the time the Memory Manager shuts
down. Such memory blocks are called memory leaks and are often the result of programming errors. The default value for
ReportMemoryLeaksOnShutdown is False

.

The class of a leak is determined by examining the first dword in the block. The reported classes of leaks may not always be
100% accurate. A leak is reported as a string leak if it appears to be an AnsiString. If the Memory Manager is unable to
estimate the type of leak, it will be reported as belonging to the unknown class.

To never sleep on thread contention in the Memory Manager

1. Set the global variable NeverSleepOnMMThreadContention to True.

2. When a thread contention occurs inside the Memory Manager, it will wait inside a loop until the contention is resolved.

Note: The Memory Manager is a shared resource, and when many threads in the application attempt to perform a Memory
Manager operation at the same time, one or more threads might have to wait for a pending operation in another thread to
complete before it can continue. This situation is called thread contention. When a thread contention occurs inside the
Memory Manager, the default behavior is to relinquish the remaining time in the thread’s time slice. If the resource is still not
available when the thread enters its next time slice, the Memory Manager calls the OS procedure Sleep to force it to wait
longer (roughly 20 milliseconds) before trying again.

This behavior works well on machines with single or dual core CPUs, and also when the ratio of the number of running
threads to number of CPU cores is relatively high (greater than 2:1). In other situations, better performance can be obtained
by entering a busy waiting loop until the resource becomes available. If NeverSleepOnMMThreadContention is True

, the Memory Manager will enter a wait loop instead of scheduling out. The default value for
NeverSleepOnMMThreadContention is False.

See Also

Memory Management (see page 644)

Increasing the Memory Manager Address Space Beyond 2GB (see page 176)

Registering Memory Leaks (see page 178)

Monitoring the Memory Manager (see page 177)

Sharing Memory (see page 178)

2.7.2 Increasing the Memory Address Space

This section describes how to extend the address space of the Memory Manager beyond 2 GB.

Note: The default size of the user mode address space for a Win32 application is 2GB, but this can optionally be increased to

Increasing the Memory Address Space RAD Studio (Common) 2.7 Managing Memory

176

2

3GB on 32-bit Windows and 4GB on 64-bit Windows. The address space is always somewhat fragmented, so it is unlikely that a
GetMem request for a single contiguous block much larger than 1GB will succeed – even with a 4GB address space.

To enable and use a larger address space

1. Make sure the operating system supports a larger address space. A user mode address space larger than 2GB is supported
by 64-bit editions of Windows, as well as 32-bit editions that support the /3GB option in boot.ini (and have it set).

2. Set the appropriate linker directive. The operating system must be informed through a flag in the executable file header that
the application supports a user mode address space larger than 2GB, otherwise it will be provided with only 2GB. To set this
flag, specify {$SetPEFlags IMAGE_FILE_LARGE_ADDRESS_AWARE} in the .dpr file of the application.

3. Make sure that all libraries and third party components support the larger address space. With a 2GB address space the high
bit of all pointers is always 0, so a larger address space may expose pointer arithmetic bugs that did not previously show any
symptoms. Such bugs are typically caused when pointers are typecast to integers instead of cardinals when doing pointer
arithmetic or comparisons.

Note: Memory allocated through the Memory Manager is guaranteed to be aligned to at least 8-byte boundaries. 16-byte
alignment is useful when memory blocks will be manipulated using SSE instructions, but may increase the memory usage
overhead. The guaranteed minimum block alignment for future allocations can be set with SetMinimumBlockAlignment.

See Also

Memory Management (see page 644)

Configuring the Memory Manager (see page 175)

Registering Memory Leaks (see page 178)

Monitoring the Memory Manager (see page 177)

Sharing Memory (see page 178)

2.7.3 Monitoring Memory Usage

This section describes how to monitor the state of the Memory Manager.

The Memory Manager provides two procedures that allow the application to monitor its own memory usage and the state of the
process’ address space. Both functions are thread safe.

To monitor memory usage for your application:

1. Call the procedure GetMemoryManagerState.

2. Inspect the populated TMemoryManagerState structure and extract the needed Memory Manager state information. The
structure has fields detailing the total number of allocations, the sum of their sizes, as well as the total reserved address
space. The statistics are subdivided into three categories: small, medium and large allocations.

To get a map of the memory address space for a process

1. Call the procedure GetMemoryMap.

2. Inspect the populated TMemoryMap array and extract the needed information regarding the process' address space. The
array contains a TChunkStatus entry for every possible 64K block in the process' address space.

See Also

Memory Management (see page 644)

Configuring the Memory Manager (see page 175)

Increasing the Memory Manager Address Space Beyond 2GB (see page 176)

2.7 Managing Memory RAD Studio (Common) Monitoring Memory Usage

177

2

Registering Memory Leaks (see page 178)

Sharing Memory (see page 178)

2.7.4 Registering Memory Leaks

This section describes how to register and unregister expected memory leaks.

When you allocate memory that you don't expect to free, you can register it with the Memory Manager. The Memory Manager
adds it to a list of areas to ignore when it checks for memory leaks. When you unregister a memory location, the Memory
Manager removes it from its list of expected memory leaks.

To register an expected memory leak:

1. Identify the pointer to the memory area you don't expect to free.

2. Pass the pointer to RegisterExpectedMemoryLeak.

To unregister an expected memory leak

1. Identify the pointer to the memory area you want to unregister.

2. Pass the pointer to UnregisterExpectedMemoryLeak.

See Also

Memory Management (see page 644)

Configuring the Memory Manager (see page 175)

Increasing the Memory Manager Address Space Beyond 2GB (see page 176)

Monitoring the Memory Manager (see page 177)

Sharing Memory (see page 178)

2.7.5 Sharing Memory

This section describes how to share memory using the Memory Manager. On Win32, if a DLL exports routines that pass long
strings or dynamic arrays as parameters or function results (whether directly or nested in records or objects), then the DLL and
its client applications (or DLLs) must all share the same memory manager. The same is true if one application or DLL allocates
memory with New or GetMem which is deallocated by a call to Dispose or FreeMem in another module. There are two mutually
exclusive methods through which the Memory Manager can be shared between an application and its libraries: ShareMem and
SimpleShareMem.

Note: When a DLL is statically linked to an application, the DLL is initialized before the application. The application will use the
memory manager of the DLL if the SimpleShareMem sharing method is used in both. Only the module that is sharing its memory
manager can change memory manager settings and retrieve memory manager statistics. Changing settings in any of the other
modules will have no effect, since their memory managers are not used.

It is possible, but rarely needed, to control the memory manager sharing mechanism manually.

To use ShareMem

1. List ShareMem as the first unit in the program and library uses clause. Your modules will become dependant on the external

Sharing Memory RAD Studio (Common) 2.7 Managing Memory

178

2

BORLNDMM.DLL library, allowing them to share dynamically allocated memory.

2. Deploy BORLNDMM.DLL with your application or DLL that uses ShareMem. When an application or DLL uses ShareMem, its
memory manager is replaced by the memory manager in BORLNDMM.DLL.

To use SimpleShareMem

1. List SimpleShareMem as the first unit in the program and library uses clause in each of your modules. The module that is
initialized first will be the module that will share its memory manager. All modules initialized after that will use the memory
manager of the first module.

2. The module that is initialized first will be the module that will share its memory manager. All modules initialized after that will
use the memory manager of the first module.

See Also

Memory Management (see page 644)

Configuring the Memory Manager (see page 175)

Registering Memory Leaks (see page 178)

Increasing the Memory Manager Address Space Beyond 2GB (see page 176)

Monitoring the Memory Manager (see page 177)

2.7 Managing Memory RAD Studio (Common) Sharing Memory

179

2

2.8 Unit Test Procedures
This section provides how-to information on using the features of DUnit and NUnit.

Topics

Name Description

Developing Tests (see page 180) The structure of a unit test largely depends on the functionality of the class and
method you are testing. The Unit Test Wizards generate skeleton templates for
the test project, setup and teardown methods, and basic test cases. You can
then modify the templates, adding the specific test logic to test your particular
methods.
The following describes the procedures for creating a Unit Test Project and a Unit
Test Case. Follow these procedures in the order shown. You must create the
Unit Test Project prior to creating the associated test cases. The Unit Test Case
Wizard is available only if... more (see page 180)

2.8.1 Developing Tests

The structure of a unit test largely depends on the functionality of the class and method you are testing. The Unit Test Wizards
generate skeleton templates for the test project, setup and teardown methods, and basic test cases. You can then modify the
templates, adding the specific test logic to test your particular methods.

The following describes the procedures for creating a Unit Test Project and a Unit Test Case. Follow these procedures in the
order shown. You must create the Unit Test Project prior to creating the associated test cases. The Unit Test Case Wizard is
available only if the current active project is a Unit Test Project.

To create a test project

1. Choose File New Other.

2. Open the Unit Test folder.

3. Double-click the Test Project gallery item. This starts the Test Project Wizard and displays the Specify Test Project
Details page.

4. Fill in the appropriate details or accept the defaults. Enter the following:

• Project name: Enter the name for the new test project, or accept the default. The default is the name of the active project with
the word Tests appended to the name. If there is no active project, the default will be UnitTest with a sequence number
appended.

• Location: Enter the full pathname for the folder in which to create the test project, or accept the default. The default is a
subfolder named test under the active project folder. If there is no active project, then the default is the default project folder.
You can click the ellipsis (...) to display a Browse dialog box from which you can select the location.

• Personality: Select the personality (code language) from the drop down list, or accept the default. The default is the
personality of the active project.

5. If you do not want the test project added to your project group, uncheck the Add to Project Group check box.

6. Click Next to proceed, or click Finish to accept the remaining defaults. If the Finish button is available, you can click it at any
point to accept the default values for any remaining fields and immediately generate the new test project. Otherwise, click
Next to proceed to the Specify Test Framework Options page.

7. Fill in the appropriate details or accept the defaults. Enter the following:

• Test Framework: For the Delphi.Net personality, you can choose either DUnit or NUnit from the drop down list. For the

Developing Tests RAD Studio (Common) 2.8 Unit Test Procedures

180

2

Delphi and C++ personalities, only the DUnit framework is supported, so you cannot change this value. For C#, only the NUnit
framework is supported.

• Test Runner: Choose either GUI or Console from the drop down list. The Console Test Runner directs output to the console.
The GUI Test Runner displays the results interactively in a GUI window, with results color-coded to indicate success or failure.

8. Click Finish. The Test Project Wizard generates the test project template. For the Delphi and C# personalities, this also
adds the necessary source references into the test project template; you can skip the next step. For C++Builder, you must
manually link the test project with the C++ classes you want to test; proceed to the next step.

9. For C++Builder, only: Link the new test project to the source to be tested. For C++Builder, you must manually link the test
project with the C++ code you want to test. You can use any of the following techniques to do this, as appropriate:

• Add the C++ code directly to the test project.

• Add an .obj file to the test project.

• Add a .lib file (either a static library or an import library for a DLL) to the test project.

• Include the header file that implements the class you want to test. See the next section, Adding files to a test project, for
instructions.

Adding files to a test project

1. Open the test project file and activate it. To activate the file, select the file in the Project Manager and click the Activate
button.

2. In the Project Manager, right-click on the test project name. This displays a pop-up menu of project operations.

3. Choose Add.... This displays the Add to Project file browser, from which you can select the file to include in your test project.

4. Select the file to add and click OK. This adds the select file to the test project.

To create a test case

1. Click the Code tab for the file containing the classes you want to test. This makes the file active in the Code Editor.

2. Choose File New Other.

3. Open the Unit Test folder.

4. Double-click the Test Case gallery item. This starts the Test Case Wizard and displays the Select Methods to Test page.

5. Enter the name of the source file that contains the classes you want to test. You can click the ellipsis (...) to display an Open
dialog box, from which you can select the file.

6. Select the classes and methods for which you want to create tests. In the Available classes and methods list, click the
check box next to an item to select or deselect it. By default, all classes and methods are selected. You can deselect
individual methods in the list. The wizard generates test case templates for the checked (selected) methods only. If you
deselect a class, the wizard ignores the entire class and all of its methods, even if you do not deselect the methods. If you
select a class but do not select any methods in that class, the wizard generates a test case for the class, but does not
generate any test methods for that class.

7. Click Next to proceed, or click Finish to accept the remaining defaults. If the Finish button is available, you can click it at any
point to accept the default values for any remaining fields and immediately generate the new test case. Otherwise, click Next
to proceed to the Specify Test Case Details page.

8. Fill in the appropriate details or accept the defaults.

• Test Project: Select the test project from the drop down list. The default is the active test project; if you just created a test
project using the Test Project Wizard, then the new test project is the default.

• File name: Enter a filename for the test case you are creating or accept the default. The default is the name of the source file
to be tested, with the prefix Test added to the name.

• Test Framework: For the Delphi for .Net personality, you can choose either DUnit or NUnit from the drop down list. For the
Delphi for Win32 and C++ personalities, only the DUnit framework is supported, so you cannot change this value. For C#, only
the NUnit framework is supported.

• Base Class: Select the base class from the drop down list or accept the default. The default is TTestCase, which is the

2.8 Unit Test Procedures RAD Studio (Common) Developing Tests

181

2

default base TestCase class. In most cases, you can use the default. However, you can specify a custom TTestCase class
that you have created. In addition, if you are testing a hierarchy of objects, you can derive the new test case from the
TestCase class of a base object of the object being tested. This allows a derived class to inherit a test created for the base
type for that class.

9. Click Finish. The wizard generates a test case file with the name you specified.

To write a test case

1. Add code to the SetUp and TearDown methods in the test case template(s), if needed.

2. Add asserts to the test methods.

To run a test case in the GUI Test Runner

1. Activate the file containing the classes you want to run. Select the file in the Project Manager and then click the Activate
button.

2. Choose Run Run. The GUI Test Runner starts up immediately on execution of your application.

3. Select one or more tests from the tests list.

4. Click the Run button. The test results appear in the Test Results window. Any test highlighted with a green bar passed
successfully. Any test highlighted in red failed. Any test highlighted in yellow was skipped.

5. Review the test results.

6. Fix the bugs and rerun the tests.

See Also

Unit Testing Overview (see page 70)

DUnit Overview (see page 72)

NUnit Overview (see page 76)

Developing Tests RAD Studio (Common) 2.8 Unit Test Procedures

182

2

2.9 Together Procedures
This section provides how-to information on using the Together features.

Topics

Name Description

Configuring Together (see page 183) Together is flexibly configurable. Use the Options dialog window to tune
modeling features to best fit your requirements.
The Options dialog window provides a number of diagram customization
settings. You can configure the appearance and layout of the diagrams, specify
font properties, member format, and level of detail.

Together Refactoring Procedures (see page 184) This section provides how-to information on using Together refactoring facilities.

Opening the UML 2.0 Sample Project (see page 190)

Together Diagram Procedures (see page 190) This section provides how-to information on using Together UML diagrams.

Together Documentation Generation Procedures (see page 247) This section provides how-to information on using Together Documentation
Generation facilities.

Using Online Help (see page 248)

Together Object Constraint Language (OCL) Procedures (see page 248) This section provides how-to information on using Together OCL facilities.

Working with a Namespace or a Package (see page 250) Namespaces are used in implementation projects, and packages in design
projects.

Together Pattern Procedures (see page 251) This section provides how-to information on using patterns with Together.

Together Project Procedures (see page 262) This section provides how-to information on using Together projects.

Together Quality Assurance Procedures (see page 271) This section provides how-to information on using Together Quality Assurance
facilities.

2.9.1 Configuring Together

Together is flexibly configurable. Use the Options dialog window to tune modeling features to best fit your requirements.

The Options dialog window provides a number of diagram customization settings. You can configure the appearance and layout
of the diagrams, specify font properties, member format, and level of detail.

To configure Together settings:

1. On the main menu, choose Tools Options.

2. In the Options dialog window, expand the Together category.

3. Select the desired option level.

4. For the Project and Diagram option levels, choose the project or diagram where the configuration changes should apply. To
do that, click the chooser buttons in the corresponding fields and select the desired project or diagram from the model.

5. Click the desired subcategory.

6. Edit configuration options as required.

7. Click OK to apply changes and close the dialog window.

You can make configuration options final at a certain parent level and disable any changes on the lower levels:

To disable configuration changes:

1. On the main menu, choose Tools Options.

2. Click the Together category to expand it.

2.9 Together Procedures RAD Studio (Common) Configuring Together

183

2

3. Select the required sub-category (default, project group or project).

4. Check the Disable sublevels option.

See Also

Option Levels (see page 1088)

Option Value Editors (see page 1101)

2.9.2 Together Refactoring Procedures

This section provides how-to information on using Together refactoring facilities.

Topics

Name Description

Refactoring: Changing Parameters (see page 184)

Refactoring: Extracting Interfaces (see page 185) The following conditions should be met for extracting interfaces:

• Only non-static methods can be extracted.

• All methods in the extracted interface are public.

• If the name specified for the new interface coincides with
the name of an existing interface in the same namespace,
all the methods will be extracted into an existing interface.

Refactoring: Extracting Method (see page 185)

Refactoring: Extracting Superclass (see page 186)

Refactoring: Creating Inline Variables (see page 186)

Refactoring: Introducing Fields (see page 187)

Refactoring: Introducing Variables (see page 187)

Refactoring: Moving Members (see page 188)

Refactoring: “Pull Members Up" and “Push Members Down” (see page 188) Moving members assumes that the member is either moved to the target location
being deleted from the original location, or created in the target location being
preserved on the original one.

Refactoring: Renaming Elements (see page 189) To rename a local variable or parameter, right-click a variable name in the source
code and choose Refactoring Rename on the main menu. For the other code
elements, you can use the source-code Editor, the Diagram View, the Model
View, or the Refactoring main menu.
Tip: In order to make renaming overloads possible, the method should have its
override
property set to true.

Refactoring: "Safe Delete" (see page 189)

2.9.2.1 Refactoring: Changing Parameters
To change parameters, follow these steps:

1. Select method in the Diagram View, in the Model View or in the Editor.

2. Choose Refactoring->Change Parameters from the main menu.

Tip: Alternatively, you can right-click and choose Refactoring->Change Parameters on the context menu.

3. In the resulting dialog, select parameter from the list and choose the desired action:

• To add a new parameter, click Add, and specify the parameter name, type and default value.

• To delete parameter, click Remove.

Together Refactoring Procedures RAD Studio (Common) 2.9 Together Procedures

184

2

• To rename parameter, click the Name field, and edit the parameter name using the in-place editor.

4. If applicable, check Refactor Ancestors.

5. Check Preview Usages if necessary.

• If this option is checked when you click OK, the Refactoring window opens allowing you to review the refactoring before
committing to it. Click the Perform refactoring button to complete the changes. You can use the Undo and Redo commands
as necessary once you have performed the refactoring.

• If this option is cleared when you click OK, the Refactoring window opens with the change completed. You can use the Undo
and Redo commands as necessary once you have performed the refactoring.

See Also

Refactoring overview (see page 98)

Change Parameters dialog box (see page 961)

2.9.2.2 Refactoring: Extracting Interfaces
The following conditions should be met for extracting interfaces:

• Only non-static methods can be extracted.

• All methods in the extracted interface are public.

• If the name specified for the new interface coincides with the name of an existing interface in the same namespace, all the
methods will be extracted into an existing interface.

To extract an interface:

1. Select one or more code elements (class, interface, field, method, event, property, or indexer) in the Diagram View or Model
View.

2. On the main menu, chooseRefactoring Extract Interface

Tip: Alternatively, you can choose Refactoring->Extract Interface

on the context menu of the selection.

3. In the Extract interface dialog box, enter the name for the interface and designate its namespace, if applicable.

4. Specify the members to be used in the resulting interface by setting or clearing the respective check-boxes.

5. Click OK. The Refactoring window opens allowing you to review the refactoring before committing to it.

6. Click the Perform refactoring button to complete the extraction.

See Also

Refactoring Overview (see page 98)

Refactoring Operations (see page 1115)

2.9.2.3 Refactoring: Extracting Method
To extract a method:

1. In the Editor, open the class or interface containing the code fragment that you wish to extract.

2. Place the mouse cursor in the desired fragment of source code. Refactoring determines the beginning and the end of the
relevant statement.

3. On the main menu, choose Refactoring Extract Method

Tip: Alternatively, right-click the code fragment and choose Refactoring->Extract Method

2.9 Together Procedures RAD Studio (Common) Together Refactoring Procedures

185

2

on the context menu.

4. In the dialog box that opens, specify the following information:

• Name of the new method

• Visibility (public, protected, private, internal, internal protected)

• Header comment

• Whether the method is Static.

5. Click OK to complete the extraction and create the new method.

Tip:

• When applying Extract Method, parameters and local variables in the selected code fragment become the parameters of the
new method.

• The code fragment cannot contain a return statement of the original method. An error message displays if you attempt to
include a return statement in the code fragment.

• The code fragment cannot modify more than one single local variable. An error message displays if you violate this restriction.

• If the selected code fragment is repeated in several locations, it is your responsibility to replace these fragments in the
appropriate locations with the proper method calls.

See Also

Refactoring overview (see page 98)

2.9.2.4 Refactoring: Extracting Superclass
To use the "Extract superclass" operation:

1. Select one or more code elements (class, interface, field, method, event, property, or indexer) in the Diagram or Model View.

2. On the main menu, chooseRefactoring Extract Superclass

Tip: Alternatively, you can choose Refactoring->Extract Superclass

on the context menu of the selection.

3. In the Extract superclass dialog box, enter the name for the interface and designate its namespace, if applicable.

4. Specify the members to be used in the resulting superclass by setting or clearing the respective check-boxes. If applicable,
indicate that a method is abstract in the extracted superclass.

5. Click OK. The Refactoring window opens allowing you to review the refactoring before committing to it.

6. Click the Perform refactoring button to complete the extraction.

See Also

Refactoring overview (see page 98)

Refactoring Operations (see page 1115)

2.9.2.5 Refactoring: Creating Inline Variables
To create an inline variable:

1. Select the local variable in the Editor.

2. On the main menu, chooseRefactoring Inline variable

Tip: Alternatively, you can choose Refactoring->Inline variable

on the context menu. The resulting dialog reports the number of variable occurrences that the Inline Variable command will

Together Refactoring Procedures RAD Studio (Common) 2.9 Together Procedures

186

2

be applied to.

3. Click OK to complete refactoring.

Warning: The variable that you select for creating an inline variable, should not be updated later in the source code. If it is,
the following error message will display: "Variable index is accessed for writing."

For example, if you use the Inline Variable refactoring command on the local variable, index, shown below:

public void findIndex() {
 int index = 2;
 System.Console.Writeline("Index is: {0}", index);
 }

then the following refactoring occurs:

public void findIndex() {
 System.Console.Writeline("Index is: {0}", 2);
}

See Also

Refactoring overview (see page 98)

Inline Variable dialog box (see page 967)

2.9.2.6 Refactoring: Introducing Fields
To introduce a field:

1. Select expression in the Editor.

2. On the main menu, chooseRefactoring Introduce Field

Tip: Alternatively, you can choose Refactoring->Introduce Field

on the context menu.

3. In the resulting dialog, specify the following:

• Name: Enter the name of the new field

• Visibility: Using the list box, choose the visibility for the new field from public, protected, private, internal, or internal
protected.

• Initialize: Choose where to initialize the new field. Using the list box, choose from Current method, Class constructor(s), or
Field declaration.

4. If applicable, check the Static and Replace all occurrences fields.

5. Click OK to complete the refactoring.

See Also

Refactoring overview (see page 98)

Introduce Field dialog box (see page 968)

2.9.2.7 Refactoring: Introducing Variables
To introduce a new variable:

1. Select variable in the Editor.

2. On the main menu, chooseRefactoring Introduce Variable

Tip: Alternatively, you can choose Refactoring->Introduce Variable

2.9 Together Procedures RAD Studio (Common) Together Refactoring Procedures

187

2

on the context menu.

3. In the resulting dialog, specify the Name of the new variable. The new variable created is given the same type as the original
variable.

4. If desired, check Replace all occurrences. The Introduce Variable dialog indicates the number of occurrences that it will
replace with the new variable.

Note: The refactoring does not replace any occurrences of the variable prior to the point in the code at which you selected to
introduce the new variable.

See Also

Refactoring overview (see page 98)

Introduce variable dialog box (see page 968)

2.9.2.8 Refactoring: Moving Members
To move a static member to a different class:

1. Select one or more static members in the Diagram View or Model View.

2. On the main menu choose Refactoring Move

Tip: Alternatively, right-click on the selection and choose Refactoring->Move Members

on the context menu

3. In the Move Members dialog, use the Move Members field to select which static members to move. You can deselect/select
the static members by clearing/checking the check box next to the name of the member

4. Use the To field to enter the fully-qualified name for the target class where the selected code element or elements will reside.

5. Click OK.

See Also

Refactoring overview (see page 98)

Move Members dialog box (see page 969)

2.9.2.9 Refactoring: “Pull Members Up" and “Push Members Down”
Moving members assumes that the member is either moved to the target location being deleted from the original location, or
created in the target location being preserved on the original one.

To move a member:

1. Select member in the Diagram View or in the Model View.

Tip: In the editor, place the mouse cursor on the member name.

2. Choose Refactoring Pull Members Up/Push Members Down on the context menu or on the main menu.

3. In the resulting dialog box, specify additional information required to make the move.

• In the top pane of the dialog box, check the members to be moved.

• In the bottom pane of the dialog box, that shows the class hierarchy tree, select the target class.

4. Click OK.

Together Refactoring Procedures RAD Studio (Common) 2.9 Together Procedures

188

2

5. In the Refactoring window that opens, review the refactoring before committing to it. Click the Perform refactoring button to
complete the move.

Tip: Moving members is more complicated than moving classes among namespaces, because class members often contain
references to each other. A warning message is issued when Pull Members Up or Push Members Down has the potential for
corrupting the syntax if the member being moved references other class members. You can choose to move the class
member and correct the resulting code manually.

See Also

Refactoring overview (see page 98)

2.9.2.10 Refactoring: Renaming Elements
To rename a local variable or parameter, right-click a variable name in the source code and choose Refactoring Rename on
the main menu. For the other code elements, you can use the source-code Editor, the Diagram View, the Model View, or the
Refactoring main menu.

Tip: In order to make renaming overloads possible, the method should have its override

property set to true.

To rename an element:

1. Select element in the Diagram View or in the Model View.

Tip: In the editor, place the mouse cursor on the element name.

2. Choose Refactoring Rename on the context menu or on the main menu.

3. In the resulting dialog box, specify new name of the element.

4. Click OK.

5. In the Refactoring window that opens, review the refactoring before committing to it. Click the Perform refactoring button to
complete the move.

See Also

Refactoring overview (see page 98)

Rename dialog box (see page 975)

2.9.2.11 Refactoring: "Safe Delete"
To safely delete an element:

1. Select the element to be deleted.

2. On the main menu, choose Refactoring Safe Delete

Tip: Alternatively, right-click on the element and choose Refactoring->Safe Delete

on the element's context menu.

3. In the Safe Delete dialog box that reports the element to delete and any usages of that element:

• If no usages are found, press Delete.

• If usages are found, click View usages. The Refactoring window opens allowing you to review the refactoring before
committing to it. Click the Perform refactoring button to delete the element.

2.9 Together Procedures RAD Studio (Common) Together Refactoring Procedures

189

2

See Also

Refactoring overview (see page 98)

Safe Delete dialog box (see page 975)

2.9.3 Opening the UML 2.0 Sample Project

To open the UML 2.0 sample project:

1. From the File menu, select Open | Project. The Open Project dialog box opens.

2. Navigate to UML 2.0 Samples Project in C:\Documents and Settings\%user_name%\My Documents\RAD
Studio\5.0\Demos\Modeling\UML-2.0.

3. Select UML-2.0.tgproj and click Open.

4. From the View menu, select Model View. Although the Model View opens initially as a free-floating window, it is a dockable
window. The docking areas are any of the four borders of the RAD Studio window.

5. You can position the audit results window according to your preferences. In the Model View, expand the root project node
and double-click the default diagram. The diagram opens in the Diagram View.

Double-click the various diagrams in the Model View to open them in the Diagram View.

See Also

UML 2.0 Sample Project (see page 84)

2.9.4 Together Diagram Procedures

This section provides how-to information on using Together UML diagrams.

Topics

Name Description

Annotating a Diagram (see page 195)

Creating a Diagram (see page 196) When you create a new diagram, the Diagram View presents an empty
background. You place the various model elements on the background and draw
relationship links between them according to the requirements of your model.

Exporting a Diagram to an Image (see page 197)

Printing a Diagram (see page 197) You can print diagrams separately or as a group, or print all diagrams in the
project.

Changing Diagram Notation (see page 197)

Using Grid and Other Appearance Options (see page 198) You can optionally display or hide a design grid on the diagram background and
have elements “snap” to the nearest grid coordinate when you place or move
them. The grid is configured in the Diagram Appearance options dialog window.

Using the UML in Color Profile (see page 198)

Aligning Model Elements (see page 199) You can automatically rearrange all or selected model elements on a diagram.

Changing Type of a Link (see page 199)

Closing a Diagram (see page 200)

Copying and Pasting Model Elements (see page 200) The move and copy operations are performed by drag-and-drop, context menu
commands, or keyboard shortcut keys.
Note: You can move or copy an entire diagram. In this case, all elements
addressed on this diagram are not copied, and a new diagram contains shortcuts
to these elements.

Deleting a Diagram (see page 200) Warning: The default diagram which is created automatically for a namespace
(package) cannot be deleted.

Together Diagram Procedures RAD Studio (Common) 2.9 Together Procedures

190

2

Hyperlinking Diagrams (see page 201) Select Hyperlinks from the diagram context menu to create, view, remove, and
browse hyperlinks.

Laying Out a Diagram Automatically (see page 202)

Moving Model Elements (see page 203) Create your own layout by selecting and moving single or multiple diagram
elements.
You can:

• Select a single element and drag it to a new position.

• Select multiple elements and change their location.

• Manually reroute links.

Note: If you drag an element outside the borders of the
Diagram View

, the diagram automatically scrolls to follow the dragging.

Tip: Manual layouts are saved when you close a diagram
or project and restored when you next open it. Manual
layouts are not preserved when you run one of the
auto-layout commands (Do Full Layout or Optimize
Sizes).

Renaming a Diagram (see page 204) Warning: The project namespace (package) automatically created diagram
cannot be renamed.

Rerouting a Link (see page 204)

Resizing Model Elements (see page 204) Diagram elements can be resized automatically or manually. When new items
are added to an element that has never been manually resized, the element
automatically grows to enclose the new items.

Selecting Model Elements (see page 205) Most manipulations with diagram elements and links involve dragging the mouse
or executing context menu commands on the selected elements.

Assigning an Element Stereotype (see page 205) You can assign a stereotype in the diagram by using the in-place editor, or by
using the Object Inspector.

Using Drag-and-Drop (see page 206) Drag-and-drop applies to the members as well as to the node elements. You can
move or copy members (methods, fields, properties, and so on) by using
drag-and-drop in the Diagram View or in the Model View.
Drag-and-drop functionality from the Model View to the Diagram View and
within the Model View works as follows:

• Selecting an element in the Model View and using
drag-and-drop to place the element onto the diagram
creates a shortcut.

• Using drag-and-drop while pressing the SHIFT key moves
the element to the selected container.

• Using drag-and-drop while pressing the CTRL key copies
the element to... more (see page 206)

Working with User Properties (see page 206) User properties are created by means of the User Properties command. The
User Properties command is available on the context menus of the diagrams and
diagram elements both in the Diagram View and the Model View. Once created,
the user properties can be viewed and edited in the Object Inspector under the
User Properties category.

Creating a Link with Bending Points (see page 207) If your diagram is densely populated, you can draw bent links between the
source and target elements to avoid other elements that are in the way.

Creating Multiple Elements (see page 207) You can place several elements of the same type on a diagram without returning
to the Tool Palette or by using the diagram context menu. Each element will have
a default name that can be edited with the in-place editor or in the Object
Inspector.

2.9 Together Procedures RAD Studio (Common) Together Diagram Procedures

191

2

Creating a Shortcut (see page 208) You can create a shortcut to a model element on the diagram background by
using three methods:

• By opening Add Shortcuts dialog box from the Diagram
View

• By copying and pasting a shortcut from the Model View

• By choosing Add Shortcuts on the Model View context
menu

Creating a Simple Link (see page 209) In a design project, you can create a link to another node, or a shortcut of an
element of the same or another design project (these projects must be of the
same UML version).
In an implementation project, you can create a link to another node or a shortcut
of an element of the same project.

Creating a Single Model Element (see page 209)

Searching Diagrams (see page 209) Together enables you to use the Find and Replace facilities provided by RAD
Studio to locate model elements on model diagrams.

Searching Source Code for Usages (see page 210) In addition to the diagram search facility, Together enables you to track how an
element or member is used in a source-code project. The Search for Usages
dialog box enables you to find the references to, and overrides of, the elements
and members in implementation projects.
The Search for usages command is available on the context menu of an element
in a diagram or in the Model View. Note that Search for usages is not available
for the design projects.

Creating an Activity for a State (see page 211)

Designing a UML 1.5 Activity Diagram (see page 211) Use the following tips and techniques when you design a UML 1.5 Activity
Diagram.

Instantiating a Classifier (see page 211) In a UML 1.5 design project, you can create an object that instantiates a class or
interface from the same or another UML 1.5 design project or any implementation
project in the same project group. In an implementation project, you can create
an object that instantiates a class or interface from the same project or some
UML 1.5 design project or a referenced project. You can create such links by
using the Object Inspector or by using Dependency links to shortcuts.

Designing a UML 1.5 Component Diagram (see page 212) Following are tips and techniques that you can use when working with UML 1.5
Component Diagrams. It can be convenient to start creation of a model with
Component Diagrams if you are modeling a large system. For example, a
distributed, client-server software system, with numerous interconnected
modules. You use Component Diagrams for modeling a logical structure of your
system, while you use Deployment Diagrams for modeling a physical structure.

Designing a UML 1.5 Deployment Diagram (see page 212) Use the following tips and techniques when you design a UML 1.5 Deployment
Diagram. It can be convenient to start creation of a model with Deployment
Diagrams if you are modeling a large system that is comprised of multiple
modules, especially if these modules reside on different computers. You use
Deployment Diagrams for modeling a physical structure of your system, while
you use Component Diagrams for modeling a logical structure.

Adding a Conditional Block (see page 213) Note: If the control structure requires a condition, you can enter the condition
with the in-place editor, or you can enter it using the Condition field in the Object
Inspector
.

Associating an Object with a Classifier (see page 214) In the sequence or collaboration diagram you can create associations between
objects (located on an interaction diagram) and classifiers (located on some class
diagram). Instantiated classes for an object can be selected from the model, or
the classes can be created and added to the model.
Note that an object can instantiate classifiers that belong to the various
source-code projects within a single project group, when such projects are
referenced from the project in question.
The range of available classifiers depends on the project type.

• Design projects: classes, interfaces

• C# implementation projects: classes, interfaces,
structures

Branching Message Links (see page 215) Branching messages that start from the same location on the lifeline.

Converting Between UML 1.5 Sequence and Collaboration Diagrams (see
page 215)

You can convert between sequence and collaboration diagrams. However, when
you create a new diagram, you must specify that it is either a sequence diagram
or a collaboration diagram.

Together Diagram Procedures RAD Studio (Common) 2.9 Together Procedures

192

2

Working with a UML 1.5 Message (see page 215) This section describes techniques for working with messages in Sequence and
Collaboration diagrams. Although the two diagram types are equivalent, the
techniques for dealing with messages differ.
In a Collaboration diagram, all messages between the two objects are displayed
as a generic link line, and a list of messages is created above it. The link line is
present as long as there is at least one message between the objects. Messages
display in time-ordered sequence from top to bottom of the messages list. In
addition to the message links, you can add links that show association and
aggregation relationships. These... more (see page 215)

Designing a UML 1.5 Statechart Diagram (see page 217) Following are tips and techniques that you can use when working with UML 1.5
Statechart Diagram.

Creating a Pin (see page 217)

Designing a UML 2.0 Activity Diagram (see page 218) Use the following tips and techniques when you design a UML 2.0 Activity
Diagram. Usually you create Activity Diagrams after State Machine Diagrams.

Grouping Actions into an Activity (see page 219)

Working with an Object Flow or a Control Flow (see page 219) You can create control flow or object flow as an ordinary link between the two
node elements. The valid nodes are highlighted when the link is established.
You can scroll to the target element if it is out of direct reach, or you can use the
context menu command to avoid scrolling.
There are certain limitations stipulated by UML 2.0 specifications:

• Object flow link must have an object at least on one of its
ends.

• It is impossible to connect two actions with an object flow
except through an output pin on the source action.

• Control flow link may not... more (see page 219)

Designing a UML 2.0 Component Diagram (see page 220) Following are tips and techniques that you can use when working with UML 2.0
Component Diagrams. It can be convenient to start creation of a model with
Component Diagrams if you are modeling a large system. For example, a
distributed, client-server software system, with numerous interconnected
modules. You use Component Diagrams for modeling a logical structure of your
system, while you use Deployment Diagrams for modeling a physical structure.

Creating a Delegation Connector (see page 221)

Creating an Internal Structure for a Node (see page 221)

Creating a Referenced Part (see page 221)

Creating a Port (see page 222)

Working with a Collaboration Use (see page 222)

Designing a UML 2.0 Deployment Diagram (see page 223) Use the following tips and techniques when you design a UML 2.0 Deployment
Diagram. It can be convenient to start creation of a model with Deployment
Diagrams if you are modeling a large system that is comprised of multiple
modules, especially if these modules reside on different computers. You use
Deployment Diagrams for modeling a physical structure of your system, while
you use Component Diagrams for modeling a logical structure.

Associating a Lifeline with a Classifier (see page 224)

Copying and Pasting an Execution or Invocation Specification (see page 224) Clipboard operations are supported for the execution and invocation
specifications.

Creating a Sequence or Communication Diagram from an Interaction (see
page 225)

Creating a State Invariant (see page 225)

Designing a UML 2.0 Sequence or Communication Diagram (see page 226) Use the following tips and techniques when you design a UML 2.0 Sequence or
Communication Diagrams. Usually you create Interaction Diagrams after Class
Diagrams.
Whenever an interaction diagram is created, the corresponding interaction is
added to the project. Interactions are represented as nodes in the Model View.
Note: Presentation of an interaction in the Model View
depends on the view type defined in the Model View options on the default or
project group levels. If model-centric mode is selected, an interaction is shown
both under its package node and diagram node. If diagram-centric mode is
selected, an interaction is... more (see page 226)

Linking Another Interaction from an Interaction Diagram (see page 227)

Working with a UML 2.0 Message (see page 227) This section describes techniques for working with messages in sequence and
communication diagrams. Although the two diagram types are equivalent, the
techniques for dealing with messages differ.

Working with a Combined Fragment (see page 228)

2.9 Together Procedures RAD Studio (Common) Together Diagram Procedures

193

2

Working with a Tie Frame (see page 229)

Associating a Transition or a State with an Activity (see page 230) You can associate an activity (created on some UML 2.0 Activity Diagram) with a
state (on entering the state, while doing the state activity, and on exiting the
state), or with a transition between states.

Creating a Guard Condition for a Transition (see page 230)

Creating a History Element (see page 230)

Creating a Member for a State (see page 231)

Creating a State (see page 231)

Designing a UML 2.0 State Machine Diagram (see page 232) Following are tips and techniques that you can use when working with UML 2.0
State Machine Diagram.

Browsing a Diagram with Overview Pane (see page 232)

Hiding and Showing Model Elements (see page 232) You can control the visibility of elements on a diagram by using the Hide
command (available on the context menu for individual diagram elements), and
the Show/Hide command (available on the diagram context menu).

Using View Filters (see page 233) For global control over the diagram view, you can use the filters in the Options
dialog window.

Zooming a Diagram (see page 234) Use the diagram context menu to obtain the required magnification in the
Diagram View.

Working with a Complex State (see page 234) The techniques in this section pertain to models of particularly complex
composite states and substates.
You can resize the main state. You can also create a substate by drawing a state
diagram within another state diagram and indicating start, end, and history states
as well as transitions.
Create a composite state by nesting one or more levels of states within one state.
You can also place start/end states and a history state inside of a state, and draw
transitions among the contained substates.

Creating a Deferred Event (see page 235) You can add a deferred event to a state element.

Creating an Internal Transition (see page 235)

Creating a Multiple Transition (see page 235)

Creating a Self-Transition (see page 236)

Specifying Entry and Exit Actions (see page 236) You can create entry and exit actions as nodes, or as stereotyped internal
transitions.

Working with an Instance Specification (see page 237) You can instantiate a classifier using the Object InspectorProperties Window or
the in-place editor.

Working with a Provided or Required Interface (see page 238)

Creating an Association Class (see page 239)

Creating an Inner Classifier (see page 239) This section includes instructions for adding inner classifiers to classes (including
Windows classes, such as Windows forms, Inherited forms, User Controls and so
on), structures, and modules (collectively, containers) in implementation projects.
You can add inner classifiers to class diagram elements (containers) using the
respective context menu for the diagram element in the Diagram or Model
Views. You can also select a classifier in the Tool PaletteToolbox and click the
container element in the Diagram View to add the inner classifier to the
container element.
Note: Modules are specific to Visual Basic projects.
Structure elements are available for... more (see page 239)

Using a Class Diagram as a View (see page 240) Class diagrams can also be used to create subviews of the project.

Working with an Interface (see page 240) This topic describes how to create and hide an interface on a class diagram.

Working with a Relationship (see page 241) You can change the type of an association link.

Adding a Member to a Container (see page 241) You can add members to class diagram elements (containers) by using the
respective context menu for the diagram element in the Diagram or Model
Views or available shortcut keys to add members to a class diagram container
element.

Changing Appearance of Compartments (see page 242) You can collapse or expand compartments for the different members of class,
interface, namespace, module (Visual Basic projects only), enum, and structure
(C# projects only) elements. By default, the compartments for these elements are
displayed on the diagram as a straight line. You can use the Options dialog
window to set viewing preferences for compartment controls. Adding
compartment controls is particularly useful when you have large container
elements with content that does not need to be visible at all times.

Changing Appearance of Interfaces (see page 242)

Together Diagram Procedures RAD Studio (Common) 2.9 Together Procedures

194

2

Working with a Constructor (see page 243) You can create as many constructors in a class as needed.
In design projects, a constructor is created as an operation with the
<<constructor>> stereotype.
In implementation projects, each new constructor is created with its unique set of
parameters. In addition to creating parameters automatically, you can define the
custom set of parameters, using the Object InspectorProperties Window.
Tip: You can move, copy and paste constructors and destructors between the
container classes same way as the other members.

Working with a Field (see page 243) This topic applies to implementation projects only.
In the source code, it is possible to declare several fields in one line. This
notation is represented in diagram as a number of separate entries in the Fields
section if a class icon. However, you can rename the fields, change modifiers, set
initial values and so on, all modifications being applied to the respective field in
the diagram icon. Also you can copy and move such fields in diagram (using
context menu commands or drag-and-drop), and the pasted field appears in the
target container separately.

Associating a Message Link with a Method (see page 244) Message links can be associated with the methods of the recipient class. The
methods can be selected from the list of existing ones or can be created. This is
done by two commands provided by the message context menu: Add and
Choose method.
You can use the Operation field in the Object InspectorProperties Window to
rename the method. A dialog box appears asking if you want to create a new
method or rename the old one.

Generating an Incremental Sequence Diagram (see page 245) You can generate incremental sequence diagrams from a previously-generated
sequence diagram. In some cases, you can have generated a sequence diagram
with a low nesting value such as 3 or 5. The nesting value limits how deep the
parser traverses the source code calling sequence.

Creating a Browse-Through Sequence of Diagrams (see page 246) You can link entire diagrams at one level of detail to the next diagram up or down
in a sequence of increasing granularity, or you can link from key use cases or
actors to the next diagram.

Creating an Extension Point (see page 246)

Designing Use Case Hierarchy (see page 246) Use case diagrams typically represent the context of a system and system
requirements.

2.9.4.1 Annotating a Diagram
Use the following actions to annotate a diagram:

1. Draw an annotation

2. Draw an annotation link

3. Type comments

To draw an annotation:

1. In the Diagram View, you can:

• Hyperlink the note to another diagram or element.

• Edit the text when its in-place editor is active.

• Edit the properties of a note using Object Inspector.

• Add an existing note from one diagram to another diagram using a shortcut. (Select Add Shortcuts from any diagram
context menu.)

2. In the Object Inspector for the note, you can:

• Edit the text.

• Change the foreground and background colors.

• Change the text-only property.

To draw an annotation link:

1. Click the Note Link button on the Tool Palette.

2.9 Together Procedures RAD Studio (Common) Together Diagram Procedures

195

2

2. In the Diagram View, click the source element.

3. Drag the link to the destination element.

4. Drop when the second element is highlighted.

Tip: You can use the Object Inspector

to view both the client and supplier sides of the link.

To type comments:

1. To enter comments in the source code, use the Comment fields (Author, Since, Version) in the Object Inspector for the class.

2. You can also enter source code comments directly into the code using the Editor.

See Also

Annotation Overview (see page 91)

Creating a Single Element (see page 209)

Creating a Shortcut (see page 208)

2.9.4.2 Creating a Diagram
When you create a new diagram, the Diagram View presents an empty background. You place the various model elements on
the background and draw relationship links between them according to the requirements of your model.

To create a diagram:

1. In the Model View, right-click the target project.

Tip: Alternatively, you can use the shortcut CTRL+SHIFT+D

.

2. Select the target namespace (package) either in the Diagram View or in the Model View. If you do not select a custom
namespace (package), Together adds a new diagram to the default one.

3. Choose Add Other Diagram on the context menu.

4. In the Add New Diagram dialog box, choose the Diagrams tab.

5. Select the diagram type.

6. In the Name field, enter a name for the new diagram.

7. Click OK.

Result: The new diagram opens in a new tab in the Editor Window. You can use the Object Inspector to view and edit the
diagram properties.

To create a new diagram, use can also use the Hyperlink To New diagram command on the context menu of the Model View
or the Diagram View.

You can create a new logical class diagram using the context menu of the root node for your project, or by using the context
menu of a namespace element in the Model View. Choose either Add Class Diagram or Add Other Diagram. Choosing
the latter command opens the Add New Diagram dialog box. When you place a class, interface, or namespace on a logical
class diagram, Together generates the corresponding source code or descendent namespace in the namespace where this
class diagram is located.

See Also

Diagram Overview (see page 90)

Creating a Project (see page 264)

Together Diagram Procedures RAD Studio (Common) 2.9 Together Procedures

196

2

2.9.4.3 Exporting a Diagram to an Image
To export a diagram to an image:

1. Place the focus on the diagram you want export in the Diagram View.

2. Choose File Export Diagram to Image on the main menu. The Export Diagram to Image dialog opens.

3. Click the drop-down arrow to preview and adjust the zoom settings of the diagram image.

4. Click Save. The file browser dialog box opens.

5. Browse for a location where you wish to save the image.

6. Enter a name. By default, the image file takes on the name given to the diagram in RAD Studio.

7. Select an image format.

8. Click Save.

See Also

Import and Export Features Overview (see page 100)

2.9.4.4 Printing a Diagram
You can print diagrams separately or as a group, or print all diagrams in the project.

To print a diagram:

1. With the diagram in focus in the Diagram View, choose File Print from the main menu. The Print diagram dialog box
opens.

2. In the Print Diagrams list box, specify the scope of diagrams to be printed:

• Active diagram: To print the currently selected diagram.

• Active with neighbors: To print the current diagram and the other diagrams of the same project.

• All opened: To print all diagrams currently opened in the Diagram view.

• All in model: To print all diagrams within a project group.

3. In the Print zoom field, specify the zoom factor.

4. If necessary, adjust the page and printer settings:

• Click the Print list box and choose Print dialog box to select the target printer.

• Use the Options dialog window (Together (level) Diagram Print options) to set up the paper size, orientation, and
margins.

Tip: Click Preview to open the preview pane. Use the Preview zoom slider, or Auto Preview zoom check box, as required.

See Also

Diagram Print options (see page 1094)

2.9.4.5 Changing Diagram Notation
Use the following techniques to change diagram notation:

1. Choose one of the two possible appearances for interfaces. Interfaces can be represented as rectangles or small circles
("lollipops").

2.9 Together Procedures RAD Studio (Common) Together Diagram Procedures

197

2

2. In UML 2.0 projects, you can change notation of interfaces to "ball and socket".

3. Adjust appearance options, including selection between UML or language formats.

Tip: Notation options are included in the Diagram ->Appearance

category of Together options.

4. Use the UML In Color profile.

5. Use stereotypes.

See Also

Diagram Layout Overview (see page 92)

Changing Appearance of Interfaces (see page 242)

Using the “UML In Color” Profile (see page 198)

Diagram Appearance Notation Options (see page 1089)

2.9.4.6 Using Grid and Other Appearance Options
You can optionally display or hide a design grid on the diagram background and have elements “snap” to the nearest grid
coordinate when you place or move them. The grid is configured in the Diagram Appearance options dialog window.

To show grid:

1. Open Options dialog window.

2. Choose the Together Diagram Appearance category, Grid group.

3. Adjust the options.

Note: Grid display and snap are enabled by default.

See Also

Diagram Appearance options (see page 1089)

2.9.4.7 Using the UML in Color Profile
To enable or disable the “UML in color” profile:

1. In the Options dialog window, open the Together (level) Diagram Appearance category.

Tip: You can enable or disable it on for the project group

, project, or diagram level.

2. Set the Enable UML in color option to True to enable the profile.

3. Optionally, adjust colors used by the profile.

4. Close the Options dialog window.

To draw UML nodes in colors:

1. Select or create a classifier.

2. Open the Object Inspector.

3. Assign a stereotype that is supported by the “UML in color” profile (for example, role).

Together Diagram Procedures RAD Studio (Common) 2.9 Together Procedures

198

2

Result: The classifier changes its color according to the settings in the Options dialog window.

See Also

Supported UML Specifications (see page 90)

2.9.4.8 Aligning Model Elements
You can automatically rearrange all or selected model elements on a diagram.

To align model elements on a diagram:

1. Select several nodes or inner classifiers on a diagram.

2. Right-click and choose Alignment (algorithm) on the context menu. The following algorithms are available:

• Top

• Bottom

• Rigth

• Left

• Center X

• Center Y

See Also

Laying out a diagram automatically (see page 202)

2.9.4.9 Changing Type of a Link
Use the following techniques to change the type of a link:

1. Set the link type by using the Object Inspector

2. Set the link type by using the context menu

To set the link type by using the name="Delphi"Object Inspector:

1. Choose View | Object Inspector if the Object Inspector is not open.

2. Select a link on the diagram. The properties for the link appear in the Object Inspector.

3. In the Object Inspector, select the Type field.

4. Click the drop-down arrow and select the appropriate property from the list. Your available choices are association,
aggregation, or composition.

To set the link type by using the context menu:

1. Right-click a link on the diagram.

2. Choose Link Type on the context menu.

See Also

Creating a Simple Link (see page 209)

Class Diagram Relationships (see page 1123)

2.9 Together Procedures RAD Studio (Common) Together Diagram Procedures

199

2

2.9.4.10 Closing a Diagram
To close a diagram:

1. Switch to the Diagram View.

2. Click the cross icon to close the current view.

Note: Closing a diagram in the Diagram View

does not remove it from your project.

See Also

Diagram Overview (see page 90)

2.9.4.11 Copying and Pasting Model Elements
The move and copy operations are performed by drag-and-drop, context menu commands, or keyboard shortcut keys.

Note: You can move or copy an entire diagram. In this case, all elements addressed on this diagram are not copied, and a new
diagram contains shortcuts to these elements.

To copy an element:

1. Select the element or elements to be copied.

2. Do any of the following:

• Right-click and choose Copy on the context menu

• Press CTRL+C on the keyboard

3. Do any of the following:

• Right-click the target location and choose Paste on the context menu

• Select the target location and press CTRL+V

See Also

Creating a single element (see page 209)

Keyboard shortcuts (see page 1104)

2.9.4.12 Deleting a Diagram
Warning: The default diagram which is created automatically for a namespace (package) cannot be deleted.

To delete a diagram:

1. In the Model View, select the diagram to be deleted.

2. On the context menu, choose Delete.

3. Confirm deletion, if required.

Result: The diagram is deleted from the project.

See Also

Creating a Diagram (see page 196)

Together Diagram Procedures RAD Studio (Common) 2.9 Together Procedures

200

2

Closing a Diagram (see page 200)

2.9.4.13 Hyperlinking Diagrams
Select Hyperlinks from the diagram context menu to create, view, remove, and browse hyperlinks.

Use the following techniques to create a hyperlink:

1. Create a hyperlink to an existing diagram or element

2. ?reate a hyperlink to a new diagram

3. ?reate a hyperlink to an external URL or file

4. Browse hyperlinks

5. Remove a hyperlink

To create a hyperlink to an existing diagram or element:

1. Open an existing diagram or create a new diagram from which to create the hyperlink.

2. Select the element that you want to link to another diagram or element.

3. To link the entire diagram, click the diagram background to deselect all elements.

Note: Do not select the actual namespace in the Model View

to create a hyperlink. Rather, expand the namespace node, and select the desired diagram.

4. Right-click and choose Hyperlinks Edit. The Edit Hyperlinks dialog window (Selection Manager) opens.

5. Select the Model Elements tab to view the pane containing a tree view of the available project contents in the Solution.

6. Select the desired diagram or element from the list, and click Add.

7. For element selection, expand diagram nodes in the Model Elements tab.

8. To remove an element from the selected list, select the element and click Remove.

9. Click OK to close the dialog box and create the link.

To create a hyperlink to a new diagram:

1. Open a diagram in the Diagram View, or select it in the Model View.

2. On the context menu, choose Hyperlinks To New Diagram.

3. In the Add New Diagram dialog box, select the diagram type, enter the diagram name and click OK.

To create a hyperlink to an external URL or file:

1. Open an existing diagram or create a new diagram from which to create the hyperlink.

2. Select the element that you wish to link to the external document. To link the entire diagram, click the diagram background to
deselect all elements.

3. Right-click and choose Hyperlinks Edit. The Edit Hyperlinks dialog box opens.

4. Select the External Documents tab to view the Recently used Documents list which contains a list of previously selected files
or URLs.

5. To add a file to the Recently used Documents list:

1. Click Browse. The Open file dialog box opens.

2. Navigate to the desired file and click Open.

6. To add a URL to the Recently used Documents list:

2.9 Together Procedures RAD Studio (Common) Together Diagram Procedures

201

2

3. Click URL.

4. In the dialog box that opens, enter the appropriate URL and click OK.

Tip: You can create a hyperlink to an external document by entering a relative URL path.

7. To remove an element from the selected list, select the element and click Remove.

8. To clear the Recently used Documents list, click Clear.

Note: Items added to the Recently used Documents list are not specific to a single project or project group

.

9. Click OK to close the dialog box and create the link.

To browse hyperlinks:

1. To view hyperlinks to a diagram, element or external document, right-click on the diagram background or element, and
choose Hyperlinks from the context menu. All hyperlinks created appear under the Hyperlinks submenu. On a diagram, all
names of diagram elements that are hyperlinked are displayed in blue font. When you select a link from the submenu, the
respective element appears selected in the Diagram View.

2. Once you have defined hyperlinks for a selected diagram or element, use the context menus to browse to the linked
resources.

Note: Browsing to a linked diagram opens it in the Diagram View

or makes it the current diagram if already open. Browsing to a linked element causes its parent diagram to open or become
current, and the diagram scrolls to the linked element and selects it.

To remove a hyperlink:

1. Open the diagram that displays the link you want to remove.

2. Choose Hyperlinks Edit from the diagram or element context menu. The Edit Hyperlinks dialog box opens.

3. In the selected list on the right of the dialog, click the hyperlink that you wish to remove.

4. Click Remove.

5. Click OK to close the dialog box.

Note: To remove a hyperlink from a specific element, select the element first. Then choose Hyperlinks->Edit

on the context menu.

See Also

Hyperlinking Overview (see page 92)

2.9.4.14 Laying Out a Diagram Automatically
To lay out a diagram by using one of the algorithms:

1. Right-click the diagram background.

2. On the context menu, select Layout, and choose a command from the submenu. There are several Layout commands on the
Layout submenu:

• Do Full Layout: Sets the layout of all elements according to the layout algorithm defined for the current diagram.

• Layout for Printing:Sets the layout of all elements using the Together algorithm, regardless of the option selected on any
level.

• Route All Links:Streamlines the links removing bending points.

• Optimize Sizes: Enlarges or shrinks all elements on the diagram to the optimal size.

Together Diagram Procedures RAD Studio (Common) 2.9 Together Procedures

202

2

Note: Individual diagram elements also have the Route Links and Optimize Size layout commands on their respective
context menus. The Route Links command streamlines the links removing any bending points. The Optimize Size command
enlarges or shrinks the element to the optimal size, leaving enough space for its label and any sub elements it may contain.

Tip: To enable layout of the inner substructure in diagrams, check the Recursive

option ((level) Diagram Layout General) in the Options dialog window.

To set up the diagram layout:

1. On the main menu choose Tools Options.

2. On the desired level, select Together (level) Diagram Layout category.

3. Expand the node for the desired algorithm.

4. Specify the algorithm-specific options (if any) and apply changes.

Result: you can observe results of layout tuning when apply one of the Layout commands to the diagram.

The context menu available in the Diagram View provides access to the automated layout optimization features in Together.

See Also

Diagram Layout Overview (see page 92)

Aligning Model Elements (see page 199)

Layout Diagram Options (see page 1091)

2.9.4.15 Moving Model Elements
Create your own layout by selecting and moving single or multiple diagram elements.

You can:

• Select a single element and drag it to a new position.

• Select multiple elements and change their location.

• Manually reroute links.

Note: If you drag an element outside the borders of the Diagram View

, the diagram automatically scrolls to follow the dragging.

Tip: Manual layouts are saved when you close a diagram or project and restored when you next open it. Manual layouts are
not preserved when you run one of the auto-layout commands (Do Full Layout or Optimize Sizes).

To move an element:

1. Select the element or elements to be moved.

2. Drag-and-drop the selection to the target location.

Tip: Right-click and use Cut and Paste. Use the keyboard shortcuts for Cut (CTRL+X

), Copy (CTRL+C), and Paste (CTRL+V) operations.

See Also

Select Model Elements (see page 205)

Keyboard shortcuts (see page 1104)

2.9 Together Procedures RAD Studio (Common) Together Diagram Procedures

203

2

2.9.4.16 Renaming a Diagram
Warning: The project namespace (package) automatically created diagram cannot be renamed.

To rename a diagram:

1. In the Object Inspector, double-click the diagram name to initiate the inline editor.

2. Enter a new name.

3. Press Enter.

Alternatively:

1. Select the diagram in the Model View.

2. Press F2 or right-click and choose Rename on the context menu.

3. Enter a new name.

4. Press Enter.

Result: The diagram is renamed.

See Also

Creating a diagram (see page 196)

2.9.4.17 Rerouting a Link
To reroute a link:

1. Select a link.

2. Drag and drop the client of supplier end of the link to the desired destination object.

3. To change direction of the link, click a place on the link where you want to reroute the link.

4. Drag the line. Together automatically reshapes the link the way you want.

Tip: Model elements have the Layout->Route All Links

command on diagram context menus.

See Also

Model Element Overview (see page 91)

Laying Out a Diagram (see page 202)

2.9.4.18 Resizing Model Elements
Diagram elements can be resized automatically or manually. When new items are added to an element that has never been
manually resized, the element automatically grows to enclose the new items.

To resize an element manually:

1. Click an element. The selected element is highlighted with bullets.

2. Drag one of the bullets in the desired direction.

When the element contents change, for example, when members are added or deleted, and the element size is too small to
display all members, scroll bars are displayed to the right of compartments.

Together Diagram Procedures RAD Studio (Common) 2.9 Together Procedures

204

2

To optimize a node element size:

1. Right-click an element.

2. Choose Layout Optimize Size.

To optimize the elements on an entire diagram:

1. Right-click the diagram background.

2. Choose Layout Optimize Size.

See Also

Lay Out a Diagram Automatically (see page 202)

2.9.4.19 Selecting Model Elements
Most manipulations with diagram elements and links involve dragging the mouse or executing context menu commands on the
selected elements.

To select a model element:

1. Open the Diagram View.

2. On a diagram:

• Click any element in the diagram to select it.

• To select multiple elements, hold down the CTRL key and click each element individually.

• Click the background and drag a lasso around an area to select all the elements it contains.

• For elements containing members, click on a member to select it.

• To select all elements on a diagram, press CTRL+A. Alternatively, right-click the diagram background and choose Select All
on the context menu.

See Also

Aligning model elements (see page 199)

Keyboard shortcuts (see page 1104)

2.9.4.20 Assigning an Element Stereotype
You can assign a stereotype in the diagram by using the in-place editor, or by using the Object Inspector.

Use the following techniques to specify a stereotype:

1. Assign a stereotype by using the in-place editor

2. Assign a stereotype by using the Object Inspector

To assign a stereotype by using the in-place editor:

1. Double-click the stereotype name to activate the in-place editor.

2. Enter the new name.

3. Press Enter.

2.9 Together Procedures RAD Studio (Common) Together Diagram Procedures

205

2

To assign a stereotype by using the name="Delphi"Object Inspector:

1. Select a class on your diagram.

2. In the Object Inspector, select the Stereotype field.

3. Click the value editor button and choose the required stereotype from the combo box. Alternatively, type the stereotype name.

Result: The stereotype name is displayed in angle brackets in the class node.

See Also

Using UML in color (see page 198)

2.9.4.21 Using Drag-and-Drop
Drag-and-drop applies to the members as well as to the node elements. You can move or copy members (methods, fields,
properties, and so on) by using drag-and-drop in the Diagram View or in the Model View.

Drag-and-drop functionality from the Model View to the Diagram View and within the Model View works as follows:

• Selecting an element in the Model View and using drag-and-drop to place the element onto the diagram creates a shortcut.

• Using drag-and-drop while pressing the SHIFT key moves the element to the selected container.

• Using drag-and-drop while pressing the CTRL key copies the element to the selected container.

Tip: You can also change the origin and destination for links on your diagrams using drag-and-drop.

To move a link to a new destination:

1. Select a link in the Diagram View.

2. Hover the cursor over the destination arrow.

3. Drag the arrow and drop it on the new destination. If the destination element is not in view, drag the link in the appropriate
direction, and the diagram will scroll with you.

Tip: Follow the same instructions to move the link source to an allowable location.

See Also

Selecting a Model Element (see page 205)

Moving a Model Element (see page 203)

Keyboard Shortcuts (see page 1104)

2.9.4.22 Working with User Properties
User properties are created by means of the User Properties command. The User Properties command is available on the
context menus of the diagrams and diagram elements both in the Diagram View and the Model View. Once created, the user
properties can be viewed and edited in the Object Inspector under the User Properties category.

To create user properties:

1. In the Diagram View or the Model View, select the desired diagram or model element.

2. On the context menu, choose User Properties.

3. In the Add/Remove user properties dialog box, click the Add button. A new entry, consisting of the Name and Value fields,
is added to the properties list.

4. In the new entry, enter the property name and value.

Together Diagram Procedures RAD Studio (Common) 2.9 Together Procedures

206

2

5. Using the Add and Remove buttons, make up the list of user properties.

6. Click OK when ready.

Result: The User Properties category appears in the Object Inspector.

2.9.4.23 Creating a Link with Bending Points
If your diagram is densely populated, you can draw bent links between the source and target elements to avoid other elements
that are in the way.

To create a link with bending points:

1. Click the link button on the Tool Palette.

2. Click the source element.

3. Drag the link line, clicking the diagram background each time you want to create a section of the link. Sections on a link lie
between two blue bullets. The bullets display whenever you select the link on the diagram.

4. Click the destination element to terminate the link.

Tip: Once you have created a link, you can add bending points to it. Select the link on the diagram, and then drag the link to
the desired position.

See Also

Rerouting a Link (see page 204)

Creating a Simple Link (see page 209)

Class Diagram Relationships (see page 1123)

2.9.4.24 Creating Multiple Elements
You can place several elements of the same type on a diagram without returning to the Tool Palette or by using the diagram
context menu. Each element will have a default name that can be edited with the in-place editor or in the Object Inspector.

To create multiple elements:

1. Holding down the CTRL key, click the Tool Palette button for the element you want to create (the button stays down). Release
the CTRL key.

2. Click the desired location on the diagram background. The new element is placed on the diagram at the point where you click.

3. Click the next location on the diagram background. The next new element is placed on the diagram.

4. Repeat the previous step until you have the desired number of elements of that type.

5. To stop multiple element creation, click the Pointer Tool Palette button or press the ESC key to deselect the element after
closing the in-place editor of the last inserted element.

Tip: After making a selection on the Tool Palette

or doing the first of a multi-draw or multi-placement operation, you can cancel the operation by clicking the Pointer button on
the Tool Palette or by pressing the ESC key.

See Also

Creating a single element (see page 209)

Creating a simple link (see page 209)

Keyboard shortcuts (see page 1104)

2.9 Together Procedures RAD Studio (Common) Together Diagram Procedures

207

2

2.9.4.25 Creating a Shortcut
You can create a shortcut to a model element on the diagram background by using three methods:

• By opening Add Shortcuts dialog box from the Diagram View

• By copying and pasting a shortcut from the Model View

• By choosing Add Shortcuts on the Model View context menu

Use the following techniques to create a shortcut:

1. Create a shortcut by using the Add Shortcuts dialog window

2. Create a shortcut by using drag-and-drop

3. Create a shortcut by copying and pasting

4. Create a shortcut by using the Model View context menu

To create a shortcut by using the Add Shortcuts dialog window:

1. Right-click the diagram background.

2. Choose Add Shortcuts on the context menu.

Tip: You can also use CTRL+SHIFT+M

to open the Edit shortcuts dialog window.

3. In the Edit shortcuts dialog window, choose the required element from the tree view of available contents.

4. Click Add to place the selected element to the list of the existing or ready to add elements.

5. When the list of ready to add elements is complete, click OK.

To create a shortcut by using drag-and-drop:

1. Select the element in the Model View.

2. Drag-and-drop the element onto the diagram.

To create a shortcut by copying and pasting:

1. In the Model View, right-click the element to be added to the current diagram as a reference.

2. Choose Copy on the context menu.

3. Right-click the target diagram and choose Paste Shortcut on the context menu.

Tip: You can also copy an element from one diagram and paste it in another diagram as a shortcut.

To create a shortcut by using the Model View context menu:

1. Open the diagram where the shortcut will be added.

2. In the Model View, select the element to be added to the current diagram as a shortcut.

3. Right-click the element in the Model View, and choose Add as Shortcut on the context menu.

See Also

Shortcut Overview (see page 92)

Hyperlinking Overview (see page 92)

Creating a Single Element (see page 209)

Together Diagram Procedures RAD Studio (Common) 2.9 Together Procedures

208

2

2.9.4.26 Creating a Simple Link
In a design project, you can create a link to another node, or a shortcut of an element of the same or another design project
(these projects must be of the same UML version).

In an implementation project, you can create a link to another node or a shortcut of an element of the same project.

To create a simple link between two nodes:

1. On the diagram Tool Palette, click the button for the type of link you want to draw in the diagram. The button stays down.

2. Click the source element.

3. Drag to the destination element and drop when the second element is highlighted.

See Also

Rerouting a link (see page 204)

Creating a link with bending points (see page 207)

Creating a link by pattern (see page 255)

Class diagram relationships (see page 1123)

2.9.4.27 Creating a Single Model Element
To create a single model element:

1. Open a target diagram in the Diagram View.

2. Choose Tool Palette from the View menu.

3. Choose the UML [diagram type] tab in the Tool Palette to view available model elements.

4. On the Tool Palette, click the icon for the element you want to place on the diagram. The button stays down.

Tip: Icons are identified with labels.

5. Click the diagram background in the place where you want to create the new element. This creates the new element and
activates the in-place editor for its name.

Tip: Alternatively, you can right-click the diagram background and choose Add on the context menu. The submenu displays
all of the basic elements that can be added to the diagram, and the Shortcuts command.

See Also

Creating Multiple Model Elements (see page 207)

Creating a Simple Link (see page 209)

2.9.4.28 Searching Diagrams
Together enables you to use the Find and Replace facilities provided by RAD Studio to locate model elements on model
diagrams.

To search diagrams:

1. Choose Search->(search command) to use the find and replace facilities provided by the RAD Studio.

2.9 Together Procedures RAD Studio (Common) Together Diagram Procedures

209

2

2. You can find the specified string in the specified scope. The function supports case sensitivity, searching for whole words or
substrings, using wildcards and regular expressions.

3. Browse the search results.

See Also

Searching source code for usages (see page 210)

2.9.4.29 Searching Source Code for Usages
In addition to the diagram search facility, Together enables you to track how an element or member is used in a source-code
project. The Search for Usages dialog box enables you to find the references to, and overrides of, the elements and members
in implementation projects.

The Search for usages command is available on the context menu of an element in a diagram or in the Model View. Note that
Search for usages is not available for the design projects.

To search source code for element usages:

1. Right-click an element or a namespace and choose Search for Usages on the context menu. The dialog box opens with the
selected element specified in the section Element to search.

2. In the Options section, check the following options as required:

• Usages of elements

• Usages of members

• Usages of Declared Classes

• Implementations

• Overriding

• Include usings/imports

• Skip self

3. Click Search.

The search results are displayed in a tab in the Search for Usages window as a tree view, each node containing all usages of an
element in a certain class. Note that each new search adds its own tab to the window.

The Search for Usages window provides a toolbar with the buttons that enable you to expand or collapse the treeview nodes,
and repeat the search in the selected tab with the same settings.

The context menu of a search results tab provides the following commands:

Command

Close

Close all

Close all but this

See Also

Searching Diagrams (see page 209)

Together Diagram Procedures RAD Studio (Common) 2.9 Together Procedures

210

2

2.9.4.30 Creating an Activity for a State
To create an activity for a state:

1. Open the Diagram View.

2. Right-click a state and choose Add Activity on the context menu.

Result: A new activity is created inside of a state.

See Also

UML 1.5 Activity Diagram (see page 1117)

2.9.4.31 Designing a UML 1.5 Activity Diagram
Use the following tips and techniques when you design a UML 1.5 Activity Diagram.

To design a UML 1.5 Activity Diagram, follow this general procedure:

1. Create one or more swimlanes. You can place several swimlanes on a single diagram, or create a separate diagram for each.

Warning: You cannot create nested swimlanes.

2. Create one or more activities. You can place several activities on a single swimlane, or create a separate swimlane for each.

Warning: You cannot create nested activities.

3. For convenient browsing, first model the main flow. Next, cover branching, concurrent flows, and object flows.

Tip: Use separate diagrams as needed and then hyperlink them.

4. Create Start, End, Signal Receipt, and Signal Sending elements for your swimlanes. If your activity has several Start
points, they can be used simultaneously.

5. Create object nodes. You do not link object nodes to classes on your Class Diagrams. However, you can use hyperlinks for
better understanding of your diagrams.

6. Create state nodes for your swimlanes.

Tip: You can create nested states.

7. Optionally, create a History node.

8. Connect nodes by links.

9. You can optionally create shortcuts to related elements of other diagrams.

See Also

Creating a Shortcut (see page 208)

UML 1.5 Activity Diagram Reference (see page 1117)

2.9.4.32 Instantiating a Classifier
In a UML 1.5 design project, you can create an object that instantiates a class or interface from the same or another UML 1.5

2.9 Together Procedures RAD Studio (Common) Together Diagram Procedures

211

2

design project or any implementation project in the same project group. In an implementation project, you can create an object
that instantiates a class or interface from the same project or some UML 1.5 design project or a referenced project. You can
create such links by using the Object Inspector or by using Dependency links to shortcuts.

To instantiate a classifier:

1. On a UML 1.5 class diagram, choose an object.

2. In the Object Inspector, choose the Instantiates field.

3. Click the Chooser button. The Choose Type to Instantiate dialog box opens.

4. In this dialog box, choose a classifier (class or interface).

Tip: Alternatively, draw a Dependency link

from this object to a classifier or its shortcut.

See Also

UML 1.5 Class diagram (see page 1121)

2.9.4.33 Designing a UML 1.5 Component Diagram
Following are tips and techniques that you can use when working with UML 1.5 Component Diagrams. It can be convenient to
start creation of a model with Component Diagrams if you are modeling a large system. For example, a distributed, client-server
software system, with numerous interconnected modules. You use Component Diagrams for modeling a logical structure of your
system, while you use Deployment Diagrams for modeling a physical structure.

To design a UML 1.5 Component Diagram, follow this general procedure:

1. Create a hierarchy of Subsystems.

Tip: You can create nested Subsystems.

2. Create a hierarchy of Components. The largest component can be the whole system or its major part (for example, server
application, IDE, service).

Tip: You can create nested component nodes. There are two methods for creating a nested component node: You can select
an existing component and add a child component inside. Alternatively, you can create two separate components and connect
them with an Association-Composition link.

3. Create interfaces. Each component can have an interface.

4. Draw links between elements.

5. You can optionally create shortcuts to related elements of other diagrams.

See Also

Creating a Shortcut (see page 208)

UML 1.5 Component Diagram Reference (see page 1128)

2.9.4.34 Designing a UML 1.5 Deployment Diagram
Use the following tips and techniques when you design a UML 1.5 Deployment Diagram. It can be convenient to start creation of
a model with Deployment Diagrams if you are modeling a large system that is comprised of multiple modules, especially if these
modules reside on different computers. You use Deployment Diagrams for modeling a physical structure of your system, while

Together Diagram Procedures RAD Studio (Common) 2.9 Together Procedures

212

2

you use Component Diagrams for modeling a logical structure.

To design a UML 1.5 Deployment Diagram, follow this general procedure:

1. Create a hierarchy of Nodes.

Tip: You can create nested Nodes.

2. Create a hierarchy of Components. The largest component can be the whole system or its major part (for example, server
application, IDE, service).

Tip: You can create nested Components. There are two methods for creating a nested component: You can select an
existing component and add a child component inside. Alternatively, you can create two separate components and connect
them with an Association-Composition link.

3. Represent how Components resides on Nodes. You can represent this in two ways:

• Use a supports link between the component and node. The supports link is a dependency link with the stereotype field set to
support.

• Graphically nest the Component within the Node.

4. Optionally, create Objects.

5. Create Interfaces. Each component can have an interface.

6. Indicate a temporary relationship between a Component and Node. Objects and components can migrate from one
component instance to another component instance, and respectively from one node instance to another node instance. In
such a case, the object (component) will be on its component (node) only temporarily. To indicate this, use the dependency
relationship with a becomes stereotype.

7. You can optionally create shortcuts to related elements of other diagrams.

See Also

Creating a Shortcut (see page 208)

UML 1.5 Deployment Diagram Reference (see page 1129)

2.9.4.35 Adding a Conditional Block
Note: If the control structure requires a condition, you can enter the condition with the in-place editor, or you can enter it using
the Condition field in the Object Inspector

.

To add a statement block to the activation bar:

1. In the Tool Palette, click the Conditional Block button.

2. Click the target activation bar.

Alternatively:

1. Right-click an activation bar on a sequence diagram.

2. Choose Add Conditional Block on the context menu.

To set the type of the conditional block (if, for, and so on):

1. Open the Object Inspector.

2. Click the drop-down arrow for your choices.

2.9 Together Procedures RAD Studio (Common) Together Diagram Procedures

213

2

See Also

UML 1.5 interaction diagrams (see page 1131)

2.9.4.36 Associating an Object with a Classifier
In the sequence or collaboration diagram you can create associations between objects (located on an interaction diagram) and
classifiers (located on some class diagram). Instantiated classes for an object can be selected from the model, or the classes
can be created and added to the model.

Note that an object can instantiate classifiers that belong to the various source-code projects within a single project group, when
such projects are referenced from the project in question.

The range of available classifiers depends on the project type.

• Design projects: classes, interfaces

• C# implementation projects: classes, interfaces, structures

To associate an object with an existing classifier:

1. Select an object.

2. On the context menu of the object, select Choose class.

3. The submenu displays the list of available classifiers. If you cannot find the required classifier in the list, click More to reveal
the model tree view.

4. In the Choose Type to Instantiate dialog box that opens, select a classifier from the model and click OK.

Tip: Alternatively, use the Object Inspector

. Click the Instantiates field and select the classifier from the model. Result: The object displays the fully qualified path to the
instantiated classifier.

Tip: To associate an object with a classifier from a different project, add this project as a referenced one.

To create a new classifier for an existing object:

1. Select an object.

2. On the context menu, choose Add.

3. From the submenu, choose the desired classifier type.

Result: A new classifier is added to the model. A shortcut for the new classifier appears on the interaction diagram in question,
connected with the object by a dependency link.

To unlink an object:

1. Select an object.

2. On the context menu of the object choose Unlink class.

Result: The association is removed, but the classifier is preserved in the model.

To navigate between classifiers and objects:

1. Select the object on the diagram.

2. Right-click and choose Synchronize Model View on the context menu to move focus to this classifier in the Model View, or
choose Go to Class Definition to open this classifier in the source code (for implementation projects).

To create a shortcut to a classifier on an interaction diagram:

1. On the diagram, select an object that instantiates a classifier.

Together Diagram Procedures RAD Studio (Common) 2.9 Together Procedures

214

2

2. Right-click and choose Import class on the context menu.

Result: A shortcut to the instantiated classifier is added to the diagram.

See Also

Working with a referenced project (see page 270)

UML 1.5 Class diagrams (see page 1121)

UML 1.5 Interaction diagrams (see page 1131)

2.9.4.37 Branching Message Links
Branching messages that start from the same location on the lifeline.

To branch a message link with the previous one:

1. Select a message link on the sequence or collaboration diagram.

2. Right-click the message link and choose Branching With previous on the context menu.

To remove branching:

1. Select the message link to remove branching from.

2. Right-click the message link and choose Branching None on the context menu.

See Also

Working with UML 1.5 messages (see page 215)

UML 1.5 interaction diagrams (see page 1131)

2.9.4.38 Converting Between UML 1.5 Sequence and Collaboration
Diagrams

You can convert between sequence and collaboration diagrams. However, when you create a new diagram, you must specify
that it is either a sequence diagram or a collaboration diagram.

To convert between sequence and collaboration diagrams:

1. Right-click the diagram background.

2. If the diagram is a sequence diagram, choose Show as Collaboration on the context menu. If the diagram is a collaboration
diagram, choose Show as Sequence.

3. Repeat this process to switch back and forth.

After you convert from a sequence diagram to a collaboration diagram for the first time, or if you have added new objects to the
sequence diagram between conversions, it is recommended that you perform a full layout on the collaboration diagram.

See Also

UML 1.5 interaction diagram (see page 1131)

2.9.4.39 Working with a UML 1.5 Message
This section describes techniques for working with messages in Sequence and Collaboration diagrams. Although the two
diagram types are equivalent, the techniques for dealing with messages differ.

2.9 Together Procedures RAD Studio (Common) Together Diagram Procedures

215

2

In a Collaboration diagram, all messages between the two objects are displayed as a generic link line, and a list of messages is
created above it. The link line is present as long as there is at least one message between the objects. Messages display in
time-ordered sequence from top to bottom of the messages list. In addition to the message links, you can add links that show
association and aggregation relationships. These links do not display if you view the diagram as a sequence diagram.

When you draw messages between objects in a sequence diagram, each message is represented by its own link line. Messages
in sequence diagrams have more editable properties than messages in collaboration diagrams.

Use the following techniques for messages:

1. ?reate a self message

2. Reorder a message link

3. Specify creation of an object with a message

4. Specify destruction of an object with a message

5. Specifying a return link by using the Tool Palette (Toolbox)

6. Specify a return link by using the Object Inspector (Properties Window)

To create a self message:

1. Click the Self Message button on the Tool Palette.

2. For a Sequence diagram, click the lifeline of the object at the point where you want the message to appear. Clicking the object
places the message-to-self first on the lifeline. For a Collaboration diagram, click the object.

To reorder a message link:

1. Open a diagram.

2. To reorder messages, perform one of the following actions:

• Drag message links up and down the object lifeline in the Diagram View. Reordering automatically updates the message link
numbers.

• Change the Sequence Number field in the Object Inspector.

• In the Diagram View, use the in-place editor to change the sequence number.

To specify creation of an object with a message:

1. Select a message link in the Sequence diagram.

2. In the Object Inspector of the message link, click the Creation field.

3. Choose True from the list box.

Result: The message link points to the recipient object icon rather than to its lifeline. The created object moves downward along
the lifeline to show that it exists at a point later in time from its creator.

By default, the Creation property is set to False in the Properties Window.

To specify destruction of an object with a message:

1. Select a message link in the Sequence diagram.

2. In the Object Inspector of the message link, click the Destruction field.

3. Choose True from the list box.

Result: The object is destroyed.

By default, the Destruction property is set to False in the Object Inspector.

To specifying a return link by using the Tool Palette (Toolbox):

1. Click the Return link button in the Tool Palette.

Together Diagram Procedures RAD Studio (Common) 2.9 Together Procedures

216

2

2. On the sequence diagram, click the object lifeline element at the supplier end of the message link to draw the return link.

To specify a return link by using the Object Inspector (Properties Window):

1. Select the message link on the sequence diagram.

2. Choose View | Object Inspector on the main menu or press F4.

3. In the Object Inspector, click the drop-down arrow for the Return Arrow field and select True.

See Also

Rerouting a Link (see page 204)

UML 1.5 Interaction Diagram (see page 1131)

2.9.4.40 Designing a UML 1.5 Statechart Diagram
Following are tips and techniques that you can use when working with UML 1.5 Statechart Diagram.

To design a UML 1.5 Statechart Diagram, follow this general procedure:

1. ?reate Start and End points.

2. Create main states and substates.

Tip: You can create nested states.

3. Create transitions.

4. Create history nodes.

5. You can optionally create shortcuts to related elements of other diagrams.

To create entry and exit actions:

1. Create an internal transition in the desired state.

2. Double-click the internal transition to enable in-place editing.

3. Rename using the following syntax: stereotype/actionName(argument) For example: exit/setState(idle)

Alternatively, create an internal transition and set the event name, event arguments, and action expression properties using the
Object Inspector for the internal transition.

See Also

Creating an Internal Transition (see page 235)

Creating a Shortcut (see page 208)

UML 1.5 Statechart Diagram Reference (see page 1135)

2.9.4.41 Creating a Pin
To add an input pin, output pin, or value pin, do one of the following:

1. Right-click an action.

2. Choose New Input Pin (or: Output Pin, or: Value Pin) on the context menu.

Result: The created pin is added to the target action as a square. Note that the pins are attached to their actions, and can be
only dragged along the action borders.

2.9 Together Procedures RAD Studio (Common) Together Diagram Procedures

217

2

Alternatively:

1. Open the Tool Palette.

2. Choose the appropriate button, and click the target action.

See Also

Pin (see page 1141)

2.9.4.42 Designing a UML 2.0 Activity Diagram
Use the following tips and techniques when you design a UML 2.0 Activity Diagram. Usually you create Activity Diagrams after
State Machine Diagrams.

To design a UML 2.0 Activity Diagram, follow this general procedure:

1. Create one or more activities. You can place several activities on a single diagram, or create a separate diagram for each.

Warning: You cannot create nested activities.

2. Usually activities are linked to states or transitions on State Machine Diagrams. Switch to your State Machine Diagrams and
associate the activities you just created with states and transitions.

Tip: After that you can find that some more activities must be created, or the same activity can be used in several places.

3. Switch back to the Activity Diagram. Think about flows in your activities. You can have an object flow (for transferring data), a
control flow, both or even several flows in each activity.

4. Create starting and finishing points for every flow. Each flow can have the following starting points:

• Initial node

• Activity parameter (for object flow)

• Accept event action

• Accept time event action Each flow finishes with a Activity Final or Flow Final node. If your activity has several starting
points, they can be used simultaneously.

5. Create object nodes. You do not link object nodes to classes on your Class Diagrams. However, you can use hyperlinks for
better understanding of your diagrams.

6. Create action nodes for your flows. Flows can share actions.

Warning: You cannot create nested actions.

7. For object flows, add pins to actions. Connect actions and pins by flow links.

8. Add pre- and postconditions. You can create plain text or OCL conditions.

9. You can optionally create shortcuts to related elements of other diagrams.

To add an activity parameter to an activity:

1. In the Tool Palette, press the Activity Parameter button.

2. Click the target activity. Or: Choose Add Activity Parameter on the activity context menu.

Result: An Activity Parameter node is added to the activity as a rectangle. Note that the activity parameter node is attached to
its activity. You can only move the node along the activity borders.

Note: Activity parameters cannot be connected by control flow links.

Together Diagram Procedures RAD Studio (Common) 2.9 Together Procedures

218

2

See Also

Associating a Transition or a State with an Activity (see page 230)

Grouping Actions into an Activity (see page 219)

Creating a Shortcut (see page 208)

UML 2.0 Activity Diagram Reference (see page 1140)

2.9.4.43 Grouping Actions into an Activity
Use the following techniques to group actions into an activity:

1. Use the Tool Palette buttons

2. Use drag and drop

3. Use the context menu of the activity element

Use the name="Delphi"Tool Palette buttons:

1. In the diagram Tool Palette, choose to create an activity node.

2. Choose the action button, and click the target activity.

Use drag and drop:

1. Place an action element on the diagram background.

2. Drag and drop the new action on top of an existing activity.

Use the context menu of the activity element:

1. Right-click the target activity.

2. Select New Action on the context menu.

See Also

Designing UML 2.0 Activity Diagram (see page 218)

UML 2.0 Activity Diagram Reference (see page 1140)

2.9.4.44 Working with an Object Flow or a Control Flow
You can create control flow or object flow as an ordinary link between the two node elements. The valid nodes are highlighted
when the link is established.

You can scroll to the target element if it is out of direct reach, or you can use the context menu command to avoid scrolling.

There are certain limitations stipulated by UML 2.0 specifications:

• Object flow link must have an object at least on one of its ends.

• It is impossible to connect two actions with an object flow except through an output pin on the source action.

• Control flow link may not connect objects and/or activity parameters.

Use the following techniques with an object flow or a control flow:

1. Create a flow

2. ?reate a fork or a join

2.9 Together Procedures RAD Studio (Common) Together Diagram Procedures

219

2

3. ?reate a decision or a merge

To create a flow:

1. Right-click the source element of the flow.

2. On the context menu, choose Add Control Flow or Add Object Flow. The Choose Destination dialog box opens.

3. In the Choose Destination dialog box, select the target and click OK. Note that the OK button is only enabled when the valid
target is selected.

To create a fork or a join:

1. Identify the actions involved. If necessary, place all of the actions on the diagram first. Lay them out as desired.

2. Place either a fork or a join on the diagram. Resize as needed.

3. If depicting multiple sources, draw control flow from each of the source actions to the join, and from the join to the target
action. If depicting multiple targets, draw control flow from the source action to the fork, and from the fork to each of the target
actions.

To create a decision or a merge:

1. Identify the actions involved. If necessary, place all of the actions on the diagram first. Lay them out as desired.

2. Place either a decision or a merge on the diagram. Resize as needed.

3. If merging multiple actions, draw control flow from each of the source actions to the merge, and from the merge to the target
action. If making a decision, draw control flow from the source action to the decision, and from the decision to each of the
target actions.

See Also

Creating a simple link (see page 209)

UML 2.0 Activity diagram (see page 1140)

2.9.4.45 Designing a UML 2.0 Component Diagram
Following are tips and techniques that you can use when working with UML 2.0 Component Diagrams. It can be convenient to
start creation of a model with Component Diagrams if you are modeling a large system. For example, a distributed, client-server
software system, with numerous interconnected modules. You use Component Diagrams for modeling a logical structure of your
system, while you use Deployment Diagrams for modeling a physical structure.

To design a UML 2.0 Component Diagram, follow this general procedure:

1. Create a hierarchy of components. The largest component can be the whole system or its major part (for example, server
application, IDE, service).

Tip: You can create nested component nodes. There are two methods for creating a nested component node: You can select
an existing component and add a child component inside. Alternatively, you can create two separate components and connect
them with an Association-Composition link.

2. In the hierarchy of components, you can end up by adding concrete classes and instance specifications. You can create them
on a Component Diagram directly, or create them on a Class Diagram and put shortcuts on a Component Diagram.

3. Create interfaces. Each component can have a provided interface and a required interface.

4. Optionally, create artifacts. Usually, you describe physical artifacts of your system on Deployment Diagrams. But if some
component is closely connected with its physical store, add and link an artifact to a Component Diagram.

Tip: You can create nested artifacts.

Together Diagram Procedures RAD Studio (Common) 2.9 Together Procedures

220

2

5. Optionally, create ports for your components. You can attach a port to a component and link it with several classes or
components inside. In this case, when a message arrives, this port decides which class must handle it.

6. Draw links between elements.

7. You can optionally create shortcuts to related elements of other diagrams.

See Also

Working with a Provided or Required Interface (see page 238)

Creating a Shortcut (see page 208)

UML 2.0 Component Diagram Reference (see page 1145)

2.9.4.46 Creating a Delegation Connector
To create a delegation connector:

1. Right-click an interface and choose New Delegation connector from the context menu.

2. In the Choose Destination dialog box that opens, select the target interface from the Model or Favorites.

3. Click OK.

See Also

UML 2.0 composite structure diagram (see page 1146)

2.9.4.47 Creating an Internal Structure for a Node
To create an internal structure for a node:

1. Choose the part icon on the diagram Tool Palette.

2. Click the valid container (class or collaboration).

3. Repeat these steps to create as many participants as needed.

Tip: Choose the part icon on the diagram Tool Palette

while holding down the CTRL key. Each click on a valid container produces a new part.

4. Link the collaborating parts by connectors.

5. Use the Object Inspector to set up the properties of the part.

See Also

UML 2.0 composite structure diagram (see page 1146)

2.9.4.48 Creating a Referenced Part
To create a referenced part:

1. Open the Diagram View.

2. Do one of the following:

• Use the referenced part button on the diagram Tool Palette.

• Right-click a target container and choose New Referenced part on the context menu.

• Select a part, open the Model View, and check the option aggregated by reference.

2.9 Together Procedures RAD Studio (Common) Together Diagram Procedures

221

2

See Also

UML 2.0 composite structure diagram (see page 1146)

2.9.4.49 Creating a Port
To create a port:

1. Choose the port icon on the Tool Palette.

2. Click the target class or part.

3. Create as many ports as required.

See Also

UML 2.0 composite structure diagram (see page 1146)

2.9.4.50 Working with a Collaboration Use
To create a collaboration use:

1. On the diagram Tool Palette, choose the Collaboration Use button.

2. Click the target container.

3. Specify the name of the Collaboration Use.

To link to a collaboration type:

1. Select a Collaboration Use element.

2. Specify the type of Collaboration Use using one of the following methods:

• In the type field of the Collaboration Use in the Object Inspector, click the chooser button, and select the collaboration, which
the Collaboration Use instantiates, from the Model or Favorites.

• Next to the name of the Collaboration Use, insert a colon and the name of the collaboration, which the Collaboration Use
instantiates.

Result: The type of collaboration use is indicated next to its name.

To unlink from a collaboration type:

1. Right-click the Collaboration Use that has a certain type assigned.

2. On the context menu, choose Unlink Collaboration.

To bind with a role (part):

1. On the diagram Tool Palette, choose the Role Binding button.

2. If you hover the mouse over the client collaboration use, the valid client is highlighted with a black ellipse.

3. Drag-and-drop the role binding link to the supplier part. The valid target is highlighted.

4. Type the role name and press Enter to close the in-place editor.

If a collaboration use is associated with a collaboration that contains parts (roles), you can bind them with the parts (roles) of
another classifier.

To bind the roles (parts) of the different classifiers via the collaboration use:

1. Create a collaboration use and define its type.

2. Create one or more parts in the collaboration that represents the type.

Together Diagram Procedures RAD Studio (Common) 2.9 Together Procedures

222

2

3. Right-click the target collaboration use and choose Bind new role on its context menu.

4. In the Select Destination dialog box that opens, choose the role to be bound in the target classifier.

Result: A role link is created from the collaboration use to the role in the target classifier. The role link is now marked with the
name of the role selected in the collaboration.

Note: Each role can be used for binding only once. With the next invocation of the Bind new role command, the list of
available roles no longer displays the ones previously used.

To define an owner:

1. Right-click a collaboration use and choose Object Inspector on its context menu.

2. In the owning classifier field of the Object Inspector, click the chooser button.

3. In the Select Owning Classifier dialog box, navigate to the owner class or collaboration and click OK.

Result: A link is created between the owner as supplier, and the collaboration use as the client. The link is marked with the label
<<represents>>.

See Also

UML 2.0 composite structure diagram (see page 1146)

2.9.4.51 Designing a UML 2.0 Deployment Diagram
Use the following tips and techniques when you design a UML 2.0 Deployment Diagram. It can be convenient to start creation of
a model with Deployment Diagrams if you are modeling a large system that is comprised of multiple modules, especially if these
modules reside on different computers. You use Deployment Diagrams for modeling a physical structure of your system, while
you use Component Diagrams for modeling a logical structure.

To design a UML 2.0 Deployment Diagram, follow this general procedure:

1. Create a hierarchy of execution environments, devices, and nodes. Execution environments usually represent software
environment used to execute your system, such as an operating system. Devices usually represent hardware equipment,
such as a printer, a hard disk, or a computer. Nodes represent the rest of physical entities, such as a file.

Tip: You can create nested execution environments, devices, and nodes. For example, you can add a node inside of an
execution environment, or a node inside of a device.

2. Create artifacts.

3. Create deployment and instance specifications. By doing this, you arrange physical locations of objects and other entities of
your system.

4. Add operations to artifacts.

5. Once an operation is added, you can define its properties in the Object Inspector, which includes parameters, stereotype,
multiplicity and more.

6. You can optionally create shortcuts to related elements of other diagrams.

To deploy an artifact to a target node:

1. In the diagram Tool Palette, choose the deployment button.

2. Click the artifact to be deployed. The valid source is denoted by a solid frame.

3. Drag-and-drop the deployment link to a target node. The valid target is denoted by a solid frame.

To define parameters of an operation:

1. Select the desired operation in an artifact.

2.9 Together Procedures RAD Studio (Common) Together Diagram Procedures

223

2

2. In the Object Inspector, expand the General node and choose Parameters field.

3. Click the chooser button to open Add/Remove Parameters dialog box.

4. Click Add. This creates an entry in the parameters list.

5. Enter the parameter's name, type multiplicity, default value, and direction. Note that parameter type can be selected from the
list of pre-defined types, or from the model.

6. Using the Add and Remove buttons, create the list of parameters.

7. Click OK when ready.

See Also

Creating a Shortcut (see page 208)

UML 2.0 Deployment Diagram Reference (see page 1148)

2.9.4.52 Associating a Lifeline with a Classifier
To associate a lifeline with a classifier:

1. Select a lifeline on an Interaction diagram.

2. Right-click the lifeline and select Choose Type... on the context menu. The Choose represented connectable element's
type dialog box opens.

3. Choose a classifier to be associated with the lifeline from the tree of available model elements.

4. Click OK.

See Also

Instantiating a classifier (see page 211)

UML 2.0 Interaction diagram (see page 1149)

2.9.4.53 Copying and Pasting an Execution or Invocation
Specification

Clipboard operations are supported for the execution and invocation specifications.

To copy and paste an execution or invocation specification:

1. Cut, Copy, and Paste commands are available on the context menu of an execution specification and invocation specification.
It is possible to copy or move these elements within the same diagram or to another diagram.

2. When an execution or invocation specification is copied, it means that the entire branch of messages is copied also. Pasting
the clipboard contents to a target lifeline results in changing the message numbers according to the numbering of messages
in the target lifeline.

3. If you paste an invocation or execution specification to another diagram, the entire outgoing bunch of messages will be pasted
also, with all the respective lifelines. If the target diagram does not contain lifelines for this execution specification, they will be
created automatically.

Tip: It is also possible to move and copy message branches using the drag-and-drop technique. To move an execution or
invocation specification, drag-and-drop it to the target location. To create a copy, drag-and-drop while holding the CTRL

key down.

See Also

Working with UML 2.0 messages (see page 227)

Together Diagram Procedures RAD Studio (Common) 2.9 Together Procedures

224

2

UML 2.0 interaction diagrams (see page 1149)

2.9.4.54 Creating a Sequence or Communication Diagram from an
Interaction
To create a sequence or a communication diagram from an interaction:

1. In the Model View, choose an Interaction element.

2. Right-click the Interaction node and choose Open with Sequence diagram 2.0 or Open with Communication diagram 2.0.

Results: If such diagram is missing, it will be created. Then this diagram opens in the Diagram View.

See Also

UML 2.0 Interaction diagram (see page 1149)

2.9.4.55 Creating a State Invariant
To create a state invariant as an OCL comment:

1. On the UML 2.0 Sequence Diagram Tool Palette, choose the State Invariant button.

2. Click the target lifeline or execution specification.

Tip: Alternatively, use the Add->State invariant

command on the context menu of a lifeline or an execution specification.

3. In the Object Inspector of the state invariant, select the General node.

4. In the Invariant kind field, choose OCL expression from the drop-down list. The shape of the state invariant diagram element
changes to braces.

5. In the OCL invariant node that adds to the Object Inspector, select the language of the comment from the Language
drop-down list. The possible options are OCL and plain text.

6. Type the text and apply changes.

To connect a state invariant to a state:

1. On the diagram Tool Palette, choose the State Invariant button.

2. Click the target lifeline or execution specification.

3. In the Object Inspector of the state invariant, select the General node.

4. In the Invariant kind field, choose States/Regions from the drop-down list.

5. In the States/Regions field, click the chooser button.

6. In the Choose States and/or Regions dialog box, select the desired states and/or regions from the model, using the Add
button.

7. Click OK when ready.

Tip: Alternatively, type the state or region name. If the state or region belongs to a different package, specify its fully-qualified
name.

See Also

OCL Support Overview (see page 95)

UML 2.0 Interaction Diagrams (see page 1149)

2.9 Together Procedures RAD Studio (Common) Together Diagram Procedures

225

2

2.9.4.56 Designing a UML 2.0 Sequence or Communication Diagram
Use the following tips and techniques when you design a UML 2.0 Sequence or Communication Diagrams. Usually you create
Interaction Diagrams after Class Diagrams.

Whenever an interaction diagram is created, the corresponding interaction is added to the project. Interactions are represented
as nodes in the Model View.

Note: Presentation of an interaction in the Model View

depends on the view type defined in the Model View options on the default or project group levels. If model-centric mode is
selected, an interaction is shown both under its package node and diagram node. If diagram-centric mode is selected, an
interaction is shown under the diagram node only.

Note: You can view an interaction in two ways: as a Sequence Diagram, or as a Communication Diagram. So doing, any
actions performed with either view are automatically reflected in the other views. Thus, adding or deleting an element in an
interaction results in the modification of the corresponding interaction diagram, and vice versa. An interaction diagram contains a
reference to the underlying interaction.

Note: Unlike UML 1.5, it is not possible to switch a diagram that already exists from sequence to communication and vice versa.
However, it is possible to create a Sequence Diagram and a Communication Diagram based on the same interaction.

To design a UML 2.0 Sequence Diagram, follow this general procedure:

1. Create an interaction use

2. Navigate to a referenced interaction

3. Associate a lifeline with a referenced element

4. Associate a lifeline with a type

5. Define decomposition for a lifeline

6. Repeat the steps to create all required interactions

7. Link the created lifelines by using messages

To create an interaction use:

1. In the diagram Tool Palette, choose the Interaction Use button.

2. Click on the target lifeline.

Tip: Alternatively, use the Add command on the lifeline context menu in the Diagram View

or Model View.

3. In the Object Inspector for the newly created interaction use, choose the Properties tab.

4. In the interaction name field, click the chooser button.

Tip: Alternatively, just type in the interaction name.

5. In the Choose Referenced Interaction dialog box, select the desired interaction from the project or Favorites, and click OK.

An interaction use is initially created attached to a lifeline. Further it can be expanded over several lifelines, detached from and
reattached to lifelines.

To navigate to a referenced interaction:

1. Right-click on an interaction use that refers to another interaction.

2. On the context menu, choose Select.

Together Diagram Procedures RAD Studio (Common) 2.9 Together Procedures

226

2

3. Choose the desired destination on the submenu.

To associate a lifeline with a referenced element:

1. Make sure that your project contains the referenced elements that should be represented by the lifelines.

2. Select the desired lifeline in the Model View or the Diagram View.

3. In the Object Inspector, select the represents field.

4. Click the chooser button.

5. In the Choose Represented Connectable Element dialog box, select the desired part from the project or Favorites.

6. Click OK.

To associate a lifeline with a type:

1. Select the desired lifeline in the Model View or the Diagram View.

2. In the Object Inspector, select the type field.

3. Click the chooser button.

4. In the Choose Represented Connectable Element's type dialog box, select the class that defined the type from the project
or Favorites.

5. Click OK.

To define decomposition for a lifeline:

1. Select the desired lifeline in the Model View or the Diagram View.

2. In the Object Inspector, select the decomposition field.

3. Click the chooser button.

4. In the Choose Referenced Interaction dialog box, select the desired interaction from the project or Favorites.

5. Click OK.

Tip: Decomposition, type, stereotype, and referenced element properties are also reflected in the corresponding
Communication diagram.

See Also

UML 2.0 Interaction Diagram Reference (see page 1149)

2.9.4.57 Linking Another Interaction from an Interaction Diagram
To link another interaction from an interaction diagram:

1. Open an Interaction diagram.

2. Right-click the diagram background and choose Add Shortcut on the context menu.

3. Add a shortcut to another interaction in your project.

See Also

UML 2.0 Interaction diagram (see page 1149)

2.9.4.58 Working with a UML 2.0 Message
This section describes techniques for working with messages in sequence and communication diagrams. Although the two

2.9 Together Procedures RAD Studio (Common) Together Diagram Procedures

227

2

diagram types are equivalent, the techniques for dealing with messages differ.

Use the following technique for UML 2.0 messages:

1. Show or hide reply message

2. Nest messages

3. Create a message from a lifeline back to itself

4. Create a message link that corresponds to an operation call

To show or hide reply message:

1. Select a call message in an interaction diagram.

2. In the Link tab of the Object Inspector, check or clear show reply message.

To nest messages:

1. You can nest messages by originating message links from an execution specification. The nested message inherits the
numbering of the parent message. For example, if the parent message has the number 1, its first nested message is 1.1.

2. It is also possible to create message links back to the parent execution specifications.

To create a message from a lifeline back to itself:

1. Click the Message button on the Tool Palette.

2. In a Sequence diagram, click twice the lifeline in the place where you want this message to appear. In a Communication
diagram, click twice the lifeline anywhere.

To create a message link that corresponds to an operation call:

1. Create an interaction.

2. Create a message link between two lifelines in the interaction.

3. Open the Link tab of the message link Object Inspector.

4. In the signature field, click the browse button.

5. In the Model or Favorites, select the desired operation.

6. Click OK.

The message link is named according to the name of the operation.

See Also

Working with an Instance Specification (see page 237)

UML 2.0 Interaction Diagram (see page 1149)

UML 2.0 Message (see page 1153)

Execution and Invocation Specification (see page 1151)

2.9.4.59 Working with a Combined Fragment
To create a combined fragment:

1. Choose the combined fragment button in the diagram Tool Palette, and click on the target lifeline.

2. In the Type Chooser dialog box that opens, choose the desired operator from the list of available operators.

Alternatively, you can also create a combined fragment using the context menu of the Model View, or Diagram View.

To do this, choose the desired lifeline or execution specification in the Model View, or in the Diagram View. On the context

Together Diagram Procedures RAD Studio (Common) 2.9 Together Procedures

228

2

menu of the selection, choose Add Combined Fragment. This adds a combined fragment to the target location.

Result: the combined fragment is added to the target lifeline or execution specification. Each new combined fragment has
different color, to tell it from the other combined fragments within the same cluster of nested frames.

To create a nested operator:

1. Select the desired combined fragment.

2. In the Operators field of the Object Inspector, click the chooser button. Edit Combined Fragment Operators dialog box
opens.

3. In the Edit operator combobox, select the desired operator. If a certain operator enables parameters, enter the parameter
values in the adjacent field. Use commas as delimiters.

4. Click Add button. A new line displays below the existing entry in the list of operators, and in the descriptor of the combined
fragment.

5. Use Add and Remove buttons to make up the desired list of the nested operators. Use Up and Down buttons to specify the
proper order of nested operators.

6. Click Done to apply changes.

Result: the nested operators are listed in the descriptor of the combined fragment in the specified order.

You can create the nested combined fragments by placing a new combined fragment node inside of an existing one. So doing,
each new node is displayed in a different color. The colors are selected at random. You can work with the inner frames same
way as with the outer frames: move along a lifeline, spread them over several lifelines, detach and tie frames. Note that
drawing a message link from a frame automatically expands it, together with its outer frames, if any.

To create an operand:

1. Select the desired combined fragment in the Model View or in the Diagram View.

2. On the context menu of the combined fragment, choose Add Interaction operand.

3. In the Interaction constraint node select the language to be used for describing constraint. To do this, click the Language
drop-down list and choose OCL or plain text.

4. Type the constraint expression.

5. Add as many operands as required.

6. Apply changes.

Result: a new operand is created. Constraint text is displayed in the operand section of the combined fragment.

See Also

OCL Support Overview (see page 95)

UML 2.0 Interaction Diagram (see page 1149)

2.9.4.60 Working with a Tie Frame
To spread a frame to several lifelines:

1. In the diagram Tool Palette, choose the Tie Frame button.

2. Click the desired interaction use or combined fragment.

3. Drag-and-drop on the target lifeline.

Result: The frame expands to the target lifeline and is attached to it with a dot.

See Also

UML 2.0 Interaction diagram (see page 1149)

2.9 Together Procedures RAD Studio (Common) Together Diagram Procedures

229

2

2.9.4.61 Associating a Transition or a State with an Activity
You can associate an activity (created on some UML 2.0 Activity Diagram) with a state (on entering the state, while doing the
state activity, and on exiting the state), or with a transition between states.

To associate a transition with an activity:

1. Select a transition or a state on a UML 2.0 State Machine diagram.

2. Under the General node of the Object Inspector, click the Effect (for a transition) or Do activity, Entry or Exit (for a state)
field.

3. Click the chooser button to open the Choose Activity dialog box.

4. In the model treeview, locate the desired activity.

5. Click OK.

Tip: Once a guard condition or effect are specified in the Object Inspector

, you can further edit them in the diagram by double-clicking the expression to activate the in-place editor.

See Also

Creating a Guard Condition for a Transition (see page 230)

UML 2.0 State Machine Diagram Reference (see page 1155)

State (see page 1117)

2.9.4.62 Creating a Guard Condition for a Transition
To create a guard condition for a transition:

1. Select a transition in the diagram.

2. Under the General node of the Object Inspector, click the Guard field.

3. Type the condition expression and apply changes.

See Also

OCL support overview (OCL expression) (see page 95)

UML 2.0 State Machine diagrams (see page 1155)

2.9.4.63 Creating a History Element
To create a history element for a state:

1. In the target state on a state diagram, select the target region where history needs to be added.

2. Choose Shallow History or Deep History on the diagram Tool Palette.

3. Click the target region.

See Also

History (State Machine diagrams) (see page 1155)

UML 2.0 State Machine diagram (see page 1155)

Together Diagram Procedures RAD Studio (Common) 2.9 Together Procedures

230

2

2.9.4.64 Creating a Member for a State
To create a member for a state:

1. Open the Diagram View.

2. Right-click an existing state and choose Add (member) on the context menu. The following members are available:

• Internal transition

• Entry point

• Exit point

• Region

See Also

UML 2.0 State Machine Diagram (see page 1155)

2.9.4.65 Creating a State
To create a state:

1. Using the Tool Palette buttons: On the diagram Tool Palette, choose to create a state node. Click an appropriate place on
your diagram. Alternatively: Using the context menu of the diagram: Right-click the diagram background. Select Add State
on the context menu.

Note: You can place a state inside of the existing state. It is possible to hide individual states. For example, you might want to
hide the content of composite states for better understanding of the whole diagram.

2. When a new state is placed on a diagram, you can use the Object Inspector to adjust its properties, including:

• Configure standard properties of the element.

• In the State Invariant field, select the language of the expression from the Language list box. The possible options are OCL
and plain text.

• In the Properties page, configure the behavior of the state by setting or viewing the following additional properties:

Field Description

Composite Set to True if there is one or more regions in this state (not editable)

Orthogonal Set to True if there are two or more regions in this state (not editable)

Simple Set to True if there are no regions in this state (not editable)

Do activity Specify the activity to be performed during execution of the current state by using the Object Inspector. This
activity may be selected from any Activity diagram of the project

Entry Specify the activity to be performed when the current state starts executing by using the Object Inspector. This
activity may be selected from any Activity diagram of the project

Exit Specify the activity to be performed when the current state finishes executing by using the Object Inspector. This
activity may be selected from any Activity diagram of the project

In the edit field below the list box enter the OCL expression for this state.

See Also

OCL Support Overview (see page 95)

UML 2.0 State Machine Diagram (see page 1155)

2.9 Together Procedures RAD Studio (Common) Together Diagram Procedures

231

2

2.9.4.66 Designing a UML 2.0 State Machine Diagram
Following are tips and techniques that you can use when working with UML 2.0 State Machine Diagram.

To design a UML 2.0 State Machine Diagram, follow this general procedure:

1. Create initial and final nodes.

2. Create main states and substates.

3. Create regions.

4. Create entry and exit points.

5. Create pins.

6. Create transitions.

7. Create history nodes.

8. You can optionally create shortcuts to related elements of other diagrams.

See Also

Creating a Shortcut (see page 208)

UML 2.0 State Machine Diagram Reference (see page 1155)

2.9.4.67 Browsing a Diagram with Overview Pane
To open the Overview pane:

1. Open a diagram and click the Overview button. The pane expands to show a thumbnail image of the current diagram.

2. Click the shaded area and drag it. This is a convenient way to scroll around the diagram.

3. Resize the Overview pane by clicking the upper-left corner of the pane and dragging it.

4. Close the Overview pane by clicking the diagram.

See Also

Zooming a diagram (see page 234)

2.9.4.68 Hiding and Showing Model Elements
You can control the visibility of elements on a diagram by using the Hide command (available on the context menu for individual
diagram elements), and the Show/Hide command (available on the diagram context menu).

To hide by using one of the following methods:

1. Open the Diagram View.

2. Do one of the following:

• Select the element on the diagram, right-click and choose Hide on the context menu.

• Select multiple elements on the diagram using CTRL+Click or by lassoing, and select Hide from the context menu.

• Right-click the diagram background and choose Hide/Show on the context menu. The Show Hidden dialog box opens, as
discussed below.

Together Diagram Procedures RAD Studio (Common) 2.9 Together Procedures

232

2

To show or hide diagram elements using the Show Hidden dialog box:

1. Right-click the diagram and choose Show/Hide on the context menu. The Show Hidden dialog box opens.

2. Select the element(s) that you wish to hide from the Diagram Elements list.

3. To add elements in the Diagram Elements list to the Hidden Elements list, do one of the following:

• Double-click the element .

• Click the element once and click Add.

• Select multiple elements using CTRL+Click and click Add.

4. To remove items from the Hidden Elements list do one of the following:

• Double-click the element.

• Click the element once and click Remove.

• Select multiple elements using CTRL+Click and click Remove.

• To remove all items from the Hidden Elements list, click Remove All.

5. Click OK to close the dialog box.

See Also

Using View Filters (see page 233)

Creating a Single Element (see page 209)

2.9.4.69 Using View Filters
For global control over the diagram view, you can use the filters in the Options dialog window.

To enable, disable view filters:

1. Choose Tools Options on the main menu.

2. Click the Together folder.

3. Under the (level) Diagram node, select View Filters.

Note: The filters shown in the Options dialog window are global filters. To specifically filter classes, you can set the Show
members property to False.

To filter classes:

1. In the Options dialog window, View Filters page, click the Show members field.

2. Click the drop-down arrow and select False.

3. Click OK.

This results in disabling the members, and the inner classifiers (classes, delegates, enumerations, interfaces, and structures).

Since inner classifiers are treated as members of the container element, the following filters do not filter inner classifiers:

View filter

Show classes

Show delegates

Show enumerations

Show interfaces

2.9 Together Procedures RAD Studio (Common) Together Diagram Procedures

233

2

Show structures

Note: Code-specific elements are available in implementation projects only.

See Also

Hiding and Showing Model Elements (see page 232)

Together Diagram View Filters Options (see page 1096)

2.9.4.70 Zooming a Diagram
Use the diagram context menu to obtain the required magnification in the Diagram View.

To specify the magnification in the Diagram View:

1. Right-click the diagram background.

2. Select Zoom on the context menu.

3. Choose a command from the submenu.

See Also

Zoom keyboard shortcuts (see page 1104)

2.9.4.71 Working with a Complex State
The techniques in this section pertain to models of particularly complex composite states and substates.

You can resize the main state. You can also create a substate by drawing a state diagram within another state diagram and
indicating start, end, and history states as well as transitions.

Create a composite state by nesting one or more levels of states within one state. You can also place start/end states and a
history state inside of a state, and draw transitions among the contained substates.

Use the following techniques to create a composite (nested) state:

1. Create a nested substate using drag-and-drop

2. ?reate a nested substate using the context menu of the state element

To create a nested substate using drag-and-drop:

1. Place a state element on the diagram background.

2. Drag a new state on top of an existing state.

3. Drop a new state.

To create a nested substate using the context menu of the state element:

1. Right-click the state (region) that will be the container.

2. Select Add State on the context menu.

Tip: You can nest multiple levels of substates inside one state. For especially complex substate modeling, however, you can
find it more convenient to create different diagrams, model each of the substate levels individually, and then hyperlink the
diagrams sequentially.

Using the Shortcuts command on the context menu of the diagram, you can reuse existing elements in other state diagrams.
Right-click the diagram and choose Add > Shortcuts, navigate within the pane containing the tree view of the available project

Together Diagram Procedures RAD Studio (Common) 2.9 Together Procedures

234

2

contents for the project group

solution to the existing diagram, and select its elements, states, histories, forks, and/or joins.

Tip: Using the context menu of the state element, you can also create all of the other subelements that a state can contain.

Tip: Only one History element can be created within one state.

See Also

Hyperlinking Overview (see page 92)

Creating a Shortcut (see page 208)

UML 1.5 Activity Diagram (see page 1117)

UML 1.5 Statechart Diagram (see page 1135)

UML 2.0 State Machine Diagram (see page 1155)

2.9.4.72 Creating a Deferred Event
You can add a deferred event to a state element.

To create a deferred event:

1. Select the desired state or activity element on the diagram or in the Model View.

2. Right-click the element, and select Add Deferred Event on the context menu.

See Also

Deferred event (see page 1117)

UML 1.5 Activity diagram (see page 1117)

UML 1.5 Statechart diagram (see page 1135)

2.9.4.73 Creating an Internal Transition
To create an internal transition:

1. Select the desired state or activity element on the diagram or in the Model View.

2. Right-click the element, and select Add Internal Transition on the context menu.

See Also

Creating an Multiple Transition (see page 235)

Transition (see page 1118)

UML 1.5 Activity diagram (see page 1117)

UML 1.5 Statechart diagram (see page 1135)

UML 2.0 State Machine Diagram (see page 1155)

2.9.4.74 Creating a Multiple Transition
To create a multiple transition (a fork or a join):

1. Identify the states involved. If necessary, place all of the states on the diagram first and arrange as desired.

2.9 Together Procedures RAD Studio (Common) Together Diagram Procedures

235

2

2. On the diagram Tool PaletteToolbox choose the fork or join button.

3. Place either a horizontal or vertical fork or join on the diagram.

4. Resize as needed.

5. On the diagram Tool PaletteToolbox, choose the transition button.

6. Draw links from the source state(s) to the fork/join node, and from the fork/join node to the target state(s).

See Also

Creating an Internal Transition (see page 235)

Transition (see page 1118)

UML 1.5 Activity diagram (see page 1117)

UML 1.5 Statechart diagram (see page 1135)

UML 2.0 State Machine Diagram (see page 1155)

2.9.4.75 Creating a Self-Transition
To create a self-transition:

1. Draw a transition from the state or activity element and drag the link away from the element.

2. Drag the link back to the element and drop it.

Alternatively:

1. Draw a transition between two activities (or states).

2. Drag the opposite end of the link line back to the desired activity (or state).

See Also

Creating a Simple Link (see page 209)

UML 1.5 Activity Diagram (see page 1117)

UML 1.5 Statechart Diagram (see page 1135)

Tool Palette (see page 1114)

2.9.4.76 Specifying Entry and Exit Actions
You can create entry and exit actions as nodes, or as stereotyped internal transitions.

To specify entry and exit actions using the in-place editor:

1. Create an internal transition in the desired state.

2. Double-click the internal transition to enable in-place editing.

3. Rename the internal transition using the following syntax:

stereotype/actionName(argument)

For example:

exit/setState(idle)

Together Diagram Procedures RAD Studio (Common) 2.9 Together Procedures

236

2

To specify entry and exit actions using internal transitions:

1. Create the internal transition.

2. Set the event name, event arguments, and action expression properties using the Object InspectorProperties Window for the
internal transition.

See Also

UML 1.5 Activity Diagram (see page 1117)

2.9.4.77 Working with an Instance Specification
You can instantiate a classifier using the Object InspectorProperties Window or the in-place editor.

Use the following techniques with an instance specification:

1. Instantiate a classifier using the Object InspectorProperties Window

2. Instantiate a classifier using the in-place editor

3. Define the features of an instance specification

4. Add a slot to an instance specification element

5. Associate a slot with a structural feature

6. Set the slot value

7. Define the slot stereotype

To instantiate a classifier using the name="Delphi"Object Inspector name="TVS"Properties Window:

1. Select an instance specification in your diagram.

2. In the General node of the Object InspectorProperties Window, select the instantiates field.

3. Click the chooser button.

4. In the Choose Class or Interface for Type dialog box, select the classifiers from the available contents, using the Add and
Remove buttons.

5. Click OK when ready.

To instantiate a classifier using the in-place editor:

1. Select an instance specification in your diagram.

2. Press F2 to open the in-place editor. Alternatively, click twice on the instance specification name.

3. Type the name of an existing classifier, delimited by a colon, next to the instance specification name. For example,
InstanceSpecifcation1:Class1.

4. Press Enter.

To define the features of an instance specification:

1. Insert slots into an instance specification element.

2. Associate the slots with the attributes of the instantiated classifiers.

3. Set value, and define the slot stereotype.

To add a slot to an instance specification element:

1. Add an instance specification element to your diagram.

2. Right-click the instance specification element on your diagram and choose New Slot on the context menu.

2.9 Together Procedures RAD Studio (Common) Together Diagram Procedures

237

2

To associate a slot with a structural feature:

1. Select a slot in an instance specification element.

2. Expand the General node of the Object InspectorProperties Window.

3. In the defining feature field, click the chooser button.

4. In the Choose Attribute for Defining Feature dialog box, select the desired attribute and click OK.

To set the slot value:

1. Choose a slot.

2. Do one of the following:

• In the Object InspectorProperties Window of the slot, type the desired string in the value field.

• Invoke the in-place editor for the slot and type the value next to the slot name, delimited by a equal sign.

To define the slot stereotype:

1. In the Object InspectorProperties Window of the slot, expand the General node.

2. In the Stereotype filed, enter the stereotype value.

See Also

UML 2.0 Class Diagram (see page 1143)

UML 2.0 Interaction Diagram (see page 1149)

UML 2.0 Component Diagram (see page 1145)

UML 2.0 Composite Structure Diagram (see page 1146)

2.9.4.78 Working with a Provided or Required Interface
To create a provided interface:

1. Create class and interface node elements using the and Tool PaletteToolbox buttons.

2. On the diagram Tool PaletteToolbox, click the provided interface button.

3. Click the client class and drag the mouse to the interface node.

To create a required interface:

1. Create class and interface node elements using the and Tool PaletteToolbox buttons.

2. On the diagram Tool PaletteToolbox, click the required interface button.

3. Click the client class and drag the mouse to the interface node.

See Also

Changing appearance of interfaces (see page 242)

UML 2.0 Class diagram (see page 1143)

UML 2.0 Component diagram (see page 1145)

UML 2.0 Composite Structure diagram (see page 1146)

Together Diagram Procedures RAD Studio (Common) 2.9 Together Procedures

238

2

2.9.4.79 Creating an Association Class
To create an association class:

1. On the diagram Tool PaletteToolbox, select the association class button.

2. Click the diagram background. This adds a regular class icon for the association class, connected with the diamond icon.

3. Create participant classes.

4. Using the association end button, connect the n-ary association with the participant classes.

Result: The source code of an association class contains appropriate tags for the association class itself, and for each of the
association end classes.

To delete an association class:

1. Right-click an association end link, association class, or connector.

2. Choose Delete or Delete from View on the context menu.

Result: The whole association class construct is deleted from the diagram.

See Also

Class Diagram Relationships (see page 1123)

UML 2.0 Class Diagram (see page 1143)

UML 1.5 Class Diagram (see page 1121)

2.9.4.80 Creating an Inner Classifier
This section includes instructions for adding inner classifiers to classes (including Windows classes, such as Windows forms,
Inherited forms, User Controls and so on), structures, and modules (collectively, containers) in implementation projects.

You can add inner classifiers to class diagram elements (containers) using the respective context menu for the diagram element
in the Diagram or Model Views. You can also select a classifier in the Tool PaletteToolbox and click the container element in the
Diagram View to add the inner classifier to the container element.

Note: Modules are specific to Visual Basic projects.

Structure elements are available for implementation projects only.

Tip: You can use drag-and-drop or clipboard operations to remove an inner classifier from the container element.

To create an inner classifier by using the context menu:

1. Right-click the container element.

2. Choose Add (Inner_classifier_type), where (Inner_classifer_type) is defined in the table above.

Using cut, copy, and paste:

1. Use the clipboard operations to either cut or copy an existing classifier.

2. Select the container element.

3. Use the clipboard operations to paste the selected classifier into the container element.

Using drag-and-drop:

1. Select an existing classifier in the Diagram View.

2.9 Together Procedures RAD Studio (Common) Together Diagram Procedures

239

2

2. Drag-and-drop it onto a pre-existing container in the Diagram View. A blue border highlights the location that Together
recognizes as a valid destination for dropping the inner classifier.

See Also

Creating a Single Element (see page 209)

UML 1.5 Class Diagram (see page 1121)

UML 2.0 Class Diagram (see page 1143)

Inner Classifiers (see page 1124)

2.9.4.81 Using a Class Diagram as a View
Class diagrams can also be used to create subviews of the project.

To use a class diagrams as a view:

1. Create a new class diagram.

2. Create shortcuts to the original diagram to easily and quickly build subset views for easier management.

Tip: Using this feature, you can create views of distributed classes into one diagram, with Together automatically displaying
any relationships that the gathered classes may have with each other.

Note: In implementation projects, changes made here also update the source code, keeping diagram and source code in
sync.

See Also

LiveSource Overview (see page 93)

UML 1.5 Class diagram (see page 1121)

UML 2.0 Class diagram (see page 1143)

2.9.4.82 Working with an Interface
This topic describes how to create and hide an interface on a class diagram.

To create an interface:

1. Create a class and an interface node elements using the and Tool PaletteToolbox buttons.

2. On the diagram Tool PaletteToolbox, click the Generalization link button.

3. Click the client class and drag the mouse cursor to the interface node.

To hide an interface:

1. Select an interface.

2. Right-click and choose Hide on the context menu.

Tip: You can hide all interfaces by disabling the Show Interfaces

view filter.

See Also

Changing Appearance of Interfaces (see page 242)

UML 1.5 Class Diagram (see page 1121)

Together Diagram Procedures RAD Studio (Common) 2.9 Together Procedures

240

2

UML 2.0 Class Diagram (see page 1143)

2.9.4.83 Working with a Relationship
You can change the type of an association link.

To draw an association link:

1. Use the association link button on the UML Class Diagram Tool PaletteToolbox to draw association links between diagram
elements.

2. The Object InspectorProperties Window enables you to set the link type (association, aggregation, or composition) and the
cardinality of the client and supplier.

3. You can also set the link type using the right-click menu of the link. When you create an association link, Together defines a
field in the client class (the start of the link).

To set the directed property of an association link:

1. Choose View | Object InspectorProperties Window if the Object InspectorProperties Window is not open.

2. Select a link on the diagram. The properties for the link appear in the Object InspectorProperties Window.

3. In the Object InspectorProperties Window, select the Directed field.

4. Click the drop-down arrow and select the Directed property (True or False) from the list.

See Also

Creating a simple link (see page 209)

Changing type of a link (see page 199)

UML 1.5 class diagrams (see page 1121)

UML 2.0 class diagrams (see page 1143)

2.9.4.84 Adding a Member to a Container
You can add members to class diagram elements (containers) by using the respective context menu for the diagram element in
the Diagram or Model Views or available shortcut keys to add members to a class diagram container element.

To add a member to a container:

1. Right-click the container (class, interface, and so on).

2. Choose Add (Member_type), where, Member_type, is defined in the table above.

Tip: You can also use keyboard shortcuts to add fields and methods (functions in Visual Basic projects)

to a container allowing such members. Click CTRL+W (for fields) and CTRL+M (for methods, functions).

3. You can edit the member using the in-place editor, Object InspectorProperties Window, or source code editor.

Result: The new member is placed in the compartment of the container in the sort order for the elements in your diagrams. You
can set the sort order in the Options dialog window.

Tip: If a container already has members, you can right-click the existing member to create an additional member using the
context menu. You can also select the member, and press INSERT

.

See Also

Creating a single element (see page 209)

2.9 Together Procedures RAD Studio (Common) Together Diagram Procedures

241

2

Members (available to add) (see page 1125)

UML 1.5 Class diagrams (see page 1121)

UML 2.0 Class diagrams (see page 1143)

2.9.4.85 Changing Appearance of Compartments
You can collapse or expand compartments for the different members of class, interface, namespace, module (Visual Basic
projects only), enum, and structure (C# projects only) elements. By default, the compartments for these elements are displayed
on the diagram as a straight line. You can use the Options dialog window to set viewing preferences for compartment controls.
Adding compartment controls is particularly useful when you have large container elements with content that does not need to be
visible at all times.

To collapse or expand compartments:

1. Select the class (or interface) on the diagram.

2. Click the “+” or “-” in the left corner of the compartment.

To view the compartment controls:

1. Open the Options dialog window.

2. Select the Together (level) Diagram Appearance Nodes category.

3. In this category, edit the Show compartments as line field.

See Also

UML 2.0 Class diagrams (see page 1143)

UML 1.5 Class diagrams (see page 1121)

Diagram Appearance options (see page 1089)

2.9.4.86 Changing Appearance of Interfaces
To show an interface as a circle sing the context menu:

1. Right-click the interface element in the Diagram or Model Views.

2. Choose Show as circle.

Tip: This menu item works as a toggle. Right-click again and choose Show as circle to show the interface element as a
rectangle.

Note: Interfaces shown as small circles do not show their members in the Diagram View

. Use the Model View to view the members.

To show an interface as a circle using the name="Delphi" name="ide"Object Inspector name="TVS"
name="ide"Properties Window:

1. Select the interface element in the Diagram or Model Views.

2. Press F4 to open the Object InspectorProperties Window.

3. Set the Circle view property as True.

Tip: Choose False for the Circle view

property to show the interface element as a rectangle.

Together Diagram Procedures RAD Studio (Common) 2.9 Together Procedures

242

2

See Also

Changing notation (see page 197)

2.9.4.87 Working with a Constructor
You can create as many constructors in a class as needed.

In design projects, a constructor is created as an operation with the <<constructor>> stereotype.

In implementation projects, each new constructor is created with its unique set of parameters. In addition to creating parameters
automatically, you can define the custom set of parameters, using the Object InspectorProperties Window.

Tip: You can move, copy and paste constructors and destructors between the container classes same way as the other
members.

To define the constructor parameters (implementation projects only):

1. Select the desired constructor in a class.

2. In the Object InspectorProperties Window, click the Params field.

3. In the text field, type the list of parameters in the former type name. Use comma as a delimiter.

See Also

UML 2.0 Class diagrams (see page 1143)

UML 1.5 Class diagrams (see page 1121)

2.9.4.88 Working with a Field
This topic applies to implementation projects only.

In the source code, it is possible to declare several fields in one line. This notation is represented in diagram as a number of
separate entries in the Fields section if a class icon. However, you can rename the fields, change modifiers, set initial values and
so on, all modifications being applied to the respective field in the diagram icon. Also you can copy and move such fields in
diagram (using context menu commands or drag-and-drop), and the pasted field appears in the target container separately.

To rename a field:

1. Choose a field.

2. Enter the new name in the in-place editor of the Diagram View or Model View, Name text field in the Object
InspectorProperties Window or the source code editor.

To define the visibility modifier:

1. Choose a field.

2. Enter the visibility symbol in the in-place editor in the Diagram View, or select one from the Visibility combobox in the Object
InspectorProperties Window, or edit in the source code editor.

To define the stereotype of a field:

1. Choose a field.

2. Use the in-place editor in the Diagram View, or stereotype combobox of the Object InspectorProperties Window or the source
code editor.

2.9 Together Procedures RAD Studio (Common) Together Diagram Procedures

243

2

To define modifiers, initial values, associated objects and so on:

1. Choose a field.

2. Use the Object InspectorProperties Window or the source code editor.

So doing, the model and the source code are kept in sync.

See Also

Synchronizing the Model View (see page 267)

Creating a Single Element (see page 209)

UML 1.5 class diagrams (see page 1121)

UML 2.0 class diagrams (see page 1143)

2.9.4.89 Associating a Message Link with a Method
Message links can be associated with the methods of the recipient class. The methods can be selected from the list of existing
ones or can be created. This is done by two commands provided by the message context menu: Add and Choose method.

You can use the Operation field in the Object InspectorProperties Window to rename the method. A dialog box appears asking if
you want to create a new method or rename the old one.

Use the following techniques to associate a message link with a method (operation):

1. Create a new method for an existing message link

2. Associate an existing method with a message link

3. Unlink a method

To create a new method for an existing message link:

1. Create a message link between two objects. The recipient object must instantiate a class.

2. On the context menu of the message link, choose Add. The submenu provides the choice of Method, Constructor or
Destructor.

Note: Destructors are available for classes in C# projects only.

3. From the submenu, choose the required operation type.

Tip: If the recipient object does not instantiate a class, the Add command is not available on the context menu.

If the recipient object is associated with an interface, only methods can be associated with the message link.

Result: The new operation is created in the class of the recipient object. The message link is labeled with the operation name,
according to the operation type:

If a Method is selected, the label is Method<n> ():return_type.

If a Constructor is selected, the label is <Classname>() in C# projects and <New>() in Visual Basic .NET projects.

If a Destructor is selected, the label is ~<Classname>(). The Destructor option is disabled in the submenu of the Add
command.

You can use the Operation field in the Object InspectorProperties Window to create a new method in the classifier. For
example, in the Operation field, you can enter method_name(parameter_types):return_type. Entering
parameter_types is optional. Entering the return_type is optional for Visual Basic .NET projects. If the method does not
exist in the class, a dialog opens prompting you to create it. If the method already exists in the class, the message link is
automatically set for that method.

Together Diagram Procedures RAD Studio (Common) 2.9 Together Procedures

244

2

To associate an existing method with a message link:

1. Create a message link between two objects. The recipient object must instantiate a class.

2. On the context menu of the message link, select Choose method. The submenu displays the list of operations of the recipient
class.

3. If you cannot find the required operation in the list, click More to reveal the next 20 methods (including inherited operations) of
the recipient class.

4. Select the required operation.

Result: The associated operation is selected from the list of available methods, constructor, or destructor.

If you choose to associate a different classifier for an object that is already instantiated with a classifier, all of the message links
where the Operation property has been set are automatically saved as text unless the method signature matches another
method signature within the newly-linked classifier.

To unlink a method:

1. Select the message link.

2. On the context menu of the message link, choose Unlink method.

Result: An association between the message link and the operation is removed. However, the operation is preserved in the
recipient class.

If you unlink a classifier from an object and that object has incoming message links where the Operation property is set to a
method of the unlinked classifier, a dialog opens prompting you to unlink the method from the message link or save it as text.
Choosing the option to save as text places the Operation property in quotation marks and the operation displays in red on the
diagram. The intent of this feature is to help users to preserve all of the signatures of any methods that have been linked to
the message links. Upon instantiating the object with a class again, you can delete the quotation marks. This will open a
dialog box prompting you to create the method if it does not exist in the linked classifier. A dialog box does not open if the
signature of the method matches an existing method in the classifier.

See Also

Creating a simple link (see page 209)

UML 1.5 interaction diagrams (see page 1131)

2.9.4.90 Generating an Incremental Sequence Diagram
You can generate incremental sequence diagrams from a previously-generated sequence diagram. In some cases, you can
have generated a sequence diagram with a low nesting value such as 3 or 5. The nesting value limits how deep the parser
traverses the source code calling sequence.

To generating an incremental sequence diagram from a previously-generated sequence diagram:

1. Once you review the sequence diagram, you can decide that you want to see additional objects and messages that are
currently not shown on the diagram because of the nesting value constraint.

2. In this case, you can select the Generate Sequence Diagram command from the context menu of an activation block and the
nested messages and objects calling from that method display on the diagram.

See Also

Roundtrip Engineering for Interaction Diagrams

Creating a Shortcut (see page 208)

UML 1.5 Interaction Diagrams (see page 1131)

2.9 Together Procedures RAD Studio (Common) Together Diagram Procedures

245

2

2.9.4.91 Creating a Browse-Through Sequence of Diagrams
You can link entire diagrams at one level of detail to the next diagram up or down in a sequence of increasing granularity, or you
can link from key use cases or actors to the next diagram.

To create a browse-through sequence:

1. Think of the answers to the following questions:

• Why do you want to link several diagrams? What is your general idea?

• What types of diagrams are you going to link? Usually you link Use Case Diagrams, but you can include any other types to a
sequence.

• Do you want to create “vertical” top-down links, or “horizontal” links for diagrams at one level?

• Do you want to link entire diagrams, or specific model elements?

2. Open the main diagram of the sequence you are going to create.

3. Select the source model element, or right-click the diagram background to link the entire diagram.

Note: If you choose to hyperlink to a new diagram, its shortcut appears on the source diagram.

Tip: It is recommended to use some common approach for all links in your sequence.

4. Create a hyperlink to the next diagram. The titles of source and destination elements turn blue.

5. Open the destination diagram.

6. Repeat steps 3–5 for all parts of your sequence.

7. Optionally, create hyperlinks in the reverse motion.

See Also

Hyperlinking Overview (see page 92)

UML 1.5 Use Case Diagram (see page 1137)

UML 2.0 Use Case Diagram (see page 1157)

2.9.4.92 Creating an Extension Point
To create an extension point:

1. Right-click the use case element.

2. Choose Add Extension Point on the context menu.

3. Type in a name.

See Also

UML 1.5 use case diagram (see page 1137)

UML 2.0 use case diagram (see page 1157)

2.9.4.93 Designing Use Case Hierarchy
Use case diagrams typically represent the context of a system and system requirements.

Together Diagram Procedures RAD Studio (Common) 2.9 Together Procedures

246

2

To design use case hierarchy:

1. Usually, you begin at a high level and specify the main use cases of the system.

2. Next, you determine the main system use cases at a more granular level. As an example, a "Conduct Business" use case can
have another level of detail that includes use cases such as "Enter Customers" and "Enter Sales."

3. Once you have achieved the desired level of granularity, it is useful to have a convenient method of expanding or contracting
the use cases to grasp the scope and relationships of the system's use case views.

See Also

UML 1.5 Use Case Diagram (see page 1137)

UML 2.0 Use Case Diagram (see page 1157)

2.9.5 Together Documentation Generation Procedures

This section provides how-to information on using Together Documentation Generation facilities.

Topics

Name Description

Configuring the Documentation Generation Facility (see page 247) To define the documentation title, header, footer and other specific settings, use
the Options dialog window.
Descriptions of the options are provided in the Options dialog window. You can
also find their descriptions in this online help.

Generating Project Documentation (see page 248)

2.9.5.1 Configuring the Documentation Generation Facility
To define the documentation title, header, footer and other specific settings, use the Options dialog window.

Descriptions of the options are provided in the Options dialog window. You can also find their descriptions in this online help.

To configure the documentation generation facility:

1. On the main menu, choose Tools Options Together (level) Generate Documentation.

2. Under the General category, enter the documentation title, window title, header, and footer.

3. Set the User Internal Browser option to choose to open the generated documentation in an external browser or in the RAD
Studio internal browser. By default, documentation opens in your external browser.

4. Under the Include category, select the visibility modifiers for classes and members to be included in the generated
documentation.

5. Under the Navigation category, set up the options for generating navigation bar, index, class hierarchy, and help link.

See Also

Documentation Generation Facility Overview (see page 100)

Generating Project Documentation (see page 248)

Together Generate Documentation Options Reference (see page 1099)

2.9 Together Procedures RAD Studio (Common) Together Documentation Generation

247

2

2.9.5.2 Generating Project Documentation
To generate project documentation:

1. Select project name, namespace or diagram in the Model View.

2. Select Tools->Generate Documentation on the main menu. Alternatively, right-click the selection and choose Generate
Documentation on the context menu.

3. In the Generate Documentation dialog box that opens, select your preferred Scope and Options settings.

4. Click OK to generate documentation. By default, the Generate Documentation wizard creates documentation for your entire
project.

See Also

Documentation Generation Facility Overview (see page 100)

Configuring the Documentation Generation Facility (see page 247)

Together Generate Documentation Options Reference (see page 1099)

2.9.6 Using Online Help

To get assistance while you work, do one of the following:

1. To see a description of what any screen element does in any opened dialog box, press F1 or click Help.

2. To see a relevant help topic for a pane, view, Tool Palette icon or another element, press F1.

3. To open the Table of Contents for online help, choose Help ->CodeGear Help on the main menu to see the Contents tab.

4. To search for specific topics and terms, use the Index tab.

5. If you have questions about RAD Studio, visit CodeGear Technical Support at http://support.borland.com.

Tip: To filter out the unnecessary books and topics from the Table of Contents and index, choose one of the filters in the
Filtered By

list box. If a topic provides information that can be relevant to one or another RAD Studio feature set, you can show or hide
the desired contents within a topic using the filter button.

See Also

Help on Help (see page 51)

Keyboard Mappings (see page 1068)

Together Keyboard Shortcuts (see page 1104)

2.9.7 Together Object Constraint Language (OCL)
Procedures

This section provides how-to information on using Together OCL facilities.

Together Object Constraint Language RAD Studio (Common) 2.9 Together Procedures

248

2

http://support.borland.com

Topics

Name Description

Creating an OCL Constraint (see page 249)

Editing an OCL Expression (see page 249)

Showing and Hiding an OCL Constraint (see page 250)

2.9.7.1 Creating an OCL Constraint
To create an object constraint and link it with the context:

1. In the Class/package diagram Tool Palette, choose the Constraint button and click the diagram background. The note element
appears with the OCL editor activated.

2. Type the constraint expression.

3. Close the OCL editor.

4. In the diagram Tool Palette, choose the button, and link the constraint node with the respective design element.

Tip: The constrained attribute should actually exist in the context. Otherwise the constraint will be marked as invalid.

Alternatively, follow these steps:

1. In the Model View or in the diagram, right-click an element for which a constraint should be created.

2. Choose Constraints.

3. In the Add / Remove constraints dialog box, click Add.

4. Enter the constraint:

• In the Name field, enter the constraint name.

• In the Language field, choose OCL or text from the list box.

• In the Constraint field, enter the constraint text.

5. Add as many constrains as needed.

6. Click OK when ready.

See Also

OCL Support Overview (see page 95)

Working with Combined Fragments (see page 228)

OCL Editor (Diagram View) (see page 1106)

2.9.7.2 Editing an OCL Expression
To activate the OCL Editor:

1. Double-click a constraint element or OCL property, or select a constraint element and press F2. The OCL Editor window
opens.

2. Edit an expression.

3. Use the green button to apply changes and close the OCL Editor. Use the red button to discard changes and close the OCL
Editor.

2.9 Together Procedures RAD Studio (Common) Together Object Constraint Language

249

2

See Also

OCL Support Overview (see page 95)

Working with combined fragments (see page 228)

Creating an OCL constraint (see page 249)

OCL editor (Diagram View) (see page 1106)

2.9.7.3 Showing and Hiding an OCL Constraint
To hide an individual constraint:

1. Right-click a constraint in the diagram.

2. Choose Hide.

To hide multiple constraints:

1. Right-click the diagram background.

2. Choose Show/Hide.

3. In the Show Hidden dialog box, select the desired constraints in the Diagram Elements list.

4. Click Add.

To reveal the hidden constraints:

1. Right-click the diagram background.

2. Choose Show/Hide.

3. In the Show Hidden dialog box, select the desired constraints in the Hidden list.

4. Click Remove.

See Also

OCL Support Overview (see page 95)

Working with combined fragments (see page 228)

Creating an OCL constraint (see page 249)

Editing OCL expression (see page 249)

OCL editor (Diagram View) (see page 1106)

2.9.8 Working with a Namespace or a Package

Namespaces are used in implementation projects, and packages in design projects.

Use the following techniques for a namespace or a package:

1. View a namespace or a package

2. Open a namespace or a package

3. Delete a namespace or a package

4. Rename a namespace or a package

Working with a Namespace or a Package RAD Studio (Common) 2.9 Together Procedures

250

2

To view a namespace or a package:

1. By default, a namespace element on a diagram displays the namespace contents.

2. You can use the context menu of a class or interface in a namespace to add fields and methods directly.

To open a namespace or a package:

1. Choose the Open Diagram command on the namespace diagram context menu.

2. You can also double-click the namespace element on the diagram.

To delete a namespace or a package:

1. Open the Diagram View or the Model View.

2. Choose Delete on its context menu.

Warning: Deleting a namespace also deletes all of its contents.

To rename a namespace or a package:

1. Open a project.

2. To rename a namespace, including changing the namespace name in all of its source files, do one of the following:

• Choose Rename on the context menu of a namespace in the Diagram View or in the Model View

• Invoke the in-place editor for the namespace element in the Diagram View or in the Model View

• Edit the Name field in the Object Inspector

See Also

Namespace and Package Overview (see page 89)

Creating a Project (see page 264)

2.9.9 Together Pattern Procedures

This section provides how-to information on using patterns with Together.

Topics

Name Description

Adding Participants to the Patterns as First Class Citizens (see page 253) Patterns as First Class Citizens are represented by the GoF patterns. When such
patterns are applied, the elements are created with the standard number of
participants. However, you can add allowed participants to the existing pattern
object. If you add participants, links between the pattern object and the new
participants are created.

Creating a Pattern (see page 253) You can use existing diagram elements as the basis to create custom patterns.
The newly created patterns are stored in the Pattern Registry. They become
visible in the pattern tree of the Pattern Organizer and can be used to generate
design elements in diagrams.

Deleting Patterns as First Class Citizens from the Model (see page 254) You can delete elements of the patterns as First Class Citizens (GoF patterns),
using both the Diagram View and the Model View. If you delete elements, they
are removed from the diagram and from the model.

2.9 Together Procedures RAD Studio (Common) Together Pattern Procedures

251

2

Using the Pattern Registry (see page 254) The Pattern Registry is only available from the Pattern Organizer context menu,
when you create a new shortcut, or assign a pattern to a shortcut. In the Pattern
Registry you can filter patterns by category, metaclass, diagram type, language
or status of registration.
To open the Pattern Registry, do one of the following:

• Right-click a folder and choose New shortcut.

• Right-click a pattern shortcut and choose Assign Pattern.

Creating a Link by Pattern (see page 255) Together makes it easy for you to apply patterns when creating links. To create
links during modeling, you can use the Link by Pattern button in the diagram
Tool Palette. The Link by Pattern button launches the Pattern Wizard dialog
displaying the available patterns.

Creating a Model Element by Pattern (see page 255) You can apply patterns explicitly using the Node by Pattern button in the Tool
Palette or by using the right-click menu command Create by Pattern. Whenever
you create an element on a diagram using one of the toolbar buttons, you are
applying a default pattern that is connected to the selected button.

Using the Stub Implementation Pattern (see page 255)

Exporting a Pattern (see page 257) You can create patterns and export them to the specified location.

Importing a Legacy Pattern (see page 257) You can reuse patterns created in the different versions of Together. Upon
starting Together, the available storage is scanned for patterns, and all the
encountered patterns are included in the Pattern Registry. However, they are not
available for usage unless you manually create shortcuts to these patterns in the
Pattern Organizer.

Sharing Patterns (see page 258) You can store patterns in the shared locations, to facilitate team development.
The Pattern Organizer enables access to the shared patterns if the paths to
these patterns are included in the list of Shared Pattern Roots. being included in
the list, patterns from the shared location become visible in the Custom Patterns
node of the patterns tree.

Assigning Patterns to Shortcuts (see page 258) You can associate a pattern with one or more shortcuts, located in the various
virtual folders.

Copying and Pasting Shortcuts, Folders or Pattern Trees (see page 258)

Creating a Folder in the Pattern Organizer (see page 259) Use virtual folders to logically organize patterns in the pattern trees.

Creating a Shortcut to a Pattern (see page 259) In the Pattern Organizer you are working with shortcuts, not with the actual
patterns. Because of this, shortcuts to the same pattern may be included in
several folders.

Creating a Virtual Pattern Tree (see page 259) The Pattern Organizer enables you to logically organize patterns using virtual
trees, folders and shortcuts. Under a tree node you can create virtual folders and
shortcuts to patterns.

Deleting shortcuts, folders or pattern trees (see page 260)

Editing Properties (see page 260) Properties of the virtual trees, folders and shortcuts are displayed in the
properties section of the Pattern Organizer. Using the toolbar buttons, you can
choose the properties presentation: in expandable nodes, or in alphabetical
order. The Name and Visible properties are editable. Changes are applied when
the edited field looses the focus, or the Enter key is pressed. The node name in
the tree view changes accordingly.

Opening the Pattern Organizer (see page 260) The Pattern Organizer enables you to logically organize patterns (using virtual
trees, folders and shortcuts), and view and edit the pattern properties.

Saving Changes in the Pattern Registry (see page 261) If you have changed the contents of the Pattern Registry using the Pattern
Organizer (created new shortcuts, exported or created shared folders), these
changes are synchronized with the Registry automatically. When you close the
Pattern Organizer, you are prompted to save changes. Each time you start
Together, the contents of the available storage is scanned for patterns. The
contents of the registry is synchronized with the actual availability of the pattern
folders. If you have made changes to the patterns outside the Organizer, these
changes will be synchronized when Together is started.

Sorting Patterns (see page 261) While working with the Pattern Organizer, the logical trees, folders, and
shortcuts may be displayed in an arbitrary order. You can sort nodes
alphabetically within the container node, using the Sort Folder command.

Together Pattern Procedures RAD Studio (Common) 2.9 Together Procedures

252

2

Using the Pattern Organizer (see page 261) The Pattern Organizer enables you to:

• Create logical pattern trees and folders

• Create shortcuts to patterns

• Assign patterns to shortcuts

• Copy, paste and delete trees, folders and shortcuts

• Save changes in the Pattern Registry

2.9.9.1 Adding Participants to the Patterns as First Class Citizens
Patterns as First Class Citizens are represented by the GoF patterns. When such patterns are applied, the elements are created
with the standard number of participants. However, you can add allowed participants to the existing pattern object. If you add
participants, links between the pattern object and the new participants are created.

To add a participant to a GoF pattern:

1. Select the oval pattern element in the Diagram View or Model View

2. Right-click on the pattern element choose Add from the context menu. The submenu presents the list of allowed participants.

3. Choose the required participant from the submenu.

4. In the Pattern Action Wizard, specify the name of the new participant, and click OK.

Tip: If the participant with the specified name already exists, it is reused.

See Also

Patterns overview (see page 96)

Pattern Organizer (see page 1107)

Pattern Registry (see page 1109)

2.9.9.2 Creating a Pattern
You can use existing diagram elements as the basis to create custom patterns. The newly created patterns are stored in the
Pattern Registry. They become visible in the pattern tree of the Pattern Organizer and can be used to generate design
elements in diagrams.

To create a pattern:

1. Select one or more elements on a diagram.

2. Right-click and choose Save as Pattern on the context menu of the selection. The Create Pattern Wizard opens.

3. On the General page of the wizard enter the following information:

• In the File field specify the target XML file name.

• In the Name field specify the name of the new pattern.

• Optionally, enter the pattern description in the Description field

• Optionally, check Create Pattern Object check box. Selecting this option allows you to use your pattern as a First Class
Citizen. This means that an oval pattern element will display on your diagrams when applying the pattern.

• Click Next.

2.9 Together Procedures RAD Studio (Common) Together Pattern Procedures

253

2

4. On the Pattern Parameters page of the wizard:

• Use the in-line editor to modify the parameters as required.

• Set the Use Existent property for the pattern. If this value is checked, existing elements on the diagram are reused when you
apply the pattern. This means that whenever you apply a pattern, a new element is not created if there is an element with the
same name and metatype in the target container . If you clear theUse Existent property, then new elements are created.

• Click Next.

5. In the Select tree folder page that displays the current patterns structure, choose the target folder, and click OK.

Result: The new pattern is added to the specified folder. This pattern is visible in the pattern tree and can be used to generate
design elements.

See Also

Patterns overview (see page 96)

Create Pattern Wizard (see page 1159)

Pattern Organizer (see page 1107)

Pattern Registry (see page 1109)

2.9.9.3 Deleting Patterns as First Class Citizens from the Model
You can delete elements of the patterns as First Class Citizens (GoF patterns), using both the Diagram View and the Model
View. If you delete elements, they are removed from the diagram and from the model.

To delete a GoF pattern with participants:

1. In the Diagram View or Model View, select the oval pattern element to be deleted.

2. On the context menu of the selection, choose the Delete with Participants command.

3. Confirm deletion.

See Also

Patterns overview (see page 96)

Pattern Organizer (see page 1107)

Pattern Registry (see page 1109)

2.9.9.4 Using the Pattern Registry
The Pattern Registry is only available from the Pattern Organizer context menu, when you create a new shortcut, or assign a
pattern to a shortcut. In the Pattern Registry you can filter patterns by category, metaclass, diagram type, language or status of
registration.

To open the Pattern Registry, do one of the following:

• Right-click a folder and choose New shortcut.

• Right-click a pattern shortcut and choose Assign Pattern.

To filter patterns in the Pattern Registry:

1. In the Filters section of the Pattern Registry dialog window, click the attribute to filter the patterns.

2. Select the desired value from the drop-down list.

Together Pattern Procedures RAD Studio (Common) 2.9 Together Procedures

254

2

See Also

Patterns overview (see page 96)

Patterns Organizer (see page 1107)

Patterns Registry (see page 1109)

2.9.9.5 Creating a Link by Pattern
Together makes it easy for you to apply patterns when creating links. To create links during modeling, you can use the Link by
Pattern button in the diagram Tool Palette. The Link by Pattern button launches the Pattern Wizard dialog displaying the
available patterns.

To create a link by pattern:

1. Click the Link by Pattern button in the diagram Tool Palette. The button stays down.

2. Click the source element on the diagram.

3. Drag to the destination element and drop when the second element is highlighted. The Pattern Wizard opens.

4. In the Pattern Wizard window, select the pattern that you want to apply for the new link, define its properties and click Finish.

See Also

Patterns overview (see page 96)

Creating a model element by pattern (see page 255)

2.9.9.6 Creating a Model Element by Pattern
You can apply patterns explicitly using the Node by Pattern button in the Tool Palette or by using the right-click menu command
Create by Pattern. Whenever you create an element on a diagram using one of the toolbar buttons, you are applying a default
pattern that is connected to the selected button.

To create model elements by pattern:

1. On the diagram Tool Palette, choose the Node by Pattern button.

2. Click the container, where you want to add an element by pattern. This can be either the diagram background or a node
element. Pattern Wizard opens.

Tip: Alternatively, right-click the target container and choose Create by Pattern

on the context menu.

3. In the Pattern Wizard select the desired pattern, modify its properties and click OK.

See Also

Patterns overview (see page 96)

Creating a link by pattern (see page 255)

2.9.9.7 Using the Stub Implementation Pattern
To create an inheritance link with stub implementation using the Link by Pattern button:

1. Click the Link by Pattern button in the Tool Palette.

2.9 Together Procedures RAD Studio (Common) Together Pattern Procedures

255

2

2. Click the source class and drag-and-drop the link to the destination class or interface. The Pattern Wizard dialog opens.

3. In the Pattern Wizard, expand the Standard folder and select Implementation link and stub.

4. Click OK to complete the stub implementation. The inheritance link is created and the stubs for the inherited methods are
generated in the source class.

To create an inheritance link with stub implementation using the Node by Pattern button:

1. Click the Node by Pattern button in the Tool Palette.

2. Select the source class on the diagram. The Pattern Wizard opens.

3. In the Pattern Wizard, expand the Standard folder, and select Implementation link and stub.

4. In the Pattern Properties pane on the right of the Pattern Wizard, click the information button to the right of the Supplier field.
The Select Supplier dialog opens.

5. Select the destination class or interface from the treeview of available contents and click Ok.

6. Click OK to complete the stub implementation and close the Pattern Wizard. The inheritance link is created and the stubs for
the inherited methods are generated in the source class.

To create an inheritance link with stub implementation using the Create by Pattern context menu:

1. Right-click the source class on the diagram and choose Create by Pattern from the context menu. The Pattern Wizard opens.

2. In the Pattern Wizard, expand the Standard folder and select Implementation link and stub.

3. In the Pattern Properties pane on the right of the Pattern Wizard, click the information button to the right of the Supplier field.
The Select Supplier dialog opens.

4. Select the destination class or interface from the treeview of available contents and click Ok.

5. Click OK to complete the stub implementation and close the Pattern Wizard. The inheritance link is created and the stubs for
the inherited methods are generated in the source class.

Note: You can find the Stub implementation pattern on the context menu of classes that inherit from an interface or an
abstract class. This pattern is also available in the Pattern Wizard by clicking the Node by Pattern button in the Tool Palette

, or by using the Create by Pattern context menu for a class. Use the Stub implementation pattern if you already have an
inheritance/generalization link drawn on the diagram and you want to copy the methods to the source class.

To create a stub implementation using the class context menu:

1. Right-click a class that inherits from an interface or an abstract class.

2. Choose Stub Implementation from the context menu.

To create a stub implementation using the Node by Pattern button:

1. Click the Node by Pattern button in the Tool Palette.

2. Select the source class on the diagram. The Pattern Wizard opens.

3. In the Pattern Wizard, expand the Standard folder, and select Stub implementation.

4. Click OK to complete the stub implementation and close the Pattern Wizard. The stubs for the inherited methods are
generated in the source class.

To create a stub implementation using the Create by Pattern context menu:

1. Right-click the source class on the diagram and choose Create by Pattern from the context menu. The Pattern Wizard opens.

2. In the Pattern Wizard, expand the Standard folder, and select Stub implementation.

3. Click OK to complete the stub implementation and close the Pattern Wizard. The stubs for the inherited methods are
generated in the source class.

See Also

Patterns overview (see page 96)

Together Pattern Procedures RAD Studio (Common) 2.9 Together Procedures

256

2

Pattern Organizer (see page 1107)

Pattern Registry (see page 1109)

2.9.9.8 Exporting a Pattern
You can create patterns and export them to the specified location.

To export a pattern:

1. In the Pattern Organizer window, expand the pattern tree and locate the folder to be exported.

2. Right-click the selected folder and choose Export folder.

3. In the Select path to export dialog box, navigate to the desired location, and click Save.

See Also

Creating a pattern (see page 253)

Pattern Organizer (see page 1107)Pattern Registry (see page 1109)

2.9.9.9 Importing a Legacy Pattern
You can reuse patterns created in the different versions of Together. Upon starting Together, the available storage is scanned
for patterns, and all the encountered patterns are included in the Pattern Registry. However, they are not available for usage
unless you manually create shortcuts to these patterns in the Pattern Organizer.

To reuse a custom pattern, follow this general procedure:

1. Copy your legacy patterns to the folder that stores patterns in your product installation folder.

2. After the product startup, Pattern Registry automatically registers all available patterns.

3. Open the Pattern Organizer,

4. In the Pattern Organizer window:

• Locate the target folder for the patterns in question, or create a new folder.

• Create a new shortcut.

• Assign the desired pattern to this shortcut.

5. Save changes.

See Also

Patterns overview (see page 96)

Create a new folder (see page 259)

Create a new shortcut (see page 259)

Assign the desired pattern to this shortcut (see page 258)

Saving changes in Pattern Organizer (see page 261)

Pattern Organizer (see page 1107)Pattern Registry (see page 1109)

2.9 Together Procedures RAD Studio (Common) Together Pattern Procedures

257

2

2.9.9.10 Sharing Patterns
You can store patterns in the shared locations, to facilitate team development. The Pattern Organizer enables access to the
shared patterns if the paths to these patterns are included in the list of Shared Pattern Roots. being included in the list, patterns
from the shared location become visible in the Custom Patterns node of the patterns tree.

To create shared patterns:

1. Export the desired patterns to a shared location.

2. In the Pattern Organizer, click Edit Shared Patterns Roots. Shared Patterns Roots dialog opens.

3. In the List of Shared Patterns Roots, click Add. Select Shared Pattern Tree dialog opens.

4. In the Select Shared Pattern Tree dialog locate the folder that contains the desired patterns, select the Shortcut
Registry.xml file and click Open. The path is added to the list of shared pattern roots.

5. Edit the list using Add and Remove buttons.

6. Click OK when ready.

See Also

Exporting patterns (see page 257)

Pattern Organizer (see page 1107)

Pattern Registry (see page 1109)

2.9.9.11 Assigning Patterns to Shortcuts
You can associate a pattern with one or more shortcuts, located in the various virtual folders.

To assign a pattern to a shortcut:

1. In the Virtual pattern trees section of the Pattern Organizer, select the desired shortcut.

2. Right-click and choose Assign Pattern. The Pattern Registry opens.

3. In the Pattern Registry, select the pattern to be assigned to the selected shortcut, and click OK.

4. In the Properties section of thePattern Organizer, edit the shortcut name and visibility as required

5. Save the changes.

See Also

Creating a Shortcut to a Pattern (see page 259)Editing Pattern Properties (see page 260)

Pattern Organizer (see page 1107)

Pattern Registry (see page 1109)

2.9.9.12 Copying and Pasting Shortcuts, Folders or Pattern Trees
To copy and paste a folder or a shortcut:

1. In the Virtual pattern trees section, select a shortcut, folder or pattern tree to be copied.

2. Right-click the node and choose Copy on the context menu.

Tip: Alternatively, press CTRL+C

Together Pattern Procedures RAD Studio (Common) 2.9 Together Procedures

258

2

3. Right-click the destination node and choose Paste on the context menu. Alternatively, press CTRL+V

4. Save changes.

See Also

Pattern Organizer (see page 1107)

Pattern Registry (see page 1109)

2.9.9.13 Creating a Folder in the Pattern Organizer
Use virtual folders to logically organize patterns in the pattern trees.

To create a new virtual folder in the Pattern Organizer:

1. In the Pattern Organizer, select the target node in the Virtual pattern trees section.

2. Right-click this node and choose New Folder. The New Folder node is added.

3. In the Properties section, edit the Name and Visible fields as required.

See Also

Creating a Shortcut to a Pattern (see page 259)Creating a Tree (see page 259)

Pattern Organizer (see page 1107)

Pattern Registry (see page 1109)

2.9.9.14 Creating a Shortcut to a Pattern
In the Pattern Organizer you are working with shortcuts, not with the actual patterns. Because of this, shortcuts to the same
pattern may be included in several folders.

To create a new shortcut to a pattern:

1. In the Pattern Organizer, select the topmost target node.

2. Right-click this node and choose New Shortcut. The Pattern Registry opens.

3. In the Pattern Registry, select the pattern to be assigned to the new shortcut, and click OK

4. When the Pattern Organizer prompts you to save changes in the Pattern Registry, click Yes.

See Also

Creating a folder (see page 259)Creating a tree (see page 259)

Pattern Organizer (see page 1107)

2.9.9.15 Creating a Virtual Pattern Tree
The Pattern Organizer enables you to logically organize patterns using virtual trees, folders and shortcuts. Under a tree node
you can create virtual folders and shortcuts to patterns.

To create a new pattern tree:

1. In the Pattern Organizer, select the topmost Patterns node.

2.9 Together Procedures RAD Studio (Common) Together Pattern Procedures

259

2

2. Right-click this node and choose New Pattern Tree. The New Pattern Tree node is added.

3. In the Properties section, edit the Name and Visible fields as required.

See Also

Creating a Folder (see page 259)Creating a Shortcut to a Pattern (see page 259)

Pattern Organizer (see page 1107)

2.9.9.16 Deleting shortcuts, folders or pattern trees
To delete a node from the Pattern Organizer:

1. In the Virtual pattern trees section, select a shortcut, folder or pattern tree to be deleted.

2. Right-click the node and choose Delete on the context menu. Alternatively, press DELETE key

3. Save changes.

See Also

Pattern Organizer (see page 1107)

Pattern Registry (see page 1109)

2.9.9.17 Editing Properties
Properties of the virtual trees, folders and shortcuts are displayed in the properties section of the Pattern Organizer. Using the
toolbar buttons, you can choose the properties presentation: in expandable nodes, or in alphabetical order. The Name and
Visible properties are editable. Changes are applied when the edited field looses the focus, or the Enter key is pressed. The
node name in the tree view changes accordingly.

To edit properties of a tree, shortcut or folder:

1. Select a node in the Virtual pattern trees section.

2. In the Properties section, edit the Name property, using the text field.

3. In the Properties section, edit the Visible property, using the drop-down list.

Tip: The Visible

property applies to shortcuts only. If Visible is set to Visible, the shortcut is displayed in the Pattern Wizard. Otherwise, it is
not visible. If a folder does not contain any visible shortcuts, it is also hidden in the Pattern Wizard.

4. Save changes.

See Also

Pattern Organizer (see page 1107)

Pattern Registry (see page 1109)

2.9.9.18 Opening the Pattern Organizer
The Pattern Organizer enables you to logically organize patterns (using virtual trees, folders and shortcuts), and view and edit
the pattern properties.

Together Pattern Procedures RAD Studio (Common) 2.9 Together Procedures

260

2

To open the Pattern Organizer:

1. On the main menu, choose Tools->Pattern Organizer.

2. Result: The Pattern Organizer window opens.

See Also

Pattern Organizer (see page 1107)

Pattern Registry (see page 1109)

2.9.9.19 Saving Changes in the Pattern Registry
If you have changed the contents of the Pattern Registry using the Pattern Organizer (created new shortcuts, exported or
created shared folders), these changes are synchronized with the Registry automatically. When you close the Pattern
Organizer, you are prompted to save changes. Each time you start Together, the contents of the available storage is scanned
for patterns. The contents of the registry is synchronized with the actual availability of the pattern folders. If you have made
changes to the patterns outside the Organizer, these changes will be synchronized when Together is started.

To save changes in the Pattern Registry:

1. In the Pattern Organizer click Close button. The dialog window opens prompting you to save changes in the pattern registry.

2. Click Yes to confirm.

Tip: Alternatively, open the Pattern Registry

dialog, and click Synchronize.

See Also

Pattern Organizer (see page 1107)

Pattern Registry (see page 1109)

2.9.9.20 Sorting Patterns
While working with the Pattern Organizer, the logical trees, folders, and shortcuts may be displayed in an arbitrary order. You
can sort nodes alphabetically within the container node, using the Sort Folder command.

To sort patterns the Pattern Organizer:

1. In the Virtual pattern trees section, select the node to be sorted.

2. Right-click the node and choose Sort Folder on the context menu.

3. Save changes.

See Also

Pattern Organizer (see page 1107)

Pattern Registry (see page 1109)

2.9.9.21 Using the Pattern Organizer
The Pattern Organizer enables you to:

2.9 Together Procedures RAD Studio (Common) Together Pattern Procedures

261

2

• Create logical pattern trees and folders

• Create shortcuts to patterns

• Assign patterns to shortcuts

• Copy, paste and delete trees, folders and shortcuts

• Save changes in the Pattern Registry

See Also

Patterns Overview (see page 96)

Saving Changes in the Pattern Organizer (see page 261)

Creating a Folder (see page 259)

Opening the Pattern Organizer (see page 260)

Creating a Virtual Pattern Tree (see page 259)

Creating a Shortcut to a Pattern (see page 259)

Assigning Patterns to Shortcuts (see page 258)

Copying and Pasting in Pattern Organizer (see page 258)

Deleting a Node from the Pattern Organizer (see page 260)

Editing Pattern Properties (see page 260)

Sorting the Pattern Organizer (see page 261)

Pattern Registry (see page 1109)

Pattern Organizer (see page 1107)

2.9.10 Together Project Procedures

This section provides how-to information on using Together projects.

Topics

Name Description

Activating Together Support for Projects (see page 263) This topic describes how to activate Together support for a project individually.
Tip: You can also force Together to activate support automatically for all new or
currently open projects by adjusting General options.

Creating a Project (see page 264)

Exporting a Project to XMI Format (see page 264)

Importing a Project in IBM Rational Rose (MDL) Format (see page 265) IMPORTANT: For the MDL Import function to work, the Java Runtime
Environment and the Java Development Kit must be installed, and the paths in
the jdk.config file must correctly point to your JDK/JRE directory. See the first
step below

Importing a Project Created in TVS, TEC, TJB, or TPT (see page 265) Together supports full backward compatibility with the previous version. You can
open your old projects in the regular way.
You can also import projects created in other editions of Together.
Warning: Diagrams in projects must be created in the common diagram format
.txv*. The legacy diagram format .df* is not supported.
Warning: Diagram elements must be embedded (created as filemates).
Standalone design elements (SDE) are not supported.

Importing a Project in XMI Format (see page 266)

Together Project Procedures RAD Studio (Common) 2.9 Together Procedures

262

2

Opening an Existing Project for Modeling (see page 267) You can add modeling capabilities to an existing implementation project that was
created without Together.
When you open a project subdirectory from the Model View or Diagram View,
Together reverse engineers the contents into a namespace diagram that shows
the namespaces, classes, and interfaces and their interrelationships.

Synchronizing the Model View, Diagram View, and Source Code (see page
267)

Together provides constant synchronization between different aspects of your
project:

• Model hierarchy, presented in the Model View

• Model graphical representation in the Diagram View

• Source code (for implementation projects)

Tip: You can also use the Reload function of the Model
View

to update an entire model, and the Refresh function of
the Diagram View.

Transforming a Design Project to Source Code (see page 269) This feature is available for UML 1.5 and UML 2.0 design projects.

Troubleshooting a Model (see page 269) You can also reload your project from the source code.

Working with a Referenced Project (see page 270) Your project can have a binary library whose content you may want to display in
your diagrams. For example, you can show entities that reside in the
MSCorLib.dll or other project references. Such resources exist for the project,
but Together does not include them in the generated HTML documentation for
the project.
The Model View enables you to view class diagrams for references included in
your projects. You can add references to your project using the Project Manager.

2.9.10.1 Activating Together Support for Projects
This topic describes how to activate Together support for a project individually.

Tip: You can also force Together to activate support automatically for all new or currently open projects by adjusting General
options.

To activate Together support follow these steps:

1. Switch to a desired project or project groupsolution.

2. Choose Project Together Support on the main menu. Result: The Model Support dialog box opens showing the list of
projects within the current project groupsolution.

3. In the Model Support dialog box, check the flags for those projects where you need modeling.

4. Click OK.

Result: The Model View displays the models for each of the selected projects. In the Project ManagerSolution Explorer,
ModelSupport_%PROJECTNAME%ModelSupport folder is added to each of the selected projects.

To deactivate Together support, follow the above procedure, but uncheck the flags for those projects of a project groupsolution
that do not need modeling.

See Also

Creating a Project (see page 264)

Opening an Existing Project for Modeling (see page 267)

Together General Options (see page 1098)

2.9 Together Procedures RAD Studio (Common) Together Project Procedures

263

2

2.9.10.2 Creating a Project
To create a Together project:

1. On the main menu, choose File->New->Other. The New Project dialog box opens.

2. From the Project Types or the Item categories pane, choose the desired project category.

3. From the templates pane, choose the desired project template.

4. Enter the project name, location and other parameters as required by the New Project dialog box.

5. Click OK.

6. Follow the procedure provided by the New Project Wizard.

7. In the Project from MDL wizard, click the Add Folder button and choose the desired source folder from the file system. Use
the Remove and Remove all buttons to make up the list of model files.

Result: A project of the selected type is created in the specified location.

For design project, .bdsproj file is created in the specified project root. The default package and diagram are created.

For implementation project, if Together support is enabled, .bdsproj file is created in the specified project root, the default
namespace and diagram are created.

See Also

Opening a Project for Modeling (see page 267)

Creating a Namespace or a Package (see page 250)

Creating a Diagram (see page 196)

Supported Project Formats (see page 1116)

2.9.10.3 Exporting a Project to XMI Format
To export a project to XMI format:

1. In the Model View, right-click the root project node, and choose Export Project to XMI, or choose File Export Project to
XMI on the main menu. The XMI Export dialog box opens.

2. In the Select XMI Type groupbox, select the xml/uml version you wish the file to support. You can select from the available
XMI Type choices:

• XMI for UML 1.3 (Unisys Extension)

• XMI for UML 1.3 (Unisys Extension, Recommended for TCC), default value

• XMI for UML 1.3 (Unisys Extension, Recommended for IBM Rational Rose)

3. Click the drop-down arrow to select an appropriate XMI encoding requirement. The default value is UTF-8.

4. Specify the export destination. You can include the path as well as the name of the file (.xml) which will be created, or you can
accept the default: (project folder)\out\xmi\(project name).xml

5. Click Export. If the destination directory does not exist, a confirmation dialog asks if you want to create it.

6. Click Yes.

Result: The created XML file is added to the specified location.

See Also

Import and export features overview (see page 100)

XMI Export dialog box (see page 978)

Together Project Procedures RAD Studio (Common) 2.9 Together Procedures

264

2

2.9.10.4 Importing a Project in IBM Rational Rose (MDL) Format
IMPORTANT: For the MDL Import function to work, the Java Runtime Environment and the Java Development Kit must be
installed, and the paths in the jdk.config file must correctly point to your JDK/JRE directory. See the first step below

To create a design project on the base of an IBM Rational Rose (MDL) project:

1. Open [RAD Studio]5.0/bin/plugins/mdlimport/jdk.config and modify the javahome and addpath statements
to reflect the relative path from the jdk.config file to your JKD/JRE installation. For example,

javahome ../../../../../../../jdk1.4.2/jre
addpath ../../../../../../../jdk1.4.2/lib/tools.jar

Note: The path to the JDK/JRE should be without quotation marks.

Save the file and open RAD Studio.

2. On the main menu, choose File->New->Other. The New Project dialog box opens.

3. From the Project Types pane, choose Design Project.

4. From the Templates pane, choose Convert from MDL template.

5. Enter the project name, location and other parameters as required by the New Project dialog box.

6. Click OK.

7. In the Project from MDL wizard, specify the source .mdl, .ptl, .cat, or .sub file using the Add button.

8. Specify the scale factor and conversion options.

9. Click Finish.

Result: A new design project is created in the specified location.

See Also

Import and Export Features Overview (see page 100)

Convert From MDL Wizard (see page 1160)

2.9.10.5 Importing a Project Created in TVS, TEC, TJB, or TPT
Together supports full backward compatibility with the previous version. You can open your old projects in the regular way.

You can also import projects created in other editions of Together.

Warning: Diagrams in projects must be created in the common diagram format .txv*. The legacy diagram format .df* is not
supported.

Warning: Diagram elements must be embedded (created as filemates). Standalone design elements (SDE) are not supported.

The general procedure for importing a project created in name="Delphi"TVS, TEC, TJB, or TPT consists of the following
steps:

1. Creating a new project in RAD Studio

2. Importing the model information into this project

To create a new project for import:

1. Choose File->New->Other on the main menu. The New Project dialog window opens.

2. Select the project template. Note that the project type should correspond to the type of the source project:

2.9 Together Procedures RAD Studio (Common) Together Project Procedures

265

2

• For a UML 1.x design project, choose Design project->UML 1.5 Design ProjectTogether design project->UML 1.5 Together
Design Project.

• For a UML 2.x design project, choose Design project->UML 2.0 Design ProjectTogether design project->UML 2.0 Together
Design Project.

3. Enter the project name.

Warning: The project name should be exactly equal to the source project name. Adjust the remainder of the settings on your
own.

4. Click OK to create a project.

5. Close the project when it is created.

To import the model information:

1. Open Windows Explorer or any other file manager.

2. Copy all model files including subfolders from the source project to the ModelSupport_%PROJECTNAME% folder under your
new project root. These files are located under diagrams, ModelSupport or Model Folder directories, depending on the
version of Together.

Note: For some projects

these files are located in the same folders as the source code files. In this case you will have to pick out the modeling files
manually. Basically, you need all files with .txv* and .txa* extensions.

3. If you have an implementation project and you need to keep your source code, copy it from the source project to the new one
keeping the folder structure.

4. Open the project in RAD Studio. Open the Project Manager.

5. Choose the project root node.

6. Right-click and choose Add... on the context menu. The Add to Project dialog box opens. In this dialog box, choose the first
source file from the src folder and click OK.

7. Repeat the last steps for all source and modeling files.

Result: RAD Studio processes your files. When completed, the imported project is displayed in the Model and Diagram Views.

See Also

Interoperability Overview

Sharing Model Information Between TCC/TAR and RAD Studio

2.9.10.6 Importing a Project in XMI Format
To import a project in XMI format:

1. Open a diagram or have the project root node selected in the Model View.

Warning: The project must comply with the UML 1.5 specification.

2. In the Model View, right-click the root project node and choose Import Project from XMI, or choose File Import Project
from XMI on the main menu. The XMI Import dialog box opens.

3. Browse for the source file.

4. Click Import.

Tip: The recommended way to import a project from Together ControlCenter (TCC) or Together Architect (TAR) to RAD
Studio is to use the common diagram format.

Together Project Procedures RAD Studio (Common) 2.9 Together Procedures

266

2

You can import a model created with IBM Rational Rose directly.

See Also

Import and Export Features Overview (see page 100)

Importing a Project in IBM Rational Rose (MDL) Format (see page 265)

2.9.10.7 Opening an Existing Project for Modeling
You can add modeling capabilities to an existing implementation project that was created without Together.

When you open a project subdirectory from the Model View or Diagram View, Together reverse engineers the contents into a
namespace diagram that shows the namespaces, classes, and interfaces and their interrelationships.

To open an existing implementation project for modeling:

1. Make sure that Together support is activated.

2. On the main menu, choose File->Open Project.

3. In the Open Project dialog box, specify the project location.

4. Select the project or project group file.

5. Click OK.

Result: With Together support activated, opening existing implementation project automatically reverse engineers the existing
source code into class diagrams.

See Also

Activating Together support (see page 263)

Creating a project (see page 264)

2.9.10.8 Synchronizing the Model View, Diagram View, and Source
Code

Together provides constant synchronization between different aspects of your project:

• Model hierarchy, presented in the Model View

• Model graphical representation in the Diagram View

• Source code (for implementation projects)

Tip: You can also use the Reload function of the Model View

to update an entire model, and the Refresh function of the Diagram View.

You can navigate between the Model View, Diagram View, and source code by using the following techniques:

1. Navigate to a diagram from the Model View to the Diagram View

2. Navigate to a model element from the Model View to the Diagram View

3. Navigate from the Diagram View to the Model View

4. Navigate from a lifeline to its classifier in the Model View or a Class diagram

5. Navigate from source code to the Model View

6. Navigate from the Model View or Diagram View to source code (for implementation projects)

2.9 Together Procedures RAD Studio (Common) Together Project Procedures

267

2

7. Edit a synchronized element

To navigate to a diagram from the Model View to the Diagram View:

1. In the Model View, right-click the diagram node.

2. Choose Open Diagram.

Alternatively, double-click the diagram node in the Model View.

To navigate to a model element from the Model View to the Diagram View:

1. Select a model element in the Model View.

2. Right-click and choose Select on Diagram on the context menu.

Note: If this model element appears on several diagrams, choose a diagram on the submenu.

To navigate from the Diagram View to the Model View:

1. Right-click the selected element or diagram background in the Diagram View.

2. Choose Synchronize with Model View on the context menu.

To navigate from a lifeline to its classifier in the Model View or a Class diagram:

1. Right-click the selected lifeline on a UML 2.0 Sequence diagram in the Diagram View.

2. Choose Select Type in Model View to navigate to the classifier in the Model View, Or: Choose Select Type on Diagram
to navigate to the classifier on a Class diagram in the Diagram View.

To navigate from source code to the Model View:

1. Right-click the line that contains the desired element.

2. On the context menu of the selection, choose Synchronize Model View.

Result: The corresponding element is highlighted in the Model View.

To navigate from the Model View or Diagram View to source code (for implementation projects):

1. Right-click a model element or a node member.

2. Choose Go to definition on the context menu.

Note: This command is available for source code-generating elements.

Result: Source code of the element in question opens in the Editor tab. The corresponding definition is highlighted.

Tip: To open source code of an entire class or interface, double-click the element icon.

To edit a synchronized element:

1. Select an element in the Diagram View or Model View.

2. Edit the desired fields in the Object Inspector.

Note: Alternatively, invoke the in-line editor in the Diagram View

or Model View.

Warning: Avoid using the Structure View

or the Project Manager for modification of the model elements.

See Also

LiveSource Overview (see page 93)

Troubleshooting the Model (see page 269)

Together Project Procedures RAD Studio (Common) 2.9 Together Procedures

268

2

2.9.10.9 Transforming a Design Project to Source Code
This feature is available for UML 1.5 and UML 2.0 design projects.

To generate source code from a design project:

1. In the Model View, select a design project.

2. Right-click and choose Transform to source on the context menu.

3. In the Choose Destination Project dialog box, select the desired implementation project.

4. Check the Use name mapping files for code generation checkbox if required.

5. Click Transform.

Result: implementation code of the class diagrams that existed in the design project are added to the target language-specific
project. The diagrams are also added to the target project. The diagram roots are preserved.

To insert source code to an implementation project:

1. In the Model View, select an implementation project.

2. Right-click and choose Transform code from design project on the context menu.

3. In the Choose Source Project dialog box, select the desired design project.

4. Check the Use name mapping files for code generation checkbox if required.

5. Click Transform.

Result: implementation code of the class diagrams that existed in the design project are added to the target implementation
project. The diagrams are also added to the target project. The diagram roots are preserved.

See Also

Transformation to source code overview (see page 94)

"Choose Source (Destination) Project" dialog box (see page 962)

2.9.10.10 Troubleshooting a Model
You can also reload your project from the source code.

Use the following techniques to troubleshoot your model:

1. Refresh a model

2. Reload a model

3. Fix a model

To refresh a model:

1. Open the Diagram View.

2. Press F6.

To reload a model:

1. Open the Model View.

2. Right-click the project root node and choose Reload on the context menu.

Note: Use the Reload command as a workaround for issues that might appear while making changes in Together that cause

2.9 Together Procedures RAD Studio (Common) Together Project Procedures

269

2

some elements on the diagram to stop responding, or if you get errors from Together, such as, <undefined value>.

Tip: Usually, when these problems occur, the elements also disappear from the RAD Studio Structure View

and the corresponding source code is underlined in blue in the RAD Studio Editor. Together cannot always properly handle
such elements that become broken. To restore broken elements to a normal state, it is necessary to edit the code in the text
editor according to the recommendation shown in the RAD Studio Editor. In these cases, it is best to refresh the model using
Reload to prevent possible further misbehavior.

To fix a model:

1. For interaction diagrams: regenerate them from the source code.

2. For all types of diagrams: check that none of the necessary elements are hidden.

See Also

Synchronizing the Model View (see page 267)

Reload Command (Model View) (see page 1112)

2.9.10.11 Working with a Referenced Project
Your project can have a binary library whose content you may want to display in your diagrams. For example, you can show
entities that reside in the MSCorLib.dll or other project references. Such resources exist for the project, but Together does not
include them in the generated HTML documentation for the project.

The Model View enables you to view class diagrams for references included in your projects. You can add references to your
project using the Project Manager.

To add a project to references:

1. In the Project Manager, expand the desired project node.

2. On the context menu of the References node, choose Add Reference.

Tip: Alternatively, choose Project->Add Reference

on the main menu.

3. In the Projects tab, select the projects to be referenced and click Select.

4. Click OK when ready.

Result: The Choose Type to Instantiate dialog box shows all referenced projects, making it possible to choose the desired
classifiers from the different projects.

To view a diagram of a referenced project:

1. Open or create a class diagram.

2. Right-click the diagram background and choose Add Shortcuts. The Edit Shortcuts dialog box opens and displays the
content available for the diagram and all content residing outside of the current namespace.

3. Choose the resource that you want to add from the tree view of available contents on the left of the dialog and click Add >>.

4. Repeat until you have added all of the resources that you want to show on the diagram.

5. Click OK to close the dialog box.

Tip: If the Edit Shortcuts

dialog box does not show the resource that you are looking for, it is probably not added as a reference to your project.
Choose Project Add Reference on the main menu to add a project reference.

Together Project Procedures RAD Studio (Common) 2.9 Together Procedures

270

2

To view the MsCorLib.dll (a standard DLL added automatically to your projects):

1. Expand the References node and the MsCorLib.dll node in the Model View.

2. Right-click the default diagram and choose Open Diagram. The default diagram opens in the Diagram View. You can expand
the Microsoft and System folders to view other class diagrams as well.

See Also

Creating a Shortcut (see page 208)

Instantiating a Classifier (see page 211)

2.9.11 Together Quality Assurance Procedures

This section provides how-to information on using Together Quality Assurance facilities.

Topics

Name Description

Exporting Audit Results (see page 271) Export audit results to an XML or HTML file to share them with team members or
review them later.

Printing Audit Results (see page 272) You can print the entire table of audit violations, or select specific rows and
columns.
Warning: This feature is available for implementation projects only.

Running Audits (see page 273) Audits automatically check for conformance to standard or user-defined style,
maintenance, and robustness guidelines. Before running audits, make sure that
the code being audited is compilable. If your source code contains errors, or
some libraries and paths are not included, audits might produce inaccurate
results.
Warning: This feature is available for implementation projects only.

Viewing Audit Results (see page 274) When viewing audit results, you can compare and organize items in the results
report.
The results report is tightly connected with the diagram elements and the source
code. Using the report, you can navigate to the specific location of the violation.
Warning: This feature is available for implementation projects only.

Working with a Set of Audits (see page 274)

Creating a Metrics Chart (see page 275) You can create a chart in the Metric Results Pane.
Metrics charts are created in temporary files which are deleted when the charts
are closed. However, you can save graphical information in text files, export it to
the desired graphical format, and include graphics in project.

Running Metrics (see page 276) Before running metrics, make sure that the code being analyzed can be
compiled. If your source code contains errors or some libraries and paths are not
included, metrics might produce inaccurate results.
Warning: This feature is available for implementation projects only.

Viewing Metric Results (see page 276)

Working with a Set of Metrics (see page 277)

2.9.11.1 Exporting Audit Results
Export audit results to an XML or HTML file to share them with team members or review them later.

To save the audit results in a separate file:

1. Select the rows of the table that you want to save. Do not select anything if you want to print the entire list.

2. Click the Save button on the toolbar.

3. In the Save Audit Results dialog box that opens, choose the scope of the results to export using the Select View list box:

2.9 Together Procedures RAD Studio (Common) Together Quality Assurance Procedures

271

2

• All Results: If the results are grouped, choosing All Results prints a report for all groups in the current tabbed page. If the
results are not grouped, then all results export for the current tabbed page.

• Active Group:If the results are grouped, you can select a group in the current tabbed page, and the generated report
contains the results from the selected group.

• Selected Rows: You can select single or multiple rows in the audit results report view. Choosing Selected Rows generates a
report for such selections.

4. Each tabbed page can contain a list of audits (when the audits are ungrouped) or a group tree with a list of the selected group
(when the audits are grouped).

Note: Unless the results have been grouped using the Group by command, the Active Group option is not enabled in the
dialog box.

Tip: You can use CTRL+CLICK

to select multiple rows.

5. In the Select Format list box, select the format for the exported file:

• XML: Generates an XML-based report.

• HTML: Generates an HTML-based report. Selecting HTML format activates the following check boxes:

• Add Description: This saves the audit descriptions in a separate folder with hyperlinks to the descriptions from the results
file.

• Launch Browser: This option opens the generated HTML file in the default viewer.

6. Click Save to save the results in the specified location.

See Also

Quality Assurance facilities overview (see page 98)

Viewing audit results (see page 274)

2.9.11.2 Printing Audit Results
You can print the entire table of audit violations, or select specific rows and columns.

Warning: This feature is available for implementation projects only.

To print the list of audit violations:

1. Select the rows of the table that you want to print. Do not select anything if you want to print the entire list.

Tip: You can select multiple rows using CTRL+CLICK

.

2. Click the Print button on the Toolbar. The Print Audit dialog box opens.

3. Choose the scope of the results to print using the Select View list box:

• All Results: If the results are grouped, choosing All Results prints a report for all groups in the current tabbed page. If the
results are not grouped, then all results print for the current tabbed page.

• Active Group: If the results are grouped, you can select a group in the current tabbed page, and the printed report contains
the results from the selected group.

• Selected Rows: You can select single or multiple rows in the audit results report view. Choosing Selected Rows prints a
report for such selections.

4. Each tabbed page can contain a list of audits (when the audits are ungrouped) or a group tree with a list of the selected group
(when the audits are grouped).

Note: Unless the results have been grouped using the Group by command, the Active Group option is not enabled in the

Together Quality Assurance Procedures RAD Studio (Common) 2.9 Together Procedures

272

2

dialog window.

5. If desired, specify the print zoom factor in the Print zoom field, or check Fit to page if you want to print the results on a single
page. If Fit to page is checked, the Print zoom field is disabled.

6. If necessary, adjust the page and printer settings:

• Click the Print list box, and choose the Print dialog box command to select the target printer.

• Choose Tools Options and open Together (level) Diagram Print options to set up the paper size, orientation, and
margins.

Tip: Click the drop-down arrow to the right of the Preview option to open the preview pane. Use the Preview zoom (auto)
slider, or Auto preview zoom check box as required. Click the upward arrow to the right of the Preview option to close the
preview pane.

7. Click Print to open the system print dialog box, and send the file to the printer.

See Also

Quality Assurance overview (see page 98)

Viewing audit result (see page 274)

Print Audit dialog box (see page 970)

2.9.11.3 Running Audits
Audits automatically check for conformance to standard or user-defined style, maintenance, and robustness guidelines. Before
running audits, make sure that the code being audited is compilable. If your source code contains errors, or some libraries and
paths are not included, audits might produce inaccurate results.

Warning: This feature is available for implementation projects only.

To run audits:

1. Open an implementation project.

2. Open the Model View.

3. Right-click the project root node. QA Audits on the context menu. The Audits dialog window opens.

4. In this dialog window:

• In the Scope list box, choose the code to run the set of audits on.

• Model processes the entire project.

• Selection processes only the specific classes, namespaces, or diagrams currently selected in the Diagram or Model View.

Tip: If you have not selected any items in the Diagram or Model View, the Scope option defaults to the entire project.

5. If you want to run audits on specific classes, namespaces, or diagrams, make sure you correctly select them before you open
the Audits dialog window.

6. Choose the audits to run. As you click an audit, the description for each audit is shown in the lower pane of the dialog box.

7. For each audit, the severity level and other audit-specific options are displayed in the right-hand panel of the Audits dialog
box. Change the settings if necessary.

8. When you have selected your set of audits, click Start. The Operation in progress dialog box opens displaying a status bar
that indicates the progress completed. The status bar will display until the process finishes.

2.9 Together Procedures RAD Studio (Common) Together Quality Assurance Procedures

273

2

9. If necessary, click Cancel to abort the process.

Note: Audits run in the command thread, so you cannot edit the project while they are being processed.

The Audits Results Pane opens automatically, displaying the results. In the results table, right-click any line to open the context
menu and use its commands to perform operations with the report.

See Also

Quality Assurance facilities overview (see page 98)

Viewing the audit results (see page 274)

2.9.11.4 Viewing Audit Results
When viewing audit results, you can compare and organize items in the results report.

The results report is tightly connected with the diagram elements and the source code. Using the report, you can navigate to the
specific location of the violation.

Warning: This feature is available for implementation projects only.

Use the following techniques when viewing audit results:

1. Sort all the items according to the values for a specific column

2. Group items according to the current column

3. Navigate to the specific location of the violation

To sort all the items according to the values for a specific column:

1. Switch to the audit results table.

2. Click the column heading. The arrow in the heading displays whether sorting is ascending or descending.

To group items according to the current column:

1. Right-click the Audit results table and choose Group By. This enables you to organize the results by changing the relationship
of rows and columns.

2. To ungroup the results, right-click the table, and choose Ungroup.

To navigate to the specific location of the violation:

1. Select any element in the results report.

2. Choose Open on the context menu (or just double click the row) to navigate directly to the source code.

See Also

Quality Assurance Facilities Overview (see page 98)

Running Audits (see page 273)

2.9.11.5 Working with a Set of Audits
To create a set of audits:

1. On the main menu choose Tools Together QA Audits. The dialog window QA Audits opens.

2. Toolbar buttons in the dialog window provide commands for working with the sets of audits.

Together Quality Assurance Procedures RAD Studio (Common) 2.9 Together Procedures

274

2

3. If you want to base your new saved set on the default set, click the Set default audit set button.

4. If you want to base it on a previously created custom set, click the Load set button, then choose the desired saved .adt file.

5. Go through the individual audits and check those you want to include in the set, or clear those you do not want to include.

6. Select all the items in a group by checking the group name.

7. When you complete your selection, click the Save set button, and specify the location and filename for new set file.

To use a saved set of audits:

1. On the main menu choose Tools Together QA Audits. The dialog window QA Audits opens.

2. Click the Load Set button and choose the .adt file you want to use.

3. Click Start.

Tip: You might want to include the .adt files in your backup routine.

See Also

Quality Assurance facilities overview (see page 98)

Viewing the audit results (see page 274)

2.9.11.6 Creating a Metrics Chart
You can create a chart in the Metric Results Pane.

Metrics charts are created in temporary files which are deleted when the charts are closed. However, you can save graphical
information in text files, export it to the desired graphical format, and include graphics in project.

To create a bar chart:

1. Select a column that contains the result for the desired metric.

2. Right-click and choose Bar Chart.

To create a Kiviat chart:

1. Select the row that contains the results for the desired element.

2. Right-click and choose Kiviat Chart.

To save a chart:

1. Right-click the chart tab and choose Save.

2. In the Save graph dialog box, navigate to the target location and click Save.

To export a chart to image:

1. Select the desired chart.

2. On the main menu, choose File | Export diagram to image.

3. In the Export diagram to image dialog, specify the zoom factor and image dimensions.

4. Click Save.

To add a chart to project:

1. Select the desired chart.

2. On the main menu, choose File | Move [chart name] to Project.

3. On the submenu, select a project within the current project group.

2.9 Together Procedures RAD Studio (Common) Together Quality Assurance Procedures

275

2

See Also

Quality Assurance facilities overview (see page 98)

Viewing the metric results (see page 276)

2.9.11.7 Running Metrics
Before running metrics, make sure that the code being analyzed can be compiled. If your source code contains errors or some
libraries and paths are not included, metrics might produce inaccurate results.

Warning: This feature is available for implementation projects only.

To run metrics:

1. Open an implementation project.

2. Open the Model View.

3. Right-click the project root node. QA Metrics on the context menu. The Metrics dialog window opens.

4. In this dialog window:

• In Scope, choose what to run metrics on: Model processes the entire project.

• Selection processes only the specific classes, packages, or diagrams currently selected in the diagram or Model View.

5. Choose the metrics you want to analyze. Each metric displays a description in the lower panel of the Metrics dialog box.

Tip: If nothing is currently selected in the diagram or navigator view, the Selection scope is not available. If you want to run
metrics on specific classes, packages, or diagrams, make sure you correctly select them before you open the Metrics dialog
window.

6. For each metric there are settings for options such as limits and granularity in the right-hand panel of the Metrics dialog box.
Change the settings if necessary.

7. When you have selected your set of metrics, click Start.

Note: Metrics run in the command thread, so you cannot edit the project while they are being processed.

Result: The Metrics Results Pane opens automatically displaying the results.

See Also

Quality Assurance facilities overview (see page 98)

Viewing the metric results (see page 276)

2.9.11.8 Viewing Metric Results
Use the following techniques when viewing metric results:

1. Sort results by column

2. Filter results

3. Update results

4. Navigate to the source code

5. View the metric description

Together Quality Assurance Procedures RAD Studio (Common) 2.9 Together Procedures

276

2

To sort results by column:

1. Select the desired column in the metrics result table.

2. Click the column header to change the sorting order.

To filter results:

1. You can filter the displayed results to improve the meaningfulness of the results report.

2. Use the following toolbar buttons to show and hide elements:

Button

Namespaces

Classes

Methods

Child elements

To update results:

1. You can update or refresh the results table.

2. Use the following Tool Palette buttons:

Button Description

Refresh Recalculate the results that are currently displayed

Restart Open the Metrics dialog window, define new settings and start new metrics analysis.

To navigate to the source code:

1. Select the row in the results table that is of interest to you

2. Right-click and choose Open on the context menu to navigate directly to it in the source code.

To view the metric description:

1. Select the column in the results table that corresponds to the metrics of interest to you.

2. Right-click and choose Show description on the context menu.

See Also

Quality Assurance facilities overview (see page 98)

Running metrics (see page 276)

2.9.11.9 Working with a Set of Metrics
To create a set of metrics:

1. On the main menu choose Tools Together QA Metrics. The dialog window QA Metrics opens.

2. Toolbar buttons in the dialog window provide commands for working with the sets of metrics.

3. If you want to base your new saved set on the default set, click the Set default metric set button.

4. If you want to base it on a previously created custom set, click the Load set button, then choose the desired saved .mts file.

5. Go through the individual metrics and check those you want to include in the set, or clear those you do not want to include.

6. Select all the items in a group by checking the group name.

2.9 Together Procedures RAD Studio (Common) Together Quality Assurance Procedures

277

2

7. When you complete your selection, click the Save set button, and specify the location and filename for new set file.

To use a saved set of metrics:

1. On the main menu choose Tools Together QA Metrics. The dialog window QA Metrics opens.

2. Click the Load set button and choose the .mts file you want to use.

3. Click Start.

Tip: You might want to include the .mts files in your backup routine.

See Also

Quality Assurance facilities overview (see page 98)

Running metrics (see page 276)

Together Quality Assurance Procedures RAD Studio (Common) 2.9 Together Procedures

278

2

3 Reference

Topics

Name Description

Delphi Reference (see page 280) This section describes the Delphi language, Delphi compiler directives, and
errors that may arise in Delphi code.

RAD Studio Dialogs and Commands (see page 730) This section contains help for dialogs and menu commands in the RAD Studio
user interface.

Keyboard Mappings (see page 1068) The following topics list the keyboard mappings available in RAD Studio. Use the
Tools Options Editor Options Key Mappings page to change the default
keyboard mapping.

Command Line Switches and File Extensions (see page 1082) The following topic lists the IDE command line switches and options.

Together Reference (see page 1086) This section contains links to the reference material for UML modeling with
Together.

3 RAD Studio (Common)

279

3

3.1 Delphi Reference
This section describes the Delphi language, Delphi compiler directives, and errors that may arise in Delphi code.

Topics

Name Description

Delphi Compiler Directives (List) (see page 280) The following topic lists the RAD Studio compiler directives.

Delphi Compiler Errors (see page 311) The following topics describe the various types of compiler errors and warnings,
along with resolutions to many issues you may face while using this product.

Delphi Language Guide (see page 512) The Delphi Language guide describes the Delphi language as it is used in
CodeGear development tools. This book describes the Delphi language on both
the Win32, and .NET development platforms. Specific differences in the language
between the two platforms are marked as appropriate.

3.1.1 Delphi Compiler Directives (List)

The following topic lists the RAD Studio compiler directives.

Topics

Name Description

Delphi compiler directives (see page 282) Each Delphi compiler directive is classified as either a switch, parameter, or
conditional compilation directive.
A compiler directive is a comment with a special syntax. Compiler directives can
be placed wherever comments are allowed. A compiler directive starts with a $
as the first character after the opening comment delimiter, immediately followed
by a name (one or more letters) that designates the particular directive. You can
include comments after the directive and any necessary parameters.
Three types of directives are described in the following topics:

• Switch directives turn particular compiler features on or
off. For the single-letter versions, you add... more (see
page 282)

Align fields (Delphi) (see page 283)

Application type (Delphi) (see page 283)

Assert directives (Delphi) (see page 284)

Autoboxing (Delphi for .NET) (see page 284)

Boolean short-circuit evaluation (Delphi compiler directive) (see page 285)

Conditional compilation (Delphi) (see page 285) Conditional compilation is based on the existence and evaluation of constants,
the status of compiler switches, and the definition of conditional symbols.
Conditional symbols work like Boolean variables: They are either defined (true) or
undefined (false). Any valid conditional symbol is treated as false until it has been
defined. The $DEFINE directive sets a specified symbol to true, and the $UNDEF
directive sets it to false. You can also define a conditional symbol by using the -D
switch with the command-line compiler or by adding the symbol to the
Conditional Defines box on the Directories/Conditionals page of the
Project|Options dialog.... more (see page 285)

Debug information (Delphi) (see page 287)

DEFINE directive (Delphi) (see page 287)

DENYPACKAGEUNIT directive (Delphi) (see page 287)

Description (Delphi) (see page 288)

DESIGNONLY directive (Delphi) (see page 288)

ELSE (Delphi) (see page 288)

ELSEIF (Delphi) (see page 289)

Delphi Compiler Directives (List) RAD Studio (Common) 3.1 Delphi Reference

280

3

ENDIF directive (see page 289)

Executable extension (Delphi) (see page 289)

Export symbols (Delphi) (see page 290)

Extended syntax (Delphi) (see page 290)

External Symbols (Delphi) (see page 290)

Floating Point Exception Checking (Delphi) (see page 291)

Hints (Delphi) (see page 291)

HPP emit (Delphi) (see page 292)

IFDEF directive (Delphi) (see page 292)

IF directive (Delphi) (see page 292)

IFEND directive (Delphi) (see page 293)

IFNDEF directive (Delphi) (see page 294)

IFOPT directive (Delphi) (see page 294)

Image base address (see page 294)

Implicit Build (Delphi) (see page 295)

Imported data (see page 295)

Include file (Delphi) (see page 295)

Input output checking (Delphi) (see page 296)

Compiler directives for libraries or shared objects (Delphi) (see page 296)

Link object file (Delphi) (see page 297)

Local symbol information (Delphi) (see page 297)

Long strings (Delphi) (see page 298)

Memory allocation sizes (Delphi) (see page 298)

MESSAGE directive (Delphi) (see page 299)

METHODINFO directive (Delphi) (see page 299)

Minimum enumeration size (Delphi) (see page 299)

Open String Parameters (Delphi) (see page 300)

Optimization (Delphi) (see page 300)

Overflow checking (Delphi) (see page 301)

Pentium-safe FDIV operations (Delphi) (see page 301)

NODEFINE (see page 302)

NOINCLUDE (Delphi) (see page 302)

Range checking (see page 302)

Real48 compatibility (Delphi) (see page 302)

Regions (Delphi and C#) (see page 303)

Resource file (Delphi) (see page 303)

RUNONLY directive (Delphi) (see page 304)

Runtime type information (Delphi) (see page 304)

Symbol declaration and cross-reference information (Delphi) (see page 305)

Type-checked pointers (Delphi) (see page 305)

UNDEF directive (Delphi) (see page 306)

Unsafe Code (Delphi for .NET) (see page 306)

Var-string checking (Delphi) (see page 306)

Warning messages (Delphi) (see page 307)

Warnings (Delphi) (see page 308)

Weak packaging (see page 308)

Stack frames (Delphi) (see page 309)

Writeable typed constants (Delphi) (see page 309)

PE (portable executable) header flags (Delphi) (see page 310)

Reserved address space for resources (Delphi) (see page 310)

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Directives (List)

281

3

3.1.1.1 Delphi compiler directives
Each Delphi compiler directive is classified as either a switch, parameter, or conditional compilation directive.

A compiler directive is a comment with a special syntax. Compiler directives can be placed wherever comments are allowed. A
compiler directive starts with a $ as the first character after the opening comment delimiter, immediately followed by a name (one
or more letters) that designates the particular directive. You can include comments after the directive and any necessary
parameters.

Three types of directives are described in the following topics:

• Switch directives turn particular compiler features on or off. For the single-letter versions, you add either + or - immediately
after the directive letter. For the long version, you supply the word "on" or "off."

* Switch directives are either global or local.

• Global directives affect the entire compilation and must appear before the declaration part of the program or the unit being
compiled.

• Local directives affect only the part of the compilation that extends from the directive until the next occurrence of the same
directive. They can appear anywhere.

Switch directives can be grouped in a single compiler directive comment by separating them with commas with no intervening
spaces. For example:

 {$B+,R-,S-}

• Parameter directives. These directives specify parameters that affect the compilation, such as file names and memory sizes.

• Conditional directives. These directives cause sections of code to be compiled or suppressed based on specified
conditions, such as user-defined conditional symbols.

All directives, except switch directives, must have at least one space between the directive name and the parameters. Here are
some examples of compiler directives:

{$B+}
 {$STACKCHECKS ON}
 {$R- Turn off range checking}
 {$I TYPES.INC}
 {$M 32768,4096}
 {$DEFINE Debug}
 {$IFDEF Debug}
 {$ENDIF}

You can insert compiler directives directly into your source code. You can also change the default directives for the
command-line compiler, dccil and the IDE, bds.exe.

The Project|Options dialog box contains many of the compiler directives; any changes you make to the settings there will affect
all units whenever their source code is recompiled in subsequent compilations of that project. If you change a compiler switch
and compile, none of your units will reflect the change; but if you Build All, all units for which you have source code will be
recompiled with the new settings.

When using the command-line compiler, you can specify compiler directives on the command line; for example,

DCCIL -$R+ MYPROG

If you are working in the Code editor and want a quick way to see what compiler directives are in effect, press Ctrl+O O. You will
see the current settings in the edit window at the top of your file.

See Also

List of Compiler Directives (see page 280)

Conditional Compilation

Delphi Compiler Directives (List) RAD Studio (Common) 3.1 Delphi Reference

282

3

3.1.1.2 Align fields (Delphi)

Type Switch

Syntax {$A+}, {$A-}, {$A1}, {$A2}, {$A4}, or {$A8} {$ALIGN ON}, {$ALIGN OFF}, {$ALIGN 1},
{$ALIGN 2}, {$ALIGN 4}, or {$ALIGN 8}

Default {$A8} {$ALIGN 8}

Scope Local

Remarks

The $A directive controls alignment of fields in Delphi record types and class structures.

In the {$A1} or {$A-} state, fields are never aligned. All record and class structures are packed.

In the {$A2} state, fields in record types that are declared without the packed modifier and fields in class structures are aligned
on word boundaries.

In the {$A4} state, fields in record types that are declared without the packed modifier and fields in class structures are aligned
on double-word boundaries.

In the {$A8} or {$A+} state, fields in record types that are declared without the packed modifier and fields in class structures are
aligned on quad word boundaries.

Record type field alignment is described in the Delphi Language Guide.

Regardless of the state of the $A directive, variables and typed constants are always aligned for optimal access. In the {$A8}
state, execution will be faster.

See Also

Record types (see page 566)

3.1.1.3 Application type (Delphi)

Type Parameter

Syntax {$APPTYPE GUI} or {$APPTYPE CONSOLE}

Default {$APPTYPE GUI}

Scope Global

Remarks

This directive is used in Delphi Windows programming only.

The $APPTYPE directive controls whether to generate a Win32 console or graphical user interface application.

In the {$APPTYPE GUI} state, the compiler generates a graphical user interface application. This is the normal state for a Delphi
application.

In the {$APPTYPE CONSOLE} state (equivalent to the /CC command-line option), the compiler generates a console application.
When a console application is started, the Input and Output standard text files are automatically associated with the console
window.

Setting {$APPTYPE CONSOLE} can be convenient for debugging as it allows you to use WriteLn statements in your program

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Directives (List)

283

3

without having to explicitly open an output file.

The IsConsole Boolean variable declared in the System unit can be used to detect whether a program is running as a console or
graphical user interface application.

The $APPTYPE directive is meaningful only in a program. It should not be used in a library, unit, or package.

3.1.1.4 Assert directives (Delphi)

Type Switch

Syntax {$C+} or {$C-} {$ASSERTIONS ON} or {$ASSERTIONS OFF}

Default {$C+} {$ASSERTIONS ON}

Scope Local

Remarks

The $C directive enables or disables the generation of code for assertions in a Delphi source file. {$C+} is the default.

Since assertions are not usually used at runtime in shipping versions of a product, compiler directives that disable the generation
of code for assertions are provided. {$C-} will disable assertions.

3.1.1.5 Autoboxing (Delphi for .NET)

Type Switch

Syntax {$AUTOBOX ON}, {$AUTOBOX OFF}

Default {$AUTOBOX OFF}

Scope Local

Remarks

The $AUTOBOX directive controls whether value types are automatically “boxed” into reference types.

The following code will not compile by default; the compiler halts with a message that I and Obj have incompatible types.

var
 I: Integer;
 Obj: TObject;
begin
 I:=5;
 Obj:=I; // compilation error
end.

Inserting {$AUTOBOX ON} anywhere before the offending line will remove the error, so this code compiles:

var
 I: Integer;
 Obj: TObject;
begin
 I:=5;
 {$AUTOBOX ON}
 Obj:=I; // I is autoboxed into a TObject
end.

Reference types can not be automatically “unboxed” into value types, so a typecast is required to turn the TObject into an
Integer:

Delphi Compiler Directives (List) RAD Studio (Common) 3.1 Delphi Reference

284

3

var
 I: Integer;
 Obj: TObject;
begin
 I:=5;
 {$AUTOBOX ON}
 Obj:=I; // OK
 // I:=Obj; // Can't automatically unbox; compilation error
 I:=Integer(Obj); // this works
end.

Turning on autoboxing can be convenient, but it makes Delphi less type safe, so it can be dangerous. With autoboxing, some
errors that would otherwise be caught during compilation may cause problems at runtime. Boxing values into object references
also consumes additional memory and degrades execution performance. With {$AUTOBOX ON}, you run the risk of not
realizing how much of this data conversion is happening silently in your code. {$AUTOBOX OFF} is recommended for improved
type checking and faster runtime execution.

The $AUTOBOX directive has no effect in Delphi for Win32.

3.1.1.6 Boolean short-circuit evaluation (Delphi compiler directive)

Type Switch

Syntax {$B+} or {$B-} {$BOOLEVAL ON} or {$BOOLEVAL OFF}

Default {$B-} {$BOOLEVAL OFF}

Scope Local

Remarks

The $B directive switches between the two different models of Delphi code generation for the and and or Boolean operators.

In the {$B+} state, the compiler generates code for complete Boolean expression evaluation. This means that every operand of a
Boolean expression built from the and and or operators is guaranteed to be evaluated, even when the result of the entire
expression is already known.

In the {$B-} state, the compiler generates code for short-circuit Boolean expression evaluation, which means that evaluation
stops as soon as the result of the entire expression becomes evident in left to right order of evaluation.

See Also

Boolean operators (see page 720)

3.1.1.7 Conditional compilation (Delphi)
Conditional compilation is based on the existence and evaluation of constants, the status of compiler switches, and the definition
of conditional symbols.

Conditional symbols work like Boolean variables: They are either defined (true) or undefined (false). Any valid conditional symbol
is treated as false until it has been defined. The $DEFINE directive sets a specified symbol to true, and the $UNDEF directive
sets it to false. You can also define a conditional symbol by using the -D switch with the command-line compiler or by adding the
symbol to the Conditional Defines box on the Directories/Conditionals page of the Project|Options dialog.

The conditional directives $IFDEF, $IFNDEF, $IF, $ELSEIF, $ELSE, $ENDIF, and $IFEND allow you to compile or suppress
code based on the status of a conditional symbol. $IF and $ELSEIF allow you to base conditional compilation on declared Delphi
identifiers. $IFOPT compiles or suppresses code depending on whether a specified compiler switch is enabled.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Directives (List)

285

3

For example,

{$DEFINE DEBUG}
 {$IFDEF DEBUG}
 Writeln('Debug is on.'); // this code executes
 {$ELSE}
 Writeln('Debug is off.'); // this code does not execute
 {$ENDIF}
 {$UNDEF DEBUG}
 {$IFNDEF DEBUG}
 Writeln('Debug is off.'); // this code executes
 {$ENDIF}

Conditional-directive constructions can be nested up to 32 levels deep. For every {$IFxxx}, the corresponding {$ENDIF} or
{$IFEND} must be found within the same source file.

Conditional symbols must start with a letter, followed by any combination of letters, digits, and underscores; they can be of any
length, but only the first 255 characters are significant. The following standard conditional symbols are defined:

VER<nnn> Always defined, indicating the version number of the Delphi compiler. (Each compiler version has a corresponding
predefined symbol. For example, compiler version 18.0 has VER180 defined.)

MSWINDOWS Indicates that the operating environment is Windows. Use MSWINDOWS to test for any flavor of the Windows
platform instead of WIN32.

WIN32 Indicates that the operating environment is the Win32 API. Use WIN32 for distinguishing between specific Windows
platforms, such as 32-bit versus 64-bit Windows. In general, don't limit code to WIN32 unless you know for sure that the code will
not work in WIN64. Use MSWINDOWS instead.

CLR Indicates the code will be compiled for the .NET platform.

CPU386 Indicates that the CPU is an Intel 386 or better.

CONSOLE Defined if an application is being compiled as a console application.

CONDITIONALEXPRESSIONS Tests for the use of $IF directives.

For example, to find out the version of the compiler and run-time library that was used to compile your code, you can use $IF
with the CompilerVersion, RTLVersion and other constants:

{$IFDEF CONDITIONALEXPRESSIONS}
 {$IF CompilerVersion >= 17.0}
 {$DEFINE HAS_INLINE}
 {$IFEND}
 {$IF RTLVersion >= 14.0}
 {$DEFINE HAS_ERROUTPUT}
 {$IFEND}
{$ENDIF}

Note: Conditional symbols are not Delphi identifiers and cannot be referenced in actual program code. Similarly, Delphi
identifiers cannot be referenced in any conditional directives other than $IF and $ELSEIF.

Note: Conditional definitions are evaluated only when source code is recompiled. If you change a conditional symbol's status
and then rebuild a project, source code in unchanged units may not be recompiled. Use Project|Build All Projects to ensure
everything in your project reflects the current status of conditional symbols.

See Also

Delphi Compiler Directives (List) (see page 280)

Delphi Compiler Directives (List) RAD Studio (Common) 3.1 Delphi Reference

286

3

3.1.1.8 Debug information (Delphi)

Type Switch

Syntax {$D+} or {$D-} {$DEBUGINFO ON} or {$DEBUGINFO OFF}

Default {$D+} {$DEBUGINFO ON}

Scope Global

Remarks

The $D directive enables or disables the generation of debug information. This information consists of a line-number table for
each procedure, which maps object-code addresses into source text line numbers.

For units, the debug information is recorded in the unit file along with the unit's object code. Debug information increases the size
of unit file and takes up additional memory when compiling programs that use the unit, but it does not affect the size or speed of
the executable program.

When a program or unit is compiled in the {$D+} state, the integrated debugger lets you single-step and set breakpoints in that
module.

The Include debug info (Project|Options|Linker) and Map file (Project|Options|Linker) options produce complete line information
for a given module only if you've compiled that module in the {$D+} state.

The $D switch is usually used in conjunction with the $L switch, which enables and disables the generation of local symbol
information for debugging.

3.1.1.9 DEFINE directive (Delphi)

Type Conditional compilation

Syntax {$DEFINE name}

Remarks

Defines a Delphi conditional symbol with the given name. The symbol is recognized for the remainder of the compilation of the
current module in which the symbol is declared, or until it appears in an {$UNDEF name} directive. The {$DEFINE name}
directive has no effect if name is already defined.

3.1.1.10 DENYPACKAGEUNIT directive (Delphi)

Type Switch

Syntax {$DENYPACKAGEUNIT ON} or {$DENYPACKAGEUNIT OFF}

Default {$DENYPACKAGEUNIT OFF}

Scope Local

Remarks

The {$DENYPACKAGEUNIT ON} directive prevents the Delphi unit in which it appears from being placed in a package.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Directives (List)

287

3

3.1.1.11 Description (Delphi)

Type Parameter

Syntax {$DESCRIPTION 'text'}

Scope Global

Remarks

The $D directive inserts the text you specify into the module description entry in the header of an executable, DLL, or package.
Traditionally the text is a name, version number, and copyright notice, but you may specify any text of your choosing. For
example:

{$D 'My Application version 12.5'}

The string can't be longer than 256 bytes. The description is usually not visible to end users. To mark you executable files with
descriptive text, version and copyright information for the benefit of end users, use version info resources.

Note: The text description must be included in quotes.

3.1.1.12 DESIGNONLY directive (Delphi)

Type Switch

Syntax {$DESIGNONLY ON} or {$DESIGNONLY OFF}

Default {$DESIGNONLY OFF}

Scope Local

Remarks

The {DESIGNONLY ON} directive causes the package where it occurs to be compiled for installation in the IDE.

Place the DESIGNONLY directive only in .dpk files.

See Also

Package-specific compiler directives (see page 640)

3.1.1.13 ELSE (Delphi)

Type Conditional compilation

Syntax {$ELSE}

Remarks

Switches between compiling and ignoring the source code delimited by the previous {$IFxxx} and the next {$ENDIF} or {$IFEND}.

Delphi Compiler Directives (List) RAD Studio (Common) 3.1 Delphi Reference

288

3

3.1.1.14 ELSEIF (Delphi)

Type Conditional compilation

Syntax {$ELSEIF}

Remarks

The $ELSEIF directive allows multi-part conditional blocks where at most one of the conditional blocks will be taken. $ELSEIF is
a combination of a $ELSE and a $IF.

For example:

{$IFDEF foobar}
 do_foobar
 {$ELSEIF RTLVersion >= 14}
 blah
 {$ELSEIF somestring = 'yes'}
 beep
 {$ELSE}
 last chance
 {$IFEND}

Of these four cases, only one will be taken. If none of the first three conditions is true, then the $ELSE clause will be taken.
$ELSEIF must be terminated by $IFEND. $ELSEIF cannot appear after $ELSE. Conditions are evaluated top to bottom like a
normal "if ... else if ... else " sequence. In the example above, if foobar is not defined, RTLVersion is 15, and somestring = 'yes',
only the "blah" block will be taken not the "beep" block, even though the conditions for both are true.

3.1.1.15 ENDIF directive

Type Conditional compilation

Syntax {$ENDIF}

Remarks

Ends the conditional compilation initiated by the last {$IFxxx} directive.

Note: $IF and $ELSEIF directives terminate with $IFEND rather than $ENDIF.

3.1.1.16 Executable extension (Delphi)

Type Parameter

Syntax {$E extension} {$EXTENSION extension}

The $E directive sets the extension of the executable file generated by the compiler. It is often used with the resource-only DLL
mechanism.

For example, placing {$E deu} in a library module produces a DLL with a .deu extension: filename.deu. If you create a library
module that simply references German forms and strings, you could use this directive to produce a DLL with the .deu extension.
The startup code in the runtime library looks for a DLL whose extension matches the locale of the system—for German settings,
it looks for .deu—and loads resources from that DLL.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Directives (List)

289

3

3.1.1.17 Export symbols (Delphi)

Type Switch

Syntax {$ObjExportAll On} or {$ObjExportAll Off}

Default {$ObjExportAll Off}

Scope Global

The {$ObjExportAll On} directive exports all symbols in the unit file in which it occurs. This allows the C++ compiler to create
packages containing Delphi-generated object files.

3.1.1.18 Extended syntax (Delphi)

Type Switch

Syntax {$X+} or {$X-} {$EXTENDEDSYNTAX ON} or {$EXTENDEDSYNTAX OFF}

Default {$X+} {$EXTENDEDSYNTAX ON}

Scope Global

Remarks

Note: Note: The $X directive is provided for backward compatibility. You should not use the {$X-} mode when writing Delphi
applications.

The $X directive enables or disables Delphi's extended syntax:

• Function statements. In the {$X+} mode, function calls can be used as procedure calls; that is, the result of a function call can
be discarded, rather than passed to another function or used in an operation or assignment. Generally, the computations
performed by a function are represented through its result, so discarding the result makes little sense. Sometimes, however, a
function is called because it performs a task such as setting the value of a global variable, without producing a useful result.

• The Result variable. In the {$X+} mode, the predefined variable Result can be used within a function body to hold the
function's return value.

• Null-terminated strings. In the {$X+} mode, Delphi strings can be assigned to zero-based character arrays (array[0..X] of
Char), which are compatible with PChar types.

See Also

Function declarations (see page 662)

Working with null-terminated strings (see page 561)

3.1.1.19 External Symbols (Delphi)

Type Parameter

Syntax {$EXTERNALSYM identifier}

The EXTERNALSYM directive prevents the specified Delphi symbol from appearing in header files generated for C++. If an
overloaded routine is specified, all versions of the routine are excluded from the header file.

Delphi Compiler Directives (List) RAD Studio (Common) 3.1 Delphi Reference

290

3

3.1.1.20 Floating Point Exception Checking (Delphi)

Type Switch

Syntax {$FINITEFLOAT ON}, {$FINITEFLOAT OFF}

Default {$FINITEFLOAT ON}

Scope Global

Remarks

The $FINITEFLOAT directive controls the handling of floating point overflow and underflow, and invalid floating point operations
such as division by zero.

In the {$FINITEFLOAT ON} state, which is the default, the results of floating point calculations are checked, and an exception is
raised when there is an overflow, underflow, or invalid operation. In the {$FINITEFLOAT OFF} state, such floating point
calculations will return NAN, -INF, or +INF.

Extra runtime processing is required to check the results of floating point calculations and raise exceptions. If your Delphi code
uses floating point operations but does not require strict enforcement of overflow/underflow exceptions, you can turn
{$FINITEFLOAT OFF} to get slightly faster runtime execution.

Note: Most code in .NET runs without floating point checks. However, Delphi has traditionally provided strict floating point
semantics. If you have Delphi code that relies on exceptions to be raised in overflow and underflow conditions, you should retain
the default setting ({$FINITEFLOAT ON}).

See Also

Internal Data Formats (see page 645)

3.1.1.21 Hints (Delphi)

Type Switch

Syntax {$HINTS ON} or {$HINTS OFF}

Default {$HINTS ON}

Scope Local

Remarks

The $HINTS directive controls the generation of hint messages by the Delphi compiler.

In the {$HINTS ON} state, the compiler issues hint messages when detecting unused variables, unused assignments, for or
while loops that never execute, and so on. In the {$HINTS OFF} state, the compiler generates no hint messages.

By placing code between {$HINTS OFF} and {$HINTS ON} directives, you can selectively turn off hints that you don't care about.
For example,

{$HINTS OFF}
 procedure Test;
 var
 I: Integer;
 begin
 end;
 {$HINTS ON}

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Directives (List)

291

3

Because of the $HINTS directives the compiler will not generate an unused variable hint when compiling the procedure above.

3.1.1.22 HPP emit (Delphi)

Type Parameter

Syntax {$HPPEMIT 'string'}

The HPPEMIT directive adds a specified symbol to the header file generated for C++. Example: {$HPPEMIT 'typedef double
Weight' }.

HPPEMIT directives are output into the "user supplied" section at the top of the header file in the order in which they appear in
the Delphi file.

3.1.1.23 IFDEF directive (Delphi)

Type Conditional compilation

Syntax {$IFDEF name}

Remarks

Compiles the Delphi source code that follows it if name is defined.

3.1.1.24 IF directive (Delphi)

Type Conditional compilation

Syntax {$IF expression}

Remarks

Compiles the Delphi source code that follows it if expression is true. expression must conform to Delphi syntax and return a
Boolean value; it may contain declared constants, constant expressions, and the functions Defined and Declared.

For example,

{$DEFINE CLX}
 const LibVersion = 2.1;
 {$IF Defined(CLX) and (LibVersion > 2.0) }
 ... // this code executes
 {$ELSE}
 ... // this code doesn't execute
 {$IFEND}
 {$IF Defined(CLX) }
 ... // this code executes
 {$ELSEIF LibVersion > 2.0}
 ... // this code doesn't execute
 {$ELSEIF LibVersion = 2.0}
 ... // this code doesn't execute
 {$ELSE}
 ... // this code doesn't execute
 {$IFEND}
 {$IF Declared(Test)}
 ... // successful
 {$IFEND}

Delphi Compiler Directives (List) RAD Studio (Common) 3.1 Delphi Reference

292

3

The special functions Defined and Declared are available only within $IF and $ELSEIF blocks. Defined returns true if the
argument passed to it is a defined conditional symbol. Declared returns true if the argument passed to it is a valid declared
Delphi identifier visible within the current scope.

If the identifiers referenced in the conditional expression do not exist, the conditional expression will be evaluated as false:

{$IF NoSuchVariable > 5}
 WriteLn('This line doesn''t compile');
 {$IFEND}

The $IF and $ELSEIF directives are terminated with $IFEND, unlike other conditional directives that use the $ENDIF terminator.
This allows you to hide $IF blocks from earlier versions of the compiler (which do not support $IF or $ELSEIF) by nesting them
within old-style $IFDEF blocks. For example, the following construction would not cause a compilation error:

 {$UNDEF NewEdition}
 {$IFDEF NewEdition}
 {$IF LibVersion > 2.0}
 ...
 {$IFEND}
 {$ENDIF}

$IF supports evaluation of typed constants, but the compiler doesn't allow typed constants within constant expressions. As a
result,

const Test: Integer = 5;
 {$IF SizeOf(Test) > 2}
 ...

is valid, while

const Test: Integer = 5;
 {$IF Test > 2 } // error
 ...

generates a compilation error.

If your code needs to be portable between various versions of Delphi, or platforms (such as .NET), you will need to test whether
or not this directive is supported by the compiler. You can surround your code with the following directives:

$IFDEF conditionalexpressions
 . // code including IF directive
 . // only executes if supported
 $ENDIF

Note: To test if code is being compiled on the .NET platform, use the identifier CLR, for example, {$IF NOT DEFINED(CLR)}.

3.1.1.25 IFEND directive (Delphi)

Type Conditional compilation

Syntax {$IFEND}

Remarks

The $IFEND directive terminates $IF and $ELSEIF. This allows $IF/$IFEND blocks to be hidden from older compilers inside of
$IFDEF/$ENDIF, since the older compilers won't recognize $IFEND as a directive. $IF can only be terminated with $IFEND. The
$IFDEF, $IFNDEF, $IFOPT directives can only be terminated with $ENDIF.

Note: Note: When hiding $IF inside $IFDEF/$ENDIF, do not use $ELSE with the $IF. Previous version compilers will interpret
the $ELSE as part of the $IFDEF, producing a compiler error. You can use an {$ELSEIF True} as a substitute for {$ELSE} in this
situation, since the $ELSEIF won't be taken if the $IF is taken first, and the older compilers will not interpret the $ELSEIF. Hiding
$IF for backwards compatibility is primarily an issue for third party vendors and application developers who need their code to

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Directives (List)

293

3

work on a variety of Delphi versions and platforms.

3.1.1.26 IFNDEF directive (Delphi)

Type Conditional compilation

Syntax {$IFNDEF name}

Remarks

Compiles the Delphi source code that follows it if name is not defined.

3.1.1.27 IFOPT directive (Delphi)

Type Conditional compilation

Syntax {$IFOPT switch}

Remarks

Compiles the Delphi source code that follows it if switch is currently in the specified state. switch consists of the name of a switch
option, followed by a + or a - symbol. For example,

{$IFOPT R+}
 Writeln('Compiled with range-checking');
 {$ENDIF}

compiles the Writeln statement if the $R option is currently active.

3.1.1.28 Image base address

Type Parameter

Syntax {$IMAGEBASE number}

Default {$IMAGEBASE $00400000}

Scope Global

The $IMAGEBASE directive controls the default load address for an application, DLL, or package. The number argument must
be a 32-bit integer value that specifies image base address. The number argument must be greater than or equal to $00010000,
and the lower 16 bits of the argument are ignored and should be zero. The number must be a multiple of 64K (that is, a hex
number must have zeros as the last 4 digits) otherwise it will be rounded down to the nearest multiple, and you will receive a
compiler message.

When a module (application or library) is loaded into the address space of a process, Windows will attempt to place the module
at its default image base address. If that does not succeed, that is if the given address range is already reserved by another
module, the module is relocated to an address determined at runtime by Windows.

There is seldom, if ever, any reason to change the image base address of an application. For a library, however, it is
recommended that you use the $IMAGEBASE directive to specify a non-default image base address, since the default image
base address of $00400000 will almost certainly never be available. The recommended address range of DLL images is
$40000000 to $7FFFFFFF. Addresses in this range are always available to a process in both Windows NT/2000 and Windows
95/98.

Delphi Compiler Directives (List) RAD Studio (Common) 3.1 Delphi Reference

294

3

When Windows succeeds in loading a DLL (or package) at its image base address, the load time is decreased because
relocation fix-ups do not have to be applied. Furthermore, when the given address range is available in multiple processes that
use the library, code portions of the DLL's image can be shared among the processes, thus reducing load time and memory
consumption.

Note: Note: The $IMAGEBASE directive overrides any value supplied with the -K command line compiler directive option.

3.1.1.29 Implicit Build (Delphi)

Type Switch

Syntax {$IMPLICITBUILD ON} or {$IMPLICITBUILD OFF}

Default {$IMPLICITBUILD ON}

Scope Global

Remarks

The {$IMPLICITBUILD OFF} directive, intended only for packages, prevents the source file in which it occurs from being
implicitly recompiled later. Use {$IMPLICITBUILD OFF} in .dpk files when compiling packages that provide low-level
functionality, that change infrequently between builds, or whose source code will not be distributed. Use of {$IMPLICITBUILD
OFF} in unit source files is not recommended.

3.1.1.30 Imported data

Type Switch

Syntax {$G+} or {$G-} {$IMPORTEDDATA ON} or {$IMPORTEDDATA OFF}

Default {$G+} {$IMPORTEDDATA ON}

Scope Local

Remarks

The {$G-} directive disables creation of imported data references. Using {$G-} increases memory-access efficiency, but prevents
a packaged unit where it occurs from referencing variables in other packages.

3.1.1.31 Include file (Delphi)

Type Parameter

Syntax {$I filename} {$INCLUDE filename}

Scope Local

Remarks

The $I parameter directive instructs the compiler to include the named file in the compilation. In effect, the file is inserted in the
compiled text right after the {$I filename} directive. The default extension for filename is .pas. If filename does not specify a
directory path, then, in addition to searching for the file in the same directory as the current module, Delphi searches in the
directories specified in the Search path input box on the Directories/Conditionals page of the Project|Options dialog box (or in the
directories specified in a -I option on the dccil command line).

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Directives (List)

295

3

To specify a filename that includes a space, surround the file name with single quotation marks: {$I 'My file'}.

There is one restriction to the use of include files: An include file can't be specified in the middle of a statement part. In fact, all
statements between the begin and end of a statement part must exist in the same source file.

3.1.1.32 Input output checking (Delphi)

Type Switch

Syntax {$I+} or {$I-} {$IOCHECKS ON} or {$IOCHECKS OFF}

Default {$I+} {$IOCHECKS ON}

Scope Local

Remarks

The $I switch directive enables or disables the automatic code generation that checks the result of a call to an I/O procedure. I/O
procedures are described in the Delphi Language Guide. If an I/O procedure returns a nonzero I/O result when this switch is on,
an EInOutError exception is raised (or the program is terminated if exception handling is not enabled). When this switch is off,
you must check for I/O errors by calling IOResult.

See Also

Standard routines and I/O (see page 692)

3.1.1.33 Compiler directives for libraries or shared objects (Delphi)

Type Parameter

Syntax $LIBPREFIX 'string'

$LIBSUFFIX 'string'

$LIBVERSION 'string'

Defaults $LIBPREFIX 'lib' or $SOPREFIX 'bpl'

$LIBSUFFIX ' '

$LIBVERSION ' '

Scope Global

Remarks

$LIBPREFIX overrides the default 'lib' or 'bpl' prefix in the output file name. For example, you could specify

{$LIBPREFIX 'dcl'}

for a design-time package, or use the following directive to eliminate the prefix entirely:

{$LIBPREFIX ' '}

$LIBSUFFIX adds a specified suffix to the output file name before the extension.

For example, use

{$LIBSUFFIX '-2.1.3'}

Delphi Compiler Directives (List) RAD Studio (Common) 3.1 Delphi Reference

296

3

in something.pas to generate

something-2.1.3.dll

$LIBVERSION adds a second extension to the output file name after the extension. For example, use

{$LIBVERSION '-2.1.3'}

in something.pas to generate

libsomething.dll.2.1.3

3.1.1.34 Link object file (Delphi)

Type Parameter

Syntax {$L filename} {$LINK filename}

Scope Local

Remarks

The $L parameter instructs the compiler to link the named file with the program or unit being compiled. The $L directive is used
to link with code written in other languages for procedures and functions declared to be external. The named file must be an Intel
relocatable object file (.OBJ file). The default extension for filename is .OBJ. If filename does not specify a directory path, then, in
addition to searching for the file in the same directory as the current module, Delphi searches in the directories specified in the
Search path input box on the Directories/Conditionals page of the Project|Options dialog box (or in the directories specified in the
-O option on the dccil command line).

To specify a file name that includes a space, surround the file name with single quotation marks: {$L 'My file'}.

For further details about linking with assembly language, see online Help.

3.1.1.35 Local symbol information (Delphi)

Type Switch

Syntax {$L+} or {$L-} {$LOCALSYMBOLS ON} or {$LOCALSYMBOLS OFF}

Default {$L+} {$LOCALSYMBOLS ON}

Scope Global

Remarks

The $L switch directive enables or disables the generation of local symbol information. Local symbol information consists of the
names and types of all local variables and constants in a module, that is, the symbols in the module's implementation part and
the symbols within the module's procedures and functions.

For units, the local symbol information is recorded in the unit file along with the unit's object code. Local symbol information
increases the size of unit files and takes up additional memory when compiling programs that use the unit, but it does not affect
the size or speed of the executable program.

When a program or unit is compiled in the {$L+} state, the integrated debugger lets you examine and modify the module's local
variables. Furthermore, calls to the module's procedures and functions can be examined via the View|Call Stack.

The $L switch is usually used in conjunction with the $D switch, which enables and disables the generation of line-number tables
for debugging. The $L directive is ignored if the compiler is in the {$D-} state.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Directives (List)

297

3

3.1.1.36 Long strings (Delphi)

Type Switch

Syntax {$H+} or {$H-} {$LONGSTRINGS ON} or {$LONGSTRINGS OFF}

Default {$H+} {$LONGSTRINGS ON}

Scope Local

Remarks

The $H directive controls the meaning of the reserved word string when used alone in a type declaration. The generic type
string can represent either a long, dynamically-allocated string (the fundamental type AnsiString) or a short, statically allocated
string (the fundamental type ShortString).

By default {$H+}, Delphi defines the generic string type to be the long AnsiString. All components in the component libraries are
compiled in this state. If you write components, they should also use long strings, as should any code that receives data from
component library string-type properties.

The {$H-} state is mostly useful for using code from versions of Delphi that used short strings by default. You can locally override
the meaning of string-type definitions to ensure generation of short strings. You can also change declarations of short string
types to string[255] or ShortString, which are unambiguous and independent of the $H setting.

3.1.1.37 Memory allocation sizes (Delphi)

Type Parameter

Syntax {$M minstacksize,maxstacksize} {$MINSTACKSIZE number} {$MAXSTACKSIZE
number}

Default {$M 16384,1048576}

Scope Global

Remarks

The $MINSTACKSIZE and $MAXSTACKSIZE directives are used in Win32 programming only.

The $M directive specifies an application's stack allocation parameters. minstacksize must be an integer number between 1024
and 2147483647 that specifies the minimum size of an application's stack, and maxstacksize must be an integer number
between minstacksize and 2147483647 that specifies the maximum size of an application's stack.

If there is not enough memory available to satisfy an application's minimum stack requirement, Windows will report an error upon
attempting to start the application.

An application's stack is never allowed to grow larger than the maximum stack size. Any attempt to grow the stack beyond the
maximum stack size causes an EStackOverflow exception to be raised.

The $MINSTACKSIZE and $MAXSTACKSIZE directives allow the minimum and maximum stack sizes to be specified
separately.

The memory allocation directives are meaningful only in a program. They should not be used in a library or a unit.

For portability considerations between Windows and Linux, you should use the long forms of these directives instead of $M.

Delphi Compiler Directives (List) RAD Studio (Common) 3.1 Delphi Reference

298

3

3.1.1.38 MESSAGE directive (Delphi)

Syntax {$MESSAGE HINT|WARN|ERROR|FATAL 'text string' }

Remarks

The Delphi message directive allows source code to emit hints, warnings, and errors just as the compiler does. This is similar to
#emit or pragma warn in C and C++.

The message type (HINT, WARN, ERROR, or FATAL) is optional. If no message type is indicated, the default is HINT. The text
string is required and must be enclosed in single quotes.

Examples:

{$MESSAGE 'Boo!'} emits a hint
 {$Message Hint 'Feed the cats'} emits a hint
 {$messaGe Warn 'Looks like rain.'} emits a warning
 {$Message Error 'Not implemented'} emits an error, continues compiling
 {$Message Fatal 'Bang. Yer dead.'} emits an error, terminates compiler

3.1.1.39 METHODINFO directive (Delphi)

Type Switch

Syntax {$METHODINFO ON} or {$METHODINFO OFF}

Default {$METHODINFO OFF}

Scope Local

The $METHODINFO switch directive is only effective when runtime type information (RTTI) has been turned on with the
{$TYPEINFO ON} switch. In the {$TYPEINFO ON} state, the $METHODINFO directive controls the generation of more detailed
method descriptors in the RTTI for methods in an interface. Though {$TYPEINFO ON} will cause some RTTI to be generated
for published methods, the level of information is limited. The $METHODINFO directive generates much more detailed (and much
larger) RTTI for methods, which describes how the parameters of the method should be passed on the stack and/or in registers.

There is seldom, if ever, any need for an application to directly use the $METHODINFO compiler switch. The method information
adds considerable size to the executable file, and is not recommended for general use.

Note: The Delphi compiler's Win32 web service support code uses method information descriptors in order to pass parameters
received in a network packet to the target method. {$METHODINFO ON} is used only for web service interface types.

See Also

Runtime type information ($TYPEINFO directive) (see page 304)

Understanding Invokable Interfaces

3.1.1.40 Minimum enumeration size (Delphi)

Type Parameter

Syntax {$Z1} or {$Z2} or {$Z4} {$MINENUMSIZE 1} or {$MINENUMSIZE 2} or
{$MINENUMSIZE 4}

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Directives (List)

299

3

Default {$Z1} {$MINENUMSIZE 1}

Scope Local

The $Z directive controls the minimum storage size of Delphi enumerated types.

An enumerated type is stored as an unsigned byte if the enumeration has no more than 256 values, and if the type was declared
in the {$Z1} state (the default). If an enumerated type has more than 256 values, or if the type was declared in the {$Z2} state, it
is stored as an unsigned word. Finally, if an enumerated type is declared in the {$Z4} state, it is stored as an unsigned double
word.

The {$Z2} and {$Z4} states are useful for interfacing with C and C++ libraries, which usually represent enumerated types as
words or double words.

Note: Note: For backwards compatibility with early versions of Delphi and CodeGear Pascal, the directives {$Z-} and {$Z+} are
also supported. They correspond to {$Z1} and {$Z4}, respectively.

3.1.1.41 Open String Parameters (Delphi)

Type Switch

Syntax {$P+} or {$P-} {$OPENSTRINGS ON} or {$OPENSTRINGS OFF}

Default {$P+} {$OPENSTRINGS ON}

Scope Local

Remarks

The $P directive is meaningful only for code compiled in the {$H-} state, and is provided for backwards compatibility with early
versions of Delphi and CodeGear Pascal. $P controls the meaning of variable parameters declared using the string keyword in
the {$H-} state. In the {$P-} state, variable parameters declared using the string keyword are normal variable parameters, but in
the {$P+} state, they are open string parameters. Regardless of the setting of the $P directive, the openstring identifier can
always be used to declare open string parameters.

3.1.1.42 Optimization (Delphi)

Type Switch

Syntax {$O+} or {$O-} {$OPTIMIZATION ON} or {$OPTIMIZATION OFF}

Default {$O+} {$OPTIMIZATION ON}

Scope Local

The $O directive controls code optimization. In the {$O+} state, the compiler performs a number of code optimizations, such as
placing variables in CPU registers, eliminating common subexpressions, and generating induction variables. In the {$O-} state,
all such optimizations are disabled.

Other than for certain debugging situations, you should never have a need to turn optimizations off. All optimizations performed
by the Delphi compiler are guaranteed not to alter the meaning of a program. In other words, the compiler performs no "unsafe"
optimizations that require special awareness by the programmer.

Note: Note: The $O directive can only turn optimization on or off for an entire procedure or function. You can't turn optimization
on or off for a single line or group of lines within a routine.

Delphi Compiler Directives (List) RAD Studio (Common) 3.1 Delphi Reference

300

3

3.1.1.43 Overflow checking (Delphi)

Type Switch

Syntax {$Q+} or {$Q-} {$OVERFLOWCHECKS ON} or {$OVERFLOWCHECKS OFF}

Default {$Q-} {$OVERFLOWCHECKS OFF}

Scope Local

Remarks

The $Q directive controls the generation of overflow checking code. In the {$Q+} state, certain integer arithmetic operations (+, -,
*, Abs, Sqr, Succ, Pred, Inc, and Dec) are checked for overflow. The code for each of these integer arithmetic operations is
followed by additional code that verifies that the result is within the supported range. If an overflow check fails, an EIntOverflow
exception is raised (or the program is terminated if exception handling is not enabled).

The $Q switch is usually used in conjunction with the $R switch, which enables and disables the generation of range-checking
code. Enabling overflow checking slows down your program and makes it somewhat larger, so use {$Q+} only for debugging.

3.1.1.44 Pentium-safe FDIV operations (Delphi)

Type Switch

Syntax {$U+} or {$U-} {$SAFEDIVIDE ON} or {$SAFEDIVIDE OFF}

Default {$U-}

Scope Local

The $U directive controls generation of floating-point code that guards against the flawed FDIV instruction exhibited by certain
early Pentium processors. Windows 95, Windows NT 3.51, and later contain code which corrects the Pentium FDIV bug
system-wide.

In the {$U+} state, all floating-point divisions are performed using a runtime library routine. The first time the floating-point
division routine is invoked, it checks whether the processor's FDIV instruction works correctly, and updates the TestFDIV
variable (declared in the System unit) accordingly. For subsequent floating-point divide operations, the value stored in TestFDIV
is used to determine what action to take.

Value Meaning

-1 FDIV instruction has been tested and found to be flawed.

0 FDIV instruction has not yet been tested.

1 FDIV instruction has been tested and found to be correct.

For processors that do not exhibit the FDIV flaw, {$U+} results in only a slight performance degradation. For a flawed Pentium
processor, floating-point divide operations may take up to three times longer in the {$U+} state, but they will always produce
correct results.

In the {$U-} state, floating-point divide operations are performed using in-line FDIV instructions. This results in optimum speed
and code size, but may produce incorrect results on flawed Pentium processors. You should use the {$U-} state only in cases
where you are certain that the code is not running on a flawed Pentium processor.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Directives (List)

301

3

3.1.1.45 NODEFINE

Type Parameter

Syntax {$NODEFINE identifier}

The NODEFINE directive prevents the specified symbol from being included in the header file generated for C++, while allowing
some information to be output to the OBJ file. When you use NODEFINE, it is your responsibility to define any necessary types
with HPPEMIT. For example:

type
 Temperature = type double;
 {$NODEFINE Temperature}
 {$HPPEMIT 'typedef double Temperature'}

3.1.1.46 NOINCLUDE (Delphi)

Type Parameter

Syntax {$NOINCLUDE filename}

The NOINCLUDE directive prevents the specified file from being included in header files generated for C++. For example,
{$NOINCLUDE Unit1} removes #include Unit1.

3.1.1.47 Range checking

Type Switch

Syntax {$R+} or {$R-} {$RANGECHECKS ON} or {$RANGECHECKS OFF}

Default {$R-} {$RANGECHECKS OFF}

Scope Local

Remarks

The $R directive enables or disables the generation of range-checking code. In the {$R+} state, all array and string-indexing
expressions are verified as being within the defined bounds, and all assignments to scalar and subrange variables are checked
to be within range. If a range check fails, an ERangeError exception is raised (or the program is terminated if exception handling
is not enabled).

Enabling range checking slows down your program and makes it somewhat larger.

3.1.1.48 Real48 compatibility (Delphi)

Type Switch

Syntax {$REALCOMPATIBILITY ON} or {$REALCOMPATIBILITY OFF}

Default {$REALCOMPATIBILITY OFF}

Scope Local

Delphi Compiler Directives (List) RAD Studio (Common) 3.1 Delphi Reference

302

3

Remarks

In the default {$REALCOMPATIBILITY OFF} state, the generic Real type is equivalent to Double.

In the {$REALCOMPATIBILITY ON} state, Real is equivalent to Real48.

The REALCOMPATIBILITY switch provides backward compatibility for legacy code in which Real is used to represent the
6-byte real type now called Real48. In new code, use Real48 when you want to specify a 6-byte real. Note however, that the
Real48 type is deprecated on Delphi for .NET.

Double is the preferred real type for most purposes.

3.1.1.49 Regions (Delphi and C#)

Type Parameter

Syntax {$REGION '<region description>'} and {$ENDREGION} [Delphi] or #region <region description> and
#endregion [C#]

The region and endregion directives control the display of collapsible regions in the code editor. These directives are ignored
by the compiler.

To mark code as a region, surround it with the region and endregion directives. You may include a message that will be
displayed when the code is folded and hidden.

The following code shows the use of a region in Delphi:

{$region 'Optional text that appears when the code block is folded'}
// code that can be hidden by folding
{$endregion}

The following code shows the use of a region in C#:

#region Optional text that appears when the code block is folded
// code that can be hidden by folding
#endregion

3.1.1.50 Resource file (Delphi)

Type Parameter

Syntax {$R filename}

{$RESOURCE filename}

{$R *.xxx}

{$R filename.res filename.rc}

Scope Local

Remarks

The $R directive specifies the name of a resource file to be included in an application or library. The named file must be a
Windows resource file and the default extension for filenames is .res. To specify a file name that includes a space, surround the
file name with single quotation marks: {$R 'My file'}.

The * symbol has a special meaning in $R directives: it stands for the base name (without extension) of the source-code file
where the directive occurs. Usually, an application's resource (.res) file has the same name as its project (.dpr) file; in this case,
including {$R *.res} in the project file links the corresponding resource file to the application. Similarly, a form (.dfm or nfm) file
usually has the same name as its unit (.pas) file; including {$R *.nfm} in the .pas file links the corresponding form file to the

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Directives (List)

303

3

application.

{$R filename.res filename.rc} (where the two occurrences of 'filename' match) makes the .rc file appear in the Project Manager.
When the user opens the .rc file from the Project Manager, the String Table editor is invoked.

When a {$R filename} directive is used in a unit, the specified file name is simply recorded in the resulting unit file. No checks are
made at that point to ensure that the filename is correct and that it specifies an existing file.

When an application or library is linked (after compiling the program or library source file), the resource files specified in all used
units as well as in the program or library itself are processed, and each resource in each resource file is copied to the executable
being produced. During the resource processing phase, the linker searches for .res files in the same directory as the module
containing the $R directive, and in the directories specified in the Search path input box on the Directories/Conditionals page of
the Project|Options dialog box (or in the directories specified in a -R option on the dccil command line).

3.1.1.51 RUNONLY directive (Delphi)

Type Switch

Syntax {$RUNONLY ON} or {$RUNONLY OFF}

Default {$RUNONLY OFF}

Scope Local

Remarks

The {$RUNONLY ON} directive causes the package where it occurs to be compiled as runtime only. Packages compiled with
{$RUNONLY ON} cannot be installed as design-time packages in the IDE.

Place the $RUNONLY directive only in package files.

See Also

Compiling packages (see page 640)

3.1.1.52 Runtime type information (Delphi)

Type Switch

Syntax {$M+} or {$M-} {$TYPEINFO ON} or {$TYPEINFO OFF}

Default {$M-} {$TYPEINFO OFF}

Scope Local

The $M switch directive controls generation of runtime type information (RTTI). When a class is declared in the {$M+} state, or is
derived from a class that was declared in the {$M+} state, the compiler generates runtime type information for properties and
events that are declared in a published section. If a class is declared in the {$M+} state, and is not derived from a class that was
declared in the {$M} state, published sections are not allowed in the class. Note that if a class is forward declared, the first
declaration of the class must be declared with the $Mswitch.

When the $M switch is used to declare an interface, the compiler generates runtime type information for all properties. That is, for
interfaces, all members are treated as if they were published.

Note: The TPersistent class defined in the Classes unit of the component library is declared in the {$M+} state, so any class
derived from TPersistent will have RTTI generated for its published sections. The component library uses the runtime type
information generated for published sections to access the values of a component's properties when saving or loading form files.

Delphi Compiler Directives (List) RAD Studio (Common) 3.1 Delphi Reference

304

3

Furthermore, the IDE uses a component's runtime type information to determine the list of properties to show in the Object
Inspector.

Note: The IInvokable interface defined in the System unit is declared in the {$M+} state, so any interface derived from
IInvokable will have RTTI generated. The routines in the IntfInfo unit can be used to retrieved the RTTI.

There is seldom, if ever, any need for an application to directly use the {$M}compiler switch.

See Also

Understanding Invokable Interfaces

$METHODINFO directive (see page 299)

3.1.1.53 Symbol declaration and cross-reference information
(Delphi)

Type Switch

Syntax {$Y+}, {$Y-}, or {$YD}; {$REFERENCEINFO ON}, {DEFINITIONINFO OFF} or
{$REFERENCEINFO OFF}, or {DEFINITIONINFO ON}

Default {$YD} {$DEFINITIONINFO ON}

Scope Global

Remarks

The $Y directive controls generation of symbol reference information used by the Project Manager, Code Explorer, and Code
editor. This information consists of tables that provide the source-code line numbers for all declarations of and (in the {$Y+}
state) references to identifiers in a module. For units, the information is recorded in the .dcu file along with the unit's object code.
Symbol reference information increases the size of .dcu files, but it does not affect the size or speed of the executable program.

When a program or unit is compiled in the default {$YD} (or {DEFINITIONINFO ON}) state, the compiler records information
about where each identifier is defined. For most identifiers—variables, constants, classes, and so forth—the compiler records the
location of the declaration. For procedures, functions, and methods, the compiler records the location of the implementation. This
enables Code editor browsing.

When a program or unit is compiled in the {$Y+} (or {REFERENCEINFO ON}) state, the compiler records information about
where every identifier is used as well as where it is defined. This enables the References page of the Project Browser.

When a program or unit is compiled in the {$Y-} (or {DEFINITIONINFO OFF} or {REFERENCEINFO OFF}) state, no symbol
reference information is recorded. This disables Code editor browsing and the References page of the Project Browser.

The $Y switch is usually used in conjunction with the $D and $L switches, which control generation of debug information and
local symbol information. The $Y directive has no effect unless both $D and $L are enabled.

Note: Generating full cross-reference information ({$Y+}) can slow the compile/link cycle, so you should not use this except
when you need the Project Manager References page.

3.1.1.54 Type-checked pointers (Delphi)

Type Switch

Syntax {$T+} or {$T-} {$TYPEDADDRESS ON} or {$TYPEDADDRESS OFF}

Default {$T-} {$TYPEDADDRESS OFF}

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Directives (List)

305

3

Scope Global

Remarks

The $T directive controls the types of pointer values generated by the @ operator and the compatibility of pointer types.

In the {$T-} state, the result of the @ operator is always an untyped pointer (Pointer) that is compatible with all other pointer
types. When @ is applied to a variable reference in the {$T+} state, the result is a typed pointer that is compatible only with
Pointer and with other pointers to the type of the variable.

In the {$T-} state, distinct pointer types other than Pointer are incompatible (even if they are pointers to the same type). In the
{$T+} state, pointers to the same type are compatible.

3.1.1.55 UNDEF directive (Delphi)

Type Conditional compilation

Syntax {$UNDEF name}

Remarks

Undefines a previously defined conditional symbol. The symbol is forgotten for the remainder of the compilation of the current
source file or until it reappears in a $DEFINE directive. The $UNDEF directive has no effect if name is already undefined.

Conditional symbols defined with a command-line switch or through the Project|Options dialog are reinstated at the start of
compilation of each unit source file. Conditional symbols defined in a unit source file are forgotten when the compiler starts on
another unit.

3.1.1.56 Unsafe Code (Delphi for .NET)

Type Switch

Syntax {$UNSAFECODE ON} or {$UNSAFECODE OFF}

Default {$UNSAFECODE OFF}

Scope Local

The $UNSAFECODE directive controls whether the unsafe keyword is accepted by the compiler. With {$UNSAFECODE ON},
you can mark procedures and functions with the unsafe keyword, for example:

procedure unsafeProc; unsafe;
begin
end;

Note: Unsafe code will not pass PEVerify

, nor will any assembly or Delphi module that calls an unsafe procedure or function.

3.1.1.57 Var-string checking (Delphi)

Type Switch

Syntax {$V+} or {$V-} {$VARSTRINGCHECKS ON} or {$VARSTRINGCHECKS OFF}

Delphi Compiler Directives (List) RAD Studio (Common) 3.1 Delphi Reference

306

3

Default {$V+} {$VARSTRINGCHECKS ON}

Scope Local

Remarks

The $V directive is meaningful only for Delphi code that uses short strings, and is provided for backwards compatibility with early
versions of Delphi and CodeGear Pascal.

The $V directive controls type checking on short strings passed as variable parameters. In the {$V+} state, strict type checking is
performed, requiring the formal and actual parameters to be of identical string types. In the {$V-} (relaxed) state, any short string
type variable is allowed as an actual parameter, even if the declared maximum length is not the same as that of the formal
parameter.

3.1.1.58 Warning messages (Delphi)

Type Switch

Syntax {$WARN identifier ON} or {$WARN identifier OFF}

Default {$WARN ON}

Scope Local

Remarks

The $WARN directive lets you control the display of groups of warning messages. These warnings relate to symbols or units that
use the hint directives, platform, deprecated, and library.

The identifier in the $WARN directive is optional and can have any of the following values:

SYMBOL_PLATFORM: Turns on or off all warnings about the platform directive on symbols in the current unit.

SYMBOL_LIBRARY: Turns on or off all warnings about the library directive on symbols in the current unit.

SYMBOL_DEPRECATED: Turns on or off all warnings about the deprecated directive on symbols in the current unit.

UNIT_DEPRECATED: Turns on or off all warnings about the deprecated directive applied to a unit declaration.

UNIT_LIBRARY: Turns on or off all warnings about the library directive in units where the library directive is specified.

UNIT_PLATFORM: Turns on or off all warnings about the platform directive in units where the platform directive is specified.

The only warnings that can be turned on/off using $WARN are the ones listed above.

The warnings set by the inline $WARN directive are carried for the compilation unit in which the directive appears, after which it
reverts to the previous state. The warnings set by a $WARN directive take effect from that point on in the file.

The $WARNINGS directive also controls the generation of compiler warnings.

See Also

Declarations (see page 705)

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Directives (List)

307

3

3.1.1.59 Warnings (Delphi)

Type Switch

Syntax {$WARNINGS ON} or {$WARNINGS OFF}

Default {$WARNINGS ON}

Scope Local

Remarks

The $WARNINGS directive controls the generation of compiler warnings. The $WARN directive lets control the display of groups
of warning messages.

In the {$WARNINGS ON} state, the compiler issues warning messages when detecting uninitialized variables, missing function
results, construction of abstract objects, and so on. In the {$WARNINGS OFF} state, the compiler generates no warning
messages.

By placing code between {$WARNINGS OFF} and {$WARNINGS ON} directives, you can selectively turn off warnings that you
don't care about.

Note: Note: The $WARNINGS directive only works at the procedure or function level granularity. That is, you can surround
entire procedures and functions with the $WARNINGS directive, but not blocks of statements within a procedure or function.

3.1.1.60 Weak packaging

Type Switch

Syntax {$WEAKPACKAGEUNIT ON} or {$WEAKPACKAGEUNIT OFF}

Default {$WEAKPACKAGEUNIT OFF}

Scope Local

Remarks

The $WEAKPACKAGEUNIT directive affects the way a .dcu file is stored in a Delphi package's .dcp and .bpl files on the Win32
platform, or, analogously, how a .dcuil file is stored in the package's .dcpil and .dll files on the .NET platform. If
{$WEAKPACKAGEUNIT ON} appears in a unit file, the compiler omits the unit from bpls or dlls when possible, and creates a
non-packaged local copy of the unit when it is required by another application or package. A unit compiled with this directive is
said to be "weakly packaged."

For example, suppose a package called PACK contains only one unit, UNIT1. Suppose UNIT1 does not use any further units,
but it makes calls to RARE.DLL. If the {$WEAKPACKAGEUNIT ON} directive is inserted in UNIT1.pas before compiling, UNIT1
will not be included in PACK.BPL (or PACK.DLL on .NET); copies of RARE.DLL will not have to be distributed with PACK.
However, UNIT1 will still be included in PACK.dcp (or PACK.dcpil on .NET). If UNIT1 is referenced by another package or
application that uses PACK, it will be copied from PACK.dcp (or PACK.dcpil on .NET) and compiled directly into the project.

Now suppose a second unit, UNIT2, is added to PACK. Suppose that UNIT2 uses UNIT1. This time, even if PACK is compiled
with {$WEAKPACKAGEUNIT ON} in UNIT1.pas, the compiler will include UNIT1 in PACK.BPL (or PACK.DLL on .NET). But
other packages or applications that reference UNIT1 will use the (non-packaged) copy taken from PACK.dcp (or PACK.dcpil on
.NET).

Note: Note: Unit files containing the {$WEAKPACKAGEUNIT ON} directive must not have global variables, initialization
sections, or finalization sections.

Delphi Compiler Directives (List) RAD Studio (Common) 3.1 Delphi Reference

308

3

The $WEAKPACKAGEUNIT directive is an advanced feature intended for developers who distribute their packages to other
programmers. It can help to avoid distribution of infrequently used DLLs, and to eliminate conflicts among packages that may
depend on the same external library.

For example, Delphi's PenWin unit references PENWIN.DLL. Most projects don't use PenWin, and most computers don't have
PENWIN.DLL installed on them. For this reason, the PenWin unit is weakly packaged in VCL60 (which encapsulates many
commonly-used Delphi components). When you compile a project that uses PenWin and the VCL60 package, PenWin is copied
from VCL60.DCP and bound directly into your project; the resulting executable is statically linked to PENWIN.DLL.

If PenWin were not weakly packaged, two problems would arise. First, VCL60 itself would be statically linked to PENWIN.DLL,
and so could not be loaded on any computer which didn't have PENWIN.DLL installed. Second, if someone tried to create a
package that contained PenWin, a compiler error would result because the PenWin unit would be contained in both VCL60 and
the new package. Thus, without weak packaging, PenWin could not be included in standard distributions of VCL60.

3.1.1.61 Stack frames (Delphi)

Type Switch

Syntax {$W+} or {$W-} {$STACKFRAMES ON} or {$STACKFRAMES OFF}

Default {$W-} {$STACKFRAMES OFF}

Scope Local

Remarks

The $W directive controls the generation of stack frames for procedures and functions. In the {$W+} state, stack frames are
always generated for procedures and functions, even when they're not needed. In the {$W-} state, stack frames are only
generated when they're required, as determined by the routine's use of local variables.

Some debugging tools require stack frames to be generated for all procedures and functions, but other than that you should
never have a need to use the {$W+} state.

3.1.1.62 Writeable typed constants (Delphi)

Type Switch

Syntax {$J+} or {$J-} {$WRITEABLECONST ON} or {$WRITEABLECONST OFF}

Default {$J-} {$WRITEABLECONST OFF}

Scope Local

The $J directive controls whether typed constants can be modified or not. In the {$J+} state, typed constants can be modified,
and are in essence initialized variables. In the {$J-} state, typed constants are truly constant, and any attempt to modify a typed
constant causes the compiler to report an error.

Writeable consts refers to the use of a typed const as a variable modifiable at runtime. For example:

const
 foo: Integer = 12;
 begin
 foo := 14;
 end.

With $WRITEABLECONST OFF, this code produces a compile error on the assignment to the foo variable in the begin..end
block. To fix it, change the const declaration to a var declaration.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Directives (List)

309

3

In early versions of Delphi and CodeGear Pascal, typed constants were always writeable, corresponding to the {$J+} state. Old
source code that uses writeable typed constants must be compiled in the {$J+} state, but for new applications it is recommended
that you use initialized variables and compile your code in the {$J-} state.

3.1.1.63 PE (portable executable) header flags (Delphi)

Type Flag

Syntax {$SetPEFlags <integer expression>} {$SetPEOptFlags <integer expression>}

Scope Local

Microsoft relies on PE (portable executable) header flags to allow an application to indicate compatiblity with OS services or
request advanced OS services. These directives provide powerful options for tuning your applications on high-end NT systems.

Warning: There is no error checking or masking of bit values specified by these directives. If you set the wrong combination of
bits, you could corrupt your executable file.

These directives allow you to set flag bits in the PE file header Characteristics field and PE file optional header
DLLCharacteristics field, respectively. Most of the Characteristics flags, set using $SetPEFlags, are specifically for object files
and libraries. DLLCharacteristics, set using $SetPEOptFlags, are flags that describe when to call a DLL's entry point.

The <integer expression> in these directives can include Delphi constant identifiers, such as the IMAGE_FILE_xxxx constants
defined in Windows.pas. Multiple constants should be OR'd together.

You can include these directives in source code multiple times. The flag values specified by multiple directives are strictly
cumulative: if the first occurrence of the directive sets $03 and the second occurrence sets $10, the value written to the
executable file at link time will be $13 (plus whatever bits the linker normally sets in the PE flag fields).

These directives only affect the output file if included in source code prior to linking. This means you should place these
directives in a .dpr or .dpk file, not in a regular unit. Like the exe description directive, it's not an error to place these directives in
unit source code, but these directives in unit source will not affect the output file (exe or dll) unless the unit source is recompiled
at the time the output file is linked.

3.1.1.64 Reserved address space for resources (Delphi)

Type OS Parameter

Syntax Linux {$M reservedbytes} {$RESOURCERESERVE reservedbytes}

Default {$M 1048576}

Scope Global

Remarks

This directive is used in Linux programming only. For information about the $M ($MINSTACKSIZE and $MAXSTACKSIZE)
directives in Windows, see the topic on Memory Allocation Sizes.

Use the $M directive to increase or decrease the amount of extra address space reserved for resources.

By default, the compiler reserves 1MB of address space, in addition to what the application actually uses at link time, for
resources. This extra address space is provided to accommodate localized versions of the application that incorporate larger
resource files than the original version. As long as there is sufficient reserved address space, you won't have to relink the entire
executable to produce a localized version.

Delphi Compiler Directives (List) RAD Studio (Common) 3.1 Delphi Reference

310

3

For maximum portability between Windows and Linux platforms, you should use the long form of this directive
$RESOURCERESERVE and not $M.

See Also

Memory allocation sizes

3.1.2 Delphi Compiler Errors

The following topics describe the various types of compiler errors and warnings, along with resolutions to many issues you may
face while using this product.

Topics

Name Description

Error Messages (see page 311) This section lists all the Delphi compiler error and warning messages of RAD
Studio.

Delphi Runtime Errors (see page 509) Certain errors at runtime cause Delphi programs to display an error message and
terminate.

I/O Errors (see page 510) I/O errors cause an exception to be thrown if a statement is compiled in the {$I+}
state. (If the application does not include the SysUtils class, the exception causes
the application to terminate).

Fatal errors (see page 511) These errors always immediately terminate the program.

Operating system errors (see page 512) All errors other than I/O errors and fatal errors are reported with the error codes
returned by the operating system.

3.1.2.1 Error Messages
This section lists all the Delphi compiler error and warning messages of RAD Studio.

Topics

Name Description

DisposeCount cannot be declared in classes with destructors (see page 336) No further Help is available for this message or warning.

E2190: Thread local variables cannot be ABSOLUTE (see page 336) A thread local variable cannot refer to another variable, nor can it reference an
absolute memory address.

E2249: Cannot use absolute variables when compiling to byte code (see page
336)

The use of absolute variables is prohibited when compiling to byte code.

E2373: Call to abstract method %s.%s (see page 336) No further information is available for this error or warning.

E2371: ABSTRACT and FINAL cannot be used together (see page 337) A class cannot be both final and abstract.
Final is a restrictive modifier used to prevent extension of a class (or prevent
overrides on methods), while the abstract modifier signals the intention to use a
class as a base class.

E2136: No definition for abstract method '%s' allowed (see page 337) You have declared <name> to be abstract, but the compiler has found a
definition for the method in the source file. It is illegal to provide a definition for an
abstract declaration.

E2167: Abstract methods must be virtual or dynamic (see page 337) When declaring an abstract method in a base class, it must either be of regular
virtual or dynamic virtual type.

E2383: ABSTRACT and SEALED cannot be used together (see page 338) A class cannot be both sealed and abstract.
The sealed modifier is used to prevent inheritance of a class, while the abstract
modifier signals the intention to use a class as a base class.

E2247: Cannot take the address when compiling to byte code (see page 338) The address-of operator, @, cannot be used when compiling to byte code.

E2251: Ambiguous overloaded call to '%s' (see page 338) Based on the current overload list for the specified function, and the programmed
invocation, the compiler is unable to determine which version of the procedure
should be invoked.

E2099: Overflow in conversion or arithmetic operation (see page 339) The compiler has detected an overflow in an arithmetic expression: the result of
the expression is too large to be represented in 32 bits.
Check your computations to ensure that the value can be represented by the
computer hardware.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

311

3

E2307: NEW standard function expects a dynamic array type identifier (see
page 339)

No further information is available for this error or warning.

E2308: Need to specify at least one dimension for NEW of dynamic array (see
page 339)

No further information is available for this error or warning.

E2246: Need to specify at least one dimension for SetLength of dynamic array
(see page 339)

The standard procedure SetLength has been called to alter the length of a
dynamic array, but no array dimensions have been specified.

E2081: Assignment to FOR-Loop variable '%s' (see page 340) It is illegal to assign a value to the for loop control variable inside the for loop.
If the purpose is to leave the loop prematurely, use a break or goto statement.

W1017: Assignment to typed constant '%s' (see page 340) This warning message is currently unused.

E2117: 486/487 instructions not enabled (see page 340) You should not receive this error as 486 instructions are always enabled.

E2116: Invalid combination of opcode and operands (see page 340) You have specified an inline assembler statement which is not correct.

E2109: Constant expected (see page 341) The inline assembler was expecting to find a constant but did not find one.

E2118: Division by zero (see page 341) The inline assembler has encountered an expression which results in a division
by zero.

E2119: Structure field identifier expected (see page 341) The inline assembler recognized an identifier on the right side of a '.', but it was
not a field of the record found on the left side of the '.'. One common, yet difficult
to realize, error of this sort is to use a record with a field called 'ch' - the inline
assembler will always interpret 'ch' to be a register name.

E2108: Memory reference expected (see page 342) The inline assembler has expected to find a memory reference expression but
did not find one.
Ensure that the offending statement is indeed a memory reference.

E2115: Error in numeric constant (see page 342) The inline assembler has found an error in the numeric constant you entered.

E2107: Operand size mismatch (see page 343) The size required by the instruction operand does not match the size given.

E2113: Numeric overflow (see page 343) The inline assembler has detected a numeric overflow in one of your
expressions.

E2112: Invalid register combination (see page 344) You have specified an illegal combination of registers in a inline assembler
statement. Please refer to an assembly language guide for more information on
addressing modes allowed on the Intel 80x86 family.

E2111: Cannot add or subtract relocatable symbols (see page 344) The inline assembler is not able to add or subtract memory address which may
be changed by the linker.

E2106: Inline assembler stack overflow (see page 345) Your inline assembler code has exceeded the capacity of the inline assembler.
Contact CodeGear if you encounter this error.

E2114: String constant too long (see page 345) The inline assembler has not found the end of the string that you specified. The
most likely cause is a misplaced closing quote.

E2105: Inline assembler syntax error (see page 345) You have entered an expression which the inline assembler is unable to interpret
as a valid assembly instruction.

E2110: Type expected (see page 346) Contact CodeGear if you receive this error.

E2448: An attribute argument must be a constant expression, typeof expression
or array constructor (see page 346)

The Common Language Runtime specifies that an attribute argument must be a
constant expression, a typeof expression or an array creation expression.
Attribute arguments cannot be global variables, for example. Attribute instances
are constructed at compile-time and incorporated into the assembly metadata, so
no run-time information can be used to construct them.

E2045: Bad object file format: '%s' (see page 346) This error occurs if an object file loaded with a $L or $LINK directive is not of the
correct format. Several restrictions must be met:

• Check the naming restrictions on segment names in the
help file

• Not more than 10 segments

• Not more than 255 external symbols

• Not more than 50 local names in LNAMES records

• LEDATA and LIDATA records must be in offset order

• No THREAD subrecords are supported in FIXU32 records

• Only 32-bit offsets can be fixed up

• Only segment and self relative fixups

• Target of a fixup must be a segment, a group or an
EXTDEF

• Object... more (see page 346)

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

312

3

x1028: Bad global symbol definition: '%s' in object file '%s' (see page 346) This warning is given when an object file linked in with a $L or $LINK directive
contains a definition for a symbol that was not declared in Delphi as an external
procedure, but as something else (e.g. a variable).
The definition in the object will be ignored in this case.

E2160: Type not allowed in OLE Automation call (see page 346) If a data type cannot be converted by the compiler into a Variant, then it is not
allowed in an OLE automation call.

E2188: Published property '%s' cannot be of type %s (see page 347) Published properties must be an ordinal type, Single, Double, Extended, Comp, a
string type, a set type which fits in 32 bits, or a method pointer type. When any
other property type is encountered in a published section, the compiler will
remove the published attribute -$M+

E2055: Illegal type in Read/Readln statement (see page 348) This error occurs when you try to read a variable in a Read or Readln that is not
of a legal type.
Check the type of the variable and make sure you are not missing a
dereferencing, indexing or field selection operator.

E2053: Syntax error in real number (see page 348) This error message occurs if the compiler finds the beginning of a scale factor
(an 'E' or 'e' character) in a number, but no digits follow it.

E2104: Bad relocation encountered in object file '%s' (see page 348) You are trying to link object modules into your program with the $L compiler
directive. However, the object file is too complex for the compiler to handle. For
example, you may be trying to link in a C++ object file. This is not supported.

E2158: %s unit out of date or corrupted: missing '%s' (see page 349) The compiler is looking for a special function which resides in System.dcu but
could not find it. Your System unit is either corrupted or obsolete.
Make sure there are no conflicts in your library search path which can point to
another System.dcu. Try reinstalling System.dcu. If neither of these solutions
work, contact CodeGear Developer Support.

E2159: %s unit out of date or corrupted: missing '%s.%s' (see page 349) The compiler failed to find a special function in System, indicating that the unit
found in your search paths is either corrupted or obsolete.

E2150: Bad argument type in variable type array constructor (see page 349) You are attempting to construct an array using a type which is not allowed in
variable arrays.

E2281: Type not allowed in Variant Dispatch call (see page 350) This message indicates that you are trying to make a method call and are
passing a type that the compiler does not know how to marshall. Variants can
hold interfaces, but the interfaces can marshall only certain types.
On Windows, Delphi supports COM and SOAP interfaces and can call types that
these interfaces can marshall.

E2054: Illegal type in Write/Writeln statement (see page 350) This error occurs when you try to output a type in a Write or Writeln statement
that is not legal.

E2297: Procedure definition must be ILCODE calling convention (see page
350)

.NET managed code can only use the ILCODE calling convention.

E2050: Statements not allowed in interface part (see page 350) The interface part of a unit can only contain declarations, not statements.
Move the bodies of procedures to the implementation part.

x1012: Constant expression violates subrange bounds (see page 351) This error message occurs when the compiler can determine that a constant is
outside the legal range. This can occur for instance if you assign a constant to a
variable of subrange type.

E2097: BREAK or CONTINUE outside of loop (see page 351) The compiler has found a BREAK or CONTINUE statement which is not
contained inside a WHILE or REPEAT loop. These two constructs are only legal
in loops.

E2309: Attribute - Known attribute named argument cannot be an array (see
page 352)

No further information is available for this error or warning.

E2310: Attribute - A custom marshaler requires the custom marshaler type (
see page 352)

No further information is available for this error or warning.

E2327: Linker error while emitting attribute '%s' for '%s' (see page 352) No further information is available for this error or warning.

E2311: Attribute - MarshalAs fixed string requires a size (see page 352) No further information is available for this error or warning.

E2312: Attribute - Invalid argument to a known attribute (see page 352) No further information is available for this error or warning.

E2313: Attribute - Known attribute cannot specify properties (see page 352) No further information is available for this error or warning.

E2314: Attribute - The MarshalAs attribute has fields set that are not valid for the
specified unmanaged type (see page 352)

No further information is available for this error or warning.

E2315: Attribute - Known custom attribute on invalid target (see page 352) No further information is available for this error or warning.

E2316: Attribute - The format of the GUID was invalid (see page 353) No further information is available for this error or warning.

E2317: Attribute - Known custom attribute had invalid value (see page 353) No further information is available for this error or warning.

E2318: Attribute - The MarshalAs constant size cannot be negative (see page
353)

No further information is available for this error or warning.

E2319: Attribute - The MarshalAs parameter index cannot be negative (see
page 353)

No further information is available for this error or warning.

E2320: Attribute - The specified unmanaged type is only valid on fields (see
page 353)

No further information is available for this error or warning.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

313

3

E2321: Attribute - Known custom attribute has repeated named argument (see
page 353)

No further information is available for this error or warning.

E2322: Attribute - Unexpected type in known attribute (see page 353) No further information is available for this error or warning.

E2323: Attribute - Unrecognized argument to a known custom attribute (see
page 353)

No further information is available for this error or warning.

E2324: Attribute - Known attribute named argument doesn't support variant (
see page 353)

No further information is available for this error or warning.

E2222: $WEAKPACKAGEUNIT & $DENYPACKAGEUNIT both specified (see
page 354)

It is not legal to specify both $WEAKPACKAGEUNIT and
$DENYPACKAGEUNIT. Correct the source code and recompile.

E2276: Identifier '%s' cannot be exported (see page 354) This message indicates that you are trying to export a function or procedure that
is tagged with the local directive. You also, cannot export threadvars and you
would receive this message if you try to do so.

E2071: This type cannot be initialized (see page 354) File types (including type Text), and the type Variant cannot be initialized, that is,
you cannot declare typed constants or initialized variables of these types.

E2374: Cannot make unique type from %s (see page 354) No further information is available for this error or warning.

E2223: $DENYPACKAGEUNIT '%s' cannot be put into a package (see page
354)

You are attempting to put a unit which was compiled with $DENYPACKAGEUNIT
into a package. It is not possible to put a unit compiled with the
$DENYPACKAGEUNIT direction into a package.

E2217: Published field '%s' not a class or interface type (see page 354) An attempt has been made to publish a field in a class which is not a class nor
interface type.

E2218: Published method '%s' contains an unpublishable type (see page 355) This message is not used in dccil. The message applies only to Win32
compilations, where it indicates that a parameter or function result type in the
method is not a publishable type.

E2278: Cannot take address of local symbol %s (see page 355) This message occurs when you try to call a symbol from within a procedure or
function that has been tagged with the local directive.
The local directive, which marks routines as unavailable for export, is
platform-specific and has no effect in Windows programming.
On Linux, the local directive is used for routines that are compiled into a library
but are not exported. This directive can be specified for standalone procedures
and functions, but not for methods. A routine declared with local, for example,

E2392: Can't generate required accessor method(s) for property %s.%s due to
name conflict with existing symbol %s in the same scope (see page 355)

The CLR requires that property accessors be methods, not fields. The Delphi
language allows you to specify fields as property accessors. The Delphi compiler
will generate the necessary methods behind the scenes. CLS recommends a
specific naming convention for property accessor methods: get_propname and
set_propname. If the accessors for a property are not methods, or if the given
methods do not match the CLS name pattern, the Delphi compiler will attempt to
generate methods with CLS conforming names. If a method already exists in the
class that matches the CLS name pattern, but it is not associated with the
particular... more (see page 355)

E2126: Cannot BREAK, CONTINUE or EXIT out of a FINALLY clause (see
page 356)

Because a FINALLY clause may be entered and exited through the exception
handling mechanism or through normal program control, the explicit control flow
of your program may not be followed. When the FINALLY is entered through the
exception handling mechanism, it is not possible to exit the clause with BREAK,
CONTINUE, or EXIT - when the finally clause is being executed by the exception
handling system, control must return to the exception handling system.

W1018: Case label outside of range of case expression (see page 356) You have provided a label inside a case statement which cannot be produced by
the case statement control variable. -W

E2326: Attribute '%s' can only be used once per target (see page 357) This attribute can only be used once per target Attributes and their descendants
may be declared with an AttributeUsage Attribute which describes how a custom
Attribute may be used. If the use of an attribute violates
AttributeUsage.allowmultiple then this error will be raised.

E2325: Attribute '%s' is not valid on this target (see page 357) Attribute is not valid on this target. Attributes and their descendants may be
declared with an AttributeUsage Attribute which describes how a custom Attribute
may be used. If the use of an attribute violates AttributeUsage.validon property
then this error will be raised. AttributeUsage.validon specifies the application
element that this attribute may be applied to.

E2358: Class constructors not allowed in class helpers (see page 357) No further information is available for this error or warning.

E2360: Class constructors cannot have parameters (see page 358) No further information is available for this error or warning.

E2340: Metadata - Data too large (see page 358) No further information is available for this error or warning.

E2343: Metadata - Primary key column may not allow the null value (see page
358)

No further information is available for this error or warning.

E2341: Metadata - Column cannot be changed (see page 358) No further information is available for this error or warning.

E2342: Metadata - Too many RID or primary key columns, 1 is max (see page
358)

No further information is available for this error or warning.

E2329: Metadata - Error occured during a read (see page 358) No further information is available for this error or warning.

E2330: Metadata - Error occured during a write (see page 358) No further information is available for this error or warning.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

314

3

E2334: Metadata - Old version error (see page 358) No further information is available for this error or warning.

E2331: Metadata - File is read only (see page 358) No further information is available for this error or warning.

E2339: Metadata - The importing scope is not compatible with the emitting scope
(see page 358)

No further information is available for this error or warning.

E2332: Metadata - An ill-formed name was given (see page 358) No further information is available for this error or warning.

E2337: Metadata - There isn't .CLB data in the memory or stream (see page
359)

No further information is available for this error or warning.

E2338: Metadata - Database is read only (see page 359) No further information is available for this error or warning.

E2335: Metadata - A shared mem open failed to open at the originally (see
page 359)

No further information is available for this error or warning.

E2336: Metadata - Create of shared memory failed. A memory mapping of the
same name already exists (see page 359)

No further information is available for this error or warning.

E2344: Metadata - Data too large (see page 359) No further information is available for this error or warning.

E2333: Metadata - Data value was truncated (see page 359) No further information is available for this error or warning.

F2047: Circular unit reference to '%s' (see page 359) One or more units use each other in their interface parts.
As the compiler has to translate the interface part of a unit before any other unit
can use it, the compiler must be able to find a compilation order for the interface
parts of the units.
Check whether all the units in the uses clauses are really necessary, and
whether some can be moved to the implementation part of a unit instead.

E2123: PROCEDURE, FUNCTION, PROPERTY, or VAR expected (see page
360)

The tokens that follow "class" in a member declaration inside a class type are
limited to procedure, function, var, and property.

E2061: Local class or interface types not allowed (see page 360) Corresponds to object_local in previous compilers. Class and interface types
cannot be declared inside a procedure body.

E2435: Class member declarations not allowed in anonymous record or local
record type (see page 360)

Record types that are declared in local scopes or declared in-place in variable
declarations can only contain field declarations. For advanced features in record
types (such as methods, properties, and nested types), the record type must be
an explicitly declared global type.

E2060: Class and interface types only allowed in type section (see page 360) Class or interface types must always be declared with an explicit type declaration
in a type section. Unlike record types, they cannot be anonymous.
The main reason for this is that there would be no way you could declare the
methods of that type (since there is no type name).
Incorrect (attempting to declare a class type within a variable declaration):

E2355: Class property accessor must be a class field or class static method (
see page 361)

No further information is available for this error or warning.

E2128: %s clause expected, but %s found (see page 361) The compiler was, due to the Delphi language syntax, expecting to find a clause1
in your program, but instead found clause2.

E2401: Failure loading .NET Framework %s: %08X (see page 361) No further information is available for this error or warning.

x2421: Imported identifier '%s' conflicts with '%s' in '%s' (see page 361) When importing type information from a .NET assembly, the compiler may
encounter symbols that do not conform to CLS specifications. One example of
this is case-sensitive versus case-insensitive identifiers. Another example is
having a property in a class with the same name as a method or field in the same
class. This error message indicates that same-named symbols were found in the
same scope (members of the same class or interface) in an imported assembly
and that only one of them will be accessible from Delphi syntax.

E2422: Imported identifier '%s' conflicts with '%s' in namespace '%s' (see page
361)

When importing type information from a .NET assembly, the compiler may
encounter symbols that do not conform to CLS specifications. One example of
this is case-sensitive versus case-insensitive identifiers. Another example is
having a property in a class with the same name as a method or field in the same
class. This error message indicates that same-named symbols were found in the
same scope (members of the same class or interface) in an imported assembly
and that only one of them will be accessible from Delphi syntax.

H2384: CLS: overriding virtual method '%s.%s' visibility (%s) must match base
class '%s' (%s) (see page 362)

No further information is available for this error or warning.

E2431: for-in statement cannot operate on collection type '%s' because '%s' does
not contain a member for '%s', or it is inaccessible (see page 362)

A for-in statement can only operate on the following collection types:

• Primitive types that the compiler recognizes, such as
arrays, sets or strings

• Types that implement IEnumerable

• Types that implement the GetEnumerator pattern as
documented in the Delphi Language Guide

Ensure that the specified type meets these requirements.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

315

3

W1024: Combining signed and unsigned types - widened both operands (see
page 362)

To mathematically combine signed and unsigned types correctly the compiler
must promote both operands to the next larger size data type and then perform
the combination.
To see why this is necessary, consider two operands, an Integer with the value
-128 and a Cardinal with the value 130. The Cardinal type has one more digit of
precision than the Integer type, and thus comparing the two values cannot
accurately be performed in only 32 bits. The proper solution for the compiler is to
promote both these types to a larger, common, size and then to perform the
comparison.
The compiler... more (see page 362)

E2008: Incompatible types (see page 363) This error message occurs when the compiler expected two types to be
compatible (meaning very similar), but in fact, they turned out to be different. This
error occurs in many different situations - for example when a read or write
clause in a property mentions a method whose parameter list does not match the
property, or when a parameter to a standard procedure or function is of the
wrong type.
This error can also occur when two units both declare a type of the same name.
When a procedure from an imported unit has a parameter of the same-named
type,... more (see page 363)

E2009: Incompatible types: '%s' (see page 364) The compiler has detected a difference between the declaration and use of a
procedure.

E2010: Incompatible types: '%s' and '%s' (see page 365) This error message results when the compiler expected two types to be
compatible (or similar), but they turned out to be different.

W1023: Comparing signed and unsigned types - widened both operands (see
page 365)

To compare signed and unsigned types correctly the compiler must promote both
operands to the next larger size data type.
To see why this is necessary, consider two operands, a Shortint with the value
-128 and a Byte with the value 130. The Byte type has one more digit of
precision than the Shortint type, and thus comparing the two values cannot
accurately be performed in only 8 bits. The proper solution for the compiler is to
promote both these types to a larger, common, size and then to perform the
comparison.

W1021: Comparison always evaluates to False (see page 366) The compiler has determined that the expression will always evaluate to False.
This most often can be the result of a boundary test against a specific variable
type, for example, a Integer against $80000000.
In versions of the Delphi compiler prior to 12.0, the hexadecimal constant
$80000000 would have been a negative Integer value, but with the introduction
of the int64 type, this same constant now becomes a positive int64 type. As a
result, comparisons of this constant against Integer variables will no longer
behave as they once did.
As this is a warning rather than an error, there is... more (see page 366)

W1022: Comparison always evaluates to True (see page 366) The compiler has determined that the expression will always evaluate to true.
This most often can be the result of a boundary test against a specific variable
type, for example, a Integer against $80000000.
In versions of the CodeGear Pascal compiler prior to 12.0, the hexadecimal
constant $80000000 would have been a negative Integer value, but with the
introduction of the int64 type, this same constant now becomes a positive int64
type. As a result, comparisons of this constant against Integer variables will no
longer behave as they once did.
As this is a warning rather than an error, there... more (see page 366)

E2026: Constant expression expected (see page 367) The compiler expected a constant expression here, but the expression it found
turned out not to be constant.

E2192: Constants cannot be used as open array arguments (see page 367) Open array arguments must be supplied with an actual array variable, a
constructed array or a single variable of the argument's element type.

E2007: Constant or type identifier expected (see page 368) This error message occurs when the compiler expects a type, but finds a symbol
that is neither a constant (a constant could start a subrange type), nor a type
identifier.

E2197: Constant object cannot be passed as var parameter (see page 368) This error message is reserved.

E2177: Constructors and destructors not allowed in OLE automation section (
see page 368)

You have incorrectly tried to put a constructor or destructor into the 'automated'
section of a class declaration.

x1020: Constructing instance of '%s' containing abstract method '%s.%s' (see
page 369)

The code you are compiling is constructing instances of classes which contain
abstract methods.

E2402: Constructing instance of abstract class '%s' (see page 370) No further information is available for this error or warning.

E2437: Constant declarations not allowed in anonymous record or local record
type (see page 370)

Record types that are declared in local scopes or declared in-place in variable
declarations can only contain field declarations. For advanced features in record
types (such as methods, properties, and nested types), the record type must be
an explicitly declared global type.

E2241: C++ obj files must be generated (-jp) (see page 370) Because of the language features used, standard C object files cannot be
generated for this unit. You must generate C++ object files.

E2412: CREATE expected (see page 370) No further information is available for this error or warning.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

316

3

E2306: 'Self' is initialized more than once (see page 370) An inherited constructor has been initialized multiple times.

E2304: 'Self' is uninitialized. An inherited constructor must be called (see page
370)

In Delphi for .NET, a constructor must always call an inherited constructor before
it may access or initialize any inherited class members. The compiler generates
an error if your constructor code does not call the inherited constructor (a valid
situation in Delphi for Win32), but it is important to examine your constructors to
make sure that you do not access any inherited class fields, directly or indirectly,
before the call to the inherited constructor.
Note: A constructor can initialize fields from its own class, prior to calling the
inherited constructor.
Example:

The class,

E2305: 'Self' might not have been initialized (see page 371) In Delphi for .NET, a constructor must always call an inherited constructor before
it may access or initialize any inherited class members. The compiler generates
an error if your constructor code does not call the inherited constructor (a valid
situation in Delphi for Win32), but it is important to examine your constructors to
make sure that you do not access any inherited class fields, directly or indirectly,
before the call to the inherited constructor.
Note: A constructor can initialize fields from its own class, prior to calling the
inherited constructor.

E2302: 'Self' is uninitialized. An inherited constructor must be called before
accessing ancestor field '%s' (see page 371)

In Delphi for .NET, a constructor must always call an inherited constructor before
it may access or initialize any inherited class members. The compiler generates
an error if your constructor code does not call the inherited constructor (a valid
situation in Delphi for Win32), but it is important to examine your constructors to
make sure that you do not access any inherited class fields, directly or indirectly,
before the call to the inherited constructor.
Note: A constructor can initialize fields from its own class, prior to calling the
inherited constructor.

E2303: 'Self' is uninitialized. An inherited constructor must be called before
calling ancestor method '%s' (see page 371)

In Delphi for .NET, a constructor must always call an inherited constructor before
it may access or initialize any inherited class members. The compiler generates
an error if your constructor code does not call the inherited constructor (a valid
situation in Delphi for Win32), but it is important to examine your constructors to
make sure that you do not access any inherited class fields, directly or indirectly,
before the call to the inherited constructor.
Note: A constructor can initialize fields from its own class, prior to calling the
inherited constructor.

E2286: Coverage library name is too long: %s (see page 371) This message is not used in this product.

H2455: Narrowing given wide string constant lost information (see page 371) Any character in a WideString constant with ordinal value greater than 127 may
be replaced with "?" if the WideChar is not representable in the current locale
codepage.

H2451: Narrowing given WideChar constant (#$%04X) to AnsiChar lost
information (see page 371)

An AnsiChar can only represent the first 256 values in a WideChar, so the
second byte of the WideChar is lost when converting it to an AnsiChar. You may
wish to use WideChar instead of AnsiChar to avoid information loss.

E2238: Default value required for '%s' (see page 371) When using default parameters a list of parameters followed by a type is not
allowed; you must specify each variable and its default value individually.

E2237: Parameter '%s' not allowed here due to default value (see page 372) When using default parameters a list of parameters followed by a type is not
allowed; you must specify each variable and its default value individually.

E2132: Default property must be an array property (see page 373) The default property which you have specified for the class is not an array
property. Default properties are required to be array properties.

E2268: Parameters of this type cannot have default values (see page 373) The default parameter mechanism incorporated into the Delphi compiler allows
only simple types to be initialized in this manner. You have attempted to use a
type that is not supported.

E2239: Default parameter '%s' must be by-value or const (see page 374) Parameters which are given default values cannot be passed by reference.

E2131: Class already has a default property (see page 374) You have tried to assign a default property to a class which already has defined a
default property.

E2146: Default values must be of ordinal, pointer or small set type (see page
375)

You have declared a property containing a default clause, but the type property
type is incompatible with default values.

F2087: System unit incompatible with trial version (see page 376) You are using a trial version of the software. It is incompatible with the application
you are trying to run.

E2144: Destination is inaccessible (see page 376) The address to which you are attempting to put a value is inaccessible from
within the IDE.

E2453: Destination cannot be assigned to (see page 376) The integrated debugger has determined that your assignment is not valid in the
current context.

E2290: Cannot mix destructors with IDisposable (see page 376) The compiler will generate IDisposable support for a class that declares a
destructor override named "Destroy". You cannot manually implement
IDisposable and implement a destructor on the same class.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

317

3

F2446: Unit '%s' is compiled with unit '%s' in '%s' but different version '%s' found
(see page 376)

This error occurs if a unit must be recompiled to take in changes to another unit,
but the source for the unit that needs recompilation is not found.
Note: This error message may be experienced when using inline functions.
Expansion of an inline function exposes its implementation to all units that call
the function. When a function is inline, modifications to that function must be
reflected with a recompile of every unit that uses that function. This is true even if
all of the modifications occur in the implementation
section. This is one way in which inlining can make your... more (see page
376)

E2210: '%s' directive not allowed in in interface type (see page 376) A directive was encountered during the parsing of an interface which is not
allowed.

E2228: A dispinterface type cannot have an ancestor interface (see page 377) An interface type specified with dispinterface cannot specify an ancestor
interface.

E2230: Methods of dispinterface types cannot specify directives (see page
377)

Methods declared in a dispinterface type cannot specify any calling convention
directives.

E2229: A dispinterface type requires an interface identification (see page 378) When using dispinterface types, you must always be sure to include a GUID
specification for them.

E2183: Dispid clause only allowed in OLE automation section (see page 378) A dispid has been given to a property which is not in an automated section.

E2274: property attribute 'label' cannot be used in dispinterface (see page 379) You have added a label to a property defined in a dispinterface, but this is
disallowed by the language definition.

E2080: Procedure DISPOSE needs destructor (see page 380) This error message is issued when an identifier given in the parameter list to
Dispose is not a destructor.

E2414: Disposed_ cannot be declared in classes with destructors (see page
381)

Disposed_ cannot be declared in classes with destructors. If a class implements
the IDispose interface the compiler generates a field called Disposed_ to
determine whether or not the IDispose.Dispose method has already been called.

E2098: Division by zero (see page 381) The compiler has detected a constant division by zero in your program.
Check your constant expressions and respecify them so that a division by zero
error will not occur.

E2293: Cannot have both a DLLImport attribute and an external or calling
convention directive (see page 381)

The compiler emits DLLImport attributes internally for external function
declarations. This error is raised if you declare your own DLLImport attribute on a
function and use the external name clause on the function.

E2027: Duplicate tag value (see page 381) This error message is given when a constant appears more than once in the
declaration of a variant record.

E2399: Namespace conflicts with unit name '%s' (see page 381) No further information is available for this error or warning.

E2030: Duplicate case label (see page 381) This error message occurs when there is more than one case label with a given
value in a case statement.

W1029: Duplicate %s '%s' with identical parameters will be inacessible from C++
(see page 382)

An object file is being generated and Two, differently named, constructors or
destructors with identical parameter lists have been created; they will be
inaccessible if the code is translated to an HPP file because constructor and
destructor names are converted to the class name. In C++ these duplicate
declarations will appear to be the same function.

E2180: Dispid '%d' already used by '%s' (see page 383) An attempt to use a dispid which is already assigned to another member of this
class.

E2301: Method '%s' with identical parameters and result type already exists (
see page 384)

Within a class, you cannot publish multiple overloaded methods with the same
name. Maintenance of runtime type information requires a unique name for each
published member.

E2257: Duplicate implements clause for interface '%s' (see page 384) The compiler has encountered two different property declarations which claim to
implement the same interface. An interface may be implemented by only one
property.

E2447: Duplicate symbol '%s' defined in namespace '%s' by '%s' and '%s' (
see page 385)

This error occurs when symbols from separate units are combined into a
common namespace, and the same symbol name is in both units. In previous
versions of Delphi, these units may have compiled without error, because symbol
scope was defined by the unit alone. In RAD Studio, units must be inserted into
namespaces when generating the IL metadata. This may cause separate units to
be be combined into a single namespace.
To resolve this problem, you may wish to rename one of the symbols in the two
units, alias one of the symbols to the other, or change the unit... more (see
page 385)

E2140: Duplicate message method index (see page 385) You have specified an index for a dynamic method which is already used by
another dynamic method.

E2252: Method '%s' with identical parameters already exists (see page 386) A method with an identical signature already exists in the data type.

E2266: Only one of a set of overloaded methods can be published (see page
386)

Only one member of a set of overloaded functions may be published because the
RTTI generated for procedures only contains the name.

E2285: Duplicate resource id: type %d id %d (see page 388) A resource linked into the project has the same type and name, or same type
and resource ID, as another resource linked into the project. (In Delphi, duplicate
resources are ignored with a warning. In Kylix, duplicates cause an error.)

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

318

3

E2407: Duplicate resource identifier %s found in unit %s(%s) and %s(%s) (
see page 388)

No further information is available for this error or warning.

E2284: Duplicate resource name: type %d '%s' (see page 388) A resource linked into the project has the same type and name, or same type
and resource ID, as another resource linked into the project. (In Delphi, duplicate
resources are ignored with a warning. In Kylix, duplicates cause an error.)

E2429: Duplicate implementation for 'set of %s' in this scope (see page 388) To avoid this error, declare an explicit set type identifier instead of using in-place
anonymous set expressions.

W1051: Duplicate symbol names in namespace. Using '%s.%s' found in %s.
Ignoring duplicate in %s (see page 388)

No further information is available for this error or warning.

E2413: Dynamic array type needed (see page 388) No further information is available for this error or warning.

E2178: Dynamic methods and message handlers not allowed in OLE automation
section (see page 388)

You have incorrectly put a dynamic or message method into an 'automated'
section of a class declaration.

E2378: Error while converting resource %s (see page 389) No further information is available for this error or warning.

E2385: Error while signing assembly (see page 389) No further information is available for this error or warning.

E2125: EXCEPT or FINALLY expected (see page 389) The compiler was expecting to find a FINALLY or EXCEPT keyword, during the
processing of exception handling code, but did not find either.

E2029: %s expected but %s found (see page 390) This error message appears for syntax errors. There is probably a typo in the
source, or something was left out. When the error occurs at the beginning of a
line, the actual error is often on the previous line.

E2191: EXPORTS allowed only at global scope (see page 390) An EXPORTS clause has been encountered in the program source at a
non-global scope.

E2143: Expression has no value (see page 390) You have attempted to assign the result of an expression, which did not produce
a value, to a variable.

E2353: Cannot extend sealed class '%s' (see page 391) The sealed modifier is used to prevent inheritance (and thus extension) of a class.

E2078: Procedure FAIL only allowed in constructor (see page 391) The standard procedure Fail can only be called from within a constructor - it is
illegal otherwise.

E2169: Field definition not allowed after methods or properties (see page 391) You have attempted to add more fields to a class after the first method or
property declaration has been encountered. You must place all field definitions
before methods and properties.

E2175: Field definition not allowed in OLE automation section (see page 391) You have tried to place a field definition in an OLE automation section of a class
declaration. Only properties and methods may be declared in an 'automated'
section.

E2124: Instance member '%s' inaccessible here (see page 392) You are attempting to reference a instance member from within a class
procedure.

E2209: Field declarations not allowed in interface type (see page 392) An interface has been encountered which contains definitions of fields; this is not
permitted.

x2044: Chmod error on '%s' (see page 393) The file permissions are not properly set on a file. See the chmod man page for
more information.

x2043: Close error on '%s' (see page 393) The compiler encountered an error while closing an input or output file.
This should rarely happen. If it does, the most likely cause is a full or bad disk.

F2039: Could not create output file '%s' (see page 393) The compiler could not create an output file. This can be a compiled unit file (.dcu
), an executable file, a map file or an object file.
Most likely causes are a nonexistent directory or a write protected file or disk.

x2141: Bad file format: '%s' (see page 393) The compiler state file has become corrupted. It is not possible to reload the
previous compiler state.
Delete the corrupt file.

E2288: File name too long (exceeds %d characters) (see page 393) A file path specified in the compiler options exceeds the compiler's file buffer
length.

x1026: File not found: '%s' (see page 393) This error message occurs when the compiler cannot find an input file. This can
be a source file, a compiled unit file (.dcuil file), an include, an object file or a
resource file.
Check the spelling of the name and the relevant search path.

F1027: Unit not found: '%s' or binary equivalents (%s) (see page 394) This error message occurs when the compiler cannot find a referenced unit
(.dcuil) file.
Check the spelling of the referenced file name and the relevant search path.

x2041: Read error on '%s' (see page 394) The compiler encountered a read error on an input file.
This should never happen - if it does, the most likely cause is corrupt data.

F2040: Seek error on '%s' (see page 394) The compiler encountered a seek error on an input or output file.
This should never happen - if it does, the most likely cause is corrupt data.

E2002: File type not allowed here (see page 394) File types are not allowed as value parameters and as the base type of a file type
itself. They are also not allowed as function return types, and you cannot assign
them - those errors will however produce a different error message.

x2042: Write error on '%s' (see page 395) The compiler encountered a write error while writing to an output file.
Most likely, the output disk is full.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

319

3

E2351: Final methods must be virtual or dynamic (see page 395) No further information is available for this error or warning.

E2155: Type '%s' needs finalization - not allowed in file type (see page 395) Certain types are treated specially by the compiler on an internal basis in that
they must be correctly finalized to release any resources that they might currently
own. Because the compiler cannot determine what type is actually stored in a
record's variant section at runtime, it is not possible to guarantee that these
special data types are correctly finalized.

E2154: Type '%s' needs finalization - not allowed in variant record (see page
395)

Certain types are treated specially by the compiler on an internal basis in that
they must be correctly finalized to release any resources that they might currently
own. Because the compiler cannot determine what type is actually stored in a
record's variant section at runtime, it is not possible to guarantee that these
special data types are correctly finalized.

E2103: 16-Bit fixup encountered in object file '%s' (see page 396) A 16-bit fixup has been found in one of the object modules linked to your
program with the $L compiler directive. The compiler only supports 32 bit fixups
in linked object modules.
Make sure that the linked object module is a 32 bit object module.

W1037: FOR-Loop variable '%s' may be undefined after loop (see page 396) This warning is issued if the value of a for loop control variable is used after the
loop.
You can only rely on the final value of a for loop control variable if the loop is left
with a goto or exit statement.
The purpose of this restriction is to enable the compiler to generate efficient code
for the for loop.

W1015: FOR-Loop variable '%s' cannot be passed as var parameter (see
page 397)

An attempt has been made to pass the control variable of a FOR-loop to a
procedure or function which takes a var parameter. This is a warning because
the procedure which receives the control variable is able to modify it, thereby
changing the semantics of the FOR-loop which issued the call.

E2032: For loop control variable must have ordinal type (see page 398) The control variable of a for loop must have type Boolean, Char, WideChar,
Integer, an enumerated type, or a subrange type.

x1019: For loop control variable must be simple local variable (see page 398) This error message is given when the control variable of a for statement is not a
simple variable (but a component of a record, for instance), or if it is not local to
the procedure containing the for statement.
For backward compatibility reasons, it is legal to use a global variable as the
control variable - the compiler gives a warning in this case. Note that using a
local variable will also generate more efficient code.

E2037: Declaration of '%s' differs from previous declaration (see page 399) This error message occurs when the declaration of a procedure, function,
method, constructor or destructor differs from its previous (forward) declaration.
This error message also occurs when you try to override a virtual method, but the
overriding method has a different parameter list, calling convention etc.

E2065: Unsatisfied forward or external declaration: '%s' (see page 400) This error message appears when you have a forward or external declaration of
a procedure or function, or a declaration of a method in a class or object type,
and you don't define the procedure, function or method anywhere.
Maybe the definition is really missing, or maybe its name is just misspelled.
Note that a declaration of a procedure or function in the interface section of a unit
is equivalent to a forward declaration - you have to supply the implementation
(the body of the procedure or function) in the implementation section.
Similarly, the declaration of a method in a... more (see page 400)

W1011: Text after final 'END.' - ignored by compiler (see page 401) This warning is given when there is still source text after the final end and the
period that constitute the logical end of the program. Possibly the nesting of
begin-end is inconsistent (there is one end too many somewhere). Check
whether you intended the source text to be ignored by the compiler - maybe it is
actually quite important.

E2127: 'GOTO %s' leads into or out of TRY statement (see page 401) The GOTO statement cannot jump into or out of an exception handling
statement.

E2295: A class helper cannot introduce a destructor (see page 402) Class helpers cannot declare destructors.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

320

3

E2172: Necessary library helper function was eliminated by linker (%s) (see
page 402)

The integrated debugger is attempting to use some of the compiler helper
functions to perform the requested evaluate. The linker, on the other hand,
determined that the helper function was not actually used by the program and it
did not link it into the program.

1. Create a new application.

2. Place a button on the form.

3. Double click the button to be taken to the 'click' method.

4. Add a global variable, 'v', of type String to the interface
section.

5. Add a global variable, 'p', of type PChar to the interface
section.

The click method should read as:

1. procedure TForm1.Button1Click(Sender: TObject);
begin... more (see page 402)

W1010: Method '%s' hides virtual method of base type '%s' (see page 403) You have declared a method which has the same name as a virtual method in
the base class. Your new method is not a virtual method; it will hide access to the
base's method of the same name.

W1009: Redeclaration of '%s' hides a member in the base class (see page
404)

A property has been created in a class with the same name of a variable
contained in one of the base classes. One possible, and not altogether apparent,
reason for getting this error is that a new version of the base class hierarchy has
been installed and it contains new member variables which have names identical
to your properties' names. -W

E2198: %s cannot be applied to a long string (see page 404) It is not possible to use the standard function HIGH with long strings. The
standard function HIGH can, however, be applied to old-style short strings.
Since long strings dynamically size themselves, no analog to the HIGH function
can be used.
This error can be caused if you are porting a 16-bit application, in which case the
only string type available was a short string. If this is the case, you can turn off
the long strings with the $H command line switch or the long-form directive
$LONGSTRINGS.
If the HIGH was applied to a string parameter, but you still wish... more (see
page 404)

W1034: $HPPEMIT '%s' ignored (see page 405) The $HPPEMIT directive can only appear after the unit header.

x1008: Integer and HRESULT interchanged (see page 405) In Delphi, Integer, Longint, and HRESULT are compatible types, but in C++ the
types are not compatible and will produce differently mangled C++ parameter
names. To ensure that there will not be problems linking object files created with
the Delphi compiler this message alerts you to possible problems. If you are
compiling your source to an object file, this is an error. Otherwise, it is a warning.

W1000: Symbol '%s' is deprecated (see page 406) The symbol is tagged (using the deprecated hint directive) as no longer current
and is maintained for compatibility only. You should consider updating your
source code to use another symbol, if possible.
The $WARN SYMBOL_DEPRECATED ON/OFF compiler directive turns on or
off all warnings about the deprecated directive on symbols in the current unit.

E2372: Identifier expected (see page 406) No further information is available for this error or warning.

W1003: Symbol '%s' is experimental (see page 406) An "experimental" directive has been used on an identifier. "Experimental"
indicates the presence of a class or unit which is incomplete or not fully tested.

W1001: Symbol '%s' is specific to a library (see page 406) The symbol is tagged (using the library hint directive) as one that may not be
available in all libraries. If you are likely to use different libraries, it may cause a
problem.
The $WARN SYMBOL_LIBRARY ON/OFF compiler directive turns on or off all
warnings about the library directive on symbols in the current unit.

W1002: Symbol '%s' is specific to a platform (see page 407) The symbol is tagged (using the platform hint directive) as one that may not be
available on all platforms. If you are writing cross-platform applications, it may
cause a problem.
The $WARN SYMBOL_PLATFORM ON/OFF compiler directive turns on or off all
warnings about the platform directive on symbols in the current unit.

E2004: Identifier redeclared: '%s' (see page 407) The given identifier has already been declared in this scope - you are trying to
reuse its name for something else.

E2003: Undeclared identifier: '%s' (see page 407) The compiler could not find the given identifier - most likely it has been
misspelled either at the point of declaration or the point of use. It might be from
another unit that has not mentioned a uses clause.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

321

3

E2427: Only one of IID or GuidAttribute can be specified (see page 407) The GUID or IID of your interface can be specified using square brackets at the
top of the interface declaration or using a .NET attribute before the interface
declaration. You may use either style of GUID or IID declaration, but not both
styles in the same type.

E2038: Illegal character in input file: '%s' (%s) (see page 408) The compiler found a character that is illegal in Delphi programs.
This error message is caused most often by errors with string constants or
comments.

E2182: '%s' clause not allowed in OLE automation section (see page 408) INDEX, STORED, DEFAULT and NODEFAULT are not allowed in OLE
automation sections.

E2231: '%s' directive not allowed in dispinterface type (see page 409) You have specified a clause in a dispinterface type which is not allowed.

E2207: '%s' clause not allowed in interface type (see page 409) The clause noted in the message is not allowed in an interface type. Typically
this error indicates that an illegal directive has been specified for a property field
in the interface.

E2176: Illegal type in OLE automation section: '%s' (see page 410) <typename> is not an allowed type in an OLE automation section. Only a small
subset of all the valid Delphi language types are allowed in automation sections.

E2185: Overriding automated virtual method '%s' cannot specify a dispid (see
page 411)

The dispid declared for the original virtual automated procedure declaration must
be used by all overriding procedures in derived classes.

E2068: Illegal reference to symbol '%s' in object file '%s' (see page 412) This error message is given if an object file loaded with a $L or $LINK directive
contains a reference to a Delphi symbol that is not a procedure, function,
variable, typed constant or thread local variable.

E2139: Illegal message method index (see page 412) You have specified value for your message index which <= 0.

E2224: $DESIGNONLY and $RUNONLY only allowed in package unit (see
page 412)

The compiler has encountered either $designonly or $runonly in a source file
which is not a package. These directives affect the way that the IDE will treat a
package file, and therefore can only be contained in package source files.

E2184: %s section valid only in class types (see page 412) Interfaces and records may not contain published sections.
Records may not contain protected sections.

W1043: Imagebase $%X is not a multiple of 64k. Rounding down to $%X (see
page 413)

You can set an imagebase for a DLL to position it in a specific location in memory
using the $IMAGEBASE compiler directive. The $IMAGEBASE directive controls
the default load address for an application, DLL, or package. The number
specified as the imagebase in the directive must be a multiple of 64K (that is, a
hex number must have zeros as the last 4 digits), otherwise, it will be rounded
down to the nearest multiple, and you will receive this compiler message.

E2227: Imagebase is too high - program exceeds 2 GB limit (see page 413) There are three ways to cause this error: 1. Specify a large enough imagebase
that, when compiled, the application code passes the 2GB boundary. 2. Specify
an imagebase via the command line which is above 2GB. 3. Specify an
imagebase via $imagebase which is above 2GB.
The only solution to this problem is to lower the imagebase address sufficiently
so that the entire application will fit below the 2GB limit.

E2260: Implements clause not allowed together with index clause (see page
413)

You have tried to use an index clause with an implements clause. Index
specifiers allow several properties to share the same access method while
representing different values. The implements directive allows you to delegate
implementation of an interface to a property in the implementing class but it
cannot take an index specifier.

E2263: Implements getter cannot be dynamic or message method (see page
413)

An attempt has been made to use a dynamic or message method as a property
accessor of a property which has an implements clause.

E2264: Cannot have method resolutions for interface '%s' (see page 414) An attempt has been made to use a method resolution clause for an interface
named in an implements clause.

E2258: Implements clause only allowed within class types (see page 415) The interface definition in this example attempts to use an implements clause
which causes the error.

E2259: Implements clause only allowed for properties of class or interface type
(see page 415)

An attempt has been made to use the implements clause with an improper type.
Only class or interface types may be used.

E2262: Implements getter must be %s calling convention (see page 415) The compiler has encountered a getter or setter which does not have the correct
calling convention.

E2265: Interface '%s' not mentioned in interface list (see page 416) An implements clause references an interface which is not mentioned in the
interface list of the class.

E2261: Implements clause only allowed for readable property (see page 416) The compiler has encountered a "write only" property that claims to implement an
interface. A property must be read/write to use the implements clause.

x1033: Unit '%s' implicitly imported into package '%s' (see page 417) The unit specified was not named in the contains clause of the package, but a
unit which has already been included in the package imports it.
This message will help the programmer avoid violating the rule that a unit may
not reside in more than one related package.
Ignoring the warning, will cause the unit to be put into the package. You could
also explicitly list the named unit in the contains clause of the package to
accomplish the same result and avoid the warning altogether. Or, you could alter
the package list to load the named unit from another... more (see page 417)

W1040: Implicit use of Variants unit (see page 417) If your application is using a Variant type, the compiler includes the Variant unit in
the uses clause but warns you that you should add it explicitly.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

322

3

E2420: Interface '%s' used in '%s' is not yet completely defined (see page 417) Interface used in is not yet completely defined. Forward declared interfaces must
be declared in the same type section that they are used in. As an example the
following code will not compile because of the above error message:

E2086: Type '%s' is not yet completely defined (see page 418) This error occurs if there is either a reference to a type that is just being defined,
or if there is a forward declared class type in a type section and no final
declaration of that type.

E2195: Cannot initialize local variables (see page 418) The compiler disallows the use of initialized local variables.

E2196: Cannot initialize multiple variables (see page 419) Variable initialization can only occur when variables are declared individually.

E2194: Cannot initialize thread local variables (see page 419) The compiler does not allow initialization of thread local variables.

E2072: Number of elements (%d) differs from declaration (%d) (see page 420) This error message appears when you declare a typed constant or initialized
variable of array type, but do not supply the appropriate number of elements.

E2428: Field '%s' needs initialization - not allowed in CLS compliant value types
(see page 420)

CLS-compliant value types cannot have fields that require initialization. See
ECMA 335, Partition II, Section 12.

E2418: Type '%s' needs initialization - not allowed in variant record (see page
420)

Type needs initialization - not allowed in variant record. Variant records do not
allow types that need initialization in their variant field list since each variant field
references the same memory location. As an example, the following code will not
compile because the array type needs to be initialized.

E2426: Inline function must not have asm block (see page 421) Inline functions can not include an asm block. To avoid this error, remove the
inline directive from your function or use Pascal code to express the statements
in the asm block.

E2442: Inline directive not allowed in constructor or destructor (see page 421) Remove the inline directive to prevent this error.

H2444: Inline function '%s' has not been expanded because accessing member
'%s' is inaccessible (see page 421)

An inline function cannot be expanded when the inline function body refers to a
restricted member that is not accessible where the function is called.
For example, if an inline function refers to a strict private field and this function
is called from outside the class (e.g. from a global procedure), the field is not
accessible at the call site and the inline function is not expanded.

E2425: Inline methods must not be virtual nor dynamic (see page 421) In order for an inline method to be inserted inline at compile-time, the method
must be bound at compile-time. Virtual and dynamic methods are not bound until
run-time, so they cannot be inserted inline. Make sure your method is static if you
wish it to be inline.

E2449: Inlined nested routine '%s' cannot access outer scope variable '%s' (
see page 421)

You can use the inline directive with nested procedures and functions. However,
a nested procedure or function that refers to a variable that is local to the outer
procedure is not eligible for inlining.

H2445: Inline function '%s' has not been expanded because its unit '%s' is
specified in USES statement of IMPLEMENTATION section and current function
is inline function or being inline function (see page 421)

Inline functions are not expanded between circularly dependent units.

H2443: Inline function '%s' has not been expanded because unit '%s' is not
specified in USES list (see page 421)

This situation may occur if an inline function refers to a type in a unit that is not
explicitly used by the function's unit. For example, this may happen if the function
uses inherited to refer to methods inherited from a distant ancestor, and that
ancestor's unit is not explicitly specified in the uses list of the function's unit.
If the inline function's code is to be expanded, then the unit that calls the function
must explicitly use the unit where the ancestor type is exposed.

E2441: Inline function declared in interface section must not use local symbol
'%s' (see page 422)

This error occurs when an inline function is declared in the interface section and
it refers to a symbol that is not visible outside the unit. Expanding the inline
function in another unit would require accessing the local symbol from outside the
unit, which is not permitted.
To correct this error, move the local symbol declaration to the interface section,
or make it an instance variable or class variable of the function's class type.

E2382: Cannot call constructors using instance variables (see page 422) No further information is available for this error or warning.

E2102: Integer constant too large (see page 422) You have specified an integer constant that requires more than 64 bits to
represent.

F2084: Internal Error: %s%d (see page 422) Occasionally when compiling an application in Delphi, the compile will halt and
display an error message that reads, for example:

E2232: Interface '%s' has no interface identification (see page 423) You have attempted to assign an interface to a GUID type, but the interface was
not defined with a GUID.

E2291: Missing implementation of interface method %s.%s (see page 423) This indicates that you have forgotten to implement a method required by an
interface supported by your class type.

E2211: Declaration of '%s' differs from declaration in interface '%s' (see page
423)

A method declared in a class which implements an interface is different from the
definition which appears in the interface. Probable causes are that a parameter
type or return value is declared differently, the method appearing in the class is a
message method, the identifier in the class is a field or the identifier in the class
is a property, which does not match with the definition in the interface.

E2208: Interface '%s' already implemented by '%s' (see page 425) The class specified by name2 has specified the interface name1 more than once
in the inheritance section of the class definition.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

323

3

E2089: Invalid typecast (see page 425) This error message is issued for type casts not allowed by the rules. The
following kinds of casts are allowed:

• Ordinal or pointer type to another ordinal or pointer type

• A character, string, array of character or pchar to a string

• An ordinal, real, string or variant to a variant

• A variant to an ordinal, real, string or variant

• A variable reference to any type of the same size.

Note that casting real types to integer can be performed with
the standard functions Trunc and Round.

There are other transfer functions like Ord and Chr that might
make your intention... more (see page 425)

E2424: Codepage '%s' is not installed on this machine (see page 426) This message occurs if you specify a codepage using the --codepage=nnn
command line switch and the codepage you specify is not available on the
machine.
See your operating system documentation for details on how to install codepages.

E2173: Missing or invalid conditional symbol in '$%s' directive (see page 426) The $IFDEF, $IFNDEF, $DEFINE and $UNDEF directives require that a symbol
follow them.

x1030: Invalid compiler directive: '%s' (see page 426) This error message means there is an error in a compiler directive or in a
command line option. Here are some possible error situations:

• An external declaration was syntactically incorrect.

• A command line option or an option in a DCC32.CFG file
was not recognized by the compiler or was invalid. For
example, '-$M100' is invalid because the minimum stack
size must be at least 1024.

• The compiler found a $XXXXX directive, but could not
recognize it. It was probably misspelled.

• The compiler found a $ELSE or $ENDIF directive, but no
preceding $IFDEF, $IFNDEF or $IFOPT directive.

• (*$IFOPT*) was not followed... more (see page 426)

E2298: read/write not allowed for CLR events. Use Include/Exclude procedure
(see page 427)

Multicast events cannot be assigned to or read from like traditional Delphi
read/write events.
Use Include/Exclude to add or remove methods.

E2138: Invalid message parameter list (see page 427) A message procedure can take only one, VAR, parameter; it's type is not
checked.

E2294: A class helper that descends from '%s' can only help classes that are
descendents '%s' (see page 428)

The object type specified in the "for" clause of a class helper declaration is not a
descendent of the object type specified in the "for" clause of the class helper's
ancestor type.

E2296: A constructor introduced in a class helper must call the parameterless
constructor of the helped class as the first statement (see page 428)

The first statement in a class helper constructor must be "inherited Create;"

E2387: The key container name '%s' does not exist (see page 428) No further information is available for this error or warning.

E2388: Unrecognized strong name key file '%s' (see page 428) No further information is available for this error or warning.

E2432: %s cannot be applied to a rectangular dynamic array (see page 429) This error may arise if you attempt to pass a dynamically allocated rectangular
array to the Low or High function.
If you receive this error, use a static or ragged (non-rectangular) array. See the
Delphi Language Guide for details.

E2393: Invalid operator declaration (see page 429) No further information is available for this error or warning.

E2174: '%s' not previously declared as a PROPERTY (see page 429) You have attempted to hoist a property to a different visibility level by
redeclaration, but <name> in the base class was not declared as a property. -W

E2376: STATIC can only be used on non-virtual class methods (see page 430) No further information is available for this error or warning.

E2415: Could not import assembly '%s' because it contains namespace '%s' (
see page 430)

The Borland.Delphi.System unit may only be loaded from the Borland.Delphi.dll
assembly. This error will occur if Borland.Delphi.System is attempted to be
loaded from an alternative assembly.

E2416: Could not import package '%s' because it contains system unit '%s' (
see page 430)

The Borland.Delphi.System unit may only be loaded from the Borland.Delphi.dll
package. This error will occur if Borland.Delphi.System is attempted to be loaded
from an alternative package.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

324

3

F2438: UCS-4 text encoding not supported. Convert to UCS-2 or UTF-8 (see
page 430)

This error is encountered when a source file has a UCS-4 encoding, as indicated
by its Byte-Order-Mark (BOM). The compiler does not support compilation of
source files in UCS-4 Unicode encoding. To solve this problem, convert the
source file to UCS-2 or UTF-8 encoding.

E2386: Invalid version string '%s' specified in %s (see page 430) No further information is available for this error or warning.

E2120: LOOP/JCXZ distance out of range (see page 430) You have specified a LOOP or JCXZ destination which is out of range. You
should not receive this error as the jump range is 2Gb for LOOP and JCXZ
instructions.

E2049: Label declaration not allowed in interface part (see page 430) This error occurs when you declare a label in the interface part of a unit.

E2073: Label already defined: '%s' (see page 431) This error message is given when a label is set on more than one statement.

E2074: Label declared and referenced, but not set: '%s' (see page 431) You declared and used a label in your program, but the label definition was not
encountered in the source code.

F2069: Line too long (more than 1023 characters) (see page 432) This error message is given when the length of a line in the source file exceeds
255 characters.
Usually, you can divide the long line into two shorter lines.
If you need a really long string constant, you can break it into several pieces on
consecutive lines that you concatenate with the '+' operator.

E2364: Cross-assembly protected reference to [%s]%s.%s in %s.%s (see
page 432)

In Delphi for .NET, members with protected visibility cannot be accessed outside
of the assembly in which they are defined. If possible, you may want to use the
publicly-exposed members of the class to accomplish your goal.
Other ways to resolve this error:

• Increase the visibility of the member from protected to
public, so it can be accessed outside of its assembly.

• “Link in” the assembly where the protected member is
defined, so that this assembly is incorporated into the
assembly you are building, and the access will be inside
the assembly.

W1053: Local PInvoke code has not been made because external routine '%s' in
package '%s' is defined using package local types in its custom attributes (see
page 432)

This warning may arise when an external package uses PInvoke to access
Win32 library code, and that package exposes the PInvoke definition through a
public export. In these cases the compiler will attempt to link directly to the Win32
library by copying the PInvoke definition to the local assembly, rather than linking
to the public export in the external package. This is more secure and can also
improve runtime performance.
This warning message is issued if the compiler is unable to emit the PInvoke
definition locally, because the external assembly uses locally-defined types for a
custom attribute. To avoid this... more (see page 432)

E2094: Local procedure/function '%s' assigned to procedure variable (see
page 433)

This error message is issued if you try to assign a local procedure to a procedure
variable, or pass it as a procedural parameter.
This is illegal, because the local procedure could then be called even if the
enclosing procedure is not active. This situation would cause the program to
crash if the local procedure tried to access any variables of the enclosing
procedure.

E2189: Thread local variables cannot be local to a function (see page 434) Thread local variables must be declared at a global scope.

W1042: Error converting locale string '%s' to Unicode. String truncated. Is your
LANG environment variable set correctly? (see page 434)

This message occurs when you are trying to convert strings to Unicode and the
string contains characters that are not valid for the current locale. For example,
this may occur when converting WideString to AnsiString or if attempting to
display Japanese characters in an English locale.

E2011: Low bound exceeds high bound (see page 434) This error message is given when either the low bound of a subrange type is
greater than the high bound, or the low bound of a case label range is greater
than the high bound.

H2440: Inline method visibility is not lower or same visibility of accessing member
'%s.%s' (see page 435)

A member that is accessed within the body of an inline method must be
accessible anywhere that the inline method is called. Therefore, the member
must be at least as visible as the inline method.
Here is an example of code that will raise this error:

E2204: Improper GUID syntax (see page 435) The GUID encountered in the program source is malformed. A GUID must be of
the form: 00000000-0000-0000-0000-000000000000.

E2348: Metadata - Bad input parameters (see page 435) No further information is available for this error or warning.

E2347: Metadata - Bad binary signature (see page 436) No further information is available for this error or warning.

E2349: Metadata - Cannot resolve typeref (see page 436) No further information is available for this error or warning.

E2345: Metadata - Attempt to define an object that already exists (see page
436)

No further information is available for this error or warning.

E2346: Metadata - A guid was not provided where one was required (see
page 436)

No further information is available for this error or warning.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

325

3

E2350: Metadata - No logical space left to create more user strings (see page
436)

No further information is available for this error or warning.

F2046: Out of memory (see page 436) The compiler ran out of memory.
This should rarely happen. If it does, make sure your swap file is large enough
and that there is still room on the disk.

x1054: Linker error: %s (see page 436) This message emits a warning or other text generated using the $MESSAGE
directive.

E2096: Method identifier expected (see page 436) This error message will be issued in several different situations:

• Properties in an automated section must use methods for
access, they cannot use fields in their read or write
clauses.

• You tried to call a class method with the
"ClassType.MethodName" syntax, but "MethodName"
was not the name of a method.

• You tried calling an inherited with the "Inherited
MethodName" syntax, but "MethodName" was not the
name of a method.

E2433: Method declarations not allowed in anonymous record or local record
type (see page 437)

Record types that are declared in local scopes or declared in-place in variable
declarations can only contain field declarations. For advanced features in record
types (such as methods, properties, and nested types), the record type must be
an explicitly declared global type.

E2234: Getter or setter for property '%s' cannot be found (see page 437) During translation of a unit to a C++ header file, the compiler is unable to locate a
named symbol which is to be used as a getter or setter for a property. This is
usually caused by having nested records in the class and the accessor is a field
in the nested record.

E2095: Missing ENDIF directive (see page 437) This error message is issued if the compiler does not find a corresponding
$ENDIF directive after an $IFDEF, $IFNDEF or $IFOPT directive.

E2403: Add or remove accessor for event '%s' cannot be found (see page 438) No further information is available for this error or warning.

E2253: Ancestor type '%s' does not have an accessible default constructor (
see page 438)

The ancestor of the class being compiled does not have an accessible default
constructor. This error only occurs with the byte code version of the compiler.

E2066: Missing operator or semicolon (see page 438) This error message appears if there is no operator between two subexpressions,
or no semicolon between two statements.
Often, a semicolon is missing on the previous line.

E2202: Required package '%s' not found (see page 439) The package, which is referenced in the message, appears on the package list,
either explicitly or through a requires clause of another unit appearing on the
package list, but cannot be found by the compiler.
The solution to this problem is to ensure that the DCP file for the named package
is in one of the units named in the library path.

E2035: Not enough actual parameters (see page 439) This error message occurs when a call to procedure or function gives less
parameters than specified in the procedure or function declaration.
This can also occur for calls to standard procedures or functions.

E2067: Missing parameter type (see page 439) This error message is issued when a parameter list gives no type for a value
parameter.
Leaving off the type is legal for constant and variable parameters.

E2151: Could not load RLINK32.DLL (see page 440) RLINK32 could not be found. Please ensure that it is on the path.
Contact CodeGear if you encounter this error.

E2404: Cannot mix READ/WRITE property accessors with ADD/REMOVE
accessors (see page 440)

No further information is available for this error or warning.

E2359: Multiple class constructors in class %s: %s and %s (see page 440) No further information is available for this error or warning.

E2287: Cannot export '%s' multiple times (see page 440) This message is not used in this product.

E2085: Unit name mismatch: '%s' '%s' (see page 440) The unit name in the top unit is case sensitive and must match the name with
respect to upper- and lowercase letters exactly. The unit name is case sensitive
only in the unit declaration.

E2016: Array type required (see page 440) This error message is given if you either index into an operand that is not an
array, or if you pass an argument that is not an array to an open array parameter.

E2012: Type of expression must be BOOLEAN (see page 441) This error message is output when an expression serves as a condition and must
therefore be of Boolean type. This is the case for the controlling expression of the
if, while and repeat statements, and for the expression that controls a conditional
breakpoint.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

326

3

E2021: Class type required (see page 441) In certain situations the compiler requires a class type:

• As the ancestor of a class type

• In the on-clause of a try-except statement

• As the first argument of a raise statement

• As the final type of a forward declared class type

E2076: This form of method call only allowed for class methods (see page 441) You were trying to call a normal method by just supplying the class type, not an
actual instance.
This is only allowed for class methods and constructors, not normal methods and
destructors.

E2149: Class does not have a default property (see page 442) You have used a class instance variable in an array expression, but the class
type has not declared a default array property.

E2168: Field or method identifier expected (see page 443) You have specified an identifier for a read or write clause to a property which is
not a field or method.

E2022: Class helper type required (see page 443) When declaring a class helper type with an ancestor clause, the ancestor type
must be a class helper.

E2380: Instance or class static method expected (see page 444) No further information is available for this error or warning.

E2013: Type of expression must be INTEGER (see page 444) This error message is only given when the constant expression that specifies the
number of characters in a string type is not of type integer.

E2205: Interface type required (see page 444) A type, which is an interface, was expected but not found. A common cause of
this error is the specification of a user-defined type that has not been declared as
an interface type.

E2031: Label expected (see page 445) This error message occurs if the identifier given in a goto statement or used as a
label in inline assembly is not declared as a label.

E2075: This form of method call only allowed in methods of derived types (see
page 445)

This error message is issued if you try to make a call to a method of an ancestor
type, but you are in fact not in a method.

E2019: Object type required (see page 446) This error is given whenever an object type is expected by the compiler. For
instance, the ancestor type of an object must also be an object type.

E2020: Object or class type required (see page 446) This error message is given when the syntax 'Typename.Methodname' is used,
but the typename does not refer to an object or class type.

E2254: Overloaded procedure '%s' must be marked with the 'overload' directive
(see page 447)

The compiler has encountered a procedure, which is not marked overload, with
the same name as a procedure already marked overload. All overloaded
procedures must be marked as such.

E2017: Pointer type required (see page 447) This error message is given when you apply the dereferencing operator '^' to an
operand that is not a pointer, and, as a very special case, when the second
operand in a 'Raise <exception> at <address>' statement is not a pointer.

E2267: Previous declaration of '%s' was not marked with the 'overload' directive
(see page 448)

There are two solutions to this problem. You can either remove the attempt at
overloading or you can mark the original declaration with the overload directive.
The example shown here marks the original declaration.

E2121: Procedure or function name expected (see page 448) You have specified an identifier which does not represent a procedure or function
in an EXPORTS clause.

E2299: Property required (see page 449) You need to add a property to your program.
The declaration of a property specifies a name and a type, and includes at least
one access specifier. The syntax of a property declaration is:

E2018: Record, object or class type required (see page 449) The compiler was expecting to find the type name which specified a record,
object or class but did not find one.

E2023: Function needs result type (see page 450) You have declared a function, but have not specified a return type.

E2366: Global procedure or class static method expected (see page 450) No further information is available for this error or warning.

E2036: Variable required (see page 451) This error message occurs when you try to take the address of an expression or
a constant.

E2082: TYPEOF can only be applied to object types with a VMT (see page
451)

This error message is issued if you try to apply the standard function TypeOf to
an object type that does not have a virtual method table.
A simple workaround is to declare a dummy virtual procedure to force the
compiler to generate a VMT.

E2014: Statement expected, but expression of type '%s' found (see page 452) The compiler was expecting to find a statement, but instead it found an
expression of the specified type.

E2279: Too many nested conditional directives (see page 452) Conditional-directive constructions can be nested up to 32 levels deep.

E2409: Fully qualified nested type name %s exceeds 1024 byte limit (see
page 452)

No further information is available for this error or warning.

E2079: Procedure NEW needs constructor (see page 452) This error message is issued when an identifier given in the parameter list to New
is not a constructor.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

327

3

W1039: No configuration files found (see page 453) The compiler could not locate the configuration files referred to in the source
code.

E2256: Dispose not supported (nor necessary) for dynamic arrays (see page
453)

The compiler has encountered a use of the standard procedure DISPOSE on a
dynamic array. Dynamic arrays are reference counted and will automatically free
themselves when there are no longer any references to them.

E2250: There is no overloaded version of '%s' that can be called with these
arguments (see page 454)

An attempt has been made to call an overloaded function that cannot be resolved
with the current set of overloads.

E2450: There is no overloaded version of array property '%s' that can be used
with these arguments (see page 454)

To correct this error, either change the arguments so that their types match a
version of the array property, or add a new overload of the array property with
types that match the arguments.

E2273: No overloaded version of '%s' with this parameter list exists (see page
455)

An attempt has been made to call an overloaded procedure but no suitable
match could be found.

E2025: Procedure cannot have a result type (see page 455) You have declared a procedure, but given it a result type. Either you really meant
to declare a function, or you should delete the result type.

W1035: Return value of function '%s' might be undefined (see page 456) This warning is displayed if the return value of a function has not been assigned
a value on every code path.
To put it another way, the function could execute so that it never assigns
anything to the return value.

E2134: Type '%s' has no type info (see page 457) You have applied the TypeInfo standard procedure to a type identifier which does
not have any run-time type information associated with it.

E2220: Never-build package '%s' requires always-build package '%s' (see
page 458)

You are attempting to create a no-build package which requires an always-build
package. Since the interface of an always-build package can change at anytime,
and since giving the no-build flag instructs the compiler to assume that a package
is up-to-date, each no-build package can only require other packages that are
also marked no-build.

E2093: Label '%s' is not declared in current procedure (see page 458) In contrast to standard Pascal, Borland's Delphi language does not allow a goto
to jump out of the current procedure.
However, his construct is mainly useful for error handling, and the Delphi
language provides a more general and structured mechanism to deal with errors:
exception handling.

x2269: Overriding virtual method '%s.%s' has lower visibility (%s) than base class
'%s' (%s) (see page 459)

The method named in the error message has been declared as an override of a
virtual method in a base class, but the visibility in the current class is lower than
that used in the base class for the same method.
While the visibility rules of Delphil would seem to indicate that the function cannot
be seen, the rules of invoking virtual functions will cause the function to be
properly invoked through a virtual call.
Generally, this means that the method of the derived class was declared in a
private or protected section while the method of the base class... more (see
page 459)

E2411: Unit %s in package %s refers to unit %s which is not found in any
package. Packaged units must refer only to packaged units (see page 460)

No further information is available for this error or warning.

E2236: Constructors and destructors must have %s calling convention (see
page 460)

An attempt has been made to change the calling convention of a constructor or
destructor from the default calling convention.

E2179: Only register calling convention allowed in OLE automation section (
see page 461)

You have specified an illegal calling convention on a method appearing in an
'automated' section of a class declaration.

E2270: Published property getters and setters must have %s calling convention
(see page 462)

A property appearing in a published section has a getter or setter procedure that
does not have the correct calling convention.

E2391: Potentially polymorphic constructor calls must be virtual (see page 462) No further information is available for this error or warning.

E2242: '%s' is not the name of a unit (see page 462) The $NOINCLUDE directive must be given a known unit name.

E2064: Left side cannot be assigned to (see page 462) This error message is given when you try to modify a read-only object like a
constant, a constant parameter, or the return value of function.

E2430: for-in statement cannot operate on collection type '%s' (see page 463) A for-in statement can only operate on the following collection types:

• Primitive types that the compiler recognizes, such as
arrays, sets or strings

• Types that implement IEnumerable

• Types that implement the GetEnumerator pattern as
documented in the Delphi Language Guide

Ensure that the specified type meets these requirements.

H2135: FOR or WHILE loop executes zero times - deleted (see page 463) The compiler has determined that the specified looping structure will not ever
execute, so as an optimization it will remove it. Example:

E2248: Cannot use old style object types when compiling to byte code (see
page 464)

Old-style Object types are illegal when compiling to byte code.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

328

3

E2058: Class, interface and object types only allowed in type section (see
page 464)

Class or object types must always be declared with an explicit type declaration in
a type section - unlike record types, they cannot be anonymous.
The main reason for this is that there would be no way you could declare the
methods of that type - after all, there is no type name.

E2059: Local class, interface or object types not allowed (see page 465) Class and object cannot be declared local to a procedure.

E2062: Virtual constructors are not allowed (see page 465) Unlike class types, object types can only have static constructors.

E2439: Inline function must not have open array argument (see page 466) To avoid this error, remove the inline directive or use an explicitly-declared
dynamic array type instead of an open array argument.

W1049: value '%s' for option %s was truncated (see page 466) String based compiler options such as unit search paths have finite buffer limits.
This message indicates you have exceeded the buffer limit.

E2001: Ordinal type required (see page 466) The compiler required an ordinal type at this point. Ordinal types are the
predefined types Integer, Char, WideChar, Boolean, and declared enumerated
types.
Ordinal types are required in several different situations:

• The index type of an array must be ordinal.

• The low and high bounds of a subrange type must be
constant expressions of ordinal type.

• The element type of a set must be an ordinal type.

• The selection expression of a case statement must be of
ordinal type.

• The first argument to the standard procedures Inc and
Dec must be a variable of either ordinal or pointer type.

E2271: Property getters and setters cannot be overloaded (see page 467) A property has specified an overloaded procedure as either its getter or setter.

H2365: Override method %s.%s should match case of ancestor %s.%s (see
page 468)

No further information is available for this error or warning.

E2137: Method '%s' not found in base class (see page 468) You have applied the 'override' directive to a method, but the compiler is unable
to find a procedure of the same name in the base class.

E2352: Cannot override a final method (see page 469) No further information is available for this error or warning.

E2170: Cannot override a non-virtual method (see page 469) You have tried, in a derived class, to override a base method which was not
declared as one of the virtual types.

F2220: Could not compile package '%s' (see page 470) An error occurred while trying to compile the package named in the message.
The only solution to the problem is to correct the error and recompile the package.

E2199: Packages '%s' and '%s' both contain unit '%s' (see page 470) The project you are trying to compile is using two packages which both contain
the same unit. It is illegal to have two packages which are used in the same
project containing the same unit since this would cause an ambiguity for the
compiler.
A main cause of this problem is a poorly defined package set.
The only solution to this problem is to redesign your package hierarchy to remove
the ambiguity.

E2200: Package '%s' already contains unit '%s' (see page 470) The package you are compiling requires (either through the requires clause or
the package list) another package which already contains the unit specified in the
message.
It is an error to have to related packages contain the same unit. The solution to
this problem is to remove the unit from one of the packages or to remove the
relation between the two packages.

W1031: Package '%s' will not be written to disk because -J option is enabled (
see page 470)

The compiler can't write the package to disk because the -J option is attempting
to create an object file.

E2225: Never-build package '%s' must be recompiled (see page 470) The package referenced in the message was compiled as a never-build package,
but it requires another package to which interface changes have been made. The
named package cannot be used without recompiling because it was linked with a
different interface of the required package.
The only solution to this error is to manually recompile the offending package. Be
sure to specify the never-build switch, if it is still desired.

H2235: Package '%s' does not use or export '%s.%s' (see page 470) You have compiled a unit into a package which contains a symbol which does
not appear in the interface section of the unit, nor is it referenced by any code in
the unit. In effect, this code is dead code and could be removed from the unit
without changing the semantics of your program.

E2201: Need imported data reference ($G) to access '%s' from unit '%s' (see
page 470)

The unit named in the message was not compiled with the $G switch turned on.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

329

3

W1032: Exported package threadvar '%s.%s' cannot be used outside of this
package (see page 471)

Windows does not support the exporting of threadvar variables from a DLL, but
since using packages is meant to be semantically equivalent to compiling a
project without them, the Delphi compiler must somehow attempt to support this
construct.
This warning is to notify you that you have included a unit which contains a
threadvar in an interface into a package. While this is not illegal, you will not be
able to access the variable from a unit outside the package.
Attempting to access this variable may appear to succeed, but it actually did not.
A solution to this warning is... more (see page 471)

E2213: Bad packaged unit format: %s.%s (see page 471) When the compiler attempted to load the specified unit from the package, it was
found to be corrupt. This problem could be caused by an abnormal termination of
the compiler when writing the package file (for example, a power loss). The first
recommended action is to delete the offending DCP file and recompile the
package.

E2006: PACKED not allowed here (see page 471) The packed keyword is only legal for set, array, record, object, class and file
types. In contrast to the 16-bit version of Delphi, packed will affect the layout of
record, object and class types.

E2394: Parameterless constructors not allowed on record types (see page
472)

No further information is available for this error or warning.

E2363: Only methods of descendent types may access protected symbol
[%s]%s.%s across assembly boundaries (see page 472)

No further information is available for this error or warning.

E2375: PRIVATE or PROTECTED expected (see page 472) No further information is available for this error or warning.

W1045: Property declaration references ancestor private '%s.%s' (see page
472)

This warning indicates that your code is not portable to C++. This is important for
component writers who plan to distribute custom components.
In the Delphi language, you can declare a base class with a private member, and
a child class in the same unit can refer to the private member. In C++, this
construction is not permitted. To fix it, change the child to refer to either a
protected member of the base class or a protected member of the child class.
Following is an example of code that would cause this error:

H2219: Private symbol '%s' declared but never used (see page 472) The symbol referenced appears in a private section of a class, but is never used
by the class. It would be more memory efficient if you removed the unused
private field from your class definition.

E2357: PROCEDURE, FUNCTION, or CONSTRUCTOR expected (see page
473)

No further information is available for this error or warning.

E2122: PROCEDURE or FUNCTION expected (see page 473) This error message is produced by two different constructs, but in both cases the
compiler is expecting to find the keyword 'procedure' or the keyword 'function'.

x2367: Case of property accessor method %s.%s should be %s.%s (see page
474)

No further information is available for this error or warning.

E2300: Cannot generate property accessor '%s' because '%s' already exists (
see page 474)

No further information is available for this error or warning.

E2370: Cannot use inherited methods for interface property accessors (see
page 474)

No further information is available for this error or warning.

H2369: Property accessor %s should be %s (see page 474) No further information is available for this error or warning.

H2368: Visibility of property accessor method %s should match property %s.%s
(see page 474)

No further information is available for this error or warning.

E2181: Redeclaration of property not allowed in OLE automation section (see
page 474)

It is not allowed to move the visibility of a property into an automated section.

E2206: Property overrides not allowed in interface type (see page 475) A property which was declared in a base interface has been overridden in an
interface extension.

E2356: Property accessor must be an instance field or method (see page 476) No further information is available for this error or warning.

E2434: Property declarations not allowed in anonymous record or local record
type (see page 476)

Record types that are declared in local scopes or declared in-place in variable
declarations can only contain field declarations. For advanced features in record
types (such as methods, properties, and nested types), the record type must be
an explicitly declared global type.

E2148: Dynamic method or message handler not allowed here (see page 476) Dynamic and message methods cannot be used as accessor functions for
properties.

E2233: Property '%s' inaccessible here (see page 477) An attempt has been made to access a property through a class reference type.
It is not possible to access fields nor properties of a class through a class
reference.

E2275: property attribute 'label' cannot be an empty string (see page 477) The error is output because the label attribute for g is an empty string.

E2292: '%s' must reference a property or field of class '%s' (see page 478) In custom attribute declaration syntax, you can pass values to the constructor of
the attribute class, followed by name=value pairs, where name is a property or
field of the attribute class.

E2129: Cannot assign to a read-only property (see page 478) The property to which you are attempting to assign a value did not specify a
'write' clause, thereby causing it to be a read-only property.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

330

3

E2130: Cannot read a write-only property (see page 479) The property from which you are attempting to read a value did not specify a
'read' clause, thereby causing it to be a write-only property.

E2362: Cannot access protected symbol %s.%s (see page 480) No further information is available for this error or warning.

E2389: Protected member '%s' is inaccessible here (see page 480) No further information is available for this error or warning.

H2244: Pointer expression needs no Initialize/Finalize - need ^ operator? (see
page 480)

You have attempted to finalize a Pointer type.

E2186: Published Real property '%s' must be Single, Real, Double or Extended
(see page 480)

You have attempted to publish a property of type Real, which is not allowed.
Published floating point properties must be Single, Double, or Extended.

E2187: Size of published set '%s' is >4 bytes (see page 481) The compiler does not allow sets greater than 32 bits to be contained in a
published section. The size, in bytes, of a set can be calculated by
High(setname) div 8 - Low(setname) div 8 + 1. -$M+

E2361: Cannot access private symbol %s.%s (see page 481) No further information is available for this error or warning.

E2390: Class must be sealed to call a private constructor without a type qualifier
(see page 481)

No further information is available for this error or warning.

E2398: Class methods in record types must be static (see page 482) No further information is available for this error or warning.

E2083: Order of fields in record constant differs from declaration (see page
482)

This error message occurs if record fields in a typed constant or initialized
variable are not initialized in declaration order.

E2419: Record type too large: exceeds 1 MB (see page 482) Records are limited to a size of 1MB according to the .NET SDK Documentation.
Refer to Partition II Medatada 21.8 ClassLayout: 0x0F

E2245: Recursive include file %s (see page 482) The $I directive has been used to recursively include another file. You must
check to make sure that all include files terminate without having cycles in them.

F2092: Program or unit '%s' recursively uses itself (see page 482) An attempt has been made for a unit to use itself.

E2214: Package '%s' is recursively required (see page 483) When compiling a package, the compiler determined that the package requires
itself.

E2145: Re-raising an exception only allowed in exception handler (see page
483)

You have used the syntax of the raise statement which is used to reraise an
exception, but the compiler has determined that this reraise has occurred outside
of an exception handler block. A limitation of the current exception handling
mechanism disallows reraising exceptions from nested exception handlers. for
the exception.

E2377: Unable to locate Borland.Delphi.Compiler.ResCvt.dll (see page 484) No further information is available for this error or warning.

E2381: Resource string length exceeds Windows limit of 4096 characters (see
page 484)

No further information is available for this error or warning.

E2024: Invalid function result type (see page 484) File types are not allowed as function result types.

Linker error: %s (see page 484) The resource linker (RLINK32) has encountered an error while processing a
resource file. This error may be caused by any of the following reasons:

• You have used a duplicate resource name. Rename one
of the resources.

• You have a corrupted resource file. You need to replace it
with another version that is not corrupted or remove it.

• You are using an unsupported resource type, such as a
16-bit resource or form template.

• If converting resources such as 16-bit icons to 32-bit, the
resource linker may have encountered problems.

Linker error: %s: %s (see page 485) The resource linker (RLINK32) has encountered an error while processing a
resource file. A resource linked into the project has the same type and name, or
same type and resource ID, as another resource linked into the project. (In
Delphi, duplicate resources are ignored with a warning. In Kylix, duplicates cause
an error.)

E2215: 16-Bit segment encountered in object file '%s' (see page 485) A 16-bit segment has been found in an object file that was loaded using the $L
directive.

E2091: Segment/Offset pairs not supported in CodeGear 32-bit Pascal (see
page 485)

32-bit code no longer uses the segment/offset addressing scheme that 16-bit
code used.
In 16-bit versions of CodeGear Pascal, segment/offset pairs were used to declare
absolute variables, and as arguments to the Ptr standard function.
Note that absolute addresses should not be used in 32-bit protected mode
programs. Instead appropriate Win32 API functions should be called.

E2153: ';' not allowed before 'ELSE' (see page 485) You have placed a ';' directly before an ELSE in an IF-ELSE statement. The
reason for this is that the ';' is treated as a statement separator, not a statement
terminator - IF-ELSE is one statement, a ';' cannot appear in the middle (unless
you use compound statements).

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

331

3

E2028: Sets may have at most 256 elements (see page 486) This error message appears when you try to declare a set type of more than 256
elements. More precisely, the ordinal values of the upper and lower bounds of
the base type must be within the range 0..255.

E2282: Property setters cannot take var parameters (see page 486) This message is displayed when you try to use a var parameter in a property
setter parameter. The parameter of a property setter procedure cannot be a var
or out parameter.

E2193: Slice standard function only allowed as open array argument (see
page 487)

An attempt has been made to pass an array slice to a fixed size array. Array
slices can only be sent to open array parameters. none

E2454: Slice standard function not allowed for VAR nor OUT argument (see
page 487)

You cannot write back to a slice of an array, so you cannot use the slice standard
function to pass an argument that is var or out. If you must modify the array,
either pass in the full array or use an array variable to hold the desired part of the
full array.

E2240: $EXTERNALSYM and $NODEFINE not allowed for '%s'; only global
symbols (see page 487)

The $EXTERNALSYM and $NODEFINE directives can only be applied to global
symbols.

W1014: String constant truncated to fit STRING[%ld] (see page 487) A string constant is being assigned to a variable which is not large enough to
contain the entire string. The compiler is alerting you to the fact that it is
truncating the literal to fit into the variable. -W

E2354: String element cannot be passed to var parameter (see page 488) No further information is available for this error or warning.

E2056: String literals may have at most 255 elements (see page 488) This error message occurs when you declare a string type with more than 255
elements, if you assign a string literal of more than 255 characters to a variable of
type ShortString, or when you have more than 255 characters in a single
character string.
Note that you can construct long string literals spanning more than one line by
using the '+' operator to concatenate several string literals.

E2408: Can't extract strong name key from assembly %s (see page 489) No further information is available for this error or warning.

W1044: Suspicious typecast of %s to %s (see page 489) This warning flags typecasts like PWideChar(String) or PChar(WideString) which
are casting between different string types without character conversion.

E2272: Cannot use reserved unit name '%s' (see page 489) An attempt has been made to use one of the reserved unit names, such as
System, as the name of a user-created unit.
The names in the following list are currently reserved by the compiler.

• System

• SysInit

E2156: Expression too complicated (see page 489) The compiler has encounter an expression in your source code that is too
complicated for it to handle.
Reduce the complexity of your expression by introducing some temporary
variables.

E2283: Too many local constants. Use shorter procedures (see page 489) One or more of your procedures contain so many string constant expressions
that they exceed the compiler's internal storage limit. This can occur in code that
is automatically generated. To fix this, you can shorten your procedures or
declare contant identifiers instead of using so many literals in the code.

E2163: Too many conditional symbols (see page 490) You have exceeded the memory allocated to conditional symbols defined on the
command line (including configuration files). There are 256 bytes allocated for all
the conditional symbols. Each conditional symbol requires 1 extra byte when
stored in conditional symbol area.
The only solution is to reduce the number of conditional compilation symbols
contained on the command line (or in configuration files).

E2226: Compilation terminated; too many errors (see page 490) The compiler has surpassed the maximum number of errors which can occur in a
single compilation.
The only solution is to address some of the errors and recompile the project.

E2034: Too many actual parameters (see page 490) This error message occurs when a procedure or function call gives more
parameters than the procedure or function declaration specifies.
Additionally, this error message occurs when an OLE automation call has too
many (more than 255), or too many named parameters.

E2436: Type declarations not allowed in anonymous record or local record type
(see page 491)

Record types that are declared in local scopes or declared in-place in variable
declarations can only contain field declarations. For advanced features in record
types (such as methods, properties, and nested types), the record type must be
an explicitly declared global type.

E2005: '%s' is not a type identifier (see page 491) This error message occurs when the compiler expected the name of a type, but
the name it found did not stand for a type.

x2243: Expression needs no Initialize/Finalize (see page 491) You have attempted to use the standard procedure Finalize on a type that
requires no finalization.

E2100: Data type too large: exceeds 2 GB (see page 492) You have specified a data type which is too large for the compiler to represent.
The compiler will generate this error for datatypes which are greater or equal to 2
GB in size. You must decrease the size of the description of the type.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

332

3

E2101: Size of data type is zero (see page 492) Record types must contain at least one instance data field. Zero-size records are
not allowed in .NET.

W1016: Typed constant '%s' passed as var parameter (see page 492) This error message is reserved.

W1055: Published caused RTTI ($M+) to be added to type '%s' (see page 492) You added a 'PUBLISHED' section to a class that was not compiled while the
{$M+}/{$TYPEINFO ON} switch was in effect, or without deriving from a class
compiled with the {$M+}/{$TYPEINFO ON} switch in effect.
The TypeInfo standard procedure requires a type identifier as its parameter. In
the code above, 'NotType' does not represent a type identifier.
To avoid this error, ensure that you compile while the {$M+}/{$TYPEINFO ON}
switch is on, or derive from a class that was compiled with {$M+}/{$TYPEINFO
ON} switch on.

E2133: TYPEINFO standard function expects a type identifier (see page 493) You have attempted to obtain type information for an identifier which does not
represent a type.

E2147: Property '%s' does not exist in base class (see page 493) The compiler believes you are attempting to hoist a property to a different
visibility level in a derived class, but the specified property does not exist in the
base class.

E2452: Unicode characters not allowed in published symbols (see page 494) The VCL Run-Time Type Information (RTTI) subsystem and the streaming of
DFM files require that published symbols are non-Unicode (ANSI) characters.
Consider whether this symbol needs to be published, and if so, use ANSI
characters instead of Unicode.

W1041: Error converting Unicode char to locale charset. String truncated. Is your
LANG environment variable set correctly? (see page 494)

This message occurs when you are trying to convert strings in Unicode to your
local character set and the string contains characters that are not valid for the
current locale. For example, this may occur when converting WideString to
AnsiString or if attempting to display Japanese characters in an English locale.

W1006: Unit '%s' is deprecated (see page 494) The unit is deprecated, but continues to be available to support backward
compatibility.
The unit is tagged (using the deprecated hint directive) as no longer current and
is maintained for compatibility only. You should consider updating your source
code to use another unit, if possible.
The $WARN UNIT_DEPRECATED ON/OFF compiler directive turns on or off all
warnings about the deprecated directive in units where the deprecated directive
is specified.

W1007: Unit '%s' is experimental (see page 494) An "experimental" directive has been used on an identifier. "Experimental"
indicates the presence of a class or unit which is incomplete or not fully tested.

F2048: Bad unit format: '%s' (see page 495) This error occurs when a compiled unit file (.dcu file) has a bad format.
Most likely, the file has been corrupted. Recompile the file if you have the source.
If the problem persists, you may have to reinstall Delphi.

W1052: Can't find System.Runtime.CompilerServices.RunClassConstructor. Unit
initialization order will not follow uses clause order (see page 495)

This warning indicates that the initialization order defined by the Delphi language,
that specified by the order of units in the uses clause, is not guaranteed.
The RunClassConstructor function is used to execute the initialization sections of
units used by the current unit in the order specified by the current unit's uses
clauses. This warning will be issued if the compiler cannot find this function in the
.NET Framework you are linking against. For example, it will occur when linking
against the .NET Compact Framework, which does not implement
RunClassConstructor.

W1004: Unit '%s' is specific to a library (see page 495) The whole unit is tagged (using the library hint directive) as one that may not be
available in all libraries. If you are likely to use different libraries, it may cause a
problem.
The $WARN UNIT_LIBRARY ON/OFF compiler directive turns on or off all
warnings in units where the library directive is specified.

E1038: Unit identifier '%s' does not match file name (see page 495) The unit name in the top unit is case sensitive and must match the name with
respect to upper- and lowercase letters exactly. The unit name is case sensitive
only in the unit declaration.

W1005: Unit '%s' is specific to a platform (see page 495) The whole unit is tagged (using the platform hint directive) as one that contains
material that may not be available on all platforms. If you are writing
cross-platform applications, it may cause a problem. For example, a unit that
uses objects defined in OleAuto might be tagged using the PLATFORM directive
The $WARN UNIT_PLATFORM ON/OFF compiler directive turns on or off all
warnings about the platform directive in units where the platform directive is
specified.

E2070: Unknown directive: '%s' (see page 495) This error message appears when the compiler encounters an unknown directive
in a procedure or function declaration.
The directive is probably misspelled, or a semicolon is missing.

E2328: Linker error while emitting metadata (see page 496) No further information is available for this error or warning.

E2400: Unknown Resource Format '%s' (see page 496) No further information is available for this error or warning.

E2216: Can't handle section '%s' in object file '%s' (see page 496) You are trying to link object modules into your program with the $L compiler
directive. However, the object file is too complex for the compiler to handle. For
example, you may be trying to link in a C++ object file. This is not supported.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

333

3

E2405: Unknown element type found importing signature of %s.%s (see page
496)

No further information is available for this error or warning.

E2417: Field offset cannot be determined for variant record because previous
field type is unknown size record type (see page 496)

Private types in an assembly are not imported and are marked as having an
unreliable size. If a record is declared as having at least one private field or it has
one field whose type size is unreliable then this error will occur.

E2166: Unnamed arguments must precede named arguments in OLE
Automation call (see page 496)

You have attempted to follow named OLE Automation arguments with unnamed
arguments.

E2289: Unresolved custom attribute: %s (see page 497) A custom attribute declaration was not followed by a symbol declaration such as
a type, variable, method, or parameter declaration.

W1048: Unsafe typecast of '%s' to '%s' (see page 497) You have used a data type or operation for which static code analysis cannot
prove that it does not overwrite memory. In a secured execution environment
such as .NET, such code is assumed to be unsafe and a potential security risk.

W1047: Unsafe code '%s' (see page 497) You have used a data type or operation for which static code analysis cannot
prove that it does not overwrite memory. In a secured execution environment
such as .NET, such code is assumed to be unsafe and a potential security risk.

E2406: EXPORTS section allowed only if compiling with {$UNSAFECODE ON}
(see page 497)

No further information is available for this error or warning.

W1046: Unsafe type '%s%s%s' (see page 497) You have used a data type or operation for which static code analysis cannot
prove that it does not overwrite memory. In a secured execution environment
such as .NET, such code is assumed to be unsafe and a potential security risk.

E2396: Unsafe code only allowed in unsafe procedure (see page 497) No further information is available for this error or warning.

E2395: Unsafe procedure only allowed if compiling with {$UNSAFECODE ON}
(see page 498)

No further information is available for this error or warning.

E2397: Unsafe pointer only allowed if compiling with {$UNSAFECODE ON} (
see page 498)

No further information is available for this error or warning.

E2410: Unsafe pointer variables, parameters or consts only allowed in unsafe
procedure (see page 498)

No further information is available for this error or warning.

x1025: Unsupported language feature: '%s' (see page 498) You are attempting to translate a Delphi unit to a C++ header file which contains
unsupported language features.
You must remove the offending construct from the interface section before the
unit can be translated.

E2057: Unexpected end of file in comment started on line %ld (see page 498) This error occurs when you open a comment, but do not close it.
Note that a comment started with '{' must be closed with '}', and a comment
started with '(*' must be closed with '*)'.

E2280: Unterminated conditional directive (see page 498) For every {$IFxxx}, the corresponding {$ENDIF} or {$IFEND} must be found
within the same source file. This message indicates that you do not have an
equal number of ending directives.
This error message is reported at the source line of the last $IF/$IFDEF/etc. with
no matching $ENDIF/$IFEND. This gives you a good place to start looking for the
source of the problem.

E2052: Unterminated string (see page 498) The compiler did not find a closing apostrophe at the end of a character string.
Note that character strings cannot be continued onto the next line - however, you
can use the '+' operator to concatenate two character strings on separate lines.

H2164: Variable '%s' is declared but never used in '%s' (see page 499) You have declared a variable in a procedure, but you never actually use it. -H

W1036: Variable '%s' might not have been initialized (see page 499) This warning is given if a variable has not been assigned a value on every code
path leading to a point where it is used.

E2157: Element 0 inaccessible - use 'Length' or 'SetLength' (see page 501) The Delphi String type does not store the length of the string in element 0. The
old method of changing, or getting, the length of a string by accessing element 0
does not work with long strings.

E2255: New not supported for dynamic arrays - use SetLength (see page 502) The program has attempted to use the standard procedure NEW on a dynamic
array. The proper method for allocating dynamic arrays is to use the standard
procedure SetLength.

E2212: Package unit '%s' cannot appear in contains or uses clauses (see
page 502)

The unit named in the error is a package unit and as such cannot be included in
your project. A possible cause of this error is that somehow a Delphi unit and a
package unit have been given the same name. The compiler is finding the
package unit on its search path before it can locate a same-named Delphi file.
Packages cannot be included in a project by inclusion of the package unit in the
uses clause.

F2063: Could not compile used unit '%s' (see page 502) This fatal error is given when a unit used by another could not be compiled. In
this case, the compiler gives up compilation of the dependent unit because it is
likely very many errors will be encountered as a consequence.

E2090: User break - compilation aborted (see page 502) This message is currently unused.

E2165: Compile terminated by user (see page 502) You pressed Ctrl-Break during a compile.

E2142: Inaccessible value (see page 502) You have tried to view a value that is not accessible from within the integrated
debugger. Certain types of values, such as a 0 length Variant-type string, cannot
be viewed within the debugger.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

334

3

H2077: Value assigned to '%s' never used (see page 503) The compiler gives this hint message if the value assigned to a variable is not
used. If optimization is enabled, the assignment is eliminated.
This can happen because either the variable is not used anymore, or because it
is reassigned before it is used.

E2088: Variable name expected (see page 504) This error message is issued if you try to declare an absolute variable, but the
absolute directive is not followed by an integer constant or a variable name.

E2171: Variable '%s' inaccessible here due to optimization (see page 504) The evaluator or watch statement is attempting to retrieve the value of <name>,
but the compiler was able to determine that the variables actual lifetime ended
prior to this inspection point. This error will often occur if the compiler determines
a local variable is assigned a value that is not used beyond a specific point in the
program's control flow.

E2033: Types of actual and formal var parameters must be identical (see page
505)

For a variable parameter, the actual argument must be of the exact type of the
formal parameter.

E2277: Only external cdecl functions may use varargs (see page 505) This message indicates that you are trying to implement a varargs routine. You
cannot implement varargs routines, you can only call external varargs.

F2051: Unit %s was compiled with a different version of %s.%s (see page 505) This fatal error occurs when the declaration of symbol declared in the interface
part of a unit has changed, and the compiler cannot recompile a unit that relies
on this declaration because the source is not available to it.
There are several possible solutions - recompile Unit1 (assuming you have the
source code available), use an older version of Unit2 or change Unit2, or get a
new version of Unit1 from whoever has the source code.
This error can also occur when a unit in your project has the same name as a
standard Delphi unit.
For example, this may... more (see page 505)

E2379: Virtual methods not allowed in record types (see page 506) No further information is available for this error or warning.

E2423: Void type not usable in this context (see page 506) The System type Void is not allowed to be used in some contexts. As an
example, the following code demostrates the contexts where type Void may not
be used.

E2221: $WEAKPACKAGEUNIT '%s' cannot have initialization or finalization code
(see page 506)

A unit which has been flagged with the $weakpackageunit directive cannot
contain initialization or finalization code, nor can it contain global data. The
reason for this is that multiple copies of the same weakly packaged units can
appear in an application, and then referring to the data for that unit becomes and
ambiguous proposition. This ambiguity is furthered when dynamically loaded
packages are used in your applications.

E2203: $WEAKPACKAGEUNIT '%s' contains global data (see page 507) A unit which was marked with $WEAKPACKAGEUNIT is being placed into a
package, but it contains global data. It is not legal for such a unit to contain global
data or initialization or finalization code.
The only solutions to this problem are to remove the $WEAKPACKAGEUNIT
mark, or remove the global data from the unit before it is put into the package.

W1050: WideChar reduced to byte char in set expressions (see page 507) "Set of char" in Win32 defines a set over the entire range of the Char type. Since
Char is a byte-sized type in Win32, this defines a set of maximum size containing
256 elements. In .NET, Char is a word-sized type, and this range (0..65535)
exceeds the capacity of the set type.
To accomodate existing code that uses this "Set of Char" syntax, the compiler
will treat the expression as "set of AnsiChar". The warning message reminds you
that the set can only store the boolean state of 256 distinct elements, not the full
range of the Char type.

E2152: Wrong or corrupted version of RLINK32.DLL (see page 507) The internal consistency check performed on the RLINK32.DLL file has failed.
Contact CodeGear if you encounter this error.

E2015: Operator not applicable to this operand type (see page 507) This error message is given whenever an operator cannot be applied to the
operands it was given - for instance if a boolean operator is applied to a pointer.

W1206: XML comment on '%s' has cref attribute '%s' that could not be resolved
(see page 508)

This warning message occurs when the XML has a cref attribute that cannot be
resolved.
This is a warning in XML documentation processing. The XML is well formed, but
the comment's meaning is questionable. XML cref references follow the .NET
style. See http://msdn2.microsoft.com/en-us/library/acd0tfbe.aspx for more
details. A documentation warning does not prevent building.

W1205: XML comment on '%s' has badly formed XML--'The character '%c' was
expected.' (see page 508)

This warning message occurs when the expected character was not found in the
XML.
This is an error in XML documentation processing. The XML is not well formed.
This is a warning because a documentation error does not prevent building.

W1204: XML comment on '%s' has badly formed XML--'A name contained an
invalid character.' (see page 508)

This warning message occurs when a name in XML contains an invalid character.
This is an error in XML documentation processing. The XML is not well formed.
This is a warning because a documentation error does not prevent building.

W1203: XML comment on '%s' has badly formed XML--'A name was started with
an invalid character.' (see page 508)

This warning message occurs when an XML name was started with an invalid
character.
This is an error in XML documentation processing. The XML is not well formed.
This is a warning because a documentation error does not prevent building.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

335

3

W1208: Parameter '%s' has no matching param tag in the XML comment for '%s'
(but other parameters do) (see page 508)

This warning message occurs when an XML Parameter has no matching param
tag in the XML comment but other parameters do.
This is a warning in XML documentation processing. There is at least one tag,
but some parameters in the method don't have a tag. A documentation warning
does not prevent building.

W1207: XML comment on '%s' has a param tag for '%s', but there is no
parameter by that name (see page 508)

This warning message occurs when the XML contains a parameter tag for a
nonexistent parameter.
This is a warning in XML documentation processing. The XML is well formed,
however, a tag was created for a parameter that doesn't exist in a method. A
documentation warning does not prevent building.

W1202: XML comment on '%s' has badly formed XML--'Reference to undefined
entity '%s'' (see page 509)

This warning message occurs when XML references an undefined entity.
This is an error in XML documentation processing. The XML is not well formed.
This is a warning because a documentation error does not prevent building.

W1201: XML comment on '%s' has badly formed XML--'Whitespace is not
allowed at this location.' (see page 509)

This warning message occurs when the compiler encounters white space in a
location in which white space is not allowed.
This is an error in XML documentation processing. The XML is not well formed.
This is a warning because a documentation error does not prevent building.

W1013: Constant 0 converted to NIL (see page 509) The Delphi compiler now allows the constant 0 to be used in pointer expressions
in place of NIL. This change was made to allow older code to still compile with
changes which were made in the low-level RTL.

3.1.2.1.1 DisposeCount cannot be declared in classes with destructors
No further Help is available for this message or warning.

3.1.2.1.2 E2190: Thread local variables cannot be ABSOLUTE
A thread local variable cannot refer to another variable, nor can it reference an absolute memory address.

program Produce;

 threadvar
 secretNum : integer absolute $151;

begin
end.

The absolute directive is not allowed in a threadvar declaration section.

program Solve;

 threadvar
 secretNum : integer;

 var
 sNum : integer absolute $151;

begin
end.

There are two easy ways to solve a problem of this nature. The first is to remove the absolute directive from the threadvar
section. The second would be to move the absolute variable to a normal var declaration section.

3.1.2.1.3 E2249: Cannot use absolute variables when compiling to byte code
The use of absolute variables is prohibited when compiling to byte code.

3.1.2.1.4 E2373: Call to abstract method %s.%s
No further information is available for this error or warning.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

336

3

3.1.2.1.5 E2371: ABSTRACT and FINAL cannot be used together
A class cannot be both final and abstract.

Final is a restrictive modifier used to prevent extension of a class (or prevent overrides on methods), while the abstract modifier
signals the intention to use a class as a base class.

3.1.2.1.6 E2136: No definition for abstract method '%s' allowed
You have declared <name> to be abstract, but the compiler has found a definition for the method in the source file. It is illegal to
provide a definition for an abstract declaration.

program Produce;

 type
 Base = class
 procedure Foundation; virtual; abstract;
 end;

 procedure Base.Foundation;
 begin
 end;

begin
end.

Abstract methods cannot be defined. An error will appear at the point of Base.Foundation when you compile this program.

program Solve;

 type
 Base = class
 procedure Foundation; virtual; abstract;
 end;

 Derived = class (Base)
 procedure Foundation; override;
 end;

 procedure Derived.Foundation;
 begin
 end;

begin
end.

Two steps are required to solve this error. First, you must remove the definition of the abstract procedure which is declared in the
base class. Second, you must extend the base class, declare the abstract procedure as an 'override' in the extension, and then
provide a definition for the newly declared procedure.

3.1.2.1.7 E2167: Abstract methods must be virtual or dynamic
When declaring an abstract method in a base class, it must either be of regular virtual or dynamic virtual type.

program Produce;

 type
 Base = class
 procedure DaliVision; abstract;
 procedure TellyVision; abstract;
 end;

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

337

3

begin
end.

The declaration above is in error because abstract methods must either be virtual or dynamic.

program Solve;

 type
 Base = class
 procedure DaliVision; virtual; abstract;
 procedure TellyVision; dynamic; abstract;
 end;

begin
end.

It is possible to remove this error by either specifying 'virtual' or 'dynamic', whichever is most appropriate for your application.

3.1.2.1.8 E2383: ABSTRACT and SEALED cannot be used together
A class cannot be both sealed and abstract.

The sealed modifier is used to prevent inheritance of a class, while the abstract modifier signals the intention to use a class as a
base class.

3.1.2.1.9 E2247: Cannot take the address when compiling to byte code
The address-of operator, @, cannot be used when compiling to byte code.

3.1.2.1.10 E2251: Ambiguous overloaded call to '%s'
Based on the current overload list for the specified function, and the programmed invocation, the compiler is unable to determine
which version of the procedure should be invoked.

program Produce;

procedure f0(a : integer); overload;
begin
end;

procedure f0(a : integer; b : char = 'A'); overload;
begin
end;

begin
 f0(1);
end.

In this example, the default parameter that exists in one of the versions of f0 makes it impossible for the compiler to determine
which procedure should actually be called.

program Solve;

procedure f0(a : integer); overload;
begin
end;

procedure f0(a : integer; b : char); overload;
begin
end;

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

338

3

begin
 f0(1);
end.

The approach taken in this example was to remove the default parameter value. The result here is that the procedure taking only
one integer parameter will be called. It should be noted that this approach is the only way that the single-parameter function can
be called.

3.1.2.1.11 E2099: Overflow in conversion or arithmetic operation
The compiler has detected an overflow in an arithmetic expression: the result of the expression is too large to be represented in
32 bits.

Check your computations to ensure that the value can be represented by the computer hardware.

3.1.2.1.12 E2307: NEW standard function expects a dynamic array type
identifier

No further information is available for this error or warning.

3.1.2.1.13 E2308: Need to specify at least one dimension for NEW of dynamic
array

No further information is available for this error or warning.

3.1.2.1.14 E2246: Need to specify at least one dimension for SetLength of
dynamic array

The standard procedure SetLength has been called to alter the length of a dynamic array, but no array dimensions have been
specified.

program Produce;

 var
 arr : array of integer;

begin
 SetLength(arr);
end.

The SetLength in the above example causes an error since no array dimensions have been specified.

program solve;

 var
 arr : array of integer;

begin
 SetLength(arr, 151);
end.

To remove this error from your program, specify the number of elements you want the array to contain.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

339

3

3.1.2.1.15 E2081: Assignment to FOR-Loop variable '%s'
It is illegal to assign a value to the for loop control variable inside the for loop.

If the purpose is to leave the loop prematurely, use a break or goto statement.

program Produce;

var
 I: Integer;
 A: array [0..99] of Integer;
begin
 for I := 0 to 99 do begin
 if A[I] = 42 then
 I := 99;
 end;
end.

In this case, the programmer thought that assigning 99 to I would cause the program to exit the loop.

program Solve;

var
 I: Integer;
 A: array [0..99] of Integer;
begin
 for I := 0 to 99 do begin
 if A[I] = 42 then
 Break;
 end;
end.

Using a break statement is a cleaner way to exit out of a for loop.

3.1.2.1.16 W1017: Assignment to typed constant '%s'
This warning message is currently unused.

3.1.2.1.17 E2117: 486/487 instructions not enabled
You should not receive this error as 486 instructions are always enabled.

3.1.2.1.18 E2116: Invalid combination of opcode and operands
You have specified an inline assembler statement which is not correct.

program Produce;

 procedure AssemblerExample;
 asm
 mov al, $0f0 * 16
 end;

begin
end.

The inline assembler is not capable of storing the result of $f0 * 16 into the 'al' register—it simply won't fit.

program Solve;
 procedure AssemblerExample;
 asm

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

340

3

 mov al, $0f * 16
 end;

begin
end.

Make sure that the type of both operands are compatible.

3.1.2.1.19 E2109: Constant expected
The inline assembler was expecting to find a constant but did not find one.

program Produce;

 procedure Assembly(x : Integer);
 asm
 mov ax, x MOD 10
 end;

begin
end.

The inline assembler is not capable of performing a MOD operation on a Delphi variable, thus the above code will cause an
error.

Many of the inline assembler expressions require constants to assemble correctly. Change the offending statement to have a
assemble-time constant.

3.1.2.1.20 E2118: Division by zero
The inline assembler has encountered an expression which results in a division by zero.

program Produce;

 procedure AssemblerExample;
 asm
 dw 1000 / 0
 end;

begin
end.

If you are using program constants instead of constant literals, this error might not be quite so obvious.

program Solve;

 procedure AssemblerExample;
 asm
 dw 1000 / 10
 end;

begin
end.

The solution, as when programming in high-level languages, is to make sure that you don't divide by zero.

3.1.2.1.21 E2119: Structure field identifier expected
The inline assembler recognized an identifier on the right side of a '.', but it was not a field of the record found on the left side of
the '.'. One common, yet difficult to realize, error of this sort is to use a record with a field called 'ch' - the inline assembler will
always interpret 'ch' to be a register name.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

341

3

program Produce;

 type
 Data = record
 x : Integer;
 end;

 procedure AssemblerExample(d : Data; y : Char);
 asm
 mov eax, d.y
 end;

begin
end.

In this example, the inline assembler has recognized that 'y' is a valid identifier, but it has not found 'y' to be a member of the
type of 'd'.

program Solve;

 type
 Data = record
 x : Integer;
 end;

 procedure AssemblerExample(d : Data; y : Char);
 asm
 mov eax, d.x
 end;

begin
end.

By specifying the proper variable name, the error will go away.

3.1.2.1.22 E2108: Memory reference expected
The inline assembler has expected to find a memory reference expression but did not find one.

Ensure that the offending statement is indeed a memory reference.

3.1.2.1.23 E2115: Error in numeric constant
The inline assembler has found an error in the numeric constant you entered.

program Produce;

 procedure AssemblerExample;
 asm
 mov al, $z0f0
 end;

begin
end.

In the example above, the inline assembler was expecting to parse a hexadecimal constant, but it found an erroneous character.

program Solve;

 procedure AssemblerExample;
 asm
 mov al, $f0
 end;

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

342

3

begin
end.

Make sure that the numeric constants you enter conform to the type that the inline assembler is expecting to parse.

3.1.2.1.24 E2107: Operand size mismatch
The size required by the instruction operand does not match the size given.

program Produce;

 var
 v : Integer;

 procedure Assembly;
 asm
 db offset v
 end;

begin
end.

In the sample above, the compiler will complain because the 'offset' operator produces a 'dword', but the operator is expecting a
'byte'.

program Solve;

 var
 v : Integer;

 procedure Assembly;
 asm
 dd offset v
 end;

begin
end.

The solution, for this example, is to change the operator to receive a 'dword'. In the general case, you will need to closely
examine your code and ensure that the operator and operand sizes match.

3.1.2.1.25 E2113: Numeric overflow
The inline assembler has detected a numeric overflow in one of your expressions.

program Produce;

 procedure AssemblerExample;
 asm
 mov eax, $0ffffffffffffffffffffff
 end;

begin
end.

Specifying a number which requires more than 32 bits to represent will elicit this error.

program Solve;

 procedure AssemblerExample;
 asm
 mov al, $0ff
 end;

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

343

3

begin
end.

Make sure that your numbers all fit in 32 bits.

3.1.2.1.26 E2112: Invalid register combination
You have specified an illegal combination of registers in a inline assembler statement. Please refer to an assembly language
guide for more information on addressing modes allowed on the Intel 80x86 family.

program Produce;

 procedure AssemblerExample;
 asm
 mov eax, [ecx + esp * 4]
 end;

begin
end.

The right operand specified in this mov instruction is illegal.

program Solve;

 procedure AssemblerExample;
 asm
 mov eax, [ecx + ebx * 4]
 end;

begin
end.

The addressing mode specified by the right operand of this mov instruction is allowed.

3.1.2.1.27 E2111: Cannot add or subtract relocatable symbols
The inline assembler is not able to add or subtract memory address which may be changed by the linker.

program Produce;

 var
 a : array [1..10] of Integer;
 endOfA : Integer;

 procedure Relocatable;
 begin
 end;

 procedure Assembly;
 asm
 mov eax, a + endOfA
 end;

begin
end.

Global variables fall into the class of items which produce relocatable addresses, and the inline assembler is unable to add or
subtract these.

Make sure you don't try to add or subtract relocatable addresses from within your inline assembler statements.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

344

3

3.1.2.1.28 E2106: Inline assembler stack overflow
Your inline assembler code has exceeded the capacity of the inline assembler.

Contact CodeGear if you encounter this error.

3.1.2.1.29 E2114: String constant too long
The inline assembler has not found the end of the string that you specified. The most likely cause is a misplaced closing quote.

program Produce;

 procedure AssemblerExample;
 asm
 db 'Hello world. I am an inline assembler statement
 end;

begin
end.

The inline assembler is unable to find the end of the string, before the end of the line, so it reports that the string is too long.

program Solve;

 procedure AssemblerExample;
 asm
 db 'Hello world. I am an inline assembler statement'
 end;

begin
end.

Adding the closing quote will vanquish this error.

3.1.2.1.30 E2105: Inline assembler syntax error
You have entered an expression which the inline assembler is unable to interpret as a valid assembly instruction.

program Produce;

 procedure Assembly;
 asm
 adx eax, 151
 end;

begin
end.
 program Solve;

 procedure Assembly;
 asm
 add eax, 151
 end;

begin
end.

Examine the offending inline assembly statement and ensure that it conforms to the proper syntax.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

345

3

3.1.2.1.31 E2110: Type expected
Contact CodeGear if you receive this error.

3.1.2.1.32 E2448: An attribute argument must be a constant expression, typeof
expression or array constructor

The Common Language Runtime specifies that an attribute argument must be a constant expression, a typeof expression or an
array creation expression. Attribute arguments cannot be global variables, for example. Attribute instances are constructed at
compile-time and incorporated into the assembly metadata, so no run-time information can be used to construct them.

3.1.2.1.33 E2045: Bad object file format: '%s'
This error occurs if an object file loaded with a $L or $LINK directive is not of the correct format. Several restrictions must be met:

• Check the naming restrictions on segment names in the help file

• Not more than 10 segments

• Not more than 255 external symbols

• Not more than 50 local names in LNAMES records

• LEDATA and LIDATA records must be in offset order

• No THREAD subrecords are supported in FIXU32 records

• Only 32-bit offsets can be fixed up

• Only segment and self relative fixups

• Target of a fixup must be a segment, a group or an EXTDEF

• Object must be 32-bit object file

• Various internal consistency condition that should only fail if the object file is corrupted.

3.1.2.1.34 x1028: Bad global symbol definition: '%s' in object file '%s'
This warning is given when an object file linked in with a $L or $LINK directive contains a definition for a symbol that was not
declared in Delphi as an external procedure, but as something else (e.g. a variable).

The definition in the object will be ignored in this case.

3.1.2.1.35 E2160: Type not allowed in OLE Automation call
If a data type cannot be converted by the compiler into a Variant, then it is not allowed in an OLE automation call.

program Produce;

 type
 Base = class
 x : Integer;
 end;

 var
 B : Base;
 V : Variant;

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

346

3

begin
 V.Dispatch(B);
end.

A class cannot be converted into a Variant type, so it is not allowed in an OLE call.

program Solve;

 type
 Base = class
 x : Integer;
 end;

 var
 B : Base;
 V : Variant;

begin
 V.Dispatch(B.i);
end.

The only solution to this problem is to manually convert these data types to Variants or to only use data types that can
automatically be converted into a Variant.

3.1.2.1.36 E2188: Published property '%s' cannot be of type %s
Published properties must be an ordinal type, Single, Double, Extended, Comp, a string type, a set type which fits in 32 bits, or a
method pointer type. When any other property type is encountered in a published section, the compiler will remove the published
attribute -$M+

(*$TYPEINFO ON*)
program Produce;

 type
 TitleArr = array [0..24] of char;
 NamePlate = class
 private
 titleStr : TitleArr;
 published
 property Title : TitleArr read titleStr write titleStr;
 end;

begin
end.

An error is induced because an array is not one of the data types which can be published.

(*$TYPEINFO ON*)
program Solve;

 type
 TitleArr = integer;
 NamePlate = class
 titleStr : TitleArr;
 published
 property Title : TitleArr read titleStr write titleStr;
 end;

begin
end.

Moving the property declaration out of the published section will avoid this error. Another alternative, as in this example, is to
change the type of the property to be something that can actually be published.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

347

3

3.1.2.1.37 E2055: Illegal type in Read/Readln statement
This error occurs when you try to read a variable in a Read or Readln that is not of a legal type.

Check the type of the variable and make sure you are not missing a dereferencing, indexing or field selection operator.

program Produce;
type
 TColor = (red,green,blue);
var
 Color : TColor;
begin
 Readln(Color); (*<-- Error message here*)
end.

We cannot read variables of enumerated types directly.

program Solve;
type
 TColor = (red,green,blue);
var
 Color : TColor;
 InputString: string;
const
 ColorString : array [TColor] of string = ('red', 'green', 'blue');
begin
 Readln(InputString);
 Color := red;
 while (color < blue) and (ColorString[color] <> InputString) do
 Inc(color);
end.

The solution is to read a string, and look up that string in an auxiliary table. In the example above, we didn't bother to do error
checking - any string will be treated as 'blue'. In practice, we would probably output an error message and ask the user to try
again.

3.1.2.1.38 E2053: Syntax error in real number
This error message occurs if the compiler finds the beginning of a scale factor (an 'E' or 'e' character) in a number, but no digits
follow it.

program Produce;
const
 SpeedOfLight = 3.0E 8; (*<-- Error message here*)
begin
end.

In the example, we put a space after '3.0E' - now for the compiler the number ends here, and it is incomplete.

program Solve;
const
 SpeedOfLight = 3.0E+8;
begin
end.

We could have just deleted the blank, but we put in a '+' sign because it looks nicer.

3.1.2.1.39 E2104: Bad relocation encountered in object file '%s'
You are trying to link object modules into your program with the $L compiler directive. However, the object file is too complex for
the compiler to handle. For example, you may be trying to link in a C++ object file. This is not supported.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

348

3

3.1.2.1.40 E2158: %s unit out of date or corrupted: missing '%s'
The compiler is looking for a special function which resides in System.dcu but could not find it. Your System unit is either
corrupted or obsolete.

Make sure there are no conflicts in your library search path which can point to another System.dcu. Try reinstalling System.dcu.
If neither of these solutions work, contact CodeGear Developer Support.

3.1.2.1.41 E2159: %s unit out of date or corrupted: missing '%s.%s'
The compiler failed to find a special function in System, indicating that the unit found in your search paths is either corrupted or
obsolete.

3.1.2.1.42 E2150: Bad argument type in variable type array constructor
You are attempting to construct an array using a type which is not allowed in variable arrays.

program Produce;

 type
 Fruit = (apple, orange, pear);
 Data = record
 x : Integer;
 ch : Char;
 end;

 var
 f : Fruit;
 d : Data;

 procedure Examiner(v : array of TVarRec);
 begin
 end;

begin
 Examiner([d]);
 Examiner([f]);
end.

Both calls to Examiner will fail because enumerations and records are not supported in array constructors.

program Solve;

 var
 i : Integer;
 r : Real;
 v : Variant;

 procedure Examiner(v : array of TVarRec);
 begin
 end;

begin
 i := 0; r := 0; v := 0;
 Examiner([i, r, v]);
end.

Many data types, like those in the example above, are allowed in array constructors.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

349

3

3.1.2.1.43 E2281: Type not allowed in Variant Dispatch call
This message indicates that you are trying to make a method call and are passing a type that the compiler does not know how to
marshall. Variants can hold interfaces, but the interfaces can marshall only certain types.

On Windows, Delphi supports COM and SOAP interfaces and can call types that these interfaces can marshall.

3.1.2.1.44 E2054: Illegal type in Write/Writeln statement
This error occurs when you try to output a type in a Write or Writeln statement that is not legal.

program Produce;
type
 TColor = (red,green,blue);
var
 Color : TColor;
begin
 Writeln(Color);
end.

It would have been convenient to use a writeln statement to output Color, wouldn't it?

program Solve;
type
 TColor = (red,green,blue);
var
 Color : TColor;
const
 ColorString : array [TColor] of string = ('red', 'green', 'blue');
begin
 Writeln(ColorString[Color]);
end.

Unfortunately, that is not legal, and we have to do it with an auxiliary table.

3.1.2.1.45 E2297: Procedure definition must be ILCODE calling convention
.NET managed code can only use the ILCODE calling convention.

3.1.2.1.46 E2050: Statements not allowed in interface part
The interface part of a unit can only contain declarations, not statements.

Move the bodies of procedures to the implementation part.

unit Produce;

interface

procedure MyProc;
begin (*<-- Error message here*)
end;

implementation

begin
end.

We got carried away and gave MyProc a body right in the interface section.

unit Solve;

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

350

3

interface

procedure MyProc;

implementation

procedure MyProc;
begin
end;

begin
end.

We need move the body to the implementation section - then it's fine.

3.1.2.1.47 x1012: Constant expression violates subrange bounds
This error message occurs when the compiler can determine that a constant is outside the legal range. This can occur for
instance if you assign a constant to a variable of subrange type.

program Produce;
var
 Digit: 1..9;
begin
 Digit := 0; (*Get message: Constant expression violates subrange bounds*)
end.
 program Solve;
var
 Digit: 0..9;
begin
 Digit := 0;
end.

3.1.2.1.48 E2097: BREAK or CONTINUE outside of loop
The compiler has found a BREAK or CONTINUE statement which is not contained inside a WHILE or REPEAT loop. These two
constructs are only legal in loops.

program Produce;

 procedure Error;
 var i : Integer;
 begin
 i := 0;
 while i < 100 do
 INC(i);
 if odd(i) then begin
 INC(i);
 continue;
 end;
 end;

begin
end.

The example above shows how a continue statement could seem to be included in the body of a looping construct but, due to
the compound-statement nature of The Delphi language, it really is not.

program Solve;

 procedure Error;
 var i : Integer;
 begin

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

351

3

 i := 0;
 while i < 100 do begin
 INC(i);
 if odd(i) then begin
 INC(i);
 continue;
 end;
 end;
 end;

begin
end.

Often times it is a simple matter to create compound statement out of the looping construct to ensure that your CONTINUE or
BREAK statements are included.

3.1.2.1.49 E2309: Attribute - Known attribute named argument cannot be an
array

No further information is available for this error or warning.

3.1.2.1.50 E2310: Attribute - A custom marshaler requires the custom
marshaler type

No further information is available for this error or warning.

3.1.2.1.51 E2327: Linker error while emitting attribute '%s' for '%s'
No further information is available for this error or warning.

3.1.2.1.52 E2311: Attribute - MarshalAs fixed string requires a size
No further information is available for this error or warning.

3.1.2.1.53 E2312: Attribute - Invalid argument to a known attribute
No further information is available for this error or warning.

3.1.2.1.54 E2313: Attribute - Known attribute cannot specify properties
No further information is available for this error or warning.

3.1.2.1.55 E2314: Attribute - The MarshalAs attribute has fields set that are not
valid for the specified unmanaged type

No further information is available for this error or warning.

3.1.2.1.56 E2315: Attribute - Known custom attribute on invalid target
No further information is available for this error or warning.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

352

3

3.1.2.1.57 E2316: Attribute - The format of the GUID was invalid
No further information is available for this error or warning.

3.1.2.1.58 E2317: Attribute - Known custom attribute had invalid value
No further information is available for this error or warning.

3.1.2.1.59 E2318: Attribute - The MarshalAs constant size cannot be negative
No further information is available for this error or warning.

3.1.2.1.60 E2319: Attribute - The MarshalAs parameter index cannot be
negative

No further information is available for this error or warning.

3.1.2.1.61 E2320: Attribute - The specified unmanaged type is only valid on
fields

No further information is available for this error or warning.

3.1.2.1.62 E2321: Attribute - Known custom attribute has repeated named
argument

No further information is available for this error or warning.

3.1.2.1.63 E2322: Attribute - Unexpected type in known attribute
No further information is available for this error or warning.

3.1.2.1.64 E2323: Attribute - Unrecognized argument to a known custom
attribute

No further information is available for this error or warning.

3.1.2.1.65 E2324: Attribute - Known attribute named argument doesn't support
variant

No further information is available for this error or warning.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

353

3

3.1.2.1.66 E2222: $WEAKPACKAGEUNIT & $DENYPACKAGEUNIT both
specified

It is not legal to specify both $WEAKPACKAGEUNIT and $DENYPACKAGEUNIT. Correct the source code and recompile.

3.1.2.1.67 E2276: Identifier '%s' cannot be exported
This message indicates that you are trying to export a function or procedure that is tagged with the local directive. You also,
cannot export threadvars and you would receive this message if you try to do so.

3.1.2.1.68 E2071: This type cannot be initialized
File types (including type Text), and the type Variant cannot be initialized, that is, you cannot declare typed constants or
initialized variables of these types.

program Produce;

var
 V: Variant = 0;

begin
end.

The example tries to declare an initialized variable of type Variant, which illegal.

program Solve;

var
 V: Variant;

begin
 V := 0;
end.

The solution is to initialize a normal variable with an assignment statement.

3.1.2.1.69 E2374: Cannot make unique type from %s
No further information is available for this error or warning.

3.1.2.1.70 E2223: $DENYPACKAGEUNIT '%s' cannot be put into a package
You are attempting to put a unit which was compiled with $DENYPACKAGEUNIT into a package. It is not possible to put a unit
compiled with the $DENYPACKAGEUNIT direction into a package.

3.1.2.1.71 E2217: Published field '%s' not a class or interface type
An attempt has been made to publish a field in a class which is not a class nor interface type.

program Produce;

 type
 TBaseClass = class
 published
 x : Integer;

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

354

3

 end;
begin
end.

The program above generates an error because x is included in a published section, despite the fact that it is not of a type which
can be published.

program Solve;
 type
 TBaseClass = class
 Fx : Integer;
 published
 property X : Integer read Fx write Fx;
 end;

begin
end.

To solve this problem, all fields which are not class nor interface types must be removed from the published section of a class. If
it is a requirement that the field actually be published, then it can be accomplished by changing the field into a property, as was
done in this example.

3.1.2.1.72 E2218: Published method '%s' contains an unpublishable type
This message is not used in dccil. The message applies only to Win32 compilations, where it indicates that a parameter or
function result type in the method is not a publishable type.

3.1.2.1.73 E2278: Cannot take address of local symbol %s
This message occurs when you try to call a symbol from within a procedure or function that has been tagged with the local
directive.

The local directive, which marks routines as unavailable for export, is platform-specific and has no effect in Windows
programming.

On Linux, the local directive is used for routines that are compiled into a library but are not exported. This directive can be
specified for standalone procedures and functions, but not for methods. A routine declared with local, for example,

function Contraband(I: Integer): Integer; local;

does not refresh the EBX register and hence

• cannot be exported from a library.

• cannot be declared in the interface section of a unit.

• cannot have its address taken or be assigned to a procedural-type variable.

• if it is a pure assembler routine, cannot be called from another unit unless the caller sets up EBX.

3.1.2.1.74 E2392: Can't generate required accessor method(s) for property
%s.%s due to name conflict with existing symbol %s in the same scope

The CLR requires that property accessors be methods, not fields. The Delphi language allows you to specify fields as property
accessors. The Delphi compiler will generate the necessary methods behind the scenes. CLS recommends a specific naming
convention for property accessor methods: get_propname and set_propname. If the accessors for a property are not methods, or
if the given methods do not match the CLS name pattern, the Delphi compiler will attempt to generate methods with CLS
conforming names. If a method already exists in the class that matches the CLS name pattern, but it is not associated with the
particular property, the compiler cannot generate a new property accessor method with the CLS name pattern.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

355

3

If the given property's accessors are methods, name collisions prevent the compiler from producing a CLS conforming name, but
does not prevent the property from being usable.

However, if a name conflict prevents the compiler from generating an accessor method for a field accessor, the property is not
usable and you will receive this error.

3.1.2.1.75 E2126: Cannot BREAK, CONTINUE or EXIT out of a FINALLY clause
Because a FINALLY clause may be entered and exited through the exception handling mechanism or through normal program
control, the explicit control flow of your program may not be followed. When the FINALLY is entered through the exception
handling mechanism, it is not possible to exit the clause with BREAK, CONTINUE, or EXIT - when the finally clause is being
executed by the exception handling system, control must return to the exception handling system.

 program Produce;

 procedure A0;
 begin
 try
 (* try something that might fail *)
 finally
 break;
 end;
 end;

 begin
 end.

The program above attempts to exit the finally clause with a break statement. It is not legal to exit a FINALLY clause in this
manner.

 program Solve;

 procedure A0;
 begin
 try
 (* try something that might fail *)
 finally
 end;
 end;

 begin
 end.

The only solution to this error is to restructure your code so that the offending statement does not appear in the FINALLY clause.

3.1.2.1.76 W1018: Case label outside of range of case expression
You have provided a label inside a case statement which cannot be produced by the case statement control variable. -W

program Produce;
(*$WARNINGS ON*)

 type
 CompassPoints = (n, e, s, w, ne, se, sw, nw);
 FourPoints = n..w;

 var
 TatesCompass : FourPoints;

begin

 TatesCompass := e;

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

356

3

 case TatesCompass OF
 n: Writeln('North');
 e: Writeln('East');
 s: Writeln('West');
 w: Writeln('South');
 ne: Writeln('Northeast');
 se: Writeln('Southeast');
 sw: Writeln('Southwest');
 nw: Writeln('Northwest');
 end;
end.

It is not possible for a TatesCompass to hold all the values of the CompassPoints, and so several of the case labels will elicit
errors.

program Solve;
(*$WARNINGS ON*)

 type
 CompassPoints = (n, e, s, w, ne, se, sw, nw);
 FourPoints = n..w;

 var
 TatesCompass : CompassPoints;

begin

 TatesCompass := e;
 case TatesCompass OF
 n: Writeln('North');
 e: Writeln('East');
 s: Writeln('West');
 w: Writeln('South');
 ne: Writeln('Northeast');
 se: Writeln('Southeast');
 sw: Writeln('Southwest');
 nw: Writeln('Northwest');
 end;
end.

After examining your code to determine what the intention was, there are two alternatives. The first is to change the type of the
case statement's control variable so that it can produce all the case labels. The second alternative would be to remove any case
labels that cannot be produced by the control variable. The first alternative is shown in this example.

3.1.2.1.77 E2326: Attribute '%s' can only be used once per target
This attribute can only be used once per target Attributes and their descendants may be declared with an AttributeUsage
Attribute which describes how a custom Attribute may be used. If the use of an attribute violates AttributeUsage.allowmultiple
then this error will be raised.

3.1.2.1.78 E2325: Attribute '%s' is not valid on this target
Attribute is not valid on this target. Attributes and their descendants may be declared with an AttributeUsage Attribute which
describes how a custom Attribute may be used. If the use of an attribute violates AttributeUsage.validon property then this error
will be raised. AttributeUsage.validon specifies the application element that this attribute may be applied to.

3.1.2.1.79 E2358: Class constructors not allowed in class helpers
No further information is available for this error or warning.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

357

3

3.1.2.1.80 E2360: Class constructors cannot have parameters
No further information is available for this error or warning.

3.1.2.1.81 E2340: Metadata - Data too large
No further information is available for this error or warning.

3.1.2.1.82 E2343: Metadata - Primary key column may not allow the null value
No further information is available for this error or warning.

3.1.2.1.83 E2341: Metadata - Column cannot be changed
No further information is available for this error or warning.

3.1.2.1.84 E2342: Metadata - Too many RID or primary key columns, 1 is max
No further information is available for this error or warning.

3.1.2.1.85 E2329: Metadata - Error occured during a read
No further information is available for this error or warning.

3.1.2.1.86 E2330: Metadata - Error occured during a write
No further information is available for this error or warning.

3.1.2.1.87 E2334: Metadata - Old version error
No further information is available for this error or warning.

3.1.2.1.88 E2331: Metadata - File is read only
No further information is available for this error or warning.

3.1.2.1.89 E2339: Metadata - The importing scope is not compatible with the
emitting scope

No further information is available for this error or warning.

3.1.2.1.90 E2332: Metadata - An ill-formed name was given
No further information is available for this error or warning.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

358

3

3.1.2.1.91 E2337: Metadata - There isn't .CLB data in the memory or stream
No further information is available for this error or warning.

3.1.2.1.92 E2338: Metadata - Database is read only
No further information is available for this error or warning.

3.1.2.1.93 E2335: Metadata - A shared mem open failed to open at the
originally

No further information is available for this error or warning.

3.1.2.1.94 E2336: Metadata - Create of shared memory failed. A memory
mapping of the same name already exists

No further information is available for this error or warning.

3.1.2.1.95 E2344: Metadata - Data too large
No further information is available for this error or warning.

3.1.2.1.96 E2333: Metadata - Data value was truncated
No further information is available for this error or warning.

3.1.2.1.97 F2047: Circular unit reference to '%s'
One or more units use each other in their interface parts.

As the compiler has to translate the interface part of a unit before any other unit can use it, the compiler must be able to find a
compilation order for the interface parts of the units.

Check whether all the units in the uses clauses are really necessary, and whether some can be moved to the implementation
part of a unit instead.

unit A;
interface
uses B; (*A uses B, and B uses A*)
implementation
end.

unit B;
interface
uses A;
implementation
end.

The problem is caused because A and B use each other in their interface sections.

unit A;
interface

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

359

3

uses B; (*Compilation order: B.interface, A, B.implementation*)
implementation
end.

unit B;
interface
implementation
uses A; (*Moved to the implementation part*)
end.

You can break the cycle by moving one or more uses to the implementation part.

3.1.2.1.98 E2123: PROCEDURE, FUNCTION, PROPERTY, or VAR expected
The tokens that follow "class" in a member declaration inside a class type are limited to procedure, function, var, and property.

3.1.2.1.99 E2061: Local class or interface types not allowed
Corresponds to object_local in previous compilers. Class and interface types cannot be declared inside a procedure body.

3.1.2.1.100 E2435: Class member declarations not allowed in anonymous
record or local record type

Record types that are declared in local scopes or declared in-place in variable declarations can only contain field declarations.
For advanced features in record types (such as methods, properties, and nested types), the record type must be an explicitly
declared global type.

3.1.2.1.101 E2060: Class and interface types only allowed in type section
Class or interface types must always be declared with an explicit type declaration in a type section. Unlike record types, they
cannot be anonymous.

The main reason for this is that there would be no way you could declare the methods of that type (since there is no type name).

Incorrect (attempting to declare a class type within a variable declaration):

program Produce;

var
 MyClass : class
 Field: Integer;
 end;

begin
end.

Correct:

program Solve;

type
 TMyClass = class
 Field: Integer;
 end;

var
 MyClass : TMyClass;

begin

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

360

3

end.

3.1.2.1.102 E2355: Class property accessor must be a class field or class
static method

No further information is available for this error or warning.

3.1.2.1.103 E2128: %s clause expected, but %s found
The compiler was, due to the Delphi language syntax, expecting to find a clause1 in your program, but instead found clause2.

 program Produce;

 type
 CharDesc = class
 vch : Char;

 property Ch : Char;
 end;
 end.

The first declaration of a property must specify a read and write clause, and since both are missing on the 'Ch' property, an error
will result when compiling. In the case of properties, the original intention might have been to hoist a property defined in a base
class to another visibility level - for example, from public to private. In this case, the most probable cause of the error is that the
property name was not found in the base class. Make sure that you have spelled the property name correctly and that it is
actually contained in one of the parent classes.

 program Produce;

 type
 CharDesc = class
 vch : Char;

 property Ch : Char read vch write vch;
 end;
 end.

The solution is to ensure that all the proper clauses are specified, where required.

3.1.2.1.104 E2401: Failure loading .NET Framework %s: %08X
No further information is available for this error or warning.

3.1.2.1.105 x2421: Imported identifier '%s' conflicts with '%s' in '%s'
When importing type information from a .NET assembly, the compiler may encounter symbols that do not conform to CLS
specifications. One example of this is case-sensitive versus case-insensitive identifiers. Another example is having a property in
a class with the same name as a method or field in the same class. This error message indicates that same-named symbols
were found in the same scope (members of the same class or interface) in an imported assembly and that only one of them will
be accessible from Delphi syntax.

3.1.2.1.106 E2422: Imported identifier '%s' conflicts with '%s' in namespace
'%s'

When importing type information from a .NET assembly, the compiler may encounter symbols that do not conform to CLS

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

361

3

specifications. One example of this is case-sensitive versus case-insensitive identifiers. Another example is having a property in
a class with the same name as a method or field in the same class. This error message indicates that same-named symbols
were found in the same scope (members of the same class or interface) in an imported assembly and that only one of them will
be accessible from Delphi syntax.

3.1.2.1.107 H2384: CLS: overriding virtual method '%s.%s' visibility (%s) must
match base class '%s' (%s)

No further information is available for this error or warning.

3.1.2.1.108 E2431: for-in statement cannot operate on collection type '%s'
because '%s' does not contain a member for '%s', or it is inaccessible

A for-in statement can only operate on the following collection types:

• Primitive types that the compiler recognizes, such as arrays, sets or strings

• Types that implement IEnumerable

• Types that implement the GetEnumerator pattern as documented in the Delphi Language Guide

Ensure that the specified type meets these requirements.

See Also

Declarations and Statements (see page 705)

3.1.2.1.109 W1024: Combining signed and unsigned types - widened both
operands

To mathematically combine signed and unsigned types correctly the compiler must promote both operands to the next larger
size data type and then perform the combination.

To see why this is necessary, consider two operands, an Integer with the value -128 and a Cardinal with the value 130. The
Cardinal type has one more digit of precision than the Integer type, and thus comparing the two values cannot accurately be
performed in only 32 bits. The proper solution for the compiler is to promote both these types to a larger, common, size and then
to perform the comparison.

The compiler will only produce this warning when the size is extended beyond what would normally be used for calculating the
result.

{$APPTYPE CONSOLE}
program Produce;
 var
 i : Integer;
 c : Cardinal;

begin
 i := -128;
 c := 130;
 WriteLn(i + c);
end.

In the example above, the compiler warns that the expression will be calculated at 64 bits rather than the supposed 32 bits.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

362

3

3.1.2.1.110 E2008: Incompatible types
This error message occurs when the compiler expected two types to be compatible (meaning very similar), but in fact, they
turned out to be different. This error occurs in many different situations - for example when a read or write clause in a property
mentions a method whose parameter list does not match the property, or when a parameter to a standard procedure or function
is of the wrong type.

This error can also occur when two units both declare a type of the same name. When a procedure from an imported unit has a
parameter of the same-named type, and a variable of the same-named type is passed to that procedure, the error could occur.

unit unit1;
interface
 type
 ExportedType = (alpha, beta, gamma);

implementation
begin
end.

unit unit2;
interface
 type
 ExportedType = (alpha, beta, gamma);

 procedure ExportedProcedure(v : ExportedType);

implementation
 procedure ExportedProcedure(v : ExportedType);
 begin
 end;

begin
end.

program Produce;
uses unit1, unit2;

var
 A: array [0..9] of char;
 I: Integer;
 V : ExportedType;
begin
 ExportedProcedure(v);
 I:= Hi(A);
end.

The standard function Hi expects an argument of type Integer or Word, but we supplied an array instead. In the call to
ExportedProcedure, V actually is of type unit1.ExportedType since unit1 is imported prior to unit2, so an error will occur.

unit unit1;
interface
 type
 ExportedType = (alpha, beta, gamma);

implementation
begin
end.

unit unit2;
interface
 type
 ExportedType = (alpha, beta, gamma);

 procedure ExportedProcedure(v : ExportedType);

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

363

3

implementation
 procedure ExportedProcedure(v : ExportedType);
 begin
 end;

begin
end.

program Solve;
uses unit1, unit2;
var
 A: array [0..9] of char;
 I: Integer;
 V : unit2.ExportedType;
begin
 ExportedProcedure(v);
 I:= High(A);
end.

We really meant to use the standard function High, not Hi. For the ExportedProcedure call, there are two alternative solutions.
First, you could alter the order of the uses clause, but it could also cause similar errors to occur. A more robust solution is to fully
qualify the type name with the unit which declared the desired type, as has been done with the declaration for V above.

3.1.2.1.111 E2009: Incompatible types: '%s'
The compiler has detected a difference between the declaration and use of a procedure.

program Produce;

 type
 ProcedureParm0 = procedure; stdcall;
 ProcedureParm1 = procedure(VAR x : Integer);

 procedure WrongConvention; register;
 begin
 end;

 procedure WrongParms(x, y, z : Integer);
 begin
 end;

 procedure TakesParm0(p : ProcedureParm0);
 begin
 end;

 procedure TakesParm1(p : ProcedureParm1);
 begin
 end;

begin
 TakesParm0(WrongConvention);
 TakesParm1(WrongParms);
end.

The call of 'TakesParm0' will elicit an error because the type 'ProcedureParm0' expects a 'stdcall' procedure, whereas
'WrongConvention' is declared with the 'register' calling convention. Similarly, the call of 'TakesParm1' will fail because the
parameter lists do not match.

program Solve;

 type
 ProcedureParm0 = procedure; stdcall;
 ProcedureParm1 = procedure(VAR x : Integer);

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

364

3

 procedure RightConvention; stdcall;
 begin
 end;

 procedure RightParms(VAR x : Integer);
 begin
 end;

 procedure TakesParm0(p : ProcedureParm0);
 begin
 end;

 procedure TakesParm1(p : ProcedureParm1);
 begin
 end;

begin
 TakesParm0(RightConvention);
 TakesParm1(RightParms);
end.

The solution to both of these problems is to ensure that the calling convention or the parameter lists matches the declaration.

3.1.2.1.112 E2010: Incompatible types: '%s' and '%s'
This error message results when the compiler expected two types to be compatible (or similar), but they turned out to be
different.

program Produce;

procedure Proc(I: Integer);
begin
end;

begin
 Proc(22 / 7); (*Result of / operator is Real*)
end.

Here a C++ programmer thought the division operator / would give him an integral result - not the case in Delphi.

program Solve;

procedure Proc(I: Integer);
begin
end;

begin
 Proc(22 div 7); (*The div operator gives result type Integer*)
end.

The solution in this case is to use the integral division operator div - in general, you have to look at your program very careful to
decide how to resolve type incompatibilities.

3.1.2.1.113 W1023: Comparing signed and unsigned types - widened both
operands

To compare signed and unsigned types correctly the compiler must promote both operands to the next larger size data type.

To see why this is necessary, consider two operands, a Shortint with the value -128 and a Byte with the value 130. The Byte
type has one more digit of precision than the Shortint type, and thus comparing the two values cannot accurately be performed in
only 8 bits. The proper solution for the compiler is to promote both these types to a larger, common, size and then to perform the

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

365

3

comparison.

program Produce;
 var
 s : shortint;
 b : byte;

begin
 s := -128;
 b := 130;

 assert(b < s);
end.

3.1.2.1.114 W1021: Comparison always evaluates to False
The compiler has determined that the expression will always evaluate to False. This most often can be the result of a boundary
test against a specific variable type, for example, a Integer against $80000000.

In versions of the Delphi compiler prior to 12.0, the hexadecimal constant $80000000 would have been a negative Integer value,
but with the introduction of the int64 type, this same constant now becomes a positive int64 type. As a result, comparisons of this
constant against Integer variables will no longer behave as they once did.

As this is a warning rather than an error, there is no standard method of addressing the problems: sometimes the warning can be
ignored, sometimes the code must be rewritten.

program Produce;

 var
 i : Integer;
 c : Cardinal;

begin
 c := 0;
 i := 0;
 if c < 0 then
 WriteLn('false');

 if i >= $80000000 then
 WriteLn('false');
end.

Here the compiler determines that the two expressions will always be False. In the first case, a Cardinal, which is unsigned, can
never be less than 0. In the second case, a 32-bit Integer value can never be larger than, or even equal to, an int64 value of
$80000000.

3.1.2.1.115 W1022: Comparison always evaluates to True
The compiler has determined that the expression will always evaluate to true. This most often can be the result of a boundary
test against a specific variable type, for example, a Integer against $80000000.

In versions of the CodeGear Pascal compiler prior to 12.0, the hexadecimal constant $80000000 would have been a negative
Integer value, but with the introduction of the int64 type, this same constant now becomes a positive int64 type. As a result,
comparisons of this constant against Integer variables will no longer behave as they once did.

As this is a warning rather than an error, there is no standard method of addressing the problems: sometimes the warning can be
ignored, sometimes the code must be rewritten.

program Produce;

 var
 i : Integer;

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

366

3

 c : Cardinal;

begin
 c := 0;
 i := 0;
 if c >= 0 then
 WriteLn('true');

 if i < $80000000 then
 WriteLn('true');
end.

Here the compiler determines that the two expressions will always be true. In the first case, a Cardinal, which is unsigned, will
always be greater or equal to 0. In the second case, a 32-bit Integer value will always be smaller than an int64 value of
$80000000.

3.1.2.1.116 E2026: Constant expression expected
The compiler expected a constant expression here, but the expression it found turned out not to be constant.

program Produce;
const
 Message = 'Hello World!';
 WPosition = Pos('W', Message);
begin
end.

The call to Pos is not a constant expression to the compiler, even though its arguments are constants, and it could in principle be
evaluated at compile time.

program Solve;
const
 Message = 'Hello World!';
 WPosition = 7;
begin
end.

So in this case, we just have to calculate the right value for WPosition ourselves.

3.1.2.1.117 E2192: Constants cannot be used as open array arguments
Open array arguments must be supplied with an actual array variable, a constructed array or a single variable of the argument's
element type.

program Produce;

 procedure TakesArray(s : array of String);
 begin
 end;

begin TakesArray('Hello Error');
end.

The error is caused in this example because a string literal is being supplied when an array is expected. It is not possible to
implicitly construct an array from a constant.

program Solve;

 procedure TakesArray(s : array of String);
 begin
 end;

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

367

3

begin TakesArray(['Hello Error']);
end.

The solution avoids the error because the array is explicitly constructed.

3.1.2.1.118 E2007: Constant or type identifier expected
This error message occurs when the compiler expects a type, but finds a symbol that is neither a constant (a constant could start
a subrange type), nor a type identifier.

program Produce;
var
 c : ExceptionClass; (*ExceptionClass is a variable in System*)
begin
end.

Here, ExceptionClass is a variable, not a type.

program Solve;
program Produce;
var
 c : Exception; (*Exception is a type in SysUtils*)
begin
end.

You need to make sure you specify a type. Maybe the identifier is misspelled, or it is hidden by some other identifier, for example
from another unit.

3.1.2.1.119 E2197: Constant object cannot be passed as var parameter
This error message is reserved.

3.1.2.1.120 E2177: Constructors and destructors not allowed in OLE
automation section

You have incorrectly tried to put a constructor or destructor into the 'automated' section of a class declaration.

program Produce;

 type
 Base = class
 automated
 constructor HardHatBob;
 destructor DemolitionBob;
 end;

 constructor Base.HardHatBob;
 begin
 end;

 destructor Base.DemolitionBob;
 begin
 end;

begin
end.

It is not possible to declare a class constructor or destruction in an OLE automation section. The constructor and destructor
declarations in the above code will both elicit this error.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

368

3

program Solve;

 type
 Base = class
 constructor HardHatBob;
 destructor DemolitionBob;
 end;

 constructor Base.HardHatBob;
 begin
 end;

 destructor Base.DemolitionBob;
 begin
 end;

begin
end.

The only solution to this error is to move your declarations out of the automated section, as has been done in this example.

3.1.2.1.121 x1020: Constructing instance of '%s' containing abstract method
'%s.%s'

The code you are compiling is constructing instances of classes which contain abstract methods.

program Produce;
(*$WARNINGS ON*)
(*$HINTS ON*)

 type
 Base = class
 procedure Abstraction; virtual; abstract;
 end;

 var
 b : Base;

begin
 b := Base.Create;
end.

An abstract procedure does not exist, so it becomes dangerous to create instances of a class which contains abstract
procedures. In this case, the creation of 'b' is the cause of the warning. Any invocation of 'Abstraction' through the instance of 'b'
created here would cause a runtime error. A hint will be issued that the value assigned to 'b' is never used.

program Solve;
(*$WARNINGS ON*)
(*$HINTS ON*)

 type
 Base = class
 procedure Abstraction; virtual;
 end;

 var
 b : Base;

 procedure Base.Abstraction;
 begin
 end;

begin
 b := Base.Create;

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

369

3

end.

One solution to this problem is to remove the abstract directive from the procedure declaration, as is shown here. Another
method of approaching the problem would be to derive a class from Base and then provide a concrete version of Abstraction. A
hint will be issued that the value assigned to 'b' is never used.

3.1.2.1.122 E2402: Constructing instance of abstract class '%s'
No further information is available for this error or warning.

3.1.2.1.123 E2437: Constant declarations not allowed in anonymous record or
local record type

Record types that are declared in local scopes or declared in-place in variable declarations can only contain field declarations.
For advanced features in record types (such as methods, properties, and nested types), the record type must be an explicitly
declared global type.

3.1.2.1.124 E2241: C++ obj files must be generated (-jp)
Because of the language features used, standard C object files cannot be generated for this unit. You must generate C++ object
files.

3.1.2.1.125 E2412: CREATE expected
No further information is available for this error or warning.

3.1.2.1.126 E2306: 'Self' is initialized more than once
An inherited constructor has been initialized multiple times.

3.1.2.1.127 E2304: 'Self' is uninitialized. An inherited constructor must be
called

In Delphi for .NET, a constructor must always call an inherited constructor before it may access or initialize any inherited class
members. The compiler generates an error if your constructor code does not call the inherited constructor (a valid situation in
Delphi for Win32), but it is important to examine your constructors to make sure that you do not access any inherited class fields,
directly or indirectly, before the call to the inherited constructor.

Note: A constructor can initialize fields from its own class, prior to calling the inherited constructor.

Example:

The class,

X=class
 constructor Create;
 end;

requires an inherited constructor in its Create method:

constructor X.Create;
begin
 inherited Create;

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

370

3

end;

3.1.2.1.128 E2305: 'Self' might not have been initialized
In Delphi for .NET, a constructor must always call an inherited constructor before it may access or initialize any inherited class
members. The compiler generates an error if your constructor code does not call the inherited constructor (a valid situation in
Delphi for Win32), but it is important to examine your constructors to make sure that you do not access any inherited class fields,
directly or indirectly, before the call to the inherited constructor.

Note: A constructor can initialize fields from its own class, prior to calling the inherited constructor.

3.1.2.1.129 E2302: 'Self' is uninitialized. An inherited constructor must be
called before accessing ancestor field '%s'

In Delphi for .NET, a constructor must always call an inherited constructor before it may access or initialize any inherited class
members. The compiler generates an error if your constructor code does not call the inherited constructor (a valid situation in
Delphi for Win32), but it is important to examine your constructors to make sure that you do not access any inherited class fields,
directly or indirectly, before the call to the inherited constructor.

Note: A constructor can initialize fields from its own class, prior to calling the inherited constructor.

3.1.2.1.130 E2303: 'Self' is uninitialized. An inherited constructor must be
called before calling ancestor method '%s'

In Delphi for .NET, a constructor must always call an inherited constructor before it may access or initialize any inherited class
members. The compiler generates an error if your constructor code does not call the inherited constructor (a valid situation in
Delphi for Win32), but it is important to examine your constructors to make sure that you do not access any inherited class fields,
directly or indirectly, before the call to the inherited constructor.

Note: A constructor can initialize fields from its own class, prior to calling the inherited constructor.

3.1.2.1.131 E2286: Coverage library name is too long: %s
This message is not used in this product.

3.1.2.1.132 H2455: Narrowing given wide string constant lost information
Any character in a WideString constant with ordinal value greater than 127 may be replaced with "?" if the WideChar is not
representable in the current locale codepage.

3.1.2.1.133 H2451: Narrowing given WideChar constant (#$%04X) to AnsiChar
lost information

An AnsiChar can only represent the first 256 values in a WideChar, so the second byte of the WideChar is lost when converting
it to an AnsiChar. You may wish to use WideChar instead of AnsiChar to avoid information loss.

3.1.2.1.134 E2238: Default value required for '%s'
When using default parameters a list of parameters followed by a type is not allowed; you must specify each variable and its

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

371

3

default value individually.

program Produce;

 procedure p0(a, b : Integer = 151);
 begin
 end;

begin
end.

The procedure definitions shown above will cause this error since it declares two parameters with a default value.

program Solve;

 procedure p0(a : Integer; b : Integer = 151);
 begin
 end;

 procedure p1(a : Integer = 151; b : Integer = 151);
 begin
 end;

begin
end.

Depending on the desired result, there are different ways of approaching this problem. If only the last parameter is supposed to
have the default value, then take the approach shown in the first example. If both parameters are supposed to have default
values, then take the approach shown in the second example.

3.1.2.1.135 E2237: Parameter '%s' not allowed here due to default value
When using default parameters a list of parameters followed by a type is not allowed; you must specify each variable and its
default value individually.

program Produce;

 procedure p0(a, b : Integer = 151);
 begin
 end;

begin
end.

The procedure definitions shown above will cause this error since it declares two parameters with a default value.

program Solve;

 procedure p0(a : Integer; b : Integer = 151);
 begin
 end;

 procedure p1(a : Integer = 151; b : Integer = 151);
 begin
 end;

begin
end.

Depending on the desired result, there are different ways of approaching this problem. If only the last parameter is supposed to
have the default value, then take the approach shown in the first example. If both parameters are supposed to have default
values, then take the approach shown in the second example.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

372

3

3.1.2.1.136 E2132: Default property must be an array property
The default property which you have specified for the class is not an array property. Default properties are required to be array
properties.

program Produce;

 type
 Base = class
 function GetV : Char;
 procedure SetV(x : Char);

 property Data : Char read GetV write SetV; default;
 end;

 function Base.GetV : Char;
 begin GetV := 'A';
 end;

 procedure Base.SetV(x : Char);
 begin
 end;

begin
end.

When specifying a default property, you must make sure that it conforms to the array property syntax. The 'Data' property in the
above code specifies a 'Char' type rather than an array.

program Solve;

 type
 Base = class
 function GetV(i : Integer) : Char;
 procedure SetV(i : Integer; const x : Char);

 property Data[i : Integer] : Char read GetV write SetV; default;
 end;

 function Base.GetV(i : Integer) : Char;
 begin GetV := 'A';
 end;

 procedure Base.SetV(i : Integer; const x : Char);
 begin
 end;

begin
end.

By changing the specification of the offending property to an array, or by removing the 'default' directive, you can remove this
error.

3.1.2.1.137 E2268: Parameters of this type cannot have default values
The default parameter mechanism incorporated into the Delphi compiler allows only simple types to be initialized in this manner.
You have attempted to use a type that is not supported.

program Produce;
type
 ArrayType = array [0..1] of integer;

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

373

3

 procedure p1(proc : ArrayType = [1, 2]);
 begin
 end;
end.

Default parameters of this type are not supported in the Delphi language.

program solve;
type
 ArrayType = array [0..1] of integer;

 procedure p1(proc : ArrayType);
 begin
 end;

end.

The only way to eliminate this error is to remove the offending parameter assignment or to change the type of the parameter to
one that can be initialized with a default value.

3.1.2.1.138 E2239: Default parameter '%s' must be by-value or const
Parameters which are given default values cannot be passed by reference.

program Produce;

 procedure p0(var x : Integer = 151);
 begin
 end;

begin
end.

Since the parameter x is passed by reference in this example, it cannot be given a default value.

program Solve;

 procedure p0(const x : Integer = 151);
 begin
 end;

begin
end.

In this solution, the by-reference parameter has been changed into a const parameter. Alternatively it could have been changed
into a by-value parameter or the default value could have been removed.

3.1.2.1.139 E2131: Class already has a default property
You have tried to assign a default property to a class which already has defined a default property.

program Produce;

 type
 Base = class
 function GetV(i : Integer) : Char;
 procedure SetV(i : Integer; const x : Char);

 property Data[i : Integer] : Char read GetV write SetV; default;
 property Access[i : Integer] : Char read GetV write SetV; default;
 end;

 function Base.GetV(i : Integer) : Char;
 begin GetV := 'A';

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

374

3

 end;

 procedure Base.SetV(i : Integer; const x : Char);
 begin
 end;

begin
end.

The Access property in the code above attempts to become the default property of the class, but Data has already been
specified as the default. There can be only one default property in a class.

program Solve;

 type
 Base = class
 function GetV(i : Integer) : Char;
 procedure SetV(i : Integer; const x : Char);

 property Data[i : Integer] : Char read GetV write SetV; default;
 end;

 function Base.GetV(i : Integer) : Char;
 begin GetV := 'A';
 end;

 procedure Base.SetV(i : Integer; const x : Char);
 begin
 end;

begin
end.

The solution is to remove the incorrect default property specifications from the program source.

3.1.2.1.140 E2146: Default values must be of ordinal, pointer or small set type
You have declared a property containing a default clause, but the type property type is incompatible with default values.

 program Produce;

 type
 VisualGauge = class
 pos : Single;
 property Position : Single read pos write pos default 0.0;
 end;

 begin
 end.

The program above creates a property and attempts to assign a default value to it, but since the type of the property does not
allow default values, an error is output.

 program Produce;

 type
 VisualGauge = class
 pos : Integer;
 property Position : Integer read pos write pos default 0;
 end;

 begin
 end.

When this error is encountered, there are two easy solutions: the first is to remove the default value definition, and the second is

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

375

3

to change the type of the property to one which allows a default value. Your program, however, may not be as simple to fix;
consider when you have a set property which is too large - it is this case which will require you to carefully examine your program
to determine the best solution to this problem.

3.1.2.1.141 F2087: System unit incompatible with trial version
You are using a trial version of the software. It is incompatible with the application you are trying to run.

3.1.2.1.142 E2144: Destination is inaccessible
The address to which you are attempting to put a value is inaccessible from within the IDE.

3.1.2.1.143 E2453: Destination cannot be assigned to
The integrated debugger has determined that your assignment is not valid in the current context.

3.1.2.1.144 E2290: Cannot mix destructors with IDisposable
The compiler will generate IDisposable support for a class that declares a destructor override named "Destroy". You cannot
manually implement IDisposable and implement a destructor on the same class.

3.1.2.1.145 F2446: Unit '%s' is compiled with unit '%s' in '%s' but different
version '%s' found

This error occurs if a unit must be recompiled to take in changes to another unit, but the source for the unit that needs
recompilation is not found.

Note: This error message may be experienced when using inline functions. Expansion of an inline function exposes its
implementation to all units that call the function. When a function is inline, modifications to that function must be reflected with a
recompile of every unit that uses that function. This is true even if all of the modifications occur in the implementation

section. This is one way in which inlining can make your units more interdependent, requiring greater effort to maintain binary
compatibility. This is of greatest importance to developers who distribute .dcu files without source code.

3.1.2.1.146 E2210: '%s' directive not allowed in in interface type
A directive was encountered during the parsing of an interface which is not allowed.

program Produce;
 type
 IBaseIntf = interface
 private
 procedure fnord(x, y, z : Integer);
 end;

begin
end.

In this example, the compiler gives an error when it encounters the private directive, as it is not allowed in interface types.

program Solve;
 type
 IBaseIntf = interface

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

376

3

 procedure fnord(x, y, z : Integer);
 end;

 TBaseClass = class (TInterfacedObject, IBaseIntf)
 private
 procedure fnord(x, y, z : Integer);
 end;

 procedure TBaseClass.fnord(x, y, z : Integer);
 begin
 end;
begin
end.

The only solution to this problem is to remove the offending directive from the interface definition. While interfaces do not actually
support these directives, you can place the implementing method into the desired visibility section. In this example, placing the
TBaseClass.fnord procedure into a private section should have the desired results.

3.1.2.1.147 E2228: A dispinterface type cannot have an ancestor interface
An interface type specified with dispinterface cannot specify an ancestor interface.

program Produce;

 type
 IBase = interface
 end;

 IExtend = dispinterface (IBase)
 ['{00000000-0000-0000-0000-000000000000}']

 end;

begin
end.

In the example above, the error is caused because IExtend attempts to specify an ancestor interface type.

program Solve;

 type
 IBase = interface
 end;

 IExtend = dispinterface
 ['{00000000-0000-0000-0000-000000000000}']

 end;

begin
end.

Generally there are two solutions when this error occurs: remove the ancestor interface declaration, or change the dispinterface
into a regular interface type. In the example above, the former approach was taken.

3.1.2.1.148 E2230: Methods of dispinterface types cannot specify directives
Methods declared in a dispinterface type cannot specify any calling convention directives.

program Produce;

 type
 IBase = dispinterface

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

377

3

 ['{00000000-0000-0000-0000-000000000000}']
 procedure yamadama; register;
 end;

begin
end.

The error in the example shown here is that the method 'yamadama' attempts to specify the register calling convention.

program Solve;

 type
 IBase = dispinterface
 ['{00000000-0000-0000-0000-000000000000}']
 procedure yamadama;
 end;

begin
end.

Since no dispinterface method can specify calling convention directives, the only solution to this problem is to remove the
offending directive, as shown in this example.

3.1.2.1.149 E2229: A dispinterface type requires an interface identification
When using dispinterface types, you must always be sure to include a GUID specification for them.

program Produce;

 type
 IBase = dispinterface
 end;

begin
end.

In the example shown here, the dispinterface type does not include a GUID specification, and thus causes the compiler to emit
an error.

program Solve;

 type
 IBase = dispinterface
 ['{00000000-0000-0000-0000-000000000000}']

 end;

begin
end.

Ensuring that each dispinterface has a GUID associated with it will cause this error to go away.

3.1.2.1.150 E2183: Dispid clause only allowed in OLE automation section
A dispid has been given to a property which is not in an automated section.

program Produce;

 type
 Base = class
 v : integer;
 procedure setV(x : integer);
 function getV : integer;
 property Value : integer read getV write setV dispid 151;

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

378

3

 end;

 procedure Base.setV(x : integer);
 begin v := x;
 end;

 function Base.getV : integer;
 begin getV := v;
 end;

begin
end.

This program attempts to set the dispid for an OLE automation object, but the property has not been declared in an automated
section.

program Solve;

 type
 Base = class
 v : integer;
 procedure setV(x : integer);
 function getV : integer;
 automated
 property Value : integer read getV write setV dispid 151;
 end;

 procedure Base.setV(x : integer);
 begin v := x;
 end;

 function Base.getV : integer;
 begin getV := v;
 end;

begin
end.

To solve the error, you can either remove the dispid clause from the property declaration, or move the property declaration into
an automated section.

3.1.2.1.151 E2274: property attribute 'label' cannot be used in dispinterface
You have added a label to a property defined in a dispinterface, but this is disallowed by the language definition.

program Problem;

 type
 T0 = dispinterface
 ['{15101510-1510-1510-1510-151015101510}']
 function R : Integer;
 property value : Integer label 'Key';
 end;

begin
end.

Here an attempt is made to use a label attribute on a dispinterface property.

program Solve;

 type
 T0 = dispinterface
 ['{15101510-1510-1510-1510-151015101510}']
 function R : Integer;

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

379

3

 property value : Integer;
 end;

begin
end.

The only solution to this problem is to remove label attribute from the property definition.

3.1.2.1.152 E2080: Procedure DISPOSE needs destructor
This error message is issued when an identifier given in the parameter list to Dispose is not a destructor.

program Produce;

type
 PMyObject = ^TMyObject;
 TMyObject = object
 F: Integer;
 constructor Init;
 destructor Done;
 end;

constructor TMyObject.Init;
begin
 F := 42;
end;

destructor TMyObject.Done;
begin
end;

var
 P: PMyObject;

begin
 New(P, Init);
 (*...*)
 Dispose(P, Init); (*<-- Error message here*)
end.

In this example, we passed the constructor to Dispose by mistake.

program Solve;

type
 PMyObject = ^TMyObject;
 TMyObject = object
 F: Integer;
 constructor Init;
 destructor Done;
 end;

constructor TMyObject.Init;
begin
 F := 42;
end;

destructor TMyObject.Done;
begin
end;

var
 P: PMyObject;

begin

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

380

3

 New(P, Init);
 Dispose(P, Done);
end.

The solution is to either pass a destructor to Dispose, or to eliminate the second argument.

3.1.2.1.153 E2414: Disposed_ cannot be declared in classes with destructors
Disposed_ cannot be declared in classes with destructors. If a class implements the IDispose interface the compiler generates a
field called Disposed_ to determine whether or not the IDispose.Dispose method has already been called.

3.1.2.1.154 E2098: Division by zero
The compiler has detected a constant division by zero in your program.

Check your constant expressions and respecify them so that a division by zero error will not occur.

3.1.2.1.155 E2293: Cannot have both a DLLImport attribute and an external or
calling convention directive

The compiler emits DLLImport attributes internally for external function declarations. This error is raised if you declare your own
DLLImport attribute on a function and use the external name clause on the function.

3.1.2.1.156 E2027: Duplicate tag value
This error message is given when a constant appears more than once in the declaration of a variant record.

program Produce;
type
 VariantRecord = record
 case Integer of
 0: (IntField: Integer);
 0: (RealField: Real); (*<-- Error message here*)
 end;

begin
end.
 program Solve;
type
 VariantRecord = record
 case Integer of
 0: (IntField: Integer);
 1: (RealField: Real);
 end;

begin
end.

3.1.2.1.157 E2399: Namespace conflicts with unit name '%s'
No further information is available for this error or warning.

3.1.2.1.158 E2030: Duplicate case label
This error message occurs when there is more than one case label with a given value in a case statement.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

381

3

program Produce;

function DigitCount(I: Integer): Integer;
begin
 case Abs(I) of
 0: DigitCount := 1;
 0 ..9: DigitCount := 1; (*<-- Error message here*)
 10 ..99: DigitCount := 2;
 100 ..999: DigitCount := 3;
 1000 ..9999: DigitCount := 4;
 10000 ..99999: DigitCount := 5;
 100000 ..999999: DigitCount := 6;
 1000000 ..9999999: DigitCount := 7;
 10000000 ..99999999: DigitCount := 8;
 100000000..999999999: DigitCount := 9;
 else DigitCount := 10;
 end;
end;

begin
 Writeln(DigitCount(12345));
end.

Here we did not pay attention and mentioned the case label 0 twice.

program Solve;

function DigitCount(I: Integer): Integer;
begin
 case Abs(I) of
 0 ..9: DigitCount := 1;
 10 ..99: DigitCount := 2;
 100 ..999: DigitCount := 3;
 1000 ..9999: DigitCount := 4;
 10000 ..99999: DigitCount := 5;
 100000 ..999999: DigitCount := 6;
 1000000 ..9999999: DigitCount := 7;
 10000000 ..99999999: DigitCount := 8;
 100000000..999999999: DigitCount := 9;
 else DigitCount := 10;
 end;
end;

begin
 Writeln(DigitCount(12345));
end.

In general, the problem might not be so easy to spot when you have symbolic constants and ranges of case labels - you might
have to write down the real values of the constants to find out what is wrong.

3.1.2.1.159 W1029: Duplicate %s '%s' with identical parameters will be
inacessible from C++

An object file is being generated and Two, differently named, constructors or destructors with identical parameter lists have been
created; they will be inaccessible if the code is translated to an HPP file because constructor and destructor names are
converted to the class name. In C++ these duplicate declarations will appear to be the same function.

unit Produce;
interface
 type
 Base = class
 constructor ctor0(a, b, c : integer);
 constructor ctor1(a, b, c : integer);
 end;

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

382

3

implementation
constructor Base.ctor0(a, b, c : integer);
begin
end;

constructor Base.ctor1(a, b, c : integer);
begin
end;

begin
end.

As can be seen in this example, the two constructors have the same signature and thus, when the file is compiled with one of the
-j options, will produce this warning.

unit Solve;
interface
 type
 Base = class
 constructor ctor0(a, b, c : integer);
 constructor ctor1(a, b, c : integer; dummy : integer = 0);
 end;

implementation
constructor Base.ctor0(a, b, c : integer);
begin
end;

constructor Base.ctor1(a, b, c : integer; dummy : integer);
begin
end;

begin
end.

A simple method to solve this problem is to change the signature of one of constructors, for example, to add an extra parameter.
In the example above, a default parameter has been added to ctor1. This method of approaching this error has the benefit that
Delphi code using ctor1 does not need to be changed. C++ code, on the other hand, will have to specify the extra parameter to
allow the compiler to determine which constructor is desired.

3.1.2.1.160 E2180: Dispid '%d' already used by '%s'
An attempt to use a dispid which is already assigned to another member of this class.

program Produce;

 type
 Base = class
 v : Integer;
 procedure setV(x : Integer);
 function getV : Integer;
 automated
 property Value : Integer read getV write setV dispid 151;
 property SecondValue : Integer read getV write setV dispid 151;
 end;

 procedure Base.setV(x : Integer);
 begin v := x;
 end;

 function Base.getV : Integer;
 begin getV := v;
 end;

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

383

3

begin
end.

Each automated property's dispid must be unique, thus SecondValue is in error.

program Solve;

 type
 Base = class
 v : Integer;
 procedure setV(x : Integer);
 function getV : Integer;
 automated
 property Value : Integer read getV write setV dispid 151;
 property SecondValue : Integer read getV write setV dispid 152;
 end;

 procedure Base.setV(x : Integer);
 begin v := x;
 end;

 function Base.getV : Integer;
 begin getV := v;
 end;

begin
end.

Giving a unique dispid to SecondValue will remove the error.

3.1.2.1.161 E2301: Method '%s' with identical parameters and result type
already exists

Within a class, you cannot publish multiple overloaded methods with the same name. Maintenance of runtime type information
requires a unique name for each published member.

type
 TSomeClass = class
 published
 function Func(P: Integer): Integer;
 function Func(P: Boolean): Integer; // error

3.1.2.1.162 E2257: Duplicate implements clause for interface '%s'
The compiler has encountered two different property declarations which claim to implement the same interface. An interface may
be implemented by only one property.

program Produce;
type
 IMyInterface = interface
 end;

 TMyClass = class(TInterfacedObject, IMyInterface)
 FMyInterface: IMyInterface;
 property MyInterface: IMyInterface read FMyInterface implements IMyInterface;
 property OtherInterface: IMyInterface read FMyInterface implements IMyInterface;
 end;
end.

Both MyInterface and OtherInterface attempt to implement IMyInterface. Only one property may implement the chosen interface.

The only solution in this case is to remove one of the offending implements clauses.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

384

3

3.1.2.1.163 E2447: Duplicate symbol '%s' defined in namespace '%s' by '%s'
and '%s'

This error occurs when symbols from separate units are combined into a common namespace, and the same symbol name is in
both units. In previous versions of Delphi, these units may have compiled without error, because symbol scope was defined by
the unit alone. In RAD Studio, units must be inserted into namespaces when generating the IL metadata. This may cause
separate units to be be combined into a single namespace.

To resolve this problem, you may wish to rename one of the symbols in the two units, alias one of the symbols to the other, or
change the unit names so that they do not contribute to the same namespace.

3.1.2.1.164 E2140: Duplicate message method index
You have specified an index for a dynamic method which is already used by another dynamic method.

program Produce;

 type
 Base = class
 procedure First(VAR x : Integer); message 151;
 procedure Second(VAR x : Integer); message 151;
 end;

 procedure Base.First(VAR x : Integer);
 begin
 end;

 procedure Base.Second(VAR x : Integer);
 begin
 end;

begin
end.

The declaration of 'Second' attempts to reuse the same message index which is used by 'First'; this is illegal.

program Solve;

 type
 Base = class
 procedure First(VAR x : Integer); message 151;
 procedure Second(VAR x : Integer); message 152; (*change to unique index*)
 end;

 Derived = class (Base)
 procedure First(VAR x : Integer); override; (*override base class behavior*)
 end;

 procedure Base.First(VAR x : Integer);
 begin
 end;

 procedure Base.Second(VAR x : Integer);
 begin
 end;

 procedure Derived.First(VAR x : Integer);
 begin
 end;

begin

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

385

3

end.

There are two straightforward solutions to this problem. First, if you really do not need to use the same message value, you can
change the message number to be unique. Alternatively, you could derive a new class from the base and override the behavior
of the message handler declared in the base class. Both options are shown in the above example.

3.1.2.1.165 E2252: Method '%s' with identical parameters already exists
A method with an identical signature already exists in the data type.

program Produce;

 type
 t0 = class
 procedure f0(a : integer); overload;
 procedure f0(a : integer); overload;
 end;

procedure T0.f0(a : integer);
begin
end;

begin
end.

The error is produced here because there are two overloaded declarations for the same procedure.

program Solve;

 type
 t0 = class
 procedure f0(a : integer); overload;
 procedure f0(a : char); overload;
 end;

procedure T0.f0(a : integer);
begin
end;

procedure T0.f0(a : char);
begin
end;

begin
end.

There are different approaches to resolving this error. One approach is to remove the redundant declaration of the procedure.
Another approach, taken here, is to change the parameter type of the duplicate declarations so that it creates a unique version of
the overloaded procedure.

3.1.2.1.166 E2266: Only one of a set of overloaded methods can be published
Only one member of a set of overloaded functions may be published because the RTTI generated for procedures only contains
the name.

(*$M+*)
(*$APPTYPE CONSOLE*)
program Produce;
type
 Base = class
 published
 procedure p1(a : integer); overload;
 procedure p1(a : boolean); overload;

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

386

3

 end;

 Extended = class (Base)
 procedure e1(a : integer); overload;
 procedure e1(a : boolean); overload;
 end;

 procedure Base.p1(a : integer);
 begin
 end;

 procedure Base.p1(a : boolean);
 begin
 end;

 procedure Extended.e1(a : integer);
 begin
 end;

 procedure Extended.e1(a : boolean);
 begin
 end;

end.

In the example shown here, both overloaded p1 functions are contained in a published section, which is not allowed.

Further, since the $M+ state is used, the Extended class starts with published visibility, thus the error will also appear for this
class also.

(*$M+*)
(*$APPTYPE CONSOLE*)
program Solve;
type
 Base = class
 public
 procedure p1(a : integer); overload;
 published
 procedure p1(a : boolean); overload;
 end;

 Extended = class (Base)
 public
 procedure e1(a : integer); overload;
 procedure e1(a : boolean); overload;
 end;

 procedure Base.p1(a : integer);
 begin
 end;

 procedure Base.p1(a : boolean);
 begin
 end;

 procedure Extended.e1(a : integer);
 begin
 end;

 procedure Extended.e1(a : boolean);
 begin
 end;

end.

The solution here is to ensure that no more than one member of a set of overloaded function appears in a published section. The
easiest way to achieve this is to change the visibility to public, protected or private; whichever is most appropriate.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

387

3

3.1.2.1.167 E2285: Duplicate resource id: type %d id %d
A resource linked into the project has the same type and name, or same type and resource ID, as another resource linked into
the project. (In Delphi, duplicate resources are ignored with a warning. In Kylix, duplicates cause an error.)

3.1.2.1.168 E2407: Duplicate resource identifier %s found in unit %s(%s) and
%s(%s)

No further information is available for this error or warning.

3.1.2.1.169 E2284: Duplicate resource name: type %d '%s'
A resource linked into the project has the same type and name, or same type and resource ID, as another resource linked into
the project. (In Delphi, duplicate resources are ignored with a warning. In Kylix, duplicates cause an error.)

3.1.2.1.170 E2429: Duplicate implementation for 'set of %s' in this scope
To avoid this error, declare an explicit set type identifier instead of using in-place anonymous set expressions.

3.1.2.1.171 W1051: Duplicate symbol names in namespace. Using '%s.%s'
found in %s. Ignoring duplicate in %s

No further information is available for this error or warning.

3.1.2.1.172 E2413: Dynamic array type needed
No further information is available for this error or warning.

3.1.2.1.173 E2178: Dynamic methods and message handlers not allowed in
OLE automation section

You have incorrectly put a dynamic or message method into an 'automated' section of a class declaration.

program Produce;

 type
 Base = class
 automated
 procedure DynaMethod; dynamic;
 procedure MessageMethod(VAR msg : Integer); message 151;
 end;

 procedure Base.DynaMethod;
 begin
 end;

 procedure Base.MessageMethod;
 begin
 end;

begin

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

388

3

end.

It is not possible to have a dynamic or message method declaration in an OLE automation section of a class. As such, the two
method declarations in the above program both produce errors.

program Solve;

 type
 Base = class
 procedure DynaMethod; dynamic;
 procedure MessageMethod(VAR msg : Integer); message 151;
 end;

 procedure Base.DynaMethod;
 begin
 end;

 procedure Base.MessageMethod;
 begin
 end;

begin
end.

There are several ways to remove this error from your program. First, you could move any declaration which produces this error
out of the automated section, as has been done in this example. Alternatively, you could remove the dynamic or message
attributes of the method; of course, removing these attributes will not provide you with the desired behavior, but it will remove the
error.

3.1.2.1.174 E2378: Error while converting resource %s
No further information is available for this error or warning.

3.1.2.1.175 E2385: Error while signing assembly
No further information is available for this error or warning.

3.1.2.1.176 E2125: EXCEPT or FINALLY expected
The compiler was expecting to find a FINALLY or EXCEPT keyword, during the processing of exception handling code, but did
not find either.

program Produce;

begin
 try
 end;
end.

In the code above, the 'except' or 'finally' clause of the exception handling code is missing, so the compiler will issue an error.

program Solve;

begin
 try
 except
 end;
end.

By adding the missing clause, the compiler will be able to complete the compilation of the code. In this case, the 'except' clause
will easily allow the program to finish.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

389

3

3.1.2.1.177 E2029: %s expected but %s found
This error message appears for syntax errors. There is probably a typo in the source, or something was left out. When the error
occurs at the beginning of a line, the actual error is often on the previous line.

program Produce;
var
 I: Integer
begin (*<-- Error message here: ';' expected but 'BEGIN' found*)
end.

After the type Integer, the compiler expects to find a semicolon to terminate the variable declaration. It does not find the
semicolon on the current line, so it reads on and finds the 'begin' keyword at the start of the next line. At this point it finally knows
something is wrong...

program Solve;
var
 I: Integer; (*Semicolon was missing*)
begin
end.

In this case, just the semicolon was missing - a frequent case in practice. In general, have a close look at the line where the error
message appears, and the line above it to find out whether something is missing or misspelled.

3.1.2.1.178 E2191: EXPORTS allowed only at global scope
An EXPORTS clause has been encountered in the program source at a non-global scope.

program Produce;

 procedure ExportedProcedure;
 exports ExportedProcedure;
 begin
 end;

begin
end.

It is not allowed to have an EXPORTS clause anywhere but a global scope.

program Solve;

 procedure ExportedProcedure;
 begin
 end;

exports ExportedProcedure;
begin
end.

The solution is to ensure that your EXPORTS clause is at a global scope and textually follows all procedures named in the
clause. As a general rule, EXPORTS clauses are best placed right before the source file's initialization code.

3.1.2.1.179 E2143: Expression has no value
You have attempted to assign the result of an expression, which did not produce a value, to a variable.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

390

3

3.1.2.1.180 E2353: Cannot extend sealed class '%s'
The sealed modifier is used to prevent inheritance (and thus extension) of a class.

3.1.2.1.181 E2078: Procedure FAIL only allowed in constructor
The standard procedure Fail can only be called from within a constructor - it is illegal otherwise.

3.1.2.1.182 E2169: Field definition not allowed after methods or properties
You have attempted to add more fields to a class after the first method or property declaration has been encountered. You must
place all field definitions before methods and properties.

program Produce;

 type
 Base = class
 procedure FirstMethod;
 a : Integer;
 end;

 procedure Base.FirstMethod;
 begin
 end;

begin
end.

The declaration of 'a' after 'FirstMethod' will cause an error.

program Solve;

 type
 Base = class
 a : Integer;
 procedure FirstMethod;
 end;

 procedure Base.FirstMethod;
 begin
 end;

begin
end.

To solve this error, it is normally sufficient to move all field definitions before the first field or property declaration.

3.1.2.1.183 E2175: Field definition not allowed in OLE automation section
You have tried to place a field definition in an OLE automation section of a class declaration. Only properties and methods may
be declared in an 'automated' section.

program Produce;

 type
 Base = class
 automated
 i : Integer;

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

391

3

 end;

begin
end.

The declaration of 'i' in this class will cause the compile error.

program Solve;

 type
 Base = class
 i : Integer;
 automated
 end;

begin
end.

Moving the declaration of 'i' out of the automated section will vanquish the error.

3.1.2.1.184 E2124: Instance member '%s' inaccessible here
You are attempting to reference a instance member from within a class procedure.

program Produce;

 type
 Base = class
 Title : String;

 class procedure Init;
 end;

 class procedure Base.Init;
 begin
 Self.Title := 'Does not work';
 Title := 'Does not work';
 end;

begin
end.

Class procedures do not have an instance pointer, so they cannot access any methods or instance data of the class.

program Solve;

 type
 Base = class
 Title : String;

 class procedure Init;
 end;

 class procedure Base.Init;
 begin
 end;

begin
end.

The only solution to this error is to not access any member data or methods from within a class method.

3.1.2.1.185 E2209: Field declarations not allowed in interface type
An interface has been encountered which contains definitions of fields; this is not permitted.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

392

3

program Produce;
 type
 IBaseIntf = interface
 FVar : Integer;
 property Value : Integer read FVar write FVar;
 end;

begin
end.

The desire above is to have a property which has a value associated with it. However, as interfaces can have no fields, this idea
will not work.

program Solve;
 IBaseIntf = interface
 function Reader : Integer;
 procedure Writer(a : Integer);
 property Value : Integer read Reader write Writer;
 end;

begin
end.

An elegant solution to the problem described above is to declare getter and setter procedures for the property. In this situation,
any class implementing the interface must provide a method which will be used to access the data of the class.

3.1.2.1.186 x2044: Chmod error on '%s'
The file permissions are not properly set on a file. See the chmod man page for more information.

3.1.2.1.187 x2043: Close error on '%s'
The compiler encountered an error while closing an input or output file.

This should rarely happen. If it does, the most likely cause is a full or bad disk.

3.1.2.1.188 F2039: Could not create output file '%s'
The compiler could not create an output file. This can be a compiled unit file (.dcu), an executable file, a map file or an object file.

Most likely causes are a nonexistent directory or a write protected file or disk.

3.1.2.1.189 x2141: Bad file format: '%s'
The compiler state file has become corrupted. It is not possible to reload the previous compiler state.

Delete the corrupt file.

3.1.2.1.190 E2288: File name too long (exceeds %d characters)
A file path specified in the compiler options exceeds the compiler's file buffer length.

3.1.2.1.191 x1026: File not found: '%s'
This error message occurs when the compiler cannot find an input file. This can be a source file, a compiled unit file (.dcuil file),
an include, an object file or a resource file.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

393

3

Check the spelling of the name and the relevant search path.

program Produce;
uses Borland.Vcl.SysUtilss; (*<-- Error message here*)
begin
end.
 program Solve;
uses Borland.Vcl.SysUtils; (*Fixed typo*)
begin
end.

For a .dcuil file, failure to set the unit/library path for the compiler is a likely cause of this message. The only solution is to make
sure the named unit can be found along the library path.

3.1.2.1.192 F1027: Unit not found: '%s' or binary equivalents (%s)
This error message occurs when the compiler cannot find a referenced unit (.dcuil) file.

Check the spelling of the referenced file name and the relevant search path.

3.1.2.1.193 x2041: Read error on '%s'
The compiler encountered a read error on an input file.

This should never happen - if it does, the most likely cause is corrupt data.

3.1.2.1.194 F2040: Seek error on '%s'
The compiler encountered a seek error on an input or output file.

This should never happen - if it does, the most likely cause is corrupt data.

3.1.2.1.195 E2002: File type not allowed here
File types are not allowed as value parameters and as the base type of a file type itself. They are also not allowed as function
return types, and you cannot assign them - those errors will however produce a different error message.

program Produce;

procedure WriteInteger(T: Text; I: Integer);
begin
 Writeln(T, I);
end;

begin
end.

In this example, the problem is that T is value parameter of type Text, which is a file type. Recall that whatever gets written to a
value parameter has no effect on the caller's copy of the variable - declaring a file as a value parameter therefore makes little
sense.

program Solve;

procedure WriteInteger(var T: Text; I: Integer);
begin
 Writeln(T, I);
end;

begin

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

394

3

end.

Declaring the parameter as a var parameter solves the problem.

3.1.2.1.196 x2042: Write error on '%s'
The compiler encountered a write error while writing to an output file.

Most likely, the output disk is full.

3.1.2.1.197 E2351: Final methods must be virtual or dynamic
No further information is available for this error or warning.

3.1.2.1.198 E2155: Type '%s' needs finalization - not allowed in file type
Certain types are treated specially by the compiler on an internal basis in that they must be correctly finalized to release any
resources that they might currently own. Because the compiler cannot determine what type is actually stored in a record's variant
section at runtime, it is not possible to guarantee that these special data types are correctly finalized.

program Produce;

 type
 Data = record
 name : string;
 end;

 var
 inFile : file of Data;

begin
end.

String is one of those data types which need finalization, and as such they cannot be stored in a File type.

program Solve;

 type
 Data = record
 name : array [1..25] of Char;
 end;

 var
 inFile : file of Data;

begin
end.

One simple solution, for the case of String, is to redeclare the type as an array of characters. For other cases which require
finalization, it becomes increasingly difficult to maintain a binary file structure with standard Pascal features, such as 'file of'. In
these situations, it is probably easier to write specialized file I/O routines.

3.1.2.1.199 E2154: Type '%s' needs finalization - not allowed in variant record
Certain types are treated specially by the compiler on an internal basis in that they must be correctly finalized to release any
resources that they might currently own. Because the compiler cannot determine what type is actually stored in a record's variant
section at runtime, it is not possible to guarantee that these special data types are correctly finalized.

program Produce;

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

395

3

 type
 Data = record
 case kind:Char of
 'A': (str : String);
 end;

begin
end.

String is one of those types which requires special treatment by the compiler to correctly release the resources. As such, it is
illegal to have a String in a variant section.

program Solve;

 type
 Data = record
 str : String;
 end;

begin
end.

One solution to this error is to move all offending declarations out of the variant section. Another solution would be to use pointer
types (^String, for example) and manage the memory by yourself.

3.1.2.1.200 E2103: 16-Bit fixup encountered in object file '%s'
A 16-bit fixup has been found in one of the object modules linked to your program with the $L compiler directive. The compiler
only supports 32 bit fixups in linked object modules.

Make sure that the linked object module is a 32 bit object module.

3.1.2.1.201 W1037: FOR-Loop variable '%s' may be undefined after loop
This warning is issued if the value of a for loop control variable is used after the loop.

You can only rely on the final value of a for loop control variable if the loop is left with a goto or exit statement.

The purpose of this restriction is to enable the compiler to generate efficient code for the for loop.

program Produce;
(*$WARNINGS ON*)

function Search(const A: array of Integer; Value: Integer): Integer;
begin
 for Result := 0 to High(A) do
 if A[Result] = Value then
 break;
end;

const
 A : array [0..9] of Integer = (1,2,3,4,5,6,7,8,9,10);

begin
 Writeln(Search(A,11));
end.

In the example, the Result variable is used implicitly after the loop, but it is undefined if we did not find the value - hence the
warning.

program Solve;
(*$WARNINGS ON*)

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

396

3

function Search(const A: array of Integer; Value: Integer): Integer;
begin
 for Result := 0 to High(A) do
 if A[Result] = Value then
 exit;
 Result := High(a)+1;
end;

const
 A : array [0..9] of Integer = (1,2,3,4,5,6,7,8,9,10);

begin
 Writeln(Search(A,11));
end.

The solution is to assign the intended value to the control variable for the case where we don't exit the loop prematurely.

3.1.2.1.202 W1015: FOR-Loop variable '%s' cannot be passed as var parameter
An attempt has been made to pass the control variable of a FOR-loop to a procedure or function which takes a var parameter.
This is a warning because the procedure which receives the control variable is able to modify it, thereby changing the semantics
of the FOR-loop which issued the call.

program Produce;

 procedure p1(var x : Integer);
 begin
 end;

 procedure p0;
 var
 i : Integer;
 begin
 for i := 0 to 1000 do
 p1(i);
 end;

begin
end.

In this example, the loop control variable, i, is passed to a procedure which receives a var parameter. This is the main cause of
the warning.

program Solve;
 procedure p1(x : Integer);
 begin
 end;

 procedure p0;
 var
 i : Integer;
 begin
 i := 0;
 while i <= 1000 do
 p1(i);
 end;

begin
end.

The easiest way to approach this problem is to change the parameter into a by-value parameter. However, there may be a good
reason that it was a by-reference parameter in the begging, so you must be sure that this change of semantics in your program

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

397

3

does not affect other code. Another way to approach this problem is change the for loop into an equivalent while loop, as is done
in the above program.

3.1.2.1.203 E2032: For loop control variable must have ordinal type
The control variable of a for loop must have type Boolean, Char, WideChar, Integer, an enumerated type, or a subrange type.

program Produce;
var
 x: Real;
begin (*Plot sine wave*)
 for x := 0 to 2*pi/0.2 do (*<-- Error message here*)
 Writeln('*': Round((Sin(x*0.2) + 1)*20) + 1);
end.

The example uses a variable of type Real as the for loop control variable, which is illegal.

program Solve;
var
 x: Integer;
begin (*Plot sine wave*)
 for x := 0 to Round(2*pi/0.2) do
 Writeln('*': Round((Sin(x*0.2) + 1)*20) + 1);
end.

Instead, use the Integer ordinal type.

You may see this error if a FOR loop uses an Int64 or Variant control variable. This results from a limitation in the compiler which
you can work around by replacing the FOR loop with a WHILE loop.

3.1.2.1.204 x1019: For loop control variable must be simple local variable
This error message is given when the control variable of a for statement is not a simple variable (but a component of a record,
for instance), or if it is not local to the procedure containing the for statement.

For backward compatibility reasons, it is legal to use a global variable as the control variable - the compiler gives a warning in
this case. Note that using a local variable will also generate more efficient code.

program Produce;

var
 I: Integer;
 A: array [0..9] of Integer;

procedure Init;
begin
 for I := Low(A) to High(a) do (*<-- Warning given here*)
 A[I] := 0;
end;

begin
 Init;
end.
 program Solve;
var
 A: array [0..9] of Integer;

procedure Init;
var
 I: Integer;
begin
 for I := Low(A) to High(a) do
 A[I] := 0;

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

398

3

end;

begin
 Init;
end.

3.1.2.1.205 E2037: Declaration of '%s' differs from previous declaration
This error message occurs when the declaration of a procedure, function, method, constructor or destructor differs from its
previous (forward) declaration.

This error message also occurs when you try to override a virtual method, but the overriding method has a different parameter
list, calling convention etc.

program Produce;

type
 MyClass = class
 procedure Proc(Inx: Integer);
 function Func: Integer;
 procedure Load(const Name: string);
 procedure Perform(Flag: Boolean);
 constructor Create;
 destructor Destroy(Msg: string); override; (*<-- Error message here*)
 class function NewInstance: MyClass; override; (*<-- Error message here*)
 end;

procedure MyClass.Proc(Index: Integer); (*<-- Error message here*)
begin
end;

function MyClass.Func: Longint; (*<-- Error message here*)
begin
end;

procedure MyClass.Load(Name: string); (*<-- Error message here*)
begin
end;

procedure MyClass.Perform(Flag: Boolean); cdecl; (*<-- Error message here*)
begin
end;

procedure MyClass.Create; (*<-- Error message here*)
begin
end;

function MyClass.NewInstance: MyClass; (*<-- Error message here*)
begin
end;

begin
end.

As you can see, there are a number of reasons for this error message to be issued.

program Solve;

type
 MyClass = class
 procedure Proc(Inx: Integer);
 function Func: Integer;
 procedure Load(const Name: string);
 procedure Perform(Flag: Boolean);
 constructor Create;

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

399

3

 destructor Destroy; override; (*No parameters*)
 class function NewInstance: TObject; override; (*Result type *)
 end;

procedure MyClass.Proc(Inx: Integer); (*Parameter name *)
begin
end;

function MyClass.Func: Integer; (*Result type *)
begin
end;

procedure MyClass.Load(const Name: string); (*Parameter kind *)
begin
end;

procedure MyClass.Perform(Flag: Boolean); (*Calling convention*)
begin
end;

constructor MyClass.Create; (*constructor*)
begin
end;

class function MyClass.NewInstance: TObject; (*class function*)
begin
end;

begin
end.

You need to carefully compare the 'previous declaration' with the one that causes the error to determine what is different
between the two.

3.1.2.1.206 E2065: Unsatisfied forward or external declaration: '%s'
This error message appears when you have a forward or external declaration of a procedure or function, or a declaration of a
method in a class or object type, and you don't define the procedure, function or method anywhere.

Maybe the definition is really missing, or maybe its name is just misspelled.

Note that a declaration of a procedure or function in the interface section of a unit is equivalent to a forward declaration - you
have to supply the implementation (the body of the procedure or function) in the implementation section.

Similarly, the declaration of a method in a class or object type is equivalent to a forward declaration.

program Produce;

type
 TMyClass = class
 constructor Create;
 end;

function Sum(const a: array of Double): Double; forward;

function Summ(const a: array of Double): Double;
var
 i: Integer;
begin
 Result := 0.0;
 for i:= 0 to High(a) do
 Result := Result + a[i];
end;

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

400

3

begin
end.

The definition of Sum in the above example has an easy-to-spot typo.

program Solve;

type
 TMyClass = class
 constructor Create;
 end;

constructor TMyClass.Create;
begin
end;

function Sum(const a: array of Double): Double; forward;

function Sum(const a: array of Double): Double;
var
 i: Integer;
begin
 Result := 0.0;
 for i:= 0 to High(a) do
 Result := Result + a[i];
end;

begin
end.

The solution: make sure the definitions of your procedures, functions and methods are all there, and spelled correctly.

3.1.2.1.207 W1011: Text after final 'END.' - ignored by compiler
This warning is given when there is still source text after the final end and the period that constitute the logical end of the
program. Possibly the nesting of begin-end is inconsistent (there is one end too many somewhere). Check whether you intended
the source text to be ignored by the compiler - maybe it is actually quite important.

program Produce;

begin
end.

Text here is ignored by Delphi 16-bit - Delphi 32-bit or Kylix gives a warning.

 program Solve;

begin
end.

3.1.2.1.208 E2127: 'GOTO %s' leads into or out of TRY statement
The GOTO statement cannot jump into or out of an exception handling statement.

program Produce;

label 1, 2;

begin
 goto 1;
 try
1:
 except
 goto 2;

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

401

3

 end;
2:
end.

Both GOTO statements in the above code are incorrect. It is not possible to jump into, or out of, exception handling blocks.

The ideal solution to this problem is to avoid using GOTO statements altogether, however, if that is not possible you will have to
perform more detailed analysis of the program to determine the correct course of action.

3.1.2.1.209 E2295: A class helper cannot introduce a destructor
Class helpers cannot declare destructors.

3.1.2.1.210 E2172: Necessary library helper function was eliminated by linker
(%s)

The integrated debugger is attempting to use some of the compiler helper functions to perform the requested evaluate. The
linker, on the other hand, determined that the helper function was not actually used by the program and it did not link it into the
program.

1. Create a new application.

2. Place a button on the form.

3. Double click the button to be taken to the 'click' method.

4. Add a global variable, 'v', of type String to the interface section.

5. Add a global variable, 'p', of type PChar to the interface section.

The click method should read as:

1. procedure TForm1.Button1Click(Sender: TObject); begin v := 'Initialized'; p := NIL; v := 'Abid'; end;

2. Set a breakpoint on the second assignment to 'v'.

3. Compile and run the application.

4. Press the button.

5. After the breakpoint is reached, open the evaluator (Run|Evaluate/Watch).

6. Evaluate 'v'.

7. Move the cursor to the 'New Value' box.

8. Type in 'p'.

9. Choose Modify.

The compiler uses a special function to copy a PChar to a String. In order to reduce the size of the produced executable, if that
special function is not used by the program, it is not linked in. In this case, there is no assignment of a PChar to a String, so it
is eliminated by the linker.

 procedure TForm1.Button1Click(Sender: TObject);
 begin
 v := 'Initialized';
 p := NIL;
 v := 'Abid';
 v := p;
 end;

Adding the extra assignment of a PChar to a String will ensure that the linker includes the desired procedure in the program.
Encountering this error during a debugging session is an indicator that you are using some language/environment functionality
that was not needed in the original program.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

402

3

3.1.2.1.211 W1010: Method '%s' hides virtual method of base type '%s'
You have declared a method which has the same name as a virtual method in the base class. Your new method is not a virtual
method; it will hide access to the base's method of the same name.

program Produce;

 type
 Base = class
 procedure VirtuMethod; virtual;
 procedure VirtuMethod2; virtual;
 end;

 Derived = class (Base)
 procedure VirtuMethod;
 procedure VirtuMethod2;
 end;

 procedure Base.VirtuMethod;
 begin
 end;

 procedure Base.VirtuMethod2;
 begin
 end;

 procedure Derived.VirtuMethod;
 begin
 end;

 procedure Derived.VirtuMethod2;
 begin
 end;

begin
end.

Both methods declared in the definition of Derived will hide the virtual functions of the same name declared in the base class.

program Solve;

 type
 Base = class
 procedure VirtuMethod; virtual;
 procedure VirtuMethod2; virtual;
 end;

 Derived = class (Base)
 procedure VirtuMethod; override;
 procedure Virtu2Method;
 end;

 procedure Base.VirtuMethod;
 begin
 end;

 procedure Base.VirtuMethod2;
 begin
 end;

 procedure Derived.VirtuMethod;
 begin
 end;

 procedure Derived.Virtu2Method;

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

403

3

 begin
 end;

begin
end.

There are three alternatives to take when solving this warning.

First, you could specify override to make the derived class' procedure also virtual, and thus allowing inherited calls to still
reference the original procedure.

Secondly, you could change the name of the procedure as it is declared in the derived class. Both methods are exhibited in this
example.

Finally, you could add the reintroduce directive to the procedure declaration to cause the warning to be silenced for that
particular method.

3.1.2.1.212 W1009: Redeclaration of '%s' hides a member in the base class
A property has been created in a class with the same name of a variable contained in one of the base classes. One possible,
and not altogether apparent, reason for getting this error is that a new version of the base class hierarchy has been installed and
it contains new member variables which have names identical to your properties' names. -W

(*$WARNINGS ON*)
program Produce;

 type
 Base = class
 v : integer;
 end;

 Derived = class (Base)
 ch : char;
 property v : char read ch write ch;
 end;

begin
end.

Derived.v overrides, and thus hides, Base.v; it will not be possible to access Base.v in any variable of type Derived without a
typecast.

(*$WARNINGS ON*)
program Solve;
 type
 Base = class
 v : integer;
 end;

 Derived = class (Base)
 ch : char;
 property chV : char read ch write ch;
 end;

begin
end.

By changing the name of the property in the derived class, the error is alleviated.

3.1.2.1.213 E2198: %s cannot be applied to a long string
It is not possible to use the standard function HIGH with long strings. The standard function HIGH can, however, be applied to

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

404

3

old-style short strings.

Since long strings dynamically size themselves, no analog to the HIGH function can be used.

This error can be caused if you are porting a 16-bit application, in which case the only string type available was a short string. If
this is the case, you can turn off the long strings with the $H command line switch or the long-form directive $LONGSTRINGS.

If the HIGH was applied to a string parameter, but you still wish to use long strings, you could change the parameter type to
'openstring'.

program Produce;
 var
 i : Integer;
 s : String;

begin
 s := 'Hello Developers of the World';
 i := HIGH(s);
end.

In the example above, the programmer attempted to apply the standard function HIGH to a long string variable. This cannot be
done.

(*$LONGSTRINGS OFF*)
program Solve;
 var
 i : Integer;
 s : String;

begin
 s := 'Hello Developers of the World';
 i := HIGH(s);
end.

By disabling long string parameters, the application of HIGH to a string variable is now allowed.

3.1.2.1.214 W1034: $HPPEMIT '%s' ignored
The $HPPEMIT directive can only appear after the unit header.

3.1.2.1.215 x1008: Integer and HRESULT interchanged
In Delphi, Integer, Longint, and HRESULT are compatible types, but in C++ the types are not compatible and will produce
differently mangled C++ parameter names. To ensure that there will not be problems linking object files created with the Delphi
compiler this message alerts you to possible problems. If you are compiling your source to an object file, this is an error.
Otherwise, it is a warning.

program Produce;
 uses Windows;

 type
 I0 = interface (IUnknown)
 procedure p0(var x : Integer);
 end;

 C0 = class (TInterfacedObject, I0)
 procedure p0(var x : HRESULT);
 end;

 procedure C0.p0(var x : HRESULT);
 begin
 end;

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

405

3

begin
end.

The example shown here declares the interface and class methods differently. While they are equivalent in Delphi, they are not
so in C++.

program Solve;

 uses Windows;

 type
 I0 = interface (IUnknown)
 procedure p0(var x : Integer);
 end;

 C0 = class (TInterfacedObject, I0)
 procedure p0(var x : Integer);
 end;

 procedure C0.p0(var x : Integer);
 begin
 end;

begin
end.

The easiest solution to this problem is to match the class-declared methods to be identical to the interface-declared methods.

3.1.2.1.216 W1000: Symbol '%s' is deprecated
The symbol is tagged (using the deprecated hint directive) as no longer current and is maintained for compatibility only. You
should consider updating your source code to use another symbol, if possible.

The $WARN SYMBOL_DEPRECATED ON/OFF compiler directive turns on or off all warnings about the deprecated directive
on symbols in the current unit.

3.1.2.1.217 E2372: Identifier expected
No further information is available for this error or warning.

3.1.2.1.218 W1003: Symbol '%s' is experimental
An "experimental" directive has been used on an identifier. "Experimental" indicates the presence of a class or unit which is
incomplete or not fully tested.

3.1.2.1.219 W1001: Symbol '%s' is specific to a library
The symbol is tagged (using the library hint directive) as one that may not be available in all libraries. If you are likely to use
different libraries, it may cause a problem.

The $WARN SYMBOL_LIBRARY ON/OFF compiler directive turns on or off all warnings about the library directive on symbols
in the current unit.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

406

3

3.1.2.1.220 W1002: Symbol '%s' is specific to a platform
The symbol is tagged (using the platform hint directive) as one that may not be available on all platforms. If you are writing
cross-platform applications, it may cause a problem.

The $WARN SYMBOL_PLATFORM ON/OFF compiler directive turns on or off all warnings about the platform directive on
symbols in the current unit.

3.1.2.1.221 E2004: Identifier redeclared: '%s'
The given identifier has already been declared in this scope - you are trying to reuse its name for something else.

program Tests;
var
 Tests: Integer;
begin
end.

Here the name of the program is the same as that of the variable - we need to change one of them to make the compiler happy.

program Tests;
var
 TestCnt: Integer;
begin
end.

3.1.2.1.222 E2003: Undeclared identifier: '%s'
The compiler could not find the given identifier - most likely it has been misspelled either at the point of declaration or the point of
use. It might be from another unit that has not mentioned a uses clause.

program Produce;
var
 Counter: Integer;
begin
 Count := 0;
 Inc(Count);
 Writeln(Count);
end.

In the example, the variable has been declared as "Counter", but used as "Count". The solution is to either change the
declaration or the places where the variable is used.

program Solve;
var
 Count: Integer;
begin
 Count := 0;
 Inc(Count);
 Writeln(Count);
end.

In the example we have chosen to change the declaration - that was less work.

3.1.2.1.223 E2427: Only one of IID or GuidAttribute can be specified
The GUID or IID of your interface can be specified using square brackets at the top of the interface declaration or using a .NET
attribute before the interface declaration. You may use either style of GUID or IID declaration, but not both styles in the same
type.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

407

3

3.1.2.1.224 E2038: Illegal character in input file: '%s' (%s)
The compiler found a character that is illegal in Delphi programs.

This error message is caused most often by errors with string constants or comments.

program Produce;

begin
 Writeln("Hello world!"); (*<-- Error messages here*)
end.

Here a programmer fell back to C++ habits and quoted a string with double quotes.

program Solve;

begin
 Writeln('Hello world!'); (*Need single quotes in Delphi*)
end.

The solution is to use single quotes. In general, you need to delete the illegal character.

3.1.2.1.225 E2182: '%s' clause not allowed in OLE automation section
INDEX, STORED, DEFAULT and NODEFAULT are not allowed in OLE automation sections.

program Produce;

 type
 Base = class
 v : integer;
 procedure setV(x : integer);
 function getV : integer;
 automated
 property Value : integer read getV write setV nodefault;
 end;

 procedure Base.setV(x : integer);
 begin v := x;
 end;

 function Base.getV : integer;
 begin getV := v;
 end;

begin
end.

Including a NODEFAULT clause on an automated property is not allowed.

program Solve;

 type
 Base = class
 v : integer;
 procedure setV(x : integer);
 function getV : integer;
 automated
 property Value : integer read getV write setV;
 end;

 procedure Base.setV(x : integer);
 begin v := x;
 end;

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

408

3

 function Base.getV : integer;
 begin getV := v;
 end;

begin
end.

Removing the offending clause will cause the error to go away. Alternatively, moving the property out of the automated section
will also make the error go away.

3.1.2.1.226 E2231: '%s' directive not allowed in dispinterface type
You have specified a clause in a dispinterface type which is not allowed.

program Produce;

 type
 IBase = dispinterface
 ['{00000000-0000-0000-0000-000000000000}']
 function Get : Integer;

 property BaseValue : Integer read Get;
 end;

 IExt = interface (IBase)
 end;

begin
end.
 program Solve;

 type
 IBase = dispinterface
 ['{00000000-0000-0000-0000-000000000000}']
 function Get : Integer;

 property BaseValue : Integer;
 end;

begin
end.

3.1.2.1.227 E2207: '%s' clause not allowed in interface type
The clause noted in the message is not allowed in an interface type. Typically this error indicates that an illegal directive has
been specified for a property field in the interface.

program Produce;
 type
 Base = interface
 function Reader : Integer;
 procedure Writer(a : Integer);
 property Value : Integer read Reader write Writer stored false;
 end;
begin
end.

The problem in the above program is that the stored directive is not allowed in interface types.

program Solve;
 type
 Base = interface

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

409

3

 function Reader : Integer;
 procedure Writer(a : Integer);
 property Value : Integer read Reader write Writer;
 end;

begin
end.

The solution to problems of this nature are to remove the offending directive. Of course, it is best to understand the desired
behavior and to implement it in some other fashion.

3.1.2.1.228 E2176: Illegal type in OLE automation section: '%s'
<typename> is not an allowed type in an OLE automation section. Only a small subset of all the valid Delphi language types are
allowed in automation sections.

program Produce;

 type
 Base = class
 function GetC : Char;
 procedure SetC(c : Char);
 automated
 property Ch : Char read GetC write SetC dispid 151;
 end;

 procedure Base.SetC(c : Char);
 begin
 end;

 function Base.GetC : Char;
 begin GetC := '!';
 end;

begin
end.

Since the character type is not one allowed in the 'automated' section, the declaration of 'Ch' will produce an error when
compiled.

program Solve;

 type
 Base = class
 function GetC : String;
 procedure SetC(c : String);
 automated
 property Ch : String read GetC write SetC dispid 151;
 end;

 procedure Base.SetC(c : String);
 begin
 end;

 function Base.GetC : String;
 begin GetC := '!';
 end;

begin
end.

There are two solutions to this problem. The first is to move the offending declaration out of the 'automated' section. The second
is to change the offending type to one that is allowed in 'automated' sections.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

410

3

3.1.2.1.229 E2185: Overriding automated virtual method '%s' cannot specify a
dispid

The dispid declared for the original virtual automated procedure declaration must be used by all overriding procedures in derived
classes.

program Produce;

 type
 Base = class
 automated
 procedure Automatic; virtual; dispid 151;
 end;

 Derived = class (Base)
 automated
 procedure Automatic; override; dispid 152;
 end;

 procedure Base.Automatic;
 begin
 end;

 procedure Derived.Automatic;
 begin
 end;

begin
end.

The overriding declaration of Base.Automatic, in Derived (Derived.Automatic) erroneously attempts to define another dispid for
the procedure.

program Solve;

 type
 Base = class
 automated
 procedure Automatic; virtual; dispid 151;
 end;

 Derived = class (Base)
 automated
 procedure Automatic; override;
 end;

 procedure Base.Automatic;
 begin
 end;

 procedure Derived.Automatic;
 begin
 end;

begin
end.

By removing the offending dispid clause, the program will now compile.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

411

3

3.1.2.1.230 E2068: Illegal reference to symbol '%s' in object file '%s'
This error message is given if an object file loaded with a $L or $LINK directive contains a reference to a Delphi symbol that is
not a procedure, function, variable, typed constant or thread local variable.

3.1.2.1.231 E2139: Illegal message method index
You have specified value for your message index which <= 0.

program Produce;

 type
 Base = class
 procedure Dynamo(VAR x : Integer); message -151;
 end;

 procedure Base.Dynamo(VAR x : Integer);
 begin
 end;

begin
end.

The specification of -151 as the message index is illegal in the above example.

program Solve;

 type
 Base = class
 procedure Dynamo(VAR x : Integer); message 151;
 end;

 procedure Base.Dynamo(VAR x : Integer);
 begin
 end;

begin
end.

Always make sure that your message index values are >= 1.

3.1.2.1.232 E2224: $DESIGNONLY and $RUNONLY only allowed in package
unit

The compiler has encountered either $designonly or $runonly in a source file which is not a package. These directives affect the
way that the IDE will treat a package file, and therefore can only be contained in package source files.

3.1.2.1.233 E2184: %s section valid only in class types
Interfaces and records may not contain published sections.

Records may not contain protected sections.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

412

3

3.1.2.1.234 W1043: Imagebase $%X is not a multiple of 64k. Rounding down to
$%X

You can set an imagebase for a DLL to position it in a specific location in memory using the $IMAGEBASE compiler directive.
The $IMAGEBASE directive controls the default load address for an application, DLL, or package. The number specified as the
imagebase in the directive must be a multiple of 64K (that is, a hex number must have zeros as the last 4 digits), otherwise, it will
be rounded down to the nearest multiple, and you will receive this compiler message.

3.1.2.1.235 E2227: Imagebase is too high - program exceeds 2 GB limit
There are three ways to cause this error: 1. Specify a large enough imagebase that, when compiled, the application code passes
the 2GB boundary. 2. Specify an imagebase via the command line which is above 2GB. 3. Specify an imagebase via
$imagebase which is above 2GB.

The only solution to this problem is to lower the imagebase address sufficiently so that the entire application will fit below the
2GB limit.

3.1.2.1.236 E2260: Implements clause not allowed together with index clause
You have tried to use an index clause with an implements clause. Index specifiers allow several properties to share the same
access method while representing different values. The implements directive allows you to delegate implementation of an
interface to a property in the implementing class but it cannot take an index specifier.

3.1.2.1.237 E2263: Implements getter cannot be dynamic or message method
An attempt has been made to use a dynamic or message method as a property accessor of a property which has an implements
clause.

program Produce;
type
 I0 = interface
 end;

 T0 = class(TInterfacedObject, I0)
 function getter : I0; dynamic;
 property p0 : I0 read getter implements I0;
 end;

function T0.getter : I0;
begin
end;

end.

As shown in the example here, it is an error to use the dynamic modifier on a getter for a property which has an implements
clause.

program Produce;
type
 I0 = interface
 end;

 T0 = class(TInterfacedObject, I0)
 function getter : I0;
 property p0 : I0 read getter implements I0;
 end;

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

413

3

function T0.getter : I0;
begin
end;

end.

To remove this error from your programs, remove the offending dynamic or method declaration.

3.1.2.1.238 E2264: Cannot have method resolutions for interface '%s'
An attempt has been made to use a method resolution clause for an interface named in an implements clause.

program Produce;
type
 I0 = interface
 procedure i0p0(a : char);
 end;

 T0 = class(TInterfacedObject, I0)
 procedure I0.i0p0 = proc0;
 function getter : I0;
 procedure proc0(a : char);
 property p0 : I0 read getter implements I0;
 end;

procedure T0.proc0(a : char);
begin
end;

function T0.getter : I0;
begin
end;
end.

In this example, the method proc0 is mapped onto the interface procedure i0p0, but because the interface is mentioned in a
implements clause, this renaming is not allowed.

program Solve;
type
 I0 = interface
 procedure i0p0(a : char);
 end;

 T0 = class(TInterfacedObject, I0)
 function getter : I0;
 procedure i0p0(a : char);
 property p0 : I0 read getter implements I0;
 end;

procedure T0.i0p0(a : char);
begin
end;

function T0.getter : I0;
begin
end;
end.

The solution for this error is to remove the offending "name resolution clause". One easy way to accomplish this is to name the
procedure in the class to the same name as the interface method.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

414

3

3.1.2.1.239 E2258: Implements clause only allowed within class types
The interface definition in this example attempts to use an implements clause which causes the error.

program Produce;
type
 IMyInterface = interface
 function getter : IMyInterface;
 property MyInterface: IMyInterface read getter implements IMyInterface;
 end;
end.

The only viable solution to this problem is to remove the offending implements clause.

program Solve;
type
 IMyInterface = interface
 function getter : IMyInterface;
 property MyInterface: IMyInterface read getter;
 end;
end.

3.1.2.1.240 E2259: Implements clause only allowed for properties of class or
interface type

An attempt has been made to use the implements clause with an improper type. Only class or interface types may be used.

program Produce;
type
 TMyClass = class(TInterfacedObject)
 FInteger : Integer;
 property MyInterface: Integer read FInteger implements Integer;
 end;
end.

In this example the error is caused because an Integer type is used with an implements clause.

The only solution for this error is to correct the implements clause so that it refers to a class or interface type, or to remove the
offending clause altogether.

3.1.2.1.241 E2262: Implements getter must be %s calling convention
The compiler has encountered a getter or setter which does not have the correct calling convention.

program Produce;
type
 I0 = interface
 end;

 T0 = class(TInterfacedObject, I0)
 function getter : I0; cdecl;
 property p0 : I0 read getter implements I0;
 end;

function T0.getter : I0;
begin
end;
end.

As you can see in this example, the cdecl on the function getter causes this error to be produced.

program Solve;

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

415

3

type
 I0 = interface
 end;

 T0 = class(TInterfacedObject, I0)
 function getter : I0;
 property p0 : I0 read getter implements I0;
 end;

function T0.getter : I0;
begin
end;
end.

The only solution to this problem is to remove the offending calling convention from the property getter declaration.

3.1.2.1.242 E2265: Interface '%s' not mentioned in interface list
An implements clause references an interface which is not mentioned in the interface list of the class.

program Produce;
type
 IMyInterface = interface
 end;

 TMyClass = class(TInterfacedObject, IUnknown)
 FMyInterface: IMyInterface;
 property MyInterface: IMyInterface read FMyInterface implements IMyInterface;
 end;
end.

The example shown here uses implements with the IMyInterface interface, but it is not mentioned in the interface list.

program Solve;
type
 IMyInterface = interface
 end;

 TMyClass = class(TInterfacedObject, IUnknown, IMyInterface)
 FMyInterface: IMyInterface;
 property MyInterface: IMyInterface read FMyInterface implements IMyInterface;
 end;
end.

A quick solution, shown here, is to add the required interface to the interface list of the class definition. Of course, adding it to the
interface list might require the implementation of the methods of the interface.

3.1.2.1.243 E2261: Implements clause only allowed for readable property
The compiler has encountered a "write only" property that claims to implement an interface. A property must be read/write to use
the implements clause.

program Produce;
type
 IMyInterface = interface
 end;

 TMyClass = class(TInterfacedObject, IMyInterface)
 FMyInterface: IMyInterface;
 property MyInterface: IMyInterface implements IMyInterface;
 end;
end.

The property in this example is write only and cannot be used to implement an interface.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

416

3

program Solve;
type
 IMyInterface = interface
 end;

 TMyClass = class(TInterfacedObject, IMyInterface)
 FMyInterface: IMyInterface;
 property MyInterface: IMyInterface read FMyInterface implements IMyInterface;
 end;
end.

By adding a read clause, the property can use the implements clause.

3.1.2.1.244 x1033: Unit '%s' implicitly imported into package '%s'
The unit specified was not named in the contains clause of the package, but a unit which has already been included in the
package imports it.

This message will help the programmer avoid violating the rule that a unit may not reside in more than one related package.

Ignoring the warning, will cause the unit to be put into the package. You could also explicitly list the named unit in the contains
clause of the package to accomplish the same result and avoid the warning altogether. Or, you could alter the package list to
load the named unit from another package.

package Produce;
 contains Classes;
end.

In the above program, Classes uses (either directly or indirectly) 'consts', 'TypInfo', and 'SysUtils'. We will get a warning message
for each of these units.

package Solve;
 contains consts, TypInfo, SysUtils, Classes;
end.

The best solution for this problem is to explicitly name all the units which will be imported into the package in the contains clause,
as has been done here.

3.1.2.1.245 W1040: Implicit use of Variants unit
If your application is using a Variant type, the compiler includes the Variant unit in the uses clause but warns you that you should
add it explicitly.

3.1.2.1.246 E2420: Interface '%s' used in '%s' is not yet completely defined
Interface used in is not yet completely defined. Forward declared interfaces must be declared in the same type section that they
are used in. As an example the following code will not compile because of the above error message:

program Project3;

{$APPTYPE CONSOLE}

type
 TInterface = interface;

 TFoo = class
 type
 TBar = class(TObject, TInterface)
 procedure Bar;
 end;

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

417

3

 end;

 TInterface = interface
 procedure Intf;
 end;

procedure TFoo.TBar.Bar;
begin

end;

begin
end.

3.1.2.1.247 E2086: Type '%s' is not yet completely defined
This error occurs if there is either a reference to a type that is just being defined, or if there is a forward declared class type in a
type section and no final declaration of that type.

program Produce;

type
 TListEntry = record
 Next: ^TListEntry; (*<-- Error message here*)
 Data: Integer;
 end;
 TMyClass = class; (*<-- Error message here*)
 TMyClassRef = class of TMyClass;
 TMyClasss = class (*<-- Typo ...*)
 (*...*)
 end;

begin
end.

The example tries to refer to record type before it is completely defined. Also, because of a typo, the compiler never sees a
complete declaration for TMyClass.

program Solve;

type
 PListEntry = ^TListEntry;
 TListEntry = record
 Next: PListEntry;
 Data: Integer;
 end;
 TMyClass = class;
 TMyClassRef = class of TMyClass;
 TMyClass = class
 (*...*)
 end;

begin
end.

The solution for the first problem is to introduce a type declaration for an auxiliary pointer type. The second problem is fixed by
spelling TMyClass correctly.

3.1.2.1.248 E2195: Cannot initialize local variables
The compiler disallows the use of initialized local variables.

program Produce;

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

418

3

 var
 j : Integer;

 procedure Show;
 var i : Integer = 151;
 begin
 end;

begin
end.

The declaration and initialization of 'i' in procedure 'Show' is illegal.

program Solve;

 var
 j : Integer;

 procedure Show;
 var i : Integer;
 begin
 i := 151;
 end;

begin
 j := 0;
end.

You can use a programmatic style to set all variables to known values.

3.1.2.1.249 E2196: Cannot initialize multiple variables
Variable initialization can only occur when variables are declared individually.

program Produce;

 var
 i, j : Integer = 151, 152;

begin
end.

The compiler will disallow the declaration and initialization of more than one variable at a time.

program Solve;

 var
 i : Integer = 151;
 j : Integer = 152;

begin
end.

Simple declare each variable by itself to allow initialization.

3.1.2.1.250 E2194: Cannot initialize thread local variables
The compiler does not allow initialization of thread local variables.

program Produce;

 threadvar
 tls : Integer = 151;

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

419

3

begin
end.

The declaration and initialization of 'tls' above is not allowed.

program Solve;

 threadvar
 tls : Integer;

begin tls := 151;
end.

You can declare thread local storage as normal, and then initialize it in the initialization section of your source file.

3.1.2.1.251 E2072: Number of elements (%d) differs from declaration (%d)
This error message appears when you declare a typed constant or initialized variable of array type, but do not supply the
appropriate number of elements.

program Produce;

var
 A : array [1..10] of Integer = (1,2,3,4,5,6,7,8,9);

begin
end.

The example declares an array of 10 elements, but the initialization only supplies 9 elements.

program Solve;

var
 A : array [1..10] of Integer = (1,2,3,4,5,6,7,8,9,10);

begin
end.

We just had to supply the missing element to make the compiler happy. When initializing bigger arrays, it can be sometimes hard
to see whether you have supplied the right number of elements. To help with that, you layout the source file in a way that makes
counting easy (e.g. ten elements to a line), or you can put the index of an element in comments next to the element itself.

3.1.2.1.252 E2428: Field '%s' needs initialization - not allowed in CLS
compliant value types

CLS-compliant value types cannot have fields that require initialization. See ECMA 335, Partition II, Section 12.

3.1.2.1.253 E2418: Type '%s' needs initialization - not allowed in variant record
Type needs initialization - not allowed in variant record. Variant records do not allow types that need initialization in their variant
field list since each variant field references the same memory location. As an example, the following code will not compile
because the array type needs to be initialized.

program Project3;

{$APPTYPE CONSOLE}

type
 TFoo = record
 case Boolean of
 True: (bar: Integer);

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

420

3

 False: (baz: array [0..2] of Integer);
 end;

end.

3.1.2.1.254 E2426: Inline function must not have asm block
Inline functions can not include an asm block. To avoid this error, remove the inline directive from your function or use Pascal
code to express the statements in the asm block.

3.1.2.1.255 E2442: Inline directive not allowed in constructor or destructor
Remove the inline directive to prevent this error.

3.1.2.1.256 H2444: Inline function '%s' has not been expanded because
accessing member '%s' is inaccessible

An inline function cannot be expanded when the inline function body refers to a restricted member that is not accessible where
the function is called.

For example, if an inline function refers to a strict private field and this function is called from outside the class (e.g. from a
global procedure), the field is not accessible at the call site and the inline function is not expanded.

3.1.2.1.257 E2425: Inline methods must not be virtual nor dynamic
In order for an inline method to be inserted inline at compile-time, the method must be bound at compile-time. Virtual and
dynamic methods are not bound until run-time, so they cannot be inserted inline. Make sure your method is static if you wish it to
be inline.

3.1.2.1.258 E2449: Inlined nested routine '%s' cannot access outer scope
variable '%s'

You can use the inline directive with nested procedures and functions. However, a nested procedure or function that refers to a
variable that is local to the outer procedure is not eligible for inlining.

3.1.2.1.259 H2445: Inline function '%s' has not been expanded because its unit
'%s' is specified in USES statement of IMPLEMENTATION section and current
function is inline function or being inline function

Inline functions are not expanded between circularly dependent units.

3.1.2.1.260 H2443: Inline function '%s' has not been expanded because unit
'%s' is not specified in USES list

This situation may occur if an inline function refers to a type in a unit that is not explicitly used by the function's unit. For example,
this may happen if the function uses inherited to refer to methods inherited from a distant ancestor, and that ancestor's unit is
not explicitly specified in the uses list of the function's unit.

If the inline function's code is to be expanded, then the unit that calls the function must explicitly use the unit where the ancestor

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

421

3

type is exposed.

3.1.2.1.261 E2441: Inline function declared in interface section must not use
local symbol '%s'

This error occurs when an inline function is declared in the interface section and it refers to a symbol that is not visible outside
the unit. Expanding the inline function in another unit would require accessing the local symbol from outside the unit, which is not
permitted.

To correct this error, move the local symbol declaration to the interface section, or make it an instance variable or class variable
of the function's class type.

3.1.2.1.262 E2382: Cannot call constructors using instance variables
No further information is available for this error or warning.

3.1.2.1.263 E2102: Integer constant too large
You have specified an integer constant that requires more than 64 bits to represent.

program Produce;

 const
 VeryBigHex = $80000000000000001;

begin
end.

The constant in the above example is too large to represent in 64 bits, thus the compiler will output an error.

program Solve;

 const
 BigHex = $8000000000000001;

begin
end.

Check the constants that you have specified and ensure that they are representable in 64 bits.

3.1.2.1.264 F2084: Internal Error: %s%d
Occasionally when compiling an application in Delphi, the compile will halt and display an error message that reads, for example:

Internal Error: X1234

This error message indicates that the compiler has encountered a condition, other than a syntax error, that it cannot successfully
process.

The information after "Internal Error" contains one or more characters, immediately followed by a number that indicates the file
and line number in the compiler itself where the error occurred. Although this information may not help you, it can help us
(Borland) track down the problem if and when you report the error. Be sure to jot down this information and include it with your
internal error description.

See Also

Resolving internal errors (see page 130)

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

422

3

3.1.2.1.265 E2232: Interface '%s' has no interface identification
You have attempted to assign an interface to a GUID type, but the interface was not defined with a GUID.

program Produce;

 type
 IBase = interface
 end;

 var
 g : TGUID;

 procedure p(x : TGUID);
 begin
 end;

begin
 g := IBase;
 p(IBase);
end.

In this example, the IBase type is defined but it is not given an interface, and is thus cannot be assigned to a GUID type.

program Solve;

 type
 IBase = interface
 ['{00000000-0000-0000-0000-000000000000}']
 end;

 var
 g : TGUID;

 procedure p(x : TGUID);
 begin
 end;

begin
 g := IBase;
 p(IBase);
end.

To solve the problem, you must either not attempt to assign an interface type without a GUID to a GUID type, or you must assign
a GUID to the interface when it is defined. In this solution, a GUID has been assigned to the interface type when it is defined.

3.1.2.1.266 E2291: Missing implementation of interface method %s.%s
This indicates that you have forgotten to implement a method required by an interface supported by your class type.

3.1.2.1.267 E2211: Declaration of '%s' differs from declaration in interface '%s'
A method declared in a class which implements an interface is different from the definition which appears in the interface.
Probable causes are that a parameter type or return value is declared differently, the method appearing in the class is a
message method, the identifier in the class is a field or the identifier in the class is a property, which does not match with the
definition in the interface.

program Produce;

 type
 IBaseIntf = interface

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

423

3

 procedure p0(var x : Shortint);
 procedure p1(var x : Integer);
 procedure p2(var x : Integer);
 end;

 TBaseClass = class (TInterfacedObject)
 procedure p1(var x : Integer); message 151;
 end;

 TExtClass = class (TBaseClass, IBaseIntf)
 p2 : Integer;
 procedure p0(var x : Integer);
 procedure p1(var x : Integer); override;
 end;

 procedure TBaseClass.p1(var x : Integer);
 begin
 end;

 procedure TExtClass.p0(var x : Integer);
 begin
 end;

 procedure TExtClass.p1(var x : Integer);
 begin
 end;

begin
end.

Generally, as in this example, errors of this type are plain enough to be easily visible. However, as can be seen with p1, things
can be more subtle. Since p1 is overriding a procedure from the inherited class, p1 also inherits the virtuality of the procedure
defined in the base class.

program Solve;

 type
 IBaseIntf = interface
 procedure p0(var x : Shortint);
 procedure p1(var x : Integer);
 procedure p2(var x : Integer);
 end;

 TBaseClass = class (TInterfacedObject)
 procedure p1(var x : Integer); message 151;
 end;

 TExtClass = class (TBaseClass, IBaseIntf)
 p2 : Integer;

 procedure IBaseIntf.p1 = p3;
 procedure IBaseIntf.p2 = p4;

 procedure p0(var x : Shortint);
 procedure p1(var x : Integer); override;
 procedure p3(var x : Integer);
 procedure p4(var x : Integer);
 end;

 procedure TBaseClass.p1(var x : Integer);
 begin
 end;

 procedure TExtClass.p0(var x : Shortint);
 begin
 end;

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

424

3

 procedure TExtClass.p1(var x : Integer);
 begin
 end;

 procedure TExtClass.p3(var x : Integer);
 begin
 end;

 procedure TExtClass.p4(var x : Integer);
 begin
 end;

begin
end.

One approach to solving this problem is to use a message resolution clause for each problematic identifier, as is done in the
example shown here. Another viable approach, which requires more thoughtful design, would be to ensure that the class
identifiers are compatible to the interface identifiers before compilation.

3.1.2.1.268 E2208: Interface '%s' already implemented by '%s'
The class specified by name2 has specified the interface name1 more than once in the inheritance section of the class definition.

program Produce;
 type
 IBaseIntf = interface
 end;

 TBaseClass = class (TInterfacedObject, IBaseIntf, IBaseIntf)
 end;

begin
end.

In this example, the IBaseIntf interface is specified multiple times in the inheritance section of the definition of TBaseClass. As a
class can not implement the same interface more than once, this cause the compiler to emit the error message.

program Solve;

 type
 IBaseIntf = interface
 end;

 TBaseClass = class (TInterfacedObject, IBaseIntf)
 end;

begin
end.

The only solution to this error message is to ensure that a particular interface appears no more than once in the inheritance
section of a class definition.

3.1.2.1.269 E2089: Invalid typecast
This error message is issued for type casts not allowed by the rules. The following kinds of casts are allowed:

• Ordinal or pointer type to another ordinal or pointer type

• A character, string, array of character or pchar to a string

• An ordinal, real, string or variant to a variant

• A variant to an ordinal, real, string or variant

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

425

3

• A variable reference to any type of the same size.

Note that casting real types to integer can be performed with the standard functions Trunc and Round.

There are other transfer functions like Ord and Chr that might make your intention clearer.

program Produce;

begin
 Writeln(Integer(Pi));
end.

This programmer thought he could cast a floating point constant to Integer, like in C.

program Solve;

begin
 Writeln(Trunc(Pi));
end.

In the Delphi language, we have separate Transfer functions to convert floating point values to integer.

3.1.2.1.270 E2424: Codepage '%s' is not installed on this machine
This message occurs if you specify a codepage using the --codepage=nnn command line switch and the codepage you
specify is not available on the machine.

See your operating system documentation for details on how to install codepages.

3.1.2.1.271 E2173: Missing or invalid conditional symbol in '$%s' directive
The $IFDEF, $IFNDEF, $DEFINE and $UNDEF directives require that a symbol follow them.

program Produce;

(*$IFDEF*)
(*$ENDIF*)

begin
end.

The $IFDEF conditional directive is incorrectly specified here and will result in an error.

program Solve;

(*$IFDEF WIN32*)
(*$ENDIF*)

begin
end.

The solution to the problem is to ensure that a symbol to test follows the appropriate directives.

3.1.2.1.272 x1030: Invalid compiler directive: '%s'
This error message means there is an error in a compiler directive or in a command line option. Here are some possible error
situations:

• An external declaration was syntactically incorrect.

• A command line option or an option in a DCC32.CFG file was not recognized by the compiler or was invalid. For example,
'-$M100' is invalid because the minimum stack size must be at least 1024.

• The compiler found a $XXXXX directive, but could not recognize it. It was probably misspelled.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

426

3

• The compiler found a $ELSE or $ENDIF directive, but no preceding $IFDEF, $IFNDEF or $IFOPT directive.

• (*$IFOPT*) was not followed by a switch option and a + or -.

• The long form of a switch directive was not followed by ON or OFF.

• A directive taking a numeric parameter was not followed by a valid number.

• The $DESCRIPTION directive was not followed by a string.

• The $APPTYPE directive was not followed by CONSOLE or GUI.

• The $ENUMSIZE directive (short form $Z) was not followed by 1,2 or 4.

(*$Description Copyright CodeGear 2007*) (*<-- Error here*)
program Produce;
(*$AppType Console*) (*<-- Error here*)

begin
(*$If O+*) (*<-- Error here*)
Writeln('Optimizations are ON');
(*$Else*) (*<-- Error here*)
Writeln('Optimizations are OFF');
(*$Endif*) (*<-- Error here*)
Writeln('Hello world!');
end.

The example shows three typical error situations, and the last two errors are caused by the compiler not having recognized $If.

(*$Description 'Copyright CodeGear 2007'*) (*Need string*)
program Solve;
(*$AppType Console*) (*AppType*)

begin
(*$IfOpt O+*) (*IfOpt*)
 Writeln('Optimizations are ON');
(*$Else*) (*Now fine*)
 Writeln('Optimizations are OFF');
(*$Endif*) (*Now fine*)
 Writeln('Hello world!');
end.

So $Description needs a quoted string, we need to spell $AppType right, and checking options is done with $IfOpt. With these
changes, the example compiles fine.

3.1.2.1.273 E2298: read/write not allowed for CLR events. Use Include/Exclude
procedure

Multicast events cannot be assigned to or read from like traditional Delphi read/write events.

Use Include/Exclude to add or remove methods.

3.1.2.1.274 E2138: Invalid message parameter list
A message procedure can take only one, VAR, parameter; it's type is not checked.

program Produce;

 type
 Base = class
 procedure Msg1(x : Integer); message 151;
 procedure Msg2(VAR x, y : Integer); message 152;
 end;

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

427

3

 procedure Base.Msg1(x : Integer);
 begin
 end;

 procedure Base.Msg2(VAR x, y : Integer);
 begin
 end;

begin
end.

The obvious error in the first case is that the parameter is not VAR. The error in the second case is that more than one
parameter is declared.

program Solve;

 type
 Base = class
 procedure Msg1(VAR x : Integer); message 151;
 procedure Msg2(VAR y : Integer); message 152;
 end;

 procedure Base.Msg1(VAR x : Integer);
 begin
 end;

 procedure Base.Msg2(VAR y : Integer);
 begin
 end;

begin
end.

The solution in both cases was to only specify one, VAR, parameter in the message method declaration.

3.1.2.1.275 E2294: A class helper that descends from '%s' can only help
classes that are descendents '%s'

The object type specified in the "for" clause of a class helper declaration is not a descendent of the object type specified in the
"for" clause of the class helper's ancestor type.

3.1.2.1.276 E2296: A constructor introduced in a class helper must call the
parameterless constructor of the helped class as the first statement

The first statement in a class helper constructor must be "inherited Create;"

3.1.2.1.277 E2387: The key container name '%s' does not exist
No further information is available for this error or warning.

3.1.2.1.278 E2388: Unrecognized strong name key file '%s'
No further information is available for this error or warning.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

428

3

3.1.2.1.279 E2432: %s cannot be applied to a rectangular dynamic array
This error may arise if you attempt to pass a dynamically allocated rectangular array to the Low or High function.

If you receive this error, use a static or ragged (non-rectangular) array. See the Delphi Language Guide for details.

See Also

Structured Types (see page 566)

3.1.2.1.280 E2393: Invalid operator declaration
No further information is available for this error or warning.

3.1.2.1.281 E2174: '%s' not previously declared as a PROPERTY
You have attempted to hoist a property to a different visibility level by redeclaration, but <name> in the base class was not
declared as a property. -W

program Produce;
(*$WARNINGS ON*)

 type
 Base = class
 protected
 Caption : String;
 Title : String;
 property TitleProp : string read Title write Title;
 end;

 Derived = class (Base)
 public
 property Title read Caption write Caption;
 end;

begin
end.

The intent of the redeclaration of 'Derived.Title' is to change the field which is used to read and write the property 'Title' as well as
hoist it to 'public' visibility. Unfortunately, the programmer really meant to use 'TitleProp', not 'Title'.

program Solve;
(*$WARNINGS ON*)

 type
 Base = class
 protected
 Caption : String;
 Title : String;
 property TitleProp : string read Title write Title;
 end;

 Derived = class (Base)
 public
 property TitleProp read Caption write Caption;
 property Title : string read Caption write Caption;
 end;

begin
end.

There are a couple ways of approaching this error. The first, and probably the most commonly taken, is to specify the real

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

429

3

property which is to be redeclared. The second, which can be seen in the redeclaration of 'Title' addresses the problem by
explicitly creating a new property, with the same name as a field in the base class. This new property will hide the base field,
which will no longer be accessible without a typecast. (Note: If you have warnings turned on, the redeclaration of 'Title' will issue
a warning notifying you that the redeclaration will hide the base class' member.)

3.1.2.1.282 E2376: STATIC can only be used on non-virtual class methods
No further information is available for this error or warning.

3.1.2.1.283 E2415: Could not import assembly '%s' because it contains
namespace '%s'

The Borland.Delphi.System unit may only be loaded from the Borland.Delphi.dll assembly. This error will occur if
Borland.Delphi.System is attempted to be loaded from an alternative assembly.

3.1.2.1.284 E2416: Could not import package '%s' because it contains system
unit '%s'

The Borland.Delphi.System unit may only be loaded from the Borland.Delphi.dll package. This error will occur if
Borland.Delphi.System is attempted to be loaded from an alternative package.

3.1.2.1.285 F2438: UCS-4 text encoding not supported. Convert to UCS-2 or
UTF-8

This error is encountered when a source file has a UCS-4 encoding, as indicated by its Byte-Order-Mark (BOM). The compiler
does not support compilation of source files in UCS-4 Unicode encoding. To solve this problem, convert the source file to UCS-2
or UTF-8 encoding.

3.1.2.1.286 E2386: Invalid version string '%s' specified in %s
No further information is available for this error or warning.

3.1.2.1.287 E2120: LOOP/JCXZ distance out of range
You have specified a LOOP or JCXZ destination which is out of range. You should not receive this error as the jump range is
2Gb for LOOP and JCXZ instructions.

3.1.2.1.288 E2049: Label declaration not allowed in interface part
This error occurs when you declare a label in the interface part of a unit.

unit Produce;
interface
label 99;
implementation
begin
99:
end.

It is just illegal to declare a label in the interface section of a unit.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

430

3

unit Solve;
interface
implementation
label 99;
begin
99:
end.

You have to move it to the implementation section.

3.1.2.1.289 E2073: Label already defined: '%s'
This error message is given when a label is set on more than one statement.

program Produce;
label 1;
begin
1:
 goto 1;
1: (*<-- Error message here*)
end.

The example just tries to set label 1 twice.

program Solve;
label 1;
begin
1:
 goto 1;
end.

Make sure every label is set exactly once.

3.1.2.1.290 E2074: Label declared and referenced, but not set: '%s'
You declared and used a label in your program, but the label definition was not encountered in the source code.

 program Produce;

 procedure Labeled;
 label 10;
 begin
 goto 10;
 end;

 begin
 end.

Label 10 is declared and used in the procedure 'Labeled', but the compiler never finds a definition of the label.

 program Produce;

 procedure Labeled;
 label 10;
 begin
 goto 10;
 10:
 end;

 begin
 end.

The simple solution is to ensure that a declared and used label has a definition, in the same scope, in your program.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

431

3

3.1.2.1.291 F2069: Line too long (more than 1023 characters)
This error message is given when the length of a line in the source file exceeds 255 characters.

Usually, you can divide the long line into two shorter lines.

If you need a really long string constant, you can break it into several pieces on consecutive lines that you concatenate with the
'+' operator.

3.1.2.1.292 E2364: Cross-assembly protected reference to [%s]%s.%s in
%s.%s

In Delphi for .NET, members with protected visibility cannot be accessed outside of the assembly in which they are defined. If
possible, you may want to use the publicly-exposed members of the class to accomplish your goal.

Other ways to resolve this error:

• Increase the visibility of the member from protected to public, so it can be accessed outside of its assembly.

• “Link in” the assembly where the protected member is defined, so that this assembly is incorporated into the assembly you are
building, and the access will be inside the assembly.

See Also

Classes and Objects (see page 514)

Linking Delphi Units into an Application (see page 111)

3.1.2.1.293 W1053: Local PInvoke code has not been made because external
routine '%s' in package '%s' is defined using package local types in its custom
attributes

This warning may arise when an external package uses PInvoke to access Win32 library code, and that package exposes the
PInvoke definition through a public export. In these cases the compiler will attempt to link directly to the Win32 library by copying
the PInvoke definition to the local assembly, rather than linking to the public export in the external package. This is more secure
and can also improve runtime performance.

This warning message is issued if the compiler is unable to emit the PInvoke definition locally, because the external assembly
uses locally-defined types for a custom attribute. To avoid this warning, you must change the named package so that it does not
use locally-defined types for a custom attribute in an exported function or procedure.

For example, in the following code, the unit ExternalPackagedUnit exposes the external function Beep in kernel32
through the TFoo.Beep function, with the MyAttribute custom attribute:

unit ExternalPackagedUnit;

interface

function Beep(dwFreq, dwDuration: MyLongWord): Boolean; static; stdcall;

implementation

type
 MyAttribute = class(System.Attribute)
 .
 .
 .
 end;

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

432

3

[MyAttribute]
function Beep(dwFreq, dwDuration: LongWord): Boolean; stdcall; external 'kernel32' name 'Beep';

end.

If one attempts to compile a program which uses ExternalPackagedUnit, then because the MyAttribute type is
locally-defined in ExternalPackagedUnit the compiler will be unable to link directly to the Beep function in kernel32, and
this warning will be issued. In the example, this problem can be solved by making the MyAttribute type public (by moving its
declaration from the implementation section to the interface section), or by removing the custom attribute from the Beep
function.

See Also

Using Platform Invoke with RAD Studio

3.1.2.1.294 E2094: Local procedure/function '%s' assigned to procedure
variable

This error message is issued if you try to assign a local procedure to a procedure variable, or pass it as a procedural parameter.

This is illegal, because the local procedure could then be called even if the enclosing procedure is not active. This situation
would cause the program to crash if the local procedure tried to access any variables of the enclosing procedure.

program Produce;

var
 P: Procedure;

procedure Outer;

 procedure Local;
 begin
 Writeln('Local is executing');
 end;

begin
 P := Local; (*<-- Error message here*)
end;

begin
 Outer;
 P;
end.

The example tries to assign a local procedure to a procedure variable. This is illegal because it is unsafe at runtime.

program Solve;

var
 P: Procedure;

procedure NonLocal;
begin
 Writeln('NonLocal is executing');
end;

procedure Outer;

begin
 P := NonLocal;
end;

begin

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

433

3

 Outer;
 P;
end.

The solution is to move the local procedure out of the enclosing one.

3.1.2.1.295 E2189: Thread local variables cannot be local to a function
Thread local variables must be declared at a global scope.

program Produce;

 procedure NoTLS;
 threadvar
 x : Integer;
 begin
 end;

begin
end.

A thread variable cannot be declared local to a procedure.

program Solve;

 threadvar
 x : Integer;

 procedure YesTLS;
 var
 localX : Integer;
 begin
 end;

begin
end.

There are two simple alternatives for avoiding this error. First, the threadvar section can be moved to a local scope. Secondly,
the threadvar in the procedure could be changed into a normal var section. Note that if compiler hints are turned on, a hint about
localX being declared but not used will be emitted.

3.1.2.1.296 W1042: Error converting locale string '%s' to Unicode. String
truncated. Is your LANG environment variable set correctly?

This message occurs when you are trying to convert strings to Unicode and the string contains characters that are not valid for
the current locale. For example, this may occur when converting WideString to AnsiString or if attempting to display Japanese
characters in an English locale.

3.1.2.1.297 E2011: Low bound exceeds high bound
This error message is given when either the low bound of a subrange type is greater than the high bound, or the low bound of a
case label range is greater than the high bound.

program Produce;
type
 SubrangeType = 1..0; (*Gets: Low bound exceeds high bound *)
begin
 case True of
 True..False: (*Gets: Low bound exceeds high bound *)
 Writeln('Expected result');

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

434

3

 else
 Writeln('Unexpected result');
 end;
end.

In the example above, the compiler gives an error rather than treating the ranges as empty. Most likely, the reversal of the
bounds was not intentional.

program Solve;
type
 SubrangeType = 0..1;
begin
 case True of
 False..True:
 Writeln('Expected result');
 else
 Writeln('Unexpected result');
 end;
end.

Make sure you have specified the bounds in the correct order.

3.1.2.1.298 H2440: Inline method visibility is not lower or same visibility of
accessing member '%s.%s'

A member that is accessed within the body of an inline method must be accessible anywhere that the inline method is called.
Therefore, the member must be at least as visible as the inline method.

Here is an example of code that will raise this error:

type
 TFoo = class
 private
 PrivateMember: Integer;
 public
 function PublicFunc:Integer; inline;
 end;

function TFoo.PublicFunc:Integer;
 begin
 Result := Self.PrivateMember;
 end;

Because Result := Self.PrivateMember; will be inserted wherever PublicFunc is called, PrivateMember must be
accessible in any such location.

To correct this error, remove the inline directive or adjust the visibility of the inline method or the member it accesses.

3.1.2.1.299 E2204: Improper GUID syntax
The GUID encountered in the program source is malformed. A GUID must be of the form:
00000000-0000-0000-0000-000000000000.

3.1.2.1.300 E2348: Metadata - Bad input parameters
No further information is available for this error or warning.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

435

3

3.1.2.1.301 E2347: Metadata - Bad binary signature
No further information is available for this error or warning.

3.1.2.1.302 E2349: Metadata - Cannot resolve typeref
No further information is available for this error or warning.

3.1.2.1.303 E2345: Metadata - Attempt to define an object that already exists
No further information is available for this error or warning.

3.1.2.1.304 E2346: Metadata - A guid was not provided where one was required
No further information is available for this error or warning.

3.1.2.1.305 E2350: Metadata - No logical space left to create more user strings
No further information is available for this error or warning.

3.1.2.1.306 F2046: Out of memory
The compiler ran out of memory.

This should rarely happen. If it does, make sure your swap file is large enough and that there is still room on the disk.

3.1.2.1.307 x1054: Linker error: %s
This message emits a warning or other text generated using the $MESSAGE directive.

3.1.2.1.308 E2096: Method identifier expected
This error message will be issued in several different situations:

• Properties in an automated section must use methods for access, they cannot use fields in their read or write clauses.

• You tried to call a class method with the "ClassType.MethodName" syntax, but "MethodName" was not the name of a method.

• You tried calling an inherited with the "Inherited MethodName" syntax, but "MethodName" was not the name of a method.

program Produce;

type
TMyBase = class
 Field: Integer;
end;
TMyDerived = class (TMyBase)
 Field: Integer;
 function Get: Integer;
Automated
 property Prop: Integer read Field; (*<-- Error message here*)
end;

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

436

3

function TMyDerived.Get: Integer;
begin
Result := TMyBase.Field; (*<-- Error message here*)
end;

begin
end.

The example tried to declare an automated property that accesses a field directly. The second error was caused by trying to get
at a field of the base class - this is also not legal.

program Solve;

type
 TMyBase = class
 Field: Integer;
 end;
 TMyDerived = class (TMyBase)
 Field: Integer;
 function Get: Integer;
 Automated
 property Prop: Integer read Get;
 end;

function TMyDerived.Get: Integer;
begin
 Result := TMyBase(Self).Field;
end;

begin
 Writeln(TMyDerived.Create.Prop);
end.

The first problem is fixed by accessing the field via a method. The second problem can be fixed by casting the Self pointer to the
base class type, and accessing the field off of that.

3.1.2.1.309 E2433: Method declarations not allowed in anonymous record or
local record type

Record types that are declared in local scopes or declared in-place in variable declarations can only contain field declarations.
For advanced features in record types (such as methods, properties, and nested types), the record type must be an explicitly
declared global type.

3.1.2.1.310 E2234: Getter or setter for property '%s' cannot be found
During translation of a unit to a C++ header file, the compiler is unable to locate a named symbol which is to be used as a getter
or setter for a property. This is usually caused by having nested records in the class and the accessor is a field in the nested
record.

3.1.2.1.311 E2095: Missing ENDIF directive
This error message is issued if the compiler does not find a corresponding $ENDIF directive after an $IFDEF, $IFNDEF or
$IFOPT directive.

program Produce;
(*$APPTYPE CONSOLE*)
begin
(*$IfOpt O+*)
 Writeln('Compiled with optimizations');

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

437

3

(*$Else*)
 Writeln('Compiled without optimizations');
(*Endif*)
end. (*<-- Error message here*)

In this example, we left out the $ character in the (*$Endif*) directive, so the compiler mistook it for a comment.

program Solve;
(*$APPTYPE CONSOLE*)
begin
(*$IfOpt O+*)
 Writeln('Compiled with optimizations');
(*$Else*)
 Writeln('Compiled without optimizations');
(*$Endif*)
end.

The solution is to make sure all the conditional directives have a valid $ENDIF directive.

3.1.2.1.312 E2403: Add or remove accessor for event '%s' cannot be found
No further information is available for this error or warning.

3.1.2.1.313 E2253: Ancestor type '%s' does not have an accessible default
constructor

The ancestor of the class being compiled does not have an accessible default constructor. This error only occurs with the byte
code version of the compiler.

3.1.2.1.314 E2066: Missing operator or semicolon
This error message appears if there is no operator between two subexpressions, or no semicolon between two statements.

Often, a semicolon is missing on the previous line.

program Produce;
var
 I: Integer;
begin
 I := 1 2 (*<-- Error message here*)
 if I = 3 then (*<-- Error message here*)
 Writeln('Fine')
end.

The first statement in the example has two errors - a '+' operator and a semicolon are missing. The first error is reported on this
statement, the second on the following line.

program Solve;
var
 I: Integer;
begin
 I := 1 + 2; (*We were missing a '+' operator and a semicolon*)
 if I = 3 then
 Writeln('Fine')
end.

The solution is to make sure the necessary operators and semicolons are there.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

438

3

3.1.2.1.315 E2202: Required package '%s' not found
The package, which is referenced in the message, appears on the package list, either explicitly or through a requires clause of
another unit appearing on the package list, but cannot be found by the compiler.

The solution to this problem is to ensure that the DCP file for the named package is in one of the units named in the library path.

3.1.2.1.316 E2035: Not enough actual parameters
This error message occurs when a call to procedure or function gives less parameters than specified in the procedure or function
declaration.

This can also occur for calls to standard procedures or functions.

program Produce;
var
 X: Real;
begin
 Val('3.141592', X); (*<-- Error message here*)
end.

The standard procedure Val has one additional parameter to return an error code in. The example did not supply that parameter.

program Solve;
var
 X: Real;
 Code: Integer;
begin
 Val('3.141592', X, Code);
end.

Typically, you will check the call against the declaration of the procedure called or the help, and you will find you forgot about a
parameter you need to supply.

3.1.2.1.317 E2067: Missing parameter type
This error message is issued when a parameter list gives no type for a value parameter.

Leaving off the type is legal for constant and variable parameters.

program Produce;

procedure P(I;J: Integer); (*<-- Error message here*)
begin
end;

function ComputeHash(Buffer; Size: Integer): Integer; (*<-- Error message here*)
begin
end;

begin
end.

We intended procedure P to have two integer parameters, but we put a semicolon instead of a comma after the first parameters.
The function ComputeHash was supposed to have an untyped first parameter, but untyped parameters must be either variable
or constant parameters - they cannot be value parameters.

program Solve;

procedure P(I,J: Integer);

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

439

3

begin
end;

function ComputeHash(const Buffer; Size: Integer): Integer;
begin
end;

begin
end.

The solution in this case was to fix the type in P's parameter list, and to declare the Buffer parameter to ComputeHash as a
constant parameter, because we don't intend to modify it.

3.1.2.1.318 E2151: Could not load RLINK32.DLL
RLINK32 could not be found. Please ensure that it is on the path.

Contact CodeGear if you encounter this error.

3.1.2.1.319 E2404: Cannot mix READ/WRITE property accessors with
ADD/REMOVE accessors

No further information is available for this error or warning.

3.1.2.1.320 E2359: Multiple class constructors in class %s: %s and %s
No further information is available for this error or warning.

3.1.2.1.321 E2287: Cannot export '%s' multiple times
This message is not used in this product.

3.1.2.1.322 E2085: Unit name mismatch: '%s' '%s'
The unit name in the top unit is case sensitive and must match the name with respect to upper- and lowercase letters exactly.
The unit name is case sensitive only in the unit declaration.

3.1.2.1.323 E2016: Array type required
This error message is given if you either index into an operand that is not an array, or if you pass an argument that is not an
array to an open array parameter.

program Produce;
var
 P: ^Integer;
 I: Integer;
begin
 Writeln(P[I]);
end.

We try to apply an index to a pointer to integer - that would be legal in C, but is not in Delphi.

program Solve;
type
 TIntArray = array [0..MaxInt DIV sizeof(Integer)-1] of Integer;

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

440

3

var
 P: ^TIntArray;
 I: Integer;
begin
 Writeln(P^[I]); (*Actually, P[I] would also be legal*)
end.

In The Delphi language, we must tell the compiler that we intend P to point to an array of integers.

3.1.2.1.324 E2012: Type of expression must be BOOLEAN
This error message is output when an expression serves as a condition and must therefore be of Boolean type. This is the case
for the controlling expression of the if, while and repeat statements, and for the expression that controls a conditional breakpoint.

program Produce;
var
 P: Pointer;
begin
 if P then
 Writeln('P <> nil');
end.

Here, a C++ programmer just used a pointer variable as the condition of an if statement.

program Solve;
var
 P: Pointer;
begin
 if P <> nil then
 Writeln('P <> nil');
end.

In Delphi, you need to be more explicit in this case.

3.1.2.1.325 E2021: Class type required
In certain situations the compiler requires a class type:

• As the ancestor of a class type

• In the on-clause of a try-except statement

• As the first argument of a raise statement

• As the final type of a forward declared class type

program Produce;
begin
raise 'This would work in C++, but does not in Delphi';
end.
 program Solve;
uses SysUtils;
begin
raise Exception.Create('There is a simple workaround, however');
end.

3.1.2.1.326 E2076: This form of method call only allowed for class methods
You were trying to call a normal method by just supplying the class type, not an actual instance.

This is only allowed for class methods and constructors, not normal methods and destructors.

program Produce;

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

441

3

type
 TMyClass = class
 (*...*)
 end;
var
 MyClass: TMyClass;

begin
 MyClass := TMyClass.Create; (*Fine, constructor*)
 Writeln(TMyClass.ClassName); (*Fine, class method*)
 TMyClass.Destroy; (*<-- Error message here*)
end.

The example tries to destroy the type TMyClass - this doesn't make sense and is therefore illegal.

program Solve;
type
 TMyClass = class
 (*...*)
 end;
var
 MyClass: TMyClass;

begin
 MyClass := TMyClass.Create; (*Fine, constructor*)
 Writeln(TMyClass.ClassName); (*Fine, class method*)
 MyClass.Destroy; (*Fine, called on instance*)
end.

As you can see, we really meant to destroy the instance of the type, not the type itself.

3.1.2.1.327 E2149: Class does not have a default property
You have used a class instance variable in an array expression, but the class type has not declared a default array property.

program Produce;

 type
 Base = class
 end;

 var
 b : Base;

 procedure P;
 var ch : Char;
 begin
 ch := b[1];
 end;

begin
end.

The example above elicits an error because 'Base' does not declare an array property, and 'b' is not an array itself.

program Solve;

 type
 Base = class
 function GetChar(i : Integer) : Char;
 property data[i : Integer] : Char read GetChar; default;
 end;

 var
 b : Base;

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

442

3

 function Base.GetChar(i : Integer) : Char;
 begin GetChar := 'A';
 end;

 procedure P;
 var ch : Char;
 begin
 ch := b[1];
 ch := b.data[1];
 end;

begin
end.

When you have declared a default property for a class, you can use the class instance variable in array expression, as if the
class instance variable itself were actually an array. Alternatively, you can use the name of the property as the actual array
accessor.

Note: If you have hints turned on, you will receive two warnings about the value assigned to 'ch' never being used.

3.1.2.1.328 E2168: Field or method identifier expected
You have specified an identifier for a read or write clause to a property which is not a field or method.

program Produce;

 var
 r : string;

 type
 Base = class
 t : string;
 property Title : string read Title write Title;
 property Caption : string read r write r;

 end;

begin
end.

The two properties in this code both cause errors. The first causes an error because it is not possible to specify the property itself
as the read & write methods. The second causes an error because 'r' is not a member of the Base class.

program Solve;

 type
 Base = class
 t : string;
 property Title : string read t write t;
 end;

begin
end.

To solve this error, make sure that all read & write clauses for properties specify a valid field or method identifier that is a
member of the class which owns the property.

3.1.2.1.329 E2022: Class helper type required
When declaring a class helper type with an ancestor clause, the ancestor type must be a class helper.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

443

3

3.1.2.1.330 E2380: Instance or class static method expected
No further information is available for this error or warning.

3.1.2.1.331 E2013: Type of expression must be INTEGER
This error message is only given when the constant expression that specifies the number of characters in a string type is not of
type integer.

program Produce;
type
 color = (red,green,blue);
var
 S3 : string[Succ(High(color))];
begin
end.

The example tries to specify the number of elements in a string as dependent on the maximum element of type color -
unfortunately, the element count is of type color, which is illegal.

program Solve;
type
 color = (red,green,blue);
var
 S3 : string[ord(High(color))+1];
begin
end.

3.1.2.1.332 E2205: Interface type required
A type, which is an interface, was expected but not found. A common cause of this error is the specification of a user-defined
type that has not been declared as an interface type.

program Produce;
 type
 Name = string;

 MyObject = class
 end;

 MyInterface = interface(MyObject)
 end;

 Base = class(TObject, Name)
 end;

begin
end.

In this example, the type 'Base' is erroneously declared since 'Name' is not declared as an interface type. Likewise, 'MyInterface'
is incorrectly declared because its ancestor interface was not declared as such.

program Solve;
 type
 BaseInterface = interface
 end;

 MyInterface = interface(BaseInterface)
 end;

 Base = class(TObject, MyInterface)
 end;

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

444

3

begin
end.

The best solution when encountering this error is to reexamine the source code to determine what was really intended. If a class
is to implement an interface, it must first be explicitly derived from a base type such as TObject. When extended, interfaces can
only have a single interface as its ancestor.

In the example above, the interface is properly derived from another interface and the object definition correctly specifies a base
so that interfaces can be specified.

3.1.2.1.333 E2031: Label expected
This error message occurs if the identifier given in a goto statement or used as a label in inline assembly is not declared as a
label.

program Produce;

begin
 if 2*2 <> 4 then
 goto Exit; (*<-- Error message here: Exit is also a standard procedure*)
 (*...*)
Exit: (*Additional error messages here*)
end.
 program Solve;
label
 Exit; (*Labels must be declared in Delphi*)
begin
 if 2*2 <> 4 then
 goto Exit;
 (*...*)
Exit:
end.

3.1.2.1.334 E2075: This form of method call only allowed in methods of derived
types

This error message is issued if you try to make a call to a method of an ancestor type, but you are in fact not in a method.

program Produce;

type
 TMyClass = class
 constructor Create;
 end;

procedure Create;
begin
 inherited Create; (*<-- Error message here*)
end;

begin
end.

The example tries to call an inherited constructor in procedure Create, which is not a method.

program Solve;

type
 TMyClass = class
 constructor Create;
 end;

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

445

3

constructor TMyclass.Create;
begin
 inherited Create;
end;

begin
end.

The solution is to make sure you are in fact in a method when using this form of call.

3.1.2.1.335 E2019: Object type required
This error is given whenever an object type is expected by the compiler. For instance, the ancestor type of an object must also
be an object type.

type
 MyObject = object(TObject)
 end;
begin
end.

Confusingly enough, TObject in the unit System has a class type, so we cannot derive an object type from it.

program Solve;
type
 MyObject = class (*Actually, this means: class(TObject)*)
 end;
begin
end.

Make sure the type identifier really stands for an object type - maybe it is misspelled, or maybe is hidden by an identifier from
another unit.

3.1.2.1.336 E2020: Object or class type required
This error message is given when the syntax 'Typename.Methodname' is used, but the typename does not refer to an object or
class type.

program Produce;
type
 TInteger = class
 Value: Integer;
 end;
var
 V: TInteger;
begin
 V := Integer.Create;
end.

Type Integer does not have a Create method, but TInteger does.

program Solve;
type
 TInteger = class
 Value: Integer;
 end;
var
 V: TInteger;
begin
 V := TInteger.Create;
end.

Make sure the identifier really refers to an object or class type - maybe it is misspelled or it is hidden by an identifier from another
unit.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

446

3

3.1.2.1.337 E2254: Overloaded procedure '%s' must be marked with the
'overload' directive

The compiler has encountered a procedure, which is not marked overload, with the same name as a procedure already marked
overload. All overloaded procedures must be marked as such.

program Produce;

procedure f0(a : integer); overload;
begin
end;

procedure f0(a : integer; ch : char);
begin
end;

begin
end.

The procedure f0(a : integer; ch : char) causes the error since it is not marked with the overload keyword.

program solve;

procedure f0(a : integer); overload;
begin
end;

procedure f0(a : integer; ch : char); overload;
begin
end;

begin
end.

If the procedure is intended to be an overloaded version, then mark it as overload. If it is not intended to be an overloaded
version, then change its name.

3.1.2.1.338 E2017: Pointer type required
This error message is given when you apply the dereferencing operator '^' to an operand that is not a pointer, and, as a very
special case, when the second operand in a 'Raise <exception> at <address>' statement is not a pointer.

program Produce;
var
 C: TObject;
begin
 C^.Destroy;
end.

Even though class types are implemented internally as pointers to the actual information, it is illegal to apply the dereferencing
operator to class types at the source level. It is also not necessary - the compiler will dereference automatically whenever it is
appropriate.

program Solve;
var
 C: TObject;
begin
 C.Destroy;
end.

Simply leave off the dereferencing operator—the compiler will do the right thing automatically.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

447

3

3.1.2.1.339 E2267: Previous declaration of '%s' was not marked with the
'overload' directive

There are two solutions to this problem. You can either remove the attempt at overloading or you can mark the original
declaration with the overload directive. The example shown here marks the original declaration.

program Produce;
type
 Base = class
 procedure func(a : integer);
 procedure func(a : char); overload;
 end;

 procedure Base.func(a : integer);
 begin
 end;

 procedure Base.func(a : char);
 begin
 end;

end.

This example attempts to overload the char version of func without marking the first version of func as overloadable.

You must mark all functions to be overloaded with the overload directive. If overload were not required on all versions it would be
possible to introduce a new method which overloads an existing method and then a simple recompilation of the source could
produce different behavior.

program Solve;
type
 Base = class
 procedure func(a : integer); overload;
 procedure func(a : char); overload;
 end;

 procedure Base.func(a : integer);
 begin
 end;

 procedure Base.func(a : char);
 begin
 end;

end.

3.1.2.1.340 E2121: Procedure or function name expected
You have specified an identifier which does not represent a procedure or function in an EXPORTS clause.

library Produce;

 var
 y : procedure;

exports y;
begin
end.

It is not possible to export variables from a built-in library, even though the variable is of 'procedure' type.

program Solve;

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

448

3

 procedure ExportMe;
 begin
 end;

exports ExportMe;
begin
end.

Always be sure that all the identifiers listed in an EXPORTS clause truly represent procedures.

3.1.2.1.341 E2299: Property required
You need to add a property to your program.

The declaration of a property specifies a name and a type, and includes at least one access specifier. The syntax of a property
declaration is:

property propertyName[indexes]: type index integerConstant specifiers;

where:

— propertyName is any valid identifier

— [indexes] is optional and is a sequence of parameter declarations separated by semicolons

— Each parameter declaration has the form identifier1, ..., identifiern: type

— type must be a predefined or previously declared type identifier. That is, property declarations like property Num: 0..9 ... are
invalid.

— the index integerConstant clause is optional.

— specifiers is a sequence of read, write, stored, default (or nodefault), and implements specifiers.

Every property declaration must have at least one read or write specifier.

For more information, see the 'About Properties' topic in the on-line Help.

3.1.2.1.342 E2018: Record, object or class type required
The compiler was expecting to find the type name which specified a record, object or class but did not find one.

 program Produce;

 type
 RecordDesc = class
 ch : Char;
 end;

 var
 pCh : PChar;
 r : RecordDesc;

 procedure A;
 begin
 pCh.ch := 'A'; (* case 1 *)

 with pCh do begin (* case 2 *)
 end;
 end;
 end.

There are two causes for the same error in this program. The first is the application of '.' to a object that is not a record. The
second case is the use of a variable which is of the wrong type in a WITH statement.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

449

3

 program Solve;

 type
 RecordDesc = class
 ch : Char;
 end;

 var
 r : RecordDesc;

 procedure A;
 begin
 r.ch := 'A'; (* case 1 *)

 with r do begin (* case 2 *)
 end;
 end;
 end.

The easy solution to this error is to always make sure that the '.' and WITH are both applied only to records, objects or class
variables.

3.1.2.1.343 E2023: Function needs result type
You have declared a function, but have not specified a return type.

program Produce;

function Sum(A: array of Integer);
var I: Integer;
begin
 Result := 0;
 for I := 0 to High(A) do
 Result := Result + A[I];
end;

begin
end.

Here Sum is meant to be function, we have not told the compiler about it.

program Solve;

function Sum(A: array of Integer): Integer;
var I: Integer;
begin
 Result := 0;
 for I := 0 to High(A) do
 Result := Result + A[I];
end;

begin
end.

Just make sure you specify the result type.

3.1.2.1.344 E2366: Global procedure or class static method expected
No further information is available for this error or warning.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

450

3

3.1.2.1.345 E2036: Variable required
This error message occurs when you try to take the address of an expression or a constant.

program Produce;
var
 I: Integer;
 PI: ^Integer;
begin
 PI := Addr(1);
end.

A constant like 1 does not have a memory address, so you cannot apply the operator or the Addr standard function to it.

program Solve;
var
 I: Integer;
 PI: ^Integer;
begin
 PI := Addr(I);
end.

You need to make sure you take the address of variable.

3.1.2.1.346 E2082: TYPEOF can only be applied to object types with a VMT
This error message is issued if you try to apply the standard function TypeOf to an object type that does not have a virtual
method table.

A simple workaround is to declare a dummy virtual procedure to force the compiler to generate a VMT.

program Produce;

type
 TMyObject = object
 procedure MyProc;
 end;

procedure TMyObject.MyProc;
begin
 (*...*)
end;

var
 P: Pointer;
begin
 P := TypeOf(TMyObject); (*<-- Error message here*)
end.

The example tries to apply the TypeOf standard function to type TMyObject which does not have virtual functions, and therefore
no virtual function table (VMT).

program Solve;

type
 TMyObject = object
 procedure MyProc;
 procedure Dummy; virtual;
 end;

procedure TMyObject.MyProc;
begin
 (*...*)
end;

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

451

3

procedure TMyObject.Dummy;
begin
end;

var
 P: Pointer;
begin
 P := TypeOf(TMyObject);
end.

The solution is to introduce a dummy virtual function, or to eliminate the call to TypeOf.

3.1.2.1.347 E2014: Statement expected, but expression of type '%s' found
The compiler was expecting to find a statement, but instead it found an expression of the specified type.

 program Produce;
 var
 a : Integer;
 begin
 (3 + 4);
 end.

In this example, the compiler is expecting to find a statement, such as an IF, WHILE, REPEAT, but instead it found the
expression (3+4).

 program Produce;
 var
 a : Integer;
 begin
 a := (3 + 4);
 end.

The solution here was to assign the result of the expression (3+4) to the variable 'a'. Another solution would have been to
remove the offending expression from the source code - the choice depends on the situation.

3.1.2.1.348 E2279: Too many nested conditional directives
Conditional-directive constructions can be nested up to 32 levels deep.

3.1.2.1.349 E2409: Fully qualified nested type name %s exceeds 1024 byte limit
No further information is available for this error or warning.

3.1.2.1.350 E2079: Procedure NEW needs constructor
This error message is issued when an identifier given in the parameter list to New is not a constructor.

program Produce;

type
 PMyObject = ^TMyObject;
 TMyObject = object
 F: Integer;
 constructor Init;
 destructor Done;
 end;

constructor TMyObject.Init;

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

452

3

begin
 F := 42;
end;

destructor TMyObject.Done;
begin
end;

var
 P: PMyObject;

begin
 New(P, Done); (*<-- Error message here*)
end.

By mistake, we called New with the destructor, not the constructor.

program Solve;

type
 PMyObject = ^TMyObject;
 TMyObject = object
 F: Integer;
 constructor Init;
 destructor Done;
 end;

constructor TMyObject.Init;
begin
 F := 42;
end;

destructor TMyObject.Done;
begin
end;

var
 P: PMyObject;

begin
 New(P, Init);
end.

Make sure you give the New standard function a constructor, or no additional argument at all.

3.1.2.1.351 W1039: No configuration files found
The compiler could not locate the configuration files referred to in the source code.

3.1.2.1.352 E2256: Dispose not supported (nor necessary) for dynamic arrays
The compiler has encountered a use of the standard procedure DISPOSE on a dynamic array. Dynamic arrays are reference
counted and will automatically free themselves when there are no longer any references to them.

program Produce;
 var
 arr : array of integer;

begin
 SetLength(arr, 10);
 Dispose(arr);
end.
 The use of DISPOSE on the dynamic array arr causes the error in this example.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

453

3

program Produce;
 var
 arr : array of integer;

begin
 SetLength(arr, 10);
end.

The only solution here is to remove the offending use of DISPOSE

3.1.2.1.353 E2250: There is no overloaded version of '%s' that can be called
with these arguments

An attempt has been made to call an overloaded function that cannot be resolved with the current set of overloads.

program Produce;

procedure f0(a : integer); overload;
begin
end;

procedure f0(a : char); overload;
begin
end;

begin
 f0(1.2);
end.

The overloaded procedure f0 has two versions: one which takes a char and one which takes an integer. However, the call to f0
uses a floating point type, which the compiler cannot resolve into neither a char nor an integer.

program Solve;

procedure f0(a : integer); overload;
begin
end;

procedure f0(a : char); overload;
begin
end;

begin
 f0(1);
end.

You can solve this problem in two ways: either supply a parameter type which can be resolved into a match of an overloaded
procedure, or create a new version of the overloaded procedure which matches the parameter type.

In the example above, the parameter type has been modified to match one of the existing overloaded versions of f0.

3.1.2.1.354 E2450: There is no overloaded version of array property '%s' that
can be used with these arguments

To correct this error, either change the arguments so that their types match a version of the array property, or add a new
overload of the array property with types that match the arguments.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

454

3

3.1.2.1.355 E2273: No overloaded version of '%s' with this parameter list exists
An attempt has been made to call an overloaded procedure but no suitable match could be found.

program overload;
 procedure f(x : Char); overload;
 begin
 end;

 procedure f(x : Integer); overload;
 begin
 end;

begin
 f(1.0);

end.

In the use of f presented here, the compiler is unable to find a suitable match (using the type compatibility & overloading rules)
given the actual parameter 1.0.

program overload;
 procedure f(x : char); overload;
 begin
 end;

 procedure f(x : integer); overload;
 begin
 end;

begin
 f(1);
end.

Here, the call to f has been changed to pass an integer as the actual parameter which will allow the compiler to find a suitable
match. Another approach to solving this problem would be to introduce a new procedure which takes a floating point parameter.

3.1.2.1.356 E2025: Procedure cannot have a result type
You have declared a procedure, but given it a result type. Either you really meant to declare a function, or you should delete the
result type.

program Produce;

procedure DotProduct(const A,B: array of Double): Double;
var
 I: Integer;
begin
 Result := 0.0;
 for I := 0 to High(A) do
 Result := Result + A[I]*B[I];
end;

const
 C: array [1..3] of Double = (1,2,3);

begin
 Writeln(DotProduct(C,C));
end.

Here DotProduct was really meant to be a function, we just happened to use the wrong keyword...

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

455

3

program Solve;

function DotProduct(const A,B: array of Double): Double;
var
 I: Integer;
begin
 Result := 0.0;
 for I := 0 to High(A) do
 Result := Result + A[I]*B[I];
end;

const
 C: array [1..3] of Double = (1,2,3);

begin
 Writeln(DotProduct(C,C));
end.

Just make sure you specify a result type when you declare a function, and no result type when you declare a procedure.

3.1.2.1.357 W1035: Return value of function '%s' might be undefined
This warning is displayed if the return value of a function has not been assigned a value on every code path.

To put it another way, the function could execute so that it never assigns anything to the return value.

program Produce;
(*$WARNINGS ON*)
var
 B: Boolean;
 C: (Red,Green,Blue);

function Simple: Integer;
begin
end; (*<-- Warning here*)

function IfStatement: Integer;
begin
 if B then
 Result := 42;
end; (*<-- Warning here*)

function CaseStatement: Integer;
begin
 case C of
 Red..Blue: Result := 42;
 end;
end; (*<-- Warning here*)

function TryStatement: Integer;
begin
 try
 Result := 42;
 except
 Writeln('Should not get here!');
 end;
end; (*<-- Warning here*)

begin
 B := False;
end.

The problem with procedure IfStatement and CaseStatement is that the result is not assigned in every code path. In
TryStatement, the compiler assumes that an exception could happen before Result is assigned.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

456

3

program Solve;
(*$WARNINGS ON*)
var
 B: Boolean;
 C: (Red,Green,Blue);

function Simple: Integer;
begin
 Result := 42;
end;

function IfStatement: Integer;
begin
 if B then
 Result := 42
 else
 Result := 0;
end;

function CaseStatement: Integer;
begin
 case C of
 Red..Blue: Result := 42;
 else Result := 0;
 end;
end;

function TryStatement: Integer;
begin
 Result := 0;
 try
 Result := 42;
 except
 Writeln('Should not get here!');
 end;
end;

begin
 B := False;
end.

The solution is to make sure there is an assignment to the result variable in every possible code path.

3.1.2.1.358 E2134: Type '%s' has no type info
You have applied the TypeInfo standard procedure to a type identifier which does not have any run-time type information
associated with it.

program Produce;

 type
 Data = record
 end;

 var
 v : Pointer;

begin
 v := TypeInfo(Data);
end.

Record types do not generate type information, so this use of TypeInfo is illegal.

program Solve;

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

457

3

 type
 Base = class
 end;

 var
 v : Pointer;

begin
 v := TypeInfo(Base);
end.

A class does generate RTTI, so the use of TypeInfo here is perfectly legal.

3.1.2.1.359 E2220: Never-build package '%s' requires always-build package
'%s'

You are attempting to create a no-build package which requires an always-build package. Since the interface of an always-build
package can change at anytime, and since giving the no-build flag instructs the compiler to assume that a package is up-to-date,
each no-build package can only require other packages that are also marked no-build.

package Base;
end.

(*$IMPLICITBUILD OFF*)
package NoBuild;
 requires Base;
end.

In this example, the NoBuild package requires a package which was compiled in the always-build compiler state.

(*$IMPLICITBUILD OFF*)
package Base;
end.

(*$IMPLICITBUILD OFF*)
package NoBuild;
 requires Base;
end.

The solution used in this example was to turn Base into a never-build package. Another viable option would have been to
remove the (*$IMPLICITBUILD OFF*) from the NoBuild package, thereby turning it into an always-build package.

3.1.2.1.360 E2093: Label '%s' is not declared in current procedure
In contrast to standard Pascal, Borland's Delphi language does not allow a goto to jump out of the current procedure.

However, his construct is mainly useful for error handling, and the Delphi language provides a more general and structured
mechanism to deal with errors: exception handling.

program Produce;

label 99;

procedure MyProc;
begin
 (*Something goes very wrong...*)
 goto 99;
end;

begin
 MyProc;
 99:

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

458

3

 Writeln('Fatal error');
end.

The example above tries to halt computation by doing a non-local goto.

program Solve;

uses SysUtils;

procedure MyProc;
begin
 (*Something goes very wrong...*)
 raise Exception.Create('Fatal error');
end;

begin
 try
 MyProc;
 except
 on E: Exception do Writeln(E.Message);
 end;
end.

In our solution, we used exception handling to stop the program. This has the advantage that we can also pass an error
message. Another solution would be to use the standard procedures Halt or RunError.

3.1.2.1.361 x2269: Overriding virtual method '%s.%s' has lower visibility (%s)
than base class '%s' (%s)

The method named in the error message has been declared as an override of a virtual method in a base class, but the visibility
in the current class is lower than that used in the base class for the same method.

While the visibility rules of Delphil would seem to indicate that the function cannot be seen, the rules of invoking virtual functions
will cause the function to be properly invoked through a virtual call.

Generally, this means that the method of the derived class was declared in a private or protected section while the method of the
base class was declared in a protected or pubic (including published) section, respectively.

unit Produce;
interface

 type
 Base = class(TObject)
 public
 procedure VirtualProcedure(X: Integer); virtual;
 end;

 Extended = class(Base)
 protected
 procedure VirtualProcedure(X: Integer); override;
 end;

implementation

 procedure Base.VirtualProcedure(X: Integer);
 begin
 end;

 procedure Extended.VirtualProcedure(X: Integer);
 begin
 end;
end.

The example above aptly shows how this error is produced by putting Extended.VirtualProcedure into the protected section.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

459

3

In practice this is never harmful, but it can be confusing to someone reading documentation and observing the visibility attributes
of the document.

This hint will only be produced for classes appearing in the interface section of a unit.

unit Solve;
interface

 type
 Base = class(TObject)
 public
 procedure VirtualProcedure(X: Integer); virtual;
 end;

 Extended = class(Base)
 public
 procedure VirtualProcedure(X: Integer); override;
 end;

implementation

 procedure Base.VirtualProcedure(X: Integer);
 begin
 end;

 procedure Extended.VirtualProcedure(X: Integer);
 begin
 end;
end.

There are three basic solutions to this problem.

1. Ignore the hint

2. Change the visibility to match the base class

3. Move class definition to the implementation section.

The example program above has taken the approach of changing the visibility to match the base class.

3.1.2.1.362 E2411: Unit %s in package %s refers to unit %s which is not found
in any package. Packaged units must refer only to packaged units

No further information is available for this error or warning.

3.1.2.1.363 E2236: Constructors and destructors must have %s calling
convention

An attempt has been made to change the calling convention of a constructor or destructor from the default calling convention.

program Produce;

 type
 TBase = class
 constructor Create; pascal;
 end;

 constructor TBase.Create;
 begin
 end;

begin
end.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

460

3

 program Solve;

 type
 TBase = class
 constructor Create;
 end;

 constructor TBase.Create;
 begin
 end;

begin
end.

The only viable approach when this error has been issued by the compiler is to remove the offending calling convention directive
from the constructor or destructor definition, as has been done in this example.

3.1.2.1.364 E2179: Only register calling convention allowed in OLE automation
section

You have specified an illegal calling convention on a method appearing in an 'automated' section of a class declaration.

program Produce;

 type
 Base = class
 automated
 procedure Method; cdecl;
 end;

 procedure Base.Method; cdecl;
 begin
 end;

begin
end.

The language specification disallows all calling conventions except 'register' in an OLE automation section. The offending
statement is 'cdecl' in the above code.

program Solve;

 type
 Base = class
 automated
 procedure Method; register;
 procedure Method2;
 end;

 procedure Base.Method; register;
 begin
 end;

 procedure Base.Method2;
 begin
 end;

begin
end.

There are three solutions to this error. The first is to specify no calling convention on methods declared in an auto section. The
second is to specify only the register calling convention. The third is to move the offending declaration out of the automation
section.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

461

3

3.1.2.1.365 E2270: Published property getters and setters must have %s
calling convention

A property appearing in a published section has a getter or setter procedure that does not have the correct calling convention.

unit Produce;
interface
 type
 Base = class
 public
 function getter : Integer; cdecl;
 published
 property Value : Integer read getter;
 end;

implementation
function Base.getter : Integer;
begin getter := 0;
end;

end.

This example declares the getter function getter for the published property Value to be of cdecl calling convention, which
produces the error.

unit Solve;
interface
 type
 Base = class
 public
 function getter : Integer;
 published
 property Value : Integer read getter;
 end;

implementation
function Base.getter : Integer;
begin getter := 0;
end;

end.

The only solution to this problem is to declare the getter function to match the correct calling convention, which is the default. As
can be seen in this example, no calling convention is specified.

3.1.2.1.366 E2391: Potentially polymorphic constructor calls must be virtual
No further information is available for this error or warning.

3.1.2.1.367 E2242: '%s' is not the name of a unit
The $NOINCLUDE directive must be given a known unit name.

3.1.2.1.368 E2064: Left side cannot be assigned to
This error message is given when you try to modify a read-only object like a constant, a constant parameter, or the return value
of function.

program Produce;

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

462

3

const
 c = 1;

procedure p(const s: string);
begin
 s := 'changed'; (*<-- Error message here*)
end;

function f: PChar;
begin
 f := 'Hello'; (*This is fine - we are setting the return value*)
end;

begin
 c := 2; (*<-- Error message here*)
 f := 'h'; (*<-- Error message here*)
end.

The example assigns to constant parameter, to a constant, and to the result of a function call. All of these are illegal.

program Solve;

var
 c : Integer = 1; (*Use an initialized variable*)

procedure p(var s: string);
begin
 s := 'changed'; (*Use variable parameter*)
end;

function f: PChar;
begin
 f := 'Hello'; (*This is fine - we are setting the return value*)
end;

begin
 c := 2;
 f^ := 'h'; (*This compiles, but will crash at runtime*)
end.

There two ways you can solve this kind of problem: either you change the definition of whatever you are assigning to, so the
assignment becomes legal, or you eliminate the assignment.

3.1.2.1.369 E2430: for-in statement cannot operate on collection type '%s'
A for-in statement can only operate on the following collection types:

• Primitive types that the compiler recognizes, such as arrays, sets or strings

• Types that implement IEnumerable

• Types that implement the GetEnumerator pattern as documented in the Delphi Language Guide

Ensure that the specified type meets these requirements.

See Also

Declarations and Statements (see page 705)

3.1.2.1.370 H2135: FOR or WHILE loop executes zero times - deleted
The compiler has determined that the specified looping structure will not ever execute, so as an optimization it will remove it.
Example:

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

463

3

program Produce;
(*$HINTS ON*)

 var
 i : Integer;

begin
 i := 0;
 WHILE FALSE AND (i < 100) DO
 INC(i);
end.

The compiler determines that 'FALSE AND (i < 100)' always evaluates to FALSE, and then easily determines that the loop will
not be executed.

program Solve;
(*$HINTS ON*)

 var
 i : Integer;

begin
 i := 0;
 WHILE i < 100 DO
 INC(i);
end.

The solution to this hint is to check the boolean expression used to control while statements is not always FALSE. In the for
loops you should make sure that (upper bound - lower bound) >= 1.

You may see this warning if a FOR loop increments its control variable from a value within the range of Longint to a value
outside the range of Longint. For example:

var I: Cardinal;
begin
 For I := 0 to $FFFFFFFF do
...

This results from a limitation in the compiler which you can work around by replacing the FOR loop with a WHILE loop.

3.1.2.1.371 E2248: Cannot use old style object types when compiling to byte
code

Old-style Object types are illegal when compiling to byte code.

3.1.2.1.372 E2058: Class, interface and object types only allowed in type
section

Class or object types must always be declared with an explicit type declaration in a type section - unlike record types, they
cannot be anonymous.

The main reason for this is that there would be no way you could declare the methods of that type - after all, there is no type
name.

program Produce;

var
 MyClass : class
 Field: Integer;
 end;

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

464

3

begin
end.

The example tries to declare a class type within a variable declaration - that is not legal.

program Solve;

type
 TMyClass = class
 Field: Integer;
 end;

var
 MyClass : TMyClass;

begin
end.

The solution is to introduce a type declaration for the class type. Alternatively, you could have changed the class type to a record
type.

3.1.2.1.373 E2059: Local class, interface or object types not allowed
Class and object cannot be declared local to a procedure.

program Produce;

 procedure MyProc;
 type
 TMyClass = class
 Field: Integer;
 end;
 begin
 (*...*)
 end;

begin
end.

So MyProc tries to declare a class type locally, which is illegal.

program Solve;

 type
 TMyClass = class
 Field: Integer;
 end;

 procedure MyProc;
 begin
 (*...*)
 end;

begin
end.

The solution is to move out the declaration of the class or object type to the global scope.

3.1.2.1.374 E2062: Virtual constructors are not allowed
Unlike class types, object types can only have static constructors.

program Produce;

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

465

3

type
 TMyObject = object
 constructor Init; virtual;
 end;

constructor TMyObject.Init;
begin
end;

begin
end.

The example tries to declare a virtual constructor, which does not really make sense for object types and is therefore illegal.

program Solve;

type
 TMyObject = object
 constructor Init;
 end;

constructor TMyObject.Init;
begin
end;

begin
end.

The solution is to either make the constructor static, or to use a new-style class type which can have a virtual constructor.

3.1.2.1.375 E2439: Inline function must not have open array argument
To avoid this error, remove the inline directive or use an explicitly-declared dynamic array type instead of an open array
argument.

See Also

Parameters (see page 672)

Structured Types (see page 566)

3.1.2.1.376 W1049: value '%s' for option %s was truncated
String based compiler options such as unit search paths have finite buffer limits.

This message indicates you have exceeded the buffer limit.

3.1.2.1.377 E2001: Ordinal type required
The compiler required an ordinal type at this point. Ordinal types are the predefined types Integer, Char, WideChar, Boolean,
and declared enumerated types.

Ordinal types are required in several different situations:

• The index type of an array must be ordinal.

• The low and high bounds of a subrange type must be constant expressions of ordinal type.

• The element type of a set must be an ordinal type.

• The selection expression of a case statement must be of ordinal type.

• The first argument to the standard procedures Inc and Dec must be a variable of either ordinal or pointer type.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

466

3

program Produce;
type
TByteSet = set of 0..7;
var
BitCount: array [TByteSet] of Integer;
begin
end.

The index type of an array must be an ordinal type - type TByteSet is a set, not an ordinal.

program Solve;
type
 TByteSet = set of 0..7;
var
 BitCount: array [Byte] of Integer;
begin
end.

Supply an ordinal type as the array index type.

3.1.2.1.378 E2271: Property getters and setters cannot be overloaded
A property has specified an overloaded procedure as either its getter or setter.

unit Produce;
interface
 type
 Base = class
 public
 function getter : Integer; overload;
 function getter(a : char) : Integer; overload;
 property Value : Integer read getter;
 end;

implementation
function Base.getter : Integer;
begin getter := 0;
end;

function Base.getter(a : char) : Integer;
begin
end;

end.

The overloaded function getter in the above example will cause this error.

unit Solve;
interface
 type
 Base = class
 public
 function getter : Integer;
 property Value : Integer read getter;
 end;

implementation
function Base.getter : Integer;
begin getter := 0;
end;

end.

The only solution when this problem occurs is to remove the offending overload specifications, as is shown in the above example.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

467

3

3.1.2.1.379 H2365: Override method %s.%s should match case of ancestor
%s.%s

No further information is available for this error or warning.

3.1.2.1.380 E2137: Method '%s' not found in base class
You have applied the 'override' directive to a method, but the compiler is unable to find a procedure of the same name in the
base class.

program Produce;

 type
 Base = class
 procedure Title; virtual;
 end;

 Derived = class (Base)
 procedure Titl; override;
 end;

 procedure Base.Title;
 begin
 end;

 procedure Derived.Titl;
 begin
 end;

begin
end.

A common cause of this error is a simple typographical error in your source code. Make sure that the name used as the
'override' procedure is spelled the same as it is in the base class. In other situations, the base class will not provide the desired
procedure: it is those situations which will require much deeper analysis to determine how to solve the problem.

program Solve;

 type
 Base = class
 procedure Title; virtual;
 end;

 Derived = class (Base)
 procedure Title; override;
 end;

 procedure Base.Title;
 begin
 end;

 procedure Derived.Title;
 begin
 end;

begin
end.

The solution (in this example) was to correct the spelling of the procedure name in Derived.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

468

3

3.1.2.1.381 E2352: Cannot override a final method
No further information is available for this error or warning.

3.1.2.1.382 E2170: Cannot override a non-virtual method
You have tried, in a derived class, to override a base method which was not declared as one of the virtual types.

program Produce;

 type
 Base = class
 procedure StaticMethod;
 end;

 Derived = class (Base)
 procedure StaticMethod; override;
 end;

 procedure Base.StaticMethod;
 begin
 end;

 procedure Derived.StaticMethod;
 begin
 end;

begin
end.

The example above elicits an error because Base.StaticMethod is not declared to be a virtual method, and as such it is not
possible to override its declaration.

program Solve;

 type
 Base = class
 procedure StaticMethod;
 end;

 Derived = class (Base)
 procedure StaticMethod;
 end;

 procedure Base.StaticMethod;
 begin
 end;

 procedure Derived.StaticMethod;
 begin
 end;

begin
end.

The only way to remove this error from your program, when you don't have the source for the base classes, is to remove the
'override' specification from the declaration of the derived method. If you have source to the base classes, you could, with careful
consideration, change the base's method to be declared as one of the virtual types. Be aware, however, that this change can
have a drastic affect on your programs.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

469

3

3.1.2.1.383 F2220: Could not compile package '%s'
An error occurred while trying to compile the package named in the message. The only solution to the problem is to correct the
error and recompile the package.

3.1.2.1.384 E2199: Packages '%s' and '%s' both contain unit '%s'
The project you are trying to compile is using two packages which both contain the same unit. It is illegal to have two packages
which are used in the same project containing the same unit since this would cause an ambiguity for the compiler.

A main cause of this problem is a poorly defined package set.

The only solution to this problem is to redesign your package hierarchy to remove the ambiguity.

3.1.2.1.385 E2200: Package '%s' already contains unit '%s'
The package you are compiling requires (either through the requires clause or the package list) another package which already
contains the unit specified in the message.

It is an error to have to related packages contain the same unit. The solution to this problem is to remove the unit from one of the
packages or to remove the relation between the two packages.

3.1.2.1.386 W1031: Package '%s' will not be written to disk because -J option
is enabled

The compiler can't write the package to disk because the -J option is attempting to create an object file.

3.1.2.1.387 E2225: Never-build package '%s' must be recompiled
The package referenced in the message was compiled as a never-build package, but it requires another package to which
interface changes have been made. The named package cannot be used without recompiling because it was linked with a
different interface of the required package.

The only solution to this error is to manually recompile the offending package. Be sure to specify the never-build switch, if it is
still desired.

3.1.2.1.388 H2235: Package '%s' does not use or export '%s.%s'
You have compiled a unit into a package which contains a symbol which does not appear in the interface section of the unit, nor
is it referenced by any code in the unit. In effect, this code is dead code and could be removed from the unit without changing the
semantics of your program.

3.1.2.1.389 E2201: Need imported data reference ($G) to access '%s' from unit
'%s'

The unit named in the message was not compiled with the $G switch turned on.

(*$IMPORTEDDATA OFF*)
unit u0;
interface

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

470

3

implementation
begin
 WriteLn(System.RandSeed);
end.

program u1;
 uses u0;
end.

In the above example, u0 should be compiled alone. Then, u1 should be compiled with CLXxx (where xx represents the version).
The problem occurs because u0 is compiled under the premise that it will never use data which resides in a package.

(*$IMPORTEDDATA ON*)
unit u0;
interface
implementation
begin
 WriteLn(System.RandSeed);
end.

program u1;
 uses u0;
end.

To alleviate the problem, it is generally easiest to turn on the $IMPORTEDDATA switch and recompile the unit that produces the
error.

3.1.2.1.390 W1032: Exported package threadvar '%s.%s' cannot be used
outside of this package

Windows does not support the exporting of threadvar variables from a DLL, but since using packages is meant to be
semantically equivalent to compiling a project without them, the Delphi compiler must somehow attempt to support this construct.

This warning is to notify you that you have included a unit which contains a threadvar in an interface into a package. While this is
not illegal, you will not be able to access the variable from a unit outside the package.

Attempting to access this variable may appear to succeed, but it actually did not.

A solution to this warning is to move the threadvar to the implementation section and provide function which will retrieve the
variables value.

3.1.2.1.391 E2213: Bad packaged unit format: %s.%s
When the compiler attempted to load the specified unit from the package, it was found to be corrupt. This problem could be
caused by an abnormal termination of the compiler when writing the package file (for example, a power loss). The first
recommended action is to delete the offending DCP file and recompile the package.

3.1.2.1.392 E2006: PACKED not allowed here
The packed keyword is only legal for set, array, record, object, class and file types. In contrast to the 16-bit version of Delphi,
packed will affect the layout of record, object and class types.

program Produce;
type
 SmallReal = packed Real;
begin
end.

Packed can not be applied to a real type - if you want to conserve storage, you need to use the smallest real type, type Single.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

471

3

program Solve;
type
 SmallReal = Single;
begin
end.

3.1.2.1.393 E2394: Parameterless constructors not allowed on record types
No further information is available for this error or warning.

3.1.2.1.394 E2363: Only methods of descendent types may access protected
symbol [%s]%s.%s across assembly boundaries

No further information is available for this error or warning.

3.1.2.1.395 E2375: PRIVATE or PROTECTED expected
No further information is available for this error or warning.

3.1.2.1.396 W1045: Property declaration references ancestor private '%s.%s'
This warning indicates that your code is not portable to C++. This is important for component writers who plan to distribute
custom components.

In the Delphi language, you can declare a base class with a private member, and a child class in the same unit can refer to the
private member. In C++, this construction is not permitted. To fix it, change the child to refer to either a protected member of the
base class or a protected member of the child class.

Following is an example of code that would cause this error:

type
 TBase = class(…)
 private
 FFoo:Integer
 end;
 TChild=class(TBase)
 published
 property foo:Integer read FFoo write FFoo;
 end;

3.1.2.1.397 H2219: Private symbol '%s' declared but never used
The symbol referenced appears in a private section of a class, but is never used by the class. It would be more memory efficient
if you removed the unused private field from your class definition.

program Produce;
 type
 Base = class
 private
 FVar : Integer;
 procedure Init;
 end;

procedure Base.Init;
begin
end;

begin

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

472

3

end.

Here we have declared a private variable which is never used. The message will be emitted for this case.

program Solve;
program Produce;
 type
 Base = class
 private
 FVar : Integer;
 procedure Init;
 end;

procedure Base.Init;
begin
 FVar := 0;
end;

begin
end.

There are various solutions to this problem, and since this message is not an error message, all are correct. If you have included
the private field for some future use, it would be valid to ignore the message. Or, if the variable is truly superfluous, it can be
safely removed. Finally, it might have been a programming oversight not to use the variable at all; in this case, simply add the
code you forgot to implement.

3.1.2.1.398 E2357: PROCEDURE, FUNCTION, or CONSTRUCTOR expected
No further information is available for this error or warning.

3.1.2.1.399 E2122: PROCEDURE or FUNCTION expected
This error message is produced by two different constructs, but in both cases the compiler is expecting to find the keyword
'procedure' or the keyword 'function'.

program Produce;

 type
 Base = class
 class AProcedure; (*case 1*)
 end;

 class Base.AProcedure; (*case 2*)
 begin
 end;

begin
end.

In both cases above, the word 'procedure' should follow the keyword 'class'.

program Solve;

 type
 Base = class
 class procedure AProcedure;
 end;

 class procedure Base.AProcedure;
 begin
 end;

begin

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

473

3

end.

As can be seen, adding the keyword 'procedure' removes the error from this program.

3.1.2.1.400 x2367: Case of property accessor method %s.%s should be %s.%s
No further information is available for this error or warning.

3.1.2.1.401 E2300: Cannot generate property accessor '%s' because '%s'
already exists

No further information is available for this error or warning.

3.1.2.1.402 E2370: Cannot use inherited methods for interface property
accessors

No further information is available for this error or warning.

3.1.2.1.403 H2369: Property accessor %s should be %s
No further information is available for this error or warning.

3.1.2.1.404 H2368: Visibility of property accessor method %s should match
property %s.%s

No further information is available for this error or warning.

3.1.2.1.405 E2181: Redeclaration of property not allowed in OLE automation
section

It is not allowed to move the visibility of a property into an automated section.

program Produce;

 type
 Base = class
 v : Integer;
 s : String;
 protected
 property Name : String read s write s;
 property Value : Integer read v write v;
 end;

 Derived = class (Base)
 public
 property Name; (* Move Name to a public visibility by redeclaration *)
 automated
 property Value;
 end;

begin
end.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

474

3

In the above example, Name is moved from a private visibility in Base to public visibility in Derived by redeclaration. The same
idea is attempted on Value, but an error results.

program Solve;

 type
 Base = class
 v : Integer;
 s : String;
 protected
 property Name : String read s write s;
 property Value : Integer read v write v;
 end;

 Derived = class (Base)
 public
 property Name; (* Move Name to a public visibility by redeclaration *)
 property Value;
 automated
 end;

begin
end.

It is not possible to change the visibility of a property to an automated section, therefore the solution to this problem is to not
redeclare properties of base classes in automated sections.

3.1.2.1.406 E2206: Property overrides not allowed in interface type
A property which was declared in a base interface has been overridden in an interface extension.

program Produce;
 type
 Base = interface
 function Reader : Integer;
 function Writer(a : Integer);
 property Value : Integer read Reader write Writer;
 end;

 Extension = interface (Base)
 function Reader2 : Integer;
 property Value Integer read Reader2;
 end;

begin
end.

The error in the example is that Extension attempts to override the Value property.

program Solve;
 type
 Base = interface
 function Reader : Integer;
 function Writer(a : Integer);
 property Value : Integer read Reader write Writer;
 end;

 Extension = interface (Base)
 function Reader2 : Integer;
 property Value2 Integer read Reader2;
 end;

begin
end.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

475

3

A solution to this error is to rename the offending property. Another, more robust, approach is to determine the original intent and
restructure the system design to solve the problem.

3.1.2.1.407 E2356: Property accessor must be an instance field or method
No further information is available for this error or warning.

3.1.2.1.408 E2434: Property declarations not allowed in anonymous record or
local record type

Record types that are declared in local scopes or declared in-place in variable declarations can only contain field declarations.
For advanced features in record types (such as methods, properties, and nested types), the record type must be an explicitly
declared global type.

3.1.2.1.409 E2148: Dynamic method or message handler not allowed here
Dynamic and message methods cannot be used as accessor functions for properties.

program Produce;

 type
 Base = class
 v : Integer;
 procedure SetV(x : Integer); dynamic;
 function GetV : Integer; message;
 property Velocity : Integer read GetV write v;
 property Value : Integer read v write SetV;
 end;

 procedure Base.SetV(x : Integer);
 begin v := x;
 end;

 function Base.GetV : Integer;
 begin GetV := v;
 end;

begin
end.

Both 'Velocity' and 'Value' above are in error since they both have illegal accessor functions assigned to them.

program Solve;

 type
 Base = class
 v : Integer;
 procedure SetV(x : Integer);
 function GetV : Integer;
 property Velocity : Integer read GetV write v;
 property Value : Integer read v write SetV;
 end;

 procedure Base.SetV(x : Integer);
 begin v := x;
 end;

 function Base.GetV : Integer;
 begin GetV := v;
 end;

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

476

3

begin
end.

The solution taken in this is example was to remove the offending compiler directives from the procedure declarations; this may
not be the right solution for you. You may have to closely examine the logic of your program to determine how best to provide
accessor functions for your properties.

3.1.2.1.410 E2233: Property '%s' inaccessible here
An attempt has been made to access a property through a class reference type. It is not possible to access fields nor properties
of a class through a class reference.

program Produce;

 type
 TBase = class
 public
 FX : Integer;
 property X : Integer read FX write FX;
 end;

 TBaseClass = class of TBase;

 var
 BaseRef : TBaseClass;
 x : Integer;

begin
 BaseRef := TBase;
 x := BaseRef.X;
end.

Attempting to access the property X in the example above causes the compiler to issue an error.

program Solve;

 type
 TBase = class
 public
 FX : Integer;
 property X : Integer read FX write FX;
 end;

 TBaseClass = class of TBase;

 var
 BaseRef : TBaseClass;
 x : Integer;

begin
 BaseRef := TBase;
end.

There is no other solution to this problem than to remove the offending property access from your source code. If you wish to
access properties or fields of a class, then you need to create an instance variable of that class type and gain access through
that variable.

3.1.2.1.411 E2275: property attribute 'label' cannot be an empty string
The error is output because the label attribute for g is an empty string.

unit Problem;

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

477

3

interface
 type
 T0 = class
 f : integer;
 property g : integer read f write f label '';
 end;

implementation
begin
end.

In this solution, the label attribute has been replaced by a non-zero length string.

unit Solve;
interface
 type
 T0 = class
 f : integer;
 property g : integer read f write f label 'LabelText';
 end;

implementation
begin
end.

3.1.2.1.412 E2292: '%s' must reference a property or field of class '%s'
In custom attribute declaration syntax, you can pass values to the constructor of the attribute class, followed by name=value
pairs, where name is a property or field of the attribute class.

3.1.2.1.413 E2129: Cannot assign to a read-only property
The property to which you are attempting to assign a value did not specify a 'write' clause, thereby causing it to be a read-only
property.

program Produce;

 type
 Base = class
 s : String;

 property Title : String read s;
 end;

 var
 c : Base;

 procedure DiddleTitle
 begin
 if c.Title = '' then
 c.Title := 'Super Galactic Invaders with Turbo Gungla Sticks';

 (*perform other work on the c.Title*)
 end;

begin
end.

If a property does not specify a 'write' clause, it effectively becomes a read-only property; it is not possible to assign a value to a
property which is read-only, thus the compiler outputs an error on the assignment to 'c.Title'.

program Solve;

 type

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

478

3

 Base = class
 s : String;

 property Title : String read s;
 end;

 var
 c : Base;

 procedure DiddleTitle
 var title : String;
 begin
 title := c.Title;
 if Title = '' then
 Title := 'Super Galactic Invaders with Turbo Gungla Sticks';
 (*perform other work on title*)
 end;

begin
end.

One solution, if you have source code, is to provide a write clause for the read-only property - of course, this could dramatically
alter the semantics of the base class and should not be taken lightly. Another alternative would be to introduce an intermediate
variable which would contain the value of the read-only property - it is this second alternative which is shown in the code above.

3.1.2.1.414 E2130: Cannot read a write-only property
The property from which you are attempting to read a value did not specify a 'read' clause, thereby causing it to be a write-only
property.

program Produce;

 type
 Base = class
 s : String;

 property Password : String write s;
 end;

 var
 c : Base;
 s : String;

begin
 s := c.Password;
end.

Since c.Password has not specified a read clause, it is not possible to read its value.

program Solve;

 type
 Base = class
 s : String;

 property Password : String read s write s;
 end;

 var
 c : Base;
 s : String;

begin
 s := c.Password;
end.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

479

3

One easy solution to this problem, if you have source code, would be to add a read clause to the write-only property. But, adding
a read clause is not always desirable and could lead to holes in a security system. Consider, for example, a write-only property
called 'Password', as in this example: you certainly wouldn't want to casually allow programs using this class to read the stored
password. If a property was created as write-only, there is probably a good reason for it and you should reexamine why you
need to read this property.

3.1.2.1.415 E2362: Cannot access protected symbol %s.%s
No further information is available for this error or warning.

3.1.2.1.416 E2389: Protected member '%s' is inaccessible here
No further information is available for this error or warning.

3.1.2.1.417 H2244: Pointer expression needs no Initialize/Finalize - need ^
operator?

You have attempted to finalize a Pointer type.

program Produce;

 var
 str : String;
 pstr : PString;

begin
 str := 'Sharene';
 pstr := @str;
 Finalize(pstr); (*note: do not attempt to use 'str' after this*)
end.

In this example the pointer, pstr, is passed to the Finalize procedure. This causes an hint since pointers do not require
finalization.

program Solve;

 var
 str : String;
 pstr : PString;

begin
 str := 'Sharene';
 pstr := @str;
 Finalize(pstr^); (*note: do not attempt to use 'str' after this*)
end.

The solution to this problem is to apply the ^ operator to the pointer which is passed to the Finalization procedure.

3.1.2.1.418 E2186: Published Real property '%s' must be Single, Real, Double
or Extended

You have attempted to publish a property of type Real, which is not allowed. Published floating point properties must be Single,
Double, or Extended.

program Produce;
 type

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

480

3

 Base = class
 R : Real48;
 published
 property RVal : Real read R write R;
 end;
end.

The published Real48 property in the program above must be either removed, moved to an unpublished section or changed into
an acceptable type.

program Produce;
 type
 Base = class
 R : Single;
 published
 property RVal : Single read R write R;
 end;
end.

This solution changed the property into a real type that will actually produce run-time type information.

3.1.2.1.419 E2187: Size of published set '%s' is >4 bytes
The compiler does not allow sets greater than 32 bits to be contained in a published section. The size, in bytes, of a set can be
calculated by High(setname) div 8 - Low(setname) div 8 + 1. -$M+

(*$TYPEINFO ON*)
program Produce;
 type
 CharSet = set of Char;
 NamePlate = class
 Characters : CharSet;
 published
 property TooBig : CharSet read Characters write Characters ;
 end;

begin
end.
 (*$TYPEINFO ON*)
program Solve;
 type
 CharSet = set of 'A'..'Z';
 NamePlate = class
 Characters : CharSet;
 published
 property TooBig : CharSet read Characters write Characters ;
 end;

begin
end.

3.1.2.1.420 E2361: Cannot access private symbol %s.%s
No further information is available for this error or warning.

3.1.2.1.421 E2390: Class must be sealed to call a private constructor without a
type qualifier

No further information is available for this error or warning.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

481

3

3.1.2.1.422 E2398: Class methods in record types must be static
No further information is available for this error or warning.

3.1.2.1.423 E2083: Order of fields in record constant differs from declaration
This error message occurs if record fields in a typed constant or initialized variable are not initialized in declaration order.

program Produce;

type
 TPoint = record
 X, Y: Integer;
 end;

var
 Point : TPoint = (Y: 123; X: 456);

begin
end.

The example tries to initialize first Y, then X, in the opposite order from the declaration.

program Solve;

type
 TPoint = record
 X, Y: Integer;
 end;

var
 Point : TPoint = (X: 456; Y: 123);

begin
end.

The solution is to adjust the order of initialization to correspond to the declaration order.

3.1.2.1.424 E2419: Record type too large: exceeds 1 MB
Records are limited to a size of 1MB according to the .NET SDK Documentation. Refer to Partition II Medatada 21.8
ClassLayout: 0x0F

3.1.2.1.425 E2245: Recursive include file %s
The $I directive has been used to recursively include another file. You must check to make sure that all include files terminate
without having cycles in them.

3.1.2.1.426 F2092: Program or unit '%s' recursively uses itself
An attempt has been made for a unit to use itself.

unit Produce;
interface
 uses Produce;
implementation

begin

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

482

3

end.

In the above example, the uses clause specifies the same unit, which causes the compiler to emit an error message.

unit Solve;
interface
implementation

begin
end.

The only solution to this problem is to remove the offending uses clause.

3.1.2.1.427 E2214: Package '%s' is recursively required
When compiling a package, the compiler determined that the package requires itself.

package Produce;
 requires Produce;

end.

The error is caused because it is not legal for a package to require itself.

The only solution to this problem is to remove the recursive use of the package.

3.1.2.1.428 E2145: Re-raising an exception only allowed in exception handler
You have used the syntax of the raise statement which is used to reraise an exception, but the compiler has determined that this
reraise has occurred outside of an exception handler block. A limitation of the current exception handling mechanism disallows
reraising exceptions from nested exception handlers. for the exception.

program Produce;

 procedure RaiseException;
 begin
 raise; (*case 1*)
 try
 raise; (*case 2*)
 except
 try
 raise; (*case 3*)
 except
 end;
 raise;
 end;
 end;

begin
end.

There are several reasons why this error might occur. First, you might have specified a raise with no exception constructor
outside of an exception handler. Secondly, you might be attempting to reraise an exception in the try block of an exception
handler. Thirdly, you might be attempting to reraise the exception in an exception handler nested in another exception handler.

program Solve;
 uses SysUtils;

 procedure RaiseException;
 begin
 raise Exception.Create('case 1');
 try
 raise Exception.Create('case 2');

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

483

3

 except
 try
 raise Exception.Create('case 3');
 except
 end;
 raise;
 end;
 end;

begin
end.

One solution to this error is to explicitly raise a new exception; this is probably the intention in situations like 'case 1' and 'case 2'.
For the situation of 'case 3', you will have to examine your code to determine a suitable workaround which will provide the
desired results.

3.1.2.1.429 E2377: Unable to locate Borland.Delphi.Compiler.ResCvt.dll
No further information is available for this error or warning.

3.1.2.1.430 E2381: Resource string length exceeds Windows limit of 4096
characters

No further information is available for this error or warning.

3.1.2.1.431 E2024: Invalid function result type
File types are not allowed as function result types.

program Produce;

function OpenFile(Name: string): File;
begin
end;

begin
end.

You cannot return a file from a function.

program Solve;

procedure OpenFile(Name: string; var F: File);
begin
end;

begin
end.

You can 'return' the file as a variable parameter. Alternatively, you can also allocate a file dynamically and return a pointer to it.

3.1.2.1.432 Linker error: %s
The resource linker (RLINK32) has encountered an error while processing a resource file. This error may be caused by any of
the following reasons:

• You have used a duplicate resource name. Rename one of the resources.

• You have a corrupted resource file. You need to replace it with another version that is not corrupted or remove it.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

484

3

• You are using an unsupported resource type, such as a 16-bit resource or form template.

• If converting resources such as 16-bit icons to 32-bit, the resource linker may have encountered problems.

3.1.2.1.433 Linker error: %s: %s
The resource linker (RLINK32) has encountered an error while processing a resource file. A resource linked into the project has
the same type and name, or same type and resource ID, as another resource linked into the project. (In Delphi, duplicate
resources are ignored with a warning. In Kylix, duplicates cause an error.)

3.1.2.1.434 E2215: 16-Bit segment encountered in object file '%s'
A 16-bit segment has been found in an object file that was loaded using the $L directive.

end.

The only solution to this error is to obtain an object file which does not have a 16-bit segment definition. You should consult the
documentation for the product which produced the object file for instructions on turning 16-bit segment definitions into 32-bit
segment definitions.

3.1.2.1.435 E2091: Segment/Offset pairs not supported in CodeGear 32-bit
Pascal

32-bit code no longer uses the segment/offset addressing scheme that 16-bit code used.

In 16-bit versions of CodeGear Pascal, segment/offset pairs were used to declare absolute variables, and as arguments to the
Ptr standard function.

Note that absolute addresses should not be used in 32-bit protected mode programs. Instead appropriate Win32 API functions
should be called.

program Produce;

var
 VideoMode : Integer absolute $0040:$0049;

begin
 Writeln(Byte(Ptr($0040,$0049)^));
end.
 program Solve;
(*This version will compile, but will not run; absolute addresses are to be carefully avoided*)
var
 VideoMode : Integer absolute $0040*16+$0049;

begin
 Writeln(Byte(Ptr($0040*16+$0049)^));
end.

3.1.2.1.436 E2153: ';' not allowed before 'ELSE'
You have placed a ';' directly before an ELSE in an IF-ELSE statement. The reason for this is that the ';' is treated as a statement
separator, not a statement terminator - IF-ELSE is one statement, a ';' cannot appear in the middle (unless you use compound
statements).

program Produce;

 var
 b : Integer;

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

485

3

begin
 if b = 10 then
 b := 0;
 else
 b := 10;
end.

The Delphi language does not allow a ';' to be placed directly before an ELSE statement. In the code above, an error will be
flagged because of this fact.

program Solve;

 var
 b : Integer;

begin
 if b = 10 then
 b := 0
 else
 b := 10;

 if b = 10 then begin
 b := 0;
 end
 else begin
 b := 10;
 end;

end.

There are two easy solutions to this problem. The first is to remove the offending ';'. The second is to create compound
statements for each part of the IF-ELSE. If $HINTS are turned on, you will receive a hint about the value assigned to 'b' is never
used.

3.1.2.1.437 E2028: Sets may have at most 256 elements
This error message appears when you try to declare a set type of more than 256 elements. More precisely, the ordinal values of
the upper and lower bounds of the base type must be within the range 0..255.

program Produce;
type
 BigSet = set of 1..256; (*<-- error message given here*)
begin
end.

In the example, BigSet really only has 256 elements, but is still illegal.

program Solve;
type
 BigSet = set of 0..255;
begin
end.

We need to make sure the upper and lower bounds and in the range 0..255.

3.1.2.1.438 E2282: Property setters cannot take var parameters
This message is displayed when you try to use a var parameter in a property setter parameter. The parameter of a property
setter procedure cannot be a var or out parameter.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

486

3

3.1.2.1.439 E2193: Slice standard function only allowed as open array
argument

An attempt has been made to pass an array slice to a fixed size array. Array slices can only be sent to open array parameters.
none

program Produce;

 type
 IntegerArray = array [1..10] OF Integer;

 var
 SliceMe : array [1..200] OF Integer;

 procedure TakesArray(x : IntegerArray);
 begin
 end;

begin TakesArray(SLICE(SliceMe, 5));
end.

In the above example, the error is produced because TakesArray expects a fixed size array.

program Solve;

 type
 IntegerArray = array [1..10] OF Integer;

 var
 SliceMe : array [1..200] OF Integer;

 procedure TakesArray(x : array of Integer);
 begin
 end;

begin TakesArray(SLICE(SliceMe, 5));
end.

In the above example, the error is not produced because TakesArray takes an open array as the parameter.

3.1.2.1.440 E2454: Slice standard function not allowed for VAR nor OUT
argument

You cannot write back to a slice of an array, so you cannot use the slice standard function to pass an argument that is var or
out. If you must modify the array, either pass in the full array or use an array variable to hold the desired part of the full array.

3.1.2.1.441 E2240: $EXTERNALSYM and $NODEFINE not allowed for '%s'; only
global symbols

The $EXTERNALSYM and $NODEFINE directives can only be applied to global symbols.

3.1.2.1.442 W1014: String constant truncated to fit STRING[%ld]
A string constant is being assigned to a variable which is not large enough to contain the entire string. The compiler is alerting
you to the fact that it is truncating the literal to fit into the variable. -W

program Produce;

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

487

3

(*$WARNINGS ON*)

 const
 Title = 'Super Galactic Invaders with Turbo Gungla Sticks';
 Subtitle = 'Copyright (c) 2002 by Frank Borland';

 type
 TitleString = String[25];
 SubtitleString = String[18];

 var
 ProgramTitle : TitleString;
 ProgramSubtitle : SubtitleString;

begin
 ProgramTitle := Title;
 ProgramSubtitle := Subtitle;
end.

The two string constants are assigned to variables which are too short to contain the entire string. The compiler will truncate the
strings and perform the assignment.

program Solve;
(*$WARNINGS ON*)

 const
 Title = 'Super Galactic Invaders with Turbo Gungla Sticks';
 Subtitle = 'Copyright (c) 2002';

 type
 TitleString = String[55];
 SubtitleString = String[18];

 var
 ProgramTitle : TitleString;
 ProgramSubtitle : SubtitleString;

begin
 ProgramTitle := Title;
 ProgramSubtitle := Subtitle;
end.

There are two solutions to this problem, both of which are demonstrated in this example. The first solution is to increase the size
of the variable to hold the string. The second is to reduce the size of the string to fit in the declared size of the variable.

3.1.2.1.443 E2354: String element cannot be passed to var parameter
No further information is available for this error or warning.

3.1.2.1.444 E2056: String literals may have at most 255 elements
This error message occurs when you declare a string type with more than 255 elements, if you assign a string literal of more
than 255 characters to a variable of type ShortString, or when you have more than 255 characters in a single character string.

Note that you can construct long string literals spanning more than one line by using the '+' operator to concatenate several
string literals.

program Produce;
var
 LongString : string[256]; (*<-- Error message here*)
begin

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

488

3

end.

In the example above, the length of the string is just one beyond the limit.

program Solve;
var
 LongString : AnsiString;
begin
end.

The most convenient solution is to use the new long strings - then you don't even have to spend any time thinking about what a
reasonable maximum length would be.

3.1.2.1.445 E2408: Can't extract strong name key from assembly %s
No further information is available for this error or warning.

3.1.2.1.446 W1044: Suspicious typecast of %s to %s
This warning flags typecasts like PWideChar(String) or PChar(WideString) which are casting between different string types
without character conversion.

3.1.2.1.447 E2272: Cannot use reserved unit name '%s'
An attempt has been made to use one of the reserved unit names, such as System, as the name of a user-created unit.

The names in the following list are currently reserved by the compiler.

• System

• SysInit

unit System;
interface
implementation
begin
end.

The name of the unit in this example is illegal because it is reserved for use by the compiler.

unit MySystem;
interface
implementation
begin
end.

The only solution to this problem is to use a different name for the unit.

3.1.2.1.448 E2156: Expression too complicated
The compiler has encounter an expression in your source code that is too complicated for it to handle.

Reduce the complexity of your expression by introducing some temporary variables.

3.1.2.1.449 E2283: Too many local constants. Use shorter procedures
One or more of your procedures contain so many string constant expressions that they exceed the compiler's internal storage
limit. This can occur in code that is automatically generated. To fix this, you can shorten your procedures or declare contant
identifiers instead of using so many literals in the code.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

489

3

3.1.2.1.450 E2163: Too many conditional symbols
You have exceeded the memory allocated to conditional symbols defined on the command line (including configuration files).
There are 256 bytes allocated for all the conditional symbols. Each conditional symbol requires 1 extra byte when stored in
conditional symbol area.

The only solution is to reduce the number of conditional compilation symbols contained on the command line (or in configuration
files).

3.1.2.1.451 E2226: Compilation terminated; too many errors
The compiler has surpassed the maximum number of errors which can occur in a single compilation.

The only solution is to address some of the errors and recompile the project.

3.1.2.1.452 E2034: Too many actual parameters
This error message occurs when a procedure or function call gives more parameters than the procedure or function declaration
specifies.

Additionally, this error message occurs when an OLE automation call has too many (more than 255), or too many named
parameters.

program Produce;

function Max(A,B: Integer): Integer;
begin
 if A > B then Max := A else Max := B
end;

begin
 Writeln(Max(1,2,3)); (*<-- Error message here*)
end.

It would have been convenient for Max to accept three parameters...

program Solve;

function Max(const A: array of Integer): Integer;
var
 I: Integer;
begin
 Result := Low(Integer);
 for I := 0 to High(A) do
 if Result < A[I] then
 Result := A[I];
end;

begin
 Writeln(Max([1,2,3]));
end.

Normally, you would change to call site to supply the right number of parameters. Here, we have chose to show you how to
implement Max with an unlimited number of arguments. Note that now you have to call it in a slightly different way.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

490

3

3.1.2.1.453 E2436: Type declarations not allowed in anonymous record or local
record type

Record types that are declared in local scopes or declared in-place in variable declarations can only contain field declarations.
For advanced features in record types (such as methods, properties, and nested types), the record type must be an explicitly
declared global type.

3.1.2.1.454 E2005: '%s' is not a type identifier
This error message occurs when the compiler expected the name of a type, but the name it found did not stand for a type.

program Produce;
type
 TMyClass = class
 Field: Integer;
 end;
var
 MyClass: TMyClass;

procedure Proc(C: MyClass); (*<-- Error message here*)
begin
end;

begin
end.

The example erroneously uses the name of the variable, not the name of the type, as the type of the argument.

program Solve;
type
 TMyClass = class
 Field: Integer;
 end;
var
 MyClass: TMyClass;

procedure Proc(C: TMyClass);
begin
end;

begin
end.

Make sure the offending identifier is indeed a type - maybe it was misspelled, or another identifier of the same name hides the
one you meant to refer to.

3.1.2.1.455 x2243: Expression needs no Initialize/Finalize
You have attempted to use the standard procedure Finalize on a type that requires no finalization.

program Produce;

 var
 ch : Char;

begin
 Finalize(ch);
end.

In this example, the Delphi type Char needs no finalization.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

491

3

The usual solution to this problem is to remove the offending use of Finalize.

3.1.2.1.456 E2100: Data type too large: exceeds 2 GB
You have specified a data type which is too large for the compiler to represent. The compiler will generate this error for datatypes
which are greater or equal to 2 GB in size. You must decrease the size of the description of the type.

program Produce;

 type
 EnormousArray = array [0..MaxLongint] OF Longint;
 BigRecord = record
 points : array [1..10000] of Extended;
 end;

 var
 data : array [0..500000] of BigRecord;

begin
end.

It is easily apparent to see why these declarations will elicit error messages.

program Solve;
 type
 EnormousArray = array [0..MaxLongint DIV 8] OF Longint;

 DataPoints = ^DataPointDesc;
 DataPointDesc = array [1..10000] of Extended;
 BigRecord = record
 points : DataPoints;
 end;

 var
 data : array [0..500000] OF BigRecord;

begin
end.

The easy solution to avoid this error message is to make sure that the size of your data types remain under 2Gb in size. A more
complicated method would involve the restructuring of your data, as has been begun with the BigRecord declaration.

3.1.2.1.457 E2101: Size of data type is zero
Record types must contain at least one instance data field. Zero-size records are not allowed in .NET.

3.1.2.1.458 W1016: Typed constant '%s' passed as var parameter
This error message is reserved.

3.1.2.1.459 W1055: Published caused RTTI ($M+) to be added to type '%s'
You added a 'PUBLISHED' section to a class that was not compiled while the {$M+}/{$TYPEINFO ON} switch was in effect, or
without deriving from a class compiled with the {$M+}/{$TYPEINFO ON} switch in effect.

The TypeInfo standard procedure requires a type identifier as its parameter. In the code above, 'NotType' does not represent a
type identifier.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

492

3

To avoid this error, ensure that you compile while the {$M+}/{$TYPEINFO ON} switch is on, or derive from a class that was
compiled with {$M+}/{$TYPEINFO ON} switch on.

3.1.2.1.460 E2133: TYPEINFO standard function expects a type identifier
You have attempted to obtain type information for an identifier which does not represent a type.

program Produce;

 var
 p : Pointer;

 procedure NotType;
 begin
 end;

begin
 p := TypeInfo(NotType);
end.

The TypeInfo standard procedure requires a type identifier as it's parameter. In the code above, 'NotType' does not represent a
type identifier.

program Solve;

 type
 Base = class
 end;

 var
 p : Pointer;

begin
 p := TypeInfo(Base);
end.

By ensuring that the parameter used for TypeInfo is a type identifier, you will avoid this error.

3.1.2.1.461 E2147: Property '%s' does not exist in base class
The compiler believes you are attempting to hoist a property to a different visibility level in a derived class, but the specified
property does not exist in the base class.

program Produce;

 type
 Base = class
 private
 a : Integer;
 property BaseProp : integer read a write a;
 end;

 Derived = class (Base)
 ch : Char;
 property Alpha read ch write ch; (*case 1*)
 property BesaProp; (*case 2*)
 end;

begin
end.

There are two basic causes of this error. The first is the specification of a new property without specifying a type; this usually is

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

493

3

not supposed to be a movement to a new visibility level. The second is the specification of a property which should exist in the
base class, but is not found by the compiler; the most likely cause for this is a simple typo (as in "BesaProp"). In the second form,
the compiler will also output errors that a read or write clause was expected.

program Solve;

 type
 Base = class
 private
 a : Integer;
 property BaseProp : integer read a write a;
 end;

 Derived = class (Base)
 ch : Char;
 public
 property Alpha : Char read ch write ch; (*case 1*)
 property BaseProp; (*case 2*)
 end;

begin
end.

The solution for the first case is to supply the type of the property. The solution for the second case is to check the spelling of the
property name.

3.1.2.1.462 E2452: Unicode characters not allowed in published symbols
The VCL Run-Time Type Information (RTTI) subsystem and the streaming of DFM files require that published symbols are
non-Unicode (ANSI) characters. Consider whether this symbol needs to be published, and if so, use ANSI characters instead of
Unicode.

3.1.2.1.463 W1041: Error converting Unicode char to locale charset. String
truncated. Is your LANG environment variable set correctly?

This message occurs when you are trying to convert strings in Unicode to your local character set and the string contains
characters that are not valid for the current locale. For example, this may occur when converting WideString to AnsiString or if
attempting to display Japanese characters in an English locale.

3.1.2.1.464 W1006: Unit '%s' is deprecated
The unit is deprecated, but continues to be available to support backward compatibility.

The unit is tagged (using the deprecated hint directive) as no longer current and is maintained for compatibility only. You should
consider updating your source code to use another unit, if possible.

The $WARN UNIT_DEPRECATED ON/OFF compiler directive turns on or off all warnings about the deprecated directive in
units where the deprecated directive is specified.

3.1.2.1.465 W1007: Unit '%s' is experimental
An "experimental" directive has been used on an identifier. "Experimental" indicates the presence of a class or unit which is
incomplete or not fully tested.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

494

3

3.1.2.1.466 F2048: Bad unit format: '%s'
This error occurs when a compiled unit file (.dcu file) has a bad format.

Most likely, the file has been corrupted. Recompile the file if you have the source. If the problem persists, you may have to
reinstall Delphi.

3.1.2.1.467 W1052: Can't find
System.Runtime.CompilerServices.RunClassConstructor. Unit initialization
order will not follow uses clause order

This warning indicates that the initialization order defined by the Delphi language, that specified by the order of units in the uses
clause, is not guaranteed.

The RunClassConstructor function is used to execute the initialization sections of units used by the current unit in the order
specified by the current unit's uses clauses. This warning will be issued if the compiler cannot find this function in the .NET
Framework you are linking against. For example, it will occur when linking against the .NET Compact Framework, which does
not implement RunClassConstructor.

3.1.2.1.468 W1004: Unit '%s' is specific to a library
The whole unit is tagged (using the library hint directive) as one that may not be available in all libraries. If you are likely to use
different libraries, it may cause a problem.

The $WARN UNIT_LIBRARY ON/OFF compiler directive turns on or off all warnings in units where the library directive is
specified.

3.1.2.1.469 E1038: Unit identifier '%s' does not match file name
The unit name in the top unit is case sensitive and must match the name with respect to upper- and lowercase letters exactly.
The unit name is case sensitive only in the unit declaration.

3.1.2.1.470 W1005: Unit '%s' is specific to a platform
The whole unit is tagged (using the platform hint directive) as one that contains material that may not be available on all
platforms. If you are writing cross-platform applications, it may cause a problem. For example, a unit that uses objects defined in
OleAuto might be tagged using the PLATFORM directive

The $WARN UNIT_PLATFORM ON/OFF compiler directive turns on or off all warnings about the platform directive in units
where the platform directive is specified.

3.1.2.1.471 E2070: Unknown directive: '%s'
This error message appears when the compiler encounters an unknown directive in a procedure or function declaration.

The directive is probably misspelled, or a semicolon is missing.

program Produce;

procedure P; stcall;
begin

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

495

3

end;

procedure Q forward;

function GetLastError: Integer external 'kernel32.dll';

begin
end.

In the declaration of P, the calling convention "stdcall" is misspelled. In the declaration of Q and GetLastError, we're missing a
semicolon.

program Solve;

procedure P; stdcall;
begin
end;

procedure Q; forward;

function GetLastError: Integer; external 'kernel32.dll';

begin
end.

The solution is to make sure the directives are spelled correctly, and that the necessary semicolons are there.

3.1.2.1.472 E2328: Linker error while emitting metadata
No further information is available for this error or warning.

3.1.2.1.473 E2400: Unknown Resource Format '%s'
No further information is available for this error or warning.

3.1.2.1.474 E2216: Can't handle section '%s' in object file '%s'
You are trying to link object modules into your program with the $L compiler directive. However, the object file is too complex for
the compiler to handle. For example, you may be trying to link in a C++ object file. This is not supported.

3.1.2.1.475 E2405: Unknown element type found importing signature of %s.%s
No further information is available for this error or warning.

3.1.2.1.476 E2417: Field offset cannot be determined for variant record
because previous field type is unknown size record type

Private types in an assembly are not imported and are marked as having an unreliable size. If a record is declared as having at
least one private field or it has one field whose type size is unreliable then this error will occur.

3.1.2.1.477 E2166: Unnamed arguments must precede named arguments in
OLE Automation call

You have attempted to follow named OLE Automation arguments with unnamed arguments.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

496

3

program Produce;

 var
 ole : variant;

begin ole.dispatch(filename:='FrogEggs', 'Tapioca');
end.

The named argument, 'filename' must follow the unnamed argument in this OLE dispatch.

program Solve;

 var
 ole : variant;

begin ole.dispatch('Tapioca', filename:='FrogEggs');
end.

This solution, reversing the parameters, is the most straightforward but it may not be appropriate for your situation. Another
alternative would be to provide the unnamed parameter with a name.

3.1.2.1.478 E2289: Unresolved custom attribute: %s
A custom attribute declaration was not followed by a symbol declaration such as a type, variable, method, or parameter
declaration.

3.1.2.1.479 W1048: Unsafe typecast of '%s' to '%s'
You have used a data type or operation for which static code analysis cannot prove that it does not overwrite memory. In a
secured execution environment such as .NET, such code is assumed to be unsafe and a potential security risk.

3.1.2.1.480 W1047: Unsafe code '%s'
You have used a data type or operation for which static code analysis cannot prove that it does not overwrite memory. In a
secured execution environment such as .NET, such code is assumed to be unsafe and a potential security risk.

3.1.2.1.481 E2406: EXPORTS section allowed only if compiling with
{$UNSAFECODE ON}

No further information is available for this error or warning.

3.1.2.1.482 W1046: Unsafe type '%s%s%s'
You have used a data type or operation for which static code analysis cannot prove that it does not overwrite memory. In a
secured execution environment such as .NET, such code is assumed to be unsafe and a potential security risk.

3.1.2.1.483 E2396: Unsafe code only allowed in unsafe procedure
No further information is available for this error or warning.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

497

3

3.1.2.1.484 E2395: Unsafe procedure only allowed if compiling with
{$UNSAFECODE ON}

No further information is available for this error or warning.

3.1.2.1.485 E2397: Unsafe pointer only allowed if compiling with
{$UNSAFECODE ON}

No further information is available for this error or warning.

3.1.2.1.486 E2410: Unsafe pointer variables, parameters or consts only
allowed in unsafe procedure

No further information is available for this error or warning.

3.1.2.1.487 x1025: Unsupported language feature: '%s'
You are attempting to translate a Delphi unit to a C++ header file which contains unsupported language features.

You must remove the offending construct from the interface section before the unit can be translated.

3.1.2.1.488 E2057: Unexpected end of file in comment started on line %ld
This error occurs when you open a comment, but do not close it.

Note that a comment started with '{' must be closed with '}', and a comment started with '(*' must be closed with '*)'.

program Produce;
(*Let's start a comment here but forget to close it
begin
end.

So the example just didn't close the comment.

program Solve;
(*Let's start a comment here and not forget to close it*)
begin
end.

Doing so fixes the problem.

3.1.2.1.489 E2280: Unterminated conditional directive
For every {$IFxxx}, the corresponding {$ENDIF} or {$IFEND} must be found within the same source file. This message indicates
that you do not have an equal number of ending directives.

This error message is reported at the source line of the last $IF/$IFDEF/etc. with no matching $ENDIF/$IFEND. This gives you a
good place to start looking for the source of the problem.

3.1.2.1.490 E2052: Unterminated string
The compiler did not find a closing apostrophe at the end of a character string.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

498

3

Note that character strings cannot be continued onto the next line - however, you can use the '+' operator to concatenate two
character strings on separate lines.

program Produce;

begin
 Writeln('Hello world!); (*<-- Error message here -*)
end.

We just forgot the closing quote at the string - no big deal, happens all the time.

program Solve;

begin
 Writeln('Hello world!');
end.

So we supplied the closing quote, and the compiler is happy.

3.1.2.1.491 H2164: Variable '%s' is declared but never used in '%s'
You have declared a variable in a procedure, but you never actually use it. -H

program Produce;
(*$HINTS ON*)

 procedure Local;
 var i : Integer;
 begin
 end;

begin
end.
 program Solve;

(*$HINTS ON*)

 procedure Local;
 begin
 end;

begin
end.

One simple solution is to remove any unused variable from your procedures. However, unused variables can also indicate an
error in the implementation of your algorithm.

3.1.2.1.492 W1036: Variable '%s' might not have been initialized
This warning is given if a variable has not been assigned a value on every code path leading to a point where it is used.

program Produce;
(*$WARNINGS ON*)
var
 B: Boolean;
 C: (Red,Green,Blue);

procedure Simple;
var
 I : Integer;
begin
 Writeln(I); (*<-- Warning here*)
end;

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

499

3

procedure IfStatement;
var
 I : Integer;
begin
 if B then
 I := 42;
 Writeln(I); (*<-- Warning here*)
end;

procedure CaseStatement;
var
 I: Integer;
begin
 case C of
 Red..Blue: I := 42;
 end;
 Writeln(I); (*<-- Warning here*)
end;

procedure TryStatement;
var
 I: Integer;
begin
 try
 I := 42;
 except
 Writeln('Should not get here!');
 end;
 Writeln(I); (*<-- Warning here*)
end;

begin
 B := False;
end.

In an if statement, you have to make sure the variable is assigned in both branches. In a case statement, you need to add an
else part to make sure the variable is assigned a value in every conceivable case. In a try-except construct, the compiler
assumes that assignments in the try part may in fact not happen, even if they are at the very beginning of the try part and so
simple that they cannot conceivably cause an exception.

program Solve;
(*$WARNINGS ON*)
var
 B: Boolean;
 C: (Red,Green,Blue);

procedure Simple;
var
 I : Integer;
begin
 I := 42;
 Writeln(I);
end;

procedure IfStatement;
var
 I : Integer;
begin
 if B then
 I := 42
 else
 I := 0;
 Writeln(I); (*Need to assign I in the else part
end;

procedure CaseStatement;

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

500

3

var
 I: Integer;
begin
 case C of
 Red..Blue: I := 42;
 else I := 0;
 end;
 Writeln(I); (*Need to assign I in the else part*)
end;

procedure TryStatement;
var
 I: Integer;
begin
 I := 0;
 try
 I := 42;
 except
 Writeln('Should not get here!');
 end;
 Writeln(I); (*Need to assign I before the try*)
end;

begin
 B := False;
end.

The solution is to either add assignments to the code paths where they were missing, or to add an assignment before a
conditional statement or a try-except construct.

3.1.2.1.493 E2157: Element 0 inaccessible - use 'Length' or 'SetLength'
The Delphi String type does not store the length of the string in element 0. The old method of changing, or getting, the length of a
string by accessing element 0 does not work with long strings.

program Produce;

 var
 str : String;
 len : Integer;

begin
 str := 'Kojo no tsuki';
 len := str[0];
end.

Here the program is attempting to get the length of the string by directly accessing the first element. This is not legal.

program Solve;

 var
 str : String;
 len : Integer;

begin
 str := 'Kojo no tsuki';
 len := Length(str);
end.

You can use the SetLength and Length standard procedures to provide the same functionality as directly accessing the first
element of the string. If hints are turned on, you will receive a warning about the value of 'len' not being used.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

501

3

3.1.2.1.494 E2255: New not supported for dynamic arrays - use SetLength
The program has attempted to use the standard procedure NEW on a dynamic array. The proper method for allocating dynamic
arrays is to use the standard procedure SetLength.

program Produce;
 var
 arr : array of integer;

begin
 new(arr, 10);
end.

The standard procedure NEW cannot be used on dynamic arrays.

program Solve;
 var
 arr : array of integer;

begin
 SetLength(arr, 10);
end.

Use the standard procedure SetLength to allocate dynamic arrays.

3.1.2.1.495 E2212: Package unit '%s' cannot appear in contains or uses
clauses

The unit named in the error is a package unit and as such cannot be included in your project. A possible cause of this error is
that somehow a Delphi unit and a package unit have been given the same name. The compiler is finding the package unit on its
search path before it can locate a same-named Delphi file. Packages cannot be included in a project by inclusion of the package
unit in the uses clause.

3.1.2.1.496 F2063: Could not compile used unit '%s'
This fatal error is given when a unit used by another could not be compiled. In this case, the compiler gives up compilation of the
dependent unit because it is likely very many errors will be encountered as a consequence.

3.1.2.1.497 E2090: User break - compilation aborted
This message is currently unused.

3.1.2.1.498 E2165: Compile terminated by user
You pressed Ctrl-Break during a compile.

3.1.2.1.499 E2142: Inaccessible value
You have tried to view a value that is not accessible from within the integrated debugger. Certain types of values, such as a 0
length Variant-type string, cannot be viewed within the debugger.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

502

3

3.1.2.1.500 H2077: Value assigned to '%s' never used
The compiler gives this hint message if the value assigned to a variable is not used. If optimization is enabled, the assignment is
eliminated.

This can happen because either the variable is not used anymore, or because it is reassigned before it is used.

program Produce;
(*$HINTS ON*)

procedure Simple;
var
 I: Integer;
begin
 I := 42; (*<-- Hint message here*)
end;

procedure Propagate;
var
 I: Integer;
 K: Integer;
begin
 I := 0; (*<-- Hint message here*)
 Inc(I); (*<-- Hint message here*)
 K := 42;
 while K > 0 do begin
 if Odd(K) then
 Inc(I); (*<-- Hint message here*)
 Dec(K);
 end;
end;

procedure TryFinally;
var
 I: Integer;
begin
 I := 0; (*<-- Hint message here*)
 try
 I := 42;
 finally
 Writeln('Reached finally');
 end;
 Writeln(I); (*Will always write 42 - if an exception happened,
 we wouldn't get here*)
end;

begin
end.

In procedure Propagate, the compiler is smart enough to realize that as variable I is not used after the while loop, it does not
need to be incremented inside the while, and therefore the increment and the assignment before the while loop are also
superfluous.

In procedure TryFinally, the assignment to I before the try-finally construct is not necessary. If an exception happens, we don't
execute the Writeln statement at the end, so the value of I does not matter. If no exception happens, the value of I seen by the
Writeln statement is always 42. So the first assignment will not change the behavior of the procedure, and can therefore be
eliminated.

This hint message does not indicate your program is wrong - it just means the compiler has determined there is an assignment
that is not necessary.

You can usually just delete this assignment - it will be dropped in the compiled code anyway if you compile with optimizations on.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

503

3

Sometimes, however, the real problem is that you assigned to the wrong variable, for example, you meant to assign J but
instead assigned I. So it is worthwhile to check the assignment in question carefully.

3.1.2.1.501 E2088: Variable name expected
This error message is issued if you try to declare an absolute variable, but the absolute directive is not followed by an integer
constant or a variable name.

program Produce;

var
 I : Integer;
 J : Integer absolute Addr(I); (*<-- Error message here*)

begin
end.
 program Solve;

const
 Addr = 0;

var
 I : Integer;
 J : Integer absolute I;

begin
end.

3.1.2.1.502 E2171: Variable '%s' inaccessible here due to optimization
The evaluator or watch statement is attempting to retrieve the value of <name>, but the compiler was able to determine that the
variables actual lifetime ended prior to this inspection point. This error will often occur if the compiler determines a local variable
is assigned a value that is not used beyond a specific point in the program's control flow.

Create a new application.
Place a button on the form.
Double click the button to be taken to the 'click' method.
Add a global variable, 'c', of type Integer to the implementation section.

The click method should read as:

 procedure TForm1.Button1Click(Sender: TObject);
 var a, b : integer;
 begin
 a := 10;
 b := 20;
 c := b;
 a := c;
 end;

Set a breakpoint on the assignment to 'c'.
Compile and run the application.
Press the button.
After the breakpoint is reached, open the evaluator (Run|Evaluate/Watch).
Evaluate 'a'.

The compiler realizes that the first assignment to 'a' is dead, since the value is never used. As such, it defers even using 'a' until
the second assignment occurs - up until the point where 'c' is assigned to 'a', the variable 'a' is considered to be dead and cannot
be used by the evaluator.

The only solution is to only attempt to view variables which are known to have live values.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

504

3

3.1.2.1.503 E2033: Types of actual and formal var parameters must be identical
For a variable parameter, the actual argument must be of the exact type of the formal parameter.

program Produce;

procedure SwapBytes(var B1, B2: Byte);
var
 Temp: Byte;
begin
 Temp := B1; B1 := B2; B2 := Temp;
end;

var
 C1, C2: 0..255; (*Similar to a byte, but NOT identical*)
begin
 SwapBytes(C1,C2); (*<-- Error message here*)
end.

Arguments C1 and C2 are not acceptable to SwapBytes, although they have the exact memory representation and range that a
Byte has.

program Solve;

procedure SwapBytes(var B1, B2: Byte);
var
 Temp: Byte;
begin
 Temp := B1; B1 := B2; B2 := Temp;
end;

var
 C1, C2: Byte;
begin
 SwapBytes(C1,C2); (*<-- No error message here*)
end.

So you actually have to declare C1 and C2 as Bytes to make this example compile.

3.1.2.1.504 E2277: Only external cdecl functions may use varargs
This message indicates that you are trying to implement a varargs routine. You cannot implement varargs routines, you can only
call external varargs.

3.1.2.1.505 F2051: Unit %s was compiled with a different version of %s.%s
This fatal error occurs when the declaration of symbol declared in the interface part of a unit has changed, and the compiler
cannot recompile a unit that relies on this declaration because the source is not available to it.

There are several possible solutions - recompile Unit1 (assuming you have the source code available), use an older version of
Unit2 or change Unit2, or get a new version of Unit1 from whoever has the source code.

This error can also occur when a unit in your project has the same name as a standard Delphi unit.

For example, this may occur is when compiling a project written in a previous version of Delphi that did not have a unit of this
name (for example, search.pas was not in Delphi 3).

To solve the problem in this case:

1. Open <Unit2> and save it with a new name.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

505

3

2. Alter all references to <Unit2> in uses clauses to refer to the new name.

3. Delete the old <Unit2>.pas AND <Unit2>.dcu versions of this unit.

4. Rebuild the project.

3.1.2.1.506 E2379: Virtual methods not allowed in record types
No further information is available for this error or warning.

3.1.2.1.507 E2423: Void type not usable in this context
The System type Void is not allowed to be used in some contexts. As an example, the following code demostrates the contexts
where type Void may not be used.

program Project3;

{$APPTYPE CONSOLE}

type
 TBar = class
 property Bar: Void;

 end;

 TBaz = type Void;

var
 TFoo: ^Void;

procedure Bar(Arg: Void);
begin
end;

function Foo: Void;
begin
end;

end.

3.1.2.1.508 E2221: $WEAKPACKAGEUNIT '%s' cannot have initialization or
finalization code

A unit which has been flagged with the $weakpackageunit directive cannot contain initialization or finalization code, nor can it
contain global data. The reason for this is that multiple copies of the same weakly packaged units can appear in an application,
and then referring to the data for that unit becomes and ambiguous proposition. This ambiguity is furthered when dynamically
loaded packages are used in your applications.

(*$WEAKPACKAGEUNIT*)
unit yamadama;
interface
implementation
 var
 Title : String;

initialization
 Title := 'Tiny Calc';
finalization
end.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

506

3

In the above example, there are two problems: Title is a global variable, and Title is initialized in the initialization section of the
unit.

There are only two alternatives: either remove the $weakpackageunit directive from the unit, or remove all global data,
initialization and finalization code.

3.1.2.1.509 E2203: $WEAKPACKAGEUNIT '%s' contains global data
A unit which was marked with $WEAKPACKAGEUNIT is being placed into a package, but it contains global data. It is not legal
for such a unit to contain global data or initialization or finalization code.

The only solutions to this problem are to remove the $WEAKPACKAGEUNIT mark, or remove the global data from the unit
before it is put into the package.

3.1.2.1.510 W1050: WideChar reduced to byte char in set expressions
"Set of char" in Win32 defines a set over the entire range of the Char type. Since Char is a byte-sized type in Win32, this defines
a set of maximum size containing 256 elements. In .NET, Char is a word-sized type, and this range (0..65535) exceeds the
capacity of the set type.

To accomodate existing code that uses this "Set of Char" syntax, the compiler will treat the expression as "set of AnsiChar". The
warning message reminds you that the set can only store the boolean state of 256 distinct elements, not the full range of the
Char type.

3.1.2.1.511 E2152: Wrong or corrupted version of RLINK32.DLL
The internal consistency check performed on the RLINK32.DLL file has failed.

Contact CodeGear if you encounter this error.

3.1.2.1.512 E2015: Operator not applicable to this operand type
This error message is given whenever an operator cannot be applied to the operands it was given - for instance if a boolean
operator is applied to a pointer.

program Produce;
var
 P: ^Integer;
begin
 if P and P^ > 0 then
 Writeln('P points to a number greater 0');
end.

Here a C++ programmer was unclear about operator precedence in Delphi - P is not a boolean expression, and the comparison
needs to be parenthesized.

program Solve;
var
 P: ^Integer;
begin
 if (P <> nil) and (P^ > 0) then
 Writeln('P points to a number greater 0');
end.

If we explicitly compare P to nil and use parentheses, the compiler is happy.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

507

3

3.1.2.1.513 W1206: XML comment on '%s' has cref attribute '%s' that could not
be resolved

This warning message occurs when the XML has a cref attribute that cannot be resolved.

This is a warning in XML documentation processing. The XML is well formed, but the comment's meaning is questionable. XML
cref references follow the .NET style. See http://msdn2.microsoft.com/en-us/library/acd0tfbe.aspx for more details. A
documentation warning does not prevent building.

3.1.2.1.514 W1205: XML comment on '%s' has badly formed XML--'The
character '%c' was expected.'

This warning message occurs when the expected character was not found in the XML.

This is an error in XML documentation processing. The XML is not well formed. This is a warning because a documentation error
does not prevent building.

3.1.2.1.515 W1204: XML comment on '%s' has badly formed XML--'A name
contained an invalid character.'

This warning message occurs when a name in XML contains an invalid character.

This is an error in XML documentation processing. The XML is not well formed. This is a warning because a documentation error
does not prevent building.

3.1.2.1.516 W1203: XML comment on '%s' has badly formed XML--'A name was
started with an invalid character.'

This warning message occurs when an XML name was started with an invalid character.

This is an error in XML documentation processing. The XML is not well formed. This is a warning because a documentation error
does not prevent building.

3.1.2.1.517 W1208: Parameter '%s' has no matching param tag in the XML
comment for '%s' (but other parameters do)

This warning message occurs when an XML Parameter has no matching param tag in the XML comment but other parameters
do.

This is a warning in XML documentation processing. There is at least one tag, but some parameters in the method don't have a
tag. A documentation warning does not prevent building.

3.1.2.1.518 W1207: XML comment on '%s' has a param tag for '%s', but there is
no parameter by that name

This warning message occurs when the XML contains a parameter tag for a nonexistent parameter.

This is a warning in XML documentation processing. The XML is well formed, however, a tag was created for a parameter that
doesn't exist in a method. A documentation warning does not prevent building.

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

508

3

3.1.2.1.519 W1202: XML comment on '%s' has badly formed XML--'Reference
to undefined entity '%s''

This warning message occurs when XML references an undefined entity.

This is an error in XML documentation processing. The XML is not well formed. This is a warning because a documentation error
does not prevent building.

3.1.2.1.520 W1201: XML comment on '%s' has badly formed XML--'Whitespace
is not allowed at this location.'

This warning message occurs when the compiler encounters white space in a location in which white space is not allowed.

This is an error in XML documentation processing. The XML is not well formed. This is a warning because a documentation error
does not prevent building.

3.1.2.1.521 W1013: Constant 0 converted to NIL
The Delphi compiler now allows the constant 0 to be used in pointer expressions in place of NIL. This change was made to allow
older code to still compile with changes which were made in the low-level RTL.

program Produce;

 procedure p0(p : Pointer);
 begin
 end;

begin
 p0(0);
end.

In this example, the procedure p0 is declared to take a Pointer parameter yet the constant 0 is passed. The compiler will perform
the necessary conversions internally, changing 0 into NIL, so that the code will function properly.

program Solve;

 procedure p0(p : Pointer);
 begin
 end;

begin
 p0(NIL);
end.

There are two approaches to solving this problem. In the case above the constant 0 has been replaced with NIL. Alternatively the
procedure definition could be changed so that the parameter type is of Integer type.

3.1.2.2 Delphi Runtime Errors
Certain errors at runtime cause Delphi programs to display an error message and terminate.

Identifying Runtime Errors

Runtime errors take the form:

Runtime error nnn at xxxxxxxx

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

509

3

where nnn is the runtime error number, and xxxxxxxx is the runtime error address.

Applications that use the SysUtils class map most runtime errors to Exceptions, which allow your application to resolve the error
without terminating.

Types of Runtime Errors

Delphi runtime errors are divided into the following categories:

• I/O errors, numbered 100 through 149

• Fatal errors, numbered 200 through 255

• Operating system errors

See Also

Exception handling (see page 541)

Resolving internal errors (see page 130)

Fatal errors (see page 511)

I/O errors (see page 510)

Operating system errors (see page 512)

3.1.2.3 I/O Errors
I/O errors cause an exception to be thrown if a statement is compiled in the {$I+} state. (If the application does not include the
SysUtils class, the exception causes the application to terminate).

Handling I/O Errors

In the {$I-} state, the program continues to execute, and the error is reported by the IOResult function.

I/O Error List

The following table lists all I/O errors, numbers, and descriptions.

Number Name Description

100 Disk read error Reported by Read on a typed file if you attempt to read past the end of the file.

101 Disk write error Reported by CloseFile, Write, WriteIn, or Flush if the disk becomes full.

102 File not assigned Reported by Reset, Rewrite, Append, Rename, or Erase if the file variable has not been
assigned a name through a call to Assign or AssignFile.

103 File not open Reported by CloseFile, Read Write, Seek, Eof, FilePos, FileSize, Flush, BlockRead, or
BlockWrite if the file is not open.

104 File not open for
input

Reported by Read, Readln, Eof, Eoln, SeekEof, or SeekEoln on a text file if the file is not open
for input.

105 File not open for
output

Reported by Write or Writeln on a text file if you do not generate a Console application.

106 Invalid numeric
format

Reported by Read or Readln if a numeric value read from a text file does not conform to the
proper numeric format.

See Also

Exception handling (see page 541)

Resolving internal errors (see page 130)

Delphi Compiler Errors RAD Studio (Common) 3.1 Delphi Reference

510

3

Runtime errors (see page 509)

Fatal errors (see page 511)

Operating system errors (see page 512)

3.1.2.4 Fatal errors
These errors always immediately terminate the program.

Exception mapping

In applications that use the SysUtils class (as most GUI applications do), these errors are mapped to exceptions. For a
description of the conditions that produce each error, see the documentation for the exception.

I/O error list

The following table lists all fatal errors, numbers, and mapped exceptions.

Number Name Exception

200 Division by zero EDivByZero

201 Range check error ERangeError

202 Stack overflow EStackOverflow

203 Heap overflow error EOutOfMemory

204 Invalid pointer operation EInvalidPointer

205 Floating point overflow EOverflow

206 Floating point underflow EUnderflow

207 Invalid floating point operation EInvalidOp

210 Abstract Method Error EAbstractError

215 Arithmetic overflow (integer only) EIntOverflow

216 Access violation EAccessViolation

217 Control-C EControlC

218 Privileged instruction EPrivilege

219 Invalid typecast EInvalidCast

220 Invalid variant typecast EVariantError

221 Invalid variant operation EVariantError

222 No variant method call dispatcher EVariantError

223 Cannot create variant array EVariantError

224 Variant does not contain array EVariantError

225 Variant array bounds error EVariantError

226 TLS initialization error No exception to map to.

227 Assertion failed EAssertionFailed

228 Interface Cast Error EIntfCastError

229 Safecall error ESafecallException

230 Unhandled exception No exception to map to.

231 Too many nested exceptions Up to 16 permitted.

3.1 Delphi Reference RAD Studio (Common) Delphi Compiler Errors

511

3

232 Fatal signal raised on a non-Delphi thread No exception to map to.

See Also

Exception handling (see page 541)

Resolving internal errors (see page 130)

Runtime errors (see page 509)

I/O errors (see page 510)

Operating system errors (see page 512)

3.1.2.5 Operating system errors
All errors other than I/O errors and fatal errors are reported with the error codes returned by the operating system.

OS error codes

OS error codes are the return value of operating system function calls. You can obtain the error code for the last error that
occurred by calling the global GetLastError function. If you want to raise an exception rather than fetch the error code for the last
API call that failed, call the RaiseLastOSError procedure instead.

The error code values returned by GetLastError are dependent on the operating system. You can obtain an error string
associated with one of these error codes by calling the global SysErrorMessage function.

Getting return values

To check the return value from a Win32 API function call and raise an EWin32Error exception if it represents an error, call the
global Win32Check function.

See Also

Exception handling (see page 541)

Resolving internal errors (see page 130)

Runtime errors (see page 509)

Fatal errors (see page 511)

I/O errors (see page 510)

3.1.3 Delphi Language Guide

The Delphi Language guide describes the Delphi language as it is used in CodeGear development tools. This book describes
the Delphi language on both the Win32, and .NET development platforms. Specific differences in the language between the two
platforms are marked as appropriate.

Topics

Name Description

Classes and Objects (see page 513) This section describes the object-oriented features of the Delphi language, such
as the declaration and usage of class types.

Data Types, Variables, and Constants (see page 552) This section describes the fundamental data types of the Delphi language.

.NET Topics (see page 593) This section contains information specific to programming in Delphi on the .NET
platform.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

512

3

Generics (Parameterized Types) (see page 595) Presents an overview of generics, a terminology list, a summary of grammar
changes for generics, and details about declaring and using parameterized
types, specifying constraints on generics, and using overloads.

Inline Assembly Code (Win32 Only) (see page 609) This section describes the use of the inline assembler on the Win32 platform.

Object Interfaces (see page 624) This section describes the use of interfaces in Delphi.

Libraries and Packages (see page 634) This section describes how to create static and dynamically loadable libraries in
Delphi.

Memory Management (see page 644) This section describes memory management issues related to programming in
Delphi on Win32, and on .NET.

Delphi Overview (see page 656) This chapter provides a brief introduction to Delphi programs, and program
organization.

Procedures and Functions (see page 662) This section describes the syntax of function and procedure declarations.

Program Control (see page 678) This section describes how parameters are passed to procedures and functions.

Programs and Units (see page 682) This chapter provides a more detailed look at Delphi program organization.

Standard Routines and I/O (see page 692) This section describes the standard routines included in the Delphi runtime library.

Fundamental Syntactic Elements (see page 700) This section describes the fundamental syntactic elements, or the building blocks
of the Delphi language.

3.1.3.1 Classes and Objects
This section describes the object-oriented features of the Delphi language, such as the declaration and usage of class types.

Topics

Name Description

Classes and Objects (see page 514) This topic covers the following material:

• Declaration syntax of classes

• Inheritance and scope

• Visibility of class members

• Forward declarations and mutually dependent classes

Fields (see page 519) This topic describes the syntax of class data fields declarations.

Methods (see page 521) A method is a procedure or function associated with a class. A call to a method
specifies the object (or, if it is a class method, the class) that the method should
operate on. For example, SomeObject.Free calls the Free method in
SomeObject.
This topic covers the following material:

• Methods declarations and implementation

• Method binding

• Overloading methods

• Constructors and destructors

• Message methods

Properties (see page 530) This topic describes the following material:

• Property access

• Array properties

• Index specifiers

• Storage specifiers

• Property overrides and redeclarations

• Class properties

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

513

3

Events (see page 536) This topic describes the following material:

• Event properties and event handlers

• Triggering multiple event handlers

• Multicast events (.NET)

Class References (see page 539) Sometimes operations are performed on a class itself, rather than on instances of
a class (that is, objects). This happens, for example, when you call a constructor
method using a class reference. You can always refer to a specific class using its
name, but at times it is necessary to declare variables or parameters that take
classes as values, and in these situations you need class-reference types.
This topic covers the following material:

• Class reference types

• Class operators

Exceptions (see page 541) This topic covers the following material:

• A conceptual overview of exceptions and exception
handling

• Declaring exception types

• Raising and handling exceptions

Nested Type Declarations (see page 546) Type declarations can be nested within class declarations. Nested types are
used throughout the .NET framework, and throughout object-oriented
programming in general. They present a way to keep conceptually related types
together, and to avoid name collisions. The same syntax for declaring nested
types may be used with the Win32 Delphi compiler.

Operator Overloading (see page 548) This topic describes Delphi's operator methods and how to overload them.

Class Helpers (see page 550) This topic describes the syntax of class helper declarations.

3.1.3.1.1 Classes and Objects
This topic covers the following material:

• Declaration syntax of classes

• Inheritance and scope

• Visibility of class members

• Forward declarations and mutually dependent classes

Class Types

A class, or class type, defines a structure consisting of fields, methods, and properties. Instances of a class type are called
objects. The fields, methods, and properties of a class are called its components or members.

• A field is essentially a variable that is part of an object. Like the fields of a record, a class' fields represent data items that exist
in each instance of the class.

• A method is a procedure or function associated with a class. Most methods operate on objects, that is, instances of a class.
Some methods (called class methods) operate on class types themselves.

• A property is an interface to data associated with an object (often stored in a field). Properties have access specifiers, which
determine how their data is read and modified. From other parts of a program outside of the object itself a property appears in
most respects like a field.

Objects are dynamically allocated blocks of memory whose structure is determined by their class type. Each object has a unique
copy of every field defined in the class, but all instances of a class share the same methods. Objects are created and
destroyed by special methods called constructors and destructors.

A variable of a class type is actually a pointer that references an object. Hence more than one variable can refer to the same
object. Like other pointers, class-type variables can hold the value nil. But you don't have to explicitly dereference a
class-type variable to access the object it points to. For example, SomeObject.Size := 100 assigns the value 100 to the

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

514

3

Size property of the object referenced by SomeObject; you would not write this as SomeObject^.Size := 100.

A class type must be declared and given a name before it can be instantiated. (You cannot define a class type within a variable
declaration.) Declare classes only in the outermost scope of a program or unit, not in a procedure or function declaration.

A class type declaration has the form

type
 className = class [abstract | sealed] (ancestorClass)
 memberList
 end;

where className is any valid identifier, the sealed or abstract keyword is optional, (ancestorClass) is optional, and memberList
declares members - that is, fields, methods, and properties - of the class. If you omit (ancestorClass), then the new class inherits
directly from the predefined TObject class. If you include (ancestorClass) and memberList is empty, you can omit end. A class
type declaration can also include a list of interfaces implemented by the class; see Implementing Interfaces (see page 627).

If a class is marked sealed, then it cannot be extended through inheritance. If a class is marked abstract, then it cannot be
instantiated directly using the Create constructor. An entire class can be declared abstract even if it does not contain any
abstract virtual methods (see page 521). A class cannot be both abstract and sealed.

Methods appear in a class declaration as function or procedure headings, with no body. Defining declarations for each method
occur elsewhere in the program.

For example, here is the declaration of the TMemoryStream class from the Classes unit.

 type TMemoryStream = class(TCustomMemoryStream)
 private
 FCapacity: Longint;
 procedure SetCapacity(NewCapacity: Longint);
 protected
 function Realloc(var NewCapacity: Longint): Pointer; virtual;
 property Capacity: Longint read FCapacity write SetCapacity;
 public
 destructor Destroy; override;
 procedure Clear;
 procedure LoadFromStream(Stream: TStream);
 procedure LoadFromFile(const FileName: string);
 procedure SetSize(NewSize: Longint); override;
 function Write(const Buffer; Count: Longint): Longint; override;
 end;

TMemoryStream descends from TCustomMemoryStream (in the Classes unit), inheriting most of its members. But it defines -
or redefines - several methods and properties, including its destructor method, Destroy. Its constructor, Create, is inherited
without change from TObject, and so is not redeclared. Each member is declared as private, protected, or public (this class
has no published members). These terms are explained below.

Given this declaration, you can create an instance of TMemoryStream as follows:

 var stream: TMemoryStream;
 stream := TMemoryStream.Create;

Inheritance and Scope

When you declare a class, you can specify its immediate ancestor. For example,

type TSomeControl = class(TControl);

declares a class called TSomeControl that descends from TControl. A class type automatically inherits all of the members from
its immediate ancestor. Each class can declare new members and can redefine inherited ones, but a class cannot remove
members defined in an ancestor. Hence TSomeControl contains all of the members defined in TControl and in each of
TControl's ancestors.

The scope of a member's identifier starts at the point where the member is declared, continues to the end of the class
declaration, and extends over all descendants of the class and the blocks of all methods defined in the class and its descendants.

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

515

3

TObject and TClass

The TObject class, declared in the System unit, is the ultimate ancestor of all other classes. TObject defines only a handful of
methods, including a basic constructor and destructor. In addition to TObject, the System unit declares the class reference (
see page 539) type TClass:

TClass = class of TObject;

If the declaration of a class type doesn't specify an ancestor, the class inherits directly from TObject. Thus

type TMyClass = class
 ...
 end;

is equivalent to

type TMyClass = class(TObject)
 ...
 end;

The latter form is recommended for readability.

Compatibility of Class Types

A class type is assignment-compatible with its ancestors. Hence a variable of a class type can reference an instance of any
descendant type. For example, given the declarations

type
 TFigure = class(TObject);
 TRectangle = class(TFigure);
 TSquare = class(TRectangle);
var
 Fig: TFigure;

the variable Fig can be assigned values of type TFigure, TRectangle, and TSquare.

Object Types

The Win32 Delphi compiler allows an alternative syntax to class types, which you can declare object types using the syntax

type objectTypeName = object (ancestorObjectType)
 memberList
 end;

where objectTypeName is any valid identifier, (ancestorObjectType) is optional, and memberList declares fields, methods, and
properties. If (ancestorObjectType) is omitted, then the new type has no ancestor. Object types cannot have published members.

Since object types do not descend from TObject, they provide no built-in constructors, destructors, or other methods. You can
create instances of an object type using the New procedure and destroy them with the Dispose procedure, or you can simply
declare variables of an object type, just as you would with records.

Object types are supported for backward compatibility only. Their use is not recommended on Win32, and they have been
completely deprecated in the Delphi for .NET compiler.

Visibility of Class Members

Every member of a class has an attribute called visibility, which is indicated by one of the reserved words private, protected,
public, published, or automated. For example,

published property Color: TColor read GetColor write SetColor;

declares a published property called Color. Visibility determines where and how a member can be accessed, with private
representing the least accessibility, protected representing an intermediate level of accessibility, and public, published, and
automated representing the greatest accessibility.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

516

3

If a member's declaration appears without its own visibility specifier, the member has the same visibility as the one that precedes
it. Members at the beginning of a class declaration that don't have a specified visibility are by default published, provided the
class is compiled in the {$M+} state or is derived from a class compiled in the {$M+} state; otherwise, such members are
public.

For readability, it is best to organize a class declaration by visibility, placing all the private members together, followed by all the
protected members, and so forth. This way each visibility reserved word appears at most once and marks the beginning of a
new 'section' of the declaration. So a typical class declaration should like this:

type
 TMyClass = class(TControl)
 private
 ... { private declarations here }
 protected
 ... { protected declarations here }
 public
 ... { public declarations here }
 published
 ... { published declarations here }
 end;

You can increase the visibility of a member in a descendant class by redeclaring it, but you cannot decrease its visibility. For
example, a protected property can be made public in a descendant, but not private. Moreover, published members cannot
become public in a descendant class. For more information, see Property overrides and redeclarations (see page 530).

Private, Protected, and Public Members

A private member is invisible outside of the unit or program where its class is declared. In other words, a private method cannot
be called from another module, and a private field or property cannot be read or written to from another module. By placing
related class declarations in the same module, you can give the classes access to one another's private members without
making those members more widely accessible.

A protected member is visible anywhere in the module where its class is declared and from any descendant class, regardless of
the module where the descendant class appears. A protected method can be called, and a protected field or property read or
written to, from the definition of any method belonging to a class that descends from the one where the protected member is
declared. Members that are intended for use only in the implementation of derived classes are usually protected.

A public member is visible wherever its class can be referenced.

Strict Visibility Specifiers

In addition to private and protected visibility specifiers, the Delphi compiler supports additional visibility settings with greater
access constraints. These settings are strict private and strict protected visibility. These settings strictly comply with the .NET
Common Language Specification (CLS), and they can also be used in Win32 applications.

Class members with strict private visibility are accessible only within the class in which they are declared. They are not visible
to procedures or functions declared within the same unit. Class members with strict protected visibility are visible within the
class in which they are declared, and within any descendant class, regardless of where it is declared. Furthermore, when
instance members (those declared without the class or class var keywords) are declared strict private or strict protected,
they are inaccessible outside of the instance of a class in which they appear. An instance of a class cannot access strict
protected or strict protected instance members in other instances of the same class.

Delphi's traditional private visibility specifier maps to the CLR's assembly visibility. Delphi's protected visibility specifier maps
to the CLR's assembly or family visibility.

Note: The word strict is treated as a directive within the context of a class declaration. Within a class declaration you cannot
declare a member named 'strict', but it is acceptable for use outside of a class declaration.

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

517

3

Published Members

Published members have the same visibility as public members. The difference is that runtime type information (RTTI) is
generated for published members. RTTI allows an application to query the fields and properties of an object dynamically and to
locate its methods. RTTI is used to access the values of properties when saving and loading form files, to display properties in
the Object Inspector, and to associate specific methods (called event handlers) with specific properties (called events).

Published properties are restricted to certain data types. Ordinal, string, class, interface, variant, and method-pointer types can
be published. So can set types, provided the upper and lower bounds of the base type have ordinal values between 0 and 31. (In
other words, the set must fit in a byte, word, or double word.) Any real type except Real48 can be published. Properties of an
array type (as distinct from array properties, discussed below) cannot be published.

Some properties, although publishable, are not fully supported by the streaming system. These include properties of record
types, array properties (see page 530) of all publishable types, and properties of enumerated types (see page 554) that
include anonymous values. If you publish a property of this kind, the Object Inspector won't display it correctly, nor will the
property's value be preserved when objects are streamed to disk.

All methods are publishable, but a class cannot publish two or more overloaded methods with the same name. Fields can be
published only if they are of a class or interface type.

A class cannot have published members unless it is compiled in the {$M+} state or descends from a class compiled in the
{$M+} state. Most classes with published members derive from TPersistent, which is compiled in the {$M+} state, so it is
seldom necessary to use the $M directive.

Note: Identifiers that contain Unicode characters are not allowed in published sections of classes, or in types used by published
members.

Automated Members (Win32 Only)

Automated members have the same visibility as public members. The difference is that Automation type information (required for
Automation servers) is generated for automated members. Automated members typically appear only in Win32 classes, and the
automated reserved word has been deprecated in the .NET compiler. The automated reserved word is maintained for backward
compatibility. The TAutoObject class in the ComObj unit does not use automated.

The following restrictions apply to methods and properties declared as automated.

• The types of all properties, array property parameters, method parameters, and function results must be automatable. The
automatable types are Byte, Currency, Real, Double, Longint, Integer, Single, Smallint, AnsiString, WideString,
TDateTime, Variant, OleVariant, WordBool, and all interface types.

• Method declarations must use the default register calling convention. They can be virtual, but not dynamic.

• Property declarations can include access specifiers (read and write) but other specifiers (index, stored, default, and
nodefault) are not allowed. Access specifiers must list a method identifier that uses the default register calling convention;
field identifiers are not allowed.

• Property declarations must specify a type. Property overrides are not allowed.

The declaration of an automated method or property can include a dispid directive. Specifying an already used ID in a dispid
directive causes an error.

On the Win32 platform, this directive must be followed by an integer constant that specifies an Automation dispatch ID for the
member. Otherwise, the compiler automatically assigns the member a dispatch ID that is one larger than the largest dispatch
ID used by any method or property in the class and its ancestors. For more information about Automation (on Win32 only),
see Automation objects (see page 633).

Forward Declarations and Mutually Dependent Classes

If the declaration of a class type ends with the word class and a semicolon - that is, if it has the form

type className = class;

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

518

3

with no ancestor or class members listed after the word class, then it is a forward declaration. A forward declaration must be
resolved by a defining declaration of the same class within the same type declaration section. In other words, between a forward
declaration and its defining declaration, nothing can occur except other type declarations.

Forward declarations allow mutually dependent classes. For example,

type
 TFigure = class; // forward declaration
 TDrawing = class
 Figure: TFigure;
 ...
 end;

 TFigure = class // defining declaration
 Drawing: TDrawing;
 ...
 end;

Do not confuse forward declarations with complete declarations of types that derive from TObject without declaring any class
members.

type
 TFirstClass = class; // this is a forward declaration
 TSecondClass = class // this is a complete class declaration
 end; //
 TThirdClass = class(TObject); // this is a complete class declaration

See Also

Fields (see page 519)

Methods (see page 521)

Properties (see page 530)

Events (see page 536)

Class References (see page 539)

Exceptions (see page 541)

Nested Type Declarations (see page 546)

Operator Overloading (see page 548)

Class Helpers (see page 550)

3.1.3.1.2 Fields
This topic describes the syntax of class data fields declarations.

About Fields

A field is like a variable that belongs to an object. Fields can be of any type, including class types. (That is, fields can hold object
references.) Fields are usually private.

To define a field member of a class, simply declare the field as you would a variable. For example, the following declaration
creates a class called TNumber whose only member, other than the methods is inherits from TObject, is an integer field called
Int.

type
 TNumber = class
 var
 Int: Integer;
 end;

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

519

3

The var keyword is optional. However, if it is not used, then all field declarations must occur before any property or method
declarations. After any property or method declarations, the var may be used to introduce any additional field declarations.

Fields are statically bound; that is, references to them are fixed at compile time. To see what this means, consider the following
code.

type
 TAncestor = class
 Value: Integer;
 end;

 TDescendant = class(TAncestor)
 Value: string; // hides the inherited Value field
 end;

var
 MyObject: TAncestor;

begin
 MyObject := TDescendant.Create;
 MyObject.Value := 'Hello!' // error

 (MyObject as TDescendant).Value := 'Hello!' // works!
end;

Although MyObject holds an instance of TDescendant, it is declared as TAncestor. The compiler therefore interprets
MyObject.Value as referring to the (integer) field declared in TAncestor. Both fields, however, exist in the TDescendant
object; the inherited Value is hidden by the new one, and can be accessed through a typecast.

Constants (see page 589), and typed constant (see page 589) declarations can appear in classes and non-anonymous
records at global scope. Both constants and typed constants can also appear within nested type (see page 546) definitions.
Constants and typed constants can appear only within class definitions when the class is defined locally to a procedure (i.e. they
cannot appear within records defined within a procedure).

Class Fields

Class fields are data fields in a class that can be accessed without an object reference (unlike the normal “instance fields” which
are discussed above). The data stored in a class field are shared by all instances of the class and may be accessed by referring
to the class or to a variable that represents an instance of the class.

You can introduce a block of class fields within a class declaration by using the class var block declaration. All fields declared
after class var have static storage attributes. A class var block is terminated by the following:

1. Another class var or var declaration

2. A procedure or function (i.e. method) declaration (see page 521) (including class procedures and class functions)

3. A property declaration (see page 530) (including class properties)

4. A constructor or destructor declaration (see page 521)

5. A visibility scope specifier (see page 514) (public, private, protected, published, strict private, and strict protected)

For example:

type
 TMyClass = class
 public
 class var // Introduce a block of class static fields.
 Red: Integer;
 Green: Integer;
 Blue: Integer;
 var // Ends the class var block.
 InstanceField: Integer;
 end;

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

520

3

The class fields Red, Green, and Blue can be accessed with the code:

TMyClass.Red := 1;
TMyClass.Green := 2;
TMyClass.Blue := 3;

Class fields may also be accessed through an instance of the class. With the following declaration:

var
 myObject: TMyClass;

This code has the same effect as the assignments to Red, Green, and Blue above:

myObject.Red := 1;
myObject.Green := 2;
myObject.Blue := 3;

See Also

Classes and Objects (see page 514)

Methods (see page 521)

Properties (see page 530)

Nested Type Declarations (see page 546)

Class References (see page 539)

Exceptions (see page 541)

Operator Overloading (see page 548)

Class Helpers (see page 550)

3.1.3.1.3 Methods
A method is a procedure or function associated with a class. A call to a method specifies the object (or, if it is a class method, the
class) that the method should operate on. For example, SomeObject.Free calls the Free method in SomeObject.

This topic covers the following material:

• Methods declarations and implementation

• Method binding

• Overloading methods

• Constructors and destructors

• Message methods

About Methods

Within a class declaration, methods appear as procedure and function headings, which work like forward declarations.
Somewhere after the class declaration, but within the same module, each method must be implemented by a defining
declaration. For example, suppose the declaration of TMyClass includes a method called DoSomething:

type
 TMyClass = class(TObject)
 ...
 procedure DoSomething;
 ...
 end;

A defining declaration for DoSomething must occur later in the module:

procedure TMyClass.DoSomething;

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

521

3

begin
 ...
end;

While a class can be declared in either the interface or the implementation section of a unit, defining declarations for a class'
methods must be in the implementation section.

In the heading of a defining declaration, the method name is always qualified with the name of the class to which it belongs. The
heading can repeat the parameter list from the class declaration; if it does, the order, type and names of the parameters must
match exactly, and if the method is a function, the return value must match as well.

Method declarations can include special directives that are not used with other functions or procedures. Directives should appear
in the class declaration only, not in the defining declaration, and should always be listed in the following order:

reintroduce; overload; binding;calling convention;abstract; warning

where binding is virtual, dynamic, or override; calling convention is register, pascal, cdecl, stdcall, or safecall; and warning
is platform, deprecated, or library.

Inherited

The reserved word inherited plays a special role in implementing polymorphic behavior. It can occur in method definitions, with
or without an identifier after it.

If inherited is followed by the name of a member, it represents a normal method call or reference to a property or field - except
that the search for the referenced member begins with the immediate ancestor of the enclosing method's class. For example,
when

inherited Create(...);

occurs in the definition of a method, it calls the inherited Create.

When inherited has no identifier after it, it refers to the inherited method with the same name as the enclosing method or, if the
enclosing method is a message handler, to the inherited message handler for the same message. In this case, inherited takes
no explicit parameters, but passes to the inherited method the same parameters with which the enclosing method was called.
For example,

inherited;

occurs frequently in the implementation of constructors. It calls the inherited constructor with the same parameters that were
passed to the descendant.

Self

Within the implementation of a method, the identifier Self references the object in which the method is called. For example, here
is the implementation of TCollection's Add method in the Classes unit.

function TCollection.Add: TCollectionItem;
begin
 Result := FItemClass.Create(Self);
end;

The Add method calls the Create method in the class referenced by the FItemClass field, which is always a TCollectionItem
descendant. TCollectionItem.Create takes a single parameter of type TCollection, so Add passes it the TCollection
instance object where Add is called. This is illustrated in the following code.

var MyCollection: TCollection;
 ...
 MyCollection.Add // MyCollection is passed to the TCollectionItem.Create method

Self is useful for a variety of reasons. For example, a member identifier declared in a class type might be redeclared in the block
of one of the class' methods. In this case, you can access the original member identifier as Self.Identifier.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

522

3

For information about Self in class methods, see Class methods (see page 539).

Method Binding

Method bindings can be static (the default), virtual, or dynamic. Virtual and dynamic methods can be overridden, and they can
be abstract. These designations come into play when a variable of one class type holds a value of a descendant class type.
They determine which implementation is activated when a method is called.

Static Methods

Methods are by default static. When a static method is called, the declared (compile-time) type of the class or object variable
used in the method call determines which implementation to activate. In the following example, the Draw methods are static.

type
 TFigure = class
 procedure Draw;
 end;

 TRectangle = class(TFigure)
 procedure Draw;
 end;

Given these declarations, the following code illustrates the effect of calling a static method. In the second call to Figure.Draw,
the Figure variable references an object of class TRectangle, but the call invokes the implementation of Draw in TFigure,
because the declared type of the Figure variable is TFigure.

var
 Figure: TFigure;
 Rectangle: TRectangle;

 begin
 Figure := TFigure.Create;
 Figure.Draw; // calls TFigure.Draw
 Figure.Destroy;
 Figure := TRectangle.Create;
 Figure.Draw; // calls TFigure.Draw

 TRectangle(Figure).Draw; // calls TRectangle.Draw

 Figure.Destroy;
 Rectangle := TRectangle.Create;
 Rectangle.Draw; // calls TRectangle.Draw
 Rectangle.Destroy;
 end;

Virtual and Dynamic Methods

To make a method virtual or dynamic, include the virtual or dynamic directive in its declaration. Virtual and dynamic methods,
unlike static methods, can be overridden in descendant classes. When an overridden method is called, the actual (runtime) type
of the class or object used in the method call—not the declared type of the variable—determines which implementation to
activate.

To override a method, redeclare it with the override directive. An override declaration must match the ancestor declaration in
the order and type of its parameters and in its result type (if any).

In the following example, the Draw method declared in TFigure is overridden in two descendant classes.

type
 TFigure = class
 procedure Draw; virtual;
 end;

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

523

3

 TRectangle = class(TFigure)
 procedure Draw; override;
 end;

 TEllipse = class(TFigure)
 procedure Draw; override;
 end;

Given these declarations, the following code illustrates the effect of calling a virtual method through a variable whose actual type
varies at runtime.

var
 Figure: TFigure;

 begin
 Figure := TRectangle.Create;
 Figure.Draw; // calls TRectangle.Draw
 Figure.Destroy;
 Figure := TEllipse.Create;
 Figure.Draw; // calls TEllipse.Draw
 Figure.Destroy;
 end;

Only virtual and dynamic methods can be overridden. All methods, however, can be overloaded; see Overloading methods.

The Delphi compiler also supports the concept of a final virtual method. When the keyword final is applied to a virtual method,
no descendent class can override that method. Use of the final keyword is an important design decision that can help document
how the class is intended to be used. It can also give the compiler hints that allow it to optimize the code it produces.

Virtual Versus Dynamic

In Delphi for .NET, virtual and dynamic methods are identical. In Delphi for Win32, virtual and dynamic methods are
semantically equivalent. However, they differ in the implementation of method-call dispatching at runtime: virtual methods
optimize for speed, while dynamic methods optimize for code size.

In general, virtual methods are the most efficient way to implement polymorphic behavior. Dynamic methods are useful when a
base class declares many overridable methods which are inherited by many descendant classes in an application, but only
occasionally overridden.

Note: Only use dynamic methods if there is a clear, observable benefit. Generally, use virtual methods.

Overriding Versus Hiding

If a method declaration specifies the same method identifier and parameter signature as an inherited method, but doesn't include
override, the new declaration merely hides the inherited one without overriding it. Both methods exist in the descendant class,
where the method name is statically bound. For example,

type
 T1 = class(TObject)
 procedure Act; virtual;
 end;

 T2 = class(T1)
 procedure Act; // Act is redeclared, but not overridden
 end;

var
 SomeObject: T1;

begin
 SomeObject := T2.Create;
 SomeObject.Act; // calls T1.Act
end;

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

524

3

Reintroduce

The reintroduce directive suppresses compiler warnings about hiding previously declared virtual methods. For example,

procedure DoSomething; reintroduce; // the ancestor class also has a DoSomething method

Use reintroduce when you want to hide an inherited virtual method with a new one.

Abstract Methods

An abstract method is a virtual or dynamic method that has no implementation in the class where it is declared. Its
implementation is deferred to a descendant class. Abstract methods must be declared with the directive abstract after virtual or
dynamic. For example,

procedure DoSomething; virtual; abstract;

You can call an abstract method only in a class or instance of a class in which the method has been overridden.

Note: The Delphi for .NET compiler allows an entire class to be declared abstract, even though it does not contain any virtual
abstract methods. See Class Types (see page 514) for more information.

Class Methods

Most methods are called instance methods, because they operate on an individual instance of an object. A class method is a
method (other than a constructor) that operates on classes instead of objects. There are two types of class methods: ordinary
class methods and class static methods.

Ordinary Class Methods

The definition of a class method must begin with the reserved word class. For example,

type
 TFigure = class
 public
 class function Supports(Operation: string): Boolean; virtual;
 class procedure GetInfo(var Info: TFigureInfo); virtual;
 ...
 end;

The defining declaration of a class method must also begin with class. For example,

class procedure TFigure.GetInfo(var Info: TFigureInfo);
begin
 ...
end;

In the defining declaration of a class method, the identifier Self represents the class where the method is called (which could be
a descendant of the class in which it is defined). If the method is called in the class C, then Self is of the type class of C. Thus
you cannot use the Self to access instance fields, instance properties, and normal (object) methods, but you can use it to call
constructors and other class methods, or to access class properties and class fields.

A class method can be called through a class reference or an object reference. When it is called through an object reference, the
class of the object becomes the value of Self.

Class Static Methods

Like class methods, class static methods can be accessed without an object reference. Unlike ordinary class methods, class
static methods have no Self parameter at all. They also cannot access any instance members. (They still have access to class
fields, class properties, and class methods.) Also unlike class methods, class static methods cannot be declared virtual.

Methods are made class static by appending the word static to their declaration, for example

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

525

3

type
 TMyClass = class
 strict private
 class var
 FX: Integer;

 strict protected

 // Note: accessors for class properties must be declared class static.
 class function GetX: Integer; static;
 class procedure SetX(val: Integer); static;

 public
 class property X: Integer read GetX write SetX;
 class procedure StatProc(s: String); static;
 end;

Like a class method, you can call a class static method through the class type (i.e. without having an object reference), for
example

TMyClass.X := 17;
TMyClass.StatProc('Hello');

Overloading Methods

A method can be redeclared using the overload directive. In this case, if the redeclared method has a different parameter
signature from its ancestor, it overloads the inherited method without hiding it. Calling the method in a descendant class
activates whichever implementation matches the parameters in the call.

If you overload a virtual method, use the reintroduce directive when you redeclare it in descendant classes. For example,

type
 T1 = class(TObject)
 procedure Test(I: Integer); overload; virtual;
 end;

 T2 = class(T1)
 procedure Test(S: string); reintroduce; overload;
 end;
 ...

SomeObject := T2.Create;
SomeObject.Test('Hello!'); // calls T2.Test
SomeObject.Test(7); // calls T1.Test

Within a class, you cannot publish multiple overloaded methods with the same name. Maintenance of runtime type information
requires a unique name for each published member.

type
 TSomeClass = class
 published
 function Func(P: Integer): Integer;
 function Func(P: Boolean): Integer; // error
 ...

Methods that serve as property read or write specifiers cannot be overloaded.

The implementation of an overloaded method must repeat the parameter list from the class declaration. For more information
about overloading, see Overloading procedures and functions (see page 662).

Constructors

A constructor is a special method that creates and initializes instance objects. The declaration of a constructor looks like a
procedure declaration, but it begins with the word constructor. Examples:

constructor Create;
constructor Create(AOwner: TComponent);

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

526

3

Constructors must use the default register calling convention. Although the declaration specifies no return value, a constructor
returns a reference to the object it creates or is called in.

A class can have more than one constructor, but most have only one. It is conventional to call the constructor Create.

To create an object, call the constructor method on a class type. For example,

MyObject := TMyClass.Create;

This allocates storage for the new object, sets the values of all ordinal fields to zero, assigns nil to all pointer and class-type
fields, and makes all string fields empty. Other actions specified in the constructor implementation are performed next; typically,
objects are initialized based on values passed as parameters to the constructor. Finally, the constructor returns a reference to
the newly allocated and initialized object. The type of the returned value is the same as the class type specified in the constructor
call.

If an exception is raised during execution of a constructor that was invoked on a class reference, the Destroy destructor is
automatically called to destroy the unfinished object.

When a constructor is called using an object reference (rather than a class reference), it does not create an object. Instead, the
constructor operates on the specified object, executing only the statements in the constructor's implementation, and then returns
a reference to the object. A constructor is typically invoked on an object reference in conjunction with the reserved word
inherited to execute an inherited constructor.

Here is an example of a class type and its constructor.

type
 TShape = class(TGraphicControl)
 private
 FPen: TPen;
 FBrush: TBrush;
 procedure PenChanged(Sender: TObject);
 procedure BrushChanged(Sender: TObject);
 public
 constructor Create(Owner: TComponent); override;
 destructor Destroy; override;
 ...
 end;

constructor TShape.Create(Owner: TComponent);
begin
 inherited Create(Owner); // Initialize inherited parts
 Width := 65; // Change inherited properties
 Height := 65;
 FPen := TPen.Create; // Initialize new fields
 FPen.OnChange := PenChanged;
 FBrush := TBrush.Create;
 FBrush.OnChange := BrushChanged;
end;

The first action of a constructor is usually to call an inherited constructor to initialize the object's inherited fields. The constructor
then initializes the fields introduced in the descendant class. Because a constructor always clears the storage it allocates for a
new object, all fields start with a value of zero (ordinal types), nil (pointer and class types), empty (string types), or Unassigned
(variants). Hence there is no need to initialize fields in a constructor's implementation except to nonzero or nonempty values.

When invoked through a class-type identifier, a constructor declared as virtual is equivalent to a static constructor. When
combined with class-reference types, however, virtual constructors allow polymorphic construction of objectsthat is, construction
of objects whose types aren't known at compile time. (See Class references (see page 539).)

Note: For more information on constructors, destructors, and memory management issues on the .NET platform, please see the
topic Memory Management Issues on the .NET Platform (see page 653).

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

527

3

The Class Constructor (.NET)

A class constructor executes before a class is referenced or used. The class constructor may be declared as public or private.
There can be at most one class constructor declared in a class. Descendants can declare their own class constructor, however,
do not call inherited within the body of a class constructor. In fact, you cannot call a class constructor directly, or access it in any
way (such as taking its address). The compiler generates code to call class constructors for you.

There can be no guarantees on when a class constructor will execute, except to say that it will execute at some time before the
class is used. On the .NET platform in order for a class to be "used", it must reside in code that is actually executed. For
example, if a class is first referenced in an if statement, and the test of the if statement is never true during the course of
execution, then the class will never be loaded and JIT compiled. Hence, in this case the class constructor would not be called.

The following class declaration demonstrates the syntax of class properties and fields, as well as class static methods and class
constructors:

type
 TMyClass = class
 strict protected

 // Accessors for class properties must be declared class static.
 class function GetX: Integer; static;
 class procedure SetX(val: Integer); static;
 public
 class property X: Integer read GetX write SetX;
 class procedure StatProc(s: String); static;
 strict private
 class var
 FX: Integer;
 class constructor Create;
 end;

Destructors

A destructor is a special method that destroys the object where it is called and deallocates its memory. The declaration of a
destructor looks like a procedure declaration, but it begins with the word destructor. Example:

destructor SpecialDestructor(SaveData: Boolean);
destructor Destroy; override;

Destructors on Win32 must use the default register calling convention. Although a class can have more than one destructor, it is
recommended that each class override the inherited Destroy method and declare no other destructors.

To call a destructor, you must reference an instance object. For example,

MyObject.Destroy;

When a destructor is called, actions specified in the destructor implementation are performed first. Typically, these consist of
destroying any embedded objects and freeing resources that were allocated by the object. Then the storage that was allocated
for the object is disposed of.

Here is an example of a destructor implementation.

destructor TShape.Destroy;
begin
 FBrush.Free;
 FPen.Free;
 inherited Destroy;
end;

The last action in a destructor's implementation is typically to call the inherited destructor to destroy the object's inherited fields.

When an exception is raised during creation of an object, Destroy is automatically called to dispose of the unfinished object. This
means that Destroy must be prepared to dispose of partially constructed objects. Because a constructor sets the fields of a
new object to zero or empty values before performing other actions, class-type and pointer-type fields in a partially constructed

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

528

3

object are always nil. A destructor should therefore check for nil values before operating on class-type or pointer-type fields.
Calling the Free method (defined in TObject), rather than Destroy, offers a convenient way of checking for nil values before
destroying an object.

Note: For more information on constructors, destructors, and memory management issues on the .NET platform, please see the
topic Memory Management Issues on the .NET Platform (see page 653).

Message Methods

Message methods implement responses to dynamically dispatched messages. The message method syntax is supported on all
platforms. VCL uses message methods to respond to Windows messages.

A message method is created by including the message directive in a method declaration, followed by an integer constant
between 1 and 49151 which specifies the message ID. For message methods in VCL controls, the integer constant can be one
of the Win32 message IDs defined, along with corresponding record types, in the Messages unit. A message method must be a
procedure that takes a single var parameter.

For example:

type
 TTextBox = class(TCustomControl)
 private
 procedure WMChar(var Message: TWMChar); message WM_CHAR;
 ...
 end;

A message method does not have to include the override directive to override an inherited message method. In fact, it doesn't
have to specify the same method name or parameter type as the method it overrides. The message ID alone determines which
message the method responds to and whether it is an override.

Implementing Message Methods

The implementation of a message method can call the inherited message method, as in this example:

procedure TTextBox.WMChar(var Message: TWMChar);
begin
 if Message.CharCode = Ord(#13) then
 ProcessEnter
 else
 inherited;
end;

The inherited statement searches backward through the class hierarchy and invokes the first message method with the same ID
as the current method, automatically passing the message record to it. If no ancestor class implements a message method for
the given ID, inherited calls the DefaultHandler method originally defined in TObject.

The implementation of DefaultHandler in TObject simply returns without performing any actions. By overriding
DefaultHandler, a class can implement its own default handling of messages. On Win32, the DefaultHandler method for
controls calls the Win32 API DefWindowProc.

Message Dispatching

Message handlers are seldom called directly. Instead, messages are dispatched to an object using the Dispatch method
inherited from TObject:

procedure Dispatch(var Message);

The Message parameter passed to Dispatch must be a record whose first entry is a field of type Word containing a message
ID.

Dispatch searches backward through the class hierarchy (starting from the class of the object where it is called) and invokes
the first message method for the ID passed to it. If no message method is found for the given ID, Dispatch calls

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

529

3

DefaultHandler.

See Also

Classes and Objects (see page 514)

Fields (see page 519)

Properties (see page 530)

Nested Type Declarations (see page 546)

Class References (see page 539)

Exceptions (see page 541)

Operator Overloading (see page 548)

Class Helpers (see page 550)

3.1.3.1.4 Properties
This topic describes the following material:

• Property access

• Array properties

• Index specifiers

• Storage specifiers

• Property overrides and redeclarations

• Class properties

About Properties

A property, like a field, defines an attribute of an object. But while a field is merely a storage location whose contents can be
examined and changed, a property associates specific actions with reading or modifying its data. Properties provide control over
access to an object's attributes, and they allow attributes to be computed.

The declaration of a property specifies a name and a type, and includes at least one access specifier. The syntax of a property
declaration is

property propertyName[indexes]: type index integerConstant specifiers;

where

• propertyName is any valid identifier.

• [indexes] is optional and is a sequence of parameter declarations separated by semicolons. Each parameter declaration has
the form identifier1, ..., identifiern: type. For more information, see Array Properties, below.

• type must be a predefined or previously declared type identifier. That is, property declarations like property Num: 0..9 ...
are invalid.

• the index integerConstant clause is optional. For more information, see Index Specifiers, below.

• specifiers is a sequence of read, write, stored, default (or nodefault), and implements specifiers. Every property
declaration must have at least one read or write specifier.

Properties are defined by their access specifiers. Unlike fields, properties cannot be passed as var parameters, nor can the @
operator be applied to a property. The reason is that a property doesn't necessarily exist in memory. It could, for instance,
have a read method that retrieves a value from a database or generates a random value.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

530

3

Property Access

Every property has a read specifier, a write specifier, or both. These are called access specifiers and they have the form

read fieldOrMethod

write fieldOrMethod

where fieldOrMethod is the name of a field or method declared in the same class as the property or in an ancestor class.

• If fieldOrMethod is declared in the same class, it must occur before the property declaration. If it is declared in an ancestor
class, it must be visible from the descendant; that is, it cannot be a private field or method of an ancestor class declared in a
different unit.

• If fieldOrMethod is a field, it must be of the same type as the property.

• If fieldOrMethod is a method, it cannot be dynamic and, if virtual, cannot be overloaded. Moreover, access methods for a
published property must use the default register calling convention.

• In a read specifier, if fieldOrMethod is a method, it must be a parameterless function whose result type is the same as the
property's type. (An exception is the access method for an indexed property or an array property.)

• In a write specifier, if fieldOrMethod is a method, it must be a procedure that takes a single value or const parameter of the
same type as the property (or more, if it is an array property or indexed property).

For example, given the declaration

property Color: TColor read GetColor write SetColor;

the GetColor method must be declared as

function GetColor: TColor;

and the SetColor method must be declared as one of these:

procedure SetColor(Value: TColor);
procedure SetColor(const Value: TColor);

(The name of SetColor's parameter, of course, doesn't have to be Value.)

When a property is referenced in an expression, its value is read using the field or method listed in the read specifier. When a
property is referenced in an assignment statement, its value is written using the field or method listed in the write specifier.

The example below declares a class called TCompass with a published property called Heading. The value of Heading is read
through the FHeading field and written through the SetHeading procedure.

type
 THeading = 0..359;
 TCompass = class(TControl)
 private
 FHeading: THeading;
 procedure SetHeading(Value: THeading);
 published
 property Heading: THeading read FHeading write SetHeading;
 ...
 end;

Given this declaration, the statements

if Compass.Heading = 180 then GoingSouth;
Compass.Heading := 135;

correspond to

if Compass.FHeading = 180 then GoingSouth;
Compass.SetHeading(135);

In the TCompass class, no action is associated with reading the Heading property; the read operation consists of retrieving the
value stored in the FHeading field. On the other hand, assigning a value to the Heading property translates into a call to the

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

531

3

SetHeading method, which, presumably, stores the new value in the FHeading field as well as performing other actions. For
example, SetHeading might be implemented like this:

procedure TCompass.SetHeading(Value: THeading);
begin
 if FHeading <> Value then
 begin
 FHeading := Value;
 Repaint; // update user interface to reflect new value
 end;
end;

A property whose declaration includes only a read specifier is a read-only property, and one whose declaration includes only a
write specifier is a write-only property. It is an error to assign a value to a read-only property or use a write-only property in an
expression.

Array Properties

Array properties are indexed properties. They can represent things like items in a list, child controls of a control, and pixels of a
bitmap.

The declaration of an array property includes a parameter list that specifies the names and types of the indexes. For example,

property Objects[Index: Integer]: TObject read GetObject write SetObject;
property Pixels[X, Y: Integer]: TColor read GetPixel write SetPixel;
property Values[const Name: string]: string read GetValue write SetValue;

The format of an index parameter list is the same as that of a procedure's or function's parameter list, except that the parameter
declarations are enclosed in brackets instead of parentheses. Unlike arrays, which can use only ordinal-type indexes, array
properties allow indexes of any type.

For array properties, access specifiers must list methods rather than fields. The method in a read specifier must be a function
that takes the number and type of parameters listed in the property's index parameter list, in the same order, and whose result
type is identical to the property's type. The method in a write specifier must be a procedure that takes the number and type of
parameters listed in the property's index parameter list, in the same order, plus an additional value or const parameter of the
same type as the property.

For example, the access methods for the array properties above might be declared as

function GetObject(Index: Integer): TObject;
function GetPixel(X, Y: Integer): TColor;
function GetValue(const Name: string): string;
procedure SetObject(Index: Integer; Value: TObject);
procedure SetPixel(X, Y: Integer; Value: TColor);
procedure SetValue(const Name, Value: string);

An array property is accessed by indexing the property identifier. For example, the statements

if Collection.Objects[0] = nil then Exit;
Canvas.Pixels[10, 20] := clRed;
Params.Values['PATH'] := 'C:\BIN';

correspond to

if Collection.GetObject(0) = nil then Exit;
Canvas.SetPixel(10, 20, clRed);
Params.SetValue('PATH', 'C:\BIN');

The definition of an array property can be followed by the default directive, in which case the array property becomes the default
property of the class. For example,

type
 TStringArray = class
 public
 property Strings[Index: Integer]: string ...; default;
 ...

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

532

3

 end;

If a class has a default property, you can access that property with the abbreviation object[index], which is equivalent to
object.property[index]. For example, given the declaration above, StringArray.Strings[7] can be abbreviated to
StringArray[7]. A class can have only one default property with a given signature (array parameter list), but it is possible to
overload the default property. Changing or hiding the default property in descendant classes may lead to unexpected behavior,
since the compiler always binds to properties statically.

Index Specifiers

Index specifiers allow several properties to share the same access method while representing different values. An index specifier
consists of the directive index followed by an integer constant between -2147483647 and 2147483647. If a property has an
index specifier, its read and write specifiers must list methods rather than fields. For example,

type
 TRectangle = class
 private
 FCoordinates: array[0..3] of Longint;
 function GetCoordinate(Index: Integer): Longint;
 procedure SetCoordinate(Index: Integer; Value: Longint);
 public
 property Left: Longint index 0 read GetCoordinate write SetCoordinate;
 property Top: Longint index 1 read GetCoordinate write SetCoordinate;
 property Right: Longint index 2 read GetCoordinate write SetCoordinate;
 property Bottom: Longint index 3 read GetCoordinate write SetCoordinate;
 property Coordinates[Index: Integer]: Longint read GetCoordinate write SetCoordinate;
 ...
 end;

An access method for a property with an index specifier must take an extra value parameter of type Integer. For a read function,
it must be the last parameter; for a write procedure, it must be the second-to-last parameter (preceding the parameter that
specifies the property value). When a program accesses the property, the property's integer constant is automatically passed to
the access method.

Given the declaration above, if Rectangle is of type TRectangle, then

Rectangle.Right := Rectangle.Left + 100;

corresponds to

Rectangle.SetCoordinate(2, Rectangle.GetCoordinate(0) + 100);

Storage Specifiers

The optional stored, default, and nodefault directives are called storage specifiers. They have no effect on program behavior,
but control whether or not to save the values of published properties in form files.

The stored directive must be followed by True, False, the name of a Boolean field, or the name of a parameterless method that
returns a Boolean value. For example,

property Name: TComponentName read FName write SetName stored False;

If a property has no stored directive, it is treated as if stored True were specified.

The default directive must be followed by a constant of the same type as the property. For example,

property Tag: Longint read FTag write FTag default 0;

To override an inherited default value without specifying a new one, use the nodefault directive. The default and nodefault
directives are supported only for ordinal types and for set types, provided the upper and lower bounds of the set's base type
have ordinal values between 0 and 31; if such a property is declared without default or nodefault, it is treated as if nodefault
were specified. For reals, pointers, and strings, there is an implicit default value of 0, nil, and '' (the empty string), respectively.

Note: You can't use the ordinal value 2147483648 has a default value. This value is used internally to represent nodefault

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

533

3

. When saving a component's state, the storage specifiers of the component's published properties are checked. If a property's
current value is different from its default value (or if there is no default value) and the stored specifier is True, then the
property's value is saved. Otherwise, the property's value is not saved.

Note: Property values are not automatically initialized to the default value. That is, the default directive controls only when
property values are saved to the form file, but not the initial value of the property on a newly created instance.

Storage specifiers are not supported for array properties. The default directive has a different meaning when used in an array
property declaration. See Array Properties, above.

Property Overrides and Redeclarations

A property declaration that doesn't specify a type is called a property override. Property overrides allow you to change a
property's inherited visibility or specifiers. The simplest override consists only of the reserved word property followed by an
inherited property identifier; this form is used to change a property's visibility. For example, if an ancestor class declares a
property as protected, a derived class can redeclare it in a public or published section of the class. Property overrides can
include read, write,stored, default, and nodefault directives; any such directive overrides the corresponding inherited directive.
An override can replace an inherited access specifier, add a missing specifier, or increase a property's visibility, but it cannot
remove an access specifier or decrease a property's visibility. An override can include an implements directive, which adds to
the list of implemented interfaces without removing inherited ones.

The following declarations illustrate the use of property overrides.

type
 TAncestor = class
 ...
 protected
 property Size: Integer read FSize;
 property Text: string read GetText write SetText;
 property Color: TColor read FColor write SetColor stored False;
 ...
 end;

type

 TDerived = class(TAncestor)
 ...
 protected
 property Size write SetSize;
 published
 property Text;
 property Color stored True default clBlue;
 ...
 end;

The override of Size adds a write specifier to allow the property to be modified. The overrides of Text and Color change the
visibility of the properties from protected to published. The property override of Color also specifies that the property should be
filed if its value isn't clBlue.

A redeclaration of a property that includes a type identifier hides the inherited property rather than overriding it. This means that
a new property is created with the same name as the inherited one. Any property declaration that specifies a type must be a
complete declaration, and must therefore include at least one access specifier.

Whether a property is hidden or overridden in a derived class, property look-up is always static. That is, the declared
(compile-time) type of the variable used to identify an object determines the interpretation of its property identifiers. Hence, after
the following code executes, reading or assigning a value to MyObject.Value invokes Method1 or Method2, even though
MyObject holds an instance of TDescendant. But you can cast MyObject to TDescendant to access the descendant class's
properties and their access specifiers.

type
 TAncestor = class

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

534

3

 ...
 property Value: Integer read Method1 write Method2;
 end;

 TDescendant = class(TAncestor)
 ...
 property Value: Integer read Method3 write Method4;
 end;

 var MyObject: TAncestor;
 ...
 MyObject := TDescendant.Create;

Class Properties

Class properties can be accessed without an object reference. Class property accessors must themselves be declared as class
static methods, or class fields. A class property is declared with the class property keywords. Class properties cannot be
published, and cannot have stored or default value definitions.

You can introduce a block of class static fields within a class declaration by using the class var block declaration. All fields
declared after class var have static storage attributes. A class var block is terminated by the following:

1. Another class var declaration

2. A procedure or function (i.e. method) declaration (see page 521) (including class procedures and class functions)

3. A property declaration (including class properties)

4. A constructor or destructor declaration (see page 521)

5. A visibility scope specifier (see page 514) (public, private, protected, published, strict private, and strict protected)

For example:

type
 TMyClass = class
 strict private
 class var // Note fields must be declared as class fields
 FRed: Integer;
 FGreen: Integer;
 FBlue: Integer;
 public // ends the class var block
 class property Red: Integer read FRed write FRed;
 class property Green: Integer read FGreen write FGreen;
 class property Blue: Integer read FBlue write FBlue;
 end;

You can access the above class properties with the code:

TMyClass.Red := 0;
TMyClass.Blue := 0;
TMyClass.Green := 0;

See Also

Classes and Objects (see page 514)

Fields (see page 519)

Methods (see page 521)

Nested Type Declarations (see page 546)

Class References (see page 539)

Exceptions (see page 541)

Operator Overloading (see page 548)

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

535

3

Class Helpers (see page 550)

3.1.3.1.5 Events
This topic describes the following material:

• Event properties and event handlers

• Triggering multiple event handlers

• Multicast events (.NET)

About Events

An event links an occurrence in the system with the code that responds to that occurrence. The occurrence triggers the
execution of a procedure called an event handler. The event handler performs the tasks that are required in response to the
occurrence. Events allow the behavior of a component to be customized at design-time or at runtime. To change the behavior of
the component, replace the event handler with a custom event handler that will have the desired behavior.

Event Properties and Event Handlers

Components that are written in Delphi use properties to indicate the event handler that will be executed when the event occurs.
By convention, the name of an event property begins with "On", and the property is implemented with a field rather than
read/write methods. The value stored by the property is a method pointer, pointing to the event handler procedure.

In the following example, the TObservedObject class includes an OnPing event, of type TPingEvent. The FOnPing field is
used to store the event handler. The event handler in this example, TListener.Ping, prints 'TListener has been pinged!'.

Program EventDemo;
{$APPTYPE CONSOLE}

type
 TPingEvent = procedure of object;
 TObservedObject = class
 private
 FPing: TPingEvent;
 public
 property OnPing: TPingEvent read FPing write FPing;
 end;

 TListener = class
 procedure Ping;
 end;

procedure TListener.Ping;
begin
 writeln('TListener has been pinged.');
end;

var
 observedObject: TObservedObject;
 listener: TListener;

begin
 observedObject := TObservedObject.Create;
 listener := TListener.Create;

 observedObject.OnPing := listener.Ping;

 observedObject.OnPing; // should output 'TListener has been pinged.'

 ReadLn; // pause console before closing
end.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

536

3

Triggering Multiple Event Handlers

In Delphi for Win32, events can be assigned only a single event handler. If multiple event handlers must be executed in
response to an event, the event handler assigned to the event must call any other event handlers. In the following code, a
subclass of TListener called TListenerSubclass has its own event handler called Ping2. In this example, the Ping2
event handler must explicitly call the TListener.Ping event handler in order to trigger it in response to the OnPing event.

Program EventDemo2;
{$APPTYPE CONSOLE}

type
 TPingEvent = procedure of object;
 TObservedObject = class
 private
 FPing: TPingEvent;
 public
 property OnPing: TPingEvent read FPing write FPing;
 end;

 TListener = class
 procedure Ping;
 end;

 TListenerSubclass = class (TListener)
 procedure Ping2;
 end;

procedure TListener.Ping;
begin
 writeln('TListener has been pinged.');
end;

procedure TListenerSubclass.Ping2;
begin
 self.Ping;
 writeln('TListenerSubclass has been pinged.');
end;

var
 observedObject: TObservedObject;
 listener: TListenerSubclass;

begin
 observedObject := TObservedObject.Create;
 listener := TListenerSubclass.Create;

 observedObject.OnPing := listener.Ping2;

 observedObject.OnPing; // should output 'TListener has been pinged.'
 // and then 'TListenerSubclass has been pinged.'

 ReadLn; // pause console before closing
end.

Multicast Events (.NET only)

On the .NET platform, Delphi enables multiple event handlers to be applied to the same event. A multicast event is an event that
can trigger multiple event handlers. Using mulitcast events can reduce the effort required for maintenance of complex event
systems, and improve the readability and flexibility of event handling.

Multicast events are declared using the add and remove keywords to indicate the field or methods that are used to add or
remove event handlers for an event. The Include() and Exclude() standard procedures are used to include and exclude
event handlers at runtime. The following code demonstrates the declaration of an event property that uses multicast events.

Program NETEvents;

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

537

3

{$APPTYPE CONSOLE}

type
 TPingEvent = procedure of object;
 TObservedObject = class
 private
 FPing: TPingEvent;
 public
 property OnPing: TPingEvent add FPing remove FPing;
 end;

 TListener = class
 procedure Ping;
 end;

 TListenerSubclass = class (TListener)
 procedure Ping2;
 end;

procedure TListener.Ping;
begin
 writeln('TListener has been pinged.');
end;

procedure TListenerSubclass.Ping2;
begin
 writeln('TListenerSubclass has been pinged.');
end;

var
 observedObject: TObservedObject;
 listener: TListener;
 listenerSubclass: TListenerSubclass;
 testEvent: TPingEvent;

begin
 observedObject := TObservedObject.Create;
 listener := TListener.Create;
 listenerSubclass := TListenerSubclass.Create;

 Include(observedObject.OnPing, listener.Ping);
 Include(observedObject.OnPing, listenerSubclass.Ping2);

 // testEvent := observedObject.OnPing; // not allowed

 observedObject.FPing(); // should output 'TListener has been pinged.'

 ReadLn; // pause console before closing
end.

The ObservedObject.OnPing property declaration uses the add and remove keywords instead of read and write. The add
and remove keywords indicate to the compiler that OnClick is a multicast event.

A property which represents a multicast event can not be read or written directly; it can only be accessed through the
Include() and Exclude() standard procedures. To attempt to read, write or execute a property that has been declared with
add and remove is an error at compile time. To execute this event directly, the sample code uses the FPing field rather than the
OnPing property.

See Also

Classes and Objects (see page 514)

Properties (see page 530)

Methods (see page 521)

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

538

3

Procedural types (see page 578)

Creating events

3.1.3.1.6 Class References
Sometimes operations are performed on a class itself, rather than on instances of a class (that is, objects). This happens, for
example, when you call a constructor method using a class reference. You can always refer to a specific class using its name,
but at times it is necessary to declare variables or parameters that take classes as values, and in these situations you need
class-reference types.

This topic covers the following material:

• Class reference types

• Class operators

Class-Reference Types

A class-reference type, sometimes called a metaclass, is denoted by a construction of the form

class of type

where type is any class type. The identifier type itself denotes a value whose type is class of type. If type1 is an ancestor of
type2, then class of type2 is assignment-compatible with class of type1. Thus

type TClass = class of TObject;
var AnyObj: TClass;

declares a variable called AnyObj that can hold a reference to any class. (The definition of a class-reference type cannot occur
directly in a variable declaration or parameter list.) You can assign the value nil to a variable of any class-reference type.

To see how class-reference types are used, look at the declaration of the constructor for TCollection (in the Classes unit):

type TCollectionItemClass = class of TCollectionItem;
 ...
constructor Create(ItemClass: TCollectionItemClass);

This declaration says that to create a TCollection instance object, you must pass to the constructor the name of a class
descending from TCollectionItem.

Class-reference types are useful when you want to invoke a class method or virtual constructor on a class or object whose actual
type is unknown at compile time.

Constructors and Class References

A constructor can be called using a variable of a class-reference type. This allows construction of objects whose type isn't known
at compile time. For example,

type TControlClass = class of TControl;

function CreateControl(ControlClass: TControlClass;
const ControlName: string; X, Y, W, H: Integer): TControl;
begin
 Result := ControlClass.Create(MainForm);
 with Result do
 begin
 Parent := MainForm;
 Name := ControlName;
 SetBounds(X, Y, W, H);
 Visible := True;
 end;
end;

The CreateControl function requires a class-reference parameter to tell it what kind of control to create. It uses this parameter

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

539

3

to call the class's constructor. Because class-type identifiers denote class-reference values, a call to CreateControl can
specify the identifier of the class to create an instance of. For example,

CreateControl(TEdit, 'Edit1', 10, 10, 100, 20);

Constructors called using class references are usually virtual. The constructor implementation activated by the call depends on
the runtime type of the class reference.

Class Operators

Class methods (see page 521) operate on class references. Every class inherits two class methods from TObject, called
ClassType and ClassParent. These methods return, respectively, a reference to the class of an object and to an object's
immediate ancestor class. Both methods return a value of type TClass (where TClass = class of TObject), which can be
cast to a more specific type. Every class also inherits a method called InheritsFrom that tests whether the object where it is
called descends from a specified class. These methods are used by the is and as operators, and it is seldom necessary to call
them directly.

The is Operator

The is operator, which performs dynamic type checking, is used to verify the actual runtime class of an object. The expression

objectisclass

returns True if object is an instance of the class denoted by class or one of its descendants, and False otherwise. (If object is nil,
the result is False.) If the declared type of object is unrelated to class - that is, if the types are distinct and one is not an ancestor
of the othera compilation error results. For example,

if ActiveControl is TEdit then TEdit(ActiveControl).SelectAll;

This statement casts a variable to TEdit after first verifying that the object it references is an instance of TEdit or one of its
descendants.

The as Operator

The as operator performs checked typecasts. The expression

objectasclass

returns a reference to the same object as object, but with the type given by class. At runtime, object must be an instance of the
class denoted by class or one of its descendants, or be nil; otherwise an exception is raised. If the declared type of object is
unrelated to class - that is, if the types are distinct and one is not an ancestor of the other - a compilation error results. For
example,

with Sender as TButton do
 begin
 Caption := '&Ok';
 OnClick := OkClick;
 end;

The rules of operator precedence often require as typecasts to be enclosed in parentheses. For example,

(Sender as TButton).Caption := '&Ok';

See Also

Classes and Objects (see page 514)

Fields (see page 519)

Methods (see page 521)

Properties (see page 530)

Nested Type Declarations (see page 546)

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

540

3

Exceptions (see page 541)

Operator Overloading (see page 548)

Class Helpers (see page 550)

3.1.3.1.7 Exceptions
This topic covers the following material:

• A conceptual overview of exceptions and exception handling

• Declaring exception types

• Raising and handling exceptions

About Exceptions

An exception is raised when an error or other event interrupts normal execution of a program. The exception transfers control to
an exception handler, which allows you to separate normal program logic from error-handling. Because exceptions are objects,
they can be grouped into hierarchies using inheritance, and new exceptions can be introduced without affecting existing code.
An exception can carry information, such as an error message, from the point where it is raised to the point where it is handled.

When an application uses the SysUtils unit, most runtime errors are automatically converted into exceptions. Many errors that
would otherwise terminate an application - such as insufficient memory, division by zero, and general protection faults - can be
caught and handled.

When To Use Exceptions

Exceptions provide an elegant way to trap runtime errors without halting the program and without awkward conditional
statements. The requirements imposed by exception handling semantics impose a code/data size and runtime performance
penalty. While it is possible to raise exceptions for almost any reason, and to protect almost any block of code by wrapping it in a
try...except or try...finally statement, in practice these tools are best reserved for special situations.

Exception handling is appropriate for errors whose chances of occurring are low or difficult to assess, but whose consequences
are likely to be catastrophic (such as crashing the application); for error conditions that are complicated or difficult to test for in
if...then statements; and when you need to respond to exceptions raised by the operating system or by routines whose
source code you don't control. Exceptions are commonly used for hardware, memory, I/O, and operating-system errors.

Conditional statements are often the best way to test for errors. For example, suppose you want to make sure that a file exists
before trying to open it. You could do it this way:

try
 AssignFile(F, FileName);
 Reset(F); // raises an EInOutError exception if file is not found
except
 on Exception do ...
end;

But you could also avoid the overhead of exception handling by using

if FileExists(FileName) then // returns False if file is not found; raises no exception
begin
 AssignFile(F, FileName);
 Reset(F);
end;

Assertions provide another way of testing a Boolean condition anywhere in your source code. When an Assert statement fails,
the program either halts with a runtime error or (if it uses the SysUtils unit) raises an EAssertionFailed exception. Assertions
should be used only to test for conditions that you do not expect to occur.

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

541

3

Declaring Exception Types

Exception types are declared just like other classes. In fact, it is possible to use an instance of any class as an exception, but it is
recommended that exceptions be derived from the Exception class defined in SysUtils.

You can group exceptions into families using inheritance. For example, the following declarations in SysUtils define a family of
exception types for math errors.

type
 EMathError = class(Exception);
 EInvalidOp = class(EMathError);
 EZeroDivide = class(EMathError);
 EOverflow = class(EMathError);
 EUnderflow = class(EMathError);

Given these declarations, you can define a single EMathError exception handler that also handles EInvalidOp, EZeroDivide,
EOverflow, and EUnderflow.

Exception classes sometimes define fields, methods, or properties that convey additional information about the error. For
example,

type EInOutError = class(Exception)
 ErrorCode: Integer;
 end;

Raising and Handling Exceptions

To raise an exception object, use an instance of the exception class with a raise statement. For example,

raise EMathError.Create;

In general, the form of a raise statement is

raiseobjectataddress

where object and at address are both optional. When an address is specified, it can be any expression that evaluates to a
pointer type, but is usually a pointer to a procedure or function. For example:

raise Exception.Create('Missing parameter') at @MyFunction;

Use this option to raise the exception from an earlier point in the stack than the one where the error actually occurred.

When an exception is raised - that is, referenced in a raise statement - it is governed by special exception-handling logic. A
raise statement never returns control in the normal way. Instead, it transfers control to the innermost exception handler that can
handle exceptions of the given class. (The innermost handler is the one whose try...except block was most recently entered
but has not yet exited.)

For example, the function below converts a string to an integer, raising an ERangeError exception if the resulting value is outside
a specified range.

function StrToIntRange(const S: string; Min, Max: Longint): Longint;
begin
 Result := StrToInt(S); // StrToInt is declared in SysUtils
 if (Result < Min) or (Result > Max) then
 raise ERangeError.CreateFmt('%d is not within the valid range of %d..%d', [Result, Min,
Max]);
end;

Notice the CreateFmt method called in the raise statement. Exception and its descendants have special constructors that
provide alternative ways to create exception messages and context IDs.

A raised exception is destroyed automatically after it is handled. Never attempt to destroy a raised exception manually.

Note: Raising an exception in the initialization section of a unit may not produce the intended result. Normal exception support
comes from the SysUtils unit, which must be initialized before such support is available. If an exception occurs during

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

542

3

initialization, all initialized units - including SysUtils - are finalized and the exception is re-raised. Then the exception is caught
and handled, usually by interrupting the program. Similarly, raising an exception in the finalization section of a unit may not lead
to the intended result if SysUtils has already been finalized when the exception has been raised.

Try...except Statements

Exceptions are handled within try...except statements. For example,

try
 X := Y/Z;
 except
 on EZeroDivide do HandleZeroDivide;
end;

This statement attempts to divide Y by Z, but calls a routine named HandleZeroDivide if an EZeroDivide exception is raised.

The syntax of a try...except statement is

try statementsexceptexceptionBlockend

where statements is a sequence of statements (delimited by semicolons) and exceptionBlock is either

• another sequence of statements or

• a sequence of exception handlers, optionally followed by

elsestatements

An exception handler has the form

onidentifier: typedostatement

where identifier: is optional (if included, identifier can be any valid identifier), type is a type used to represent exceptions, and
statement is any statement.

A try...except statement executes the statements in the initial statements list. If no exceptions are raised, the exception
block (exceptionBlock) is ignored and control passes to the next part of the program.

If an exception is raised during execution of the initial statements list, either by a raise statement in the statements list or by a
procedure or function called from the statements list, an attempt is made to 'handle' the exception:

• If any of the handlers in the exception block matches the exception, control passes to the first such handler. An exception
handler 'matches' an exception just in case the type in the handler is the class of the exception or an ancestor of that class.

• If no such handler is found, control passes to the statement in the else clause, if there is one.

• If the exception block is just a sequence of statements without any exception handlers, control passes to the first statement in
the list.

If none of the conditions above is satisfied, the search continues in the exception block of the next-most-recently entered
try...except statement that has not yet exited. If no appropriate handler, else clause, or statement list is found there, the
search propagates to the next-most-recently entered try...except statement, and so forth. If the outermost
try...except statement is reached and the exception is still not handled, the program terminates.

When an exception is handled, the stack is traced back to the procedure or function containing the try...except statement
where the handling occurs, and control is transferred to the executed exception handler, else clause, or statement list. This
process discards all procedure and function calls that occurred after entering the try...except statement where the
exception is handled. The exception object is then automatically destroyed through a call to its Destroy destructor and
control is passed to the statement following the try...except statement. (If a call to the Exit, Break, or Continue
standard procedure causes control to leave the exception handler, the exception object is still automatically destroyed.)

In the example below, the first exception handler handles division-by-zero exceptions, the second one handles overflow
exceptions, and the final one handles all other math exceptions. EMathError appears last in the exception block because it is
the ancestor of the other two exception classes; if it appeared first, the other two handlers would never be invoked.

try
 ...
except
 on EZeroDivide do HandleZeroDivide;

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

543

3

 on EOverflow do HandleOverflow;
 on EMathError do HandleMathError;
end;

An exception handler can specify an identifier before the name of the exception class. This declares the identifier to represent
the exception object during execution of the statement that follows on...do. The scope of the identifier is limited to that
statement. For example,

try
 ...
except
 on E: Exception do ErrorDialog(E.Message, E.HelpContext);
end;

If the exception block specifies an else clause, the else clause handles any exceptions that aren't handled by the block's
exception handlers. For example,

try
 ...
except
 on EZeroDivide do HandleZeroDivide;
 on EOverflow do HandleOverflow;
 on EMathError do HandleMathError;
else
 HandleAllOthers;
end;

Here, the else clause handles any exception that isn't an EMathError.

An exception block that contains no exception handlers, but instead consists only of a list of statements, handles all exceptions.
For example,

try
 ...
except
 HandleException;
end;

Here, the HandleException routine handles any exception that occurs as a result of executing the statements between try
and except.

Re-raising Exceptions

When the reserved word raise occurs in an exception block without an object reference following it, it raises whatever exception
is handled by the block. This allows an exception handler to respond to an error in a limited way and then re-raise the exception.
Re-raising is useful when a procedure or function has to clean up after an exception occurs but cannot fully handle the exception.

For example, the GetFileList function allocates a TStringList object and fills it with file names matching a specified
search path:

function GetFileList(const Path: string): TStringList;
var
 I: Integer;
 SearchRec: TSearchRec;
begin
 Result := TStringList.Create;
 try
 I := FindFirst(Path, 0, SearchRec);
 while I = 0 do
 begin
 Result.Add(SearchRec.Name);
 I := FindNext(SearchRec);
 end;
 except
 Result.Free;

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

544

3

 raise;
 end;
end;

GetFileList creates a TStringList object, then uses the FindFirst and FindNext functions (defined in SysUtils) to
initialize it. If the initialization fails - for example because the search path is invalid, or because there is not enough memory to fill
in the string list - GetFileList needs to dispose of the new string list, since the caller does not yet know of its existence. For
this reason, initialization of the string list is performed in a try...except statement. If an exception occurs, the statement's
exception block disposes of the string list, then re-raises the exception.

Nested Exceptions

Code executed in an exception handler can itself raise and handle exceptions. As long as these exceptions are also handled
within the exception handler, they do not affect the original exception. However, once an exception raised in an exception
handler propagates beyond that handler, the original exception is lost. This is illustrated by the Tan function below.

type
 ETrigError = class(EMathError);
 function Tan(X: Extended): Extended;
 begin
 try
 Result := Sin(X) / Cos(X);
 except
 on EMathError do
 raise ETrigError.Create('Invalid argument to Tan');
 end;
 end;

If an EMathError exception occurs during execution of Tan, the exception handler raises an ETrigError. Since Tan does not
provide a handler for ETrigError, the exception propagates beyond the original exception handler, causing the EMathError
exception to be destroyed. To the caller, it appears as if the Tan function has raised an ETrigError exception.

Try...finally Statements

Sometimes you want to ensure that specific parts of an operation are completed, whether or not the operation is interrupted by
an exception. For example, when a routine acquires control of a resource, it is often important that the resource be released,
regardless of whether the routine terminates normally. In these situations, you can use a try...finally statement.

The following example shows how code that opens and processes a file can ensure that the file is ultimately closed, even if an
error occurs during execution.

Reset(F);
try
 ... // process file F
finally
 CloseFile(F);
end;

The syntax of a try...finally statement is

trystatementList1finallystatementList2end

where each statementList is a sequence of statements delimited by semicolons. The try...finally statement executes the
statements in statementList1 (the try clause). If statementList1 finishes without raising exceptions, statementList2 (the finally
clause) is executed. If an exception is raised during execution of statementList1, control is transferred to statementList2; once
statementList2 finishes executing, the exception is re-raised. If a call to the Exit, Break, or Continue procedure causes
control to leave statementList1, statementList2 is automatically executed. Thus the finally clause is always executed, regardless
of how the try clause terminates.

If an exception is raised but not handled in the finally clause, that exception is propagated out of the try...finally

statement, and any exception already raised in the try clause is lost. The finally clause should therefore handle all locally raised
exceptions, so as not to disturb propagation of other exceptions.

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

545

3

Standard Exception Classes and Routines

The SysUtils and System units declare several standard routines for handling exceptions, including ExceptObject,
ExceptAddr, and ShowException. SysUtils, System and other units also include dozens of exception classes, all of which
(aside from OutlineError) derive from Exception.

The Exception class has properties called Message and HelpContext that can be used to pass an error description and a
context ID for context-sensitive online documentation. It also defines various constructor methods that allow you to specify the
description and context ID in different ways.

See Also

Classes and Objects (see page 514)

Fields (see page 519)

Methods (see page 521)

Properties (see page 530)

Nested Type Declarations (see page 546)

Class References (see page 539)

Operator Overloading (see page 548)

Class Helpers (see page 550)

3.1.3.1.8 Nested Type Declarations
Type declarations can be nested within class declarations. Nested types are used throughout the .NET framework, and
throughout object-oriented programming in general. They present a way to keep conceptually related types together, and to
avoid name collisions. The same syntax for declaring nested types may be used with the Win32 Delphi compiler.

Declaring Nested Types

The nestedTypeDeclaration follows the type declaration syntax defined in Declaring Types (see page 586).

type
className = class [abstract | sealed] (ancestorType)
 memberList

 type
 nestedTypeDeclaration

 memberList
end;

Nested type declarations are terminated by the first occurance of a non-identifier token, for example, procedure, class, type,
and all visibility scope specifiers.

The normal accessibility rules apply to nested types and their containing types. A nested type can access an instance variable
(field, property, or method) of its container class, but it must have an object reference to do so. A nested type can access class
fields, class properties, and class static methods without an object reference, but the normal Delphi visibility rules apply.

Nested types do not increase the size of the containing class. Creating an instance of the containing class does not also create
an instance of a nested type. Nested types are associated with their containing classes only by the context of their declaration.

Declaring and Accessing Nested Classes

The following example demonstrates how to declare and access fields and methods of a nested class.

type
 TOuterClass = class

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

546

3

 strict private
 myField: Integer;

 public
 type
 TInnerClass = class
 public
 myInnerField: Integer;
 procedure innerProc;
 end;

 procedure outerProc;
 end;

To implement the innerProc method of the inner class, you must qualify its name with the name of the outer class. For
example

procedure TOuterClass.TInnerClass.innerProc;
begin
 ...
end;

To access the members of the nested type, use dotted notation as with regular class member access. For example

var
 x: TOuterClass;
 y: TOuterClass.TInnerClass;

begin
 x := TOuterClass.Create;
 x.outerProc;
 ...
 y := TOuterClass.TInnerClass.Create;
 y.innerProc;

Nested Constants

Constants can be declared in class types in the same manner as nested type sections. Constant sections are terminated by the
same tokens as nested type sections, specifically, reserved words or visibility specifiers. Typed constants are not supported, so
you cannot declare nested constants of value types, such as Currency, or TDateTime.

Nested constants can be of any simple type: ordinal, ordinal subranges, enums, strings, and real types.

The following code demonstrates the declaration of nested constants:

type
 TMyClass = class
 const
 x = 12;
 y = TMyClass.x + 23;
 procedure Hello;
 private
 const
 s = 'A string constant';
 end;

begin
 writeln(TMyClass.y); // Writes the value of y, 35.
end.

See Also

Classes and Objects (see page 514)

Fields (see page 519)

Methods (see page 521)

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

547

3

Properties (see page 530)

Class References (see page 539)

Exceptions (see page 541)

Operator Overloading (see page 548)

Class Helpers (see page 550)

3.1.3.1.9 Operator Overloading
This topic describes Delphi's operator methods and how to overload them.

About Operator Overloading

Delphi for .NET and Delphi for Win32 allow certain functions, or "operators" to be overloaded within record declarations. Delphi
for .NET also allows overloading within class declarations. The name of the operator function maps to a symbolic representation
in source code. For example, the Add operator maps to the + symbol. The compiler generates a call to the appropriate overload,
matching the context (i.e. the return type, and type of parameters used in the call), to the signature of the operator function. The
following table shows the Delphi operators that can be overloaded:

Operator Category Declaration Signature Symbol Mapping

Implicit Conversion Implicit(a : type) : resultType; implicit typecast

Explicit Conversion Explicit(a: type) : resultType; explicit typecast

Negative Unary Negative(a: type) : resultType; -

Positive Unary Positive(a: type): resultType; +

Inc Unary Inc(a: type) : resultType; Inc

Dec Unary Dec(a: type): resultType Dec

LogicalNot Unary LogicalNot(a: type): resultType; not

BitwiseNot Unary BitwiseNot(a: type): resultType; not

Trunc Unary Trunc(a: type): resultType; Trunc

Round Unary Round(a: type): resultType; Round

Equal Comparison Equal(a: type; b: type) : Boolean; =

NotEqual Comparison NotEqual(a: type; b: type): Boolean; <>

GreaterThan Comparison GreaterThan(a: type; b: type) Boolean; >

GreaterThanOrEqual Comparison GreaterThanOrEqual(a: type; b: type):
resultType;

>=

LessThan Comparison LessThan(a: type; b: type): resultType; <

LessThanOrEqual Comparison LessThanOrEqual(a: type; b: type):
resultType;

<=

Add Binary Add(a: type; b: type): resultType; +

Subtract Binary Subtract(a: type; b: type) : resultType; -

Multiply Binary Multiply(a: type; b: type) : resultType; *

Divide Binary Divide(a: type; b: type) : resultType; /

IntDivide Binary IntDivide(a: type; b: type): resultType; div

Modulus Binary Modulus(a: type; b: type): resultType; mod

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

548

3

LeftShift Binary LeftShift(a: type; b: type): resultType; shl

RightShift Binary RightShift(a: type; b: type): resultType; shr

LogicalAnd Binary LogicalAnd(a: type; b: type): resultType; and

LogicalOr Binary LogicalOr(a: type; b: type): resultType; or

LogicalXor Binary LogicalXor(a: type; b: type): resultType; xor

BitwiseAnd Binary BitwiseAnd(a: type; b: type): resultType; and

BitwiseOr Binary BitwiseOr(a: type; b: type): resultType; or

BitwiseXor Binary BitwiseXor(a: type; b: type): resultType; xor

No operators other than those listed in the table may be defined on a class or record.

Overloaded operator methods cannot be referred to by name in source code. To access a specific operator method of a specific
class or record, you must use explicit typecasts on all of the operands. Operator identifiers are not included in the class or
record's list of members.

No assumptions are made regarding the distributive or commutative properties of the operation. For binary operators, the first
parameter is always the left operand, and the second parameter is always the right operand. Associativity is assumed to be
left-to-right in the absence of explicit parentheses.

Resolution of operator methods is done over the union of accessible operators of the types used in the operation (note this
includes inherited operators). For an operation involving two different types A and B, if type A has an implicit conversion to B,
and B has an implicit conversion to A, an ambiguity will occur. Implicit conversions should be provided only where absolutely
necessary, and reflexivity should be avoided. It is best to let type B implicitly convert itself to type A, and let type A have no
knowledge of type B (or vice versa).

As a general rule, operators should not modify their operands. Instead, return a new value, constructed by performing the
operation on the parameters.

Overloaded operators are used most often in records (i.e. value types). Very few classes in the .NET framework have
overloaded operators, but most value types do.

Declaring Operator Overloads

Operator overloads are declared within classes or records, with the following syntax:

type
 typeName = [class | record]
 class operator conversionOp(a: type): resultType;
 class operator unaryOp(a: type): resultType;
 class operator comparisonOp(a: type; b: type): Boolean;
 class operator binaryOp(a: type; b: type): resultType;
 end;

Implementation of overloaded operators must also include the class operator syntax:

class operator typeName.conversionOp(a: type): resultType;
class operator typeName.unaryOp(a: type): resultType;
class operator typeName.comparisonOp(a: type; b: type): Boolean;
class operator typeName.binaryOp(a: type; b: type): resultType;

The following are some examples of overloaded operators:

type
 TMyClass = class
 class operator Add(a, b: TMyClass): TMyClass; // Addition of two operands of type
TMyClass
 class operator Subtract(a, b: TMyClass): TMyclass; // Subtraction of type TMyClass
 class operator Implicit(a: Integer): TMyClass; // Implicit conversion of an Integer

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

549

3

to type TMyClass
 class operator Implicit(a: TMyClass): Integer; // Implicit conversion of TMyClass to
Integer
 class operator Explicit(a: Double): TMyClass; // Explicit conversion of a Double to
TMyClass
 end;

// Example implementation of Add
class operator TMyClass.Add(a, b: TMyClass): TMyClass;
begin
 // ...
end;

var
x, y: TMyClass;
begin
 x := 12; // Implicit conversion from an Integer
 y := x + x; // Calls TMyClass.Add(a, b: TMyClass): TMyClass
 b := b + 100; // Calls TMyClass.Add(b, TMyClass.Implicit(100))
end;

See Also

Classes and Objects (see page 514)

Fields (see page 519)

Methods (see page 521)

Properties (see page 530)

Nested Type Declarations (see page 546)

Class Helpers (see page 550)

Class References (see page 539)

Exceptions (see page 541)

3.1.3.1.10 Class Helpers
This topic describes the syntax of class helper declarations.

About Class Helpers

A class helper is a type that - when associated with another class - introduces additional method names and properties which
may be used in the context of the associated class (or its descendants). Class helpers are a way to extend a class without using
inheritance. A class helper simply introduces a wider scope for the compiler to use when resolving identifiers. When you declare
a class helper, you state the helper name, and the name of the class you are going to extend with the helper. You can use the
class helper any place where you can legally use the extended class. The compiler's resolution scope then becomes the original
class, plus the class helper.

Class helpers provide a way to extend a class, but they should not be viewed as a design tool to be used when developing new
code. They should be used solely for their intended purpose, which is language and platform RTL binding.

Class Helper Syntax

The syntax for declaring a class helper is:

type
 identifierName = class helper [(ancestor list)] for classTypeIdentifierName
 memberList
 end;

The ancestor list is optional.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

550

3

A class helper type may not declare instance data, but class fields (see page 519) are allowed.

The visibility scope rules and memberList syntax are identical to that of ordinary class types.

You can define and associate multiple class helpers with a single class type. However, only zero or one class helper applies in
any specific location in source code. The class helper defined in the nearest scope will apply. Class helper scope is determined
in the normal Delphi fashion (i.e. right to left in the unit's uses clause).

Using Class Helpers

The following code demonstrates the declaration of a class helper:

type
 TMyClass = class
 procedure MyProc;
 function MyFunc: Integer;
 end;

 ...

 procedure TMyClass.MyProc;
 var X: Integer;
 begin
 X := MyFunc;
 end;

 function TMyClass.MyFunc: Integer;
 begin
 ...
 end;

...

type
 TMyClassHelper = class helper for TMyClass
 procedure HelloWorld;
 function MyFunc: Integer;
 end;

 ...

 procedure TMyClassHelper.HelloWorld;
 begin
 writeln(Self.ClassName); // Self refers to TMyClass type, not TMyClassHelper
 end;

 function TMyClassHelper.MyFunc: Integer;
 begin
 ...
 end;

...

var
 X: TMyClass;
begin
 X := TMyClass.Create;
 X.MyProc; // Calls TMyClass.MyProc
 X.HelloWorld; // Calls TMyClassHelper.HelloWorld
 X.MyFunc; // Calls TMyClassHelper.MyFunc

Note that the class helper function MyFunc is called, since the class helper takes precedence over the actual class type.

See Also

Classes and Objects (see page 514)

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

551

3

Fields (see page 519)

Methods (see page 521)

Properties (see page 530)

Nested Type Declarations (see page 546)

Operator Overloading (see page 548)

Class References (see page 539)

Exceptions (see page 541)

3.1.3.2 Data Types, Variables, and Constants
This section describes the fundamental data types of the Delphi language.

Topics

Name Description

Data Types, Variables, and Constants (see page 553) This topic presents a high-level overview of Delphi data types.

Simple Types (see page 554) Simple types - which include ordinal types and real types - define ordered sets of
values.
The ordinal types covered in this topic are:

• Integer types

• Character types

• Boolean types

• Enumerated types

• Real (floating point) types

String Types (see page 561) This topic describes the string data types available in the Delphi language. The
following types are covered:

• Short strings.

• Long strings.

• Wide (Unicode) strings.

Structured Types (see page 566) Instances of a structured type hold more than one value. Structured types include
sets, arrays, records, and files as well as class, class-reference, and interface
types. Except for sets, which hold ordinal values only, structured types can
contain other structured types; a type can have unlimited levels of structuring.
Note: Typed and untyped file types are not supported with the .NET framework.
By default, the values in a structured type are aligned on word or double-word
boundaries for faster access. When you declare a structured type, you can
include the reserved word packed to implement compressed data storage. For
example,... more (see page 566)

Pointers and Pointer Types (see page 575) A pointer is a variable that denotes a memory address. When a pointer holds the
address of another variable, we say that it points to the location of that variable in
memory or to the data stored there. In the case of an array or other structured
type, a pointer holds the address of the first element in the structure. If that
address is already taken, then the pointer holds the address to the first element.
Pointers are typed to indicate the kind of data stored at the addresses they hold.
The general-purpose Pointer type can represent a pointer to... more (see
page 575)

Procedural Types (see page 578) Procedural types allow you to treat procedures and functions as values that can
be assigned to variables or passed to other procedures and functions.

Variant Types (see page 580) This topic discusses the use of variant data types.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

552

3

Type Compatibility and Identity (see page 583) To understand which operations can be performed on which expressions, we
need to distinguish several kinds of compatibility among types and values. These
include:

• Type identity

• Type compatibility

• Assignment compatibility

Declaring Types (see page 586) This topic describes the syntax of Delphi type declarations.

Variables (see page 587) A variable is an identifier whose value can change at runtime. Put differently, a
variable is a name for a location in memory; you can use the name to read or
write to the memory location. Variables are like containers for data, and, because
they are typed, they tell the compiler how to interpret the data they hold.

Declared Constants (see page 589) Several different language constructions are referred to as 'constants'. There are
numeric constants (also called numerals) like 17, and string constants (also
called character strings or string literals) like 'Hello world!'. Every enumerated
type defines constants that represent the values of that type. There are
predefined constants like True, False, and nil. Finally, there are constants that,
like variables, are created individually by declaration.
Declared constants are either true constants or typed constants. These two kinds
of constant are superficially similar, but they are governed by different rules and
used for different purposes.

3.1.3.2.1 Data Types, Variables, and Constants
This topic presents a high-level overview of Delphi data types.

About Types

A type is essentially a name for a kind of data. When you declare a variable you must specify its type, which determines the set
of values the variable can hold and the operations that can be performed on it. Every expression returns data of a particular type,
as does every function. Most functions and procedures require parameters of specific types.

The Delphi language is a 'strongly typed' language, which means that it distinguishes a variety of data types and does not always
allow you to substitute one type for another. This is usually beneficial because it lets the compiler treat data intelligently and
validate your code more thoroughly, preventing hard-to-diagnose runtime errors. When you need greater flexibility, however,
there are mechanisms to circumvent strong typing. These include typecasting, pointers, Variants, Variant parts in records, and
absolute addressing of variables.

There are several ways to categorize Delphi data types:

• Some types are predefined (or built-in); the compiler recognizes these automatically, without the need for a declaration.
Almost all of the types documented in this language reference are predefined. Other types are created by declaration; these
include user-defined types and the types defined in the product libraries.

• Types can be classified as either fundamental or generic. The range and format of a fundamental type is the same in all
implementations of the Delphi language, regardless of the underlying CPU and operating system. The range and format of a
generic type is platform-specific and could vary across different implementations. Most predefined types are fundamental, but
a handful of integer, character, string, and pointer types are generic. It's a good idea to use generic types when possible,
since they provide optimal performance and portability. However, changes in storage format from one implementation of a
generic type to the next could cause compatibility problems - for example, if you are streaming content to a file as raw, binary
data, without type and versioning information.

• Types can be classified as simple, string, structured, pointer, procedural, or variant. In addition, type identifiers themselves
can be regarded as belonging to a special 'type' because they can be passed as parameters to certain functions (such as
High, Low, and SizeOf).

• Types can be parameterized , or

The outline below shows the taxonomy of Delphi data types.

simple
 ordinal
 integer

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

553

3

 character
 Boolean
 enumerated
 subrange
 real
 string
 structured
 set
 array
 record
 file
 class
 class reference
 interface
 pointer
 procedural
 Variant
 type identifier

The standard function SizeOf operates on all variables and type identifiers. It returns an integer representing the amount of
memory (in bytes) required to store data of the specified type. For example, SizeOf(Longint) returns 4, since a Longint
variable uses four bytes of memory.

Type declarations are illustrated in the topics that follow. For general information about type declarations, see Declaring types (
see page 586).

See Also

Simple Types (see page 554)

String Types (see page 561)

Structured Types (see page 566)

Pointers and Pointer Types (see page 575)

Procedural Types (see page 578)

Variant Types (see page 580)

Type Compatibility and Identity (see page 583)

Declaring Types (see page 586)

Variables (see page 587)

Declared Constants (see page 589)

3.1.3.2.2 Simple Types
Simple types - which include ordinal types and real types - define ordered sets of values.

The ordinal types covered in this topic are:

• Integer types

• Character types

• Boolean types

• Enumerated types

• Real (floating point) types

Ordinal Types

Ordinal types include integer, character, Boolean, enumerated, and subrange types. An ordinal type defines an ordered set of

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

554

3

values in which each value except the first has a unique predecessor and each value except the last has a unique successor.
Further, each value has an ordinality which determines the ordering of the type. In most cases, if a value has ordinality n, its
predecessor has ordinality n-1 and its successor has ordinality n+1.

• For integer types, the ordinality of a value is the value itself.

• Subrange types maintain the ordinalities of their base types.

• For other ordinal types, by default the first value has ordinality 0, the next value has ordinality 1, and so forth. The declaration
of an enumerated type can explicitly override this default.

Several predefined functions operate on ordinal values and type identifiers. The most important of them are summarized below.

Function Parameter Return value Remarks

Ord ordinal expression ordinality of expression's value Does not take Int64 arguments.

Pred ordinal expression predecessor of expression's value

Succ ordinal expression successor of expression's value

High ordinal type identifier or variable of
ordinal type

highest value in type Also operates on short-string
types and arrays.

Low ordinal type identifier or variable of
ordinal type

lowest value in type Also operates on short-string
types and arrays.

For example, High(Byte) returns 255 because the highest value of type Byte is 255, and Succ(2) returns 3 because 3 is the
successor of 2.

The standard procedures Inc and Dec increment and decrement the value of an ordinal variable. For example, Inc(I) is
equivalent to I := Succ(I) and, if I is an integer variable, to I := I + 1.

Integer Types

An integer type represents a subset of the whole numbers. The generic integer types are Integer and Cardinal; use these
whenever possible, since they result in the best performance for the underlying CPU and operating system. The table below
gives their ranges and storage formats for the Delphi compiler.

Generic integer types

Type Range Format .NET Type
Mapping

Integer -2147483648..2147483647 signed 32-bit Int32

Cardinal 0..4294967295 unsigned 32-bit UInt32

Fundamental integer types include Shortint, Smallint, Longint, Int64, Byte, Word, Longword, and UInt64.

Fundamental integer types

Type Range Format .NET Type
Mapping

Shortint -128..127 signed 8-bit SByte

Smallint -32768..32767 signed 16-bit Int16

Longint -2147483648..2147483647 signed 32-bit Int32

Int64 -2^63..2^63-1 signed 64-bit Int64

Byte 0..255 unsigned 8-bit Byte

Word 0..65535 unsigned 16-bit UInt16

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

555

3

Longword 0..4294967295 unsigned 32-bit UInt32

UInt64 0..2^64–1 unsigned 64-bit UInt64

In general, arithmetic operations on integers return a value of type Integer, which is equivalent to the 32-bit Longint. Operations
return a value of type Int64 only when performed on one or more Int64 operand. Hence the following code produces incorrect
results.

var
 I: Integer;
 J: Int64;
 ...

 I := High(Integer);
 J := I + 1;

To get an Int64 return value in this situation, cast I as Int64:

...
J := Int64(I) + 1;

For more information, see Arithmetic operators (see page 720).

Note: Some standard routines that take integer arguments truncate Int64

values to 32 bits. However, the High, Low, Succ, Pred, Inc, Dec, IntToStr, and IntToHex routines fully support Int64
arguments. Also, the Round, Trunc, StrToInt64, and StrToInt64Def functions return Int64 values. A few routines cannot
take Int64 values at all. When you increment the last value or decrement the first value of an integer type, the result wraps
around the beginning or end of the range. For example, the Shortint type has the range 128..127; hence, after execution of the
code

var I: Shortint;
 ...
 I := High(Shortint);
 I := I + 1;

the value of I is 128. If compiler range-checking is enabled, however, this code generates a runtime error.

Character Types

The fundamental character types are AnsiChar and WideChar. AnsiChar values are byte-sized (8-bit) characters ordered
according to the locale character set which is possibly multibyte. AnsiChar was originally modeled after the ANSI character set
(thus its name) but has now been broadened to refer to the current locale character set.

WideChar characters use more than one byte to represent every character. In the current implementations, WideChar is
word-sized (16-bit) characters ordered according to the Unicode character set (note that it could be longer in future
implementations). The first 256 Unicode characters correspond to the ANSI characters.

The generic character type is Char, which is equivalent to AnsiChar on Win32, and to Char on the .NET platform. Because the
implementation of Char is subject to change, it's a good idea to use the standard function SizeOf rather than a hard-coded
constant when writing programs that may need to handle characters of different sizes.

Note: The WideChar

type also maps to Char on the .NET platform. A string constant of length 1, such as 'A', can denote a character value. The
predefined function Chr returns the character value for any integer in the range of AnsiChar or WideChar; for example,
Chr(65) returns the letter A.

Character values, like integers, wrap around when decremented or incremented past the beginning or end of their range (unless
range-checking is enabled). For example, after execution of the code

var

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

556

3

 Letter: Char;
 I: Integer;
begin
 Letter := High(Letter);
 for I := 1 to 66 do
 Inc(Letter);
end;

Letter has the value A (ASCII 65).

Boolean Types

The four predefined Boolean types are Boolean, ByteBool, WordBool, and LongBool. Boolean is the preferred type. The
others exist to provide compatibility with other languages and operating system libraries.

A Boolean variable occupies one byte of memory, a ByteBool variable also occupies one byte, a WordBool variable occupies
two bytes (one word), and a LongBool variable occupies four bytes (two words).

Boolean values are denoted by the predefined constants True and False. The following relationships hold.

Boolean ByteBool, WordBool, LongBool

False < True False <> True

Ord(False) = 0 Ord(False) = 0

Ord(True) = 1 Ord(True) <> 0

Succ(False) = True Succ(False) = True

Pred(True) = False Pred(False) = True

A value of type ByteBool, LongBool, or WordBool is considered True when its ordinality is nonzero. If such a value appears in
a context where a Boolean is expected, the compiler automatically converts any value of nonzero ordinality to True.

The previous remarks refer to the ordinality of Boolean values, not to the values themselves. In Delphi, Boolean expressions
cannot be equated with integers or reals. Hence, if X is an integer variable, the statement

if X then ...;

generates a compilation error. Casting the variable to a Boolean type is unreliable, but each of the following alternatives will
work.

if X <> 0 then ...; { use longer expression that returns Boolean value }

var OK: Boolean;
 ...
if X <> 0 then OK := True;
if OK then ...;

Enumerated Types

An enumerated type defines an ordered set of values by simply listing identifiers that denote these values. The values have no
inherent meaning. To declare an enumerated type, use the syntax

typetypeName= (val1, ...,valn)

where typeName and each val are valid identifiers. For example, the declaration

type Suit = (Club, Diamond, Heart, Spade);

defines an enumerated type called Suit whose possible values are Club, Diamond, Heart, and Spade, where Ord(Club)
returns 0, Ord(Diamond) returns 1, and so forth.

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

557

3

When you declare an enumerated type, you are declaring each val to be a constant of type typeName. If the val identifiers are
used for another purpose within the same scope, naming conflicts occur. For example, suppose you declare the type

type TSound = (Click, Clack, Clock)

Unfortunately, Click is also the name of a method defined for TControl and all of the objects in VCL that descend from it. So if
you're writing an application and you create an event handler like

procedure TForm1.DBGridEnter(Sender: TObject);
var Thing: TSound;
begin
 ...
 Thing := Click;
end;

you'll get a compilation error; the compiler interprets Click within the scope of the procedure as a reference to TForm's Click
method. You can work around this by qualifying the identifier; thus, if TSound is declared in MyUnit, you would use

Thing := MyUnit.Click;

A better solution, however, is to choose constant names that are not likely to conflict with other identifiers. Examples:

type
 TSound = (tsClick, tsClack, tsClock);
 TMyColor = (mcRed, mcBlue, mcGreen, mcYellow, mcOrange);
 Answer = (ansYes, ansNo, ansMaybe)

You can use the (val1, ..., valn) construction directly in variable declarations, as if it were a type name:

var MyCard: (Club, Diamond, Heart, Spade);

But if you declare MyCard this way, you can't declare another variable within the same scope using these constant identifiers.
Thus

var Card1: (Club, Diamond, Heart, Spade);
var Card2: (Club, Diamond, Heart, Spade);

generates a compilation error. But

var Card1, Card2: (Club, Diamond, Heart, Spade);

compiles cleanly, as does

type Suit = (Club, Diamond, Heart, Spade);
var
 Card1: Suit;
 Card2: Suit;

Enumerated Types with Explicitly Assigned Ordinality

By default, the ordinalities of enumerated values start from 0 and follow the sequence in which their identifiers are listed in the
type declaration. You can override this by explicitly assigning ordinalities to some or all of the values in the declaration. To assign
an ordinality to a value, follow its identifier with = constantExpression, where constantExpression is a constant expression (see
page 589) that evaluates to an integer. For example,

type Size = (Small = 5, Medium = 10, Large = Small + Medium);

defines a type called Size whose possible values include Small, Medium, and Large, where Ord(Small) returns 5,
Ord(Medium) returns 10, and Ord(Large) returns 15.

An enumerated type is, in effect, a subrange whose lowest and highest values correspond to the lowest and highest ordinalities
of the constants in the declaration. In the previous example, the Size type has 11 possible values whose ordinalities range from
5 to 15. (Hence the type array[Size] of Char represents an array of 11 characters.) Only three of these values have
names, but the others are accessible through typecasts and through routines such as Pred, Succ, Inc, and Dec. In the
following example, "anonymous" values in the range of Size are assigned to the variable X.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

558

3

var X: Size;

 X := Small; // Ord(X) = 5
 Y := Size(6); // Ord(X) = 6
 Inc(X); // Ord(X) = 7

Any value that isn't explicitly assigned an ordinality has ordinality one greater than that of the previous value in the list. If the first
value isn't assigned an ordinality, its ordinality is 0. Hence, given the declaration

type SomeEnum = (e1, e2, e3 = 1);

SomeEnum has only two possible values: Ord(e1) returns 0, Ord(e2) returns 1, and Ord(e3) also returns 1; because e2 and
e3 have the same ordinality, they represent the same value.

Enumerated constants without a specific value have RTTI:

type SomeEnum = (e1, e2, e3);

whereas enumerated constants with a specific value, such as the following, do not have RTTI:

type SomeEnum = (e1 = 1, e2 = 2, e3 = 3);

Subrange Types

A subrange type represents a subset of the values in another ordinal type (called the base type). Any construction of the form
Low..High, where Low and High are constant expressions of the same ordinal type and Low is less than High, identifies a
subrange type that includes all values between Low and High. For example, if you declare the enumerated type

type TColors = (Red, Blue, Green, Yellow, Orange, Purple, White, Black);

you can then define a subrange type like

type TMyColors = Green..White;

Here TMyColors includes the values Green,Yellow, Orange, Purple, and White.

You can use numeric constants and characters (string constants of length 1) to define subrange types:

type
 SomeNumbers = -128..127;
 Caps = 'A'..'Z';

When you use numeric or character constants to define a subrange, the base type is the smallest integer or character type that
contains the specified range.

The LowerBound..UpperBound construction itself functions as a type name, so you can use it directly in variable declarations.
For example,

var SomeNum: 1..500;

declares an integer variable whose value can be anywhere in the range from 1 to 500.

The ordinality of each value in a subrange is preserved from the base type. (In the first example, if Color is a variable that holds
the value Green, Ord(Color) returns 2 regardless of whether Color is of type TColors or TMyColors.) Values do not wrap
around the beginning or end of a subrange, even if the base is an integer or character type; incrementing or decrementing past
the boundary of a subrange simply converts the value to the base type. Hence, while

type Percentile = 0..99;
var I: Percentile;
 ...
 I := 100;

produces an error,

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

559

3

...
 I := 99;
 Inc(I);

assigns the value 100 to I (unless compiler range-checking is enabled).

The use of constant expressions in subrange definitions introduces a syntactic difficulty. In any type declaration, when the first
meaningful character after = is a left parenthesis, the compiler assumes that an enumerated type is being defined. Hence the
code

const
 X = 50;
 Y = 10;

type
 Scale = (X - Y) * 2..(X + Y) * 2;

produces an error. Work around this problem by rewriting the type declaration to avoid the leading parenthesis:

type
 Scale = 2 * (X - Y)..(X + Y) * 2;

Real Types

A real type defines a set of numbers that can be represented with floating-point notation. The table below gives the ranges and
storage formats for the fundamental real types on the Win32 platform.

Fundamental Win32 real types

Type Range Significant
digits

Size
in
bytes

Real48 -2.9 x 10^–39 .. 1.7 x 10^38 11-12 6

Single -1.5 x 10^–45 .. 3.4 x 10^38 7-8 4

Double -5.0 x 10^–324 .. 1.7 x 10^308 15-16 8

Extended -3.6 x 10^–4951 .. 1.1 x 10^4932 10-20 10

Comp -2^63+1 .. 2^63–1 10-20 8

Currency -922337203685477.5808..
922337203685477.5807

10-20 8

The following table shows how the fundamental real types map to .NET framework types.

Fundamental .NET real type mappings

Type .NET Mapping

Real48 Deprecated

Single Single

Double Double

Extended Double

Comp Deprecated

Currency Re-implemented as a value type using the
Decimal type from the .NET Framework

The generic type Real, in its current implementation, is equivalent to Double (which maps to Double on .NET).

Generic real types

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

560

3

Type Range Significant digits Size in bytes

Real -5.0 x 10^–324 .. 1.7 x 10^308 15–16 8

Note: The six-byte Real48

type was called Real in earlier versions of Object Pascal. If you are recompiling code that uses the older, six-byte Real type in
Delphi, you may want to change it to Real48. You can also use the {$REALCOMPATIBILITY ON} compiler directive to turn
Real back into the six-byte type. The following remarks apply to fundamental real types.

• Real48 is maintained for backward compatibility. Since its storage format is not native to the Intel processor architecture, it
results in slower performance than other floating-point types. The Real48 type has been deprecated on the .NET platform.

• Extended offers greater precision than other real types but is less portable. Be careful using Extended if you are creating
data files to share across platforms.

• The Comp (computational) type is native to the Intel processor architecture and represents a 64-bit integer. It is classified as
a real, however, because it does not behave like an ordinal type. (For example, you cannot increment or decrement a Comp
value.) Comp is maintained for backward compatibility only. Use the Int64 type for better performance.

• Currency is a fixed-point data type that minimizes rounding errors in monetary calculations. On the Win32 platform, it is
stored as a scaled 64-bit integer with the four least significant digits implicitly representing decimal places. When mixed with
other real types in assignments and expressions, Currency values are automatically divided or multiplied by 10000.

See Also

Data Types (see page 553)

String Types (see page 561)

Structured Types (see page 566)

Pointers and Pointer Types (see page 575)

Procedural Types (see page 578)

Variant Types (see page 580)

Type Compatibility and Identity (see page 583)

Declaring Types (see page 586)

Variables (see page 587)

Declared Constants (see page 589)

3.1.3.2.3 String Types
This topic describes the string data types available in the Delphi language. The following types are covered:

• Short strings.

• Long strings.

• Wide (Unicode) strings.

About String Types

A string represents a sequence of characters. Delphi supports the following predefined string types.

String types

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

561

3

Type Maximum length Memory
required

Used for

ShortString 255 characters 2 to 256 bytes backward compatibility

AnsiString ~2^31 characters 4 bytes to 2GB 8-bit (ANSI) characters, DBCS ANSI, MBCS
ANSI, etc.

WideString ~2^30 characters 4 bytes to 2GB Unicode characters; multi-user servers and
multi-language applications

On the Win32 platform, AnsiString, sometimes called the long string, is the preferred type for most purposes. WideString is the
preferred string type on the .NET platform.

String types can be mixed in assignments and expressions; the compiler automatically performs required conversions. But
strings passed by reference to a function or procedure (as var and out parameters) must be of the appropriate type. Strings can
be explicitly cast to a different string type.

The reserved word string functions like a generic type identifier. For example,

var S: string;

creates a variable S that holds a string. On the Win32 platform, the compiler interprets string (when it appears without a
bracketed number after it) as AnsiString. On the .NET platform, the string type maps to the String class. You can use single
byte character strings on the .NET platform, but you must explicitly declare them to be of type AnsiString.

On the Win32 platform, you can use the {$H-} directive to turn string into ShortString. The {$H-} directive is deprecated on
the .NET platform.

The standard function Length returns the number of characters in a string. The SetLength procedure adjusts the length of a
string.

Comparison of strings is defined by the ordering of the characters in corresponding positions. Between strings of unequal length,
each character in the longer string without a corresponding character in the shorter string takes on a greater-than value. For
example, 'AB' is greater than 'A'; that is, 'AB' > 'A' returns True. Zero-length strings hold the lowest values.

You can index a string variable just as you would an array. If S is a string variable and i an integer expression, S[i] represents
the ith character - or, strictly speaking, the ith byte in S. For a ShortString or AnsiString, S[i] is of type AnsiChar; for a
WideString, S[i] is of type WideChar. For single-byte (Western) locales, MyString[2] := 'A'; assigns the value A to the
second character of MyString. The following code uses the standard AnsiUpperCase function to convert MyString to
uppercase.

var I: Integer;
begin
 I := Length(MyString);
 while I > 0 do
 begin
 MyString[I] := AnsiUpperCase(MyString[I]);
 I := I - 1;
 end;
end;

Be careful indexing strings in this way, since overwriting the end of a string can cause access violations. Also, avoid passing
long-string indexes as var parameters, because this results in inefficient code.

You can assign the value of a string constant - or any other expression that returns a string - to a variable. The length of the
string changes dynamically when the assignment is made. Examples:

MyString := 'Hello world!';
MyString := 'Hello' + 'world';
MyString := MyString + '!';
MyString := ' '; { space }

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

562

3

MyString := ''; { empty string }

Short Strings

A ShortString is 0 to 255 characters long. While the length of a ShortString can change dynamically, its memory is a statically
allocated 256 bytes; the first byte stores the length of the string, and the remaining 255 bytes are available for characters. If S is
a ShortString variable, Ord(S[0]), like Length(S), returns the length of S; assigning a value to S[0], like calling
SetLength, changes the length of S. ShortString is maintained for backward compatibility only.

The Delphi language supports short-string types - in effect, subtypes of ShortString - whose maximum length is anywhere from
0 to 255 characters. These are denoted by a bracketed numeral appended to the reserved word string. For example,

var MyString: string[100];

creates a variable called MyString whose maximum length is 100 characters. This is equivalent to the declarations

type CString = string[100];
var MyString: CString;

Variables declared in this way allocate only as much memory as the type requires - that is, the specified maximum length plus
one byte. In our example, MyString uses 101 bytes, as compared to 256 bytes for a variable of the predefined ShortString
type.

When you assign a value to a short-string variable, the string is truncated if it exceeds the maximum length for the type.

The standard functions High and Low operate on short-string type identifiers and variables. High returns the maximum length of
the short-string type, while Low returns zero.

Long Strings

AnsiString, also called a long string, represents a dynamically allocated string whose maximum length is limited only by
available memory.

A long-string variable is a pointer occupying four bytes of memory. When the variable is empty - that is, when it contains a
zero-length stringthe pointer is nil and the string uses no additional storage. When the variable is nonempty, it points a
dynamically allocated block of memory that contains the string value. The eight bytes before the location contain a 32-bit length
indicator and a 32-bit reference count. This memory is allocated on the heap, but its management is entirely automatic and
requires no user code.

Because long-string variables are pointers, two or more of them can reference the same value without consuming additional
memory. The compiler exploits this to conserve resources and execute assignments faster. Whenever a long-string variable is
destroyed or assigned a new value, the reference count of the old string (the variable's previous value) is decremented and the
reference count of the new value (if there is one) is incremented; if the reference count of a string reaches zero, its memory is
deallocated. This process is called reference-counting. When indexing is used to change the value of a single character in a
string, a copy of the string is made if - but only if - its reference count is greater than one. This is called copy-on-write semantics.

WideString

The WideString type represents a dynamically allocated string of 16-bit Unicode characters. In most respects it is similar to
AnsiString. On Win32, WideString is compatible with the COM BSTR type.

Note: Under Win32, WideString values are not reference-counted.

The Win32 platform supports single-byte and multibyte character sets as well as Unicode. With a single-byte character set
(SBCS), each byte in a string represents one character.

In a multibyte character set (MBCS), some characters are represented by one byte and others by more than one byte. The first
byte of a multibyte character is called the lead byte. In general, the lower 128 characters of a multibyte character set map to the
7-bit ASCII characters, and any byte whose ordinal value is greater than 127 is the lead byte of a multibyte character. The null
value (#0) is always a single-byte character. Multibyte character sets - especially double-byte character sets (DBCS) - are widely
used for Asian languages.

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

563

3

In the Unicode character set, each character is represented by two bytes. Thus a Unicode string is a sequence not of individual
bytes but of two-byte words. Unicode characters and strings are also called wide characters and wide character strings. The first
256 Unicode characters map to the ANSI character set. The Windows operating system supports Unicode (UCS-2).

The Delphi language supports single-byte and multibyte characters and strings through the Char, PChar, AnsiChar,
PAnsiChar, and AnsiString types. Indexing of multibyte strings is not reliable, since S[i] represents the ith byte (not
necessarily the ith character) in S. However, the standard string-handling functions have multibyte-enabled counterparts that also
implement locale-specific ordering for characters. (Names of multibyte functions usually start with Ansi-. For example, the
multibyte version of StrPos is AnsiStrPos.) Multibyte character support is operating-system dependent and based on the
current locale.

Delphi supports Unicode characters and strings through the WideChar, PWideChar, and WideString types.

Working with null-Terminated Strings

Many programming languages, including C and C++, lack a dedicated string data type. These languages, and environments that
are built with them, rely on null-terminated strings. A null-terminated string is a zero-based array of characters that ends with
NUL (#0); since the array has no length indicator, the first NUL character marks the end of the string. You can use Delphi
constructions and special routines in the SysUtils unit (see Standard routines and I/O (see page 692)) to handle
null-terminated strings when you need to share data with systems that use them.

For example, the following type declarations could be used to store null-terminated strings.

type
 TIdentifier = array[0..15] of Char;
 TFileName = array[0..259] of Char;
 TMemoText = array[0..1023] of WideChar;

With extended syntax enabled ({$X+}), you can assign a string constant to a statically allocated zero-based character array.
(Dynamic arrays won't work for this purpose.) If you initialize an array constant with a string that is shorter than the declared
length of the array, the remaining characters are set to #0.

Using Pointers, Arrays, and String Constants

To manipulate null-terminated strings, it is often necessary to use pointers. (See Pointers and pointer types (see page 575).)
String constants are assignment-compatible with the PChar and PWideChar types, which represent pointers to null-terminated
arrays of Char and WideChar values. For example,

var P: PChar;
 ...
P := 'Hello world!'

points P to an area of memory that contains a null-terminated copy of 'Hello world!' This is equivalent to

const TempString: array[0..12] of Char = 'Hello world!';
var P: PChar;
 ...
P := @TempString[0];

You can also pass string constants to any function that takes value or const parameters of type PChar or PWideChar - for
example StrUpper('Hello world!'). As with assignments to a PChar, the compiler generates a null-terminated copy of the
string and gives the function a pointer to that copy. Finally, you can initialize PChar or PWideChar constants with string literals,
alone or in a structured type. Examples:

const
 Message: PChar = 'Program terminated';
 Prompt: PChar = 'Enter values: ';
 Digits: array[0..9] of PChar = ('Zero', 'One', 'Two', 'Three', 'Four', 'Five', 'Six',
'Seven', 'Eight', 'Nine');

Zero-based character arrays are compatible with PChar and PWideChar. When you use a character array in place of a pointer
value, the compiler converts the array to a pointer constant whose value corresponds to the address of the first element of the

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

564

3

array. For example,

var
 MyArray: array[0..32] of Char;
 MyPointer: PChar;
begin
 MyArray := 'Hello';
 MyPointer := MyArray;
 SomeProcedure(MyArray);
 SomeProcedure(MyPointer);
end;

This code calls SomeProcedure twice with the same value.

A character pointer can be indexed as if it were an array. In the previous example, MyPointer[0] returns H. The index
specifies an offset added to the pointer before it is dereferenced. (For PWideChar variables, the index is automatically multiplied
by two.) Thus, if P is a character pointer, P[0] is equivalent to P^ and specifies the first character in the array, P[1] specifies
the second character in the array, and so forth; P[-1] specifies the 'character' immediately to the left of P[0]. The compiler
performs no range checking on these indexes.

The StrUpper function illustrates the use of pointer indexing to iterate through a null-terminated string:

function StrUpper(Dest, Source: PChar; MaxLen: Integer): PChar;
var
 I: Integer;
begin
 I := 0;
 while (I < MaxLen) and (Source[I] <> #0) do
 begin
 Dest[I] := UpCase(Source[I]);
 Inc(I);
 end;
 Dest[I] := #0;
 Result := Dest;
end;

Mixing Delphi Strings and Null-Terminated Strings

You can mix long strings (AnsiString values) and null-terminated strings (PChar values) in expressions and assignments, and
you can pass PChar values to functions or procedures that take long-string parameters. The assignment S := P, where S is a
string variable and P is a PChar expression, copies a null-terminated string into a long string.

In a binary operation, if one operand is a long string and the other a PChar, the PChar operand is converted to a long string.

You can cast a PChar value as a long string. This is useful when you want to perform a string operation on two PChar values.
For example,

S := string(P1) + string(P2);

You can also cast a long string as a null-terminated string. The following rules apply.

• If S is a long-string expression, PChar(S) casts S as a null-terminated string; it returns a pointer to the first character in S. For
example, if Str1 and Str2 are long strings, you could call the Win32 API MessageBox function like this: MessageBox(0,
PChar(Str1), PChar(Str2), MB_OK);

• You can also use Pointer(S) to cast a long string to an untyped pointer. But if S is empty, the typecast returns nil.

• PChar(S) always returns a pointer to a memory block; if S is empty, a pointer to #0 is returned.

• When you cast a long-string variable to a pointer, the pointer remains valid until the variable is assigned a new value or goes
out of scope. If you cast any other long-string expression to a pointer, the pointer is valid only within the statement where the
typecast is performed.

• When you cast a long-string expression to a pointer, the pointer should usually be considered read-only. You can safely use

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

565

3

the pointer to modify the long string only when all of the following conditions are satisfied.

• The expression cast is a long-string variable.

• The string is not empty.

• The string is unique - that is, has a reference count of one. To guarantee that the string is unique, call the SetLength,
SetString, or UniqueString procedure.

• The string has not been modified since the typecast was made.

• The characters modified are all within the string. Be careful not to use an out-of-range index on the pointer.

The same rules apply when mixing WideString values with PWideChar values.

See Also

Data Types (see page 553)

Simple Types (see page 554)

Structured Types (see page 566)

Pointers and Pointer Types (see page 575)

Procedural Types (see page 578)

Variant Types (see page 580)

Type Compatibility and Identity (see page 583)

Declaring Types (see page 586)

Variables (see page 587)

Declared Constants (see page 589)

3.1.3.2.4 Structured Types
Instances of a structured type hold more than one value. Structured types include sets, arrays, records, and files as well as
class, class-reference, and interface types. Except for sets, which hold ordinal values only, structured types can contain other
structured types; a type can have unlimited levels of structuring.

Note: Typed and untyped file types are not supported with the .NET framework.

By default, the values in a structured type are aligned on word or double-word boundaries for faster access. When you declare a
structured type, you can include the reserved word packed to implement compressed data storage. For example, type
TNumbers = packed array [1..100] of Real;

Using packed slows data access and, in the case of a character array, affects type compatibility (for more information, see
Memory management (see page 644)).

This topic covers the following structured types:

• Sets

• Arrays, including static and dynamic arrays.

• Records

• File types

Sets

A set is a collection of values of the same ordinal type. The values have no inherent order, nor is it meaningful for a value to be
included twice in a set.

The range of a set type is the power set of a specific ordinal type, called the base type; that is, the possible values of the set type

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

566

3

are all the subsets of the base type, including the empty set. The base type can have no more than 256 possible values, and
their ordinalities must fall between 0 and 255. Any construction of the form

set ofbaseType

where baseType is an appropriate ordinal type, identifies a set type.

Because of the size limitations for base types, set types are usually defined with subranges. For example, the declarations

type
 TSomeInts = 1..250;
 TIntSet = set of TSomeInts;

create a set type called TIntSet whose values are collections of integers in the range from 1 to 250. You could accomplish the
same thing with

type TIntSet = set of 1..250;

Given this declaration, you can create a sets like this:

var Set1, Set2: TIntSet;
 ...
 Set1 := [1, 3, 5, 7, 9];
 Set2 := [2, 4, 6, 8, 10]

You can also use the set of ... construction directly in variable declarations:

var MySet: set of 'a'..'z';
 ...
 MySet := ['a','b','c'];

Other examples of set types include

set of Byte
set of (Club, Diamond, Heart, Spade)
set of Char;

The in operator tests set membership:

if 'a' in MySet then ... { do something } ;

Every set type can hold the empty set, denoted by [].

Arrays

An array represents an indexed collection of elements of the same type (called the base type). Because each element has a
unique index, arrays, unlike sets, can meaningfully contain the same value more than once. Arrays can be allocated statically or
dynamically.

Static Arrays

Static array types are denoted by constructions of the form

array[indexType1, ..., indexTypen] of baseType;

where each indexType is an ordinal type whose range does not exceed 2GB. Since the indexTypes index the array, the number
of elements an array can hold is limited by the product of the sizes of the indexTypes. In practice, indexTypes are usually integer
subranges.

In the simplest case of a one-dimensional array, there is only a single indexType. For example,

var MyArray: array [1..100] of Char;

declares a variable called MyArray that holds an array of 100 character values. Given this declaration, MyArray[3] denotes
the third character in MyArray. If you create a static array but don't assign values to all its elements, the unused elements are
still allocated and contain random data; they are like uninitialized variables.

A multidimensional array is an array of arrays. For example,

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

567

3

type TMatrix = array[1..10] of array[1..50] of Real;

is equivalent to

type TMatrix = array[1..10, 1..50] of Real;

Whichever way TMatrix is declared, it represents an array of 500 real values. A variable MyMatrix of type TMatrix can be
indexed like this: MyMatrix[2,45]; or like this: MyMatrix[2][45]. Similarly,

packed array[Boolean, 1..10, TShoeSize] of Integer;

is equivalent to

packed array[Boolean] of packed array[1..10] of packed array[TShoeSize] of Integer;

The standard functions Low and High operate on array type identifiers and variables. They return the low and high bounds of the
array's first index type. The standard function Length returns the number of elements in the array's first dimension.

A one-dimensional, packed, static array of Char values is called a packed string. Packed-string types are compatible with string
types and with other packed-string types that have the same number of elements. See Type compatibility and identity (see
page 583).

An array type of the form array[0..x] of Char is called a zero-based character array. Zero-based character arrays are
used to store null-terminated strings and are compatible with PChar values. See Working with null-terminated strings (see
page 561).

Dynamic Arrays

Dynamic arrays do not have a fixed size or length. Instead, memory for a dynamic array is reallocated when you assign a value
to the array or pass it to the SetLength procedure. Dynamic-array types are denoted by constructions of the form

array of baseType

For example,

var MyFlexibleArray: array of Real;

declares a one-dimensional dynamic array of reals. The declaration does not allocate memory for MyFlexibleArray. To
create the array in memory, call SetLength. For example, given the previous declaration,

SetLength(MyFlexibleArray, 20);

allocates an array of 20 reals, indexed 0 to 19. Dynamic arrays are always integer-indexed, always starting from 0.

Dynamic-array variables are implicitly pointers and are managed by the same reference-counting technique used for long
strings. To deallocate a dynamic array, assign nil to a variable that references the array or pass the variable to Finalize; either
of these methods disposes of the array, provided there are no other references to it. Dynamic arrays are automatically released
when their reference-count drops to zero. Dynamic arrays of length 0 have the value nil. Do not apply the dereference operator
(^) to a dynamic-array variable or pass it to the New or Dispose procedure.

If X and Y are variables of the same dynamic-array type, X := Y points X to the same array as Y. (There is no need to allocate
memory for X before performing this operation.) Unlike strings and static arrays, copy-on-write is not employed for dynamic
arrays, so they are not automatically copied before they are written to. For example, after this code executes,

var
 A, B: array of Integer;
 begin
 SetLength(A, 1);
 A[0] := 1;
 B := A;
 B[0] := 2;
 end;

the value of A[0] is 2. (If A and B were static arrays, A[0] would still be 1.)

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

568

3

Assigning to a dynamic-array index (for example, MyFlexibleArray[2] := 7) does not reallocate the array. Out-of-range
indexes are not reported at compile time.

In contrast, to make an independent copy of a dynamic array, you must use the global Copy function:

var
 A, B: array of Integer;
 begin
 SetLength(A, 1);
 A[0] := 1;
 B := Copy(A);
 B[0] := 2; { B[0] <> A[0] }
 end;

When dynamic-array variables are compared, their references are compared, not their array values. Thus, after execution of the
code

var
 A, B: array of Integer;
 begin
 SetLength(A, 1);
 SetLength(B, 1);
 A[0] := 2;
 B[0] := 2;
 end;

A = B returns False but A[0] = B[0] returns True.

To truncate a dynamic array, pass it to SetLength, or pass it to Copy and assign the result back to the array variable. (The
SetLength procedure is usually faster.) For example, if A is a dynamic array, A := SetLength(A, 0, 20) truncates all but
the first 20 elements of A.

Once a dynamic array has been allocated, you can pass it to the standard functions Length, High, and Low. Length returns
the number of elements in the array, High returns the array's highest index (that is, Length - 1), and Low returns 0. In the
case of a zero-length array, High returns 1 (with the anomalous consequence that High < Low).

Note: In some function and procedure declarations, array parameters are represented as array of baseType, without any
index types specified. For example,function CheckStrings(A: array of string): Boolean;

This indicates that the function operates on all arrays of the specified base type, regardless of their size, how they are indexed,
or whether they are allocated statically or dynamically.

Multidimensional Dynamic Arrays

To declare multidimensional dynamic arrays, use iterated array of ... constructions. For example,

type TMessageGrid = array of array of string;
var Msgs: TMessageGrid;

declares a two-dimensional array of strings. To instantiate this array, call SetLength with two integer arguments. For example,
if I and J are integer-valued variables,

SetLength(Msgs,I,J);

allocates an I-by-J array, and Msgs[0,0] denotes an element of that array.

You can create multidimensional dynamic arrays that are not rectangular. The first step is to call SetLength, passing it
parameters for the first n dimensions of the array. For example,

var Ints: array of array of Integer;
SetLength(Ints,10);

allocates ten rows for Ints but no columns. Later, you can allocate the columns one at a time (giving them different lengths); for
example

SetLength(Ints[2], 5);

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

569

3

makes the third column of Ints five integers long. At this point (even if the other columns haven't been allocated) you can
assign values to the third column - for example, Ints[2,4] := 6.

The following example uses dynamic arrays (and the IntToStr function declared in the SysUtils unit) to create a triangular
matrix of strings.

var
 A : array of array of string;
 I, J : Integer;
 begin
 SetLength(A, 10);
 for I := Low(A) to High(A) do
 begin
 SetLength(A[I], I);
 for J := Low(A[I]) to High(A[I]) do
 A[I,J] := IntToStr(I) + ',' + IntToStr(J) + ' ';
 end;
 end;

Array Types and Assignments

Arrays are assignment-compatible only if they are of the same type. Because the Delphi language uses name-equivalence for
types, the following code will not compile.

var
 Int1: array[1..10] of Integer;
 Int2: array[1..10] of Integer;
 ...
 Int1 := Int2;

To make the assignment work, declare the variables as

var Int1, Int2: array[1..10] of Integer;

or

type IntArray = array[1..10] of Integer;
var
 Int1: IntArray;
 Int2: IntArray;

Dynamically Allocated Multidimensional Arrays (.NET)

On the .NET platform, multidimensional arrays can be dynamically allocated using the New standard function. Using the New
syntax to allocate an array, the array declaration specifies the number of dimensions, but not their actual size. You then pass the
element type, the actual array dimensions, or an array initializer list to the New function. The array declaration has the following
syntax:

array[, ...,] of baseType;

In the syntax, the number of dimensions are specified by using a comma as a placeholder. The actual size is not determined
until runtime when you call the New function. There are two forms of the New function: One takes the element type and the size
of the array, and the other takes the element type and an array initializer list. The following code demonstrates both forms:

var
 a: array [,,] of integer; // 3 dimensional array
 b: array [,] of integer; // 2 dimensional array
 c: array [,] of TPoint; // 2 dimensional array of TPoint

begin
 a := New(array[3,5,7] of integer); // New taking element type and size of
each dimension.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

570

3

 b := New(array[,] of integer, ((1,2,3), (4,5,6))); // New taking the element type and
initializer list.
 // New taking an initializer list of
TPoint.
 c := New(array[,] of TPoint, (((X:1;Y:2), (X:3;Y:4)), ((X:5;Y:6), (X:7;Y:8))));
end.

You can allocate the array by passing variable or constant expressions to the New function:

var
 a: array[,] of integer;
 r,c: Integer;

begin
 r := 4;
 c := 17;

 a := New(array [r,c] of integer);

You can also use the SetLength procedure to allocate the array by passing the array expression and the size of each dimension:

var
 a: array[,] of integer;
 b: array[,,] of integer;

begin
 SetLength(a, 4,5);
 SetLength(b, 3,5,7);
end.

The Copy function can be used to make a copy of an entire array. You cannot use Copy to duplicate a portion of an array.

You cannot pass a dynamically allocated rectangular array to the Low or High functions. This will generate a compile-time error.

Records (traditional)

A record (analogous to a structure in some languages) represents a heterogeneous set of elements. Each element is called a
field; the declaration of a record type specifies a name and type for each field. The syntax of a record type declaration is

type recordTypeName = record
 fieldList1: type1;
 ...
 fieldListn: typen;
 end

where recordTypeName is a valid identifier, each type denotes a type, and each fieldList is a valid identifier or a
comma-delimited list of identifiers. The final semicolon is optional.

For example, the following declaration creates a record type called TDateRec.

type
 TDateRec = record
 Year: Integer;
 Month: (Jan, Feb, Mar, Apr, May, Jun,
 Jul, Aug, Sep, Oct, Nov, Dec);
 Day: 1..31;
 end;

Each TDateRec contains three fields: an integer value called Year, a value of an enumerated type called Month, and another
integer between 1 and 31 called Day. The identifiers Year, Month, and Day are the field designators for TDateRec, and they
behave like variables. The TDateRec type declaration, however, does not allocate any memory for the Year, Month, and Day
fields; memory is allocated when you instantiate the record, like this:

var Record1, Record2: TDateRec;

This variable declaration creates two instances of TDateRec, called Record1 and Record2.

You can access the fields of a record by qualifying the field designators with the record's name:

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

571

3

Record1.Year := 1904;
Record1.Month := Jun;
Record1.Day := 16;

Or use a with statement:

with Record1 do
 begin
 Year := 1904;
 Month := Jun;
 Day := 16;
 end;

You can now copy the values of Record1's fields to Record2:

Record2 := Record1;

Because the scope of a field designator is limited to the record in which it occurs, you don't have to worry about naming conflicts
between field designators and other variables.

Instead of defining record types, you can use the record ... construction directly in variable declarations:

var S: record
 Name: string;
 Age: Integer;
 end;

However, a declaration like this largely defeats the purpose of records, which is to avoid repetitive coding of similar groups of
variables. Moreover, separately declared records of this kind will not be assignment-compatible, even if their structures are
identical.

Variant Parts in Records

A record type can have a variant part, which looks like a case statement. The variant part must follow the other fields in the
record declaration.

To declare a record type with a variant part, use the following syntax.

type recordTypeName = record
 fieldList1: type1;
 ...
 fieldListn: typen;
 case tag: ordinalType of
 constantList1: (variant1);
 ...
 constantListn: (variantn);
 end;

The first part of the declaration - up to the reserved word case - is the same as that of a standard record type. The remainder of
the declaration - from case to the optional final semicolon - is called the variant part. In the variant part,

• tag is optional and can be any valid identifier. If you omit tag, omit the colon (:) after it as well.

• ordinalType denotes an ordinal type.

• Each constantList is a constant denoting a value of type ordinalType, or a comma-delimited list of such constants. No value
can be represented more than once in the combined constantLists.

• Each variant is a semicolon-delimited list of declarations resembling the fieldList: type constructions in the main part of the
record type. That is, a variant has the form

fieldList1: type1;
 ...
fieldListn: typen;

where each fieldList is a valid identifier or comma-delimited list of identifiers, each type denotes a type, and the final semicolon is
optional. The types must not be long strings, dynamic arrays, variants (that is, Variant types), or interfaces, nor can they be
structured types that contain long strings, dynamic arrays, variants, or interfaces; but they can be pointers to these types.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

572

3

Records with variant parts are complicated syntactically but deceptively simple semantically. The variant part of a record
contains several variants which share the same space in memory. You can read or write to any field of any variant at any time;
but if you write to a field in one variant and then to a field in another variant, you may be overwriting your own data. The tag, if
there is one, functions as an extra field (of type ordinalType) in the non-variant part of the record.

Variant parts have two purposes. First, suppose you want to create a record type that has fields for different kinds of data, but
you know that you will never need to use all of the fields in a single record instance. For example,

type
 TEmployee = record
 FirstName, LastName: string[40];
 BirthDate: TDate;
 case Salaried: Boolean of
 True: (AnnualSalary: Currency);
 False: (HourlyWage: Currency);
 end;

The idea here is that every employee has either a salary or an hourly wage, but not both. So when you create an instance of
TEmployee, there is no reason to allocate enough memory for both fields. In this case, the only difference between the variants
is in the field names, but the fields could just as easily have been of different types. Consider some more complicated examples:

type
 TPerson = record
 FirstName, LastName: string[40];
 BirthDate: TDate;
 case Citizen: Boolean of
 True: (Birthplace: string[40]);
 False: (Country: string[20];
 EntryPort: string[20];
 EntryDate, ExitDate: TDate);
 end;

type
 TShapeList = (Rectangle, Triangle, Circle, Ellipse, Other);
 TFigure = record
 case TShapeList of
 Rectangle: (Height, Width: Real);
 Triangle: (Side1, Side2, Angle: Real);
 Circle: (Radius: Real);
 Ellipse, Other: ();
 end;

For each record instance, the compiler allocates enough memory to hold all the fields in the largest variant. The optional tag and
the constantLists (like Rectangle, Triangle, and so forth in the last example) play no role in the way the compiler manages
the fields; they are there only for the convenience of the programmer.

The second reason for variant parts is that they let you treat the same data as belonging to different types, even in cases where
the compiler would not allow a typecast. For example, if you have a 64-bit Real as the first field in one variant and a 32-bit
Integer as the first field in another, you can assign a value to the Real field and then read back the first 32 bits of it as the value
of the Integer field (passing it, say, to a function that requires integer parameters).

Records (advanced)

In addition to the traditional record types, the Delphi language allows more complex and “class-like” record types. In addition to
fields, records may have properties and methods (including constructors), class properties, class methods, class fields, and
nested types. For more information on these subjects, see the documentation on Classes and Objects. Here is a sample record
type definition with some “class-like” functionality.

type
 TMyRecord = record
 type
 TInnerColorType = Integer;
 var

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

573

3

 Red: Integer;
 class var
 Blue: Integer;
 procedure printRed();
 constructor Create(val: Integer);
 property RedProperty: TInnerColorType read Red write Red;
 class property BlueProp: TInnerColorType read Blue write Blue;
end;

constructor TMyRecord.Create(val: Integer);
begin
 Red := val;
end;

procedure TMyRecord.printRed;
begin
 writeln('Red: ', Red);
end;

Though records can now share much of the functionality of classes, there are some important differences between classes and
records.

• Records do not support inheritance.

• Records can contain variant parts; classes cannot.

• Records are value types, so they are copied on assignment, passed by value, and allocated on the stack unless they are
declared globally or explicitly allocated using the New and Dispose function. Classes are reference types, so they are not
copied on assignment, they are passed by reference, and they are allocated on the heap.

• Records allow operator overloading on the Win32 and .NET platforms; classes allow operator overloading only for .NET.

• Records are constructed automatically, using a default no-argument constructor, but classes must be explicitly constructed.
Because records have a default no-argument constructor, any user-defined record constructor must have one or more
parameters.

• Record types cannot have destructors.

• Virtual methods (those specified with the virtual, dynamic, and message keywords) cannot be used in record types.

• Unlike classes, record types on the Win32 platform cannot implement interfaces; however, records on the .NET platform can
implement interfaces.

File Types (Win32)

File types, which are available only on the Win32 platform, are sequences of elements of the same type. Standard I/O routines
use the predefined TextFile or Text type, which represents a file containing characters organized into lines. For more
information about file input and output, see Standard routines and I/O (see page 692).

To declare a file type, use the syntax

type fileTypeName = file of type

where fileTypeName is any valid identifier and type is a fixed-size type. Pointer types - whether implicit or explicit - are not
allowed, so a file cannot contain dynamic arrays, long strings, classes, objects, pointers, variants, other files, or structured types
that contain any of these.

For example,

type
 PhoneEntry = record
 FirstName, LastName: string[20];
 PhoneNumber: string[15];
 Listed: Boolean;
 end;
 PhoneList = file of PhoneEntry;

declares a file type for recording names and telephone numbers.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

574

3

You can also use the file of ... construction directly in a variable declaration. For example,

var List1: file of PhoneEntry;

The word file by itself indicates an untyped file:

var DataFile: file;

For more information, see Untyped files (see page 692).

Files are not allowed in arrays or records.

See Also

Data Types (see page 553)

Simple Types (see page 554)

String Types (see page 561)

Pointers and Pointer Types (see page 575)

Procedural Types (see page 578)

Variant Types (see page 580)

Type Compatibility and Identity (see page 583)

Declaring Types (see page 586)

Variables (see page 587)

Declared Constants (see page 589)

Classes and Objects (see page 513)

3.1.3.2.5 Pointers and Pointer Types
A pointer is a variable that denotes a memory address. When a pointer holds the address of another variable, we say that it
points to the location of that variable in memory or to the data stored there. In the case of an array or other structured type, a
pointer holds the address of the first element in the structure. If that address is already taken, then the pointer holds the address
to the first element.

Pointers are typed to indicate the kind of data stored at the addresses they hold. The general-purpose Pointer type can
represent a pointer to any data, while more specialized pointer types reference only specific types of data. Pointers occupy four
bytes of memory.

This topic contains information on the following:

• General overview of pointer types.

• Declaring and using the pointer types supported by Delphi.

Overview of pointers

To see how pointers work, look at the following example.

 1 var
 2 X, Y: Integer; // X and Y are Integer variables
 3 P: ^Integer // P points to an Integer
 4 begin
 5 X := 17; // assign a value to X
 6 P := @X; // assign the address of X to P
 7 Y := P^; // dereference P; assign the result to Y
 8 end;

Line 2 declares X and Y as variables of type Integer. Line 3 declares P as a pointer to an Integer value; this means that P can

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

575

3

point to the location of X or Y. Line 5 assigns a value to X, and line 6 assigns the address of X (denoted by @X) to P. Finally, line 7
retrieves the value at the location pointed to by P (denoted by ^P) and assigns it to Y. After this code executes, X and Y have the
same value, namely 17.

The @ operator, which we have used here to take the address of a variable, also operates on functions and procedures. For
more information, see The @ operator (see page 720) and Procedural types in statements and expressions (see page 578).

The symbol ^ has two purposes, both of which are illustrated in our example. When it appears before a type identifier

^typeName

it denotes a type that represents pointers to variables of type typeName. When it appears after a pointer variable

pointer^

it dereferences the pointer; that is, it returns the value stored at the memory address held by the pointer.

Our example may seem like a roundabout way of copying the value of one variable to another - something that we could have
accomplished with a simple assignment statement. But pointers are useful for several reasons. First, understanding pointers will
help you to understand the Delphi language, since pointers often operate behind the scenes in code where they don't appear
explicitly. Any data type that requires large, dynamically allocated blocks of memory uses pointers. Long-string variables, for
instance, are implicitly pointers, as are class instance variables. Moreover, some advanced programming techniques require the
use of pointers.

Finally, pointers are sometimes the only way to circumvent Delphi's strict data typing. By referencing a variable with an
all-purpose Pointer, casting the Pointer to a more specific type, and then dereferencing it, you can treat the data stored by any
variable as if it belonged to any type. For example, the following code assigns data stored in a real variable to an integer
variable.

type
 PInteger = ^Integer;
var
 R: Single;
 I: Integer;
 P: Pointer;
 PI: PInteger;
begin
 ...
 P := @R;
 PI := PInteger(P);
 I := PI^;
end;

Of course, reals and integers are stored in different formats. This assignment simply copies raw binary data from R to I, without
converting it.

In addition to assigning the result of an @ operation, you can use several standard routines to give a value to a pointer. The New
and GetMem procedures assign a memory address to an existing pointer, while the Addr and Ptr functions return a pointer to a
specified address or variable.

Dereferenced pointers can be qualified and can function as qualifiers, as in the expression P1^.Data^.

The reserved word nil is a special constant that can be assigned to any pointer. When nil is assigned to a pointer, the pointer
doesn't reference anything.

Pointer Types

You can declare a pointer to any type, using the syntax

type pointerTypeName = ^type

When you define a record or other data type, it might be useful to also to define a pointer to that type. This makes it easy to
manipulate instances of the type without copying large blocks of memory.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

576

3

Note: You can declare a pointer type before you declare the type it points to.

Standard pointer types exist for many purposes. The most versatile is Pointer, which can point to data of any kind. But a
Pointer variable cannot be dereferenced; placing the ^ symbol after a Pointer variable causes a compilation error. To access
the data referenced by a Pointer variable, first cast it to another pointer type and then dereference it.

Character Pointers

The fundamental types PAnsiChar and PWideChar represent pointers to AnsiChar and WideChar values, respectively. The
generic PChar represents a pointer to a Char (that is, in its current implementation, to an AnsiChar). These character pointers
are used to manipulate null-terminated strings. (See Working with null-terminated strings (see page 561).)

Type-checked Pointers

The $T compiler directive controls the types of pointer values generated by the @ operator. This directive takes the form of:

{$T+} or {$T-}

In the {$T-} state, the result type of the @ operator is always an untyped pointer that is compatible with all other pointer types.
When @ is applied to a variable reference in the {$T+} state, the type of the result is ^T, where T is compatible only with
pointers to the type of the variable.

Other Standard Pointer Types

The System and SysUtils units declare many standard pointer types that are commonly used.

Selected pointer types declared in System and SysUtils

Pointer type Points to variables of type

PAnsiString, PString AnsiString

PByteArray TByteArray (declared in SysUtils). Used to typecast dynamically allocated
memory for array access.

PCurrency, PDouble, PExtended, PSingle Currency, Double, Extended, Single

PInteger Integer

POleVariant OleVariant

PShortString ShortString. Useful when porting legacy code that uses the old PString type.

PTextBuf TTextBuf (declared in SysUtils). TTextBuf is the internal buffer type in a
TTextRec file record.)

PVarRec TVarRec (declared in System)

PVariant Variant

PWideString WideString

PWordArray TWordArray (declared in SysUtils). Used to typecast dynamically allocated
memory for arrays of 2-byte values.

See Also

Data Types (see page 553)

Simple Types (see page 554)

String Types (see page 561)

Structured Types (see page 566)

Procedural Types (see page 578)

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

577

3

Variant Types (see page 580)

Type Compatibility and Identity (see page 583)

Declaring Types (see page 586)

Variables (see page 587)

Declared Constants (see page 589)

3.1.3.2.6 Procedural Types
Procedural types allow you to treat procedures and functions as values that can be assigned to variables or passed to other
procedures and functions.

About Procedural Types

Procedural types allow you to treat procedures and functions as values that can be assigned to variables or passed to other
procedures and functions. For example, suppose you define a function called Calc that takes two integer parameters and
returns an integer:

function Calc(X,Y: Integer): Integer;

You can assign the Calc function to the variable F:

var F: function(X,Y: Integer): Integer;
F := Calc;

If you take any procedure or function heading and remove the identifier after the word procedure or function, what's left is the
name of a procedural type. You can use such type names directly in variable declarations (as in the previous example) or to
declare new types:

type
 TIntegerFunction = function: Integer;
 TProcedure = procedure;
 TStrProc = procedure(const S: string);
 TMathFunc = function(X: Double): Double;
var
 F: TIntegerFunction; { F is a parameterless function that returns an integer }
 Proc: TProcedure; { Proc is a parameterless procedure }
 SP: TStrProc; { SP is a procedure that takes a string parameter }
 M: TMathFunc; { M is a function that takes a Double (real) parameter and returns a
Double }

 procedure FuncProc(P: TIntegerFunction); { FuncProc is a procedure whose only parameter is
a parameterless integer-valued function }

On Win32, the variables shown in the previous example are all procedure pointers - that is, pointers to the address of a
procedure or function. On the .NET platform, procedural types are implemented as delegates. If you want to reference a method
of an instance object (see Classes and objects (see page 514)), you need to add the words of object to the procedural type
name. For example

type
 TMethod = procedure of object;
 TNotifyEvent = procedure(Sender: TObject) of object;

These types represent method pointers. A method pointer is really a pair of pointers; the first stores the address of a method,
and the second stores a reference to the object the method belongs to. Given the declarations

type
 TNotifyEvent = procedure(Sender: TObject) of object;
 TMainForm = class(TForm)
 procedure ButtonClick(Sender: TObject);
 ...

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

578

3

 end;
var
 MainForm: TMainForm;
 OnClick: TNotifyEvent

we could make the following assignment.

OnClick := MainForm.ButtonClick;

Two procedural types are compatible if they have

• the same calling convention,

• the same return value (or no return value), and

• the same number of parameters, with identically typed parameters in corresponding positions. (Parameter names do not
matter.)

On Win32, procedure pointer types are always incompatible with method pointer types, but this is not true on the .NET platform.
The value nil can be assigned to any procedural type.

Nested procedures and functions (routines declared within other routines) cannot be used as procedural values, nor can
predefined procedures and functions. If you want to use a predefined routine like Length as a procedural value, write a
wrapper for it:

function FLength(S: string): Integer;
 begin
 Result := Length(S);
 end;

Procedural Types in Statements and Expressions

When a procedural variable is on the left side of an assignment statement, the compiler expects a procedural value on the right.
The assignment makes the variable on the left a pointer to the function or procedure indicated on the right. In other contexts,
however, using a procedural variable results in a call to the referenced procedure or function. You can even use a procedural
variable to pass parameters:

var
 F: function(X: Integer): Integer;
 I: Integer;
 function SomeFunction(X: Integer): Integer;
 ...
 F := SomeFunction; // assign SomeFunction to F
 I := F(4); // call function; assign result to I

In assignment statements, the type of the variable on the left determines the interpretation of procedure or method pointers on
the right. For example,

var
 F, G: function: Integer;
 I: Integer;
 function SomeFunction: Integer;
 ...
 F := SomeFunction; // assign SomeFunction to F
 G := F; // copy F to G
 I := G; // call function; assign result to I

The first statement assigns a procedural value to F. The second statement copies that value to another variable. The third
statement makes a call to the referenced function and assigns the result to I. Because I is an integer variable, not a procedural
one, the last assignment actually calls the function (which returns an integer).

In some situations it is less clear how a procedural variable should be interpreted. Consider the statement

if F = MyFunction then ...;

In this case, the occurrence of F results in a function call; the compiler calls the function pointed to by F, then calls the function
MyFunction, then compares the results. The rule is that whenever a procedural variable occurs within an expression, it
represents a call to the referenced procedure or function. In a case where F references a procedure (which doesn't return a

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

579

3

value), or where F references a function that requires parameters, the previous statement causes a compilation error. To
compare the procedural value of F with MyFunction, use

if @F = @MyFunction then ...;

@F converts F into an untyped pointer variable that contains an address, and @MyFunction returns the address of MyFunction.

To get the memory address of a procedural variable (rather than the address stored in it), use @@. For example, @@F returns
the address of F.

The @ operator can also be used to assign an untyped pointer value to a procedural variable. For example,

var StrComp: function(Str1, Str2: PChar): Integer;
 ...
@StrComp := GetProcAddress(KernelHandle, 'lstrcmpi');

calls the GetProcAddress function and points StrComp to the result.

Any procedural variable can hold the value nil, which means that it points to nothing. But attempting to call a nil-valued
procedural variable is an error. To test whether a procedural variable is assigned, use the standard function Assigned:

if Assigned(OnClick) then OnClick(X);

See Also

Data Types (see page 553)

Simple Types (see page 554)

String Types (see page 561)

Structured Types (see page 566)

Pointers and Pointer Types (see page 575)

Variant Types (see page 580)

Type Compatibility and Identity (see page 583)

Declaring Types (see page 586)

Variables (see page 587)

Declared Constants (see page 589)

3.1.3.2.7 Variant Types
This topic discusses the use of variant data types.

Variants Overview

Sometimes it is necessary to manipulate data whose type varies or cannot be determined at compile time. In these cases, one
option is to use variables and parameters of type Variant, which represent values that can change type at runtime. Variants offer
greater flexibility but consume more memory than regular variables, and operations on them are slower than on statically bound
types. Moreover, illicit operations on variants often result in runtime errors, where similar mistakes with regular variables would
have been caught at compile time. You can also create custom variant types.

By default, Variants can hold values of any type except records, sets, static arrays, files, classes, class references, and pointers.
In other words, variants can hold anything but structured types and pointers. They can hold interfaces, whose methods and
properties can be accessed through them. (See Object interfaces (see page 625).) They can hold dynamic arrays, and they
can hold a special kind of static array called a variant array. (See Variant arrays.) Variants can mix with other variants and with
integer, real, string, and Boolean values in expressions and assignments; the compiler automatically performs type conversions.

Variants that contain strings cannot be indexed. That is, if V is a variant that holds a string value, the construction V[1] causes a

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

580

3

runtime error.

You can define custom Variants that extend the Variant type to hold arbitrary values. For example, you can define a Variant
string type that allows indexing or that holds a particular class reference, record type, or static array. Custom Variant types are
defined by creating descendants to the TCustomVariantType class.

Note: This, and almost all variant functionality, is implemented in the Variants unit.

A variant occupies 16 bytes of memory and consists of a type code and a value, or pointer to a value, of the type specified by
the code. All variants are initialized on creation to the special value Unassigned. The special value Null indicates unknown or
missing data.

The standard function VarType returns a variant's type code. The varTypeMask constant is a bit mask used to extract the code
from VarType's return value, so that, for example,

VarType(V) and varTypeMask = varDouble

returns True if V contains a Double or an array of Double. (The mask simply hides the first bit, which indicates whether the
variant holds an array.) The TVarData record type defined in the System unit can be used to typecast variants and gain access
to their internal representation.

Variant Type Conversions

All integer, real, string, character, and Boolean types are assignment-compatible with Variant. Expressions can be explicitly cast
as variants, and the VarAsType and VarCast standard routines can be used to change the internal representation of a variant.
The following code demonstrates the use of variants and some of the automatic conversions performed when variants are mixed
with other types.

var
 V1, V2, V3, V4, V5: Variant;
 I: Integer;
 D: Double;
 S: string;
 begin
 V1 := 1; { integer value }
 V2 := 1234.5678; { real value }
 V3 := 'Hello world!'; { string value }
 V4 := '1000'; { string value }
 V5 := V1 + V2 + V4; { real value 2235.5678}
 I := V1; { I = 1 (integer value) }
 D := V2; { D = 1234.5678 (real value) }
 S := V3; { S = 'Hello world!' (string value) }
 I := V4; { I = 1000 (integer value) }
 S := V5; { S = '2235.5678' (string value) }
 end;

The compiler performs type conversions according to the following rules.

Variant type conversion rules

Target

Source

integer real string Boolean

integer converts integer
formats

converts to real converts to string
representation

returns False if 0, True otherwise

real rounds to nearest
integer

converts real
formats

converts to string
representation using
regional settings

returns False if 0, True otherwise

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

581

3

string converts to integer,
truncating if
necessary; raises
exception if string is
not numeric

converts to real
using regional
settings; raises
exception if
string is not
numeric

converts string/character
formats

returns False if string is 'false'
(noncase-sensitive) or a numeric string
that evaluates to 0, True if string is 'true'
or a nonzero numeric string; raises
exception otherwise

character same as string
(above)

same as string
(above)

same as string (above) same as string (above)

Boolean False = 0, True: all
bits set to 1 (-1 if
Integer, 255 if Byte,
etc.)

False = 0, True
= 1

False = 'False', True =
'True' by default; casing
depends on global
variable
BooleanToStringRule

False = False, True = True

Unassigned returns 0 returns 0 returns empty string returns False

Null depends on global
variable
NullStrictConvert
(raises an exception
by default)

depends on
global variable
NullStrictConvert
(raises an
exception by
default)

depends on global
variables
NullStrictConvert and
NullAsStringValue
(raises an exception by
default)

depends on global variable
NullStrictConvert (raises an exception
by default)

Out-of-range assignments often result in the target variable getting the highest value in its range. Invalid variant operations,
assignments or casts raise an EVariantError exception or an exception class decending from EVariantError.

Special conversion rules apply to the TDateTime type declared in the System unit. When a TDateTime is converted to any other
type, it treated as a normal Double. When an integer, real, or Boolean is converted to a TDateTime, it is first converted to a
Double, then read as a date-time value. When a string is converted to a TDateTime, it is interpreted as a date-time value using
the regional settings. When an Unassigned value is converted to TDateTime, it is treated like the real or integer value 0.
Converting a Null value to TDateTime raises an exception.

On the Win32 platform, if a variant references a COM interface, any attempt to convert it reads the object's default property and
converts that value to the requested type. If the object has no default property, an exception is raised.

Variants in Expressions

All operators except ^, is, and in take variant operands. Except for comparisons, which always return a Boolean result, any
operation on a variant value returns a variant result. If an expression combines variants with statically-typed values, the
statically-typed values are automatically converted to variants.

This is not true for comparisons, where any operation on a Null variant produces a Null variant. For example:

V := Null + 3;

assigns a Null variant to V. By default, comparisons treat the Null variant as a unique value that is less than any other value.
For example:

if Null > -3 then ... else ...;

In this example, the else part of the if statement will be executed. This behavior can be changed by setting the
NullEqualityRule and NullMagnitudeRule global variables.

Variant Arrays

You cannot assign an ordinary static array to a variant. Instead, create a variant array by calling either of the standard functions
VarArrayCreate or VarArrayOf. For example,

V: Variant;
 ...
V := VarArrayCreate([0,9], varInteger);

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

582

3

creates a variant array of integers (of length 10) and assigns it to the variant V. The array can be indexed using V[0], V[1], and
so forth, but it is not possible to pass a variant array element as a var parameter. Variant arrays are always indexed with integers.

The second parameter in the call to VarArrayCreate is the type code for the array's base type. For a list of these codes, see
VarType. Never pass the code varString to VarArrayCreate; to create a variant array of strings, use varOleStr.

Variants can hold variant arrays of different sizes, dimensions, and base types. The elements of a variant array can be of any
type allowed in variants except ShortString and AnsiString, and if the base type of the array is Variant, its elements can even
be heterogeneous. Use the VarArrayRedim function to resize a variant array. Other standard routines that operate on variant
arrays include VarArrayDimCount, VarArrayLowBound, VarArrayHighBound, VarArrayRef, VarArrayLock, and
VarArrayUnlock.

Note: Variant arrays of custom variants are not supported, as instances of custom variants can be added to a VarVariant
variant array.

When a variant containing a variant array is assigned to another variant or passed as a value parameter, the entire array is
copied. Don't perform such operations unnecessarily, since they are memory-inefficient.

OleVariant

The OleVariant type exists on both the Windows and Linux platforms. The main difference between Variant and OleVariant is
that Variant can contain data types that only the current application knows what to do with. OleVariant can only contain the data
types defined as compatible with OLE Automation which means that the data types that can be passed between programs or
across the network without worrying about whether the other end will know how to handle the data.

When you assign a Variant that contains custom data (such as a Delphi string, or a one of the new custom variant types) to an
OleVariant, the runtime library tries to convert the Variant into one of the OleVariant standard data types (such as a Delphi
string converts to an OLE BSTR string). For example, if a variant containing an AnsiString is assigned to an OleVariant, the
AnsiString becomes a WideString. The same is true when passing a Variant to an OleVariant function parameter.

See Also

Data Types (see page 553)

Simple Types (see page 554)

String Types (see page 561)

Structured Types (see page 566)

Pointers and Pointer Types (see page 575)

Procedural Types (see page 578)

Type Compatibility and Identity (see page 583)

Declaring Types (see page 586)

Variables (see page 587)

Declared Constants (see page 589)

3.1.3.2.8 Type Compatibility and Identity
To understand which operations can be performed on which expressions, we need to distinguish several kinds of compatibility
among types and values. These include:

• Type identity

• Type compatibility

• Assignment compatibility

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

583

3

Type Identity

When one type identifier is declared using another type identifier, without qualification, they denote the same type. Thus, given
the declarations

type
 T1 = Integer;
 T2 = T1;
 T3 = Integer;
 T4 = T2;

T1, T2, T3, T4, and Integer all denote the same type. To create distinct types, repeat the word type in the declaration. For
example,

type TMyInteger = type Integer;

creates a new type called TMyInteger which is not identical to Integer.

Language constructions that function as type names denote a different type each time they occur. Thus the declarations

type
 TS1 = set of Char;
 TS2 = set of Char;

create two distinct types, TS1 and TS2. Similarly, the variable declarations

var
 S1: string[10];
 S2: string[10];

create two variables of distinct types. To create variables of the same type, use

var S1, S2: string[10];

or

type MyString = string[10];
var
 S1: MyString;
 S2: MyString;

Type Compatibility

Every type is compatible with itself. Two distinct types are compatible if they satisfy at least one of the following conditions.

• They are both real types.

• They are both integer types.

• One type is a subrange of the other.

• Both types are subranges of the same type.

• Both are set types with compatible base types.

• Both are packed-string types with the same number of characters.

• One is a string type and the other is a string, packed-string, or Char type.

• One type is Variant and the other is an integer, real, string, character, or Boolean type.

• Both are class, class-reference, or interface types, and one type is derived from the other.

• One type is PChar or PWideChar and the other is a zero-based character array of the form array[0..n] of PChar or
PWideChar.

• One type is Pointer (an untyped pointer) and the other is any pointer type.

• Both types are (typed) pointers to the same type and the {$T+} compiler directive is in effect.

• Both are procedural types with the same result type, the same number of parameters, and type-identity between parameters
in corresponding positions.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

584

3

Assignment Compatibility

Assignment-compatibility is not a symmetric relation. An expression of type T2 can be assigned to a variable of type T1 if the
value of the expression falls in the range of T1 and at least one of the following conditions is satisfied.

• T1 and T2 are of the same type, and it is not a file type or structured type that contains a file type at any level.

• T1 and T2 are compatible ordinal types.

• T1 and T2 are both real types.

• T1 is a real type and T2 is an integer type.

• T1 is PChar, PWideChar or any string type and the expression is a string constant.

• T1 and T2 are both string types.

• T1 is a string type and T2 is a Char or packed-string type.

• T1 is a long string and T2 is PChar or PWideChar.

• T1 and T2 are compatible packed-string types.

• T1 and T2 are compatible set types.

• T1 and T2 are compatible pointer types.

• T1 and T2 are both class, class-reference, or interface types and T2 is a derived from T1.

• T1 is an interface type and T2 is a class type that implements T1.

• T1 is PChar or PWideChar and T2 is a zero-based character array of the form array[0..n] of Char (when T1 is PChar)
or of WideChar (when T1 is PWideChar).

• T1 and T2 are compatible procedural types. (A function or procedure identifier is treated, in certain assignment statements, as
an expression of a procedural type.)

• T1 is Variant and T2 is an integer, real, string, character, Boolean, interface type or OleVariant type.

• T1 is an OleVariant and T2 is an integer, real, string, character, Boolean, interface, or Variant type.

• T1 is an integer, real, string, character, or Boolean type and T2 is Variant or OleVariant.

• T1 is the IUnknown or IDispatch interface type and T2 is Variant or OleVariant. (The variant's type code must be
varEmpty, varUnknown, or varDispatch if T1 is IUnknown, and varEmpty or varDispatch if T1 is IDispatch.)

See Also

Data Types (see page 553)

Simple Types (see page 554)

String Types (see page 561)

Structured Types (see page 566)

Pointers and Pointer Types (see page 575)

Procedural Types (see page 578)

Variant Types (see page 580)

Declaring Types (see page 586)

Variables (see page 587)

Declared Constants (see page 589)

Overview of Generics (Parameterized Types) (see page 596)

Declaring Generics (Parameterized Types) (see page 598)

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

585

3

Overloads and Type Compatibility (Parameterized Types)

3.1.3.2.9 Declaring Types
This topic describes the syntax of Delphi type declarations.

Type Declaration Syntax

A type declaration specifies an identifier that denotes a type. The syntax for a type declaration is

type newTypeName = type

where newTypeName is a valid identifier. For example, given the type declaration

type TMyString = string;

you can make the variable declaration

var S: TMyString;

A type identifier's scope doesn't include the type declaration itself (except for pointer types). So you cannot, for example, define a
record type that uses itself recursively.

When you declare a type that is identical to an existing type, the compiler treats the new type identifier as an alias for the old
one. Thus, given the declarations

type TValue = Real;
var
 X: Real;
 Y: TValue;

X and Y are of the same type; at runtime, there is no way to distinguish TValue from Real. This is usually of little consequence,
but if your purpose in defining a new type is to utilize runtime type information, for example, to associate a property editor with
properties of a particular type - the distinction between 'different name' and 'different type' becomes important. In this case, use
the syntax

type newTypeName = typetype

For example,

type TValue = type Real;

forces the compiler to create a new, distinct type called TValue.

For var parameters, types of formal and actual must be identical. For example,

type
 TMyType = type Integer
 procedure p(var t:TMyType);
 begin
 end;

procedure x;
var
 m: TMyType;
 i: Integer;
begin
 p(m); // Works
 p(i); // Error! Types of formal and actual must be identical.
end;

Note: This only applies to var parameters, not to const or by-value parameters.

See Also

Data Types (see page 553)

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

586

3

Simple Types (see page 554)

String Types (see page 561)

Structured Types (see page 566)

Pointers and Pointer Types (see page 575)

Procedural Types (see page 578)

Variant Types (see page 580)

Type Compatibility and Identity (see page 583)

Variables (see page 587)

Declared Constants (see page 589)

3.1.3.2.10 Variables
A variable is an identifier whose value can change at runtime. Put differently, a variable is a name for a location in memory; you
can use the name to read or write to the memory location. Variables are like containers for data, and, because they are typed,
they tell the compiler how to interpret the data they hold.

Declaring Variables

The basic syntax for a variable declaration is

var identifierList:type;

where identifierList is a comma-delimited list of valid identifiers and type is any valid type. For example,

var I: Integer;

declares a variable I of type Integer, while

var X, Y: Real;

declares two variables - X and Y - of type Real.

Consecutive variable declarations do not have to repeat the reserved word var:

var
 X, Y, Z: Double;
 I, J, K: Integer;
 Digit: 0..9;
 Okay: Boolean;

Variables declared within a procedure or function are sometimes called local, while other variables are called global. Global
variables can be initialized at the same time they are declared, using the syntax

var identifier: type = constantExpression;

where constantExpression is any constant expression representing a value of type type. Thus the declaration

var I: Integer = 7;

is equivalent to the declaration and statement

var I: Integer;
 ...
I := 7;

Local variables cannot be initialized in their declarations. Multiple variable declarations (such as var X, Y, Z: Real;) cannot
include initializations, nor can declarations of variant and file-type variables.

If you don't explicitly initialize a global variable, the compiler initializes it to 0. Object instance data (fields) are also initialized to 0.

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

587

3

On the Wiin32 platform, the contents of a local variable are undefined until a value is assigned to them. On the .NET platform,
the CLR initializes all variables, including local variables, to 0.

When you declare a variable, you are allocating memory which is freed automatically when the variable is no longer used. In
particular, local variables exist only until the program exits from the function or procedure in which they are declared. For more
information about variables and memory management, see Memory management (see page 644).

Absolute Addresses

You can create a new variable that resides at the same address as another variable. To do so, put the directive absolute after
the type name in the declaration of the new variable, followed by the name of an existing (previously declared) variable. For
example,

var
 Str: string[32];
 StrLen: Byte absolute Str;

specifies that the variable StrLen should start at the same address as Str. Since the first byte of a short string contains the
string's length, the value of StrLen is the length of Str.

You cannot initialize a variable in an absolute declaration or combine absolute with any other directives.

Dynamic Variables

You can create dynamic variables by calling the GetMem or New procedure. Such variables are allocated on the heap and are
not managed automatically. Once you create one, it is your responsibility ultimately to free the variable's memory; use FreeMem
to destroy variables created by GetMem and Dispose to destroy variables created by New. Other standard routines that operate
on dynamic variables include ReallocMem, AllocMem, Initialize, Finalize, StrAlloc, and StrDispose.

Long strings, wide strings, dynamic arrays, variants, and interfaces are also heap-allocated dynamic variables, but their memory
is managed automatically.

Thread-local Variables

Thread-local (or thread) variables are used in multithreaded applications. A thread-local variable is like a global variable, except
that each thread of execution gets its own private copy of the variable, which cannot be accessed from other threads.
Thread-local variables are declared with threadvar instead of var. For example,

threadvar X: Integer;

Thread-variable declarations

• cannot occur within a procedure or function.

• cannot include initializations.

• cannot specify the absolute directive.

Dynamic variables that are ordinarily managed by the compiler (long strings, wide strings, dynamic arrays, variants, and
interfaces) can be declared with threadvar, but the compiler does not automatically free the heap-allocated memory created
by each thread of execution. If you use these data types in thread variables, it is your responsibility to dispose of their memory
from within the thread, before the thread terminates. For example,

threadvar S: AnsiString;
S := 'ABCDEFGHIJKLMNOPQRSTUVWXYZ';
 ...
S := ''; // free the memory used by S

Note: Use of such constructs is discouraged.

You can free a variant by setting it to Unassigned and an interface or dynamic array by setting it to nil.

See Also

Data Types (see page 553)

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

588

3

Simple Types (see page 554)

String Types (see page 561)

Structured Types (see page 566)

Pointers and Pointer Types (see page 575)

Procedural Types (see page 578)

Variant Types (see page 580)

Type Compatibility and Identity (see page 583)

Declaring Types (see page 586)

Declared Constants (see page 589)

3.1.3.2.11 Declared Constants
Several different language constructions are referred to as 'constants'. There are numeric constants (also called numerals) like
17, and string constants (also called character strings or string literals) like 'Hello world!'. Every enumerated type defines
constants that represent the values of that type. There are predefined constants like True, False, and nil. Finally, there are
constants that, like variables, are created individually by declaration.

Declared constants are either true constants or typed constants. These two kinds of constant are superficially similar, but they
are governed by different rules and used for different purposes.

True Constants

A true constant is a declared identifier whose value cannot change. For example,

const MaxValue = 237;

declares a constant called MaxValue that returns the integer 237. The syntax for declaring a true constant is

const identifier = constantExpression

where identifier is any valid identifier and constantExpression is an expression that the compiler can evaluate without executing
your program.

If constantExpression returns an ordinal value, you can specify the type of the declared constant using a value typecast. For
example

const MyNumber = Int64(17);

declares a constant called MyNumber, of type Int64, that returns the integer 17. Otherwise, the type of the declared constant is
the type of the constantExpression.

• If constantExpression is a character string, the declared constant is compatible with any string type. If the character string is of
length 1, it is also compatible with any character type.

• If constantExpression is a real, its type is Extended. If it is an integer, its type is given by the table below.

Types for integer constants

Range of constant(hexadecimal) Range of constant(decimal) Type

-$8000000000000000..-$80000001 -2^63..-2147483649 Int64

-$80000000..-$8001 -2147483648..-32769 Integer

-$8000..-$81 -32768..-129 Smallint

-$80..-1 -128..-1 Shortint

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

589

3

0..$7F 0..127 0..127

$80..$FF 128..255 Byte

$0100..$7FFF 256..32767 0..32767

$8000..$FFFF 32768..65535 Word

$10000..$7FFFFFFF 65536..2147483647 0..2147483647

$80000000..$FFFFFFFF 2147483648..4294967295 Cardinal

$100000000..$7FFFFFFFFFFFFFFF 4294967296..2^63–1 Int64

Here are some examples of constant declarations:

const
 Min = 0;
 Max = 100;
 Center = (Max - Min) div 2;
 Beta = Chr(225);
 NumChars = Ord('Z') - Ord('A') + 1;
 Message = 'Out of memory';
 ErrStr = ' Error: ' + Message + '. ';
 ErrPos = 80 - Length(ErrStr) div 2;
 Ln10 = 2.302585092994045684;
 Ln10R = 1 / Ln10;
 Numeric = ['0'..'9'];
 Alpha = ['A'..'Z', 'a'..'z'];
 AlphaNum = Alpha + Numeric;

Constant Expressions

A constant expression is an expression that the compiler can evaluate without executing the program in which it occurs.
Constant expressions include numerals; character strings; true constants; values of enumerated types; the special constants
True, False, and nil; and expressions built exclusively from these elements with operators, typecasts, and set constructors.
Constant expressions cannot include variables, pointers, or function calls, except calls to the following predefined functions:

Abs High Low Pred Succ

Chr Length Odd Round Swap

Hi Lo Ord SizeOf Trunc

This definition of a constant expression is used in several places in Delphi's syntax specification. Constant expressions are
required for initializing global variables, defining subrange types, assigning ordinalities to values in enumerated types, specifying
default parameter values, writing case statements, and declaring both true and typed constants.

Examples of constant expressions:

100
'A'
256 - 1
(2.5 + 1) / (2.5 - 1)
'Borland' + ' ' + 'Developer'
Chr(32)
Ord('Z') - Ord('A') + 1

Resource Strings

Resource strings are stored as resources and linked into the executable or library so that they can be modified without

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

590

3

recompiling the program.

Resource strings are declared like other true constants, except that the word const is replaced by resourcestring. The
expression to the right of the = symbol must be a constant expression and must return a string value. For example,

resourcestring
 CreateError = 'Cannot create file %s';
 OpenError = 'Cannot open file %s';
 LineTooLong = 'Line too long';
 ProductName = 'CodeGear Rocks';
 SomeResourceString = SomeTrueConstant;

Typed Constants

Typed constants, unlike true constants, can hold values of array, record, procedural, and pointer types. Typed constants cannot
occur in constant expressions.

Declare a typed constant like this:

const identifier: type = value

where identifier is any valid identifier, type is any type except files and variants, and value is an expression of type. For example,

const Max: Integer = 100;

In most cases, value must be a constant expression; but if type is an array, record, procedural, or pointer type, special rules
apply.

Array Constants

To declare an array constant, enclose the values of the array's elements, separated by commas, in parentheses at the end of the
declaration. These values must be represented by constant expressions. For example,

const Digits: array[0..9] of Char = ('0', '1', '2', '3', '4', '5', '6', '7', '8', '9');

declares a typed constant called Digits that holds an array of characters.

Zero-based character arrays often represent null-terminated strings, and for this reason string constants can be used to initialize
character arrays. So the previous declaration can be more conveniently represented as

const Digits: array[0..9] of Char = '0123456789';

To define a multidimensional array constant, enclose the values of each dimension in a separate set of parentheses, separated
by commas. For example,

type TCube = array[0..1, 0..1, 0..1] of Integer;
const Maze: TCube = (((0, 1), (2, 3)), ((4, 5), (6,7)));

creates an array called Maze where

Maze[0,0,0] = 0
Maze[0,0,1] = 1
Maze[0,1,0] = 2
Maze[0,1,1] = 3
Maze[1,0,0] = 4
Maze[1,0,1] = 5
Maze[1,1,0] = 6
Maze[1,1,1] = 7

Array constants cannot contain file-type values at any level.

Record Constants

To declare a record constant, specify the value of each field - as fieldName: value, with the field assignments separated by
semicolons - in parentheses at the end of the declaration. The values must be represented by constant expressions. The fields
must be listed in the order in which they appear in the record type declaration, and the tag field, if there is one, must have a

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

591

3

value specified; if the record has a variant part, only the variant selected by the tag field can be assigned values.

Examples:

type
 TPoint = record
 X, Y: Single;
 end;
 TVector = array[0..1] of TPoint;
 TMonth = (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec);
 TDate = record
 D: 1..31;
 M: TMonth;
 Y: 1900..1999;
 end;
const
 Origin: TPoint = (X: 0.0; Y: 0.0);
 Line: TVector = ((X: -3.1; Y: 1.5), (X: 5.8; Y: 3.0));
 SomeDay: TDate = (D: 2; M: Dec; Y: 1960);

Record constants cannot contain file-type values at any level.

Procedural Constants

To declare a procedural constant, specify the name of a function or procedure that is compatible with the declared type of the
constant. For example,

function Calc(X, Y: Integer): Integer;
begin
 ...
end;

type TFunction = function(X, Y: Integer): Integer;
const MyFunction: TFunction = Calc;

Given these declarations, you can use the procedural constant MyFunction in a function call:

I := MyFunction(5, 7)

You can also assign the value nil to a procedural constant.

Pointer Constants

When you declare a pointer constant, you must initialize it to a value that can be resolved at least as a relative address at
compile time. There are three ways to do this: with the @ operator, with nil, and (if the constant is of type PChar or PWideChar)
with a string literal. For example, if I is a global variable of type Integer, you can declare a constant like

const PI: ^Integer = @I;

The compiler can resolve this because global variables are part of the code segment. So are functions and global constants:

const PF: Pointer = @MyFunction;

Because string literals are allocated as global constants, you can initialize a PChar constant with a string literal:

const WarningStr: PChar = 'Warning!';

See Also

Data Types (see page 553)

Simple Types (see page 554)

String Types (see page 561)

Structured Types (see page 566)

Pointers and Pointer Types (see page 575)

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

592

3

Procedural Types (see page 578)

Variant Types (see page 580)

Type Compatibility and Identity (see page 583)

Declaring Types (see page 586)

Variables (see page 587)

3.1.3.3 .NET Topics
This section contains information specific to programming in Delphi on the .NET platform.

Topics

Name Description

Using .NET Custom Attributes (see page 593) .NET framework assemblies are self-describing entities. They contain
intermediate code that is compiled to native machine instructions when the
assembly is loaded. More than that, assemblies contain a wealth of information
about that code. The compiler emits this descriptive information, or metadata,
into the assembly as it processes the source code. In other programming
environments, there is no way to access metadata once your code is compiled;
the information is lost during the compilation process. On the .NET platform,
however, you have the ability to access metadata using runtime reflection
services.
The .NET framework gives you the ability to extend... more (see page 593)

3.1.3.3.1 Using .NET Custom Attributes
.NET framework assemblies are self-describing entities. They contain intermediate code that is compiled to native machine
instructions when the assembly is loaded. More than that, assemblies contain a wealth of information about that code. The
compiler emits this descriptive information, or metadata, into the assembly as it processes the source code. In other
programming environments, there is no way to access metadata once your code is compiled; the information is lost during the
compilation process. On the .NET platform, however, you have the ability to access metadata using runtime reflection services.

The .NET framework gives you the ability to extend the metadata emitted by the compiler with your own descriptive attributes.
These customized attributes are somewhat analogous to language keywords, and are stored with the other metadata in the
assembly.

• Declaring custom attributes

• Using custom attributes

• Custom attributes and interfaces

Declaring a Custom Attribute Class

Creating a custom attribute is the same as declaring a class. The custom attribute class has a constructor, and properties to set
and retrieve its state data. Custom attributes must inherit from TCustomAttribute. The following code declares a custom attribute
with a constructor and two properties:

 type
 TCustomCodeAttribute = class(TCustomAttribute)
 private
 Fprop1 : integer;
 Fprop2 : integer;
 aVal : integer;
 procedure Setprop1(p1 : integer);
 procedure Setprop2(p2 : integer);
 public
 constructor Create(const myVal : integer);
 property prop1 : integer read Fprop1 write Setprop1;

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

593

3

 property prop2 : integer read Fprop2 write Setprop2;
 end;

The implementation of the constructor might look like

 constructor TCustomCodeAttribute.Create(const myVal : integer);
 begin
 inherited Create;
 aVal := myVal;
 end;

Delphi for .NET supports the creation of custom attribute classes, as shown above, and all of the custom attributes provided by
the .NET framework.

Using Custom Attributes

Custom attributes are placed directly before the source code symbol to which the attribute applies. Attributes can be placed
before

• variables and constants

• procedures and functions

• function results

• procedure and function parameters

• types

• fields, properties, and methods

Note that Delphi for .NET supports the use of named properties in the initialization. These can be the names of properties, or of
public fields of the custom attribute class. Named properties are listed after all of the parameters required by the constructor.
For example

 [TCustomCodeAttribute(1024, prop1=512, prop2=128)]
 TMyClass = class(TObject)
 ...
 end;

applies the custom attribute declared above to the class TMyClass.

The first parameter, 1024, is the value required by the constructor. The second two parameters are the properties defined in the
custom attribute.

When a custom attribute is placed before a list of multiple variable declarations, the attribute applies to all variables declared in
that list. For example

var
 [TCustomAttribute(1024, prop1=512, prop2=128)]
 x, y, z: Integer;

would result in TCustomAttribute being applied to all three variables, X, Y, and Z.

Custom attributes applied to types can be detected at runtime with the GetCustomAttributes method of the Type class. The
following Delphi code demonstrates how to query for custom attributes at runtime.

var
 F: TMyClass; // TMyClass declared above
 T: System.Type;
 A: array of TObject; // Will hold custom attributes
 I: Integer;

begin
 F := TMyClass.Create;
 T := F.GetType;
 A := T.GetCustomAttributes(True);

 // Write the type name, and then loop over custom

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

594

3

 // attributes returned from the call to
 // System.Type.GetCustomAttributes.
 Writeln(T.FullName);
 for I := Low(A) to High(A) do
 Writeln(A[I].GetType.FullName);
end.

Using the DllImport Custom Attribute

You can call unmanaged Win32 APIs (and other unmanaged code) by prefixing the function declaration with the DllImport
custom attribute. This attribute resides in the System.Runtime.InteropServices namespace, as shown below:

 Program HellowWorld2;

 // Don't forget to include the InteropServices unit when using the DllImport attribute.
 uses System.Runtime.InteropServices;

 [DllImport('user32.dll')]
 function MessageBeep(uType : LongWord) : Boolean; external;

 begin
 MessageBeep(LongWord(-1));
 end.

Note the external keyword is still required, to replace the block in the function declaration. All other attributes, such as the calling
convention, can be passed through the DllImport custom attribute.

Custom Attributes and Interfaces

Delphi syntax dictates that the GUID (if present) must immediately follow the declaration of an interface. Since the GUID syntax
is similar to that of custom attributes, the compiler must be made to know the difference between a custom attribute - which
applies to the next declaration - and a GUID specifier, which applies to the previous declaration. Without this special case, the
compiler would try to apply an attribute to the first member of the interface.

When the compiler sees an interface declaration, the next square bracket construct found is assumed to be that of a GUID
specifier for the interface. The GUID must be in the traditional Delphi form:

['{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}']

Alternatively, you can use the Guid custom attribute of the .NET framework (GuidAttribute). If you choose this method, then you
should introduce the attribute before the interface, as with any other custom attribute.

The effect in either case is the same: the GUID is emitted into the metadata for the interface type. Note that GUIDs are not
required for interfaces in the .NET Framework. They are only used for COM interoperability.

Note: When importing COM interfaces with the ComImport custom attribute, you must declare the GuidAttribute instead of
using the Delphi syntax.

See Also

Using Platform Invoke with Delphi for .NET

3.1.3.4 Generics (Parameterized Types)
Presents an overview of generics, a terminology list, a summary of grammar changes for generics, and details about declaring
and using parameterized types, specifying constraints on generics, and using overloads.

Topics

Name Description

Overview of Generics (see page 596) Delphi for .NET supports the use of generics, also known as parameterized types.

Terminology for Generics (see page 597)

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

595

3

Declaring Generics (see page 598) The declaration of a generic is similar to the declaration of a regular class,
record, or interface type. The difference is that a list of one or more type
parameters placed between angle brackets (< and >) follows the type identifier in
the declaration of a generic.
Type parameters can be used as a typical type identifier inside the container type
declaration and method body.
For example:

Overloads and Type Compatibility in Generics (see page 602)

Constraints in Generics (see page 603) Constraints can be associated with a type parameter of a generic. Constraints
declare items that must be supported by any concrete type passed to that
parameter in a construction of the generic type.

Class Variable in Generics (see page 605) The class variable defined in a generic type is instantiated in each instantiated
type identified by the type parameters.
The following code shows that TFoo<Integer>.FCount and TFoo<String>.FCount
are instantiated only once, and these are two different variables.

Changes in Standard Functions and Grammar (see page 606) Here is a list of standard function changes to support parameterized types.
Example forms:

3.1.3.4.1 Overview of Generics
Delphi for .NET supports the use of generics, also known as parameterized types.

How Generics Work

The term generics is a collective noun that describes the set of things in the platform that can be parameterized by type using
the new support in .NET 2.0. Generics can refer to generic types, generic methods, or (for Delphi) generic procedures and
generic functions.

Generics are a set of abstraction tools that permit the decoupling of an algorithm (such as a method, procedure or function) or a
data structure (such as a class, interface or record) from one or more concrete types that the algorithm or data structure uses.

A method or data type that uses other types in its definition can be made more general by substituting one or more concrete
types with type parameters. Then you add those type parameters to a type parameter list in the method or data structure
declaration. This is similar to the way that you can make a procedure more general by substituting instances of a literal constant
in its body with a parameter name, and adding the parameter to the parameter list of the procedure.

For example, a class (TMyList) that maintains a list of objects (of type TObject) can be made more reusable and type-safe by
substituting uses of TObject with a type parameter name (such as 'T'), and adding the type parameter to the class's type
parameter list so that it becomes TMyList<T>.

Concrete uses (instantiations) of a generic type or method can be made by supplying type arguments to the generic type or
method at the point of use. The act of supplying type arguments effectively constructs a new type or method by substituting
instances of the type parameter in the generic definition with the corresponding type argument.

For example, the list might be used as TMyList<Double>. This creates a new type, TMyList<Double>, whose definition is
identical to TMyList<T> except that all instances of 'T' in the definition are replaced with 'Double'.

It should be noted that generics as an abstraction mechanism duplicates much of the functionality of polymorphism, but with
different characteristics. Since a new type or method is constructed at instantiation time, you can find type errors sooner, at
compile time rather than run time. This also increases the scope for optimization, but with a trade-off - each instantiation
increases the memory usage of the final running application, possibly resulting in lower performance.

Code Examples

For example, TSIPair is a class holding two data types, String and Integer:

type
 TSIPair = class
 private
 FKey: String;
 FValue: Integer;
 public

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

596

3

 function GetKey: String;
 procedure SetKey(Key: String);
 function GetValue: Integer;
 procedure SetValue(Value: Integer);
 property Key: TKey read GetKey write SetKey;
 property Value: TValue read GetValue write SetValue;
 end;

To make a class independent of data type, replace the data type with a type parameter.

type
 TPair<TKey,TValue>= class // declares TPair type with two type parameters

private
 FKey: TKey;
 FValue: TValue;
 public
 function GetKey: TKey;
 procedure SetKey(Key: TKey);
 function GetValue: TValue;
 procedure SetValue(Value: TValue);
 property Key: TKey read GetKey write SetKey;
 property Value: TValue read GetValue write SetValue;
 end;

type
 TSIPair = TPair<String,Integer>; // declares instantiated type
 TSSPair = TPair<String,String>; // declares with other data types
 TISPair = TPair<Integer,String>;
 TIIPair = TPair<Integer,Integer>;
 TSXPair = TPair<String,TXMLNode>;

Platform Requirements and Differences

Parameterized types are supported by .NET 2.0 or later, but are not supported by .NET 1.1 or before.

Instantiation timing:

On .NET, instantiation is processed by the run time environment.

See Also

Terminology of Generics (see page 597)

Declaration of Generics (see page 598)

Overloads and Type Compatibility (Parameterized Types) (see page 602)

Constraints (Parameterized Types) (see page 603)

Class Variable in Parameterized Types (see page 605)

Changes in Standard Functions and Grammar (Parameterized Types) (see page 606)

3.1.3.4.2 Terminology for Generics
Terms Used in Describing Generics

Terminology used to describe generics (parameterized types) is defined in this section.

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

597

3

Type parameterized
type

A type declaration which requires type parameters to be supplied in order to form an actual type.

'List<Item>' is a type parameterized type in the following code:
type

List<Item> = class

...

end;

Parameterized type Same as type parameterized type.

Type parameter A parameter declared in a parameterized type declaration or a method header in order to use as a
type for another declaration inside its parameterized type declaration or method body. It will be bound
to real type argument. Item is a type parameter in the following code:
type

List<Item> = class

...

end;

Type argument A type used with type identifier in order to make instantiated type. In List<Integer>, if List is a
parameterized type, Integer is a type argument.

Instantiated type The combination of a parameterized type with a set of parameters.

Constructed type Same as instantiated typed.

Closed constructed type A constructed type having all its parameters resolved to actual types. List<Integer> is closed because
integer is an actual type.

Open constructed type A constructed type having at least one parameter that is a type parameter. If T is a type parameter of
a containing class, List<T> is an open constructed type.

Instantiation Compiler generates real instruction code for methods defined in parameterized types and real virtual
method table for closed constructed type.

See Also

Overview of Generics (see page 596)

Declaration of Generics (see page 598)

Overloads and Type Compatibility (Parameterized Types) (see page 602)

Constraints (Parameterized Types) (see page 603)

Class Variable in Parameterized Types (see page 605)

Changes in Standard Functions and Grammar (Parameterized Types) (see page 606)

3.1.3.4.3 Declaring Generics
The declaration of a generic is similar to the declaration of a regular class, record, or interface type. The difference is that a list of
one or more type parameters placed between angle brackets (< and >) follows the type identifier in the declaration of a generic.

Type parameters can be used as a typical type identifier inside the container type declaration and method body.

For example:

type
 TPair<Tkey,TValue> = class // TKey and TValue are type parameters
 FKey: TKey;
 FValue: TValue;
 function GetValue: TValue;
 end;

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

598

3

 function TPair<TKey,TValue>.GetValue: TValue;
begin
 Result := FValue;
end;

Type Argument

Generic types are instantiated by providing type arguments. In Delphi for .NET, you can use any type as a type argument except
for the following: a static array, a short string, or a record type that (recursively) contains a field of one or more of these two
types.

type
 TFoo<T> = class
 FData: T;
 end;
var
 F: TFoo<Integer>; // 'Integer' is sthe type argument of TFoo<T>
begin
 ,,,
end.

Nested Types

A nested type within a parameterized type is itself also a parameterized type.

type
 TFoo<T> = class
 type
 TBar = class
 X: Integer;
 // ...
 end;
 // ... TBaz = class
 type
 TQux<T> = class
 X: Integer;
 // ...
 end;
 // ...
 end;

To access the TBar nested type, you must specify a construction of the TFoo type first:

var
 N: TFoo<Double>.TBar;

A parameterized type can also be declared within a regular class as a nested type:

type
 TOuter = class
 type
 TData<T> = class
 FFoo1: TFoo<Integer>; // declared with closed constructed type FFoo2:
TFoo<T>; // declared with open constructed type
 FFooBar1: TFoo<Integer>.TBar; // declared with closed constructed type
 FFooBar2: TFoo<T>.TBar; // declared with open constructed type
 FBazQux1: TBaz.TQux<Integer>; // declared with closed constructed type
 FBazQux2: TBaz.TQux<T>; // declared with open constructed type
 ...
 end;
 var FIntegerData: TData<Integer>;
 FStringData: TData<String>;
 end;

Base Types

The base type of a parameterized class or interface type might be an actual type or a constructed type. The base type might not
be a type parameter alone.

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

599

3

type
 TFoo1<T> = class(TBar) // Actual type
 end;

 TFoo2<T> = class(TBar2<T>) // Open constructed type
 end;
 TFoo3<T> = class(TBar3<Integer>) // Closed constructed type
 end;

If TFoo2<String> is instantiated, an ancestor class becomes TBar2<String>, and TBar2<String> is automatically instantiated.

Class, Interface, and Record Types

Class, interface, and record types can be declared with type parameters.

For example:

type
 TRecord<T> = record
 FData: T;
 end;

type
 IAncestor<T> = interface
 function GetRecord: TRecrod<T>;
 end;
 IFoo<T> = interface(IAncestor<T>)
 procedure AMethod(Param: T);
end;

type
 TFoo<T> = class(TObject, IFoo<T>)
 FField: TRecord<T>;
 procedure AMethod(Param: T);
 function GetRecord: TRecord<T>;
 end;

Procedural Types

The procedure type and the method pointer can be declared with type parameters. Parameter types and result types can also
use type parameters.

For example:

type
 TMyProc<T> = procedure(Param: T);
 TMyProc2<Y> = procedure(Param1, Param2: Y) of object;
type
 TFoo = class
 procedure Test; procedure MyProc(X, Y: Integer);
 end;

procedure Sample(Param: Integer);
begin
 WriteLn(Param);
end;

procedure TFoo.MyProc(X, Y: Integer);
begin
 WriteLn('X:', X, ', Y:', Y);
end;
procedure TFoo.Test;
var
 X: TMyProc<Integer>;
 Y: TMyProc2<Integer>;
begin
 X := Sample;
 X(10);

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

600

3

 Y := MyProc;
 Y(20, 30);
end;

var
 F: TFoo;
begin
 F := TFoo.Create;
 F.Test;
 F.Free;
end.

var
 F: TFoo;
begin
 F := TFoo.Create;
 F.Test;
 F.Free;
end.

Parameterized Methods

Methods can be declared with type parameters. Parameter types and result types can use type parameters Parameterized
methods are similar to overloaded methods.

There are two ways to instantiate a method:

• Explicitly specifying type argument

• Automatically inferring from the argument type

For example:

type
 TMyProc2<Y> = procedure(Param1, Param2: Y) of object;
 TFoo = class
 procedure Test;
 procedure MyProc2<T>(X, Y: T);
 end;

procedure TFoo.MyProc2<T>(X, Y: T);
begin
 Write('MyProc2<T>');
 {$IFDEF CIL}
 Write(X.ToString);
 Write(', ');
 WriteLn(Y.ToString);
 {$ENDIF}
 WR
end;

procedure TFoo.Test;
var
 P: TMyProc2<Integer>;
begin
 MyProc2<String>('Hello', 'World');
 MyProc2('Hello', 'World');
 MyProc2<Integer>(10, 20);
 MyProc2(10, 20);
 P := MyProc2<Integer>;
 P(40, 50);
end;

var
 F: TFoo;
begin
 F := TFoo.Create;
 F.Test;

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

601

3

 F.Free;
end.

Scope of Type Parameters

The scope of a type parameter covers the type declaration and the bodies of all its members, but does not include descendent
types.

For example:

type
 TFoo<T> = class
 X: T;
 end;

 TBar<S> = class(TFoo<S>)
 Y: T; // error! unknown identifier "T"
 end;

var
 F: TFoo<Integer>;
begin
 F.T // error! unknown identifier "T"
end.

See Also

Overview of Generics (Parameterized Types) (see page 596)

Terminology of Generics (see page 597)

Constraints in Generics (Parameterized Types) (see page 603)

Overloads and Type Compatibility (Parameterized Types) (see page 602)

Class Variable in Parameterized Types (see page 605)

Changes in Standard Functions and Grammar (Parameterized Types) (see page 606)

3.1.3.4.4 Overloads and Type Compatibility in Generics
Overloads

Generic methods can participate in overloading alongside non-generic methods by using the 'overload' directive. If overload
selection between a generic method and a non-generic method would otherwise be ambiguous, the compiler selects the
non-generic method.

For example:

type
 TFoo = class
 procedure Proc<T>(A: T);
 procedure Proc(A: String);
 procedure Test;
 end;

procedure TFoo.Test;
begin
 Proc('Hello'); // calls Proc(A: String);
 Proc<String>('Hello'); // calls Proc<T>(A: T);
end;

Type Compatibility

Two non-instantiated parameterized types are considered assignment compatible only if they are identical or are aliases to a
common type.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

602

3

Two instantiated parameterized types are considered assignment compatible if the base types are identical (or are aliases to a
common type) and the type arguments are identical.

See Also

Overview of Generics (Parameterized Types) (see page 596)

Terminology of Generics (see page 597)

Declaring Parameterized Types (see page 598)

Constraints in Generics (Parameterized Types) (see page 603)

Class Variable in Parameterized Types (see page 605)

Changes in Standard Functions and Grammar (Parameterized Types) (see page 606)

3.1.3.4.5 Constraints in Generics
Constraints can be associated with a type parameter of a generic. Constraints declare items that must be supported by any
concrete type passed to that parameter in a construction of the generic type.

Specifying Parameterized Types with Constraints

Constraint items include:

• Zero, one, or multiple interface types

• Zero or one class type

• The reserved word "constructor", "class", or "record"

You can specify both "constructor" and "class" for a constraint. However, "record" cannot be combined with other reserved
words. Multiple constraints act as an additive union ("AND" logic)

The examples given here show only class types, although constraints apply to all forms of parameterized types

Declaring Constraints

Constraints are declared in a fashion that resembles type declarations in regular parameter lists:

type
 TFoo<T: ISerializable> = class
 FField: T;
 end;

In the example declaration given here, the 'T' type parameter indicates that it must support the ISerializable interface. In a type
construction like TFoo<TMyClass>, the compiler checks at compile time to ensure that TMyClass actually implements
ISerializable.

Multiple Type Parameters

When you specify constraints, you separate multiple type parameters by semicolons, as you do with a parameter list declaration:

type
 TFoo<T: ISerializable; V: IComparable>

Like parameter declarations, multiple type parameters can be grouped together in a comma list to bind to the same constraints:

type
 TFoo<S, U: ISerializable> ...

In the example above, S and U are both bound to the ISerializable constraint.

Multiple Constraints

Multiple constraints can be applied to a single type parameters as a comma list following the colon:

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

603

3

type
 TFoo<T: ISerializable, ICloneable; V: IComparable> ...

Constrained type parameters can be mixed with “free” type parameters. For example, all the following are valid:

type
 TFoo<T; C: IComparable> ...
 TBar<T, V> ...
 TTest<S: ISerializable; V> ...
 // T and V are free, but C and S are constrained

Types of Constraints

Interface Type Constraints

A type parameter constraint may contain zero, one, or a comma separated list of multiple interface types.

A type parameter constrained by an interface type means that the compiler will verify at compile time that a concrete type passed
as an argument to a type construction implements the specified interface type(s).

For example:

type
 TFoo<T: ICloneable> ...

 TTest1 = class(TObject, ICloneable)
 ...
 end;

 TError = class
 end;

var
 X: TFoo<TTest1>; // TTest1 is checked for ICloneable support here
 // at compile time
 Y: TFoo<TError>; // exp: syntax error here - TError does not support
 // ICloneable

Class Type Constraints

A type parameter may be constrained by zero or one class type. As with interface type constraints, this declaration means that
the compiler will require any concrete type passed as an argument to the constrained type param to be assignment compatible
with the constraint class.

Compatibility of class types follows the normal rules of OOP type compatibilty - descendent types can be passed where their
ancestor types are required.

Constructor Constraints

A type parameter may be constrained by zero or one instance of the reserved word "constructor". This means that the actual
argument type must be a class that defines a default constructor (a public parameterless constructor), so that methods within the
generic type may construct instances of the argument type using the argument type's default constructor, without knowing
anything about the argument type itself (no minimum base type requirements).

In a constraint declaration, you can mix “constructor” in any order with interface or class type constraints.

Class Constraint

A type parameter may be constrained by zero or one instance of the reserved word "class". This means that the actual type must
be a reference type, that is, a class or interface type.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

604

3

Record Constraint

A type parameter may be constrained by zero or one instance of the reserved word "record". This means that the actual type
must be a value type (not a reference type). A “record” constraint cannot be combined with a “class” or “constructor” constraint.

Type Inferencing

When using a field or variable of a constrained type parameter, it is not necessary in many cases to typecast in order to treat the
field or variable as one of the constrained types. The compiler can infer which type you're referring to by looking at the method
name and by performing a variation of overload resolution over the union of the methods sharing the same name across all the
constraints on that type.

For example:

type
 TFoo<T: ISerializable, ICloneable> = class
 FData: T;
 procedure Test;
 end;

procedure TFoo<T>.Test;
begin
 FData.Clone;
end;

The compiler looks for "Clone" methods in ISerializable and ICloneable, since FData is of type T, which is guaranteed to support
both those interfaces. If both interfaces implement "Clone" with the same parameter list, the compiler issues an ambiguous
method call error and require you to typecast to one or the other interface to disambiguate the context.

See Also

Overview of Generics (Parameterized Types) (see page 596)

Terminology of Generics (see page 597)

Declaring Generics (Parameterized Types) (see page 598)

Overloads and Type Compatibility (Parameterized Types) (see page 602)

Class Variable in Parameterized Types (see page 605)

Changes in Standard Functions and Grammar (Parameterized Types) (see page 606)

3.1.3.4.6 Class Variable in Generics
The class variable defined in a generic type is instantiated in each instantiated type identified by the type parameters.

The following code shows that TFoo<Integer>.FCount and TFoo<String>.FCount are instantiated only once, and these are two
different variables.

{$APPTYPE CONSOLE}
type
 TFoo<T> = class
 class var FCount: Integer;
 constructor Create;
 end;
 constructor TFoo<T>.Create;
begin
 inherited Create;
 Inc(FCount);
end;

procedure Test;

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

605

3

 FI: TFoo<Integer>;
begin
 FI := TFoo<Integer>.Create;
 FI.Free;
end;

var
 FI: TFoo<Integer>;
 FS: TFoo<String>;

begin
 FI := TFoo<Integer>.Create;
 FI.Free;
 FS := TFoo<String>.Create;
 FS.Free;
 Test;
 WriteLn(TFoo<Integer>.FCount); // outputs 2
 WriteLn(TFoo<String>.FCount); // outputs 1
end;

See Also

Overview of Generics (Parameterized Types) (see page 596)

Terminology of Generics (see page 597)

Declaring Parameterized Types (see page 598)

Constraints in Generics (Parameterized Types) (see page 603)

Overloads and Type Compatibility (Parameterized Types) (see page 602)

Changes in Standard Functions and Grammar (Parameterized Types) (see page 606)

3.1.3.4.7 Changes in Standard Functions and Grammar
Here is a list of standard function changes to support parameterized types. Example forms:

 Instantiated type : TFoo<Integer,String>
 Open constructed type : TFoo<Integer,T>
 Parameterized type : TFoo<,>

procedure Initialize(var X); [.Net]

 Instantiated type : allowed
 Open constructed type : allowed => Not yet implemented.
 Parameterized type : NOT allowed
function High(X:TypeId): Integer|Int64|UInt64;
function Low(X:TypeId): Integer|Int64|UInt64;
 Instantiated type : allowed
 Open constructed type : allowed => Not yet implemented.
 Parameterized type : NOT allowed

function Default(X:TYPE_ID): valueOfTypeId>;
 Instantiated type : allowed
 Open constructed type : allowed => Not yet implemented.
 Parameterized type : NOT allowed

function New;
// a := New(array[2,3] of Integer); [.Net]
// a := New(array[,], (const array init expr)); [.Net]
// a := New(dynArrayTypeId, dim1 [, dim2...dimN]); [.Net]
 Instantiated type : allowed
 Open constructed type : allowed => Not yet implemented.
 Parameterized type : NOT allowed

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

606

3

function SizeOf(TYPE_ID): PosInt;
 Instantiated type : allowed
 Open constructed type : allowed
 Parameterized type : NOT allowed

function TypeInfo;
function TypeHandle;
function TypeId;
// function TypeHandle(Identifier): System.RuntimeTypeHandle; [.Net]
// function TypeInfo(Identifier): System.Type; [.Net]
// function TypeOf(Identifier): System.Type; [.Net]
 Instantiated type : allowed
 Open constructed type : allowed => Not yet implemented
 Parameterized type : NOT allowed

Delphi Language Grammar Changes

These changes are in support of generics or parameterized types.

{ Type Declarations }

TypeDeclaration -> [CAttrs] Ident '=' Type
 -> [CAttrs] Ident '=' RecordTypeDecl
 -> [CAttrs] Ident '=' ClassTypeDecl
 -> [CAttrs] Ident '=' InterfaceTypeDecl
 -> [CAttrs] Ident '=' ClassHelperTypeDecl
 -> [CAttrs] Ident '=' RecordHelperTypeDecl
 -> [CAttrs] Ident '=' TYPE TypeId
 -> [CAttrs] Ident '=' TYPE ClassTypeId {.Net only}
{NEW} -> [CAttrs] Ident TypeParams '=' RecordTypeDecl
{NEW} -> [CAttrs] Ident TypeParams '=' ClassTypeDecl
{NEW} -> [CAttrs] Ident TypeParams '=' InterfaceTypeDecl
{NEW} -> [CAttrs] Ident TypeParams '=' Type

{NEW} TypeParams -> '<' TypeParamDeclList '>'

{NEW} TypeParamDeclList -> TypeParamDecl/';'...

{NEW} TypeParamDecl -> TypeParamList [':' ConstraintList]

{NEW} TypeParamList -> ([CAttrs] ['+' | '-' [CAttrs]] Ident)/','...

{NEW} ConstraintList -> Constraint/','...

{NEW} Constraint -> CONSTRUCTOR
{NEW} -> RECORD
{NEW} -> CLASS
{NEW} -> TypeId

MethodResolutionClause -> FUNCTION InterfaceIdent '.'
{OLD} Ident '=' Ident ';'
{NEW} Ident [TypeArgs] '=' Ident [TypeArgs] ';'
 -> PROCEDURE InterfaceIdent '.'
{OLD} Ident '=' Ident ';'
{NEW} Ident [TypeArgs] '=' Ident [TypeArgs] ';'

FunctionHeading -> [CLASS] FUNCTION Ident
{NEW} [FormalTypeParamList]
 [FormalParameterList] ':' TypeIdStringFile

ProcedureHeading -> [CALSS] PROCEDURE Ident
{NEW} [FormalTypeParamList]
 [FormalParameterList]

ClassOperatorHeading -> CLASS OPERATOR OperatorIdent
{NEW} [FormalTypeParamList]
 FormalParameterList : TypeIdStringFile

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

607

3

ConstructorHeading -> CONSTRUCTOR Ident
{NEW} [FormalTypeParamList]
 [FormalParameterList]

RecordConstructorHeading -> CONSTRUCTOR Ident
{NEW} [FormalTypeParamList]
 FormalParameterList

DestructorHeading -> DESTRUCTOR Ident
{NEW} [FormalTypeParamList]
 [FormalParameterList]

MethodBodyHeading -> [CLASS] FUNCTION NSTypeId '.' Ident
{NEW} [FormalTypeParamList]
 [FormalParameterList] ':' TypeIdStringFile
 -> [CLASS] PROCEDURE NSTypeId '.' Ident
{NEW} [FormalTypeParamList]
 [FormalParameterList]

ProcedureTypeHeading -> PROCEDURE
{NEW} [FormalTypeParamList]
 [FormalParameterList]

FunctionTypeHeading -> FUNCTION
{NEW} [FormalTypeParamList]
 [FormalParameterList] ':' TypeIdStringFile

FormalTypeParamList -> '<' TypeParamDeclList >'

{ Types }

Type -> TypeId
 -> SimpleType
 -> StructualType
 -> PointerType
 -> StringType
 -> ProcedureType

 -> ClassRefType
 -> TypeRefType
{NEW}-> ClassTypeId TypeArgs
{NEW}-> RecordTypeId TypeArgs
{NEW}-> InterfaceIdent TypeArgs

{NEW} TypeArgs -> '<' (TypeId | STRING)/','... '>'

{ Attributes }

CAttrExpr -> ConstExpr
 -> TYPEOF '(' TypeId ')'
{NEW} -> TYPEOF '(' TypeId '<' [','...] '>' ')'
{NEW} -> TYPEOF '(' TypeId '<' TypeId/','... '>' ')'

See Also

Overview of Generics (Parameterized Types) (see page 596)

Terminology of Generics (see page 597)

Declaring Generics (Parameterized Types) (see page 598)

Overloads and Type Compatibility (Parameterized Types) (see page 602)

Constraints (Parameterized Types) (see page 603)

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

608

3

Class Variable in Parameterized Types (see page 605)

3.1.3.5 Inline Assembly Code (Win32 Only)
This section describes the use of the inline assembler on the Win32 platform.

Topics

Name Description

Using Inline Assembly Code (Win32 Only) (see page 610) The built-in assembler allows you to write assembly code within Delphi programs.
The inline assembler is available only on the Win32 Delphi compiler. It has the
following features:

• Allows for inline assembly.

• Supports all instructions found in the Intel Pentium 4, Intel
MMX extensions, Streaming SIMD Extensions (SSE), and
the AMD Athlon (including 3D Now!).

• Provides no macro support, but allows for pure assembly
function procedures.

• Permits the use of Delphi identifiers, such as constants,
types, and variables in assembly statements.

As an alternative to the built-in assembler, you can link to
object files that contain external procedures and
functions.... more (see page 610)

Understanding Assembler Syntax (Win32 Only) (see page 610) The inline assembler is available only on the Win32 Delphi compiler. The
following material describes the elements of the assembler syntax necessary for
proper use.

• Assembler Statement Syntax

• Labels

• Instruction Opcodes

• Assembly Directives

• Operands

Assembly Expressions (Win32 Only) (see page 616) The built-in assembler evaluates all expressions as 32-bit integer values. It
doesn't support floating-point and string values, except string constants. The
inline assembler is available only on the Win32 Delphi compiler.
Expressions are built from expression elements and operators, and each
expression has an associated expression class and expression type. This topic
covers the following material:

• Differences between Delphi and Assembler Expressions

• Expression Elements

• Expression Classes

• Expression Types

• Expression Operators

Assembly Procedures and Functions (Win32 Only) (see page 623) You can write complete procedures and functions using inline assembly
language code, without including a begin...end statement. This topic covers
these issues:

• Compiler Optimizations.

• Function Results.

The inline assembler is available only on the Win32 Delphi
compiler.

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

609

3

3.1.3.5.1 Using Inline Assembly Code (Win32 Only)
The built-in assembler allows you to write assembly code within Delphi programs. The inline assembler is available only on the
Win32 Delphi compiler. It has the following features:

• Allows for inline assembly.

• Supports all instructions found in the Intel Pentium 4, Intel MMX extensions, Streaming SIMD Extensions (SSE), and the AMD
Athlon (including 3D Now!).

• Provides no macro support, but allows for pure assembly function procedures.

• Permits the use of Delphi identifiers, such as constants, types, and variables in assembly statements.

As an alternative to the built-in assembler, you can link to object files that contain external procedures and functions. See the
topic on External declarations for more information. If you have external assembly code that you want to use in your
applications, you should consider rewriting it in the Delphi language or minimally reimplement it using the inline assembler.

Using the asm Statement

The built-in assembler is accessed through asm statements, which have the form

asm statementList end

where statementList is a sequence of assembly statements separated by semicolons, end-of-line characters, or Delphi
comments.

Comments in an asm statement must be in Delphi style. A semicolon does not indicate that the rest of the line is a comment.

The reserved word inline and the directive assembler are maintained for backward compatibility only. They have no effect on
the compiler.

Using Registers

In general, the rules of register use in an asm statement are the same as those of an external procedure or function. An asm
statement must preserve the EDI, ESI, ESP, EBP, and EBX registers, but can freely modify the EAX, ECX, and EDX registers.
On entry to an asm statement, EBP points to the current stack frame and ESP points to the top of the stack. Except for ESP and
EBP, an asm statement can assume nothing about register contents on entry to the statement.

See Also

Understanding Assembler Syntax (see page 610)

Assembly Expressions (see page 616)

Assembly Procedures and Functions (see page 623)

3.1.3.5.2 Understanding Assembler Syntax (Win32 Only)
The inline assembler is available only on the Win32 Delphi compiler. The following material describes the elements of the
assembler syntax necessary for proper use.

• Assembler Statement Syntax

• Labels

• Instruction Opcodes

• Assembly Directives

• Operands

Assembler Statement Syntax

This syntax of an assembly statement is

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

610

3

Label: Prefix Opcode Operand1, Operand2

where Label is a label, Prefix is an assembly prefix opcode (operation code), Opcode is an assembly instruction opcode or
directive, and Operand is an assembly expression. Label and Prefix are optional. Some opcodes take only one operand, and
some take none.

Comments are allowed between assembly statements, but not within them. For example,

 MOV AX,1 {Initial value} { OK }
 MOV CX,100 {Count} { OK }

 MOV {Initial value} AX,1; { Error! }
 MOV CX, {Count} 100 { Error! }

Labels

Labels are used in built-in assembly statements as they are in the Delphi language by writing the label and a colon before a
statement. There is no limit to a label's length. As in Delphi, labels must be declared in a label declaration part in the block
containing the asm statement. The one exception to this rule is local labels.

Local labels are labels that start with an at-sign (@). They consist of an at-sign followed by one or more letters, digits,
underscores, or at-signs. Use of local labels is restricted to asm statements, and the scope of a local label extends from the asm
reserved word to the end of the asm statement that contains it. A local label doesn't have to be declared.

Instruction Opcodes

The built-in assembler supports all of the Intel-documented opcodes for general application use. Note that operating system
privileged instructions may not be supported. Specifically, the following families of instructions are supported:

• Pentium family

• Pentium Pro and Pentium II

• Pentium III

• Pentium 4

In addition, the built-in assembler supports the following instruction sets

• AMD 3DNow! (from the AMD K6 onwards)

• AMD Enhanced 3DNow! (from the AMD Athlon onwards)

For a complete description of each instruction, refer to your microprocessor documentation.

RET instruction sizing

The RET instruction opcode always generates a near return.

Automatic jump sizing

Unless otherwise directed, the built-in assembler optimizes jump instructions by automatically selecting the shortest, and
therefore most efficient, form of a jump instruction. This automatic jump sizing applies to the unconditional jump instruction
(JMP), and to all conditional jump instructions when the target is a label (not a procedure or function).

For an unconditional jump instruction (JMP), the built-in assembler generates a short jump (one-byte opcode followed by a
one-byte displacement) if the distance to the target label is 128 to 127 bytes. Otherwise it generates a near jump (one-byte
opcode followed by a two-byte displacement).

For a conditional jump instruction, a short jump (one-byte opcode followed by a one-byte displacement) is generated if the
distance to the target label is 128 to 127 bytes. Otherwise, the built-in assembler generates a short jump with the inverse
condition, which jumps over a near jump to the target label (five bytes in total). For example, the assembly statement

JC Stop

where Stop isn't within reach of a short jump, is converted to a machine code sequence that corresponds to this:

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

611

3

 JNC Skip
 JMP Stop
 Skip:

Jumps to the entry points of procedures and functions are always near.

Assembly Directives

The built-in assembler supports three assembly define directives: DB (define byte), DW (define word), and DD (define double
word). Each generates data corresponding to the comma-separated operands that follow the directive.

Directive Description

DB Define byte: generates a sequence of bytes. Each operand can be a constant expression with a value
between 128 and 255, or a character string of any length. Constant expressions generate one byte of
code, and strings generate a sequence of bytes with values corresponding to the ASCII code of each
character.

DW Define word: generates a sequence of words. Each operand can be a constant expression with a
value between 32,768 and 65,535, or an address expression. For an address expression, the built-in
assembler generates a near pointer, a word that contains the offset part of the address.

DD Define double word: generates a sequence of double words. Each operand can be a constant
expression with a value between 2,147,483,648 and 4,294,967,295, or an address expression. For
an address expression, the built-in assembler generates a far pointer, a word that contains the offset
part of the address, followed by a word that contains the segment part of the address.

DQ Define quad word: defines a quad word for Int64 values.

The data generated by the DB, DW, and DD directives is always stored in the code segment, just like the code generated by
other built-in assembly statements. To generate uninitialized or initialized data in the data segment, you should use Delphi var or
const declarations.

Some examples of DB, DW, and DD directives follow.

 asm
 DB
FFH

{ One byte }
 DB
0,99 {
Two bytes }
 DB
'A'

{ Ord('A') }
 DB 'Hello world...',0DH,0AH { String followed by CR/LF }
 DB 12,'string' {
Delphi style string }
 DW
0FFFFH { One word
}
 DW
0,9999 { Two
words }
 DW
'A'

{ Same as DB 'A',0 }
 DW
'BA' {
Same as DB 'A','B' }
 DW
MyVar {
Offset of MyVar }

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

612

3

 DW
MyProc { Offset
of MyProc }
 DD 0FFFFFFFFH { One
double-word }
 DD 0,999999999 { Two
double-words }
 DD
'A'

{ Same as DB 'A',0,0,0 }
 DD
'DCBA' { Same as
DB 'A','B','C','D' }
 DD
MyVar {
Pointer to MyVar }
 DD
MyProc { Pointer
to MyProc }
 end;

When an identifier precedes a DB, DW , or DD directive, it causes the declaration of a byte-, word-, or double-word-sized
variable at the location of the directive. For example, the assembler allows the following:

 ByteVar DB ?
 WordVar DW ?
 IntVar DD ?
 .
 .
 .
 MOV AL,ByteVar
 MOV BX,WordVar
 MOV ECX,IntVar

The built-in assembler doesn't support such variable declarations. The only kind of symbol that can be defined in an inline
assembly statement is a label. All variables must be declared using Delphi syntax; the preceding construction can be replaced by

var
 ByteVar: Byte;
 WordVar: Word;
 IntVar: Integer;
 .
 .
 .

 asm
 MOV AL,ByteVar
 MOV BX,WordVar
 MOV ECX,IntVar
 end;

SMALL and LARGE can be used determine the width of a displacement:

MOV EAX, [LARGE $1234]

This instruction generates a 'normal' move with a 32-bit displacement ($00001234).

MOV EAX, [SMALL $1234]

The second instruction will generate a move with an address size override prefix and a 16-bit displacement ($1234).

SMALL can be used to save space. The following example generates an address size override and a 2-byte address (in total
three bytes)

 MOV EAX, [SMALL 123]

as opposed to

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

613

3

 MOV EAX, [123]

which will generate no address size override and a 4-byte address (in total four bytes).

Two additional directives allow assembly code to access dynamic and virtual methods: VMTOFFSET and DMTINDEX.

VMTOFFSET retrieves the offset in bytes of the virtual method pointer table entry of the virtual method argument from the
beginning of the virtual method table (VMT). This directive needs a fully specified class name with a method name as a
parameter (for example, TExample.VirtualMethod), or an interface name and an interface method name.

DMTINDEX retrieves the dynamic method table index of the passed dynamic method. This directive also needs a fully specified
class name with a method name as a parameter, for example, TExample.DynamicMethod. To invoke the dynamic method, call
System.@CallDynaInst with the (E)SI register containing the value obtained from DMTINDEX.

Note: Methods with the message directive are implemented as dynamic methods and can also be called using the DMTINDEX
technique. For example:

 TMyClass = class
 procedure x; message MYMESSAGE;
 end;

The following example uses both DMTINDEX and VMTOFFSET to access dynamic and virtual methods:

program Project2;
 type
 TExample = class
 procedure DynamicMethod; dynamic;
 procedure VirtualMethod; virtual;
 end;

 procedure TExample.DynamicMethod;
 begin

 end;

 procedure TExample.VirtualMethod;
 begin

 end;

 procedure CallDynamicMethod(e: TExample);
 asm
 // Save ESI register
 PUSH ESI

 // Instance pointer needs to be in EAX
 MOV EAX, e

 // DMT entry index needs to be in (E)SI
 MOV ESI, DMTINDEX TExample.DynamicMethod

 // Now call the method
 CALL System.@CallDynaInst

 // Restore ESI register
 POP ESI

 end;

 procedure CallVirtualMethod(e: TExample);
 asm
 // Instance pointer needs to be in EAX
 MOV EAX, e

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

614

3

 // Retrieve VMT table entry
 MOV EDX, [EAX]

 // Now call the method at offset VMTOFFSET
 CALL DWORD PTR [EDX + VMTOFFSET TExample.VirtualMethod]

 end;

 var
 e: TExample;
 begin
 e := TExample.Create;
 try
 CallDynamicMethod(e);
 CallVirtualMethod(e);
 finally
 e.Free;
 end;
 end.

Operands

Inline assembler operands are expressions that consist of constants, registers, symbols, and operators.

Within operands, the following reserved words have predefined meanings:

Built-in assembler reserved words

AH CL DX ESP mm4 SHL WORD

AL CS EAX FS mm5 SHR xmm0

AND CX EBP GS mm6 SI xmm1

AX DH EBX HIGH mm7 SMALL xmm2

BH DI ECX LARGE MOD SP xmm3

BL DL EDI LOW NOT SS xmm4

BP CL EDX mm0 OFFSET ST xmm5

BX DMTINDEX EIP mm1 OR TBYTE xmm6

BYTE DS ES mm2 PTR TYPE xmm7

CH DWORD ESI mm3 QWORD VMTOFFSET XOR

Reserved words always take precedence over user-defined identifiers. For example,

var
 Ch: Char;
 .
 .
 .
asm
 MOV CH, 1
end;

loads 1 into the CH register, not into the Ch variable. To access a user-defined symbol with the same name as a reserved word,
you must use the ampersand (&) override operator:

MOV&Ch, 1

It is best to avoid user-defined identifiers with the same names as built-in assembler reserved words.

See Also

Using Inline Assembly Code (see page 610)

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

615

3

Assembly Expressions (see page 616)

Assembly Procedures and Functions (see page 623)

3.1.3.5.3 Assembly Expressions (Win32 Only)
The built-in assembler evaluates all expressions as 32-bit integer values. It doesn't support floating-point and string values,
except string constants. The inline assembler is available only on the Win32 Delphi compiler.

Expressions are built from expression elements and operators, and each expression has an associated expression class and
expression type. This topic covers the following material:

• Differences between Delphi and Assembler Expressions

• Expression Elements

• Expression Classes

• Expression Types

• Expression Operators

Differences between Delphi and Assembler Expressions

The most important difference between Delphi expressions and built-in assembler expressions is that assembler expressions
must resolve to a constant value. In other words, it must resolve to a value that can be computed at compile time. For example,
given the declarations

const
 X = 10;
 Y = 20;
var
 Z: Integer;

the following is a valid statement.

asm
 MOV Z,X+Y
end;

Because both X and Y are constants, the expression X + Y is a convenient way of writing the constant 30, and the resulting
instruction simply moves of the value 30 into the variable Z. But if X and Y are variables

var
 X, Y: Integer;

the built-in assembler cannot compute the value of X + Y at compile time. In this case, to move the sum of X and Y into Z you
would use

asm
 MOV EAX,X
 ADD EAX,Y
 MOV Z,EAX
end;

In a Delphi expression, a variable reference denotes the contents of the variable. But in an assembler expression, a variable
reference denotes the address of the variable. In Delphi the expression X + 4 (where X is a variable) means the contents of X
plus 4, while to the built-in assembler it means the contents of the word at the address four bytes higher than the address of X.
So, even though you are allowed to write

asm
 MOV EAX,X+4
end;

this code doesn't load the value of X plus 4 into AX; instead, it loads the value of a word stored four bytes beyond X. The correct
way to add 4 to the contents of X is

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

616

3

asm
 MOV EAX,X
 ADD EAX,4
end;

Expression Elements

The elements of an expression are constants, registers, and symbols.

Numeric Constants

Numeric constants must be integers, and their values must be between 2,147,483,648 and 4,294,967,295.

By default, numeric constants use decimal notation, but the built-in assembler also supports binary, octal, and hexadecimal.
Binary notation is selected by writing a B after the number, octal notation by writing an O after the number, and hexadecimal
notation by writing an H after the number or a $ before the number.

Numeric constants must start with one of the digits 0 through 9 or the $ character. When you write a hexadecimal constant using
the H suffix, an extra zero is required in front of the number if the first significant digit is one of the digits A through F. For
example, 0BAD4H and $BAD4 are hexadecimal constants, but BAD4H is an identifier because it starts with a letter.

String Constants

String constants must be enclosed in single or double quotation marks. Two consecutive quotation marks of the same type as
the enclosing quotation marks count as only one character. Here are some examples of string constants:

 'Z'
 'Delphi'
 'Linux'
 "That's all folks"
 '"That''s all folks," he said.'
 '100'
 '"'
 "'"

String constants of any length are allowed in DB directives, and cause allocation of a sequence of bytes containing the ASCII
values of the characters in the string. In all other cases, a string constant can be no longer than four characters and denotes a
numeric value which can participate in an expression. The numeric value of a string constant is calculated as

Ord(Ch1) + Ord(Ch2) shl 8 + Ord(Ch3) shl 16 + Ord(Ch4) shl 24

where Ch1 is the rightmost (last) character and Ch4 is the leftmost (first) character. If the string is shorter than four characters,
the leftmost characters are assumed to be zero. The following table shows string constants and their numeric values.

String examples and their values

String Value

'a' 00000061H

'ba' 00006261H

'cba' 00636261H

'dcba' 64636261H

'a ' 00006120H

' a' 20202061H

'a' * 2 000000E2H

'a'-'A' 00000020H

not 'a' FFFFFF9EH

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

617

3

Registers

The following reserved symbols denote CPU registers in the inline assembler:

CPU registers

32-bit general purpose EAX EBX ECX
EDX

32-bit pointer or index ESP EBP ESI EDI

16-bit general purpose AX BX CX DX 16-bit pointer or index SP BP SI DI

8-bit low registers AL BL CL DL 16-bit segment registers CS DS SS ES

32-bit segment registers FS GS

8-bit high registers AH BH CH DH Coprocessor register stack ST

When an operand consists solely of a register name, it is called a register operand. All registers can be used as register
operands, and some registers can be used in other contexts.

The base registers (BX and BP) and the index registers (SI and DI) can be written within square brackets to indicate indexing.
Valid base/index register combinations are [BX], [BP], [SI], [DI], [BX+SI], [BX+DI], [BP+SI], and [BP+DI]. You can also index with
all the 32-bit registersfor example, [EAX+ECX], [ESP], and [ESP+EAX+5].

The segment registers (ES, CS, SS, DS, FS, and GS) are supported, but segments are normally not useful in 32-bit applications.

The symbol ST denotes the topmost register on the 8087 floating-point register stack. Each of the eight floating-point registers
can be referred to using ST(X), where X is a constant between 0 and 7 indicating the distance from the top of the register stack.

Symbols

The built-in assembler allows you to access almost all Delphi identifiers in assembly language expressions, including constants,
types, variables, procedures, and functions. In addition, the built-in assembler implements the special symbol @Result, which
corresponds to the Result variable within the body of a function. For example, the function

function Sum(X, Y: Integer): Integer;
begin
 Result := X + Y;
end;

could be written in assembly language as

function Sum(X, Y: Integer): Integer; stdcall;
begin
 asm
 MOV EAX,X
 ADD EAX,Y
 MOV @Result,EAX
 end;
end;

The following symbols cannot be used in asm statements:

• Standard procedures and functions (for example, WriteLn and Chr).

• String, floating-point, and set constants (except when loading registers).

• Labels that aren't declared in the current block.

• The @Result symbol outside of functions.

The following table summarizes the kinds of symbol that can be used in asm statements.

Symbols recognized by the built-in assembler

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

618

3

Symbol Value Class Type

Label Address of label Memory reference Size of type

Constant Value of constant Immediate value 0

Type 0 Memory reference Size of type

Field Offset of field Memory Size of type

Variable Address of variable or address of a pointer
to the variable

Memory reference Size of type

Procedure Address of procedure Memory reference Size of type

Function Address of function Memory reference Size of type

Unit 0 Immediate value 0

@Result Result variable offset Memory reference Size of type

With optimizations disabled, local variables (variables declared in procedures and functions) are always allocated on the stack
and accessed relative to EBP, and the value of a local variable symbol is its signed offset from EBP. The assembler
automatically adds [EBP] in references to local variables. For example, given the declaration

var Count: Integer;

within a function or procedure, the instruction

MOV EAX,Count

assembles into MOV EAX,[EBP4].

The built-in assembler treats var parameters as a 32-bit pointers, and the size of a var parameter is always 4. The syntax for
accessing a var parameter is different from that for accessing a value parameter. To access the contents of a var parameter,
you must first load the 32-bit pointer and then access the location it points to. For example,

function Sum(var X, Y: Integer): Integer; stdcall;
 begin
 asm
 MOV EAX,X
 MOV EAX,[EAX]
 MOV EDX,Y
 ADD EAX,[EDX]
 MOV @Result,EAX
 end;
 end;

Identifiers can be qualified within asm statements. For example, given the declarations

 type
 TPoint = record
 X, Y: Integer;
 end;
 TRect = record
 A, B: TPoint;
 end;
 var
 P: TPoint;
 R: TRect;

the following constructions can be used in an asm statement to access fields.

MOV EAX,P.X
MOV EDX,P.Y
MOV ECX,R.A.X
MOV EBX,R.B.Y

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

619

3

A type identifier can be used to construct variables on the fly. Each of the following instructions generates the same machine
code, which loads the contents of [EDX] into EAX.

MOV EAX,(TRect PTR [EDX]).B.X
MOV EAX,TRect([EDX]).B.X
MOV EAX,TRect[EDX].B.X
MOV EAX,[EDX].TRect.B.X

Expression Classes

The built-in assembler divides expressions into three classes: registers, memory references, and immediate values.

An expression that consists solely of a register name is a register expression. Examples of register expressions are AX, CL, DI,
and ES. Used as operands, register expressions direct the assembler to generate instructions that operate on the CPU registers.

Expressions that denote memory locations are memory references. Delphi's labels, variables, typed constants, procedures, and
functions belong to this category.

Expressions that aren't registers and aren't associated with memory locations are immediate values. This group includes Delphi's
untyped constants and type identifiers.

Immediate values and memory references cause different code to be generated when used as operands. For example,

const
 Start = 10;
var
 Count: Integer;
 .
 .
 .
asm
 MOV EAX,Start { MOV EAX,xxxx }
 MOV EBX,Count { MOV EBX,[xxxx] }
 MOV ECX,[Start] { MOV ECX,[xxxx] }
 MOV EDX,OFFSET Count { MOV EDX,xxxx }
end;

Because Start is an immediate value, the first MOV is assembled into a move immediate instruction. The second MOV, however,
is translated into a move memory instruction, as Count is a memory reference. In the third MOV, the brackets convert Start into a
memory reference (in this case, the word at offset 10 in the data segment). In the fourth MOV, the OFFSET operator converts
Count into an immediate value (the offset of Count in the data segment).

The brackets and OFFSET operator complement each other. The following asm statement produces identical machine code to
the first two lines of the previous asm statement.

asm
 MOV EAX,OFFSET [Start]
 MOV EBX,[OFFSET Count]
end;

Memory references and immediate values are further classified as either relocatable or absolute. Relocation is the process by
which the linker assigns absolute addresses to symbols. A relocatable expression denotes a value that requires relocation at link
time, while an absolute expression denotes a value that requires no such relocation. Typically, expressions that refer to labels,
variables, procedures, or functions are relocatable, since the final address of these symbols is unknown at compile time.
Expressions that operate solely on constants are absolute.

The built-in assembler allows you to carry out any operation on an absolute value, but it restricts operations on relocatable
values to addition and subtraction of constants.

Expression Types

Every built-in assembler expression has a type, or more correctly a size, because the assembler regards the type of an
expression simply as the size of its memory location. For example, the type of an Integer variable is four, because it occupies 4
bytes. The built-in assembler performs type checking whenever possible, so in the instructions

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

620

3

var
 QuitFlag: Boolean;
 OutBufPtr: Word;
 .
 .
 .
asm
 MOV AL,QuitFlag
 MOV BX,OutBufPtr
end;

the assembler checks that the size of QuitFlag is one (a byte), and that the size of OutBufPtr is two (a word). The instruction

MOV DL,OutBufPtr

produces an error because DL is a byte-sized register and OutBufPtr is a word. The type of a memory reference can be
changed through a typecast; these are correct ways of writing the previous instruction:

MOV DL,BYTE PTR OutBufPtr
MOV DL,Byte(OutBufPtr)
MOV DL,OutBufPtr.Byte

These MOV instructions all refer to the first (least significant) byte of the OutBufPtr variable.

In some cases, a memory reference is untyped. One example is an immediate value (Buffer) enclosed in square brackets:

procedure Example(var Buffer);
 asm
 MOV AL, [Buffer]
 MOV CX, [Buffer]
 MOV EDX, [Buffer]
 end;

The built-in assembler permits these instructions, because the expression [Buffer] has no type. [Buffer] means "the contents of
the location indicated by Buffer," and the type can be determined from the first operand (byte for AL, word for CX, and
double-word for EDX).

In cases where the type can't be determined from another operand, the built-in assembler requires an explicit typecast. For
example,

INC BYTE PTR [ECX]
IMUL WORD PTR [EDX]

The following table summarizes the predefined type symbols that the built-in assembler provides in addition to any currently
declared Delphi types.

Predefined type symbols

Symbol Type

BYTE 1

WORD 2

DWORD 4

QWORD 8

TBYTE 10

Expression Operators

The built-in assembler provides a variety of operators. Precedence rules are different from that of the Delphi language; for
example, in an asm statement, AND has lower precedence than the addition and subtraction operators. The following table lists
the built-in assembler's expression operators in decreasing order of precedence.

Precedence of built-in assembler expression operators

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

621

3

Operators Remarks Precedence

& highest

(...), [...],., HIGH, LOW

+, - unary + and
-

:

OFFSET, TYPE, PTR, *, /, MOD, SHL, SHR, +, - binary +
and -

NOT, AND, OR, XOR lowest

The following table defines the built-in assembler's expression operators.

Definitions of built-in assembler expression operators

Operator Description

& Identifier override. The identifier immediately following the ampersand is treated as a user-defined symbol,
even if the spelling is the same as a built-in assembler reserved symbol.

(...) Subexpression. Expressions within parentheses are evaluated completely prior to being treated as a single
expression element. Another expression can precede the expression within the parentheses; the result in this
case is the sum of the values of the two expressions, with the type of the first expression.

[...] Memory reference. The expression within brackets is evaluated completely prior to being treated as a single
expression element. Another expression can precede the expression within the brackets; the result in this case
is the sum of the values of the two expressions, with the type of the first expression. The result is always a
memory reference.

. Structure member selector. The result is the sum of the expression before the period and the expression after
the period, with the type of the expression after the period. Symbols belonging to the scope identified by the
expression before the period can be accessed in the expression after the period.

HIGH Returns the high-order 8 bits of the word-sized expression following the operator. The expression must be an
absolute immediate value.

LOW Returns the low-order 8 bits of the word-sized expression following the operator. The expression must be an
absolute immediate value.

+ Unary plus. Returns the expression following the plus with no changes. The expression must be an absolute
immediate value.

- Unary minus. Returns the negated value of the expression following the minus. The expression must be an
absolute immediate value.

+ Addition. The expressions can be immediate values or memory references, but only one of the expressions
can be a relocatable value. If one of the expressions is a relocatable value, the result is also a relocatable
value. If either of the expressions is a memory reference, the result is also a memory reference.

- Subtraction. The first expression can have any class, but the second expression must be an absolute
immediate value. The result has the same class as the first expression.

: Segment override. Instructs the assembler that the expression after the colon belongs to the segment given by
the segment register name (CS, DS, SS, FS, GS, or ES) before the colon. The result is a memory reference
with the value of the expression after the colon. When a segment override is used in an instruction operand, the
instruction is prefixed with an appropriate segment-override prefix instruction to ensure that the indicated
segment is selected.

OFFSET Returns the offset part (double word) of the expression following the operator. The result is an immediate value.

TYPE Returns the type (size in bytes) of the expression following the operator. The type of an immediate value is 0.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

622

3

PTR Typecast operator. The result is a memory reference with the value of the expression following the operator
and the type of the expression in front of the operator.

* Multiplication. Both expressions must be absolute immediate values, and the result is an absolute immediate
value.

/ Integer division. Both expressions must be absolute immediate values, and the result is an absolute
immediate value.

MOD Remainder after integer division. Both expressions must be absolute immediate values, and the result is an
absolute immediate value.

SHL Logical shift left. Both expressions must be absolute immediate values, and the result is an absolute
immediate value.

SHR Logical shift right. Both expressions must be absolute immediate values, and the result is an absolute
immediate value.

NOT Bitwise negation. The expression must be an absolute immediate value, and the result is an absolute
immediate value.

AND Bitwise AND. Both expressions must be absolute immediate values, and the result is an absolute immediate
value.

OR Bitwise OR. Both expressions must be absolute immediate values, and the result is an absolute immediate
value.

XOR Bitwise exclusive OR. Both expressions must be absolute immediate values, and the result is an absolute
immediate value.

See Also

Using Inline Assembly Code (see page 610)

Understanding Assembler Syntax (see page 610)

Assembly Procedures and Functions (see page 623)

3.1.3.5.4 Assembly Procedures and Functions (Win32 Only)
You can write complete procedures and functions using inline assembly language code, without including a begin...end
statement. This topic covers these issues:

• Compiler Optimizations.

• Function Results.

The inline assembler is available only on the Win32 Delphi compiler.

Compiler Optimizations

An example of the type of function you can write is as follows:

function LongMul(X, Y: Integer): Longint;
 asm
 MOV EAX,X
 IMUL Y
 end;

The compiler performs several optimizations on these routines:

• No code is generated to copy value parameters into local variables. This affects all string-type value parameters and other
value parameters whose size isn't 1, 2, or 4 bytes. Within the routine, such parameters must be treated as if they were var
parameters.

• Unless a function returns a string, variant, or interface reference, the compiler doesn't allocate a function result variable; a

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

623

3

reference to the @Result symbol is an error. For strings, variants, and interfaces, the caller always allocates an @Result
pointer.

• The compiler only generates stack frames for nested routines, for routines that have local parameters, or for routines that
have parameters on the stack.

• Locals is the size of the local variables and Params is the size of the parameters. If both Locals and Params are zero, there
is no entry code, and the exit code consists simply of a RET instruction.

The automatically generated entry and exit code for the routine looks like this:

PUSH EBP ;Present if Locals <> 0 or Params <> 0
MOV EBP,ESP ;Present if Locals <> 0 or Params <> 0
SUB ESP,Locals ;Present if Locals <> 0
.
.
.
MOV ESP,EBP ;Present if Locals <> 0
POP EBP ;Present if Locals <> 0 or Params <> 0
RET Params ;Always present

If locals include variants, long strings, or interfaces, they are initialized to zero but not finalized.

Function Results

Assembly language functions return their results as follows.

• Ordinal values are returned in AL (8-bit values), AX (16-bit values), or EAX (32-bit values).

• Real values are returned in ST(0) on the coprocessor's register stack. (Currency values are scaled by 10000.)

• Pointers, including long strings, are returned in EAX.

• Short strings and variants are returned in the temporary location pointed to by @Result.

See Also

Using Inline Assembly Code (see page 610)

Understanding Assembler Syntax (see page 610)

Assembly Expressions (see page 616)

3.1.3.6 Object Interfaces
This section describes the use of interfaces in Delphi.

Topics

Name Description

Object Interfaces (see page 625) An object interface, or simply interface, defines methods that can be
implemented by a class. Interfaces are declared like classes, but cannot be
directly instantiated and do not have their own method definitions. Rather, it is
the responsibility of any class that supports an interface to provide
implementations for the interface's methods. A variable of an interface type can
reference an object whose class implements that interface; however, only
methods declared in the interface can be called using such a variable.
Interfaces offer some of the advantages of multiple inheritance without the
semantic difficulties. They are also essential for using... more (see page 625)

Implementing Interfaces (see page 627) Once an interface has been declared, it must be implemented in a class before it
can be used. The interfaces implemented by a class are specified in the class's
declaration, after the name of the class's ancestor.

Interface References (see page 631) If you declare a variable of an interface type, the variable can reference
instances of any class that implements the interface. These topics describe
Interface references and related topics.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

624

3

Automation Objects (Win32 Only) (see page 633) An object whose class implements the IDispatch interface (declared in the
System unit) is an Automation object.
Use variants to access Automation objects. When a variant references an
Automation object, you can call the object's methods and read or write to its
properties through the variant. To do this, you must include ComObj in the uses
clause of one of your units or your program or library.

3.1.3.6.1 Object Interfaces
An object interface, or simply interface, defines methods that can be implemented by a class. Interfaces are declared like
classes, but cannot be directly instantiated and do not have their own method definitions. Rather, it is the responsibility of any
class that supports an interface to provide implementations for the interface's methods. A variable of an interface type can
reference an object whose class implements that interface; however, only methods declared in the interface can be called using
such a variable.

Interfaces offer some of the advantages of multiple inheritance without the semantic difficulties. They are also essential for using
distributed object models (such as SOAP). Using a distributed object model, custom objects that support interfaces can interact
with objects written in C++, Java, and other languages.

Interface Types

Interfaces, like classes, can be declared only in the outermost scope of a program or unit, not in a procedure or function
declaration. An interface type declaration has the form

type interfaceName = interface (ancestorInterface)
['{GUID}']
memberList
end;

where (ancestorInterface) and ['{GUID}'] are optional for .NET interfaces.

Warning: Though the ancestor interface and GUID specification are optional for .NET interfaces, they are required to support
Win32 COM interoperability. If your interface is to be accessed through COM, be sure to specify the ancestor interface and
GUID.

In most respects, interface declarations resemble class declarations, but the following restrictions apply.

• The memberList can include only methods and properties. Fields are not allowed in interfaces.

• Since an interface has no fields, property read and write specifiers must be methods.

• All members of an interface are public. Visibility specifiers and storage specifiers are not allowed. (But an array property can
be declared as default.)

• Interfaces have no constructors or destructors. They cannot be instantiated, except through classes that implement their
methods.

• Methods cannot be declared as virtual, dynamic, abstract, or override. Since interfaces do not implement their own
methods, these designations have no meaning.

Here is an example of an interface declaration:

type
IMalloc = interface(IInterface)
['{00000002-0000-0000-C000-000000000046}']
function Alloc(Size: Integer): Pointer; stdcall;
function Realloc(P: Pointer; Size: Integer): Pointer; stdcall;
procedure Free(P: Pointer); stdcall;
function GetSize(P: Pointer): Integer; stdcall;
function DidAlloc(P: Pointer): Integer; stdcall;
procedure HeapMinimize; stdcall;
end;

In some interface declarations, the interface reserved word is replaced by dispinterface. This construction (along with the
dispid, readonly, and writeonly directives) is platform-specific and is not used in Linux programming.

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

625

3

IInterface and Inheritance

An interface, like a class, inherits all of its ancestors' methods. But interfaces, unlike classes, do not implement methods. What
an interface inherits is the obligation to implement methods, an obligation that is passed onto any class supporting the interface.

The declaration of an interface can specify an ancestor interface. If no ancestor is specified, the interface is a direct descendant
of IInterface, which is defined in the System unit and is the ultimate ancestor of all other interfaces. On Win32, IInterface
declares three methods: QueryInterface, _AddRef, and _Release. These methods are not present on the .NET platform,
and you do not need to implement them.

Note: IInterface is equivalent to IUnknown. You should generally use IInterface for platform independent applications
and reserve the use of IUnknown for specific programs that include Win32 dependencies.

QueryInterface provides the means to obtain a reference to the different interfaces that an object supports. _AddRef and
_Release provide lifetime memory management for interface references. The easiest way to implement these methods is to
derive the implementing class from the System unit's TInterfacedObject. It is also possible to dispense with any of these
methods by implementing it as an empty function; COM objects, however, must be managed through _AddRef and _Release.

Warning: Though QueryInterface, _AddRef, and _Release are optional for .NET interfaces, they are required to support
Win32 COM interoperability. If your interface is to be accessed through COM, be sure to implement these methods.

Interface Identification

An interface declaration can specify a globally unique identifier (GUID), represented by a string literal enclosed in brackets
immediately preceding the member list. The GUID part of the declaration must have the form

['{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}']

where each x is a hexadecimal digit (0 through 9 or A through F). The Type Library editor automatically generates GUIDs for
new interfaces. You can also generate GUIDs by pressing Ctrl+Shift+G in the code editor.

A GUID is a 16-byte binary value that uniquely identifies an interface. If an interface has a GUID, you can use interface querying
to get references to its implementations.

Note: GUIDs are not required for interfaces in the .NET framework. They are only used for COM interoperability.

The TGUID and PGUID types, declared in the System unit, are used to manipulate GUIDs.

type
PGUID = ^TGUID;
TGUID = packed record
D1: Longword;
D2: Word;
D3: Word;
D4: array[0..7] of Byte;
end;

On the .NET platform, you can tag an interface as described above (i.e. following the interface declaration). However, if you use
the traditional Delphi syntax, the first square bracket construct following the interface declaration is taken as a GUID specifier -
not as a .NET attribute. (Note that .NET attributes always apply to the next symbol, not the previous one.) You can also
associate a GUID with an interface using the .NET Guid custom attribute. In this case you would use the .NET style syntax,
placing the attribute immediately before the interface declaration.

When you declare a typed constant of type TGUID, you can use a string literal to specify its value. For example,

const IID_IMalloc: TGUID = '{00000002-0000-0000-C000-000000000046}';

In procedure and function calls, either a GUID or an interface identifier can serve as a value or constant parameter of type
TGUID. For example, given the declaration

function Supports(Unknown: IInterface; const IID: TGUID): Boolean;

Supports can be called in either of two ways

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

626

3

if Supports(Allocator, IMalloc) then ...

or

if Supports(Allocator, IID_IMalloc) then ...

Calling Conventions for Interfaces

The default calling convention for interface methods is register, but interfaces shared among modules (especially if they are
written in different languages) should declare all methods with stdcall. On Win32, you can use safecall to implement methods of
dual interfaces.

Interface Properties

Properties declared in an interface are accessible only through expressions of the interface type; they cannot be accessed
through class-type variables. Moreover, interface properties are visible only within programs where the interface is compiled.

In an interface, property read and write specifiers must be methods, since fields are not available.

Forward Declarations

An interface declaration that ends with the reserved word interface and a semicolon, without specifying an ancestor, GUID, or
member list, is a forward declaration. A forward declaration must be resolved by a defining declaration of the same interface
within the same type declaration section. In other words, between a forward declaration and its defining declaration, nothing can
occur except other type declarations.

Forward declarations allow mutually dependent interfaces. For example,

type
 IControl = interface;
 IWindow = interface
 ['{00000115-0000-0000-C000-000000000044}']
 function GetControl(Index: Integer): IControl;
.
.
.
 end;
 IControl = interface
 ['{00000115-0000-0000-C000-000000000049}']
 function GetWindow: IWindow;
 .
 .
 .
 end;

Mutually derived interfaces are not allowed. For example, it is not legal to derive IWindow from IControl and also derive
IControl from IWindow.

See Also

Implementing Interfaces (see page 627)

Interface References (see page 631)

Automation Objects (see page 633)

3.1.3.6.2 Implementing Interfaces
Once an interface has been declared, it must be implemented in a class before it can be used. The interfaces implemented by a
class are specified in the class's declaration, after the name of the class's ancestor.

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

627

3

Class Declarations

Such declarations have the form

type className = class (ancestorClass, interface1, ..., interfacen)
 memberList
end;

For example,

type
 TMemoryManager = class(TInterfacedObject, IMalloc, IErrorInfo)
 .
 .
 .
end;

declares a class called TMemoryManager that implements the IMalloc and IErrorInfo interfaces. When a class implements
an interface, it must implement (or inherit an implementation of) each method declared in the interface.

Here is the (Win32) declaration of TInterfacedObject in the System unit. On the .NET platform, TInterfacedObject is an alias for
TObject.

 type
 TInterfacedObject = class(TObject, IInterface)
 protected
 FRefCount: Integer;
 function QueryInterface(const IID: TGUID; out Obj): HResult; stdcall;
 function _AddRef: Integer; stdcall;
 function _Release: Integer; stdcall;
 public
 procedure AfterConstruction; override;
 procedure BeforeDestruction; override;
 class function NewInstance: TObject; override;
 property RefCount: Integer read FRefCount;
 end;

TInterfacedObject implements the IInterface interface. Hence TInterfacedObject declares and implements each of the three
IInterface methods.

Classes that implement interfaces can also be used as base classes. (The first example above declares TMemoryManager as a
direct descendent of TInterfacedObject.) On the Win32 platform, every interface inherits from IInterface, and a class that
implements interfaces must implement the QueryInterface, _AddRef, and _Release methods. The System unit's
TInterfacedObject implements these methods and is thus a convenient base from which to derive other classes that implement
interfaces. On the .NET platform, IInterface does not declare these methods, and you do not need to implement them.

When an interface is implemented, each of its methods is mapped onto a method in the implementing class that has the same
result type, the same calling convention, the same number of parameters, and identically typed parameters in each position. By
default, each interface method is mapped to a method of the same name in the implementing class.

Method Resolution Clause

You can override the default name-based mappings by including method resolution clauses in a class declaration. When a class
implements two or more interfaces that have identically named methods, use method resolution clauses to resolve the naming
conflicts.

A method resolution clause has the form

procedure interface.interfaceMethod = implementingMethod;

or

function interface.interfaceMethod = implementingMethod;

where implementingMethod is a method declared in the class or one of its ancestors. The implementingMethod can be a method

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

628

3

declared later in the class declaration, but cannot be a private method of an ancestor class declared in another module.

For example, the class declaration

type
 TMemoryManager = class(TInterfacedObject, IMalloc, IErrorInfo)
 function IMalloc.Alloc = Allocate;
 procedure IMalloc.Free = Deallocate;
 .
 .
 .
end;

maps IMalloc's Alloc and Free methods onto TMemoryManager's Allocate and Deallocate methods.

A method resolution clause cannot alter a mapping introduced by an ancestor class.

Changing Inherited Implementations

Descendant classes can change the way a specific interface method is implemented by overriding the implementing method.
This requires that the implementing method be virtual or dynamic.

A class can also reimplement an entire interface that it inherits from an ancestor class. This involves relisting the interface in the
descendant class' declaration. For example,

type
 IWindow = interface
 ['{00000115-0000-0000-C000-000000000146}']
 procedure Draw;
 .
 .
 .
end;
 TWindow = class(TInterfacedObject, IWindow)// TWindow implements IWindow
 procedure Draw;
 .
 .
 .
end;
TFrameWindow = class(TWindow, IWindow)// TFrameWindow reimplements IWindow
 procedure Draw;
 .
 .
 .
end;

Reimplementing an interface hides the inherited implementation of the same interface. Hence method resolution clauses in an
ancestor class have no effect on the reimplemented interface.

Implementing Interfaces by Delegation (Win32 only)

On the Win32 platform, the implements directive allows you to delegate implementation of an interface to a property in the
implementing class. For example,

property MyInterface: IMyInterface read FMyInterface implements IMyInterface;

declares a property called MyInterface that implements the interface IMyInterface.

The implements directive must be the last specifier in the property declaration and can list more than one interface, separated
by commas. The delegate property

• must be of a class or interface type.

• cannot be an array property or have an index specifier.

• must have a read specifier. If the property uses a read method, that method must use the default register calling convention
and cannot be dynamic (though it can be virtual) or specify the message directive.

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

629

3

The class you use to implement the delegated interface should derive from TAggregationObject.

Note: Due to restrictions imposed by the CLR, the implements directive is not supported on the .NET platform.

Delegating to an Interface-Type Property (Win32 only)

If the delegate property is of an interface type, that interface, or an interface from which it derives, must occur in the ancestor list
of the class where the property is declared. The delegate property must return an object whose class completely implements the
interface specified by the implements directive, and which does so without method resolution clauses. For example,

type
 IMyInterface = interface
 procedure P1;
 procedure P2;
end;
TMyClass = class(TObject, IMyInterface)
 FMyInterface: IMyInterface;
 property MyInterface: IMyInterface read FMyInterface implements IMyInterface;
end;
var
 MyClass: TMyClass;
 MyInterface: IMyInterface;
begin
 MyClass := TMyClass.Create;
 MyClass.FMyInterface := ...// some object whose class implements IMyInterface
 MyInterface := MyClass;
 MyInterface.P1;
end;

Delegating to a Class-Type Property (Win32 only)

If the delegate property is of a class type, that class and its ancestors are searched for methods implementing the specified
interface before the enclosing class and its ancestors are searched. Thus it is possible to implement some methods in the class
specified by the property, and others in the class where the property is declared. Method resolution clauses can be used in the
usual way to resolve ambiguities or specify a particular method. An interface cannot be implemented by more than one
class-type property. For example,

type
 IMyInterface = interface
 procedure P1;
 procedure P2;
end;
TMyImplClass = class
 procedure P1;
 procedure P2;
end;
 TMyClass = class(TInterfacedObject, IMyInterface)
 FMyImplClass: TMyImplClass;
 property MyImplClass: TMyImplClass read FMyImplClass implements IMyInterface;
 procedure IMyInterface.P1 = MyP1;
 procedure MyP1;
end;
 procedure TMyImplClass.P1;
 .
 .
 .
 procedure TMyImplClass.P2;
 .
 .
 .
 procedure TMyClass.MyP1;
 .
 .

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

630

3

 .
var
 MyClass: TMyClass;
 MyInterface: IMyInterface;
begin
 MyClass := TMyClass.Create;
 MyClass.FMyImplClass := TMyImplClass.Create;
 MyInterface := MyClass;
 MyInterface.P1; // calls TMyClass.MyP1;
 MyInterface.P2; // calls TImplClass.P2;
end;

See Also

Object Interfaces (see page 625)

Interface References (see page 631)

Automation Objects (see page 633)

3.1.3.6.3 Interface References
If you declare a variable of an interface type, the variable can reference instances of any class that implements the interface.
These topics describe Interface references and related topics.

Implementing Interface References

Interface reference variables allow you to call interface methods without knowing at compile time where the interface is
implemented. But they are subject to the following:

• An interface-type expression gives you access only to methods and properties declared in the interface, not to other members
of the implementing class.

• An interface-type expression cannot reference an object whose class implements a descendant interface, unless the class (or
one that it inherits from) explicitly implements the ancestor interface as well.

For example,

type
 IAncestor = interface
end;
IDescendant = interface(IAncestor)
 procedure P1;
end;
TSomething = class(TInterfacedObject, IDescendant)
 procedure P1;
 procedure P2;
end;
 .
 .
 .
var
 D: IDescendant;
 A: IAncestor;
begin
 D := TSomething.Create; // works!
 A := TSomething.Create; // error
 D.P1; // works!
 D.P2; // error
end;

In this example, A is declared as a variable of type IAncestor. Because TSomething does not list IAncestor among the
interfaces it implements, a TSomething instance cannot be assigned to A. But if we changed TSomething's declaration to

TSomething = class(TInterfacedObject, IAncestor, IDescendant)
.

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

631

3

.

.

the first error would become a valid assignment. D is declared as a variable of type IDescendant. While D references an
instance of TSomething, we cannot use it to access TSomething's P2 method, since P2 is not a method of IDescendant.
But if we changed D's declaration to

D: TSomething;

the second error would become a valid method call.

On the Win32 platform, interface references are typically managed through reference-counting, which depends on the _AddRef
and _Release methods inherited from IInterface. These methods, and reference counting in general, are not applicable on the
.NET platform, which is a garbage collected environment. Using the default implementation of reference counting, when an
object is referenced only through interfaces, there is no need to destroy it manually; the object is automatically destroyed when
the last reference to it goes out of scope. Some classes implement interfaces to bypass this default lifetime management, and
some hybrid objects use reference counting only when the object does not have an owner.

Global interface-type variables can be initialized only to nil.

To determine whether an interface-type expression references an object, pass it to the standard function Assigned.

Interface Assignment Compatibility

Variables of a given class type are assignment-compatible with any interface type implemented by the class. Variables of an
interface type are assignment-compatible with any ancestor interface type. The value nil can be assigned to any interface-type
variable.

An interface-type expression can be assigned to a variant. If the interface is of type IDispatch or a descendant, the variant
receives the type code varDispatch. Otherwise, the variant receives the type code varUnknown.

A variant whose type code is varEmpty, varUnknown, or varDispatch can be assigned to an IInterface variable. A
variant whose type code is varEmpty or varDispatch can be assigned to an IDispatch variable.

Interface Typecasts

An interface-type expression can be cast to Variant. If the interface is of type IDispatch or a descendant, the resulting variant
has the type code varDispatch. Otherwise, the resulting variant has the type code varUnknown.

A variant whose type code is varEmpty, varUnknown, or varDispatch can be cast to IInterface. A variant whose type
code is varEmpty or varDispatch can be cast to IDispatch.

Interface Querying

You can use the as operator to perform checked interface typecasts. This is known as interface querying, and it yields an
interface-type expression from an object reference or from another interface reference, based on the actual (runtime) type of the
object. An interface query has the form

object as interface

where object is an expression of an interface or variant type or denotes an instance of a class that implements an interface, and
interface is any interface declared with a GUID.

An interface query returns nil if object is nil. Otherwise, it passes the GUID of interface to the QueryInterface method in
object, raising an exception unless QueryInterface returns zero. If QueryInterface returns zero (indicating that object's
class implements interface), the interface query returns an interface reference to object.

See Also

Object Interfaces (see page 625)

Implementing Interfaces (see page 627)

Automation Objects (see page 633)

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

632

3

3.1.3.6.4 Automation Objects (Win32 Only)
An object whose class implements the IDispatch interface (declared in the System unit) is an Automation object.

Use variants to access Automation objects. When a variant references an Automation object, you can call the object's methods
and read or write to its properties through the variant. To do this, you must include ComObj in the uses clause of one of your
units or your program or library.

Dispatch Interface Types

Dispatch interface types define the methods and properties that an Automation object implements through IDispatch. Calls to
methods of a dispatch interface are routed through IDispatch's Invoke method at runtime; a class cannot implement a dispatch
interface.

A dispatch interface type declaration has the form

type interfaceName = dispinterface
 ['{GUID}']
 memberList
end;

where ['{GUID}'] is optional and memberList consists of property and method declarations. Dispatch interface declarations are
similar to regular interface declarations, but they cannot specify an ancestor. For example,

type
 IStringsDisp = dispinterface
 ['{EE05DFE2-5549-11D0-9EA9-0020AF3D82DA}']
 property ControlDefault[Index: Integer]: OleVariant dispid 0; default;
 function Count: Integer; dispid 1;
 property Item[Index: Integer]: OleVariant dispid 2;
 procedure Remove(Index: Integer); dispid 3;
 procedure Clear; dispid 4;
 function Add(Item: OleVariant): Integer; dispid 5;
 function _NewEnum: IUnknown; dispid -4;
 end;

Dispatch interface methods

Methods of a dispatch interface are prototypes for calls to the Invoke method of the underlying IDispatch implementation. To
specify an Automation dispatch ID for a method, include the dispid directive in its declaration, followed by an integer constant;
specifying an already used ID causes an error.

A method declared in a dispatch interface cannot contain directives other than dispid. Parameter and result types must be
automatable. In other words, they must be Byte, Currency, Real, Double, Longint, Integer, Single, Smallint, AnsiString,
WideString, TDateTime, Variant, OleVariant, WordBool, or any interface type.

Dispatch interface properties

Properties of a dispatch interface do not include access specifiers. They can be declared as read only or write only. To specify
a dispatch ID for a property, include the dispid directive in its declaration, followed by an integer constant; specifying an already
used ID causes an error. Array properties can be declared as default. No other directives are allowed in dispatch-interface
property declarations.

Accessing Automation Objects

Automation object method calls are bound at runtime and require no previous method declarations. The validity of these calls is
not checked at compile time.

The following example illustrates Automation method calls. The CreateOleObject function (defined in ComObj) returns an
IDispatch reference to an Automation object and is assignment-compatible with the variant Word.

var

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

633

3

 Word: Variant;
 begin
 Word := CreateOleObject('Word.Basic');
 Word.FileNew('Normal');
 Word.Insert('This is the first line'#13);
 Word.Insert('This is the second line'#13);
 Word.FileSaveAs('c:\temp\test.txt', 3);
 end;

You can pass interface-type parameters to Automation methods.

Variant arrays with an element type of varByte are the preferred method of passing binary data between Automation controllers
and servers. Such arrays are subject to no translation of their data, and can be efficiently accessed using the VarArrayLock
and VarArrayUnlock routines.

Automation Object Method-Call Syntax

The syntax of an Automation object method call or property access is similar to that of a normal method call or property access.
Automation method calls, however, can use both positional and named parameters. (But some Automation servers do not
support named parameters.)

A positional parameter is simply an expression. A named parameter consists of a parameter identifier, followed by the := symbol,
followed by an expression. Positional parameters must precede any named parameters in a method call. Named parameters can
be specified in any order.

Some Automation servers allow you to omit parameters from a method call, accepting their default values. For example,

 Word.FileSaveAs('test.doc');
 Word.FileSaveAs('test.doc', 6);
 Word.FileSaveAs('test.doc',,,'secret');
 Word.FileSaveAs('test.doc', Password := 'secret');
 Word.FileSaveAs(Password := 'secret', Name := 'test.doc');

Automation method call parameters can be of integer, real, string, Boolean, and variant types. A parameter is passed by
reference if the parameter expression consists only of a variable reference, and if the variable reference is of type Byte,
Smallint, Integer, Single, Double, Currency, TDateTime, AnsiString, WordBool, or Variant. If the expression is not of one of
these types, or if it is not just a variable, the parameter is passed by value. Passing a parameter by reference to a method that
expects a value parameter causes COM to fetch the value from the reference parameter. Passing a parameter by value to a
method that expects a reference parameter causes an error.

Dual Interfaces

A dual interface is an interface that supports both compile-time binding and runtime binding through Automation. Dual interfaces
must descend from IDispatch.

All methods of a dual interface (except from those inherited from IInterface and IDispatch) must use the safecall
convention, and all method parameter and result types must be automatable. (The automatable types are Byte, Currency, Real,
Double, Real48, Integer, Single, Smallint, AnsiString, ShortString, TDateTime, Variant, OleVariant, and WordBool.)

See Also

Object Interfaces (see page 625)

Implementing Interfaces (see page 627)

Interface References (see page 631)

3.1.3.7 Libraries and Packages
This section describes how to create static and dynamically loadable libraries in Delphi.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

634

3

Topics

Name Description

Libraries and Packages (see page 635) A dynamically loadable library is a dynamic-link library (DLL) on Win32, and an
assembly (also a DLL) on the .NET platform. It is a collection of routines that can
be called by applications and by other DLLs or shared objects. Like units,
dynamically loadable libraries contain sharable code or resources. But this type
of library is a separately compiled executable that is linked at runtime to the
programs that use it.
Delphi programs can call DLLs and assemblies written in other languages, and
applications written in other languages can call DLLs or assemblies written in
Delphi.

Writing Dynamically Loaded Libraries (see page 637) The following topics describe elements of writing dynamically loadable libraries,
including

• The exports clause.

• Library initialization code.

• Global variables.

• Libraries and system variables.

Packages (see page 640) The following topics describe packages and various issues involved in creating
and compiling them.

• Package declarations and source files

• Naming packages

• The requires clause

• Avoiding circular package references

• Duplicate package references

• The contains clause

• Avoiding redundant source code uses

• Compiling packages

• Generated files

• Package-specific compiler directives

• Package-specific command-line compiler switches

3.1.3.7.1 Libraries and Packages
A dynamically loadable library is a dynamic-link library (DLL) on Win32, and an assembly (also a DLL) on the .NET platform. It is
a collection of routines that can be called by applications and by other DLLs or shared objects. Like units, dynamically loadable
libraries contain sharable code or resources. But this type of library is a separately compiled executable that is linked at runtime
to the programs that use it.

Delphi programs can call DLLs and assemblies written in other languages, and applications written in other languages can call
DLLs or assemblies written in Delphi.

Calling Dynamically Loadable Libraries

You can call operating system routines directly, but they are not linked to your application until runtime. This means that the
library need not be present when you compile your program. It also means that there is no compile-time validation of attempts to
import a routine.

Before you can call routines defined in DLL or assembly, you must import them. This can be done in two ways: by declaring an
external procedure or function, or by direct calls to the operating system. Whichever method you use, the routines are not linked
to your application until runtime.

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

635

3

The Delphi language does not support importing of variables from DLLs or assemblies.

Static Loading

The simplest way to import a procedure or function is to declare it using the external directive. For example,

procedure DoSomething; external 'MYLIB.DLL';

If you include this declaration in a program, MYLIB.DLL is loaded once, when the program starts. Throughout execution of the
program, the identifier DoSomething always refers to the same entry point in the same shared library.

Declarations of imported routines can be placed directly in the program or unit where they are called. To simplify maintenance,
however, you can collect external declarations into a separate "import unit" that also contains any constants and types required
for interfacing with the library. Other modules that use the import unit can call any routines declared in it.

Dynamic Loading

You can access routines in a library through direct calls to Win32 APIs, including LoadLibrary, FreeLibrary, and
GetProcAddress. These functions are declared in Windows.pas. on Linux, they are implemented for compatibility in
SysUtils.pas; the actual Linux OS routines are dlopen, dlclose, and dlsym (all declared in libc; see the man pages for more
information). In this case, use procedural-type variables to reference the imported routines.

For example,

uses Windows, ...;

type
 TTimeRec = record
 Second: Integer;
 Minute: Integer;
 Hour: Integer;
 end;

 TGetTime = procedure(var Time: TTimeRec);
 THandle = Integer;

 var
 Time: TTimeRec;
 Handle: THandle;
 GetTime: TGetTime;
 .
 .
 .
 begin
 Handle := LoadLibrary('libraryname');
 if Handle <> 0 then
 begin
 @GetTime := GetProcAddress(Handle, 'GetTime');
 if @GetTime <> nil then
 begin
 GetTime(Time);
 with Time do
 WriteLn('The time is ', Hour, ':', Minute, ':', Second);
 end;
 FreeLibrary(Handle);
 end;
 end;

When you import routines this way, the library is not loaded until the code containing the call to LoadLibrary executes. The
library is later unloaded by the call to FreeLibrary. This allows you to conserve memory and to run your program even when
some of the libraries it uses are not present.

See Also

Writing Dynamically Loaded Libraries (see page 637)

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

636

3

Packages (see page 640)

3.1.3.7.2 Writing Dynamically Loaded Libraries
The following topics describe elements of writing dynamically loadable libraries, including

• The exports clause.

• Library initialization code.

• Global variables.

• Libraries and system variables.

Using Export Clause in Libraries

The main source for a dynamically loadable library is identical to that of a program, except that it begins with the reserved word
library (instead of program).

Only routines that a library explicitly exports are available for importing by other libraries or programs. The following example
shows a library with two exported functions, Min and Max.

library MinMax;
 function Min(X, Y: Integer): Integer; stdcall;
 begin
 if X < Y then Min := X else Min := Y;
 end;
 function Max(X, Y: Integer): Integer; stdcall;
 begin
 if X > Y then Max := X else Max := Y;
 end;
 exports
 Min,
 Max;
 begin
 end.

If you want your library to be available to applications written in other languages, it's safest to specify stdcall in the declarations
of exported functions. Other languages may not support Delphi's default register calling convention.

Libraries can be built from multiple units. In this case, the library source file is frequently reduced to a uses clause, an exports
clause, and the initialization code. For example,

library Editors;
 uses EdInit, EdInOut, EdFormat, EdPrint;
 exports
 InitEditors,
 DoneEditors name Done,
 InsertText name Insert,
 DeleteSelection name Delete,
 FormatSelection,
 PrintSelection name Print,
 .
 .
 .
 SetErrorHandler;
 begin
 InitLibrary;
 end.

You can put exports clauses in the interface or implementation section of a unit. Any library that includes such a unit in its
uses clause automatically exports the routines listed the unit's exports clauses without the need for an exports clause of its
own.

The directive local, which marks routines as unavailable for export, is platform-specific and has no effect in Windows

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

637

3

programming.

On Linux, the local directive provides a slight performance optimization for routines that are compiled into a library but are not
exported. This directive can be specified for stand-alone procedures and functions, but not for methods. A routine declared with
localfor example,

function Contraband(I: Integer): Integer; local;

does not refresh the EBX register and hence

• cannot be exported from a library.

• cannot be declared in the interface section of a unit.

• cannot have its address taken or be assigned to a procedural-type variable.

• if it is a pure assembler routine, cannot be called from another unit unless the caller sets up EBX.

A routine is exported when it is listed in an exports clause, which has the form

exports entry1, ..., entryn;

where each entry consists of the name of a procedure, function, or variable (which must be declared prior to the exports clause),
followed by a parameter list (only if exporting a routine that is overloaded), and an optional name specifier. You can qualify the
procedure or function name with the name of a unit.

(Entries can also include the directive resident, which is maintained for backward compatibility and is ignored by the compiler.)

On the Win32 platform, an index specifier consists of the directive index followed by a numeric constant between 1 and
2,147,483,647. (For more efficient programs, use low index values.) If an entry has no index specifier, the routine is
automatically assigned a number in the export table.

Note: Use of index

specifiers, which are supported for backward compatibility only, is discouraged and may cause problems for other development
tools. A name specifier consists of the directive name followed by a string constant. If an entry has no name specifier, the
routine is exported under its original declared name, with the same spelling and case. Use a name clause when you want to
export a routine under a different name. For example,

exports
DoSomethingABC name 'DoSomething';

When you export an overloaded function or procedure from a dynamically loadable library, you must specify its parameter list in
the exports clause. For example,

exports
Divide(X, Y: Integer) name 'Divide_Ints',
Divide(X, Y: Real) name 'Divide_Reals';

On Win32, do not include index specifiers in entries for overloaded routines.

An exports clause can appear anywhere and any number of times in the declaration part of a program or library, or in the
interface or implementation section of a unit. Programs seldom contain an exports clause.

Library Initialization Code

The statements in a library's block constitute the library's initialization code. These statements are executed once every time the
library is loaded. They typically perform tasks like registering window classes and initializing variables. Library initialization code
can also install an entry point procedure using the DllProc variable. The DllProc variable is similar to an exit procedure,
which is described in Exit procedures; the entry point procedure executes when the library is loaded or unloaded.

Library initialization code can signal an error by setting the ExitCode variable to a nonzero value. ExitCode is declared in the
System unit and defaults to zero, indicating successful initialization. If a library's initialization code sets ExitCode to another
value, the library is unloaded and the calling application is notified of the failure. Similarly, if an unhandled exception occurs
during execution of the initialization code, the calling application is notified of a failure to load the library.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

638

3

Here is an example of a library with initialization code and an entry point procedure.

library Test;
var
 SaveDllProc: Pointer;
 procedure LibExit(Reason: Integer);
begin
 if Reason = DLL_PROCESS_DETACH then
 begin
 .
 . // library exit code
 .
 end;
 SaveDllProc(Reason); // call saved entry point procedure
 end;
 begin
 .
 . // library initialization code
 .
 SaveDllProc := DllProc; // save exit procedure chain
 DllProc := @LibExit; // install LibExit exit procedure
 end.

DllProc is called when the library is first loaded into memory, when a thread starts or stops, or when the library is unloaded.
The initialization parts of all units used by a library are executed before the library's initialization code, and the finalization parts of
those units are executed after the library's entry point procedure.

Global Variables in a Library

Global variables declared in a shared library cannot be imported by a Delphi application.

A library can be used by several applications at once, but each application has a copy of the library in its own process space with
its own set of global variables. For multiple libraries - or multiple instances of a library - to share memory, they must use
memory-mapped files. Refer to the your system documentation for further information.

Libraries and System Variables

Several variables declared in the System unit are of special interest to those programming libraries. Use IsLibrary to determine
whether code is executing in an application or in a library; IsLibrary is always False in an application and True in a library. During
a library's lifetime, HInstance contains its instance handle. CmdLine is always nil in a library.

The DLLProc variable allows a library to monitor calls that the operating system makes to the library entry point. This feature is
normally used only by libraries that support multithreading. DLLProc is available on both Windows and Linux but its use differs
on each. On Win32, DLLProc is used in multithreading applications.; on Linux, it is used to determine when your library is being
unloaded. You should use finalization sections, rather than exit procedures, for all exit behavior.

To monitor operating-system calls, create a callback procedure that takes a single integer parameter, for example,

procedure DLLHandler(Reason: Integer);

and assign the address of the procedure to the DLLProc variable. When the procedure is called, it passes to it one of the
following values.

DLL_PROCESS_DETACH Indicates that the library is detaching from the address space of the calling process as a result of a
clean exit or a call to FreeLibrary.

DLL_PROCESS_ATTACH Indicates that the library is attaching to the address space of the calling process as the result of a
call to LoadLibrary.

DLL_THREAD_ATTACH Indicates that the current process is creating a new thread.

DLL_THREAD_DETACH Indicates that a thread is exiting cleanly.

In the body of the procedure, you can specify actions to take depending on which parameter is passed to the procedure.

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

639

3

Exceptions and Runtime Errors in Libraries

When an exception is raised but not handled in a dynamically loadable library, it propagates out of the library to the caller. If the
calling application or library is itself written in Delphi, the exception can be handled through a normal try...except statement.

On Win32, if the calling application or library is written in another language, the exception can be handled as an
operating-system exception with the exception code $0EEDFADE. The first entry in the ExceptionInformation array of the
operating-system exception record contains the exception address, and the second entry contains a reference to the Delphi
exception object.

Generally, you should not let exceptions escape from your library. Delphi exceptions map to the OS exception model (including
the .NET exception model)..

If a library does not use the SysUtils unit, exception support is disabled. In this case, when a runtime error occurs in the
library, the calling application terminates. Because the library has no way of knowing whether it was called from a Delphi
program, it cannot invoke the application's exit procedures; the application is simply aborted and removed from memory.

Shared-Memory Manager (Win32 Only)

On Win32, if a DLL exports routines that pass long strings or dynamic arrays as parameters or function results (whether directly
or nested in records or objects), then the DLL and its client applications (or DLLs) must all use the ShareMem unit. The same is
true if one application or DLL allocates memory with New or GetMem which is deallocated by a call to Dispose or FreeMem in
another module. ShareMem should always be the first unit listed in any program or library uses clause where it occurs.

ShareMem is the interface unit for the BORLANDMM.DLL memory manager, which allows modules to share dynamically allocated
memory. BORLANDMM.DLL must be deployed with applications and DLLs that use ShareMem. When an application or DLL uses
ShareMem, its memory manager is replaced by the memory manager in BORLANDMM.DLL.

See Also

Libraries and Packages (see page 635)

Packages (see page 640)

3.1.3.7.3 Packages
The following topics describe packages and various issues involved in creating and compiling them.

• Package declarations and source files

• Naming packages

• The requires clause

• Avoiding circular package references

• Duplicate package references

• The contains clause

• Avoiding redundant source code uses

• Compiling packages

• Generated files

• Package-specific compiler directives

• Package-specific command-line compiler switches

Understanding Packages

A package is a specially compiled library used by applications, the IDE, or both. Packages allow you to rearrange where code
resides without affecting the source code. This is sometimes referred to as application partitioning.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

640

3

Runtime packages provide functionality when a user runs an application. Design-time packages are used to install components
in the IDE and to create special property editors for custom components. A single package can function at both design time and
runtime, and design-time packages frequently work by referencing runtime packages in their requires clauses.

On Win32, package files end with the .bpl (Borland package library) extension. On the .NET platform, packages are .NET
assemblies, and end with an extension of .dll

Ordinarily, packages are loaded statically when an applications starts. But you can use the LoadPackage and UnloadPackage
routines (in the SysUtils unit) to load packages dynamically.

Note: When an application utilizes packages, the name of each packaged unit still must appear in the uses

clause of any source file that references it.

Package Declarations and Source Files

Each package is declared in a separate source file, which should be saved with the .dpk extension to avoid confusion with other
files containing Delphi code. A package source file does not contain type, data, procedure, or function declarations. Instead, it
contains:

• a name for the package.

• a list of other packages required by the new package. These are packages to which the new package is linked.

• a list of unit files contained by, or bound into, the package when it is compiled. The package is essentially a wrapper for these
source-code units, which provide the functionality of the compiled package.

A package declaration has the form

packagepackageName;

requiresClause;

containsClause;

end.

where packageName is any valid identifier. The requiresClause and containsClause are both optional. For example, the
following code declares the DATAX package.

package DATAX;
 requires
 rtl,
 contains Db, DBLocal, DBXpress, ... ;
end.

The requires clause lists other, external packages used by the package being declared. It consists of the directive requires,
followed by a comma-delimited list of package names, followed by a semicolon. If a package does not reference other packages,
it does not need a requires clause.

The contains clause identifies the unit files to be compiled and bound into the package. It consists of the directive contains,
followed by a comma-delimited list of unit names, followed by a semicolon. Any unit name may be followed by the reserved word
in and the name of a source file, with or without a directory path, in single quotation marks; directory paths can be absolute or
relative. For example,

contains MyUnit in 'C:\MyProject\MyUnit.pas';

Note: Thread-local variables (declared with threadvar

) in a packaged unit cannot be accessed from clients that use the package.

Naming packages

A compiled package involves several generated files. For example, the source file for the package called DATAX is DATAX.DPK,
from which the compiler generates an executable and a binary image called

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

641

3

DATAX.BPL (Win32) or DATAX.DLL (.NET), and DATAX.DCP (Win32) or DATAX.DCPIL (.NET)

DATAX is used to refer to the package in the requires clauses of other packages, or when using the package in an application.
Package names must be unique within a project.

The requires clause

The requires clause lists other, external packages that are used by the current package. It functions like the uses clause in a
unit file. An external package listed in the requires clause is automatically linked at compile time into any application that uses
both the current package and one of the units contained in the external package.

If the unit files contained in a package make references to other packaged units, the other packages should be included in the
first package's requires clause. If the other packages are omitted from the requires clause, the compiler loads the referenced
units from their .dcu or .dcuil files.

Avoiding circular package references

Packages cannot contain circular references in their requires clauses. This means that

• A package cannot reference itself in its own requires clause.

• A chain of references must terminate without rereferencing any package in the chain. If package A requires package B, then
package B cannot require package A; if package A requires package B and package B requires package C, then package C
cannot require package A.

Duplicate package references

The compiler ignores duplicate references in a package's requires clause. For programming clarity and readability, however,
duplicate references should be removed.

The contains clause

The contains clause identifies the unit files to be bound into the package. Do not include file-name extensions in the contains
clause.

Avoiding redundant source code uses

A package cannot be listed in the contains clause of another package or the uses clause of a unit.

All units included directly in a package's contains clause, or indirectly in the uses clauses of those units, are bound into the
package at compile time. The units contained (directly or indirectly) in a package cannot be contained in any other packages
referenced in requires clause of that package.

A unit cannot be contained (directly or indirectly) in more than one package used by the same application.

Compiling Packages

Packages are ordinarily compiled from the IDE using .dpk files generated by the Project Manager. You can also compile .dpk
files directly from the command line. When you build a project that contains a package, the package is implicitly recompiled, if
necessary.

Generated Files

The following table lists the files produced by the successful compilation of a package.

Compiled package files

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

642

3

File extension Contents

DCP (Win32) or DCPIL
(.NET)

A binary image containing a package header and the concatenation of all .dcu (Win32) or
.dcuil (.NET) files in the package. A single .dcp or .dcpil file is created for each package.
The base name for the file is the base name of the .dpk source file.

BPL (Win32) or DLL (.NET) The runtime package. This file is a DLL on Win32 with special Borland-specific features. The
base name for the package is the base name of the dpk source file.

Package-Specific Compiler Directives

The following table lists package-specific compiler directives that can be inserted into source code.

Package-specific compiler directives

Directive Purpose

{$IMPLICITBUILD
OFF}

Prevents a package from being implicitly recompiled later. Use in .dpk files when compiling
packages that provide low-level functionality, that change infrequently between builds, or whose
source code will not be distributed.

{$G-} or
{$IMPORTEDDATA
OFF}

Disables creation of imported data references. This directive increases memory-access efficiency,
but prevents the unit where it occurs from referencing variables in other packages.

{$WEAKPACKAGEUNIT
ON}

Packages unit weakly.

{$DENYPACKAGEUNIT
ON}

Prevents unit from being placed in a package.

{$DESIGNONLY ON} Compiles the package for installation in the IDE. (Put in .dpk file.)

{$RUNONLY ON} Compiles the package as runtime only. (Put in .dpk file.)

Including {$DENYPACKAGEUNIT ON} in source code prevents the unit file from being packaged. Including {$G-} or
{$IMPORTEDDATA OFF} may prevent a package from being used in the same application with other packages.

Other compiler directives may be included, if appropriate, in package source code.

Package-Specific Command-Line Compiler Switches

The following package-specific switches are available for the command-line compiler.

Package-specific command-line compiler switches

Switch Purpose

-$G- Disables creation of imported data references. Using this switch increases memory-access efficiency, but
prevents packages compiled with it from referencing variables in other packages.

LE path Specifies the directory where the compiled package file will be placed.

LN path Specifies the directory where the package dcp or dcpil file will be placed.

LUpackageName
[;packageName2;...]

Specifies additional runtime packages to use in an application. Used when compiling a project.

Z Prevents a package from being implicitly recompiled later. Use when compiling packages that provide
low-level functionality, that change infrequently between builds, or whose source code will not be
distributed.

Using the -$G- switch may prevent a package from being used in the same application with other packages.

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

643

3

Other command-line options may be used, if appropriate, when compiling packages.

Note: When using the -LU

switch on the .NET platform, you can refer to the package with or without the .dll extension. If you omit the .dll extension,
the compiler will look for the package on the unit search path, and on the package search path. However, if the package
specification contains a drive letter or the path separator character, then the compiler will assume the package name is the full
file name (including the .dll extension). In the latter case, if you specify a full or relative path, but omit the .dll extension, the
compiler will not be able to locate the package.

See Also

Libraries and Packages (see page 635)

Writing Dynamically Loaded Libraries (see page 637)

3.1.3.8 Memory Management
This section describes memory management issues related to programming in Delphi on Win32, and on .NET.

Topics

Name Description

Memory Management on the Win32 Platform (see page 644) The following material describes how memory management on Win32 is handled,
and briefly describes memory issues of variables.

Internal Data Formats (see page 645) The following topics describe the internal formats of Delphi data types.

Memory Management Issues on the .NET Platform (see page 653) The .NET Common Language Runtime is a garbage-collected environment. This
means the programmer is freed (for the most part) from worrying about memory
allocation and deallocation. Broadly speaking, after you allocate memory, the
CLR determines when it is safe to free that memory. "Safe to free" means that no
more references to that memory exist.
This topic covers the following memory management issues:

• Creating and destroying objects

• Unit initialization and finalization sections

• Unit initialization and finalization in assemblies and
packages

3.1.3.8.1 Memory Management on the Win32 Platform
The following material describes how memory management on Win32 is handled, and briefly describes memory issues of
variables.

The Memory Manager (Win32 Only)

The Memory Manager manages all dynamic memory allocations and deallocations in an application. The New, Dispose,
GetMem, ReallocMem, and FreeMem standard procedures use the memory manager, and all objects and long strings are
allocated through the memory manager.

The Memory Manager is optimized for applications that allocate large numbers of small- to medium-sized blocks, as is typical for
object-oriented applications and applications that process string data. The Memory Manager is optimized for efficient operation
(high speed and low memory overhead) in single and multi-threaded applications. Other memory managers, such as the
implementations of GlobalAlloc, LocalAlloc, and private heap support in Windows, typically do not perform well in such situations,
and would slow down an application if they were used directly.

To ensure the best performance, the Memory Manager interfaces directly with the Win32 virtual memory API (the >VirtualAlloc
and VirtualFree functions). The Memory Manager supports a user mode address space up to 4GB.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

644

3

Memory Manager blocks are always rounded upward to a size that is a multiple of 4 bytes, and always include a 4-byte header in
which the size of the block and other status bits are stored. The start address of memory blocks are always aligned on at least
8-byte boundaries, or optionally on 16-byte boundaries, which improves performance when addressing them.

The Memory Manager employs an algorithm that anticipates future block reallocations, reducing the performance impact usually
associated with such operations. The reallocation algorithm also helps reduce address space fragmentation.

The memory manager provides a sharing mechanism that does not require the use of an external DLL.

The Memory Manager includes reporting functions to help applications monitor their own memory usage and potential memory
leaks.

The Memory Manager provides two procedures, GetMemoryManagerState and GetMemoryMap, that allow applications to
retrieve memory-manager status information and a detailed map of memory usage.

Variables

Global variables are allocated on the application data segment and persist for the duration of the program. Local variables
(declared within procedures and functions) reside in an application's stack. Each time a procedure or function is called, it
allocates a set of local variables; on exit, the local variables are disposed of. Compiler optimization may eliminate variables
earlier.

On Win32, an application's stack is defined by two values: the minimum stack size and the maximum stack size. The values are
controlled through the $MINSTACKSIZE and $MAXSTACKSIZE compiler directives, and default to 16,384 (16K) and 1,048,576
(1Mb) respectively. An application is guaranteed to have the minimum stack size available, and an application's stack is never
allowed to grow larger than the maximum stack size. If there is not enough memory available to satisfy an application's minimum
stack requirement, Windows will report an error upon attempting to start the application.

If a Win32 application requires more stack space than specified by the minimum stack size, additional memory is automatically
allocated in 4K increments. If allocation of additional stack space fails, either because more memory is not available or because
the total size of the stack would exceed the maximum stack size, an EStackOverflow exception is raised. (Stack overflow
checking is completely automatic. The $S compiler directive, which originally controlled overflow checking, is maintained for
backward compatibility.)

Dynamic variables created with the GetMem or New procedure are heap-allocated and persist until they are deallocated with
FreeMem or Dispose.

Long strings, wide strings, dynamic arrays, variants, and interfaces are heap-allocated, but their memory is managed
automatically.

See Also

Internal Data Formats (see page 645)

Memory Management Issues on the .NET Platform (see page 653)

Configuring the Memory Manager (see page 175)

Increasing the Memory Manager Address Space Beyond 2GB (see page 176)

Registering Memory Leaks (see page 178)

Monitoring the Memory Manager (see page 177)

Sharing Memory (see page 178)

3.1.3.8.2 Internal Data Formats
The following topics describe the internal formats of Delphi data types.

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

645

3

Integer Types

The format of an integer-type variable depends on its minimum and maximum bounds.

• If both bounds are within the range 128..127 (Shortint), the variable is stored as a signed byte.

• If both bounds are within the range 0..255 (Byte), the variable is stored as an unsigned byte.

• If both bounds are within the range 32768..32767 (Smallint), the variable is stored as a signed word.

• If both bounds are within the range 0..65535 (Word), the variable is stored as an unsigned word.

• If both bounds are within the range 2147483648..2147483647 (Longint), the variable is stored as a signed double word.

• If both bounds are within the range 0..4294967295 (Longword), the variable is stored as an unsigned double word.

• Otherwise, the variable is stored as a signed quadruple word (Int64).

Note: a "word" occupies two bytes.

Character Types

On the Win32 platform, Char, an AnsiChar, or a subrange of a Char type is stored as an unsigned byte. A WideChar is stored
as an unsigned word.

On the .NET platform, a Char is equivalent to WideChar.

Boolean Types

A Boolean type is stored as a Byte, a ByteBool is stored as a Byte, a WordBool type is stored as a Word, and a LongBool is
stored as a Longint.

A Boolean can assume the values 0 (False) and 1 (True). ByteBool, WordBool, and LongBool types can assume the values
0 (False) or nonzero (True).

Enumerated Types

An enumerated type is stored as an unsigned byte if the enumeration has no more than 256 values and the type was declared in
the {$Z1} state (the default). If an enumerated type has more than 256 values, or if the type was declared in the {$Z2} state, it
is stored as an unsigned word. If an enumerated type is declared in the {$Z4} state, it is stored as an unsigned double-word.

Real Types

The real types store the binary representation of a sign (+ or -), an exponent, and a significand. A real value has the form

+/- significand * 2exponent

where the significand has a single bit to the left of the binary decimal point. (That is, 0 <= significand < 2.)

In the figures that follow, the most significant bit is always on the left and the least significant bit on the right. The numbers at the
top indicate the width (in bits) of each field, with the left-most items stored at the highest addresses. For example, for a Real48
value, e is stored in the first byte, f in the following five bytes, and s in the most significant bit of the last byte.

The Real48 type

The following discussion of the Real48 type applies only to the Win32 platform. The Real48 type is not supported on the .NET
platform.

On the Win32 platform, a 6-byte (48-bit) Real48 number is divided into three fields:

1 39 8

s f e

If 0 < e <= 255, the value v of the number is given by

v = (1)^s * 2^(e129) * (1.f)

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

646

3

If e = 0, then v = 0.

The Real48 type can't store denormals, NaNs, and infinities. Denormals become zero when stored in a Real48, while NaNs and
infinities produce an overflow error if an attempt is made to store them in a Real48.

The Single type

A 4-byte (32-bit) Single number is divided into three fields

1 8 23

s e f

The value v of the number is given by

if 0 < e < 255, then v = (1)^s * 2^(e127) * (1.f)

if e = 0 and f <> 0, then v = (1)^s * 2^(126) * (0.f)

if e = 0 and f = 0, then v = (1)^s * 0

if e = 255 and f = 0, then v = (1)^s * Inf

if e = 255 and f <> 0, then v is a NaN

The Double type

An 8-byte (64-bit) Double number is divided into three fields

1 11 52

s e f

The value v of the number is given by

if 0 < e < 2047, then v = (1)^s * 2^(e1023) * (1.f)

if e = 0 and f <> 0, then v = (1)^s * 2^(1022) * (0.f)

if e = 0 and f = 0, then v = (1)^s * 0

if e = 2047 and f = 0, then v = (1)^s * Inf

if e = 2047 and f <> 0, then v is a NaN

The Extended type

A 10-byte (80-bit) Extended number is divided into four fields:

1 15 1 63

s e i f

The value v of the number is given by

if 0 <= e < 32767, then v = (1)^s * 2^(e16383) * (i.f)

if e = 32767 and f = 0, then v = (1)^s * Inf

if e = 32767 and f <> 0, then v is a NaN

Note: On the .NET platform, the Extended type is aliased to Double, and has been deprecated.

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

647

3

The Comp type

An 8-byte (64-bit) Comp number is stored as a signed 64-bit integer.

Note: On the .NET platform, the Comp type is aliased to Int64, and has been deprecated.

The Currency type

An 8-byte (64-bit) Currency number is stored as a scaled and signed 64-bit integer with the four least-significant digits implicitly
representing four decimal places.

Pointer Types

A Pointer type is stored in 4 bytes as a 32-bit address. The pointer value nil is stored as zero.

Note: On the .NET platform, the size of a pointer will vary at runtime. Therefore, SizeOf(pointer) is not a compile-time
constant, as it is on the Win32 platform.

Short String Types

A string occupies as many bytes as its maximum length plus one. The first byte contains the current dynamic length of the string,
and the following bytes contain the characters of the string.

The length byte and the characters are considered unsigned values. Maximum string length is 255 characters plus a length byte
(string[255]).

Note: On the .NET platform, the short string type is implemented as an array of unsigned bytes.

Long String Types

A long string variable occupies four bytes of memory which contain a pointer to a dynamically allocated string. When a long
string variable is empty (contains a zero-length string), the string pointer is nil and no dynamic memory is associated with the
string variable. For a nonempty string value, the string pointer points to a dynamically allocated block of memory that contains
the string value in addition to a 32-bit length indicator and a 32-bit reference count. The table below shows the layout of a
long-string memory block.

Long string dynamic memory layout (Win32 only)

Offset Contents

-8 32-bit reference-count

-4 length in bytes

0..Length - 1 character string

Length NULL character

The NULL character at the end of a long string memory block is automatically maintained by the compiler and the built-in string
handling routines. This makes it possible to typecast a long string directly to a null-terminated string.

For string constants and literals, the compiler generates a memory block with the same layout as a dynamically allocated string,
but with a reference count of -1. When a long string variable is assigned a string constant, the string pointer is assigned the
address of the memory block generated for the string constant. The built-in string handling routines know not to attempt to modify
blocks that have a reference count of -1.

Note: On the .NET platform, an AnsiString is implemented as an array of unsigned bytes. The information above on string
constants and literals does not apply to the .NET platform.

Wide String Types

On Win32, a wide string variable occupies four bytes of memory which contain a pointer to a dynamically allocated string. When
a wide string variable is empty (contains a zero-length string), the string pointer is nil and no dynamic memory is associated with

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

648

3

the string variable. For a nonempty string value, the string pointer points to a dynamically allocated block of memory that
contains the string value in addition to a 32-bit length indicator. The table below shows the layout of a wide string memory block
on Windows.

Wide string dynamic memory layout (Win32 only)

Offset Contents

-4 32-bit length indicator (in bytes)

0..Length -1 character string

Length NULL character

The string length is the number of bytes, so it is twice the number of wide characters contained in the string.

The NULL character at the end of a wide string memory block is automatically maintained by the compiler and the built-in string
handling routines. This makes it possible to typecast a wide string directly to a null-terminated string.

On the .NET platform, String and WideString types are implemented using the System.String type. An empty string is not a nil
pointer, and the string data is not terminated with a null character.

Set Types

A set is a bit array where each bit indicates whether an element is in the set or not. The maximum number of elements in a set is
256, so a set never occupies more than 32 bytes. The number of bytes occupied by a particular set is equal to (Max div 8) (Min
div 8) + 1, where Max and Min are the upper and lower bounds of the base type of the set. The byte number of a specific
element E is (E div 8) (Min div 8) and the bit number within that byte is E mod 8, where E denotes the ordinal value of the
element. When possible, the compiler stores sets in CPU registers, but a set always resides in memory if it is larger than the
generic Integer type or if the program contains code that takes the address of the set.

Note: On the .NET platform, sets containing more than 32 elements are implemented as an array of bytes. The set type in
Delphi for .NET is not CLS compliant, therefore other .NET languages cannot use them.

Static Array Types

On the Win32 platform, a static array is stored as a contiguous sequence of variables of the component type of the array. The
components with the lowest indexes are stored at the lowest memory addresses. A multidimensional array is stored with the
rightmost dimension increasing first.

On the .NET platform, static are implemented using the System.Array type. Memory layout is therefore determined by the
System.Array type.

Dynamic Array Types

On the Win32 platform, a dynamic-array variable occupies four bytes of memory which contain a pointer to the dynamically
allocated array. When the variable is empty (uninitialized) or holds a zero-length array, the pointer is nil and no dynamic memory
is associated with the variable. For a nonempty array, the variable points to a dynamically allocated block of memory that
contains the array in addition to a 32-bit length indicator and a 32-bit reference count. The table below shows the layout of a
dynamic-array memory block.

Dynamic array memory layout (Win32 only)

Offset Contents

-8 32-bit reference-count

-4 32-bit length indicator (number of elements)

0..Length * (size of element) -1 array elements

On the .NET platform, dynamic arrays and open array parameters are implemented using the System.Array type. As with static

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

649

3

arrays, memory layout is therefore determined by the System.Array type.

Record Types

On the .NET platform, field layout in record types is determined at runtime, and can vary depending on the architecture of the
target hardware. The following discussion of record alignment applies to the Win32 platform only (packed records are supported
on the .NET platform, however).

When a record type is declared in the {$A+} state (the default), and when the declaration does not include a packed modifier,
the type is an unpacked record type, and the fields of the record are aligned for efficient access by the CPU. The alignment is
controlled by the type of each field and by whether fields are declared together. Every data type has an inherent alignment,
which is automatically computed by the compiler. The alignment can be 1, 2, 4, or 8, and represents the byte boundary that a
value of the type must be stored on to provide the most efficient access. The table below lists the alignments for all data types.

Type alignment masks (Win32 only)

Type Alignment

Ordinal types size of the type (1, 2, 4, or 8)

Real types 2 for Real48, 4 for Single, 8 for Double and Extended

Short string types 1

Array types same as the element type of the array.

Record types the largest alignment of the fields in the record

Set types size of the type if 1, 2, or 4, otherwise 1

All other types determined by the $A directive.

To ensure proper alignment of the fields in an unpacked record type, the compiler inserts an unused byte before fields with an
alignment of 2, and up to three unused bytes before fields with an alignment of 4, if required. Finally, the compiler rounds the
total size of the record upward to the byte boundary specified by the largest alignment of any of the fields.

If two fields share a common type specification, they are packed even if the declaration does not include the packed modifier
and the record type is not declared in the {$A-} state. Thus, for example, given the following declaration

type
 TMyRecord = record
 A, B: Extended;
 C: Extended;
 end;

A and B are packed (aligned on byte boundaries) because they share the same type specification. The compiler pads the
structure with unused bytes to ensure that C appears on a quadword boundary.

When a record type is declared in the {$A-} state, or when the declaration includes the packed modifier, the fields of the record
are not aligned, but are instead assigned consecutive offsets. The total size of such a packed record is simply the size of all the
fields. Because data alignment can change, it's a good idea to pack any record structure that you intend to write to disk or pass
in memory to another module compiled using a different version of the compiler.

File Types

The following discussion of file types applies to the Win32 platform only. On the .NET platform, text files are implemented with a
class (as opposed to a record). Binary file types (e.g. File of MyType) are not supported on the .NET platform.

On the Win32 platform, file types are represented as records. Typed files and untyped files occupy 332 bytes, which are laid out
as follows:

type
TFileRec = packed record
 Handle: Integer;

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

650

3

 Mode: word;
 Flags: word;
 case Byte of
 0: (RecSize: Cardinal);
 1: (BufSize: Cardinal;
 BufPos: Cardinal;
 BufEnd: Cardinal;
 BufPtr: PChar;
 OpenFunc: Pointer;
 InOutFunc: Pointer;
 FlushFunc: Pointer;
 CloseFunc: Pointer;
 UserData: array[1..32] of Byte;
 Name: array[0..259] of Char;);
end;

Text files occupy 460 bytes, which are laid out as follows:

type
 TTextBuf = array[0..127] of Char;
 TTextRec = packed record
 Handle: Integer;
 Mode: word;
 Flags: word;
 BufSize: Cardinal;
 BufPos: Cardinal;
 BufEnd: Cardinal;
 BufPtr: PChar;
 OpenFunc: Pointer;
 InOutFunc: Pointer;
 FlushFunc: Pointer;
 CloseFunc: Pointer;
 UserData: array[1..32] of Byte;
 Name: array[0..259] of Char;
 Buffer: TTextBuf;
end;

Handle contains the file's handle (when the file is open).

The Mode field can assume one of the values

const
 fmClosed = $D7B0;
 fmInput= $D7B1;
 fmOutput = $D7B2;
 fmInOut= $D7B3;

where fmClosed indicates that the file is closed, fmInput and fmOutput indicate a text file that has been reset (fmInput) or
rewritten (fmOutput), fmInOut indicates a typed or untyped file that has been reset or rewritten. Any other value indicates that the
file variable is not assigned (and hence not initialized).

The UserData field is available for user-written routines to store data in.

Name contains the file name, which is a sequence of characters terminated by a null character (#0).

For typed files and untyped files, RecSize contains the record length in bytes, and the Private field is unused but reserved.

For text files, BufPtr is a pointer to a buffer of BufSize bytes, BufPos is the index of the next character in the buffer to read or
write, and BufEnd is a count of valid characters in the buffer. OpenFunc, InOutFunc, FlushFunc, and CloseFunc are pointers to
the I/O routines that control the file; see Device functions. Flags determines the line break style as follows:

bit 0 clear LF line breaks

bit 0 set CRLF line breaks

All other Flags bits are reserved for future use.

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

651

3

Procedural Types

On the Win32 platform, a procedure pointer is stored as a 32-bit pointer to the entry point of a procedure or function. A method
pointer is stored as a 32-bit pointer to the entry point of a method, followed by a 32-bit pointer to an object.

On the .NET platform, procedural types are implemented using the System.MulticastDelegate class types.

Class Types

The following discussion of the internal layout of class types applies to the Win32 platform only. On the .NET platform, class
layout is determined at runtime. Runtime type information is obtained using the System.Reflection APIs in the .NET framework.

On the Win32 platform, a class-type value is stored as a 32-bit pointer to an instance of the class, which is called an object. The
internal data format of an object resembles that of a record. The object's fields are stored in order of declaration as a sequence
of contiguous variables. Fields are always aligned, corresponding to an unpacked record type. Any fields inherited from an
ancestor class are stored before the new fields defined in the descendant class.

The first 4-byte field of every object is a pointer to the virtual method table (VMT) of the class. There is exactly one VMT per
class (not one per object); distinct class types, no matter how similar, never share a VMT. VMT's are built automatically by the
compiler, and are never directly manipulated by a program. Pointers to VMT's, which are automatically stored by constructor
methods in the objects they create, are also never directly manipulated by a program.

The layout of a VMT is shown in the following table. At positive offsets, a VMT consists of a list of 32-bit method pointersone per
user-defined virtual method in the class typein order of declaration. Each slot contains the address of the corresponding virtual
method's entry point. This layout is compatible with a C++ v-table and with COM. At negative offsets, a VMT contains a number
of fields that are internal to Delphi's implementation. Applications should use the methods defined in TObject to query this
information, since the layout is likely to change in future implementations of the Delphi language.

Virtual method table layout (Win32 Only)

Offset Type Description

-76 Pointer pointer to virtual method table (or nil)

-72 Pointer pointer to interface table (or nil)

-68 Pointer pointer to Automation information table (or nil)

-64 Pointer pointer to instance initialization table (or nil)

-60 Pointer pointer to type information table (or nil)

-56 Pointer pointer to field definition table (or nil)

-52 Pointer pointer to method definition table (or nil)

-48 Pointer pointer to dynamic method table (or nil)

-44 Pointer pointer to short string containing class name

-40 Cardinal instance size in bytes

-36 Pointer pointer to a pointer to ancestor class (or nil)

-32 Pointer pointer to entry point of SafecallException method (or nil)

-28 Pointer entry point of AfterConstruction method

-24 Pointer entry point of BeforeDestruction method

-20 Pointer entry point of Dispatch method

-16 Pointer entry point of DefaultHandler method

-12 Pointer entry point of NewInstance method

-8 Pointer entry point of FreeInstance method

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

652

3

-4 Pointer entry point of Destroy destructor

0 Pointer entry point of first user-defined virtual method

4 Pointer entry point of second user-defined virtual method

Class Reference Types

On the Win32 platform, a class-reference value is stored as a 32-bit pointer to the virtual method table (VMT) of a class.

On the .NET platform, class reference types are implemented using compiler-constructed nested classes inside the class type
they support. These implementation details are subject to change in future compiler releases.

Variant Types

The following discussion of the internal layout of variant types applies to the Win32 platform only. On the .NET platform, variants
are an alias of System.Object. Variants rely on boxing and unboxing of data into an object wrapper, as well as Delphi helper
classes to implement the variant-related RTL functions.

On the Win32 platform, a variant is stored as a 16-byte record that contains a type code and a value (or a reference to a value)
of the type given by the code. The System and Variants units define constants and types for variants.

The TVarData type represents the internal structure of a Variant variable (on Windows, this is identical to the Variant type used
by COM and the Win32 API). The TVarData type can be used in typecasts of Variant variables to access the internal structure of
a variable. The TVarData record contains the following fields:

• VType contains the type code of the variant in the lower twelve bits (the bits defined by the varTypeMask constant). In
addition, the varArray bit may be set to indicate that the variant is an array, and the varByRef bit may be set to indicate that
the variant contains a reference as opposed to a value.

• The Reserved1, Reserved2, and Reserved3 fields are unused.

The contents of the remaining eight bytes of a TVarData record depend on the VType field as follows:

• If neither the varArray nor the varByRef bits are set, the variant contains a value of the given type.

• If the varArray bit is set, the variant contains a pointer to a TVarArray structure that defines an array. The type of each array
element is given by the varTypeMask bits in the VType field.

• If the varByRef bit is set, the variant contains a reference to a value of the type given by the varTypeMask and varArray bits in
the VType field.

The varString type code is private. Variants containing a varString value should never be passed to a non-Delphi function. On
Win32, Delphi's Automation support automatically converts varString variants to varOleStr variants before passing them as
parameters to external functions.

See Also

Memory Management on the Win32 Platform (see page 644)

Memory Management Issues on the .NET Platform (see page 653)

Data Types (see page 553)

3.1.3.8.3 Memory Management Issues on the .NET Platform
The .NET Common Language Runtime is a garbage-collected environment. This means the programmer is freed (for the most
part) from worrying about memory allocation and deallocation. Broadly speaking, after you allocate memory, the CLR determines
when it is safe to free that memory. "Safe to free" means that no more references to that memory exist.

This topic covers the following memory management issues:

• Creating and destroying objects

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

653

3

• Unit initialization and finalization sections

• Unit initialization and finalization in assemblies and packages

Constructors

In Delphi for .NET, a constructor must always call an inherited constructor before it may access or initialize any inherited class
members. The compiler generates an error if your constructor code does not call the inherited constructor (a valid situation in
Delphi for Win32), but it is important to examine your constructors to make sure that you do not access any inherited class fields,
directly or indirectly, before the call to the inherited constructor.

Note: A constructor can initialize fields from its own class, prior to calling the inherited constructor.

Finalization

Every class in the .NET Framework (including VCL.NET classes) inherits a method called Finalize. The garbage collector calls
the Finalize method when the memory for the object is about to be freed. Since the method is called by the garbage collector,
you have no control over when it is called. The asynchronous nature of finalization is a problem for objects that open resources
such as file handles and database connections, because the Finalize method might not be called for some time, leaving these
connections open.

To add a finalizer to a class, override the strict protected Finalize procedure that is inherited from TObject. The .NET
platform places limits on what you can do in a finalizer, because it is called when the garbage collector is cleaning up objects.
The finalizer may execute in a different thread than the thread the object was was created in. A finalizer cannot allocate new
memory, and cannot make calls outside of itself. If your class has references to other objects, a finalizer can refer to them (that
is, their memory is guaranteed not to have been freed yet), but be aware that their state is undefined, as you do not know
whether they have been finalized yet.

When a class has a finalizer, the CLR must add newly instantiated objects of the class to the finalization list. Further, objects with
finalizers tend to persist in memory longer, as they are not freed when the garbage collector first determines that they are no
longer actively referenced. If the object has references to other objects, those objects are also not freed right away (even if they
don’t have finalizers themselves), but must also persist in memory until the original object is finalized. Therefore, finalizers do
impart a fair amount of overhead in terms of memory consumption and execution performance, so they should be used
judiciously.

It is a good practice to restrict finalizers to small objects that represent unmanaged resources. Classes that use these resources
can then hold a reference to the small object with the finalizer. In this way, big classes, and classes that reference many other
classes, do not hoard memory because of a finalizer.

Another good practice is to suppress finalizers when a particular resource has already been released in a destructor. After
freeing the resources, you can call SuppressFinalize, which causes the CLR to remove the object from the finalization list. Be
careful not to call SuppressFinalize with a nil reference, as that causes a runtime exception.

The Dispose Pattern

Another way to free up resources is to implement the dispose pattern. Classes adhering to the dispose pattern must implement
the .NET interface called IDisposable. IDisposable contains only one method, called Dispose. Unlike the Finalize method, the
Dispose method is public. It can be called directly by a user of the class, as opposed to relying on the garbage collector to call it.
This gives you back control of freeing resources, but calling Dispose still does not reclaim memory for the object itself - that is
still for the garbage collector to do. Note that some classes in the .NET Framework implement both Dispose, and another
method such as Close. Typically the Close method simply calls Dispose, but the extra method is provided because it seems
more "natural" for certain classes such as files.

Delphi for .NET classes are free to use the Finalize method for freeing system resources, however the recommended method is
to implement the dispose pattern. The Delphi for .NET compiler recognizes a very specific destructor pattern in your class, and
implements the IDisposable interface for you. This enables you to continue writing new code for the .NET platform the same way
you always have, while allowing much of your existing Win32 Delphi code to run in the garbage collected environment of the
CLR.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

654

3

The compiler recognizes the following specific pattern of a Delphi destructor:

TMyClass = class(TObject)
 destructor Destroy; override;
end;

Your destructor must fit this pattern exactly:

• The name of the destructor must be Destroy.

• The keyword override must be specified.

• The destructor cannot take any parameters.

In the compiler's implementation of the dispose pattern, the Free method is written so that if the class implements the
IDisposable interface (which it does), then the Dispose method is called, which in turn calls your destructor.

You can still implement the IDisposable interface directly, if you choose. However, the compiler's automatic implementation of
the Free-Dispose-Destroy mechanism cannot coexist with your implementation of IDisposable. The two methods of
implementing IDisposable are mutually exclusive. You must choose to either implement IDisposable directly, or equip your
class with the familiar destructor Destroy; override pattern and rely on the compiler to do the rest. The Free method
will call Dispose in either case, but if you implement Dispose yourself, you must call your destructor yourself. If you want to
implement IDisposable yourself, your destructor cannot be called Destroy.

Note: You can declare destructors with other names; the compiler only provides the IDisposable implementation when the
destructor fits the above pattern.

The Dispose method is not called automatically; the Free method must be called in order for Dispose to be called. If an object
is freed by the garbage collector because there are no references to it, but you did not explicitly call Free on the object, the
object will be freed, but the destructor will not execute.

Note: When the garbage collector frees the memory used by an object, it also reclaims the memory used by all fields of the
object instance as well. This means the most common reason for implementing destructors in Delphi for Win32 - to release
allocated memory - no longer applies. However, in most cases, unmanaged resources such as window handles or file handles
still need to be released.

To eliminate the possibility of destructors being called more than once, the Delphi for .NET compiler introduces a field called
DisposeCount into every class declaration. If the class already has a field by this name, the name collision will cause the
compiler to produce a syntax error in the destructor.

Unit Initialization and Finalization

On the .NET platform, units that you depend on will be initialized prior to initializing your own unit. However, there is no way to
guarantee the order in which units are initialized. Nor is there a way to guarantee when they will be initialized. Be aware of
initialization code that depends on another unit's initialization side effects, such as the creation of a file. Such a dependency
cannot be made to work reliably on the .NET platform.

Unit finalization is subject to the same constraints and difficulties as the Finalize method of objects. Specifically, unit finalization
is asynchronous, and, there no way to determine when it will happen (or if it will happen, though under most circumstances, it
will).

Typical tasks performed in a unit finalization include freeing global objects, unregistering objects that are used by other units, and
freeing resources. Because .NET is a memory managed environment, the garbage collector will free global objects even if the
unit finalization section is not called. The units in an application domain are loaded and unloaded together, so you do not need to
worry about unregistering objects. All units that can possibly refer to each other (even in different assemblies) are released at the
same time. Since object references do not cross application domains, there is no danger of something keeping a dangling
reference to an object type or code that has been unloaded from memory.

Freeing resources (such as file handles or window handles) is the most important consideration in unit finalization. Because unit
finalization sections are not guaranteed to be called, you may want to rewrite your code to handle this issue using finalizers
rather than relying on the unit finalization.

The main points to keep in mind for unit initialization and finalization on the .NET platform are:

1. The Finalize method is called asynchronously (both for objects, and for units).

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

655

3

2. Finalization and destructors are used to free unmanaged resources such as file handles. You do not need to destroy object
member variables; the garbage collector takes care of this for you.

3. Classes should rely on the compiler's implementation of IDisposable, and provide a destructor called Destroy.

4. If a class implements IDisposable itself, it cannot have a destructor called Destroy.

5. Reference counting is deprecated. Try to use the destructor Destroy; override; pattern wherever possible.

6. Unit initialization should not depend on side effects produced by initialization of dependent units.

Unit Initialization Considerations for Assemblies and Dynamically Linked Packages

Under Win32, the Delphi compiler uses the DllMain function as a hook from which to execute unit initialization code. No such
execution path exists in the .NET environment. Fortunately, other means of implementing unit initialization exist in the .NET
Framework. However, the differences in the implementation between Win32 and .NET could impact the order of unit initialization
in your application.

The Delphi for .NET compiler uses CLS-compliant class constructors to implement unit initialization hooks. The CLR requires
that every object type have a class constructor. These constructors, or type initializers, are guaranteed to be executed at most
one time. Class constructors are executed at most one time, because in order for the type to be loaded, it must be used. That is,
the assembly containing a type will not be loaded until the type is actually used at runtime. If the assembly is never loaded, its
unit initialization section will never run.

Circular unit references also impact the unit initialization process. If unit A uses unit B, and unit B then uses unit A in its
implementation section, the order of unit initialization is undefined. To fully understand the possibilities, it is helpful to look at the
process one step at a time.

1. Unit A's initialization section uses a type from unit B. If this is the first reference to the type, the CLR will load its assembly,
triggering the unit initialization of unit B.

2. As a consequence, loading and initializing unit B occurs before unit A's initialization section has completed execution. Note
this is a change from how unit initialization works under Win32.

3. Suppose that unit B's initialization is in progress, and that a type from unit A is used. Unit A has not completed initialization,
and such a reference could cause an access violation.

The unit initialization should only use types defined within that unit. Using types from outside the unit will impact unit initialization,
and could cause an access violation, as noted above.

Unit initialization for DLLs happens automatically; it is triggered when a type within the DLL is referenced. Applications created
with other .NET languages can use Delphi for .NET assemblies without concern for the details of unit initialization.

See Also

Memory Management on the Win32 Platform (see page 644)

Internal Data Formats (see page 645)

3.1.3.9 Delphi Overview
This chapter provides a brief introduction to Delphi programs, and program organization.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

656

3

Topics

Name Description

Language Overview (see page 657) Delphi is a high-level, compiled, strongly typed language that supports structured
and object-oriented design. Based on Object Pascal, its benefits include
easy-to-read code, quick compilation, and the use of multiple unit files for
modular programming. Delphi has special features that support CodeGear's
component framework and RAD environment. For the most part, descriptions and
examples in this language guide assume that you are using CodeGear
development tools.
Most developers using CodeGear software development tools write and compile
their code in the integrated development environment (IDE). CodeGear
development tools handle many details of setting up projects and source files,
such as maintenance... more (see page 657)

3.1.3.9.1 Language Overview
Delphi is a high-level, compiled, strongly typed language that supports structured and object-oriented design. Based on Object
Pascal, its benefits include easy-to-read code, quick compilation, and the use of multiple unit files for modular programming.
Delphi has special features that support CodeGear's component framework and RAD environment. For the most part,
descriptions and examples in this language guide assume that you are using CodeGear development tools.

Most developers using CodeGear software development tools write and compile their code in the integrated development
environment (IDE). CodeGear development tools handle many details of setting up projects and source files, such as
maintenance of dependency information among units. The product also places constraints on program organization that are not,
strictly speaking, part of the Object Pascal language specification. For example, CodeGear development tools enforce certain
file- and program-naming conventions that you can avoid if you write your programs outside of the IDE and compile them from
the command prompt.

This language guide generally assumes that you are working in the IDE and that you are building applications that use the
CodeGear Visual Component Library (VCL). Occasionally, however, Delphi-specific rules are distinguished from rules that apply
to all Object Pascal programming. This text covers both the Win32 Delphi language compiler, and the Delphi for .NET language
compiler. Platform-specific language differences and features are noted where necessary.

This section covers the following topics:

• Program Organization. Covers the basic language features that allow you to partition your application into units and
namespaces.

• Example Programs. Small examples of both console and GUI applications are shown, with basic instructions on running the
compiler from the command-line.

Program Organization

Delphi programs are usually divided into source-code modules called units. Most programs begin with a program heading,
which specifies a name for the program. The program heading is followed by an optional uses clause, then a block of
declarations and statements. The uses clause lists units that are linked into the program; these units, which can be shared by
different programs, often have uses clauses of their own.

The uses clause provides the compiler with information about dependencies among modules. Because this information is stored
in the modules themselves, most Delphi language programs do not require makefiles, header files, or preprocessor "include"
directives.

Delphi Source Files

The compiler expects to find Delphi source code in files of three kinds:

• Unit source files (which end with the .pas extension)

• Project files (which end with the .dpr extension)

• Package source files (which end with the .dpk extension)

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

657

3

Unit source files typically contain most of the code in an application. Each application has a single project file and several unit
files; the project file, which corresponds to the program file in traditional Pascal, organizes the unit files into an application.
CodeGear development tools automatically maintain a project file for each application.

If you are compiling a program from the command line, you can put all your source code into unit (.pas) files. If you use the IDE
to build your application, it will produce a project (.dpr) file.

Package source files are similar to project files, but they are used to construct special dynamically linkable libraries called
packages.

Other Files Used to Build Applications

In addition to source-code modules, CodeGear products use several non-Pascal files to build applications. These files are
maintained automatically by the IDE, and include

• VCL form files (which have a .dfm extension on Win32, and .nfm on .NET)

• Resource files (which end with .res)

• Project options files (which end with .dof)

A VCL form file contains the description of the properties of the form and the components it owns. Each form file represents a
single form, which usually corresponds to a window or dialog box in an application. The IDE allows you to view and edit form
files as text, and to save form files as either text (a format very suitable for version control) or binary. Although the default
behavior is to save form files as text, they are usually not edited manually; it is more common to use CodeGear's visual
design tools for this purpose. Each project has at least one form, and each form has an associated unit (.pas) file that, by
default, has the same name as the form file.

In addition to VCL form files, each project uses a resource (.res) file to hold the application's icon and other resources such as
strings. By default, this file has the same name as the project (.dpr) file.

A project options (.dof) file contains compiler and linker settings, search path information, version information, and so forth. Each
project has an associated project options file with the same name as the project (.dpr) file. Usually, the options in this file are
set from Project Options dialog.

Various tools in the IDE store data in files of other types. Desktop settings (.dsk) files contain information about the arrangement
of windows and other configuration options; desktop settings can be project-specific or environment-wide. These files have no
direct effect on compilation.

Compiler-Generated Files

The first time you build an application or a package, the compiler produces a compiled unit file (.dcu on Win32, .dcuil on .NET)
for each new unit used in your project; all the .dcu/.dcuil files in your project are then linked to create a single executable or
shared package. The first time you build a package, the compiler produces a file for each new unit contained in the package, and
then creates both a .dcp and a package file.If you use the GD switch, the linker generates a map file and a .drc file; the .drc file,
which contains string resources, can be compiled into a resource file.

When you build a project, individual units are not recompiled unless their source (.pas) files have changed since the last
compilation, their .dcu/.dpu files cannot be found, you explicitly tell the compiler to reprocess them, or the interface of the unit
depends on another unit which has been changed. In fact, it is not necessary for a unit's source file to be present at all, as long
as the compiler can find the compiled unit file and that unit has no dependencies on other units that have changed.

Example Programs

The examples that follow illustrate basic features of Delphi programming. The examples show simple applications that would not
normally be compiled from the IDE; you can compile them from the command line.

A Simple Console Application

The program below is a simple console application that you can compile and run from the command prompt.

program greeting;

 {$APPTYPE CONSOLE}

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

658

3

 var MyMessage: string;

 begin
 MyMessage := 'Hello world!';
 Writeln(MyMessage);
 end.

The first line declares a program called Greeting. The {$APPTYPE CONSOLE} directive tells the compiler that this is a console
application, to be run from the command line. The next line declares a variable called MyMessage, which holds a string. (Delphi
has genuine string data types.) The program then assigns the string "Hello world!" to the variable MyMessage, and sends the
contents of MyMessage to the standard output using the Writeln procedure. (Writeln is defined implicitly in the System unit,
which the compiler automatically includes in every application.)

You can type this program into a file called greeting.pas or greeting.dpr and compile it by entering

dcc32 greeting

to produce a Win32 executable, or

dccil greeting

to produce a managed .NET executable. In either case, the resulting executable prints the message Hello world!

Aside from its simplicity, this example differs in several important ways from programs that you are likely to write with CodeGear
development tools. First, it is a console application. CodeGear development tools are most often used to write applications with
graphical interfaces; hence, you would not ordinarily call Writeln. Moreover, the entire example program (save for Writeln) is
in a single file. In a typical GUI application, the program heading the first line of the example would be placed in a separate
project file that would not contain any of the actual application logic, other than a few calls to routines defined in unit files.

A More Complicated Example

The next example shows a program that is divided into two files: a project file and a unit file. The project file, which you can save
as greeting.dpr, looks like this:

program greeting;

 {$APPTYPE CONSOLE}

 uses Unit1;

 begin
 PrintMessage('Hello World!');
 end.

The first line declares a program called greeting, which, once again, is a console application. The uses Unit1; clause tells
the compiler that the program greeting depends on a unit called Unit1. Finally, the program calls the PrintMessage
procedure, passing to it the string Hello World! The PrintMessage procedure is defined in Unit1. Here is the source code
for Unit1, which must be saved in a file called Unit1.pas:

unit Unit1;

interface

procedure PrintMessage(msg: string);

implementation

procedure PrintMessage(msg: string);
begin
 Writeln(msg);
end;

end.

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

659

3

Unit1 defines a procedure called PrintMessage that takes a single string as an argument and sends the string to the standard
output. (In Delphi, routines that do not return a value are called procedures. Routines that return a value are called functions.)
Notice that PrintMessage is declared twice in Unit1. The first declaration, under the reserved word interface, makes
PrintMessage available to other modules (such as greeting) that use Unit1. The second declaration, under the reserved
word implementation, actually defines PrintMessage.

You can now compile Greeting from the command line by entering

dcc32 greeting

to produce a Win32 executable, or

dccil greeting

to produce a managed .NET executable.

There is no need to include Unit1 as a command-line argument. When the compiler processes greeting.dpr, it automatically
looks for unit files that the greeting program depends on. The resulting executable does the same thing as our first example: it
prints the message Hello world!

A VCL Application

Our next example is an application built using the Visual Component Library (VCL) components in the IDE. This program uses
automatically generated form and resource files, so you won't be able to compile it from the source code alone. But it illustrates
important features of the Delphi Language. In addition to multiple units, the program uses classes and objects (see page 514)

The program includes a project file and two new unit files. First, the project file:

program greeting;

 uses Forms, Unit1, Unit2;
 {$R *.res} // This directive links the project's resource file.

begin
 // Calls to global Application instance
 Application.Initialize;
 Application.CreateForm(TForm1, Form1);
 Application.CreateForm(TForm2, Form2);
 Application.Run;
end.

Once again, our program is called greeting. It uses three units: Forms, which is part of VCL; Unit1, which is associated with
the application's main form (Form1); and Unit2, which is associated with another form (Form2).

The program makes a series of calls to an object named Application, which is an instance of the TApplication class defined in
the Forms unit. (Every project has an automatically generated Application object.) Two of these calls invoke a TApplication
method named CreateForm. The first call to CreateForm creates Form1, an instance of the TForm1 class defined in Unit1. The
second call to CreateForm creates Form2, an instance of the TForm2 class defined in Unit2.

Unit1 looks like this:

unit Unit1;

interface

uses SysUtils, Types, Classes, Graphics, Controls, Forms, Dialogs;

type

TForm1 = class(TForm)
 Button1: TButton;
 procedure Button1Click(Sender: TObject);
end;

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

660

3

var
 Form1: TForm1;

implementation

uses Unit2;

{$R *.dfm}

procedure TForm1.Button1Click(Sender: TObject);
begin
 Form2.ShowModal;
end;

end.

Unit1 creates a class named TForm1 (derived from TForm) and an instance of this class, Form1. TForm1 includes a
buttonButton1, an instance of TButton and a procedure named Button1Click that is called when the user presses
Button1. Button1Click hides Form1 and it displays Form2 (the call to Form2.ShowModal).

Note: In the previous example, Form2.ShowModal relies on the use of auto-created forms. While this is fine for example code,
using auto-created forms is actively discouraged.

Form2 is defined in Unit2:

unit Unit2;

interface

uses SysUtils, Types, Classes, Graphics, Controls, Forms, Dialogs;

type
TForm2 = class(TForm)
 Label1: TLabel;
 CancelButton: TButton;
 procedure CancelButtonClick(Sender: TObject);
end;

var
 Form2: TForm2;

implementation

uses Unit1;

{$R *.dfm}

procedure TForm2.CancelButtonClick(Sender: TObject);
begin
 Form2.Close;
end;

end.

Unit2 creates a class named TForm2 and an instance of this class, Form2. TForm2 includes a button (CancelButton, an
instance of TButton) and a label (Label1, an instance of TLabel). You can't see this from the source code, but Label1 displays
a caption that reads Hello world! The caption is defined in Form2's form file, Unit2.dfm.

TForm2 declares and defines a method CancelButtonClick which will be invoked at runtime whenever the user presses
CancelButton. This procedure (along with Unit1's TForm1.Button1Click) is called an event handler because it responds
to events that occur while the program is running. Event handlers are assigned to specific events by the form files for Form1 and
Form2.

When the greeting program starts, Form1 is displayed and Form2 is invisible. (By default, only the first form created in the
project file is visible at runtime. This is called the project's main form.) When the user presses the button on Form1, Form2,

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

661

3

displays the Hello world! greeting. When the user presses the CancelButton or the Close button on the title bar, Form2
closes.

See Also

Programs and Units (see page 683)

Using Namespaces with Delphi (see page 689)

3.1.3.10 Procedures and Functions
This section describes the syntax of function and procedure declarations.

Topics

Name Description

Procedures and Functions (see page 662) This topic covers the following items:

• Declaring procedures and functions

• Calling conventions

• Forward and interface declarations

• Declaration of external routines

• Overloading procedures and functions

• Local declarations and nested routines

Calling Procedures and Functions (see page 669) This topic covers the following items:

• Program control and routine parameters

• Open array constructors

• The inline directive

Parameters (see page 672) This topic covers the following items:

• Parameter semantics

• String parameters

• Array parameters

• Default parameters

3.1.3.10.1 Procedures and Functions
This topic covers the following items:

• Declaring procedures and functions

• Calling conventions

• Forward and interface declarations

• Declaration of external routines

• Overloading procedures and functions

• Local declarations and nested routines

About Procedures and Functions

Procedures and functions, referred to collectively as routines, are self-contained statement blocks that can be called from
different locations in a program. A function is a routine that returns a value when it executes. A procedure is a routine that does

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

662

3

not return a value.

Function calls, because they return a value, can be used as expressions in assignments and operations. For example,

I := SomeFunction(X);

calls SomeFunction and assigns the result to I. Function calls cannot appear on the left side of an assignment statement.

Procedure calls - and, when extended syntax is enabled ({$X+}), function calls - can be used as complete statements. For
example,

DoSomething;

calls the DoSomething routine; if DoSomething is a function, its return value is discarded.

Procedures and functions can call themselves recursively.

Declaring Procedures and Functions

When you declare a procedure or function, you specify its name, the number and type of parameters it takes, and, in the case of
a function, the type of its return value; this part of the declaration is sometimes called the prototype, heading, or header. Then
you write a block of code that executes whenever the procedure or function is called; this part is sometimes called the routine's
body or block.

Procedure Declarations

A procedure declaration has the form

procedure procedureName(parameterList); directives;
 localDeclarations;
begin
 statements
end;

where procedureName is any valid identifier, statements is a sequence of statements that execute when the procedure is called,
and (parameterList), directives;, and localDeclarations; are optional.

Here is an example of a procedure declaration:

procedure NumString(N: Integer; var S: string);
var
 V: Integer;
begin
 V := Abs(N);
 S := '';
 repeat
 S := Chr(V mod 10 + Ord('0')) + S;
 V := V div 10;
 until V = 0;
 if N < 0 then S := '-' + S;
end;

Given this declaration, you can call the NumString procedure like this:

NumString(17, MyString);

This procedure call assigns the value '17' to MyString (which must be a string variable).

Within a procedure's statement block, you can use variables and other identifiers declared in the localDeclarations part of the
procedure. You can also use the parameter names from the parameter list (like N and S in the previous example); the parameter
list defines a set of local variables, so don't try to redeclare the parameter names in the localDeclarations section. Finally, you
can use any identifiers within whose scope the procedure declaration falls.

Function Declarations

A function declaration is like a procedure declaration except that it specifies a return type and a return value. Function

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

663

3

declarations have the form

function functionName(parameterList): returnType; directives;
 localDeclarations;
begin
 statements
end;

where functionName is any valid identifier, returnType is a type identifier, statements is a sequence of statements that execute
when the function is called, and (parameterList), directives;, and localDeclarations; are optional.

The function's statement block is governed by the same rules that apply to procedures. Within the statement block, you can use
variables and other identifiers declared in the localDeclarations part of the function, parameter names from the parameter list,
and any identifiers within whose scope the function declaration falls. In addition, the function name itself acts as a special
variable that holds the function's return value, as does the predefined variable Result.

As long as extended syntax is enabled ({$X+}), Result is implicitly declared in every function. Do not try to redeclare it.

For example,

function WF: Integer;
begin
 WF := 17;
end;

defines a constant function called WF that takes no parameters and always returns the integer value 17. This declaration is
equivalent to

function WF: Integer;
begin
 Result := 17;
end;

Here is a more complicated function declaration:

function Max(A: array of Real; N: Integer): Real;
var
X: Real;
I: Integer;
begin
 X := A[0];
 for I := 1 to N - 1 do
 if X < A[I] then X := A[I];
 Max := X;
end;

You can assign a value to Result or to the function name repeatedly within a statement block, as long as you assign only values
that match the declared return type. When execution of the function terminates, whatever value was last assigned to Result or to
the function name becomes the function's return value. For example,

function Power(X: Real; Y: Integer): Real;
var
 I: Integer;
begin
 Result := 1.0;
 I := Y;
 while I > 0 do
 begin
 if Odd(I) then Result := Result * X;
 I := I div 2;
 X := Sqr(X);
 end;
end;

Result and the function name always represent the same value. Hence

function MyFunction: Integer;

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

664

3

begin
 MyFunction := 5;
 Result := Result * 2;
 MyFunction := Result + 1;
end;

returns the value 11. But Result is not completely interchangeable with the function name. When the function name appears on
the left side of an assignment statement, the compiler assumes that it is being used (like Result) to track the return value; when
the function name appears anywhere else in the statement block, the compiler interprets it as a recursive call to the function
itself. Result, on the other hand, can be used as a variable in operations, typecasts, set constructors, indexes, and calls to other
routines.

If the function exits without assigning a value to Result or the function name, then the function's return value is undefined.

Calling Conventions

When you declare a procedure or function, you can specify a calling convention using one of the directives register, pascal,
cdecl, stdcall, and safecall. For example,

function MyFunction(X, Y: Real): Real; cdecl;

Calling conventions determine the order in which parameters are passed to the routine. They also affect the removal of
parameters from the stack, the use of registers for passing parameters, and error and exception handling. The default calling
convention is register.

• The register and pascal conventions pass parameters from left to right; that is, the left most parameter is evaluated and
passed first and the rightmost parameter is evaluated and passed last. The cdecl, stdcall, and safecall conventions pass
parameters from right to left.

• For all conventions except cdecl, the procedure or function removes parameters from the stack upon returning. With the
cdecl convention, the caller removes parameters from the stack when the call returns.

• The register convention uses up to three CPU registers to pass parameters, while the other conventions pass all parameters
on the stack.

• The safecall convention implements exception 'firewalls.' On Win32, this implements interprocess COM error notification.

The table below summarizes calling conventions.

Calling conventions

Directive Parameter order Clean-up Passes parameters
in registers?

register Left-to-right Routine Yes

pascal Left-to-right Routine No

cdecl Right-to-left Caller No

stdcall Right-to-left Routine No

safecall Right-to-left Routine No

The default register convention is the most efficient, since it usually avoids creation of a stack frame. (Access methods for
published properties must use register.) The cdecl convention is useful when you call functions from shared libraries written in
C or C++, while stdcall and safecall are recommended, in general, for calls to external code. On Win32, the operating system
APIs are stdcall and safecall. Other operating systems generally use cdecl. (Note that stdcall is more efficient than cdecl.)

The safecall convention must be used for declaring dual-interface methods. The pascal convention is maintained for backward
compatibility.

The directives near, far, and export refer to calling conventions in 16-bit Windows programming. They have no effect in Win32,
or in .NET applications and are maintained for backward compatibility only.

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

665

3

Forward and Interface Declarations

The forward directive replaces the block, including local variable declarations and statements, in a procedure or function
declaration. For example,

function Calculate(X, Y: Integer): Real; forward;

declares a function called Calculate. Somewhere after the forward declaration, the routine must be redeclared in a defining
declaration that includes a block. The defining declaration for Calculate might look like this:

function Calculate;
 ... { declarations }
begin
 ... { statement block }
end;

Ordinarily, a defining declaration does not have to repeat the routine's parameter list or return type, but if it does repeat them,
they must match those in the forward declaration exactly (except that default parameters can be omitted). If the forward
declaration specifies an overloaded procedure or function, then the defining declaration must repeat the parameter list.

A forward declaration and its defining declaration must appear in the same type declaration section. That is, you can't add a
new section (such as a var section or const section) between the forward declaration and the defining declaration. The defining
declaration can be an external or assembler declaration, but it cannot be another forward declaration.

The purpose of a forward declaration is to extend the scope of a procedure or function identifier to an earlier point in the source
code. This allows other procedures and functions to call the forward-declared routine before it is actually defined. Besides letting
you organize your code more flexibly, forward declarations are sometimes necessary for mutual recursions.

The forward directive has no effect in the interface section of a unit. Procedure and function headers in the interface section
behave like forward declarations and must have defining declarations in the implementation section. A routine declared in the
interface section is available from anywhere else in the unit and from any other unit or program that uses the unit where it is
declared.

External Declarations

The external directive, which replaces the block in a procedure or function declaration, allows you to call routines that are
compiled separately from your program. External routines can come from object files or dynamically loadable libraries.

When importing a C function that takes a variable number of parameters, use the varargs directive. For example,

function printf(Format: PChar): Integer; cdecl; varargs;

The varargs directive works only with external routines and only with the cdecl calling convention.

Linking to Object Files

To call routines from a separately compiled object file, first link the object file to your application using the $L (or $LINK)
compiler directive. For example,

{$L BLOCK.OBJ}

links BLOCK.OBJ into the program or unit in which it occurs. Next, declare the functions and procedures that you want to call:

procedure MoveWord(var Source, Dest; Count: Integer); external;
procedure FillWord(var Dest; Data: Integer; Count: Integer); external;

Now you can call the MoveWord and FillWord routines from BLOCK.OBJ.

On the Win32 platform, declarations like the ones above are frequently used to access external routines written in assembly
language. You can also place assembly-language routines directly in your Delphi source code.

Importing Functions from Libraries

To import routines from a dynamically loadable library (.DLL), attach a directive of the form

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

666

3

externalstringConstant;

to the end of a normal procedure or function header, where stringConstant is the name of the library file in single quotation
marks. For example, on Win32

function SomeFunction(S: string): string; external 'strlib.dll';

imports a function called SomeFunction from strlib.dll.

You can import a routine under a different name from the one it has in the library. If you do this, specify the original name in the
external directive:

externalstringConstant1namestringConstant2;

where the first stringConstant gives the name of the library file and the second stringConstant is the routine's original name.

The following declaration imports a function from user32.dll (part of the Win32 API).

function MessageBox(HWnd: Integer; Text, Caption: PChar; Flags: Integer): Integer; stdcall;
external 'user32.dll' name 'MessageBoxA';

The function's original name is MessageBoxA, but it is imported as MessageBox.

Instead of a name, you can use a number to identify the routine you want to import:

externalstringConstantindexintegerConstant;

where integerConstant is the routine's index in the export table.

In your importing declaration, be sure to match the exact spelling and case of the routine's name. Later, when you call the
imported routine, the name is case-insensitive.

Overloading Procedures and Functions

You can declare more than one routine in the same scope with the same name. This is called overloading. Overloaded routines
must be declared with the overload directive and must have distinguishing parameter lists. For example, consider the
declarations

function Divide(X, Y: Real): Real; overload;
begin
 Result := X/Y;
end

function Divide(X, Y: Integer): Integer; overload;
begin
 Result := X div Y;
end;

These declarations create two functions, both called Divide, that take parameters of different types. When you call Divide, the
compiler determines which function to invoke by looking at the actual parameters passed in the call. For example,
Divide(6.0, 3.0) calls the first Divide function, because its arguments are real-valued.

You can pass to an overloaded routine parameters that are not identical in type with those in any of the routine's declarations,
but that are assignment-compatible with the parameters in more than one declaration. This happens most frequently when a
routine is overloaded with different integer types or different real types - for example,

procedure Store(X: Longint); overload;
procedure Store(X: Shortint); overload;

In these cases, when it is possible to do so without ambiguity, the compiler invokes the routine whose parameters are of the type
with the smallest range that accommodates the actual parameters in the call. (Remember that real-valued constant expressions
are always of type Extended.)

Overloaded routines must be distinguished by the number of parameters they take or the types of their parameters. Hence the
following pair of declarations causes a compilation error.

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

667

3

function Cap(S: string): string; overload;
 ...
procedure Cap(var Str: string); overload;
 ...

But the declarations

function Func(X: Real; Y: Integer): Real; overload;
 ...
function Func(X: Integer; Y: Real): Real; overload;
 ...

are legal.

When an overloaded routine is declared in a forward or interface declaration, the defining declaration must repeat the routine's
parameter list.

The compiler can distinguish between overloaded functions that contain AnsiString/PChar and WideString/WideChar
parameters in the same parameter position. String constants or literals passed into such an overload situation are translated into
the native string or character type, which is AnsiString/PChar.

procedure test(const S: String); overload;
procedure test(const W: WideString); overload;
var
 a: string;
 b: widestring;
begin
 a := 'a';
 b := 'b';
 test(a); // calls String version
 test(b); // calls WideString version
 test('abc'); // calls String version
 test(WideString('abc')); // calls widestring version
end;

Variants can also be used as parameters in overloaded function declarations. Variant is considered more general than any
simple type. Preference is always given to exact type matches over variant matches. If a variant is passed into such an overload
situation, and an overload that takes a variant exists in that parameter position, it is considered to be an exact match for the
Variant type.

This can cause some minor side effects with float types. Float types are matched by size. If there is no exact match for the float
variable passed to the overload call but a variant parameter is available, the variant is taken over any smaller float type.

For example:

procedure foo(i: integer); overload;
procedure foo(d: double); overload;
procedure foo(v: variant); overload;
var
 v: variant;
begin
 foo(1); // integer version
 foo(v); // variant version
 foo(1.2); // variant version (float literals -> extended precision)
end;

This example calls the variant version of foo, not the double version, because the 1.2 constant is implicitly an extended type and
extended is not an exact match for double. Extended is also not an exact match for Variant, but Variant is considered a more
general type (whereas double is a smaller type than extended).

foo(Double(1.2));

This typecast does not work. You should use typed consts instead.

const d: double = 1.2;
begin

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

668

3

 foo(d);
end;

The above code works correctly, and calls the double version.

const s: single = 1.2;
begin
 foo(s);
end;

The above code also calls the double version of foo. Single is a better fit to double than to variant.

When declaring a set of overloaded routines, the best way to avoid float promotion to variant is to declare a version of your
overloaded function for each float type (Single, Double, Extended) along with the variant version.

If you use default parameters in overloaded routines, be careful not to introduce ambiguous parameter signatures.

You can limit the potential effects of overloading by qualifying a routine's name when you call it. For example,
Unit1.MyProcedure(X, Y) can call only routines declared in Unit1; if no routine in Unit1 matches the name and
parameter list in the call, an error results.

Local Declarations

The body of a function or procedure often begins with declarations of local variables used in the routine's statement block. These
declarations can also include constants, types, and other routines. The scope of a local identifier is limited to the routine where it
is declared.

Nested Routines

Functions and procedures sometimes contain other functions and procedures within the local-declarations section of their blocks.
For example, the following declaration of a procedure called DoSomething contains a nested procedure.

procedure DoSomething(S: string);
var
 X, Y: Integer;

procedure NestedProc(S: string);
begin
 ...
end;

begin
 ...
 NestedProc(S);
 ...
end;

The scope of a nested routine is limited to the procedure or function in which it is declared. In our example, NestedProc can be
called only within DoSomething.

For real examples of nested routines, look at the DateTimeToString procedure, the ScanDate function, and other routines in the
SysUtils unit.

See Also

Parameters (see page 672)

Calling Procedures and Functions (see page 669)

3.1.3.10.2 Calling Procedures and Functions
This topic covers the following items:

• Program control and routine parameters

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

669

3

• Open array constructors

• The inline directive

Program Control and Parameters

When you call a procedure or function, program control passes from the point where the call is made to the body of the routine.
You can make the call using the routine's declared name (with or without qualifiers) or using a procedural variable that points to
the routine. In either case, if the routine is declared with parameters, your call to it must pass parameters that correspond in
order and type to the routine's parameter list. The parameters you pass to a routine are called actual parameters, while the
parameters in the routine's declaration are called formal parameters.

When calling a routine, remember that

• expressions used to pass typed const and value parameters must be assignment-compatible with the corresponding formal
parameters.

• expressions used to pass var and out parameters must be identically typed with the corresponding formal parameters, unless
the formal parameters are untyped.

• only assignable expressions can be used to pass var and out parameters.

• if a routine's formal parameters are untyped, numerals and true constants with numeric values cannot be used as actual
parameters.

When you call a routine that uses default parameter values, all actual parameters following the first accepted default must also
use the default values; calls of the form SomeFunction(,,X) are not legal.

You can omit parentheses when passing all and only the default parameters to a routine. For example, given the procedure

procedure DoSomething(X: Real = 1.0; I: Integer = 0; S: string = '');

the following calls are equivalent.

DoSomething();
 DoSomething;

Open Array Constructors

Open array constructors allow you to construct arrays directly within function and procedure calls. They can be passed only as
open array parameters or variant open array parameters.

An open array constructor, like a set constructor, is a sequence of expressions separated by commas and enclosed in brackets.

For example, given the declarations

var I, J: Integer;
 procedure Add(A: array of Integer);

you could call the Add procedure with the statement

Add([5, 7, I, I + J]);

This is equivalent to

var Temp: array[0..3] of Integer;
 ...
 Temp[0] := 5;
 Temp[1] := 7;
 Temp[2] := I;
 Temp[3] := I + J;
 Add(Temp);

Open array constructors can be passed only as value or const parameters. The expressions in a constructor must be
assignment-compatible with the base type of the array parameter. In the case of a variant open array parameter, the expressions
can be of different types.

Using the inline Directive

The Delphi compiler allows functions and procedures to be tagged with the

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

670

3

inline directive to improve performance. If the function or procedure meets certain criteria, the compiler will insert code directly,
rather than generating a call. Inlining is a performance optimization that can result in faster code, but at the expense of space.
Inlining always causes the compiler to produce a larger binary file. The inline directive is used in function and procedure
declarations and definitions, like other directives.

procedure MyProc(x:Integer); inline;
begin
 // ...
end;

function MyFunc(y:Char) : String; inline;
begin
 // ..
end;

The inline directive is a suggestion to the compiler. There is no guarantee the compiler will inline a particular routine, as there
are a number of circumstances where inlining cannot be done. The following list shows the conditions under which inlining does
or does not occur:

• Inlining will not occur on any form of late-bound method. This includes virtual, dynamic, and message methods.

• Routines containing assembly code will not be inlined.

• Constructors and destructors will not be inlined.

• The main program block, unit initialization, and unit finalization blocks cannot be inlined.

• Routines that are not defined before use cannot be inlined.

• Routines that take open array parameters cannot be inlined.

• Code can be inlined within packages, however, inlining never occurs across package boundaries.

• No inlining will be done between units that are circularly dependent. This included indirect circular dependencies, for example,
unit A uses unit B, and unit B uses unit C which in turn uses unit A. In this example, when compiling unit A, no code from unit
B or unit C will be inlined in unit A.

• The compiler can inline code when a unit is in a circular dependency, as long as the code to be inlined comes from a unit
outside the circular relationship. In the above example, if unit A also used unit D, code from unit D could be inlined in A, since
it is not involved in the circular dependency.

• If a routine is defined in the interface section and it accesses symbols defined in the implementation section, that routine
cannot be inlined.

• In Delphi.NET, routines in classes cannot be inlined if they access members with less (i.e. more restricted) visibility than the
method itself. For example, if a public method accesses private symbols, it cannot be inlined.

• If a routine marked with inline uses external symbols from other units, all of those units must be listed in the uses statement,
otherwise the routine cannot be inlined.

• Procedures and functions used in conditional expressions in while-do and repeat-until statements cannot be expanded
inline.

• Within a unit, the body for an inline function should be defined before calls to the function are made. Otherwise, the body of
the function, which is not known to the compiler when it reaches the call site, cannot be expanded inline.

If you modify the implementation of an inlined routine, you will cause all units that use that function to be recompiled. This is
different from traditional rebuild rules, where rebuilds were triggered only by changes in the interface section of a unit.

The {$INLINE} compiler directive gives you finer control over inlining. The {$INLINE} directive can be used at the site of the
inlined routine's definition, as well as at the call site. Below are the possible values and their meaning:

Value Meaning at definition Meaning at call site

{$INLINE
ON}
(default)

The routine is compiled as inlineable if it is tagged with the inline
directive.

The routine will be expanded inline if
possible.

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

671

3

{$INLINE
AUTO}

Behaves like {$INLINE ON}, with the addition that routines not
marked with inline will be inlined if their code size is less than or
equal to 32 bytes.

{$INLINE AUTO} has no effect on
whether a routine will be inlined when it
is used at the call site of the routine.

{$INLINE
OFF}

The routine will not be marked as inlineable, even if it is tagged with
inline.

The routine will not be expanded inline.

See Also

Procedures and Functions (see page 662)

Parameters (see page 672)

3.1.3.10.3 Parameters
This topic covers the following items:

• Parameter semantics

• String parameters

• Array parameters

• Default parameters

About Parameters

Most procedure and function headers include a parameter list. For example, in the header

function Power(X: Real; Y: Integer): Real;

the parameter list is (X: Real; Y: Integer).

A parameter list is a sequence of parameter declarations separated by semicolons and enclosed in parentheses. Each
declaration is a comma-delimited series of parameter names, followed in most cases by a colon and a type identifier, and in
some cases by the = symbol and a default value. Parameter names must be valid identifiers. Any declaration can be preceded
by var, const, or out. Examples:

(X, Y: Real)
(var S: string; X: Integer)
(HWnd: Integer; Text, Caption: PChar; Flags: Integer)
(const P; I: Integer)

The parameter list specifies the number, order, and type of parameters that must be passed to the routine when it is called. If a
routine does not take any parameters, omit the identifier list and the parentheses in its declaration:

procedure UpdateRecords;
begin
 ...
end;

Within the procedure or function body, the parameter names (X and Y in the first example) can be used as local variables. Do not
redeclare the parameter names in the local declarations section of the procedure or function body.

Parameter Semantics

Parameters are categorized in several ways:

• Every parameter is classified as value, variable, constant, or out. Value parameters are the default; the reserved words var,
const, and out indicate variable, constant, and out parameters, respectively.

• Value parameters are always typed, while constant, variable, and out parameters can be either typed or untyped.

• Special rules apply to array parameters.

Files and instances of structured types that contain files can be passed only as variable (var) parameters.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

672

3

Value and Variable Parameters

Most parameters are either value parameters (the default) or variable (var) parameters. Value parameters are passed by value,
while variable parameters are passed by reference. To see what this means, consider the following functions.

function DoubleByValue(X: Integer): Integer; // X is a value parameter
begin
 X := X * 2;
 Result := X;
end;

function DoubleByRef(var X: Integer): Integer; // X is a variable parameter
begin
 X := X * 2;
 Result := X;
end;

These functions return the same result, but only the second one - DoubleByRefcan change the value of a variable passed to it.
Suppose we call the functions like this:

var
 I, J, V, W: Integer;
begin
 I := 4;
 V := 4;
 J := DoubleByValue(I); // J = 8, I = 4
 W := DoubleByRef(V); // W = 8, V = 8
end;

After this code executes, the variable I, which was passed to DoubleByValue, has the same value we initially assigned to it.
But the variable V, which was passed to DoubleByRef, has a different value.

A value parameter acts like a local variable that gets initialized to the value passed in the procedure or function call. If you pass a
variable as a value parameter, the procedure or function creates a copy of it; changes made to the copy have no effect on the
original variable and are lost when program execution returns to the caller.

A variable parameter, on the other hand, acts like a pointer rather than a copy. Changes made to the parameter within the body
of a function or procedure persist after program execution returns to the caller and the parameter name itself has gone out of
scope.

Even if the same variable is passed in two or more var parameters, no copies are made. This is illustrated in the following
example.

procedure AddOne(var X, Y: Integer);
begin
 X := X + 1;
 Y := Y + 1;
end;

var I: Integer;
begin
 I := 1;
 AddOne(I, I);
end;

After this code executes, the value of I is 3.

If a routine's declaration specifies a var parameter, you must pass an assignable expression - that is, a variable, typed constant
(in the {$J+} state), dereferenced pointer, field, or indexed variable to the routine when you call it. To use our previous
examples, DoubleByRef(7) produces an error, although DoubleByValue(7) is legal.

Indexes and pointer dereferences passed in var parameters - for example, DoubleByRef(MyArray[I]) - are evaluated once,
before execution of the routine.

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

673

3

Constant Parameters

A constant (const) parameter is like a local constant or read-only variable. Constant parameters are similar to value parameters,
except that you can't assign a value to a constant parameter within the body of a procedure or function, nor can you pass one as
a var parameter to another routine. (But when you pass an object reference as a constant parameter, you can still modify the
object's properties.)

Using const allows the compiler to optimize code for structured - and string-type parameters. It also provides a safeguard
against unintentionally passing a parameter by reference to another routine.

Here, for example, is the header for the CompareStr function in the SysUtils unit:

function CompareStr(const S1, S2: string): Integer;

Because S1 and S2 are not modified in the body of CompareStr, they can be declared as constant parameters.

Out Parameters

An out parameter, like a variable parameter, is passed by reference. With an out parameter, however, the initial value of the
referenced variable is discarded by the routine it is passed to. The out parameter is for output only; that is, it tells the function or
procedure where to store output, but doesn't provide any input.

For example, consider the procedure heading

procedure GetInfo(out Info: SomeRecordType);

When you call GetInfo, you must pass it a variable of type SomeRecordType:

var MyRecord: SomeRecordType;
 ...
GetInfo(MyRecord);

But you're not using MyRecord to pass any data to the GetInfo procedure; MyRecord is just a container where you want
GetInfo to store the information it generates. The call to GetInfo immediately frees the memory used by MyRecord, before
program control passes to the procedure.

Out parameters are frequently used with distributed-object models like COM. In addition, you should use out parameters when
you pass an uninitialized variable to a function or procedure.

Untyped Parameters

You can omit type specifications when declaring var, const, and out parameters. (Value parameters must be typed.) For
example,

procedure TakeAnything(const C);

declares a procedure called TakeAnything that accepts a parameter of any type. When you call such a routine, you cannot
pass it a numeral or untyped numeric constant.

Within a procedure or function body, untyped parameters are incompatible with every type. To operate on an untyped parameter,
you must cast it. In general, the compiler cannot verify that operations on untyped parameters are valid.

The following example uses untyped parameters in a function called Equal that compares a specified number of bytes of any
two variables.

function Equal(var Source, Dest; Size: Integer): Boolean;
type
 TBytes = array[0..MaxInt - 1] of Byte;
var
 N : Integer;
begin
 N := 0;
 while (N < Size) and (TBytes(Dest)[N] = TBytes(Source)[N]) do

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

674

3

 Inc(N);
 Equal := N = Size;
end;

Given the declarations

type
 TVector = array[1..10] of Integer;
 TPoint = record
 X, Y: Integer;
 end;
var
 Vec1, Vec2: TVector;
 N: Integer;
 P: TPoint;

you could make the following calls to Equal:

Equal(Vec1, Vec2, SizeOf(TVector)); // compare Vec1 to Vec2
Equal(Vec1, Vec2, SizeOf(Integer) * N); // compare first N elements of Vec1 and Vec2
Equal(Vec1[1], Vec1[6], SizeOf(Integer) * 5); // compare first 5 to last 5 elements of Vec1
Equal(Vec1[1], P, 4); // compare Vec1[1] to P.X and Vec1[2] to P.Y

String Parameters

When you declare routines that take short-string parameters, you cannot include length specifiers in the parameter declarations.
That is, the declaration

procedure Check(S: string[20]); // syntax error

causes a compilation error. But

type TString20 = string[20];
procedure Check(S: TString20);

is valid. The special identifier OpenString can be used to declare routines that take short-string parameters of varying length:

procedure Check(S: OpenString);

When the {$H} and {$P+} compiler directives are both in effect, the reserved word string is equivalent to OpenString in
parameter declarations.

Short strings, OpenString, $H, and $P are supported for backward compatibility only. In new code, you can avoid these
considerations by using long strings.

Array Parameters

When you declare routines that take array parameters, you cannot include index type specifiers in the parameter declarations.
That is, the declaration

procedure Sort(A: array[1..10] of Integer) // syntax error<

causes a compilation error. But

type TDigits = array[1..10] of Integer;
procedure Sort(A: TDigits);

is valid. Another approach is to use open array parameters.

Since the Delphi language does not implement value semantics for dynamic arrays, 'value' parameters in routines do not
represent a full copy of the dynamic array. In this example

type
 TDynamicArray = array of Integer;
 procedure p(Value: TDynamicArray);
 begin
 Value[0] := 1;
 end;

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

675

3

 procedure Run;
var
 a: TDynamicArray;
begin
 SetLength(a, 1);
 a[0] := 0;
 p(a);
 Writeln(a[0]); // Prints '1'
end;

Note that the assignment to Value[0] in routine p will modify the content of dynamic array of the caller, despite Value being a
by-value parameter. If a full copy of the dynamic array is required, use the Copy standard procedure to create a value copy of
the dynamic array.

Open Array Parameters

Open array parameters allow arrays of different sizes to be passed to the same procedure or function. To define a routine with
an open array parameter, use the syntax array of type (rather than array[X..Y] of type) in the parameter declaration.
For example,

function Find(A: array of Char): Integer;

declares a function called Find that takes a character array of any size and returns an integer.

Note: The syntax of open array parameters resembles that of dynamic array types, but they do not mean the same thing. The
previous example creates a function that takes any array of Char

elements, including (but not limited to) dynamic arrays. To declare parameters that must be dynamic arrays, you need to specify
a type identifier:

type TDynamicCharArray = array of Char;
function Find(A: TDynamicCharArray): Integer;

Within the body of a routine, open array parameters are governed by the following rules.

• They are always zero-based. The first element is 0, the second element is 1, and so forth. The standard Low and High
functions return 0 and Length1, respectively. The SizeOf function returns the size of the actual array passed to the routine.

• They can be accessed by element only. Assignments to an entire open array parameter are not allowed.

• They can be passed to other procedures and functions only as open array parameters or untyped var parameters. They
cannot be passed to SetLength.

• Instead of an array, you can pass a variable of the open array parameter's base type. It will be treated as an array of length 1.

When you pass an array as an open array value parameter, the compiler creates a local copy of the array within the routine's
stack frame. Be careful not to overflow the stack by passing large arrays.

The following examples use open array parameters to define a Clear procedure that assigns zero to each element in an array
of reals and a Sum function that computes the sum of the elements in an array of reals.

procedure Clear(var A: array of Real);
var
 I: Integer;
begin
 for I := 0 to High(A) do A[I] := 0;
end;

function Sum(const A: array of Real): Real;
var
 I: Integer;
 S: Real;
begin
 S := 0;
 for I := 0 to High(A) do S := S + A[I];
 Sum := S;
end;

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

676

3

When you call routines that use open array parameters, you can pass open array constructors to them.

Variant Open Array Parameters

Variant open array parameters allow you to pass an array of differently typed expressions to a single procedure or function. To
define a routine with a variant open array parameter, specify array of const as the parameter's type. Thus

procedure DoSomething(A: array of const);

declares a procedure called DoSomething that can operate on heterogeneous arrays.

On the .NET platform, a variant open array parameter is equivalent to array of TObject. To determine the type of an
element in the array, you may use the ClassName or GetType methods.

On the Win32 platform, the array of const construction is equivalent to array ofTVarRec. TVarRec, declared in the
System unit, represents a record with a variant part that can hold values of integer, Boolean, character, real, string, pointer,
class, class reference, interface, and variant types. TVarRec's VType field indicates the type of each element in the array. Some
types are passed as pointers rather than values; in particular, long strings are passed as Pointer and must be typecast to string.

The following Win32 example, uses a variant open array parameter in a function that creates a string representation of each
element passed to it and concatenates the results into a single string. The string-handling routines called in this function are
defined in SysUtils. This function will not compile on .NET because it depends on the variant implementation of array of
const.

function MakeStr(const Args: array of const): string;
var
 I: Integer;
begin
 Result := '';
 for I := 0 to High(Args) do
 with Args[I] do
 case VType of
 vtInteger: Result := Result + IntToStr(VInteger);
 vtBoolean: Result := Result + BoolToStr(VBoolean);
 vtChar: Result := Result + VChar;
 vtExtended: Result := Result + FloatToStr(VExtended^);
 vtString: Result := Result + VString^;
 vtPChar: Result := Result + VPChar;
 vtObject: Result := Result + VObject.ClassName;
 vtClass: Result := Result + VClass.ClassName;
 vtAnsiString: Result := Result + string(VAnsiString);
 vtCurrency: Result := Result + CurrToStr(VCurrency^);
 vtVariant: Result := Result + string(VVariant^);
 vtInt64: Result := Result + IntToStr(VInt64^);
 end;
end;

We can call this function using an open array constructor. For example,

MakeStr(['test', 100, ' ', True, 3.14159, TForm])

returns the string 'test100 T3.14159TForm'.

Default Parameters

You can specify default parameter values in a procedure or function heading. Default values are allowed only for typed const
and value parameters. To provide a default value, end the parameter declaration with the = symbol followed by a constant
expression that is assignment-compatible with the parameter's type.

For example, given the declaration

procedure FillArray(A: array of Integer; Value: Integer = 0);

the following procedure calls are equivalent.

FillArray(MyArray);

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

677

3

 FillArray(MyArray, 0);

A multiple-parameter declaration cannot specify a default value. Thus, while

function MyFunction(X: Real = 3.5; Y: Real = 3.5): Real;

is legal,

function MyFunction(X, Y: Real = 3.5): Real; // syntax error

is not.

Parameters with default values must occur at the end of the parameter list. That is, all parameters following the first declared
default value must also have default values. So the following declaration is illegal.

procedure MyProcedure(I: Integer = 1; S: string); // syntax error

Default values specified in a procedural type override those specified in an actual routine. Thus, given the declarations

type TResizer = function(X: Real; Y: Real = 1.0): Real;
function Resizer(X: Real; Y: Real = 2.0): Real;
var
 F: TResizer;
 N: Real;

the statements

F := Resizer;
F(N);

result in the values (N, 1.0) being passed to Resizer.

Default parameters are limited to values that can be specified by a constant expression. Hence parameters of a dynamic-array,
procedural, class, class-reference, or interface type can have no value other than nil as their default. Parameters of a record,
variant, file, static-array, or object type cannot have default values at all.

Default Parameters and Overloaded Functions

If you use default parameter values in an overloaded routine, avoid ambiguous parameter signatures. Consider, for example, the
following.

procedure Confused(I: Integer); overload;
 ...
procedure Confused(I: Integer; J: Integer = 0); overload;
 ...
Confused(X); // Which procedure is called?

In fact, neither procedure is called. This code generates a compilation error.

Default Parameters in Forward and Interface Declarations

If a routine has a forward declaration or appears in the interface section of a unit, default parameter values if there are any must
be specified in the forward or interface declaration. In this case, the default values can be omitted from the defining
(implementation) declaration; but if the defining declaration includes default values, they must match those in the forward or
interface declaration exactly.

See Also

Procedures and Functions (see page 662)

Calling Procedures and Functions (see page 669)

3.1.3.11 Program Control
This section describes how parameters are passed to procedures and functions.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

678

3

Topics

Name Description

Program Control (see page 679) The concepts of passing parameters and function result processing are important
to understand before you undertake your application projects Treatment of
parameters and function results is determined by several factors, including calling
conventions, parameter semantics, and the type and size of the value being
passed.
This following topics are covered in this material:

• Passing Parameters.

• Handling Function Results.

• Handling Method Calls.

• Understanding Exit Procedures.

3.1.3.11.1 Program Control
The concepts of passing parameters and function result processing are important to understand before you undertake your
application projects Treatment of parameters and function results is determined by several factors, including calling conventions,
parameter semantics, and the type and size of the value being passed.

This following topics are covered in this material:

• Passing Parameters.

• Handling Function Results.

• Handling Method Calls.

• Understanding Exit Procedures.

Passing Parameters

Parameters are transferred to procedures and functions via CPU registers or the stack, depending on the routine's calling
convention. For information about calling conventions, see the topic on Calling Conventions.

By Value vs. By Reference

Variable (var) parameters are always passed by reference, as 32-bit pointers that point to the actual storage location.

Value and constant (const) parameters are passed by value or by reference, depending on the type and size of the parameter:

• An ordinal parameter is passed as an 8-bit, 16-bit, 32-bit, or 64-bit value, using the same format as a variable of the
corresponding type.

• A real parameter is always passed on the stack. A Single parameter occupies 4 bytes, and a Double, Comp, or Currency
parameter occupies 8 bytes. A Real48 occupies 8 bytes, with the Real48 value stored in the lower 6 bytes. An Extended
occupies 12 bytes, with the Extended value stored in the lower 10 bytes.

• A short-string parameter is passed as a 32-bit pointer to a short string.

• A long-string or dynamic-array parameter is passed as a 32-bit pointer to the dynamic memory block allocated for the long
string. The value nil is passed for an empty long string.

• A pointer, class, class-reference, or procedure-pointer parameter is passed as a 32-bit pointer.

• A method pointer is passed on the stack as two 32-bit pointers. The instance pointer is pushed before the method pointer so
that the method pointer occupies the lowest address.

• Under the register and pascal conventions, a variant parameter is passed as a 32bit pointer to a Variant value.

• Sets, records, and static arrays of 1, 2, or 4 bytes are passed as 8-bit, 16-bit, and 32bit values. Larger sets, records, and static
arrays are passed as 32-bit pointers to the value. An exception to this rule is that records are always passed directly on the
stack under the cdecl, stdcall, and safecall conventions; the size of a record passed this way is rounded upward to the
nearest double-word boundary.

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

679

3

• An open-array parameter is passed as two 32-bit values. The first value is a pointer to the array data, and the second value is
one less than the number of elements in the array.

When two parameters are passed on the stack, each parameter occupies a multiple of 4 bytes (a whole number of double
words). For an 8-bit or 16-bit parameter, even though the parameter occupies only a byte or a word, it is passed as a double
word. The contents of the unused parts of the double word are undefined.

Pascal, cdecl, stdcall, and safecall Conventions

Under the pascal, cdecl, stdcall and safecall conventions, all parameters are passed on the stack. Under the pascal
convention, parameters are pushed in the order of their declaration (left-to-right), so that the first parameter ends up at the
highest address and the last parameter ends up at the lowest address. Under the cdecl, stdcall, and safecall conventions,
parameters are pushed in reverse order of declaration (right-to-left), so that the first parameter ends up at the lowest address
and the last parameter ends up at the highest address.

Register Convention

Under the register convention, up to three parameters are passed in CPU registers, and the rest (if any) are passed on the
stack. The parameters are passed in order of declaration (as with the pascal convention), and the first three parameters that
qualify are passed in the EAX, EDX, and ECX registers, in that order. Real, method-pointer, variant, Int64, and structured types
do not qualify as register parameters, but all other parameters do. If more than three parameters qualify as register parameters,
the first three are passed in EAX, EDX, and ECX, and the remaining parameters are pushed onto the stack in order of
declaration. For example, given the declaration

procedure Test(A: Integer; var B: Char; C: Double; const D: string; E: Pointer);

a call to Test passes A in EAX as a 32-bit integer, B in EDX as a pointer to a Char, and D in ECX as a pointer to a long-string
memory block; C and E are pushed onto the stack as two double-words and a 32-bit pointer, in that order.

Register saving conventions

Procedures and functions must preserve the EBX, ESI, EDI, and EBP registers, but can modify the EAX, EDX, and ECX
registers. When implementing a constructor or destructor in assembler, be sure to preserve the DL register. Procedures and
functions are invoked with the assumption that the CPU's direction flag is cleared (corresponding to a CLD instruction) and must
return with the direction flag cleared.

Note: Delphi language procedures and functions are generally invoked with the assumption that the FPU stack is empty: The
compiler tries to use all eight FPU stack entries when it generates code.

When working with the MMX and XMM instructions, be sure to preserve the values of the xmm and mm registers. Delphi
functions are invoked with the assumption that the x87 FPU data registers are available for use by x87 floating point instructions.
That is, the compiler assumes that the EMMS/FEMMS instruction has been called after MMX operations. Delphi functions do not
make any assumptions about the state and content of xmm registers. They do not guarantee that the content of xmm registers is
unchanged.

Handling Function Results

The following conventions are used for returning function result values.

• Ordinal results are returned, when possible, in a CPU register. Bytes are returned in AL, words are returned in AX, and
double-words are returned in EAX.

• Real results are returned in the floating-point coprocessor's top-of-stack register (ST(0)). For function results of type Currency,
the value in ST(0) is scaled by 10000. For example, the Currency value 1.234 is returned in ST(0) as 12340.

• For a string, dynamic array, method pointer, or variant result, the effects are the same as if the function result were declared
as an additional var parameter following the declared parameters. In other words, the caller passes an additional 32-bit
pointer that points to a variable in which to return the function result.

• Int64 is returned in EDX:EAX.

• Pointer, class, class-reference, and procedure-pointer results are returned in EAX.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

680

3

• For static-array, record, and set results, if the value occupies one byte it is returned in AL; if the value occupies two bytes it is
returned in AX; and if the value occupies four bytes it is returned in EAX. Otherwise, the result is returned in an additional var
parameter that is passed to the function after the declared parameters.

Handling Method Calls

Methods use the same calling conventions as ordinary procedures and functions, except that every method has an additional
implicit parameter Self, which is a reference to the instance or class in which the method is called. The Self parameter is passed
as a 32-bit pointer.

• Under the register convention, Self behaves as if it were declared before all other parameters. It is therefore always passed
in the EAX register.

• Under the pascal convention, Self behaves as if it were declared after all other parameters (including the additional var
parameter sometimes passed for a function result). It is therefore pushed last, ending up at a lower address than all other
parameters.

• Under the cdecl, stdcall, and safecall conventions, Self behaves as if it were declared before all other parameters, but after
the additional var parameter (if any) passed for a function result. It is therefore the last to be pushed, except for the additional
var parameter.

Constructors and destructors use the same calling conventions as other methods, except that an additional Boolean flag
parameter is passed to indicate the context of the constructor or destructor call.

A value of False in the flag parameter of a constructor call indicates that the constructor was invoked through an instance object
or using the inherited keyword. In this case, the constructor behaves like an ordinary method. A value of True in the flag
parameter of a constructor call indicates that the constructor was invoked through a class reference. In this case, the
constructor creates an instance of the class given by Self, and returns a reference to the newly created object in EAX.

A value of False in the flag parameter of a destructor call indicates that the destructor was invoked using the inherited keyword.
In this case, the destructor behaves like an ordinary method. A value of True in the flag parameter of a destructor call
indicates that the destructor was invoked through an instance object. In this case, the destructor deallocates the instance
given by Self just before returning.

The flag parameter behaves as if it were declared before all other parameters. Under the register convention, it is passed in the
DL register. Under the pascal convention, it is pushed before all other parameters. Under the cdecl, stdcall, and safecall
conventions, it is pushed just before the Self parameter.

Since the DL register indicates whether the constructor or destructor is the outermost in the call stack, you must restore the
value of DL before exiting so that BeforeDestruction or AfterConstruction can be called properly.

Understanding Exit Procedures

Exit procedures ensure that specific actions such as updating and closing filesare carried out before a program terminates. The
ExitProc pointer variable allows you to install an exit procedure, so that it is always called as part of the program's termination
whether the termination is normal, forced by a call to Halt, or the result of a runtime error. An exit procedure takes no
parameters.

Note: It is recommended that you use finalization sections rather than exit procedures for all exit behavior. Exit procedures are
available only for executables. For .DLLs (Win32) you can use a similar variable, DllProc, which is called when the library is
loaded as well as when it is unloaded. For packages, exit behavior must be implemented in a finalization section. All exit
procedures are called before execution of finalization sections.

Units as well as programs can install exit procedures. A unit can install an exit procedure as part of its initialization code, relying
on the procedure to close files or perform other clean-up tasks.

When implemented properly, an exit procedure is part of a chain of exit procedures. The procedures are executed in reverse
order of installation, ensuring that the exit code of one unit isn't executed before the exit code of any units that depend on it. To
keep the chain intact, you must save the current contents of ExitProc before pointing it to the address of your own exit
procedure. Also, the first statement in your exit procedure must reinstall the saved value of ExitProc.

The following code shows a skeleton implementation of an exit procedure.

var

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

681

3

ExitSave: Pointer;

procedure MyExit;

begin
 ExitProc := ExitSave; // always restore old vector first
 .
 .
 .
end;

begin
 ExitSave := ExitProc;
 ExitProc := @MyExit;
 .
 .
 .
end.

On entry, the code saves the contents of ExitProc in ExitSave, then installs the MyExit procedure. When called as part of
the termination process, the first thing MyExit does is reinstall the previous exit procedure.

The termination routine in the runtime library keeps calling exit procedures until ExitProc becomes nilnil. To avoid infinite
loops, ExitProc is set to nil before every call, so the next exit procedure is called only if the current exit procedure assigns an
address to ExitProc. If an error occurs in an exit procedure, it is not called again.

An exit procedure can learn the cause of termination by examining the ExitCode integer variable and the ErrorAddr pointer
variable. In case of normal termination, ExitCode is zero and ErrorAddr is nil. In case of termination through a call to Halt,
ExitCode contains the value passed to Halt and ErrorAddr is nil. In case of termination due to a runtime error, ExitCode
contains the error code and ErrorAddr contains the address of the invalid statement.

The last exit procedure (the one installed by the runtime library) closes the Input and Output files. If ErrorAddr is not nil, it
outputs a runtime error message. To output your own runtime error message, install an exit procedure that examines ErrorAddr
and outputs a message if it's not nil; before returning, set ErrorAddr to nil so that the error is not reported again by other exit
procedures.

Once the runtime library has called all exit procedures, it returns to the operating system, passing the value stored in ExitCode
as a return code.

See Also

Procedures and Functions (see page 662)

3.1.3.12 Programs and Units
This chapter provides a more detailed look at Delphi program organization.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

682

3

Topics

Name Description

Programs and Units (see page 683) A Delphi program is constructed from source code modules called units. The
units are tied together by a special source code module that contains either the
program, library, or package header. Each unit is stored in its own file and
compiled separately; compiled units are linked to create an application. RAD
Studio introduces hierarchical namespaces, giving you even more flexibility in
organizing your units. Namespaces and units allow you to

• Divide large programs into modules that can be edited
separately.

• Create libraries that you can share among programs.

• Distribute libraries to other developers without making the
source code... more (see page 683)

Using Namespaces with Delphi (see page 689) In Delphi, a unit is the basic container for types. Microsoft's Common Language
Runtime (CLR) introduces another layer of organization called a namespace. In
the .NET Framework, a namespace is a conceptual container of types. In Delphi,
a namespace is a container of Delphi units. The addition of namespaces gives
Delphi the ability to access and extend classes in the .NET Framework.
Unlike traditional Delphi units, namespaces can be nested to form a containment
hierarchy. Nested namespaces provide a way to organize identifiers and types,
and are used to disambiguate types with the same name. Since they are a
container... more (see page 689)

3.1.3.12.1 Programs and Units
A Delphi program is constructed from source code modules called units. The units are tied together by a special source code
module that contains either the program, library, or package header. Each unit is stored in its own file and compiled separately;
compiled units are linked to create an application. RAD Studio introduces hierarchical namespaces, giving you even more
flexibility in organizing your units. Namespaces and units allow you to

• Divide large programs into modules that can be edited separately.

• Create libraries that you can share among programs.

• Distribute libraries to other developers without making the source code available.

This topic covers the overall structure of a Delphi application: the program header, unit declaration syntax, and the uses clause.
Specific differences between the Win32 and .NET platforms are noted in the text. The Delphi compiler does not support .NET
namespaces on the Win32 platform. The RAD Studio compiler does support hierarchical .NET namespaces; this topic is
covered in the following section, Using Namespaces with Delphi.

Program Structure and Syntax

A complete, executable Delphi application consists of multiple unit modules, all tied together by a single source code module
called a project file. In traditional Pascal programming, all source code, including the main program, is stored in .pas files.
CodeGear tools use the file extension .dpr to designate the main program source module, while most other source code
resides in unit files having the traditional .pas extension. To build a project, the compiler needs the project source file, and either
a source file or a compiled unit file for each unit.

Note: Strictly speaking, you need not explicitly use any units in a project, but all programs automatically use the System unit
and the SysInit unit.

The source code file for an executable Delphi application contains

• a program heading,

• a uses clause (optional), and

• a block of declarations and executable statements.

Additionally, a RAD Studio program may contain a namespaces clause, to specify additional namespaces in which to search for
generic units. This topic is covered in more detail in the section Using .NET Namespaces with Delphi.

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

683

3

The compiler, and hence the IDE, expect to find these three elements in a single project (.dpr) file.

The Program Heading

The program heading specifies a name for the executable program. It consists of the reserved word program, followed by a
valid identifier, followed by a semicolon. For applications developed using CodeGear tools, the identifier must match the project
source file name.

The following example shows the project source file for a program called Editor. Since the program is called Editor, this
project file is called Editor.dpr.

program Editor;

 uses Forms, REAbout, // An "About" box
 REMain; // Main form

 {$R *.res}

 begin
 Application.Title := 'Text Editor';
 Application.CreateForm(TMainForm, MainForm);
 Application.Run;
 end.

The first line contains the program heading. The uses clause in this example specifies a dependency on three additional units:
Forms, REAbout, and REMain. The $R compiler directive links the project's resource file into the program. Finally, the block of
statements between the begin and end keywords are executed when the program runs. The project file, like all Delphi source
files, ends with a period (not a semicolon).

Delphi project files are usually short, since most of a program's logic resides in its unit files. A Delphi project file typically contains
only enough code to launch the application's main window, and start the event processing loop. Project files are generated and
maintained automatically by the IDE, and it is seldom necessary to edit them manually.

In standard Pascal, a program heading can include parameters after the program name:

program Calc(input, output);

CodeGear's Delphi ignores these parameters.

In RAD Studio, a the program heading introduces its own namespace, which is called the project default namespace. This is
also true for the library and package headers, when these types of projects are compiled for the .NET platform.

The Program Uses Clause

The uses clause lists those units that are incorporated into the program. These units may in turn have uses clauses of their own.
For more information on the uses clause within a unit source file, see Unit References and the Uses Clause, below.

The uses clause consists of the keyword uses, followed by a comma delimited list of units the project file directly depends on.

The Block

The block contains a simple or structured statement that is executed when the program runs. In most program files, the block
consists of a compound statement bracketed between the reserved words begin and end, whose component statements are
simply method calls to the project's Application object. Most projects have a global Application variable that holds an
instance of TApplication, TWebApplication, or TServiceApplication. The block can also contain declarations of constants, types,
variables, procedures, and functions; these declarations must precede the statement part of the block.

Unit Structure and Syntax

A unit consists of types (including classes), constants, variables, and routines (functions and procedures). Each unit is defined in
its own source (.pas) file.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

684

3

A unit file begins with a unit heading, which is followed by the interface keyword. Following the interface keyword, the uses
clause specifies a list of unit dependencies. Next comes the implementation section, followed by the optional initialization, and
finalization sections. A skeleton unit source file looks like this:

unit Unit1;

interface

uses // List of unit dependencies goes here...

implementation

uses // List of unit dependencies goes here...

// Implementation of class methods, procedures, and functions goes here...

initialization

// Unit initialization code goes here...

finalization

// Unit finalization code goes here...

end.

The unit must conclude with the reserved word end followed by a period.

The Unit Heading

The unit heading specifies the unit's name. It consists of the reserved word unit, followed by a valid identifier, followed by a
semicolon. For applications developed using CodeGear tools, the identifier must match the unit file name. Thus, the unit heading

unit MainForm;

would occur in a source file called MainForm.pas, and the file containing the compiled unit would be MainForm.dcu or
MainForm.dcuil.

Unit names must be unique within a project. Even if their unit files are in different directories, two units with the same name
cannot be used in a single program.

The Interface Section

The interface section of a unit begins with the reserved word interface and continues until the beginning of the implementation
section. The interface section declares constants, types, variables, procedures, and functions that are available to clients. That
is, to other units or programs that wish to use elements from this unit. These entities are called public because code in other
units can access them as if they were declared in the unit itself.

The interface declaration of a procedure or function includes only the routine's signature. That is, the routine's name,
parameters, and return type (for functions). The block containing executable code for the procedure or function follows in the
implementation section. Thus procedure and function declarations in the interface section work like forward declarations.

The interface declaration for a class must include declarations for all class members: fields, properties, procedures, and
functions.

The interface section can include its own uses clause, which must appear immediately after the keyword interface.

The Implementation Section

The implementation section of a unit begins with the reserved word implementation and continues until the beginning of the
initialization section or, if there is no initialization section, until the end of the unit. The implementation section defines
procedures and functions that are declared in the interface section. Within the implementation section, these procedures and

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

685

3

functions may be defined and called in any order. You can omit parameter lists from public procedure and function headings
when you define them in the implementation section; but if you include a parameter list, it must match the declaration in the
interface section exactly.

In addition to definitions of public procedures and functions, the implementation section can declare constants, types (including
classes), variables, procedures, and functions that are private to the unit. That is, unlike the interface section, entities declared
in the implementation section are inaccessible to other units.

The implementation section can include its own uses clause, which must appear immediately after the keyword
implementation. The identifiers declared within units specified in the implementation section are only available for use within
the implementation section itself. You cannot refer to such identifiers in the interface section.

The Initialization Section

The initialization section is optional. It begins with the reserved word initialization and continues until the beginning of the
finalization section or, if there is no finalization section, until the end of the unit. The initialization section contains statements
that are executed, in the order in which they appear, on program start-up. So, for example, if you have defined data structures
that need to be initialized, you can do this in the initialization section.

For units in the interfaceuses list, the initialization sections of the units used by a client are executed in the order in which the
units appear in the client's uses clause.

The Finalization Section

The finalization section is optional and can appear only in units that have an initialization section. The finalization section
begins with the reserved word finalization and continues until the end of the unit. It contains statements that are executed when
the main program terminates (unless the Halt procedure is used to terminate the program). Use the finalization section to free
resources that are allocated in the initialization section.

Finalization sections are executed in the opposite order from initialization sections. For example, if your application initializes
units A, B, and C, in that order, it will finalize them in the order C, B, and A.

Once a unit's initialization code starts to execute, the corresponding finalization section is guaranteed to execute when the
application shuts down. The finalization section must therefore be able to handle incompletely initialized data, since, if a runtime
error occurs, the initialization code might not execute completely.

Note: The initialization and finalization sections behave differently when code is compiled for the managed .NET environment.
See the chapter on Memory Management for more information.

Unit References and the Uses Clause

A uses clause lists units used by the program, library, or unit in which the clause appears. A uses clause can occur in

• the project file for a program, or library

• the interface section of a unit

• the implementation section of a unit

Most project files contain a uses clause, as do the interface sections of most units. The implementation section of a unit can
contain its own uses clause as well.

The System unit and the SysInit unit are used automatically by every application and cannot be listed explicitly in the uses
clause. (System implements routines for file I/O, string handling, floating point operations, dynamic memory allocation, and so
forth.) Other standard library units, such as SysUtils, must be explicitly included in the uses clause. In most cases, all
necessary units are placed in the uses clause by the IDE, as you add and remove units from your project.

In unit declarations and uses clauses, unit names must match the file names in case. In other contexts (such as qualified
identifiers), unit names are case insensitive. To avoid problems with unit references, refer to the unit source file explicitly:

uses MyUnit in "myunit.pas";

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

686

3

If such an explicit reference appears in the project file, other source files can refer to the unit with a simple uses clause that does
not need to match case:

uses Myunit;

The Syntax of a Uses Clause

A uses clause consists of the reserved word uses, followed by one or more comma delimited unit names, followed by a
semicolon. Examples:

uses Forms, Main;

uses
 Forms,
 Main;

uses Windows, Messages, SysUtils, Strings, Classes, Unit2, MyUnit;

In the uses clause of a program or library, any unit name may be followed by the reserved word in and the name of a source
file, with or without a directory path, in single quotation marks; directory paths can be absolute or relative. Examples:

uses
 Windows, Messages, SysUtils,
 Strings in 'C:\Classes\Strings.pas', Classes;

Use the keyword in after a unit name when you need to specify the unit's source file. Since the IDE expects unit names to match
the names of the source files in which they reside, there is usually no reason to do this. Using in is necessary only when the
location of the source file is unclear, for example when

• You have used a source file that is in a different directory from the project file, and that directory is not in the compiler's search
path.

• Different directories in the compiler's search path have identically named units.

• You are compiling a console application from the command line, and you have named a unit with an identifier that doesn't
match the name of its source file.

The compiler also relies on the in ... construction to determine which units are part of a project. Only units that appear in a
project (.dpr) file's uses clause followed by in and a file name are considered to be part of the project; other units in the
uses clause are used by the project without belonging to it. This distinction has no effect on compilation, but it affects IDE
tools like the Project Manager.

In the uses clause of a unit, you cannot use in to tell the compiler where to find a source file. Every unit must be in the compiler's
search path. Moreover, unit names must match the names of their source files.

Multiple and Indirect Unit References

The order in which units appear in the uses clause determines the order of their initialization and affects the way identifiers are
located by the compiler. If two units declare a variable, constant, type, procedure, or function with the same name, the compiler
uses the one from the unit listed last in the uses clause. (To access the identifier from the other unit, you would have to add a
qualifier: UnitName.Identifier.)

A uses clause need include only units used directly by the program or unit in which the clause appears. That is, if unit A
references constants, types, variables, procedures, or functions that are declared in unit B, then A must use B explicitly. If B in
turn references identifiers from unit C, then A is indirectly dependent on C; in this case, C needn't be included in a uses clause in
A, but the compiler must still be able to find both B and C in order to process A.

The following example illustrates indirect dependency.

program Prog;
uses Unit2;
const a = b;
// ...

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

687

3

unit Unit2;
interface
uses Unit1;
const b = c;
// ...

unit Unit1;
interface
const c = 1;
// ...

In this example, Prog depends directly on Unit2, which depends directly on Unit1. Hence Prog is indirectly dependent on
Unit1. Because Unit1 does not appear in Prog's uses clause, identifiers declared in Unit1 are not available to Prog.

To compile a client module, the compiler needs to locate all units that the client depends on, directly or indirectly. Unless the
source code for these units has changed, however, the compiler needs only their .dcu (Win32) or .dcuil (.NET) files, not their
source (.pas) files.

When a change is made in the interface section of a unit, other units that depend on the change must be recompiled. But when
changes are made only in the implementation or other sections of a unit, dependent units don't have to be recompiled. The
compiler tracks these dependencies automatically and recompiles units only when necessary.

Circular Unit References

When units reference each other directly or indirectly, the units are said to be mutually dependent. Mutual dependencies are
allowed as long as there are no circular paths connecting the uses clause of one interface section to the uses clause of another.
In other words, starting from the interface section of a unit, it must never be possible to return to that unit by following references
through interface sections of other units. For a pattern of mutual dependencies to be valid, each circular reference path must
lead through the uses clause of at least one implementation section.

In the simplest case of two mutually dependent units, this means that the units cannot list each other in their interface uses
clauses. So the following example leads to a compilation error:

unit Unit1;
interface
uses Unit2;
// ...

unit Unit2;
interface
uses Unit1;
// ...

However, the two units can legally reference each other if one of the references is moved to the implementation section:

unit Unit1;
interface
uses Unit2;
// ...

unit Unit2;
interface
//...

implementation
uses Unit1;
// ...

To reduce the chance of circular references, it's a good idea to list units in the implementation uses clause whenever possible.
Only when identifiers from another unit are used in the interface section is it necessary to list that unit in the interface uses
clause.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

688

3

See Also

Using Namespaces with Delphi (see page 689)

3.1.3.12.2 Using Namespaces with Delphi
In Delphi, a unit is the basic container for types. Microsoft's Common Language Runtime (CLR) introduces another layer of
organization called a namespace. In the .NET Framework, a namespace is a conceptual container of types. In Delphi, a
namespace is a container of Delphi units. The addition of namespaces gives Delphi the ability to access and extend classes in
the .NET Framework.

Unlike traditional Delphi units, namespaces can be nested to form a containment hierarchy. Nested namespaces provide a way
to organize identifiers and types, and are used to disambiguate types with the same name. Since they are a container for Delphi
units, namespaces may also be used to differentiate between units of the same name, that reside in different packages.

For example, the class MyClass in MyNameSpace, is different from the class MyClass in YourNamespace. At runtime, the
CLR always refers to classes and types by their fully qualified names: the assembly name, followed by the namespace that
contains the type. The CLR itself has no concept or implementation of the namespace hierarchy; it is purely a notational
convenience of the programming language.

The following topics are covered:

• Project default namespaces, and namespace declaration.

• Namespace search scope.

• Using namespaces in Delphi units.

Declaring Namespaces

In RAD Studio, a project file (program, library, or package) implicitly introduces its own namespace, called the project default
namespace. A unit may be a member of the project default namespace, or it may explicitly declare itself to be a member of a
different namespace. In either case, a unit declares its namespace membership in its unit header. For example, consider the
following explicit namespace declaration:

unit MyCompany.MyWidgets.MyUnit;

First, notice that namespaces are separated by dots. Namespaces do not introduce new symbols for the identifiers between the
dots; the dots are part of the unit name. The source file name for this example is MyCompany.MyWidgets.MyUnit.pas, and
the compiled output file name is MyCompany.MyWidgets.MyUnit.dcuil.

Second, notice that the dots imply the conceptual nesting, or containment, of one namespace within another. The example
above declares the unit MyUnit to be a member of the MyWidgets namespace, which itself is contained in the MyCompany
namespace. Again, it should be noted that this containment is for documentation purposes only.

A project default namespace declares a namespace for all of the units in the project. Consider the following declarations:

Program MyCompany.Programs.MyProgram;
Library MyCompany.Libs.MyLibrary;
Package MyCompany.Packages.MyPackage;

These statements establish the project default namespace for the program, library, and package, respectively. The namespace
is determined by removing the rightmost identifier (and dot) from the declaration.

A unit that omits an explicit namespace is called a generic unit. A generic unit automatically becomes a member of the project
default namespace. Given the preceding program declaration, the following unit declaration would cause the compiler to treat
MyUnit as a member of the MyCompany.Programs namespace.

unit MyUnit;

The project default namespace does not affect the name of the Delphi source file for a generic unit. In the preceding example,

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

689

3

the Delphi source file name would be MyUnit.pas. The compiler does however prefix the dcuil file name with the project
default namespace. The resulting dcuil file in the current example would be MyCompany.Programs.MyUnit.dcuil.

Namespace strings are not case-sensitive. The compiler considers two namespaces that differ only in case to be equivalent.
However, the compiler does preserve the case of a namespace, and will use the preserved casing in output file names, error
messages, and RTTI unit identifiers. RTTI for class and type names will include the full namespace specification.

Searching Namespaces

A unit must declare the other units on which it depends. As with the Win32 platform, the compiler must search these units for
identifiers. For units in explicit namespaces the search scope is already known, but for generic units, the compiler must establish
a namespace search scope.

Consider the following unit and uses declarations:

unit MyCompany.ProjectX.ProgramY.MyUnit1;
uses MyCompany.Libs.Unit2, Unit3, Unit4;

These declarations establish MyUnit1 as a member of the MyCompany.ProjectX.ProgramY namespace. MyUnit1 depends
on three other units: MyCompany.Libs.Unit2, and the generic units, Unit3, and Unit4. The compiler can resolve identifier
names in Unit2, since the uses clause specified the fully qualified unit name. To resolve identifier names in Unit3 and Unit4,
the compiler must establish a namespace search order.

Namespace search order

Search locations can come from three possible sources: compiler options, the project default namespace, and the current unit's
namespace.

The compiler resolves identifier names in the following order:

1. The current unit namespace (if any)

2. The project default namespace (if any)

3. Namespaces specified by compiler options.

A namespace search example

The following example project and unit files demonstrate the namespace search order:

// Project file declarations...
program MyCompany.ProjectX.ProgramY;
// Unit source file declaration...
unit MyCompany.ProjectX.ProgramY.MyUnit1;

Given this program example, the compiler would search namespaces in the following order:

1. MyCompany.ProjectX.ProgramY

2. MyCompany.ProjectX

3. Namespaces specified by compiler options.

Note that if the current unit is generic (i.e. it does not have an explicit namespace declaration in its unit statement), then
resolution begins with the project default namespace.

Using Namespaces

Delphi's uses clause brings a module into the context of the current unit. The uses clause must either refer to a module by its
fully qualified name (i.e. including the full namespace specification), or by its generic name, thereby relying on the namespace
resolution mechanisms to locate the unit.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

690

3

Fully qualified unit names

The following example demonstrates the uses clause with namespaces:

unit MyCompany.Libs.MyUnit1
uses MyCompany.Libs.Unit2, // Fully qualified name.
 UnitX; // Generic name.

Once a module has been brought into context, source code can refer to identifiers within that module either by the unqualified
name, or by the fully qualified name (if necessary, to disambiguate identifiers with the same name in different units). The
following writeln statements are equivalent:

uses MyCompany.Libs.Unit2;

begin
 writeln(MyCompany.Libs.Unit2.SomeString);
 writeln(SomeString);
end.

A fully qualified identifier must include the full namespace specification. In the preceding example, it would be an error to refer to
SomeString using only a portion of the namespace:

writeln(Unit2.SomeString); // ERROR!
writeln(Libs.Unit2.SomeString); // ERROR!
writeln(MyCompany.Libs.Unit2.SomeString); // Correct.
writeln(SomeString); // Correct.

It is also an error to refer to only a portion of a namespace in the uses clause. There is no mechanism to import all units and
symbols in a namespace. The following code does not import all units and symbols in the MyCompany namespace:

uses MyCompany; // ERROR!

This restriction also applies to the with-do statement. The following will produce a compiler error:

with MyCompany.Libs do // ERROR!

Namespaces and .NET Metadata

The Delphi for .NET compiler does not emit the entire dotted unit name into the assembly. Instead, the only leftmost portion -
everything up to the last dot in the name is emitted. For example:

unit MyCompany.MyClasses.MyUnit

The compiler will emit the namespace MyCompany.MyClasses into the assembly metadata. This makes it easier for other .NET
languages to call into Delphi assemblies.

This difference in namespace metadata is visible only to external consumers of the assembly. The Delphi code within the
assembly still treats the entire dotted name as the fully qualified name.

Multi-unit Namespaces

Multiple units can belong to the same namespace, if the unit declarations refer to the same namespace. For example, one can
create two files, unit1.pas and unit2.pas, with the following unit declarations:

// in file 'unit1.pas'
unit MyCompany.ProjectX.ProgramY.Unit1
// in file 'unit2.pas'
unit MyCompany.ProjectX.ProgramY.Unit2

In this example, the namespace MyCompany.ProjectX.ProgramY logically contains all of the interface symbols from
unit1.pas and unit2.pas.

Symbol names in a namespace must be unique, across all units in the namespace. In the example above, it is an error for

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

691

3

Unit1 and Unit2 to both define a global interface symbol named mySymbol.

The individual units aggregated in a namespace are not available to source code unless the individual units are explicitly used in
the file's uses clause. In other words, if a source file uses only the namespace, then fully qualified identifier expressions referring
to a symbol in a unit in that namespace must use the namespace name, not just the name of the unit that defines that symbol.

A uses clause may refer to a namespace as well as individual units within that namespace. In this case, a fully qualified
expression referring to a symbol from a specific unit listed in the uses clause may be referred to using the actual unit name or
the fully-qualified name (including namespace and unit name) for the qualifier. The two forms of reference are identical and refer
to the same symbol.

Note: Explicitly using a unit in the uses

clause will only work when you are compiling from source or dcu files. If the namespace units are compiled into an assembly
and the assembly is referenced by the project instead of the individual units, then the source code that explicitly refers to a unit in
the namespace will fail.

See Also

Programs and Units (see page 683)

3.1.3.13 Standard Routines and I/O
This section describes the standard routines included in the Delphi runtime library.

Topics

Name Description

Standard Routines and I/O (see page 692) These topics discuss text and file I/O and summarize standard library routines.
Many of the procedures and functions listed here are defined in the System and
SysInit units, which are implicitly used with every application. Others are built into
the compiler but are treated as if they were in the System unit.
Some standard routines are in units such as SysUtils, which must be listed in
a uses clause to make them available in programs. You cannot, however, list
System in a uses clause, nor should you modify the System unit or try to rebuild
it explicitly.

3.1.3.13.1 Standard Routines and I/O
These topics discuss text and file I/O and summarize standard library routines. Many of the procedures and functions listed here
are defined in the System and SysInit units, which are implicitly used with every application. Others are built into the compiler
but are treated as if they were in the System unit.

Some standard routines are in units such as SysUtils, which must be listed in a uses clause to make them available in
programs. You cannot, however, list System in a uses clause, nor should you modify the System unit or try to rebuild it explicitly.

File Input and Output

The table below lists input and output routines.

Input and output procedures and functions

Procedure or
function

Description

Append Opens an existing text file for appending.

AssignFile Assigns the name of an external file to a file variable.

BlockRead Reads one or more records from an untyped file.

BlockWrite Writes one or more records into an untyped file.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

692

3

ChDir Changes the current directory.

CloseFile Closes an open file.

Eof Returns the end-of-file status of a file.

Eoln Returns the end-of-line status of a text file.

Erase Erases an external file.

FilePos Returns the current file position of a typed or untyped file.

FileSize Returns the current size of a file; not used for text files.

Flush Flushes the buffer of an output text file.

GetDir Returns the current directory of a specified drive.

IOResult Returns an integer value that is the status of the last I/O function performed.

MkDir Creates a subdirectory.

Read Reads one or more values from a file into one or more variables.

Readln Does what Read does and then skips to beginning of next line in the text file.

Rename Renames an external file.

Reset Opens an existing file.

Rewrite Creates and opens a new file.

RmDir Removes an empty subdirectory.

Seek Moves the current position of a typed or untyped file to a specified component. Not used with text files.

SeekEof Returns the end-of-file status of a text file.

SeekEoln Returns the end-of-line status of a text file.

SetTextBuf Assigns an I/O buffer to a text file.

Truncate Truncates a typed or untyped file at the current file position.

Write Writes one or more values to a file.

Writeln Does the same as Write, and then writes an end-of-line marker to the text file.

A file variable is any variable whose type is a file type. There are three classes of file: typed, text, and untyped. The syntax for
declaring file types is given in File types. Note that file types are only available on the Win32 platform.

Before a file variable can be used, it must be associated with an external file through a call to the AssignFile procedure. An
external file is typically a named disk file, but it can also be a device, such as the keyboard or the display. The external file stores
the information written to the file or supplies the information read from the file.

Once the association with an external file is established, the file variable must be opened to prepare it for input or output. An
existing file can be opened via the Reset procedure, and a new file can be created and opened via the Rewrite procedure. Text
files opened with Reset are read-only and text files opened with Rewrite and Append are write-only. Typed files and untyped files
always allow both reading and writing regardless of whether they were opened with Reset or Rewrite.

Every file is a linear sequence of components, each of which has the component type (or record type) of the file. The
components are numbered starting with zero.

Files are normally accessed sequentially. That is, when a component is read using the standard procedure Read or written using
the standard procedure Write, the current file position moves to the next numerically ordered file component. Typed files and
untyped files can also be accessed randomly through the standard procedure Seek, which moves the current file position to a
specified component. The standard functions FilePos and FileSize can be used to determine the current file position and the
current file size.

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

693

3

When a program completes processing a file, the file must be closed using the standard procedure CloseFile. After a file is
closed, its associated external file is updated. The file variable can then be associated with another external file.

By default, all calls to standard I/O procedures and functions are automatically checked for errors, and if an error occurs an
exception is raised (or the program is terminated if exception handling is not enabled). This automatic checking can be turned on
and off using the {$I+} and {$I-} compiler directives. When I/O checking is off, that is, when a procedure or function call is
compiled in the {$I-} state an I/O error doesn't cause an exception to be raised; to check the result of an I/O operation, you must
call the standard function IOResult instead.

You must call the IOResult function to clear an error, even if you aren't interested in the error. If you don't clear an error and {$I-}
is the current state, the next I/O function call will fail with the lingering IOResult error.

Text Files

This section summarizes I/O using file variables of the standard type Text.

When a text file is opened, the external file is interpreted in a special way: It is considered to represent a sequence of characters
formatted into lines, where each line is terminated by an end-of-line marker (a carriage-return character, possibly followed by a
line feed character). The type Text is distinct from the type file of Char.

For text files, there are special forms of Read and Write that let you read and write values that are not of type Char. Such values
are automatically translated to and from their character representation. For example, Read(F, I), where I is a type Integer
variable, reads a sequence of digits, interprets that sequence as a decimal integer, and stores it in I.

There are two standard text file variables, Input and Output The standard file variable Input is a read-only file associated with the
operating system's standard input (typically, the keyboard). The standard file variable Output is a write-only file associated with
the operating system's standard output (typically, the display). Before an application begins executing, Input and Output are
automatically opened, as if the following statements were executed:

AssignFile(Input, '');
Reset(Input);
AssignFile(Output, '');
Rewrite(Output);

Note: For Win32 applications, text-oriented I/O is available only in console applications, that is, applications compiled with the
Generate console application

option checked on the Linker page of the Project Options dialog box or with the -cc command-line compiler option. In a GUI
(non-console) application, any attempt to read or write using Input or Output will produce an I/O error.

Some of the standard I/O routines that work on text files don't need to have a file variable explicitly given as a parameter. If the
file parameter is omitted, Input or Output is assumed by default, depending on whether the procedure or function is input- or
output-oriented. For example, Read(X) corresponds to Read(Input, X) and Write(X) corresponds to Write(Output, X).

If you do specify a file when calling one of the input or output routines that work on text files, the file must be associated with an
external file using AssignFile, and opened using Reset, Rewrite, or Append. An error occurs if you pass a file that was opened
with Reset to an output-oriented procedure or function. An error also occurs if you pass a file that was opened with Rewrite or
Append to an input-oriented procedure or function.

Untyped Files

Untyped files are low-level I/O channels used primarily for direct access to disk files regardless of type and structuring. An
untyped file is declared with the word file and nothing more. For example,

var DataFile: file;

For untyped files, the Reset and Rewrite procedures allow an extra parameter to specify the record size used in data transfers.
For historical reasons, the default record size is 128 bytes. A record size of 1 is the only value that correctly reflects the exact
size of any file. (No partial records are possible when the record size is 1.)

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

694

3

Except for Read and Write, all typed-file standard procedures and functions are also allowed on untyped files. Instead of Read
and Write, two procedures called BlockRead and BlockWrite are used for high-speed data transfers.

Text File Device Drivers

You can define your own text file device drivers for your programs. A text file device driver is a set of four functions that
completely implement an interface between Delphi's file system and some device.

The four functions that define each device driver are Open, InOut, Flush, and Close. The function header of each function is

function DeviceFunc(var F: TTextRec): Integer;

where DeviceFunc is the name of the function (that is, Open, InOut, Flush, or Close). The return value of a device-interface
function becomes the value returned by IOResult. If the return value is zero, the operation was successful.

To associate the device-interface functions with a specific file, you must write a customized Assign procedure. The Assign
procedure must assign the addresses of the four device-interface functions to the four function pointers in the text file variable. In
addition, it should store the fmClosedmagic constant in the Mode field, store the size of the text file buffer in BufSize, store a
pointer to the text file buffer in BufPtr, and clear the Name string.

Assuming, for example, that the four device-interface functions are called DevOpen, DevInOut, DevFlush, and DevClose, the
Assign procedure might look like this:

procedure AssignDev(var F: Text);
 begin
 with TTextRec(F) do
 begin
 Mode := fmClosed;
 BufSize := SizeOf(Buffer);
 BufPtr := @Buffer;
 OpenFunc := @DevOpen;
 InOutFunc := @DevInOut;
 FlushFunc := @DevFlush;
 CloseFunc := @DevClose;
 Name[0] := #0;
 end;
 end;

The device-interface functions can use the UserData field in the file record to store private information. This field isn't modified by
the product file system at any time.

The Open function

The Open function is called by the Reset, Rewrite, and Append standard procedures to open a text file associated with a device.
On entry, the Mode field contains fmInput, fmOutput, or fmInOut to indicate whether the Open function was called from Reset,
Rewrite, or Append.

The Open function prepares the file for input or output, according to the Mode value. If Mode specified fmInOut (indicating that
Open was called from Append), it must be changed to fmOutput before Open returns.

Open is always called before any of the other device-interface functions. For that reason, AssignDev only initializes the
OpenFunc field, leaving initialization of the remaining vectors up to Open. Based on Mode, Open can then install pointers to
either input- or output-oriented functions. This saves the InOut, Flush functions and the CloseFile procedure from determining
the current mode.

The InOut function

The InOut function is called by the Read, Readln, Write, Writeln, Eof, Eoln, SeekEof, SeekEoln, and CloseFile standard
routines whenever input or output from the device is required.

When Mode is fmInput, the InOut function reads up to BufSize characters into BufPtr^, and returns the number of characters
read in BufEnd. In addition, it stores zero in BufPos. If the InOut function returns zero in BufEnd as a result of an input

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

695

3

request, Eof becomes True for the file.

When Mode is fmOutput, the InOut function writes BufPos characters from BufPtr^, and returns zero in BufPos.

The Flush function

The Flush function is called at the end of each Read, Readln, Write, and Writeln. It can optionally flush the text file buffer.

If Mode is fmInput, the Flush function can store zero in BufPos and BufEnd to flush the remaining (unread) characters in the
buffer. This feature is seldom used.

If Mode is fmOutput, the Flush function can write the contents of the buffer exactly like the InOut function, which ensures that
text written to the device appears on the device immediately. If Flush does nothing, the text doesn't appear on the device until
the buffer becomes full or the file is closed.

The Close function

The Close function is called by the CloseFile standard procedure to close a text file associated with a device. (The Reset,
Rewrite, and Append procedures also call Close if the file they are opening is already open.) If Mode is fmOutput, then before
calling Close, the file system calls the InOut function to ensure that all characters have been written to the device.

Handling null-Terminated Strings

The Delphi language's extended syntax allows the Read, Readln, Str, and Val standard procedures to be applied to zero-based
character arrays, and allows the Write, Writeln, Val, AssignFile, and Rename standard procedures to be applied to both
zero-based character arrays and character pointers.

Null-Terminated String Functions

The following functions are provided for handling null-terminated strings.

Null-terminated string functions

Function Description

StrAlloc Allocates a character buffer of a given size on the heap.

StrBufSize Returns the size of a character buffer allocated using StrAlloc or StrNew.

StrCat Concatenates two strings.

StrComp Compares two strings.

StrCopy Copies a string.

StrDispose Disposes a character buffer allocated using StrAlloc or StrNew.

StrECopy Copies a string and returns a pointer to the end of the string.

StrEnd Returns a pointer to the end of a string.

StrFmt Formats one or more values into a string.

StrIComp Compares two strings without case sensitivity.

StrLCat Concatenates two strings with a given maximum length of the resulting string.

StrLComp Compares two strings for a given maximum length.

StrLCopy Copies a string up to a given maximum length.

StrLen Returns the length of a string.

StrLFmt Formats one or more values into a string with a given maximum length.

StrLIComp Compares two strings for a given maximum length without case sensitivity.

StrLower Converts a string to lowercase.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

696

3

StrMove Moves a block of characters from one string to another.

StrNew Allocates a string on the heap.

StrPCopy Copies a Pascal string to a null-terminated string.

StrPLCopy Copies a Pascal string to a null-terminated string with a given maximum length.

StrPos Returns a pointer to the first occurrence of a given substring within a string.

StrRScan Returns a pointer to the last occurrence of a given character within a string.

StrScan Returns a pointer to the first occurrence of a given character within a string.

StrUpper Converts a string to uppercase.

Standard string-handling functions have multibyte-enabled counterparts that also implement locale-specific ordering for
characters. Names of multibyte functions start with Ansi-. For example, the multibyte version of StrPos is AnsiStrPos. Multibyte
character support is operating-system dependent and based on the current locale.

Wide-Character Strings

The System unit provides three functions, WideCharToString, WideCharLenToString, and StringToWideChar, that can be used
to convert null-terminated wide character strings to single- or double-byte long strings.

Assignment will also convert between strings. For instance, the following are both valid:

MyAnsiString := MyWideString;
 MyWideString := MyAnsiString;

Other Standard Routines

The table below lists frequently used procedures and functions found in CodeGear product libraries. This is not an exhaustive
inventory of standard routines.

Other standard routines

Procedure or
function

Description

Addr Returns a pointer to a specified object.

AllocMem Allocates a memory block and initializes each byte to zero.

ArcTan Calculates the arctangent of the given number.

Assert Raises an exception if the passed expression does not evaluate to true.

Assigned Tests for a nil (unassigned) pointer or procedural variable.

Beep Generates a standard beep.

Break Causes control to exit a for, while, or repeat statement.

ByteToCharIndex Returns the position of the character containing a specified byte in a string.

Chr Returns the character for a specified integer value.

Close Closes a file.

CompareMem Performs a binary comparison of two memory images.

CompareStr Compares strings case sensitively.

CompareText Compares strings by ordinal value and is not case sensitive.

Continue Returns control to the next iteration of for, while, or repeat statements.

Copy Returns a substring of a string or a segment of a dynamic array.

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

697

3

Cos Calculates the cosine of an angle.

CurrToStr Converts a currency variable to a string.

Date Returns the current date.

DateTimeToStr Converts a variable of type TDateTime to a string.

DateToStr Converts a variable of type TDateTime to a string.

Dec Decrements an ordinal variable or a typed pointer variable.

Dispose Releases dynamically allocated variable memory.

ExceptAddr Returns the address at which the current exception was raised.

Exit Exits from the current procedure.

Exp Calculates the exponential of X.

FillChar Fills contiguous bytes with a specified value.

Finalize ninitializes a dynamically allocated variable.

FloatToStr Converts a floating point value to a string.

FloatToStrF Converts a floating point value to a string, using specified format.

FmtLoadStr Returns formatted output using a resourced format string.

FmtStr Assembles a formatted string from a series of arrays.

Format Assembles a string from a format string and a series of arrays.

FormatDateTime Formats a date-and-time value.

FormatFloat Formats a floating point value.

FreeMem Releases allocated memory.

GetMem Allocates dynamic memory and a pointer to the address of the block.

Halt Initiates abnormal termination of a program.

Hi Returns the high-order byte of an expression as an unsigned value.

High Returns the highest value in the range of a type, array, or string.

Inc Increments an ordinal variable or a typed pointer variable.

Initialize Initializes a dynamically allocated variable.

Insert Inserts a substring at a specified point in a string.

Int Returns the integer part of a real number.

IntToStr Converts an integer to a string.

Length Returns the length of a string or array.

Lo Returns the low-order byte of an expression as an unsigned value.

Low Returns the lowest value in the range of a type, array, or string.

LowerCase Converts an ASCII string to lowercase.

MaxIntValue Returns the largest signed value in an integer array.

MaxValue Returns the largest signed value in an array.

MinIntValue Returns the smallest signed value in an integer array.

MinValue Returns smallest signed value in an array.

New Creates a dynamic allocated variable memory and references it with a specified pointer.

Now Returns the current date and time.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

698

3

Ord Returns the ordinal integer value of an ordinal-type expression.

Pos Returns the index of the first single-byte character of a specified substring in a string.

Pred Returns the predecessor of an ordinal value.

Ptr Converts a value to a pointer.

Random Generates random numbers within a specified range.

ReallocMem Reallocates a dynamically allocatable memory.

Round Returns the value of a real rounded to the nearest whole number.

SetLength Sets the dynamic length of a string variable or array.

SetString Sets the contents and length of the given string.

ShowException Displays an exception message with its address.

ShowMessage Displays a message box with an unformatted string and an OK button.

ShowMessageFmt Displays a message box with a formatted string and an OK button.

Sin Returns the sine of an angle in radians.

SizeOf Returns the number of bytes occupied by a variable or type.

Sqr Returns the square of a number.

Sqrt Returns the square root of a number.

Str Converts an integer or real number into a string.

StrToCurr Converts a string to a currency value.

StrToDate Converts a string to a date format (TDateTime).

StrToDateTime Converts a string to a TDateTime.

StrToFloat Converts a string to a floating-point value.

StrToInt Converts a string to an integer.

StrToTime Converts a string to a time format (TDateTime).

StrUpper Returns an ASCII string in upper case.

Succ Returns the successor of an ordinal value.

Sum Returns the sum of the elements from an array.

Time Returns the current time.

TimeToStr Converts a variable of type TDateTime to a string.

Trunc Truncates a real number to an integer.

UniqueString Ensures that a string has only one reference. (The string may be copied to produce a single reference.)

UpCase Converts a character to uppercase.

UpperCase Returns a string in uppercase.

VarArrayCreate Creates a variant array.

VarArrayDimCount Returns number of dimensions of a variant array.

VarArrayHighBound Returns high bound for a dimension in a variant array.

VarArrayLock Locks a variant array and returns a pointer to the data.

VarArrayLowBound Returns the low bound of a dimension in a variant array.

VarArrayOf Creates and fills a one-dimensional variant array.

VarArrayRedim Resizes a variant array.

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

699

3

VarArrayRef Returns a reference to the passed variant array.

VarArrayUnlock Unlocks a variant array.

VarAsType Converts a variant to specified type.

VarCast Converts a variant to a specified type, storing the result in a variable.

VarClear Clears a variant.

VarCopy Copies a variant.

VarToStr Converts variant to string.

VarType Returns type code of specified variant.

See Also

Data Types (see page 553)

Porting VCL Applications to Delphi for .NET

3.1.3.14 Fundamental Syntactic Elements
This section describes the fundamental syntactic elements, or the building blocks of the Delphi language.

Topics

Name Description

Fundamental Syntactic Elements (see page 701) This topic introduces the Delphi language character set, and describes the syntax
for declaring:

• Identifiers

• Numbers

• Character strings

• Labels

• Source code comments

Declarations and Statements (see page 705) This topic describes the syntax of Delphi declarations and statements.
Aside from the uses clause (and reserved words like implementation that
demarcate parts of a unit), a program consists entirely of declarations and
statements, which are organized into blocks.
This topic covers the following items:

• Declarations

• Simple statements such as assignment

• Structured statements such as conditional tests (e.g.,
if-then, and case), iteration (e.g., for, and while).

string;

The syntax and placement of a declaration depend on the
kind of identifier you are defining. In general, declarations
can occur only at the beginning of a... more (see page 705)

Expressions (see page 720) circuit evaluation is usually preferable because it guarantees minimum execution
time and, in most cases, minimum code size. Complete evaluation is sometimes
convenient when one operand is a function with side effects that alter the
execution of the program.
circuit evaluation also allows the use of constructions that might otherwise result
in illegal runtime operations. For example, the following code iterates through the
string S, up to the first comma.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

700

3

3.1.3.14.1 Fundamental Syntactic Elements
This topic introduces the Delphi language character set, and describes the syntax for declaring:

• Identifiers

• Numbers

• Character strings

• Labels

• Source code comments

The Delphi Character Set

The Delphi Language uses the Unicode character set, including alphabetic and alphanumeric Unicode characters and the
underscore. It is not case-sensitive. The space character and the ASCII control characters (ASCII 0 through 31 including ASCII
13, the return or end-of-line character) are called blanks.

The RAD Studio compiler will accept a file encoded in UCS-2 or UCS-4 if the file contains a byte order mark. The speed of
compilation may be penalized by the use for formats other than UTF–8, however. All characters in a UCS-4 encoded source file
must be representable in UCS-2 without surrogate pairs. UCS-2 encodings with surrogate pairs (including GB18030) are
accepted only if the codepage compiler option is specified.

Fundamental syntactic elements, called tokens, combine to form expressions, declarations, and statements. A statement
describes an algorithmic action that can be executed within a program. An expression is a syntactic unit that occurs within a
statement and denotes a value. A declaration defines an identifier (such as the name of a function or variable) that can be used
in expressions and statements, and, where appropriate, allocates memory for the identifier.

The Delphi Character Set and Basic Syntax

On the simplest level, a program is a sequence of tokens delimited by separators. A token is the smallest meaningful unit of text
in a program. A separator is either a blank or a comment. Strictly speaking, it is not always necessary to place a separator
between two tokens; for example, the code fragment

Size:=20;Price:=10;

is perfectly legal. Convention and readability, however, dictate that we write this as

Size := 20;
Price := 10;

Tokens are categorized as special symbols, identifiers, reserved words, directives, numerals, labels, and character strings. A
separator can be part of a token only if the token is a character string. Adjacent identifiers, reserved words, numerals, and labels
must have one or more separators between them.

Special Symbols

Special symbols are non-alphanumeric characters, or pairs of such characters, that have fixed meanings. The following single
characters are special symbols:

$ & ' () * + , - . / : ; < = > @ [] ^ { }

The following character pairs are also special symbols:

(* (. *) .) .. // := <= >= <>

The following table shows equivalent symbols:

Special symbol Equivalent symbols

[(.

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

701

3

] .)

{ (*

} *)

The left bracket [is equivalent to the character pair of left parenthesis and period (.

The right bracket] is equivalent to the character pair of period and right parenthesis .)

The left brace { is equivalent to the character pair of left parenthesis and asterisk (*.

The right brace } is equivalent to the character pair of right parenthesis and asterisk *)

Note: %, ?, \, !, " (double quotation marks), _ (underscore), | (pipe), and ~ (tilde) are not special characters.

Identifiers

Identifiers denote constants, variables, fields, types, properties, procedures, functions, programs, units, libraries, and packages.
An identifier can be of any length, but only the first 255 characters are significant. An identifier must begin with an alphabetic
character or an underscore (_) and cannot contain spaces; alphanumeric characters, digits, and underscores are allowed after
the first character. Reserved words cannot be used as identifiers.

Note: The .NET SDK recommends against using leading underscores in identifiers, as this pattern is reserved for system use.

Since the Delphi Language is case-insensitive, an identifier like CalculateValue could be written in any of these ways:

CalculateValue
calculateValue
calculatevalue
CALCULATEVALUE

Since unit names correspond to file names, inconsistencies in case can sometimes affect compilation. For more information, see
the topic, Unit References and the Uses Clause.

Qualified Identifiers

When you use an identifier that has been declared in more than one place, it is sometimes necessary to qualify the identifier.
The syntax for a qualified identifier is

identifier1.identifier2

where identifier1 qualifies identifier2. For example, if two units each declare a variable called CurrentValue, you can specify
that you want to access the CurrentValue in Unit2 by writing

Unit2.CurrentValue

Qualifiers can be iterated. For example,

Form1.Button1.Click

calls the Click method in Button1 of Form1.

If you don't qualify an identifier, its interpretation is determined by the rules of scope described in Blocks and scope (see page
705).

Extended Identifiers

Particularly when programming with Delphi for .NET, you might encounter identifiers (e.g. types, or methods in a class) having
the same name as a Delphi language keyword. For example, a class might have a method called begin. Another example is the
CLR class called Type, in the System namespace. Type is a Delphi language keyword, and cannot be used for an identifier
name.

If you qualify the identifier with its full namespace specification, then there is no problem. For example, to use the Type class,

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

702

3

you must use its fully qualified name:

var
 TMyType : System.Type; // Using fully qualified namespace
 // avoides ambiguity with Delphi language keyword.

As a shorter alternative, the ampersand (&) operator can be used to resolve ambiguities between identifiers and Delphi language
keywords. If you encounter a method or type that is the same name as a Delphi keyword, you can omit the namespace
specification if you prefix the identifier name with an ampersand. For example, the following code uses the ampersand to
disambiguate the CLR Type class from the Delphi keyword type

var
 TMyType : &Type; // Prefix with '&' is ok.

Reserved Words

The following reserved words cannot be redefined or used as identifiers.

Reserved Words

add else initialization program then

and end inline property threadvar

array except interface raise to

as exports is record try

asm file label remove type

begin final library repeat unit

case finalization mod resourcestring unsafe

class finally nil seled until

const for not set uses

constructor function not shl var

destructor goto of shr while

dispinterface if or static with

div implementation out strict private xor

do in packed strict protected

downto inherited procedure string

In addition to the words above, private, protected, public, published, and automated act as reserved words within class type
declarations, but are otherwise treated as directives. The words at and on also have special meanings, and should be treated as
reserved words.

Directives

Directives are words that are sensitive in specific locations within source code. Directives have special meanings in the Delphi
language, but, unlike reserved words, appear only in contexts where user-defined identifiers cannot occur. Hence -- although it is
inadvisable to do so -- you can define an identifier that looks exactly like a directive.

Directives

absolute dynamic local platform requires

abstract export message private resident

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

703

3

assembler external name protected safecall

automated far near public stdcall

cdecl forward nodefault published stored

contains implements overload read varargs

default index override readonly virtual

deprecated inline package register write

dispid library pascal reintroduce writeonly

Numerals

Integer and real constants can be represented in decimal notation as sequences of digits without commas or spaces, and
prefixed with the + or - operator to indicate sign. Values default to positive (so that, for example, 67258 is equivalent to +67258)
and must be within the range of the largest predefined real or integer type.

Numerals with decimal points or exponents denote reals, while other numerals denote integers. When the character E or e
occurs within a real, it means "times ten to the power of". For example, 7E2 means 7 * 10^2, and 12.25e+6 and 12.25e6 both
mean 12.25 * 10^6.

The dollar-sign prefix indicates a hexadecimal numeral, for example, $8F. Hexadecimal numbers without a preceding - unary
operator are taken to be positive values. During an assignment, if a hexadecimal value lies outside the range of the receiving
type an error is raised, except in the case of the Integer (32-bit integer) where a warning is raised. In this case, values exceeding
the positive range for Integer are taken to be negative numbers in a manner consistent with 2's complement integer
representation.

For more information about real and integer types, see Data Types (see page 553). For information about the data types of
numerals, see True constants (see page 589).

Labels

A label is a standard Delphi language identifier with the exception that, unlike other identifiers, labels can start with a digit.
Numeric labels can include no more than ten digits - that is, a numeral between 0 and 9999999999.

Labels are used in goto statements. For more information about goto statements and labels, see Goto statements (see page
705).

Character Strings

A character string, also called a string literal or string constant, consists of a quoted string, a control string, or a combination of
quoted and control strings. Separators can occur only within quoted strings.

A quoted string is a sequence of up to 255 characters from the extended ASCII character set, written on one line and enclosed
by apostrophes. A quoted string with nothing between the apostrophes is a null string. Two sequential apostrophes in a quoted
string denote a single character, namely an apostrophe. For example,

'CodeGear' { CodeGear }
'You''ll see' { You'll see }
'''' { ' }
'' { null string }
' ' { a space }

A control string is a sequence of one or more control characters, each of which consists of the # symbol followed by an unsigned
integer constant from 0 to 255 (decimal or hexadecimal) and denotes the corresponding ASCII character. The control string

#89#111#117

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

704

3

is equivalent to the quoted string

'You'

You can combine quoted strings with control strings to form larger character strings. For example, you could use

'Line 1'#13#10'Line 2'

to put a carriage-returnline-feed between 'Line 1' and 'Line 2'. However, you cannot concatenate two quoted strings in this way,
since a pair of sequential apostrophes is interpreted as a single character. (To concatenate quoted strings, use the + operator or
simply combine them into a single quoted string.)

A character string's length is the number of characters in the string. A character string of any length is compatible with any string
type and with the PChar type. A character string of length 1 is compatible with any character type, and, when extended syntax is
enabled (with compiler directive {$X+}), a nonempty character string of length n is compatible with zero-based arrays and
packed arrays of n characters. For more information, see Datatypes (see page 553).

Comments and Compiler Directives

Comments are ignored by the compiler, except when they function as separators (delimiting adjacent tokens) or compiler
directives.

There are several ways to construct comments:

{ Text between a left brace and a right brace constitutes a comment. }
 (* Text between a left-parenthesis-plus-asterisk and an
asterisk-plus-right-parenthesis is also a comment *)
 // Any text between a double-slash and the end of the line constitutes a comment.

Comments that are alike cannot be nested. For instance, {{}} will not work, but (*{}*)will. This is useful for commenting out
sections of code that also contain comments.

A comment that contains a dollar sign ($) immediately after the opening { or (* is a compiler directive. For example,

{$WARNINGS OFF}

tells the compiler not to generate warning messages.

See Also

Expressions (see page 720)

Declarations and Statements (see page 705)

Unit References and the Uses Clause (see page 683)

3.1.3.14.2 Declarations and Statements
This topic describes the syntax of Delphi declarations and statements.

Aside from the uses clause (and reserved words like implementation that demarcate parts of a unit), a program consists
entirely of declarations and statements, which are organized into blocks.

This topic covers the following items:

• Declarations

• Simple statements such as assignment

• Structured statements such as conditional tests (e.g., if-then, and case), iteration (e.g., for, and while).

string;

The syntax and placement of a declaration depend on the kind of identifier you are defining. In general, declarations can occur
only at the beginning of a block or at the beginning of the interface or implementation section of a unit (after the uses clause).
Specific conventions for declaring variables, constants, types, functions, and so forth are explained in the documentation for

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

705

3

those topics.

Hinting Directives

The 'hint' directives platform, deprecated, and library may be appended to any declaration. These directives will produce
warnings at compile time. Hint directives can be applied to type declarations, variable declarations, class, interface and structure
declarations, field declarations within classes or records, procedure, function and method declarations, and unit declarations.

When a hint directive appears in a unit declaration, it means that the hint applies to everything in the unit. For example, the
Windows 3.1 style OleAuto.pas unit on Windows is completely deprecated. Any reference to that unit or any symbol in that unit
will produce a deprecation message.

The platform hinting directive on a symbol or unit indicates that it may not exist or that the implementation may vary
considerably on different platforms. The library hinting directive on a symbol or unit indicates that the code may not exist or the
implementation may vary considerably on different library architectures.

The platform and library directives do not specify which platform or library. If your goal is writing platform-independent code,
you do not need to know which platform a symbol is specific to; it is sufficient that the symbol be marked as specific to some
platform to let you know it may cause problems for your goal of portability.

In the case of a procedure or function declaration, the hint directive should be separated from the rest of the declaration with a
semicolon. Examples:

procedure SomeOldRoutine; stdcall deprecated;

var
 VersionNumber: Real library;

type
 AppError = class(Exception)
 ...
end platform;

When source code is compiled in the {$HINTS ON} {$WARNINGS ON} state, each reference to an identifier declared with one
of these directives generates an appropriate hint or warning. Use platform to mark items that are specific to a particular
operating environment (such as Windows or .NET), deprecated to indicate that an item is obsolete or supported only for
backward compatibility, and library to flag dependencies on a particular library or component framework.

The RAD Studio compiler also recognizes the hinting directive experimental. You can use this directive to designate units which
are in an unstable, development state. The compiler will emit a warning when it builds an application that uses the unit.

Declarations

The names of variables, constants, types, fields, properties, procedures, functions, programs, units, libraries, and packages are
called identifiers. (Numeric constants like 26057 are not identifiers.) Identifiers must be declared before you can use them; the
only exceptions are a few predefined types, routines, and constants that the compiler understands automatically, the variable
Result when it occurs inside a function block, and the variable Self when it occurs inside a method implementation.

A declaration defines an identifier and, where appropriate, allocates memory for it. For example,

var Size: Extended;

declares a variable called Size that holds an Extended (real) value, while

function DoThis(X, Y: string): Integer;

declares a function called DoThis that takes two strings as arguments and returns an integer. Each declaration ends with a
semicolon. When you declare several variables, constants, types, or labels at the same time, you need only write the appropriate
reserved word once:

var
 Size: Extended;

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

706

3

 Quantity: Integer;

Statements

Statements define algorithmic actions within a program. Simple statements like assignments and procedure calls can combine to
form loops, conditional statements, and other structured statements.

Multiple statements within a block, and in the initialization or finalization section of a unit, are separated by semicolons.

Simple Statements

A simple statement doesn't contain any other statements. Simple statements include assignments, calls to procedures and
functions, and goto jumps.

Assignment Statements

An assignment statement has the form

variable := expression

where variable is any variable reference, including a variable, variable typecast, dereferenced pointer, or component of a
structured variable. The expression is any assignment-compatible expression (within a function block, variable can be replaced
with the name of the function being defined. See Procedures and functions (see page 662)). The := symbol is sometimes
called the assignment operator.

An assignment statement replaces the current value of variable with the value of expression. For example,

I := 3;

assigns the value 3 to the variable I. The variable reference on the left side of the assignment can appear in the expression on
the right. For example,

I := I + 1;

increments the value of I. Other assignment statements include

X := Y + Z;
Done := (I >= 1) and (I < 100);
Hue1 := [Blue, Succ(C)];
I := Sqr(J) - I * K;
Shortint(MyChar) := 122;
TByteRec(W).Hi := 0;
MyString[I] := 'A';
SomeArray[I + 1] := P^;
TMyObject.SomeProperty := True;

Procedure and Function Calls

A procedure call consists of the name of a procedure (with or without qualifiers), followed by a parameter list (if required).
Examples include

PrintHeading;
Transpose(A, N, M);
Find(Smith, William);
Writeln('Hello world!');
DoSomething();
Unit1.SomeProcedure;
TMyObject.SomeMethod(X,Y);

With extended syntax enabled ({$X+}), function calls, like calls to procedures, can be treated as statements in their own right:

MyFunction(X);

When you use a function call in this way, its return value is discarded.

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

707

3

For more information about procedures and functions, see Procedures and functions (see page 662).

Goto Statements

A goto statement, which has the form

goto label

transfers program execution to the statement marked by the specified label. To mark a statement, you must first declare the
label. Then precede the statement you want to mark with the label and a colon:

label: statement

Declare labels like this:

labellabel;

You can declare several labels at once:

labellabel1, ..., labeln;

A label can be any valid identifier or any numeral between 0 and 9999.

The label declaration, marked statement, and goto statement must belong to the same block. (See Blocks and Scope, below.)
Hence it is not possible to jump into or out of a procedure or function. Do not mark more than one statement in a block with the
same label.

For example,

label StartHere;
 ...
StartHere: Beep;
goto StartHere;

creates an infinite loop that calls the Beep procedure repeatedly.

Additionally, it is not possible to jump into or out of a try-finally or try-except statement.

The goto statement is generally discouraged in structured programming. It is, however, sometimes used as a way of exiting from
nested loops, as in the following example.

procedure FindFirstAnswer;
 var X, Y, Z, Count: Integer;
label FoundAnAnswer;
begin
 Count := SomeConstant;
 for X := 1 to Count do
 for Y := 1 to Count do
 for Z := 1 to Count do
 if ... { some condition holds on X, Y, and Z } then
 goto FoundAnAnswer;

 ... { Code to execute if no answer is found }
 Exit;

FoundAnAnswer:
 ... { Code to execute when an answer is found }
end;

Notice that we are using goto to jump out of a nested loop. Never jump into a loop or other structured statement, since this can
have unpredictable effects.

Structured Statements

Structured statements are built from other statements. Use a structured statement when you want to execute other statements
sequentially, conditionally, or repeatedly.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

708

3

• A compound or with statement simply executes a sequence of constituent statements.

• A conditional statement that is an if or case statement executes at most one of its constituents, depending on specified
criteria.

• Loop statements including repeat, while, and for loops execute a sequence of constituent statements repeatedly.

• A special group of statements including raise, try...except, and try...finally constructions create and handle exceptions. For
information about exception generation and handling, see Exceptions (see page 541).

Compound Statements

A compound statement is a sequence of other (simple or structured) statements to be executed in the order in which they are
written. The compound statement is bracketed by the reserved words begin and end, and its constituent statements are
separated by semicolons. For example:

begin
 Z := X;
 X := Y;
 X := Y;
 end;

The last semicolon before end is optional. So we could have written this as

begin
 Z := X;
 X := Y;
 Y := Z
end;

Compound statements are essential in contexts where Delphi syntax requires a single statement. In addition to program,
function, and procedure blocks, they occur within other structured statements, such as conditionals or loops. For example:

begin
 I := SomeConstant;
 while I > 0 do
 begin
 ...
 I := I - 1;
 end;
end;

You can write a compound statement that contains only a single constituent statement; like parentheses in a complex term,
begin and end sometimes serve to disambiguate and to improve readability. You can also use an empty compound statement to
create a block that does nothing:

begin
end;

With Statements

A with statement is a shorthand for referencing the fields of a record or the fields, properties, and methods of an object. The
syntax of a with statement is

1. withobjdostatement, or

2. withobj1, ..., objndostatement

where obj is an expression yielding a reference to a record, object instance, class instance, interface or class type (metaclass)
instance, and statement is any simple or structured statement. Within the statement, you can refer to fields, properties, and
methods of obj using their identifiers alone, that is, without qualifiers.

For example, given the declarations

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

709

3

type
 TDate = record
 Day: Integer;
 Month: Integer;
 Year: Integer;
 end;

var
 OrderDate: TDate;

you could write the following with statement.

with OrderDate do
 if Month = 12 then
 begin
 Month := 1;
 Year := Year + 1;
 end
 else
 Month := Month + 1;

you could write the following with statement.

if OrderDate.Month = 12 then
 begin
 OrderDate.Month := 1;
 OrderDate.Year := OrderDate.Year + 1;
 end
else
 OrderDate.Month := OrderDate.Month + 1;

If the interpretation of obj involves indexing arrays or dereferencing pointers, these actions are performed once, before statement
is executed. This makes with statements efficient as well as concise. It also means that assignments to a variable within
statement cannot affect the interpretation of obj during the current execution of the with statement.

Each variable reference or method name in a with statement is interpreted, if possible, as a member of the specified object or
record. If there is another variable or method of the same name that you want to access from the with statement, you need to
prepend it with a qualifier, as in the following example.

with OrderDate do
 begin
 Year := Unit1.Year;
 ...
 end;

When multiple objects or records appear after with, the entire statement is treated like a series of nested with statements. Thus

withobj1, obj2, ..., objndostatement

is equivalent to

with obj1 do
 with obj2 do
 ...
 with objn do
 // statement

In this case, each variable reference or method name in statement is interpreted, if possible, as a member of objn; otherwise it is
interpreted, if possible, as a member of objn1; and so forth. The same rule applies to interpreting the objs themselves, so that,
for instance, if objn is a member of both obj1 and obj2, it is interpreted as obj2.objn.

If Statements

There are two forms of if statement: if...then and the if...then...else. The syntax of an if...then statement is

ifexpressionthenstatement

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

710

3

where expression returns a Boolean value. If expression is True, then statement is executed; otherwise it is not. For example,

if J <> 0 then Result := I / J;

The syntax of an if...then...else statement is

ifexpressionthenstatement1elsestatement2

where expression returns a Boolean value. If expression is True, then statement1 is executed; otherwise statement2 is
executed. For example,

if J = 0 then
 Exit
else
 Result := I / J;

The then and else clauses contain one statement each, but it can be a structured statement. For example,

if J <> o then
 begin
 Result := I / J;
 Count := Count + 1;
 end
else if Count = Last then
 Done := True
else
 Exit;

Notice that there is never a semicolon between the then clause and the word else. You can place a semicolon after an entire if
statement to separate it from the next statement in its block, but the then and else clauses require nothing more than a space or
carriage return between them. Placing a semicolon immediately before else (in an if statement) is a common programming error.

A special difficulty arises in connection with nested if statements. The problem arises because some if statements have else
clauses while others do not, but the syntax for the two kinds of statement is otherwise the same. In a series of nested
conditionals where there are fewer else clauses than if statements, it may not seem clear which else clauses are bound to which
ifs. Consider a statement of the form

ifexpression1thenifexpression2thenstatement1elsestatement2;

There would appear to be two ways to parse this:

ifexpression1 then [ifexpression2thenstatement1elsestatement2];

ifexpression1then [ifexpression2thenstatement1] elsestatement2;

The compiler always parses in the first way. That is, in real code, the statement

if ... { expression1} then
 if ... {expression2} then
 ... {statement1}
 else
 ... {statement2}

is equivalent to

if ... {expression1} then
 begin
 if ... {expression2} then
 ... {statement1}
 else
 ... {statement2}
end;

The rule is that nested conditionals are parsed starting from the innermost conditional, with each else bound to the nearest
available if on its left. To force the compiler to read our example in the second way, you would have to write it explicitly as

if ... {expression1} then

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

711

3

 begin
 if ... {expression2} then
 ... {statement1}
 end
end
else
 ... {statement2};

Case Statements

The case statement may provide a readable alternative to deeply nested if conditionals. A case statement has the form

case selectorExpression of
 caseList1: statement1;
 ...
 caseListn: statementn;
end

where selectorExpression is any expression of an ordinal type smaller than 32 bits (string types and ordinals larger than 32 bits
are invalid) and each caseList is one of the following:

• A numeral, declared constant, or other expression that the compiler can evaluate without executing your program. It must be
of an ordinal type compatible with selectorExpression. Thus 7, True, 4 + 5 * 3, 'A', and Integer('A') can all be used as
caseLists, but variables and most function calls cannot. (A few built-in functions like Hi and Lo can occur in a caseList. See
Constant expressions (see page 589).)

• A subrange having the form First..Last, where First and Last both satisfy the criterion above and First is less than or equal to
Last.

• A list having the form item1, ..., itemn, where each item satisfies one of the criteria above.

Each value represented by a caseList must be unique in the case statement; subranges and lists cannot overlap. A case
statement can have a final else clause:

case selectorExpression of
 caseList1: statement1;
 ...
 caselistn: statementn;
 else
 statements;
end

where statements is a semicolon-delimited sequence of statements. When a case statement is executed, at most one of
statement1 ... statementn is executed. Whichever caseList has a value equal to that of selectorExpression determines the
statement to be used. If none of the caseLists has the same value as selectorExpression, then the statements in the else clause
(if there is one) are executed.

The case statement

case I of
 1..5: Caption := 'Low';
 6..9: Caption := 'High';
 0, 10..99: Caption := 'Out of range';
 else
 Caption := '';
end

is equivalent to the nested conditional

if I in [1..5] then
 Caption := 'Low';
else if I in [6..10] then
 Caption := 'High';
 else if (I = 0) or (I in [10..99]) then
 Caption := 'Out of range'

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

712

3

 else
 Caption := '';

Other examples of case statements

case MyColor of
 Red: X := 1;
 Green: X := 2;
 Blue: X = 3;
 Yellow, Orange, Black: X := 0;
end;

case Selection of
 Done: Form1.Close;
 Compute: calculateTotal(UnitCost, Quantity);
 else
 Beep;
end;

Control Loops

Loops allow you to execute a sequence of statements repeatedly, using a control condition or variable to determine when the
execution stops. Delphi has three kinds of control loop: repeat statements, while statements, and for statements.

You can use the standard Break and Continue procedures to control the flow of a repeat, while, or for statement. Break
terminates the statement in which it occurs, while Continue begins executing the next iteration of the sequence.

Repeat Statements

The syntax of a repeat statement is

repeatstatement1; ...; statementn;untilexpression

where expression returns a Boolean value. (The last semicolon before until is optional.) The repeat statement executes its
sequence of constituent statements continually, testing expression after each iteration. When expression returns True, the
repeat statement terminates. The sequence is always executed at least once because expression is not evaluated until after the
first iteration.

Examples of repeat statements include

repeat
 K := I mod J;
 I := J;
 J := K;
until J = 0;

repeat
 Write('Enter a value (0..9): ');
 Readln(I);
until (I >= 0) and (I <= 9);

While Statements

A while statement is similar to a repeat statement, except that the control condition is evaluated before the first execution of the
statement sequence. Hence, if the condition is false, the statement sequence is never executed.

The syntax of a while statement is

whileexpressiondostatement

where expression returns a Boolean value and statement can be a compound statement. The while statement executes its

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

713

3

constituent statement repeatedly, testing expression before each iteration. As long as expression returns True, execution
continues.

Examples of while statements include

while Data[I] <> X do I := I + 1;

 while I > 0 do
 begin
 if Odd(I) then Z := Z * X;
 I := I div 2;
 X := Sqr(X);
 end;

 while not Eof(InputFile) do
 begin
 Readln(InputFile, Line);
 Process(Line);
 end;

For Statements

A for statement, unlike a repeat or while statement, requires you to specify explicitly the number of iterations you want the loop
to go through. The syntax of a for statement is

for counter := initialValue to finalValue do statement

or

for counter := initialValue downto finalValue do statement

where

• counter is a local variable (declared in the block containing the for statement) of ordinal type, without any qualifiers.

• initialValue and finalValue are expressions that are assignment-compatible with counter.

• statement is a simple or structured statement that does not change the value of counter.

The for statement assigns the value of initialValue to counter, then executes statement repeatedly, incrementing or
decrementing counter after each iteration. (The for...to syntax increments counter, while the for...downto syntax decrements
it.) When counter returns the same value as finalValue, statement is executed once more and the for statement terminates. In
other words, statement is executed once for every value in the range from initialValue to finalValue. If initialValue is equal to
finalValue, statement is executed exactly once. If initialValue is greater than finalValue in a for...to statement, or less than
finalValue in a for...downto statement, then statement is never executed. After the for statement terminates (provided this
was not forced by a Break or an Exit procedure), the value of counter is undefined.

Warning: The iteration variable counter cannot be modified within the loop. This includes assignment, and passing the
variable to a var

parameter of a procedure. Doing so results in a compile-time warning. For purposes of controlling execution of the loop, the
expressions initialValue and finalValue are evaluated only once, before the loop begins. Hence the for...to statement is
almost, but not quite, equivalent to this while construction:

begin
 counter := initialValue;
 while counter <= finalValue do
 begin
 ... {statement};
 counter := Succ(counter);
 end;
end

The difference between this construction and the for...to statement is that the while loop reevaluates finalValue before each
iteration. This can result in noticeably slower performance if finalValue is a complex expression, and it also means that changes

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

714

3

to the value of finalValue within statement can affect execution of the loop.

Examples of for statements:

for I := 2 to 63 do
 if Data[I] > Max then
 Max := Data[I];

for I := ListBox1.Items.Count - 1 downto 0 do
 ListBox1.Items[I] := UpperCase(ListBox1.Items[I]);

for I := 1 to 10 do
 for J := 1 to 10 do
 begin
 X := 0;
 for K := 1 to 10 do
 X := X + Mat1[I,K] * Mat2[K,J];
 Mat[I,J] := X;
 end;

for C := Red to Blue do Check(C);

Iteration Over Containers Using For statements

Both Delphi for .NET and for Win32 support for-element-in-collection style iteration over containers. The following
container iteration patterns are recognized by the compiler:

• for Element in ArrayExpr do Stmt;

• for Element in StringExpr do Stmt;

• for Element in SetExpr do Stmt;

• for Element in CollectionExpr do Stmt;

• for Element in Record do Stmt;

The type of the iteration variable Element must match the type held in the container. With each iteration of the loop, the iteration
variable holds the current collection member. As with regular for-loops, the iteration variable must be declared within the
same block as the for statement.

Warning: The iteration variable cannot be modified within the loop. This includes assignment, and passing the variable to a
var

parameter of a procedure. Doing so results in a compile-time warning. Array expressions can be single or multidimensional,
fixed length, or dynamic arrays. The array is traversed in increasing order, starting at the lowest array bound and ending at the
array size minus one. The following code shows an example of traversing single, multi-dimensional, and dynamic arrays:

type
 TIntArray = array[0..9] of Integer;
 TGenericIntArray = array of Integer;

var
 IArray1: array[0..9] of Integer = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
 IArray2: array[1..10] of Integer = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
 IArray3: array[1..2] of TIntArray = ((11, 12, 13, 14, 15, 16, 17, 18, 19, 20),
 (21, 22, 23, 24, 25, 26, 27, 28, 29, 30));
 MultiDimTemp: TIntArray;
 IDynArray: TGenericIntArray;

 I: Integer;

begin

 for I in IArray1 do
 begin

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

715

3

 // Do something with I...
 end;

 // Indexing begins at lower array bound of 1.
 for I in IArray2 do
 begin
 // Do something with I...
 end;

 // Iterating a multi-dimensional array
 for MultiDimTemp in IArray3 do // Indexing from 1..2
 for I in MultiDimTemp do // Indexing from 0..9
 begin
 // Do something with I...
 end;

 // Iterating over a dynamic array
 IDynArray := IArray1;
 for I in IDynArray do
 begin
 // Do something with I...
 end;

The following example demonstrates iteration over string expressions:

var
 C: Char;
 S1, S2: String;
 Counter: Integer;

 OS1, OS2: ShortString;
 AC: AnsiChar;

begin

 S1 := 'Now is the time for all good men to come to the aid of their country.';
 S2 := '';

 for C in S1 do
 S2 := S2 + C;

 if S1 = S2 then
 WriteLn('SUCCESS #1');
 else
 WriteLn('FAIL #1');

 OS1 := 'When in the course of human events it becomes necessary to dissolve...';
 OS2 := '';

 for AC in OS1 do
 OS2 := OS2 + AC;

 if OS1 = OS2 then
 WriteLn('SUCCESS #2');
 else
 WriteLn('FAIL #2');

end.

The following example demonstrates iteration over set expressions:

type

 TMyThing = (one, two, three);
 TMySet = set of TMyThing;
 TCharSet = set of Char;

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

716

3

var
 MySet: TMySet;
 MyThing: TMyThing;

 CharSet: TCharSet;
 {$IF DEFINED(CLR)}
 C: AnsiChar;
 {$ELSE}
 C: Char;
 {$IFEND}

begin

 MySet := [one, two, three];
 for MyThing in MySet do
 begin
 // Do something with MyThing...
 end;

 CharSet := [#0..#255];
 for C in CharSet do
 begin
 // Do something with C...
 end;

end.

To use the for-in loop construct on a class or interface, the class or interface must implement a prescribed collection pattern. A
type that implements the collection pattern must have the following attributes:

• The class or interface must contain a public instance method called GetEnumerator(). The GetEnumerator() method
must return a class, interface, or record type.

• The class, interface, or record returned by GetEnumerator() must contain a public instance method called MoveNext().
The MoveNext() method must return a Boolean.

• The class, interface, or record returned by GetEnumerator() must contain a public instance, read-only property called
Current. The type of the Current property must be the type contained in the collection.

If the enumerator type returned by GetEnumerator() implements the IDisposable interface, the compiler will call the Dispose
method of the type when the loop terminates.

The following code demonstrates iterating over an enumerable container in Delphi.

type
 TMyIntArray = array of Integer;

 TMyEnumerator = class
 Values: TMyIntArray;
 Index: Integer;
 public
 constructor Create;
 function GetCurrent: Integer;
 function MoveNext: Boolean;
 property Current: Integer read GetCurrent;
 end;

 TMyContainer = class
 public
 function GetEnumerator: TMyEnumerator;
 end;

constructor TMyEnumerator.Create;
begin
 inherited Create;
 Values := TMyIntArray.Create(100, 200, 300);
 Index := -1;

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

717

3

end;

function TMyEnumerator.MoveNext: Boolean;
begin
 if Index < High(Values) then
 begin
 Inc(Index);
 Result := True;
 end
 else
 Result := False;
end;

function TMyEnumerator.GetCurrent: Integer;
begin
 Result := Values[Index];
end;

function TMyContainer.GetEnumerator: TMyEnumerator;
begin
 Result := TMyEnumerator.Create;
end;

var
 MyContainer: TMyContainer;
 I: Integer;

 Counter: Integer;

begin
 MyContainer := TMyContainer.Create;

 Counter := 0;
 for I in MyContainer do
 Inc(Counter, I);

 WriteLn('Counter = ', Counter);
end.

The following classes and their descendents support the for-in syntax:

• TList

• TCollection

• TStrings

• TInterfaceList

• TComponent

• TMenuItem

• TCustomActionList

• TFields

• TListItems

• TTreeNodes

• TToolBar

Blocks and Scope

Declarations and statements are organized into blocks, which define local namespaces (or scopes) for labels and identifiers.
Blocks allow a single identifier, such as a variable name, to have different meanings in different parts of a program. Each block is
part of the declaration of a program, function, or procedure; each program, function, or procedure declaration has one block.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

718

3

Blocks

A block consists of a series of declarations followed by a compound statement. All declarations must occur together at the
beginning of the block. So the form of a block is

{declarations}
begin
 {statements}
end

The declarations section can include, in any order, declarations for variables, constants (including resource strings), types,
procedures, functions, and labels. In a program block, the declarations section can also include one or more exports clauses
(see Libraries and packages (see page 635)).

For example, in a function declaration like

function UpperCase(const S: string): string;
var
 Ch: Char;
 L: Integer;
 Source, Dest: PChar;
begin
 ...
end;

the first line of the declaration is the function heading and all of the succeeding lines make up the block. Ch, L, Source, and
Dest are local variables; their declarations apply only to the UpperCase function block and override, in this block only, any
declarations of the same identifiers that may occur in the program block or in the interface or implementation section of a unit.

Scope

An identifier, such as a variable or function name, can be used only within the scope of its declaration. The location of a
declaration determines its scope. An identifier declared within the declaration of a program, function, or procedure has a scope
limited to the block in which it is declared. An identifier declared in the interface section of a unit has a scope that includes any
other units or programs that use the unit where the declaration occurs. Identifiers with narrower scope, especially identifiers
declared in functions and procedures, are sometimes called local, while identifiers with wider scope are called global.

The rules that determine identifier scope are summarized below.

If the identifier is declared in ... its scope extends ...

the declaration section of a program,
function, or procedure

from the point where it is declared to the end of the current block, including all blocks
enclosed within that scope.

the interface section of a unit from the point where it is declared to the end of the unit, and to any other unit or
program that uses that unit. (See Programs and Units (see page 683).)

the implementation section of a unit, but
not within the block of any function or
procedure

from the point where it is declared to the end of the unit. The identifier is available to
any function or procedure in the unit, including the initialization and finalization
sections, if present.

the definition of a record type (that is,
the identifier is the name of a field in the
record)

from the point of its declaration to the end of the record-type definition. (See Records
(see page 566).)

the definition of a class (that is, the
identifier is the name of a data field
property or method in the class)

from the point of its declaration to the end of the class-type definition, and also
includes descendants of the class and the blocks of all methods in the class and its
descendants. (See Classes and Objects (see page 514).)

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

719

3

Naming Conflicts

When one block encloses another, the former is called the outer block and the latter the inner block. If an identifier declared in an
outer block is redeclared in an inner block, the inner declaration takes precedence over the outer one and determines the
meaning of the identifier for the duration of the inner block. For example, if you declare a variable called MaxValue in the
interface section of a unit, and then declare another variable with the same name in a function declaration within that unit, any
unqualified occurrences of MaxValue in the function block are governed by the second, local declaration. Similarly, a function
declared within another function creates a new, inner scope in which identifiers used by the outer function can be redeclared
locally.

The use of multiple units further complicates the definition of scope. Each unit listed in a uses clause imposes a new scope that
encloses the remaining units used and the program or unit containing the uses clause. The first unit in a uses clause
represents the outermost scope and each succeeding unit represents a new scope inside the previous one. If two or more units
declare the same identifier in their interface sections, an unqualified reference to the identifier selects the declaration in the
innermost scope, that is, in the unit where the reference itself occurs, or, if that unit doesn't declare the identifier, in the last unit
in the uses clause that does declare the identifier.

The System and SysInit units are used automatically by every program or unit. The declarations in System, along with the
predefined types, routines, and constants that the compiler understands automatically, always have the outermost scope.

You can override these rules of scope and bypass an inner declaration by using a qualified identifier (see Qualified Identifiers (
see page 701)) or a with statement (see With Statements, above).

See Also

Fundamental Syntactic Elements (see page 701)

Expressions (see page 720)

3.1.3.14.3 Expressions
circuit evaluation is usually preferable because it guarantees minimum execution time and, in most cases, minimum code size.
Complete evaluation is sometimes convenient when one operand is a function with side effects that alter the execution of the
program.

circuit evaluation also allows the use of constructions that might otherwise result in illegal runtime operations. For example, the
following code iterates through the string S, up to the first comma.

while (I <= Length(S)) and (S[I] <> ',') do
 begin
 ...
 Inc(I);
 end;

In the case where S has no commas, the last iteration increments I to a value which is greater than the length of S. When the
while condition is next tested, complete evaluation results in an attempt to read S[I], which could cause a runtime error. Under
short-circuit evaluation, in contrast, the second part of the while condition (S[I] <> ',') is not evaluated after the first part
fails.

Use the $B compiler directive to control evaluation mode. The default state is {$B}, which enables short-circuit evaluation. To
enable complete evaluation locally, add the {$B+} directive to your code. You can also switch to complete evaluation on a
project-wide basis by selecting Complete Boolean Evaluation in the Compiler Options dialog (all source units will need to be
recompiled).

Note: If either operand involves a Variant, the compiler always performs complete evaluation (even in the {$B} state).

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

720

3

Logical (Bitwise) Operators

The following logical operators perform bitwise manipulation on integer operands. For example, if the value stored in X (in binary)
is 001101 and the value stored in Y is 100001, the statement:

Z := X or Y;

assigns the value 101101 to Z.

Logical (Bitwise) Operators

Operator Operation Operand
Types

Result Type Example

not bitwise negation integer integer not X

and bitwise and integer integer X and Y

or bitwise or integer integer X or Y

xor bitwise xor integer integer X xor Y

shl bitwise shift left integer integer X shl 2

shr bitwise shift right integer integer Y shr I

The following rules apply to bitwise operators.

• The result of a not operation is of the same type as the operand.

• If the operands of an and, or, or xor operation are both integers, the result is of the predefined integer type with the smallest
range that includes all possible values of both types.

• The operations x shl y and x shr y shift the value of x to the left or right by y bits, which (if x is an unsigned integer) is
equivalent to multiplying or dividing x by 2^y; the result is of the same type as x. For example, if N stores the value 01101
(decimal 13), then N sh 1 returns 11010 (decimal 26). Note that the value of y is interpreted modulo the size of the type of
x. Thus for example, if x is an integer, x shl 40 is interpreted as x shl 8 because an integer is 32 bits and 40 mod 32 is
8.

String Operators

The relational operators =, <>, <, >, <=, and >= all take string operands (see Relational operators). The + operator concatenates
two strings.

String Operators

Operator Operation Operand Types Result Type Example

+ concatenation string, packed string, character string S + '. '

The following rules apply to string concatenation.

• The operands for + can be strings, packed strings (packed arrays of type Char), or characters. However, if one operand is of
type WideChar, the other operand must be a long string (AnsiString or WideString).

• The result of a + operation is compatible with any string type. However, if the operands are both short strings or characters,
and their combined length is greater than 255, the result is truncated to the first 255 characters.

Pointer Operators

The relational operators <, >, <=, and >= can take operands of type PChar and PWideChar (see Relational operators). The
following operators also take pointers as operands. For more information about pointers, see Pointers and pointer types (see

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

721

3

page 575).

Character-pointer operators

Operator Operation Operand Types Result Type Example

+ pointer addition character pointer, integer character pointer P + I

- pointer subtraction character pointer, integer character pointer, integer P - Q

^ pointer dereference pointer base type of pointer P^

= equality pointer Boolean P = Q

<> inequality pointer Boolean P <> Q

The ^ operator dereferences a pointer. Its operand can be a pointer of any type except the generic Pointer, which must be
typecast before dereferencing.

P = Q is True just in case P and Q point to the same address; otherwise, P <> Q is True.

You can use the + and - operators to increment and decrement the offset of a character pointer. You can also use - to calculate
the difference between the offsets of two character pointers. The following rules apply.

• If I is an integer and P is a character pointer, then P + I adds I to the address given by P; that is, it returns a pointer to the
address I characters after P. (The expression I + P is equivalent to P + I.) P - I subtracts I from the address given by
P; that is, it returns a pointer to the address I characters before P. This is true for PChar pointers; for PWideChar pointers P
+ I adds SizeOf(WideChar) to P.

• If P and Q are both character pointers, then P - Q computes the difference between the address given by P (the higher
address) and the address given by Q (the lower address); that is, it returns an integer denoting the number of characters
between P and Q. P + Q is not defined.

Set Operators

The following operators take sets as operands.

Set Operators

Operator Operation Operand
Types

Result Type Example

+ union set set Set1 + Set2

- difference set set S - T

* intersection set set S * T

<= subset set Boolean Q <= MySet

>= superset set Boolean S1 >= S2

= equality set Boolean S2 = MySet

<> inequality set Boolean MySet <> S1

in membership ordinal, set Boolean A in Set1

The following rules apply to +, -, and *.

• An ordinal O is in X + Y if and only if O is in X or Y (or both). O is in X - Y if and only if O is in X but not in Y. O is in X * Y if
and only if O is in both X and Y.

• The result of a +, -, or * operation is of the type set of A..B, where A is the smallest ordinal value in the result set and B is
the largest.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

722

3

The following rules apply to <=, >=, =, <>, and in.

• X <= Y is True just in case every member of X is a member of Y; Z >= W is equivalent to W <= Z. U = V is True just in
case U and V contain exactly the same members; otherwise, U <> V is True.

• For an ordinal O and a set S, O in S is True just in case O is a member of S.

Relational Operators

Relational operators are used to compare two operands. The operators =, <>, <=, and >= also apply to sets.

Relational Operators

Operator Operation Operand Types Result
Type

Example

= equality simple, class, class reference, interface, string, packed
string

Boolean I = Max

<> inequality simple, class, class reference, interface, string, packed
string

Boolean X <> Y

< less-than simple, string, packed string, PChar Boolean X < Y

> greater-than simple, string, packed string, PChar Boolean Len > 0

<= less-than-or-equal-to simple, string, packed string, PChar Boolean Cnt <= I

>= greater-than-or-equal-to simple, string, packed string, PChar Boolean I >= 1

For most simple types, comparison is straightforward. For example, I = J is True just in case I and J have the same value,
and I <> J is True otherwise. The following rules apply to relational operators.

• Operands must be of compatible types, except that a real and an integer can be compared.

• Strings are compared according to the ordinal values that make up the characters that make up the string. Character types
are treated as strings of length 1.

• Two packed strings must have the same number of components to be compared. When a packed string with n components is
compared to a string, the packed string is treated as a string of length n.

• Use the operators <, >, <=, and >= to compare PChar (and PWideChar) operands only if the two pointers point within the
same character array.

• The operators = and <> can take operands of class and class-reference types. With operands of a class type, = and <> are
evaluated according the rules that apply to pointers: C = D is True just in case C and D point to the same instance object, and
C <> D is True otherwise. With operands of a class-reference type, C = D is True just in case C and D denote the same
class, and C <> D is True otherwise. This does not compare the data stored in the classes. For more information about
classes, see Classes and objects (see page 514).

Class Operators

The operators as and is take classes and instance objects as operands; as operates on interfaces as well. For more information,
see Classes and objects (see page 514) and Object interfaces (see page 625).

The relational operators = and <> also operate on classes.

The @ Operator

The @ operator returns the address of a variable, or of a function, procedure, or method; that is, @ constructs a pointer to its
operand. For more information about pointers, see Pointers and pointer types (see page 575). The following rules apply to @.

• If X is a variable, @X returns the address of X. (Special rules apply when X is a procedural variable; see Procedural types in

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

723

3

statements and expressions (see page 578).) The type of @X is Pointer if the default {$T} compiler directive is in effect. In
the {$T+} state, @X is of type ^T, where T is the type of X (this distinction is important for assignment compatibility, see
Assignment-compatibility).

• If F is a routine (a function or procedure), @F returns F's entry point. The type of @F is always Pointer.

• When @ is applied to a method defined in a class, the method identifier must be qualified with the class name. For example,

@TMyClass.DoSomething

points to the DoSomething method of TMyClass. For more information about classes and methods, see Classes and objects
(see page 514).

Note: When using the @ operator, it is not possible to take the address of an interface method as the address is not known at
compile time and cannot be extracted at runtime.

Operator Precedence

In complex expressions, rules of precedence determine the order in which operations are performed.

Precedence of operators

Operators Precedence

@, not first
(highest)

*, /, div, mod, and, shl, shr, as second

+, -, or, xor third

=, <>, <, >, <=, >=, in, is fourth
(lowest)

An operator with higher precedence is evaluated before an operator with lower precedence, while operators of equal precedence
associate to the left. Hence the expression

X + Y * Z

multiplies Y times Z, then adds X to the result; * is performed first, because is has a higher precedence than +. But

X - Y + Z

first subtracts Y from X, then adds Z to the result; - and + have the same precedence, so the operation on the left is performed
first.

You can use parentheses to override these precedence rules. An expression within parentheses is evaluated first, then treated
as a single operand. For example,

(X + Y) * Z

multiplies Z times the sum of X and Y.

Parentheses are sometimes needed in situations where, at first glance, they seem not to be. For example, consider the
expression

X = Y or X = Z

The intended interpretation of this is obviously

(X = Y) or (X = Z)

Without parentheses, however, the compiler follows operator precedence rules and reads it as

(X = (Y or X)) = Z

which results in a compilation error unless Z is Boolean.

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

724

3

Parentheses often make code easier to write and to read, even when they are, strictly speaking, superfluous. Thus the first
example could be written as

X + (Y * Z)

Here the parentheses are unnecessary (to the compiler), but they spare both programmer and reader from having to think about
operator precedence.

Description

This topic describes syntax rules of forming Delphi expressions.

The following items are covered in this topic:

• Valid Delphi Expressions

• Operators

• Function calls

• Set constructors

• Indexes

• Typecasts

Expressions

An expression is a construction that returns a value. The following table shows examples of Delphi expressions:

X variable

@X address of the variable X

15 integer constant

InterestRate variable

Calc(X, Y) function call

X * Y product of X and Y

Z / (1 - Z) quotient of Z and (1 - Z)

X = 1.5 Boolean

C in Range1 Boolean

not Done negation of a Boolean

['a', 'b', 'c'] set

Char(48) value typecast

The simplest expressions are variables and constants (described in Data types (see page 553)). More complex expressions
are built from simpler ones using operators, function calls, set constructors, indexes, and typecasts.

Operators

Operators behave like predefined functions that are part of the Delphi language. For example, the expression (X + Y) is built
from the variables X and Y, called operands, with the + operator; when X and Y represent integers or reals, (X + Y) returns
their sum. Operators include @, not, ^, *, /, div, mod, and, shl, shr, as, +, -, or, xor, =, >, <, <>, <=, >=, in, and is.

The operators @, not, and ^ are unary (taking one operand). All other operators are binary (taking two operands), except that +
and - can function as either a unary or binary operator. A unary operator always precedes its operand (for example, -B), except
for ^, which follows its operand (for example, P^). A binary operator is placed between its operands (for example, A = 7).

Some operators behave differently depending on the type of data passed to them. For example, not performs bitwise negation
on an integer operand and logical negation on a Boolean operand. Such operators appear below under multiple categories.

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

725

3

Except for ^, is, and in, all operators can take operands of type Variant (see page 580).

The sections that follow assume some familiarity with Delphi data types (see page 553).

For information about operator precedence in complex expressions, see Operator Precedence Rules, later in this topic.

Arithmetic Operators

Arithmetic operators, which take real or integer operands, include +, -, *, /, div, and mod.

Binary Arithmetic Operators

Operator Operation Operand Types Result Type Example

+ addition integer, real integer, real X + Y

- subtraction integer, real integer, real Result - 1

* multiplication integer, real integer, real P * InterestRate

/ real division integer, real real X / 2

div integer division integer integer Total div UnitSize

mod remainder integer integer Y mod 6

Unary arithmetic operators

Operator Operation Operand Type Result Type Example

+ sign identity integer, real integer, real +7

- sign negation integer, real integer, real -X

The following rules apply to arithmetic operators.

• The value of x / y is of type Extended, regardless of the types of x and y. For other arithmetic operators, the result is of
type Extended whenever at least one operand is a real; otherwise, the result is of type Int64 when at least one operand is of
type Int64; otherwise, the result is of type Integer. If an operand's type is a subrange of an integer type, it is treated as if it
were of the integer type.

• The value of x div y is the value of x / y rounded in the direction of zero to the nearest integer.

• The mod operator returns the remainder obtained by dividing its operands. In other words, x mod y = x —(x div y) *
y.

• A runtime error occurs when y is zero in an expression of the form x / y, x div y, or x mod y.

Boolean Operators

The Boolean operators not, and, or, and xor take operands of any Boolean type and return a value of type Boolean.

Boolean Operators

Operator Operation Operand Types Result Type Example

not negation Boolean Boolean not (C in
MySet)

and conjunction Boolean Boolean Done and
(Total > 0)

or disjunction Boolean Boolean A or B

xor exclusive
disjunction

Boolean Boolean A xor B

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

726

3

These operations are governed by standard rules of Boolean logic. For example, an expression of the form x and y is True if
and only if both x and y are True.

Complete Versus Short-Circuit Boolean Evaluation

The compiler supports two modes of evaluation for the and and or operators: complete evaluation and short-circuit (partial)
evaluation. Complete evaluation means that each conjunct or disjunct is evaluated, even when the result of the entire expression
is already determined. Short-circuit evaluation means strict left-to-right evaluation that stops as soon as the result of the entire
expression is determined. For example, if the expression A and B is evaluated under short-circuit mode when A is False, the
compiler won't evaluate B; it knows that the entire expression is False as soon as it evaluates A.

Function Calls

Because functions return a value, function calls are expressions. For example, if you've defined a function called Calc that takes
two integer arguments and returns an integer, then the function call Calc(24,47) is an integer expression. If I and J are
integer variables, then I + Calc(J,8) is also an integer expression. Examples of function calls include

Sum(A, 63)
Maximum(147, J)
Sin(X + Y)
Eof(F)
Volume(Radius, Height)
GetValue
TSomeObject.SomeMethod(I,J);

For more information about functions, see Procedures and functions (see page 662).

Set Constructors

A set constructor denotes a set-type value. For example,

[5, 6, 7, 8]

denotes the set whose members are 5, 6, 7, and 8. The set constructor

[5..8]

could also denote the same set.

The syntax for a set constructor is

[item1, ..., itemn]

where each item is either an expression denoting an ordinal of the set's base type or a pair of such expressions with two dots (..)
in between. When an item has the form x..y, it is shorthand for all the ordinals in the range from x to y, including y; but if x is
greater than y, then x..y, the set [x..y], denotes nothing and is the empty set. The set constructor [] denotes the empty
set, while [x] denotes the set whose only member is the value of x.

Examples of set constructors:

[red, green, MyColor]
[1, 5, 10..K mod 12, 23]
['A'..'Z', 'a'..'z', Chr(Digit + 48)]

For more information about sets, see Sets (see page 566).

Indexes

Strings, arrays, array properties, and pointers to strings or arrays can be indexed. For example, if FileName is a string variable,
the expression FileName[3] returns the third character in the string denoted by FileName, while FileName[I + 1] returns
the character immediately after the one indexed by I. For information about strings, see String types (see page 561). For
information about arrays and array properties, see Arrays (see page 566) and Array properties (see page 530).

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

727

3

Typecasts

It is sometimes useful to treat an expression as if it belonged to different type. A typecast allows you to do this by, in effect,
temporarily changing an expression's type. For example, Integer('A') casts the character A as an integer.

The syntax for a typecast is

typeIdentifier(expression)

If the expression is a variable, the result is called a variable typecast; otherwise, the result is a value typecast. While their syntax
is the same, different rules apply to the two kinds of typecast.

Value Typecasts

In a value typecast, the type identifier and the cast expression must both be ordinal or pointer types. Examples of value
typecasts include

Integer('A')
Char(48)
Boolean(0)
Color(2)
Longint(@Buffer)

The resulting value is obtained by converting the expression in parentheses. This may involve truncation or extension if the size
of the specified type differs from that of the expression. The expression's sign is always preserved.

The statement

I := Integer('A');

assigns the value of Integer('A'), which is 65, to the variable I.

A value typecast cannot be followed by qualifiers and cannot appear on the left side of an assignment statement.

Variable Typecasts

You can cast any variable to any type, provided their sizes are the same and you do not mix integers with reals. (To convert
numeric types, rely on standard functions like Int and Trunc.) Examples of variable typecasts include

Char(I)
Boolean(Count)
TSomeDefinedType(MyVariable)

Variable typecasts can appear on either side of an assignment statement. Thus

var MyChar: char;
 ...
 Shortint(MyChar) := 122;

assigns the character z (ASCII 122) to MyChar.

You can cast variables to a procedural type. For example, given the declarations

type Func = function(X: Integer): Integer;
var
 F: Func;
 P: Pointer;
 N: Integer;

you can make the following assignments.

F := Func(P); { Assign procedural value in P to F }
Func(P) := F; { Assign procedural value in F to P }
@F := P; { Assign pointer value in P to F }
P := @F; { Assign pointer value in F to P }
N := F(N); { Call function via F }
N := Func(P)(N); { Call function via P }

Delphi Language Guide RAD Studio (Common) 3.1 Delphi Reference

728

3

Variable typecasts can also be followed by qualifiers, as illustrated in the following example.

type
 TByteRec = record
 Lo, Hi: Byte;
 end;

 TWordRec = record
 Low, High: Word;
 end;

var
 B: Byte;
 W: Word;
 L: Longint;
 P: Pointer;

begin
 W := $1234;
 B := TByteRec(W).Lo;
 TByteRec(W).Hi := 0;
 L := $1234567;
 W := TWordRec(L).Low;
 B := TByteRec(TWordRec(L).Low).Hi;
 B := PByte(L)^;
end;

In this example, TByteRec is used to access the low- and high-order bytes of a word, and TWordRec to access the low- and
high-order words of a long integer. You could call the predefined functions Lo and Hi for the same purpose, but a variable
typecast has the advantage that it can be used on the left side of an assignment statement.

For information about typecasting pointers, see Pointers and pointer types (see page 575). For information about casting class
and interface types, see The as operator (see page 539) and Interface typecasts (see page 631).

See Also

Fundamental Syntactic Elements (see page 701)

Declarations and Statements (see page 705)

3.1 Delphi Reference RAD Studio (Common) Delphi Language Guide

729

3

3.2 RAD Studio Dialogs and Commands
This section contains help for dialogs and menu commands in the RAD Studio user interface.

Topics

Name Description

Code Visualization (see page 730)

Components (see page 732)

Database (see page 737)

Edit (see page 754)

Error Messages (see page 760)

File (see page 768)

HTML Elements (see page 801)

Insert (see page 813)

Testing Wizards (see page 815)

NET_VS (see page 817)

Project (see page 819)

Propeditors (see page 910)

Run (see page 936)

Search (see page 952)

Together (see page 957)

Tools (see page 979)

View (see page 1014)

Win View (see page 1062)

3.2.1 Code Visualization

Topics

Name Description

Code Visualization Diagram (see page 730) The Code Visualization diagram displays your project as a UML static structure
diagram.
The following table shows the standard UML notations used on the diagram.

Export Diagram to Image (see page 731) Export to Image...
Use this dialog to create a file with the Code Visualization diagram. Various
graphics file formats are supported, including BMP, JPG, and GIF.

3.2.1.1 Code Visualization Diagram
The Code Visualization diagram displays your project as a UML static structure diagram.

The following table shows the standard UML notations used on the diagram.

Code Visualization RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

730

3

UML Notation Represents

A UML package

A class

An interface

 A member with public visibility

 A member with protected visibility

 A member with private visibility

 A generalization link

 A realization link

 A dependency link

 An association link

Tip: If the diagram is too large to view all at once, you can use the Overview

window to scroll to that portion you wish to view.

See Also

Using Code Visualization

Using the Model View Window and Code Visualization Diagram

Using the Overview Window

3.2.1.2 Export Diagram to Image
Export to Image...

Use this dialog to create a file with the Code Visualization diagram. Various graphics file formats are supported, including
BMP, JPG, and GIF.

Item Description

Z The zoom (magnification) factor for the image. You can enter a numeric value in this field, or use the
Preview zoom slider on the preview pane. A value of 1.0 creates a full size image, while (for
example) a value of 0.5 scales the image to half its size. A value of 1.5 scales the image to 1.5 times
its size.

W The width of the image. The image will be scaled to the new size, and the zoom factor field will be
updated to reflect the new scaling value.

H The height of the image. The image will be scaled to the new size, and the zoom factor field will be
updated to reflect the new scaling value.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Code Visualization

731

3

Preview Click to show or hide a preview of the image. The preview shows how the image will look, given the
current values of Z, W, and H.

Preview zoom Use the slider control to scale the image to a smaller size. When the slider is at the leftmost position,
a full size image (1:1) will be created. When at the rightmost position, the image size will be
decreased by 16 times (1:16).

Auto preview zoom Click to have the image Preview pane update in real-time, as you slide the Preview zoom control.

Save Click to open a Windows Save-as dialog that will let you choose the graphical file format for the
image file.

See Also

Using Code Visualization

Using the Model View Window and Code Visualization Diagram

Using the Overview Window

3.2.2 Components

Topics

Name Description

Create Component Template (see page 732) Component Create Component Template
Use this dialog box to save the selected components on the current form as a
reusable component template.

Import Component (see page 733) Component Import Component
Imports a type library, ActiveX Control, or a .NET assembly.
You need to choose VCL for C++ or VCL for Delphi if you select Import
Component with no project open.

Packages (see page 734) Components Install Packages
Specifies the design time packages installed in the IDE and the runtime
packages that you want to install on your system, for use on all projects.

Assembly Search Paths (see page 734) Component Installed .NET Components
Use this page to change the assembly search path that RAD Studio uses when
locating assemblies.

Installed .NET Components (see page 734) Component Installed .NET Components
Controls which .NET components are displayed in the Tool Palette.

.NET VCL Components (see page 735) Component Installed .NET Components
Use this page to control which .NET VCL components are displayed in the Tool
Palette.

New Component (see page 735) Component New VCL Component
Create the basic unit for a new component.
You need to choose VCL for C++, VCL for Delphi or VCL for Delphi .NET if
you select New VCL Component with no project open.

New VCL Component Wizard (see page 736) Component New VCL Component
Use this wizard to create a new VCL.NET or VCL Win32 component.

3.2.2.1 Create Component Template
Component Create Component Template

Use this dialog box to save the selected components on the current form as a reusable component template.

Components RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

732

3

Item Description

Component name Indicates the name of the new component template. By default, the name of the first component that
you selected is displayed and the word Template is appended to it. You can change this name, but
be careful not to duplicate existing component names.

Palette page Select the Tool Palette category in which you want the new template to appear.

Palette icon Indicates the icon used to represent the component template in the Tool Palette. By default, the icon
of the first component you selected is displayed. To change it, click the Change button and choose a
new file. The bitmap must be no larger than 24 pixels by 24 pixels.

See Also

Creating a Component Template (see page 154)

3.2.2.2 Import Component
Component Import Component

Imports a type library, ActiveX Control, or a .NET assembly.

You need to choose VCL for C++ or VCL for Delphi if you select Import Component with no project open.

Item Description

Import a Type Library Click to import a type library.

Import ActiveX Control Click to import an ActiveX Control.

Import .NET assembly Click to import a .NET assembly as a COM object.

Registered Type Libraries/ActiveX Controls/.NET Assemblies

Depending on the type of component selected in the previous step, this dialog will show a list of registered type libraries, ActiveX
Controls, or .NET assemblies in the Global Assembly Cache.

Item Description

Component list Displays a list of registered type libraries, ActiveX Controls, or .NET assemblies in the Global
Assembly Cache.

Add Click to browse for a new component to add to the list.

Component

Use the component page to edit parameters used to import the component into the IDE.

Item Description

Class Name Displays the name of the class (or classes) that will be created.

Palette Page Select the Tool Palette category where you want the components to appear.

Unit name Type the name of the unit that will contain the component.

Browse button Click to navigate to the folder where the unit file will reside.

Search path Enter the search path for the new component. The default value is the environment options library
search path. The folder designated in the unit name field will be appended to the search path.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Components

733

3

3.2.2.3 Packages
Components Install Packages

Specifies the design time packages installed in the IDE and the runtime packages that you want to install on your system, for use
on all projects.

Item Description

Design packages Lists the design time packages available to the IDE and all projects. Check the design packages you
want to make available on a system-wide level. You do not need to have a project open to install
packages on a system-wide level.

Add Installs a design time package. The package will be available in all projects.

Remove Deletes the selected package. The package becomes unavailable in all projects.

Edit Opens the selected package in the Package Editor if the source code or .dcp file is available.

3.2.2.4 Assembly Search Paths
Component Installed .NET Components

Use this page to change the assembly search path that RAD Studio uses when locating assemblies.

Item Description

Search Paths Lists the paths that will be searched for assemblies when a component is created in the development
environment. If a component exists in more than one assembly, it will be used from the first assembly
in which it is found.

Use the up and down arrow buttons to the right of the search path list to move the selected path up or
down in the search order.

Replace Replaces the currently selected path in the Search Path list with the path in the box above the
Replace button.

Add Adds the path displayed in the box above the Add button to the Search Path list.

Use the browse button to navigate to an existing folder.

Delete Deletes the currently selected path from the Search Path list.

Reset Sets assembly path search paths back to the original configuration.

Tip: Click any column heading to sort the display.

3.2.2.5 Installed .NET Components
Component Installed .NET Components

Controls which .NET components are displayed in the Tool Palette.

Item Description

 Indicates whether the component is displayed in the Tool Palette. Checked components are
displayed; unchecked components are not displayed.

Name The name of the component.

Components RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

734

3

Category The functional category to which the component belongs. At least one component name must be
checked for the category to appear in the Tool Palette.

Namespace The namespace to which the component belongs.

Assembly Name The name of the assembly (.dll) that contains the component.

Assembly Path The location of the assembly.

Category Enter the category to which you want to add an assembly.

Select an Assembly Displays a dialog box allowing you to browse to an assembly or executable file.

Reset Sets installed components to the original configuration.

Tip: Click any column heading to sort the display.

3.2.2.6 .NET VCL Components
Component Installed .NET Components

Use this page to control which .NET VCL components are displayed in the Tool Palette.

Item Description

 Indicates whether this category of components is displayed in the Tool Palette.

Name The name of the component.

Namespace/unit The namespace and unit to which the component belongs.

Add Displays a dialog box, allowing you to navigate to and install a DLL containing .NET VCL
components.

Remove Removes the selected (highlighted) category of components from the Tool Palette.

Reset Restores the original configuration of installed components.

Tip: The status bar at the bottom of this dialog displays the path for the selected component category.

3.2.2.7 New Component
Component New VCL Component

Create the basic unit for a new component.

You need to choose VCL for C++, VCL for Delphi or VCL for Delphi .NET if you select New VCL Component with no project
open.

Item Description

Ancestor type Use the drop-down list to select a base class, or enter the name of a base class for your new
component. Unless you override them in the component declaration, your new component will inherit
all the properties, methods, and events from its ancestor class. After you enter a base class, default
entries are written to the Class name and Unit file name. You can accept or edit these entries.

Class name The name of the new class you are creating. In general, classe names are prefaced with a T. For
example, the name of your new button component might be TMyButton.

Palette page Use the drop-down list to select a category, or enter the name of the category, in which you want your
new component to appear on the Tool Palette.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Components

735

3

Unit file name Specifies the name of the unit that will contain the new component. You can include a directory path
with the name; otherwise, the unit will be created in the current directory. If the unit directory is not in
the Search path, it will be added to the end of the path.

Search path Specifies the path the product uses to search for files.

OK Creates the component but does not install it. To install the component later, choose
Component Installed .NET Components.

3.2.2.8 New VCL Component Wizard
Component New VCL Component

Use this wizard to create a new VCL.NET or VCL Win32 component.

Item Description

Delphi for VCL.NET Click to create a new component for the VCL.NET framework and platform.

Delphi for VCL Win32 Click to create a new component for the VCL Win32 framework and platform.

Ancestor Component

The Ancestor Component page displays a list of installed components that can be used as ancestors for the new component.
This dialog displays installed components for the platform selected on the previous page.

Item Description

Component list Shows a list of installed components for the platform selected in the previous page.

Component

The Component page allows you to edit parameters used to create the new component.

Item Description

Class Name Enter a class name for the new component, or accept the default value.

Palette Page Select the Tool Palette category on which the new component will appear.

Unit name Enter the name of the unit for the new component.

Search path Enter the search path for the new component. The default value is the environment options library
search path.

Install

Use the Install page to select an action for the IDE to take when it installs the new component.

Item Description

Create a unit Click to cause the IDE to create a new unit.

Install to Existing
Package

Click to install the new component into a package that already exists.

Install to New Package Click to cause the IDE to generate a new package.

Note: If the new component's platform is Win32 and the active project is a Win32 package, an additional radio button will appear
allowing you to install the component into the active project. Similarly, if the new component's platform is .NET, and the active
project is a .NET package, an additional radio button will appear allowing you to install the component into the active project.

Components RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

736

3

Existing Package

Use this dialog to select an existing package in which to install the new component.

Item Description

Installed package list Lists all the packages currently installed on the system.

New Package

Use this dialog to enter the name of a new package in which to install the new component

Item Description

File name Enter a file name for the new package. Click the browse button to navigate to the folder where the
new package will reside.

Description Enter a description for the new package.

3.2.3 Database

Topics

Name Description

Add Fields (see page 739) Use this dialog box to create a persistent field component for a dataset.
Each time you open the dataset, the product verifies that each non-calculated
persistent field exists or can be created from data in the database, and then
creates persistent components for the fields you specified. If it cannot, it raises an
exception warning you that the field is not valid, and does not open the dataset.
After you have created a field component for the dataset, the product no longer
creates dynamic field components for every column in the underlying database.
Tip: To select multiple fields, press CTRL... more (see page 739)

Assign Local Data (see page 739) Use this dialog box to copy the current set of records from another dataset to the
selected client dataset. This is useful when populating client datasets for use as
lookup tables, or when testing client datasets at design-time. Select the dataset
you want to copy from the list of datasets available to the current form, then click
OK. To clear the records in a client dataset at design-time, set the dataset's
Active property to true, then right-click the client dataset and choose Clear Data.

Columns Collection Editor (see page 740) Use this dialog to to create and remove columns in a dataset DataTable object
and to configure the properties for dataset columns. If you set your data adapter
Active property to True, the names of the dataset columns, as returned from the
database, appear in the members list.

Constraints Collection Editor (see page 740) Use this dialog to add, configure, and remove constraints to or from a dataset's
DataTable columns. You can manage unique constraints and foreign key
constraints in this editor.

Relations Collection Editor (see page 740) Use this dialog to create, edit, and delete relationships between the tables in the
current dataset.

Tables Collection Editor (see page 741) Use this dialog to add and remove DataTable objects to or from a dataset and to
set the properties for each DataTable object. The members list automatically
displays one member for each DataTable in the corresponding dataset only if the
Active property is set to True for the data adapter.

CommandText Editor (see page 741) Use this dialog box to construct the command text for the CommandText property
of the BdpCommand.

Command Text Editor (see page 742) Use this dialog box to construct the command text (SQL statement) for dataset
components that have a CommandText property. The dialog buttons add
SELECT and FROM clauses; other clauses (WHERE, GROUP BY, HAVING,
ORDER BY, and so on) must be added manually to the SQL edit control.

Configure Data Adapter (see page 742) Use this dialog box to construct the command text for the DataAdapter property
of the BdpDataAdapter.

Connection Editor (see page 743) Use this dialog box to select a connection configuration or to edit the named
connections that are stored in the BdpConnection.xml file. This editor lets you
add, delete, and test your connection.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Database

737

3

Connection Editor (see page 743) Use this dialog box to select a connection configuration for a TSQLConnection
component or to edit the named connections that are stored in the
dbxconnections.ini file. Any changes you make in the dialog are written to the
dbxconnections.ini file when you click OK. The selected connection is also
assigned as the value of the SQL Connection component’s ConnectionName
property.

Connection String Editor (ADO) (see page 744) Use this dialog box to specify the connection string used to connect an ADO data
component to an ADO data store. You can type the connection string, build it
using an ADO-supplied dialog box, or place the string in a file.

Data Adapter Dataset (see page 744) Use this tab to select the dataset to associate with the Data Adapter.

DataAdapter Preview (see page 744) Use this dialog box to preview the result set that is returned from the current SQL
Select statement. By reviewing the result set, you can tune your SQL statements
to provide a more accurate result set, which you can move into or out of the
DataSet. This dialog is accessed from the CommandText Editor and the
Configure Data Adapter dialog.

Database Editor (see page 745) Use this dialog box to set up the connection to a database.

Database Form Wizard (see page 745) Other New Other Delphi Projects Business Database From Wizard
Use this wizard to create a form that displays data from a local or remote
database. The wizard will connect the form to a TTable or TQuery component,
write SQL statements for TQuery components, define the form tab order, and
connect TDataSource components to TTable/TQuery components.
Follow the instructions on each wizard page. Click Next to continue to the next
page and then click Finish to generate the form based on the information you
have provided.
Tip: The Database Form Wizard
is also available from the Database Form Wizard menu.

Dataset Properties (see page 746) Use this dialog to examine the tables, columns, and other properties of a dataset.
The left pane of the dialog displays the dataset and its tables. Select an object in
the left pane to display its properties in a read-only grid in the right pane.

Driver Settings (see page 746) Use this dialog box to see what files are associated with each dbExpress driver
name. These associations are stored in the drivers.ini file.

Field Link Designer (see page 746) Use this dialog box to establish a master-detail relationship between two tables.

Fields Editor (see page 746) Use this dialog box to add new persistent fields to a dataset and create data
fields, calculated fields, and lookup fields. The dialog box is displayed when you
right-click any of several dataset components, such as TADODataSet or
TSQLDataSet, and choose Fields Editor.
Use the Fields Editor at design time to create persistent lists of the field
components used by the datasets in your application. Persistent fields
component lists are stored in your application, and do not change even if the
structure of a database underlying a dataset is changed. All fields in a dataset
are either persistent or dynamic.... more (see page 746)

Foreign Key Constraint (see page 747) Use this dialog box to define a foreign key constraint between tables in a dataset.
The table you selected when navigating to this dialog is automatically set to the
foreign key table. You could, therefore, attempt to set the master table in a
master-detail relationship to be the detail table. This could, at the very least
return unpredictable results. If the actual detail, or foreign key, table's foreign key
column contains duplicates, you may generate a design-time error.

Generate Dataset (see page 748) Use this dialog box to sort records in a dataset, locate records quickly, limit
records that are visible, and establish master/detail relationships.

New Connection (see page 748) Use this dialog box to create a new named database connection configuration.

New Field (see page 748) Use this dialog box to create persistent fields in a dataset. You can add
persistent fields or replace existing persistent fields.

Relation (see page 749) Use this dialog box to define a relationship between tables in a dataset.

Rename Connection (see page 749) Enter a new name for the currently selected named connection in the
Connection Builder. Renaming a connection updates the dbxconnections.ini file
to change the name for the selected connection configuration. The old name
becomes unavailable and can no longer be used as the ConnectionName
property of a TSQLConnection component.

SQL Monitor (see page 749) Database SQL Monitor
Use this dialog box to see the actual statement calls made through SQL Links to
a remote server or through the ODBC socket to an ODBC data source.
You can monitor different types of activity by choosing Options Trace
Options to display the Trace Options dialog box.

Sort Fields Editor (see page 750) Use this dialog box to specify the fields used to sort records in a SQL dataset,
which has the CommandType property set to ctTable.

Database RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

738

3

Stored Procedures Dialog (see page 751) Use this dialog box to select a stored procedure for a BdpCommand. You can
specify values for Input or InputOutput parameters and execute the selected
stored procedure.

TableMappings Collection Editor (see page 751) Use this dialog box to map columns between your data source and the
in-memory dataset.

Unique Constraint (see page 752) Use this dialog box to select the dataset columns you want included in your
constraint, which means these columns will be forced to contain only unique
values. You can also set one or more columns as your primary key.

IBDatabase Editor dialog box (see page 752) The Database Editor dialog box sets up the properties of a database that specify
the connection that should be made to a database. This dialog box allows you to
specify the type of database, the connection parameters, the user name, SQL
role, and password, and whether or not a login prompt is required.
These properties of the database component, as well as others, can also be
specified using the Object Inspector.
To display the Database Editor dialog box, double click on an IBDatabase
component.

IBTransaction Editor dialog box (see page 753) The Transaction Editor dialog box allows you to set up transaction parameters.
This dialog box gives you four default transaction settings, which you can then
customize if you wish. Once you modify the default transaction, the radio button
is unset.
For a complete list of all the InterBase transaction parameters, refer to 'Working
with Transactions' in the InterBase API Guide.
These properties of the transaction component, as well as others, can also be
specified using the Object inspector.
To display the Transaction Editor dialog box, double click on an IBTransaction
component. The following four choices are displayed:

IBUpdateSQL and IBDataSet Editor dialog box (see page 753) Use the editor to create SQL statements for updating a dataset.
The TIBUpdateSQL object must be associated with a TIBQuery object by setting
the TIBQuery property UpdateObject to the name of the TIBUpdateSQL object
used to contain the SQL statements. A datasource and database name must be
selected for the TIBQuery object. In addition, the SQL property must include an
SQL statement defining a table.
To open the SQL editor:

1. Select the TIBUpdateSQL or TIBDataSet object in the
form.

2. Right-click and choose Update SQL editor or DataSet
editor.

The Update SQL editor has two pages, the Options page
and the... more (see page 753)

3.2.3.1 Add Fields
Use this dialog box to create a persistent field component for a dataset.

Each time you open the dataset, the product verifies that each non-calculated persistent field exists or can be created from data
in the database, and then creates persistent components for the fields you specified. If it cannot, it raises an exception warning
you that the field is not valid, and does not open the dataset.

After you have created a field component for the dataset, the product no longer creates dynamic field components for every
column in the underlying database.

Tip: To select multiple fields, press CTRL

and click the fields. To select a range of fields, press SHIFT and click the first and last fields in the range.

3.2.3.2 Assign Local Data
Use this dialog box to copy the current set of records from another dataset to the selected client dataset. This is useful when
populating client datasets for use as lookup tables, or when testing client datasets at design-time. Select the dataset you want to

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Database

739

3

copy from the list of datasets available to the current form, then click OK. To clear the records in a client dataset at design-time,
set the dataset's Active property to true, then right-click the client dataset and choose Clear Data.

3.2.3.3 Columns Collection Editor
Use this dialog to to create and remove columns in a dataset DataTable object and to configure the properties for dataset
columns. If you set your data adapter Active property to True, the names of the dataset columns, as returned from the database,
appear in the members list.

Item Description

Add Adds a column to the dataset DataTable object.

Remove Removes the selected column from the dataset DataTable object.

Properties Contains a list of database properties that you can apply to the dataset columns. These may change
based on the database type.

Properties |
ColumnMapping

If you are mapping your dataset columns to an XML file, set this property to determine whether the
column value should be treated as an element, an attribute, simple content, or if it should be hidden.

See Also

Using Standard Datasets

3.2.3.4 Constraints Collection Editor
Use this dialog to add, configure, and remove constraints to or from a dataset's DataTable columns. You can manage unique
constraints and foreign key constraints in this editor.

Item Description

Add Adds either a unique constraint or a foreign key constraint to the DataTable column.

Edit This button appears after you have added a constraint. It allows you to change the columns specified
in the constraint.

Remove Removes the selected constraint from a DataTable column.

Properties The properties list is read-only, because all properties displayed here are derived from existing
dataset and column definitions. You can, however, expand selections in this list to view the specific
properties for a given column, and for the constraint itself.

See Also

Using Standard Datasets

3.2.3.5 Relations Collection Editor
Use this dialog to create, edit, and delete relationships between the tables in the current dataset.

Item Description

Add Adds a new relation to the relation collection. Displays the Relation dialog, allowing you to specify a
relationship name, keys, and rules for tables in your dataset.

Edit Displays the Relation dialog, allowing you to change an existing table relation.

Database RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

740

3

Remove Removes the selected relation from the member list.

Properties Provides a read-only list of properties that are derived from the dataset and related columns that
comprise the relation.

See Also

Using Standard Datasets

3.2.3.6 Tables Collection Editor
Use this dialog to add and remove DataTable objects to or from a dataset and to set the properties for each DataTable object.
The members list automatically displays one member for each DataTable in the corresponding dataset only if the Active property
is set to True for the data adapter.

Item Description

Add Adds a DataTable object to the dataset.

Remove Removes the selected DataTable object from the dataset.

See Also

Using Standard Datasets

3.2.3.7 CommandText Editor
Use this dialog box to construct the command text for the CommandText property of the BdpCommand.

Item Description

Connection Specifies a connection from a list of live BdpConnection objects. You must select this item first to
populate the other text boxes with usable data.

Select Specifies that a SQL Select statement is to be generated by the BdpCommandBuilder. This
statement must exist for the BdpCommandBuilder to be able to construct other statements, such as
Update, Insert, or Delete statements. You can either supply your own Select statement in the
BdpCommand object, or use this dialog to create one.

Update Specifies that the BdpCommandBuilder is to generate an Update statement based on the Select
statement.

Insert Specifies that the BdpCommandBuilder is to generate an Insert statement based on the Select
statement.

Delete Specifies that the BdpCommandBuilder is to generate a Delete statement based on the Select
statement.

Generate SQL Generates SQL statements for the selected check box items.

Optimize Specifies that, when possible, the BdpCommandBuilder is to generate optimized SQL statements for
the selected check box items.

Tables Displays a list of tables from the current database, represented by the current BdpConnection. To
display a list of columns, select a table from the list. Select a table name to include it in the SQL
statement that is currently visible in the SQL text box.

Columns Displays a list of columns from a selected table. Select one or more column names to include them in
the SQL statement that is currently visible in the SQL text box.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Database

741

3

3.2.3.8 Command Text Editor
Use this dialog box to construct the command text (SQL statement) for dataset components that have a CommandText property.
The dialog buttons add SELECT and FROM clauses; other clauses (WHERE, GROUP BY, HAVING, ORDER BY, and so on)
must be added manually to the SQL edit control.

Item Description

Tables Displays the names of tables available in the current database. Select a table and click the Add
Table to SQL button to add it to the command (SQL statement) displayed in the SQL edit control.

Add Table to SQL Adds a SELECT clause for the table name selected in the Tables list to SQL edit box.

Fields Displays the names of the columns available in the table currently highlighted in the Tables list.
Select one or more columns and click the Add Field to SQL button to add it to the command (SQL
statement) displayed in the SQL edit control.

To select multiple columns, press CTRL and click the columns. To select a range of columns, press
SHIFT and click the first and last columns in the range.

Add Field to SQL Adds the columns selected in the Fields list to the SELECT clause.

SQL Displays the command (SQL statement) for the CommandText property of the dataset or command
component. This statement can be edited manually.

3.2.3.9 Configure Data Adapter
Use this dialog box to construct the command text for the DataAdapter property of the BdpDataAdapter.

Item Description

Connection Specifies a connection from a list of live BdpConnections. You must select this item first to populate
the other text boxes with usable data.

Select Specifies that a SQL Select statement is to be generated by the BdpCommandBuilder. This
statement must exist for the BdpCommandBuilder to be able to construct other statements, such as
Update, Insert, or Delete statements. You can either supply your own Select statement in the
BdpCommand object, or use this dialog to create one.

Update Specifies that the BdpCommandBuilder is to generate an Update statement based on the Select
statement.

Insert Specifies that the BdpCommandBuilder is to generate an Insert statement based on the Select
statement.

Delete Specifies that the BdpCommandBuilder is to generate a Delete statement based on the Select
statement.

Generate SQL Generates SQL statements for the selected check box items.

Optimize Specifies that, when possible, the BdpCommandBuilder is to generate optimized SQL statements for
the selected check box items.

Tables Displays a list of tables from the current database, represented by the current BdpConnection. To
display a list of columns, select a table from the list. Select a table name to include it in the SQL
statement that is currently visible in the SQL text box.

Columns Displays a list of columns from a selected table. Select one or more column names to include them in
the SQL statement that is currently visible in the SQL text box.

Database RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

742

3

3.2.3.10 Connection Editor
Use this dialog box to select a connection configuration or to edit the named connections that are stored in the
BdpConnection.xml file. This editor lets you add, delete, and test your connection.

Item Description

Connections Shows all the named connection configurations for the currently selected driver. When you select a
connection from this list box, the Connection Settings table displays the connection parameters for
that named connection.

Connection Settings Lists the connection parameters for the currently selected connection name. The Name column lists
the names of connection parameters that are applicable to the driver associated with the current
connection. The Value column changes the value of any connection parameter.

Add Lets you add a new named connection. Click the Add button to display the Add New Connection
dialog box to specify the name for the connection configuration and indicate what drivers to use.

Remove Deletes the connection currently selected in the Connections list box. Deleting a named connection
removes it from the dbxconnections.ini file so that it is no longer available for use by any application.

Test Attempts to establish a connection to the database server using the currently specified connection
settings. Click this button to check that the currently defined connection configuration can be used.

3.2.3.11 Connection Editor
Use this dialog box to select a connection configuration for a TSQLConnection component or to edit the named connections that
are stored in the dbxconnections.ini file. Any changes you make in the dialog are written to the dbxconnections.ini file when you
click OK. The selected connection is also assigned as the value of the SQL Connection component’s ConnectionName property.

Item Description

Add Connection Displays the New Connection dialog, allowing you to specify the name for the connection
configuration and indicate what driver it uses. The new name connection configuration is added to the
dbxconnections.ini file.

Delete Connection Deletes the connection currently selected in the Connections list box. Deleting a named connection
removes it from the dbxconnections.ini file so that it is no longer available for use by any application.

Rename Connection Displays the Rename connection dialog, where you can specify a new name for the connection
currently selected in the Connections list box. Renaming a connection configuration renames it in
the dbxconnections.ini file so that the old name is no longer available for use by any application.

Test Connection Attempts to establish a connection to the database server using the currently specified connection
settings. Use this button to check that the currently defined connection configuration can be used.

View Driver Settings Displays the Driver Settings dialog, where you can obtain information about the currently installed
drivers.

Driver Name Lists all of the drivers for which there is a connection defined. When you select a driver, the
Connections list box displays only the names of connection configurations for the selected driver.

Connection Settings Lists the connection parameters for the currently selected connection name. The Key column lists the
names of all connection parameters that are applicable to the driver associated with the current
connection. You can select entries in the Value column to change the value of any connection
parameter.

Do not change the driver name for a connection. If you change the driver name, the listed connection
parameters will not be appropriate for the new driver you specify.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Database

743

3

Connection Name Lists all of the named connection configurations for the currently selected driver. You can select a
connection name and edit the connection settings to make changes to the configuration stored in the
dbxconnections.ini file, or simply select a connection and click OK to assign that connection
configuration as the value of the ConnectionName.

3.2.3.12 Connection String Editor (ADO)
Use this dialog box to specify the connection string used to connect an ADO data component to an ADO data store. You can
type the connection string, build it using an ADO-supplied dialog box, or place the string in a file.

Item Description

Use Data Link File Select or enter the name of a data link file, or click the Browse button to locate the file.

Use Connection String Enter the connection string with the connection information in the edit box.

Alternatively, click the Build button to display the Data Link Properties dialog to guide you through
setting up and testing the connection.

Tip: ADO supports the following four arguments for connection strings: provider, file name, remote provider, and remote server.
Any other arguments are passed on to the provider. Such parameters might include user ID, login password, the name of a
default database, persistent security information, ODBC data source names, connection time-out values, and locale identifiers.
These parameters and their values are specific to particular providers, servers, and ODBC drivers and not to either ADO or
Delphi. For specific information on them, consult the documentation for the provider, server, or ODBC driver.

3.2.3.13 Data Adapter Dataset
Use this tab to select the dataset to associate with the Data Adapter.

Item Description

New Data Set Specifies a new data set if you do not have an existing one.

Existing Data Set Specifies an existing dataset associated with the Data Adapter.

None Does not specify any dataset.

3.2.3.14 DataAdapter Preview
Use this dialog box to preview the result set that is returned from the current SQL Select statement. By reviewing the result set,
you can tune your SQL statements to provide a more accurate result set, which you can move into or out of the DataSet. This
dialog is accessed from the CommandText Editor and the Configure Data Adapter dialog.

Item Description

Limit Rows Specifies a rowlimit option on the current SQL statement.

Rows to fetch Sets the actual rowlimit maximum.

Refresh Refreshes the result set displayed in the list, by executing the SQL statement again.

Database RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

744

3

3.2.3.15 Database Editor
Use this dialog box to set up the connection to a database.

Item Description

Name Specifies the name of the database. This name refers to the database component from within the
code of your application.

Alias Name Specifies the BDE alias for the database. Choose a database aliases from the drop-down list. This list
contains all aliases currently registered with the BDE. If you do not want to connect to a database that
is registered as a BDE alias, you can set the Driver property instead. If you set the Alias property, the
Driver property is cleared, as the driver type is implicit in the BDE alias.

Driver Name Specifies the type of database represented by the database component. Choose a driver type such
as STANDARD, ORACLE, SYBASE, or INTERBASE from the drop-down list. If the database server
has an alias registered with the BDE, you can set the Alias instead. Setting the Driver automatically
clears the Alias property, to avoid potential conflicts with the driver type implicit in the database alias.

Parameter overrides Specifies the values of all login parameters when connecting to the database. The specific
parameters depend on the type of database. To obtain a list of all parameters, as well as their default
values, click the Defaults button. You can then modify the default values to the values you want to
use.

Defaults Sets the Parameter overrides to the default values for the driver type.

Clear Removes all parameter overrides.

Login Prompt Causes a login dialog to appear automatically when the user connects to the database. Uncheck the
Login Prompt control to prevent the automatic login dialog. Most database servers (except for the
file-based STANDARD types) require the user to supply a password when connecting to the
database. For such servers, if the automatic login prompt is omitted, the application must supply the
user name and password in some other manner. These can be supplied either by providing
hard-coded parameter overrides, or by supplying an OnLogin event handler that sets the values for
these parameters.

Keep inactive
connection

Indicates that the application should remain connected to the database even if no datasets are
currently open. For connections to remote database servers, or for applications that frequently open
and close datasets, checking Keep inactive connection reduces network traffic, speeds up
applications, and avoids logging in to the server each time the connection is reestablished. Uncheck
Keep inactive connection to cause the database connection to be dropped when there are no open
datasets. Dropping a connection releases system resources allocated to the connection, but if a
dataset is later opened that uses the database, the connection must be reestablished and initialized.

3.2.3.16 Database Form Wizard
Other New Other Delphi Projects Business Database From Wizard

Use this wizard to create a form that displays data from a local or remote database. The wizard will connect the form to a TTable
or TQuery component, write SQL statements for TQuery components, define the form tab order, and connect TDataSource
components to TTable/TQuery components.

Follow the instructions on each wizard page. Click Next to continue to the next page and then click Finish to generate the form
based on the information you have provided.

Tip: The Database Form Wizard

is also available from the Database Form Wizard menu.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Database

745

3

3.2.3.17 Dataset Properties
Use this dialog to examine the tables, columns, and other properties of a dataset.

The left pane of the dialog displays the dataset and its tables. Select an object in the left pane to display its properties in a
read-only grid in the right pane.

3.2.3.18 Driver Settings
Use this dialog box to see what files are associated with each dbExpress driver name. These associations are stored in the
drivers.ini file.

Item Description

Driver Name Lists the names of all drivers that appear in the drivers.ini file. These drivers represent the possible
values of the DriverName parameter in the Connection Editor, which determines the DriverName
property of a TSQLConnection component.

Library Name Displays the dbExpress driver file for the driver named in the Driver Name column. It determines the
LibraryName property of a TSQLConnection component that is added automatically when you set the
DriverName property.

Vendor Library Displays the client-side DLL for the database server associated with the specified driver. This DLL is
supplied by the database vendor. The value of Vendor Library determines the VendorLib property of
a TSQLConnection component that is added automatically when you set the DriverName property.

3.2.3.19 Field Link Designer
Use this dialog box to establish a master-detail relationship between two tables.

Item Description

Available Indexes (Not displayed for tables on a database server.) Shows the currently selected index used to join the
tables. Unless you specify a different index name in the table’s IndexName property, the default index
used for the link is the primary index for the table. Other available indexes defined on the table can be
selected from the drop-down list.

Detail Fields Lists the details fields in the table.

Add Adds the selected detail and master fields to the Joined Fields box.

Master Fields Lists the master fields in the table.

Joined Fields Displays the selected master and detail fields.

Delete Removes the selected line from the Joined Fields box.

Clear Removes all of the lines in the Joined Fields box..

3.2.3.20 Fields Editor
Use this dialog box to add new persistent fields to a dataset and create data fields, calculated fields, and lookup fields. The
dialog box is displayed when you right-click any of several dataset components, such as TADODataSet or TSQLDataSet, and
choose Fields Editor.

Database RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

746

3

Use the Fields Editor at design time to create persistent lists of the field components used by the datasets in your application.
Persistent fields component lists are stored in your application, and do not change even if the structure of a database underlying
a dataset is changed. All fields in a dataset are either persistent or dynamic.

Context Menu

Right-click the Fields Editor to access the following commands.

Item Description

Add fields Displays the Add Fields dialog box which enables you to add persistent field components for a
dataset.

New field Displays the New Field dialog box which enables you to create new persistent fields as additions to
or replacements of the other persistent fields in a dataset. The types of new persistent fields that may
be created are data fields, calculated fields, and lookup fields.

Add all Fields Creates persistent fields for every field in the underlying dataset.

Cut Removes the selected fields from the Fields Editor and places them on the clipboard.

Paste Pastes the clipboard contents into the Fields Editor.

Delete Deletes selected fields without copying them to the clipboard.

Select All Selects all of the fields in the Fields Editor.

3.2.3.21 Foreign Key Constraint
Use this dialog box to define a foreign key constraint between tables in a dataset. The table you selected when navigating to this
dialog is automatically set to the foreign key table. You could, therefore, attempt to set the master table in a master-detail
relationship to be the detail table. This could, at the very least return unpredictable results. If the actual detail, or foreign key,
table's foreign key column contains duplicates, you may generate a design-time error.

Item Description

Name Specify the name of the relation.

Parent table Specify the parent table in the relation.

Child table Specifies the child table in the relation. This value is determined by the table you selected to get to
this dialog. It is read-only.

Key Columns Select one or more columns to act as the primary key in the parent table.

Foreign Key Columns Select one or more columns to act as the foreign key in the child table. Typically, these must
correspond to the columns you chose as your primary key, if not in name, then by data type and
value.

Update rule Select the Update rule to use when updating records. Applies to master-detail relationships and how
detail records are updated when a master record is updated.

Delete rule Select the Delete rule to use when deleting records. Applies to master-detail relationships and how
detail records are deleted when a master record is deleted.

Accept/Reject rule Select the Accept/Reject rule to use when an insert occurs in a master-detail relationship.

See Also

Using Standard Datasets

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Database

747

3

3.2.3.22 Generate Dataset
Use this dialog box to sort records in a dataset, locate records quickly, limit records that are visible, and establish master/detail
relationships.

Item Description

Existing Specifies an existing dataset previously created.

New Specifies a new dataset.

Choose which table(s)
to add to the dataset

Selects a table or multiple tables to populate the dataset.

3.2.3.23 New Connection
Use this dialog box to create a new named database connection configuration.

Item Description

Driver Name Shows all of the drivers listed in the drivers.ini file. Select the driver the new connection will use.

Connection Name Enter a name for the new named connection. This name should be unique: that is, it should not be
the same as any other connection name listed in the dbxconnections.ini file.

3.2.3.24 New Field
Use this dialog box to create persistent fields in a dataset. You can add persistent fields or replace existing persistent fields.

Item Description

Name Enter the component’s field name.

Component Displays a name you enter in the Name field, prefixed with the component name. The product
discards anything you enter directly in the Component edit box.

Type Select the field component’s data type. You must supply a data type for any new field component you
create. For example, to display floating point currency values in a field, select Currency from the
drop-down list.

Size Specify the maximum number of characters that can be displayed or entered in a string-based field or
the size of Bytes and VarBytes fields. For all other data types, Size is meaningless.

Data Replaces an existing field (for example to change its data type) and is based on columns in the table
or a query underlying a dataset.

Calculated Displays values calculated at runtime by a dataset’s OnCalcFields event handler.

Lookup Retrieve values from a specified dataset at runtime based on search criteria you specify (not
supported for unidirectional datasets).

InternalCalc Retrieves values calculated at runtime by a client dataset and stored with its data (instead of being
dynamically calculated in an OnCalcFields event handler). InternalCalc is only available if you are
working with a client dataset. Values calculated for an InternalCalc field are stored and retrieved as
part of the client dataset’s data.

Aggregate Retrieves a value summarizing the data in a set of records from a client dataset.

Database RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

748

3

Key Fields Lists the fields in the current dataset for which you can match values. To match more than one field,
enter field names directly instead of choosing from the drop-down list. Separate multiple field names
with semicolons. If you are using more than one field, you must use persistent field components.

Dataset Lists the datasets in which to look up field values. The lookup dataset must be different from the
dataset for the field component itself, or a circular reference exception is raised at runtime.

Lookup Keys Used only to create lookup fields. If you choose Lookup as the field type, the Key Fields and
Dataset edit boxes in the Lookup definition group box are enabled. The Lookup Keys and Result
Field boxes are only enabled if you are connected to a second dataset.

Result Field Lists the fields in the lookup dataset that can be returned as the value of the lookup field you are
creating.

3.2.3.25 Relation
Use this dialog box to define a relationship between tables in a dataset.

Item Description

Name Specify the name of the relation.

Parent table Specify the parent table in the relation.

Child table Specify the child table in the relation.

Key Columns Select one or more columns to act as the primary key in the parent table.

Foreign Key Columns Select one or more columns to act as the foreign key in the child table. Typically, these must
correspond to the columns you chose as your primary key, if not in name, then by data type and
value.

Update rule Select the Update rule to use when updating records. Applies to master-detail relationships and how
detail records are updated when a master record is updated.

Delete rule Select the Delete rule to use when deleting records. Applies to master-detail relationships and how
detail records are deleted when a master record is deleted.

Accept/Reject rule Select the Accept/Reject rule to use when an insert occurs in a master-detail relationship.

See Also

Using Standard Datasets

3.2.3.26 Rename Connection
Enter a new name for the currently selected named connection in the Connection Builder. Renaming a connection updates the
dbxconnections.ini file to change the name for the selected connection configuration. The old name becomes unavailable and
can no longer be used as the ConnectionName property of a TSQLConnection component.

3.2.3.27 SQL Monitor
Database SQL Monitor

Use this dialog box to see the actual statement calls made through SQL Links to a remote server or through the ODBC socket to
an ODBC data source.

You can monitor different types of activity by choosing Options Trace Options to display the Trace Options dialog box.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Database

749

3

Trace Options - Category Page

Use this page to select the trace categories to be monitored.

Item Description

Prepared Query
Statements

Prepared statements to be sent to the server.

Executed Query
Statements

Statements to be executed by the server. Note that a single statement may be prepared once and
executed several times with different parameter bindings.

Input Parameters Parameter data sent to servers when doing INSERTs or UPDATEs.

Fetched Data Data retrieved from servers.

Statement Operations Each operation performed such as ALLOCATE, PREPARE, EXECUTE, and FETCH

Connect / Disconnect Operations associated with connecting and disconnecting to databases, including allocation of
connection handles, freeing connection handles, if required by server.

Transactions Transaction operations such as BEGIN, COMMIT, and ROLLBACK (ABORT).

Blob I/O Operations on Blob datatypes, including GET BLOB HANDLE, STORE BLOB, and so on.

Miscellaneous Operations not covered by other categories.

Vendor Errors Error messages returned by the server. The error message may include an error code, depending on
the server.

Vendor Calls Actual API function calls to the server. For example, ORLON for Oracle, ISC_ATTACH for InterBase.

Trace Options - Buffer Page

Use this page to manage the trace buffer maintained in memory by the SQL Monitor.

Item Description

Buffer Size Indicates the size of the buffer to be used for trace information.

Circular Writes trace information in a circular memory buffer, so that once the limit is reached, additional
traces replace the first traces.

Page to disk Writes trace information to a disk file when the memory buffer becomes full.

Filename Indicates the name of the trace file to be used if Page to disk is selected.

3.2.3.28 Sort Fields Editor
Use this dialog box to specify the fields used to sort records in a SQL dataset, which has the CommandType property set to
ctTable.

Item Description

Available Fields Lists all of the fields in the database table. Select fields in this list and use the arrow buttons to move
them to the list of fields on which to sort.

Order by Fields Displays the fields you have selected. The SQL dataset sorts its records by the first field. Within
groups defined by the first field, they are sorted by the second field, and so on.

Arrow buttons Use the arrow buttons to move fields between the two lists.

Database RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

750

3

3.2.3.29 Stored Procedures Dialog
Use this dialog box to select a stored procedure for a BdpCommand. You can specify values for Input or InputOutput parameters
and execute the selected stored procedure.

Item Description

Stored Procedures Shows all the stored procedures available for the BdpConnection associated with the BdpCommand.
When you select a stored procedure from this drop-down list box, the Parameters list box displays the
parameters for that stored procedure.

Stored Procedure Has
One Or More Resultset

If the stored procedure returns one or more cursors, check this check box to display the resultset in
the dialog box when the stored procedure is executed.

Parameters Shows all the parameters for the currently selected stored procedure. When you select a parameter
from this list box, the associated metadata appear and can be edited in the pane on the right.

Execute Attempts to execute the selected stored procedure using the currently specified parameter settings.
The results of the stored procedure execution (Output parameters, InputOutput parameters, return
values, cursor(s) returned) are all populated into a DataGrid in the bottom of the dialog box.

3.2.3.30 TableMappings Collection Editor
Use this dialog box to map columns between your data source and the in-memory dataset.

Item Description

Use a dataset to
suggest table and
column names

By checking this option, you are presented with a list of available typed datasets, if any, which will
provide existing table and column names. Returns only a list of names from the schema of the given
typed dataset. Does not apply to standard datasets.

Dataset Displays the names of datasets that you can use for a model.

Source table Displays the name of the data source table. Because a data adapter can reference more than one
table, you can select from multiple tables in the data source, if available.

Dataset table Displays the name of the dataset table. Because you can create datasets that contain multiple tables,
you might see multiple tables listed here.

Source columns Displays the names of all columns in the data source table.

Dataset columns Displays the names of columns in the dataset to write the data source table columns to. When
performing updates to the data source, these are the columns that will be read from. You can change
the names to map one column to another non-corresponding column, or you can map to
corresponding columns between the source table and the dataset.

Delete Deletes the active column names in both source and dataset column lists. Deleted columns will not
appear in the dataset. Useful if your query returns more columns from the data source than you need
to use in the dataset.

Reset Resets the list of source table column names and dataset column names to their original values.

Enter key You can add a row by pressing Enter while the cursor is in the last row of the dataset column. This
allows you to create new columns which might exist already but don't display at designtime, for some
reason. For example, if you have derived or computed fields that you want to keep track of, you could
add a new column to account for that data. The order of columns does not have any impact on the
data.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Database

751

3

3.2.3.31 Unique Constraint
Use this dialog box to select the dataset columns you want included in your constraint, which means these columns will be
forced to contain only unique values. You can also set one or more columns as your primary key.

Item Description

Name Specifies the name of the constraint.

Columns Check each column you want included in the constraint. If you indicate a nonunique column as
unique, you may generate a runtime errror.

Primary key Selecting this option sets the checked columns in your constraint as the primary key for the current
DataTable. If you set a combination of columns, some of which contain duplicates or null values, you
may receive a design-time error and a runtime error. However, if you receive a design-time error, the
constraint may still be defined as you indicated, even if it is incorrect.

3.2.3.32 IBDatabase Editor dialog box
The Database Editor dialog box sets up the properties of a database that specify the connection that should be made to a
database. This dialog box allows you to specify the type of database, the connection parameters, the user name, SQL role, and
password, and whether or not a login prompt is required.

These properties of the database component, as well as others, can also be specified using the Object Inspector.

To display the Database Editor dialog box, double click on an IBDatabase component.

Dialog box options

Connection

Option Meaning

Local Indicates that the database is on the local server. Enables the Browse button, allowing you to search
for the database with a Open File dialog.

Remote Indicates that the database is on a remote server. Activates the Protocol and Server fields

Protocol Sets the protocol for attaching to the remote server. The protocol can be TCP/IP, Named Pipe, or
SPX.

Server The name of the remote server.

Database The name of the database.

Database Parameters

Option Meaning

User Name The name of the database user.

Password The password for the database user.

SQLRole The SQLRole name used to connect to the database.

Character Set The character set used to connect to the database.

Login Prompt Indicates whether a login prompt is required to access the database.

Database RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

752

3

Settings Displays the current parameters and allows you to add other parameters.

For example:
user_name=sysdba

password=masterkey

sql_role_name=finance

lc_ctype=WIN1252

For more information on database parameters, see the InterBase API Guide.

3.2.3.33 IBTransaction Editor dialog box
The Transaction Editor dialog box allows you to set up transaction parameters. This dialog box gives you four default transaction
settings, which you can then customize if you wish. Once you modify the default transaction, the radio button is unset.

For a complete list of all the InterBase transaction parameters, refer to 'Working with Transactions' in the InterBase API Guide.

These properties of the transaction component, as well as others, can also be specified using the Object inspector.

To display the Transaction Editor dialog box, double click on an IBTransaction component. The following four choices are
displayed:

Snapshot

By default, Snapshot is set to concurrency and no wait, which means that the transaction is aware of other transactions, and
does not wait for locks to be released, returning an error instead.

Read Committed

By default, Read Committed is set to read_committed, rec_version, and no wait, which means that the transaction reads
changes made by concurrent transactions, can read the most recently committed version of a transaction, and does not wait for
locks to be released, returning an error instead.

Read-Only Table Stability

By default, Read-Only Table Stability is set to read and consistency, which means that the transaction can read a specified table
and locks out other transactions.

Read-Write Table Stability

By default, Read-Write Table Stability is set to write and consistency, which means that the transaction can read and write to a
specified table and locks out other transactions.

For a complete list of all the InterBase transaction parameters, refer to 'Working with Transactions' in the InterBase API Guide.

3.2.3.34 IBUpdateSQL and IBDataSet Editor dialog box
Use the editor to create SQL statements for updating a dataset.

The TIBUpdateSQL object must be associated with a TIBQuery object by setting the TIBQuery property UpdateObject to the
name of the TIBUpdateSQL object used to contain the SQL statements. A datasource and database name must be selected for
the TIBQuery object. In addition, the SQL property must include an SQL statement defining a table.

To open the SQL editor:

1. Select the TIBUpdateSQL or TIBDataSet object in the form.

2. Right-click and choose Update SQL editor or DataSet editor.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Database

753

3

The Update SQL editor has two pages, the Options page and the SQL page.

The Options page

The Options page is visible when you first invoke the editor.

Table Name Use the Table Name combo box to select the table to update. When you specify a table name, the
Key Fields and Update Fields list boxes are populated with available columns.

Key Fields The Key Fields list box is used to specify the columns to use as keys during the update. Generally the
columns you specify here should correspond to an existing index.

Update Fields The Update Fields list box indicates which columns should be updated. When you first specify a
table, all columns in the Update Fields list box are selected for inclusion. You can multi-select fields
as desired.

Get Table Fields Read the table fields for the table name entered and list the fields.

Dataset Defaults Use this button to restore the default values of the associated dataset. This will cause all fields in the
Key Fields list and the Update Fields list to be selected and the table name to be restored.

Select Primary Keys Click the Primary Key button to select key fields based on the primary index for a table.

Generate SQL After you specify a table, select key columns, and select update columns, click the Generate SQL
button to generate the preliminary SQL statements to associate with the update component's
ModifySQL, InsertSQL, DeleteSQL, and RefreshSQL properties.

Quote Identifiers Check the box labeled Quote Field Names to specify that all field names in generated SQL be
enclosed by quotation marks. This option is disabled at this time.

The SQL page

To view, modify, and refresh the generated SQL statements, select the SQL page. If you have generated SQL statements, then
when you select this page, the statement for the ModifySQL property is already displayed in the SQL Text memo box. You can
edit the statement in the box as desired.

Note: Note: Keep in mind that generated SQL statements are intended to be starting points for creating update statements. You
may need to modify these statements to make them execute correctly. Test each of the statements directly yourself before
accepting them.

Use the Statement Type radio buttons (Modify, Insert, Delete, or Refresh) to switch among generated SQL statements and edit
them as desired.

To accept the statements and associate them with the update component's SQL properties, click OK.

3.2.4 Edit

Topics

Name Description

Alignment (see page 756) Edit Align
Lines up selected components in relation to each other or to the form.

Creation Order (see page 756) Edit Creation Order
Specifies the order in which your application creates nonvisual components when
you load the form at design time or runtime.
The list box displays only those nonvisual components on the active form, their
type, and their current creation order. The default creation order is determined by
the order in which you placed the nonvisual components on the form.

Edit RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

754

3

Edit Tab Order (see page 756) Edit Tab Order
Modifies the tab order of the components on the VCL Form, or within the selected
component if that component contains other components.
For example: a Form containing an edit control with the Tab property value of 0,
and a button with the Tab property of 1, the edit control comes before the button
when you cycle through the controls with the Tab key. The Tab Order dialog
facilitates changing the values of the Tab property using the Up and Down
arrows instead of explicitly having to specify values for the Tab property in the
Object Inspector.... more (see page 756)

Scale (see page 757) Edit Scale
Proportionally resizes all the components on the current form. Scaling the form
repositions the components as well as resizing them.
Enter a percentage to which you want to resize the form’s components. The
scaling factor must be between 25 and 400. Percentages over 100 grow the
form’s components. Percentages under 100 shrink the form’s components.

Size (see page 757) Edit Size
Resizes multiple components to be exactly the same height or width.

Align to Grid (see page 757) Edit Align to Grid
Aligns selected objects to the grid in the Form Designer. By default, components
are aligned to a four-pixel grid used by the Form Designer. Press ALT to
override this default when positioning components.

Bring to Front (see page 757) Edit Bring to Front
Brings selected objects to the visual front of an active form. For example: if you
have are working on a form in the Form Designer and you drop a TPanel over a
portion of a TListbox, select Bring to Front to have the TListbox lie over the
TPanel.

Copy (see page 758) Edit Copy
Copies the current selection to the clipboard. Copy works with text when using
the Code Editor and with components when using the Form Designer.

Cut (see page 758) Edit Cut
Removes the current selection and stores it to the clipboard. Cut works with text
when using the Code Editor and with components when using the Form
Designer.

Delete (see page 758) Edit Delete
Removes the selected object or group of objects. Delete works with text when
using the Code Editor and with components when using the Form Designer.
If you accidentally delete an object, use the Edit Undo command.

Flip Children (see page 758) Edit Flip Children All
Edit Flip Children Selected
Reverses Bi-Directional (BiDi) support. This is useful when you design a form for
a language where the text reads right to left, such as Japanese or Arabic.

Lock Controls (see page 758) Edit Lock Controls
Locks objects in place on an active form. You cannot move locked objects. To
unlock, select Lock Controls again.

Paste (see page 758) Edit Paste
Pastes contents of the clipboard previously caputured using Cut or Copy. Paste
works with text when using the Code Editor and with components when using
the Form Designer.

Select All (see page 759) Edit Select All
Selects all objects in the main window. Select All works with text when using the
Code Editor and with components when using the Form Designer.

Send to Back (see page 759) Edit Send to Back
Moves selected objects to the visual back of an active form. For example: if you
have a few buttons on a form in the Form Designerand you would like them to
be visually in front of a TPanel component, you can first arrange the buttons,
then position a TPanel component over the buttons and select Send to Back.

Undo (see page 759) Edit Undo
Reverts the previous actions. Undo works in the text editor and the Form
Designer. If you delete a character in the text editor, selecting Undo brings the
character back. If you delete a component (e.g., a button) in the Form Designer,
selecting Undo brings the component back.
The undo limit is set in Tools Options Editor Options Undo Limit. The
default is 32,767.

Redo (see page 759) Edit Redo
Re-executes the last command that was undone using Edit Undo. This
command is available from the Form Designer.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Edit

755

3

Select All Controls (see page 759) Edit Select All Controls
Selects all controls in the main window.

3.2.4.1 Alignment
Edit Align

Lines up selected components in relation to each other or to the form.

Item Description

No change Does not change the alignment of the component.

Left sides Lines up the left edges of the selected components (horizontal only).

Centers Lines up the centers of the selected components.

Right sides Lines up the right edges of the selected components (horizontal only).

Tops Lines up the top edges of the selected components (vertical only).

Bottoms Lines up the bottom edges of the selected components (vertical only).

Space equally Lines up the selected components equidistant from each other.

Center in window Lines up the selected components with the center of the window.

See Also

Adding Components to a Form (see page 152)

3.2.4.2 Creation Order
Edit Creation Order

Specifies the order in which your application creates nonvisual components when you load the form at design time or runtime.

The list box displays only those nonvisual components on the active form, their type, and their current creation order. The default
creation order is determined by the order in which you placed the nonvisual components on the form.

3.2.4.3 Edit Tab Order
Edit Tab Order

Modifies the tab order of the components on the VCL Form, or within the selected component if that component contains other
components.

For example: a Form containing an edit control with the Tab property value of 0, and a button with the Tab property of 1, the edit
control comes before the button when you cycle through the controls with the Tab key. The Tab Order dialog facilitates changing
the values of the Tab property using the Up and Down arrows instead of explicitly having to specify values for the Tab property
in the Object Inspector.

Click the Up arrow to move the component up in the tab order, or click the Down arrow to move it down in the tab order.

Edit RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

756

3

3.2.4.4 Scale
Edit Scale

Proportionally resizes all the components on the current form. Scaling the form repositions the components as well as resizing
them.

Enter a percentage to which you want to resize the form’s components. The scaling factor must be between 25 and 400.
Percentages over 100 grow the form’s components. Percentages under 100 shrink the form’s components.

See Also

Adding Components to a Form (see page 152)

3.2.4.5 Size
Edit Size

Resizes multiple components to be exactly the same height or width.

Item Description

No change Does not change the size of the components.

Shrink to smallest Resizes the group of components to the height or width of the smallest selected component.

Grow to largest Resizes the group of components to the height or width of the largest selected component.

Width Sets a custom width for the selected components.

Height Sets a custom height for the selected components.

See Also

Adding Components to a Form (see page 152)

3.2.4.6 Align to Grid
Edit Align to Grid

Aligns selected objects to the grid in the Form Designer. By default, components are aligned to a four-pixel grid used by the
Form Designer. Press ALT to override this default when positioning components.

See Also

Adding Components to a Form (see page 152)

3.2.4.7 Bring to Front
Edit Bring to Front

Brings selected objects to the visual front of an active form. For example: if you have are working on a form in the Form
Designer and you drop a TPanel over a portion of a TListbox, select Bring to Front to have the TListbox lie over the TPanel.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Edit

757

3

3.2.4.8 Copy
Edit Copy

Copies the current selection to the clipboard. Copy works with text when using the Code Editor and with components when
using the Form Designer.

3.2.4.9 Cut
Edit Cut

Removes the current selection and stores it to the clipboard. Cut works with text when using the Code Editor and with
components when using the Form Designer.

3.2.4.10 Delete
Edit Delete

Removes the selected object or group of objects. Delete works with text when using the Code Editor and with components
when using the Form Designer.

If you accidentally delete an object, use the Edit Undo command.

3.2.4.11 Flip Children
Edit Flip Children All

Edit Flip Children Selected

Reverses Bi-Directional (BiDi) support. This is useful when you design a form for a language where the text reads right to left,
such as Japanese or Arabic.

Item Description

All Horizontally reverses all the controls on a form.

Selected Horizontally reverses all the selected controls on a form.

3.2.4.12 Lock Controls
Edit Lock Controls

Locks objects in place on an active form. You cannot move locked objects. To unlock, select Lock Controls again.

3.2.4.13 Paste
Edit Paste

Pastes contents of the clipboard previously caputured using Cut or Copy. Paste works with text when using the Code Editor

Edit RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

758

3

and with components when using the Form Designer.

3.2.4.14 Select All
Edit Select All

Selects all objects in the main window. Select All works with text when using the Code Editor and with components when using
the Form Designer.

3.2.4.15 Send to Back
Edit Send to Back

Moves selected objects to the visual back of an active form. For example: if you have a few buttons on a form in the Form
Designerand you would like them to be visually in front of a TPanel component, you can first arrange the buttons, then position a
TPanel component over the buttons and select Send to Back.

3.2.4.16 Undo
Edit Undo

Reverts the previous actions. Undo works in the text editor and the Form Designer. If you delete a character in the text editor,
selecting Undo brings the character back. If you delete a component (e.g., a button) in the Form Designer, selecting Undo
brings the component back.

The undo limit is set in Tools Options Editor Options Undo Limit. The default is 32,767.

3.2.4.17 Redo
Edit Redo

Re-executes the last command that was undone using Edit Undo. This command is available from the Form Designer.

3.2.4.18 Select All Controls
Edit Select All Controls

Selects all controls in the main window.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Error Messages

759

3

3.2.5 Error Messages

Topics

Name Description

Data Breakpoint is set on a stack location (see page 762) Stack memory is volatile and changes a lot. When a data breakpoint is set on an
address in the stack, the breakpoint might be hit quite often, each time something
is pushed on or popped off the stack.
You can still set this breakpoint, but be aware that it might get hit so often that
the application cannot run properly.

Misaligned Data Breakpoint (see page 762) You attempted to set a data breakpoint whose Address is misaligned with respect
to its Length.
If the data breakpoint has a two-byte length, then the Address should be aligned
on a two-byte boundary. Similarly, the Address of a four-byte data breakpoint
should be aligned on a four-byte boundary.
You can still set this data breakpoint, but if you do, the breakpoint will be set on
an address that is on an appropriate boundary. This can trigger the breakpoint in
unintended situations.

Error address not found (see page 762) The address you have specified cannot be mapped to a source code position.
This error usually occurs for one of the following reasons:

• The address you entered is invalid or is not an address in
your application.

• The module containing the specified address was not
compiled with debug information.

• The address specified does not correspond to a program
statement.

Note that the runtime and visual component libraries are
compiled without debug information.

Another file named <FileName> is already on the search path (see page 763) A file with the same name as the one you just specified is already in another
directory on the search path.

Could not stop due to hard mode (see page 763) The integrated debugger has detected that Windows is in a modal state and will
not allow the debugger to stop your application. Windows enters "hard mode"
whenever processing an inter-task SendMessage, when there is no task queue,
or when the menu system is active. You will not generally encounter hard mode
unless you are debugging DDE or OLE processes within Delphi.
A standalone debugger such as the Turbo Debugger for Windows can be used to
debug applications even when Windows is in hard mode.

Error creating process: <Process> (<ErrorCode>) (see page 763) Delphi was unable to start your application for the reason specified.
For more information about "Insufficient memory to run" errors, see the
README.TXT file.

A component class named <name> already exists (see page 763) A package with the name you specified is already installed in the IDE. Rename
the package or check if the package you are trying to install is already there.

A field or method named <name> already exists (see page 763) The name you have specified is already being used by an existing method or
field.
For a complete list of all fields and methods defined, check the form declaration
at the top of the unit source file.

The project already contains a form or module named <Name> (see page 763) Every module name (program or library, form, and unit) in a project must be
unique.

Incorrect field declaration in class <ClassName> (see page 763) In order to keep your form and source code synchronized, Delphi must be able to
find and maintain the declaration of each field in the first section of the form's
class definition. Though the compiler allows more complex syntax, the form
Designer will report an error unless each field that is declared in this section is
equivalent to the following:

Field <Field Name> does not have a corresponding component. Remove the
declaration? (see page 764)

The first section of your form's class declaration defines a field for which there is
no corresponding component on the form. Note that this section is reserved for
use by the form Designer.
To declare your own fields and methods, place them in a separate public, private,
or protected section.
This error will also occur if you load the binary form file (.DFM) into the Code
editor and delete or rename one or more components.

Error Messages RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

760

3

Field <Field Name> should be of type <Type1> but is declared as <Type2>.
Correct the declaration? (see page 764)

The type of specified field does not match its corresponding component on the
form. This error will occur if you change the field declaration in the Code editor or
load the binary form file (.DFM) into the Code editor and modify the type of a
component.
If you select No and run your application, an error will occur when the form is
loaded.

Declaration of class <ClassName> is missing or incorrect (see page 764) Delphi is unable to locate the form's class declaration in the interface section of
the unit. This is probably because the type declaration containing the class has
been deleted, commented out, or incorrectly modified. This error will occur if
Delphi cannot locate a class declaration equivalent to the following:

Module header is missing or incorrect (see page 764) The module header has been deleted, commented out, or otherwise incorrectly
modified. Use UNDO to reverse your changes, or correct the declaration
manually.
In order to keep your form and source code synchronized, Delphi must be able to
find a valid module header at the beginning of the source file. A valid module
header consists of the reserved word unit, program or library, followed by an
identifier (for example, Unit1, Project1), followed by a semi-colon. The file name
must match the identifier.
For example, Delphi will look for a unit named Unit1 in UNIT1.PAS, a project
named Project1 in PROJECT1.DPR,... more (see page 764)

IMPLEMENTATION part is missing or incorrect (see page 765) In order to keep your form and source code synchronized, Delphi must be able to
find the unit's implementation section. This reserved word has been deleted,
commented out, or misspelled.
Use UNDO to reverse your changes or correct the reserved word manually.

Insufficient memory to run (see page 765) Delphi was unable to run your application due to insufficient memory or Windows
resources. Close other Windows applications and try again.
This error sometimes occurs because of insufficient low (conventional) memory.
For further information, see the README.TXT file.

Breakpoint is set on line that contains no code or debug information. Run
anyway? (see page 765)

A breakpoint is set on a line that does not generate code or in a module which is
not part of the project. If you choose to run anyway, invalid breakpoints will be
disabled (ignored).

<IDname> is not a valid identifier (see page 765) The identifier name is invalid. Ensure that the first character is a letter or an
underscore (_). The characters that follow must be letters, digits, or underscores,
and there cannot be any spaces in the identifier.

<Library Name>is already loaded, probably as a result of an incorrect program
termination. Your system may be unstable and you should exit and restart
Windows now. (see page 765)

An error occurred while attempting to initialize Delphi's component library. One or
more DLLs are already in memory, probably as a result of an incorrect program
termination in a previous Delphi or BDE session.
You should exit and then restart Windows.

Incorrect method declaration in class <ClassName> (see page 765) In order to keep your form and source code synchronized, Delphi must be able to
find and maintain the declaration of each method in the first section of the form's
class definition. The form Designer will report an error unless the field and
method declarations in this section are equivalent to the following:

Cannot find implementation of method <MethodName> (see page 766) The indicated method is declared in the form's class declaration but cannot be
located in the implementation section of the unit. It probably has been deleted,
commented out, renamed, or incorrectly modified.
Use UNDO to reverse your changes, or correct the procedure declaration
manually. Be sure the declaration in the class is identical to the one in the
implementation section. (This is done automatically if you use the Object
Inspector to create and rename event handlers.)

The <Method Name> method referenced by <Form Name>.<Event Name> has
an incompatible parameter list. Remove the reference? (see page 766)

A form has been loaded that contains an event property mapped to a method
with an incompatible parameter list. Parameter lists are incompatible if the
number or types of parameters are not identical.
For a list of methods declared in this form which are compatible for this event
property, use the dropdown list on the Object Inspector's Events page.
This error occurs when you manually modify a method declaration that is
referenced by an event property.
Note that it is unsafe to run this program without removing the reference or
correcting the error.

The <Method Name> method referenced by <Form Name> does not exist.
Remove the reference? (see page 766)

The indicated method is no longer present in the class declaration of the form.
This error occurs when you manually delete or rename a method in the form's
class declaration that is assigned to an event property.
If you select No and run this application, an error will occur when the form is
loaded.

No code was generated for the current line (see page 766) You are attempting to run to the cursor position, but you have specified a line that
did not generate code, or is in a module which is not part of the project.
Specify another line and try again.
Note that the smart linker will remove procedures that are declared but not called
by the program (unless they are virtual method of an object that is linked in).

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Error Messages

761

3

Property and method <MethodName> are not compatible (see page 767) You are assigning a method to an event property even though they have
incompatible parameter lists. Parameter lists are incompatible if the number of
types of parameters are not identical. For a list of compatible methods in this
form, see the dropdown list on the Object Inspector Events page.

Cannot find <FileName.PAS> or <FileName.DCU> on the current search path (
see page 767)

The .pas or .dcu file you just specified cannot be found on the search path.
You can modify the search path, copy the file to a directory along the path, or
remove the file from the list of installed units.

Source has been modified. Rebuild? (see page 767) You have made changes to one or more source or form modules while your
application is running. When possible, you should terminate your application
normally (select No, switch to your running application, and select Close on the
System Menu), and then run or compile again.
If you select Yes, your application will be terminated and then recompiled.

Symbol <BrowseSymbol> not found. (see page 767) The browser cannot find the specified symbol. This error occurs if you enter an
invalid symbol name or if debug information is not available for the module that
contains the specified symbol.

Debug session in progress. Terminate? (see page 767) Your application is running and will be terminated if you proceed. When possible,
you should cancel this dialog and terminate your application normally (for
example, by selecting Close on the System Menu).

Uses clause is missing or incorrect (see page 767) In order to keep your forms and source code synchronized, Delphi must be able
to find and maintain the uses clause of each module.
In a unit, a valid uses clause must be present immediately following the interface
reserved word. In a program or library, a valid uses clause must be present
immediately following the program or library header.
This error occurs because the uses clause has been deleted, commented out, or
incorrectly modified. Use undo to reverse your changes or correct the declaration
manually.

Invalid event profile <Name> (see page 768) The VBX control you are installing is invalid.

3.2.5.1 Data Breakpoint is set on a stack location
Stack memory is volatile and changes a lot. When a data breakpoint is set on an address in the stack, the breakpoint might be
hit quite often, each time something is pushed on or popped off the stack.

You can still set this breakpoint, but be aware that it might get hit so often that the application cannot run properly.

3.2.5.2 Misaligned Data Breakpoint
You attempted to set a data breakpoint whose Address is misaligned with respect to its Length.

If the data breakpoint has a two-byte length, then the Address should be aligned on a two-byte boundary. Similarly, the Address
of a four-byte data breakpoint should be aligned on a four-byte boundary.

You can still set this data breakpoint, but if you do, the breakpoint will be set on an address that is on an appropriate boundary.
This can trigger the breakpoint in unintended situations.

3.2.5.3 Error address not found
The address you have specified cannot be mapped to a source code position. This error usually occurs for one of the following
reasons:

• The address you entered is invalid or is not an address in your application.

• The module containing the specified address was not compiled with debug information.

• The address specified does not correspond to a program statement.

Note that the runtime and visual component libraries are compiled without debug information.

Error Messages RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

762

3

3.2.5.4 Another file named <FileName> is already on the search path
A file with the same name as the one you just specified is already in another directory on the search path.

3.2.5.5 Could not stop due to hard mode
The integrated debugger has detected that Windows is in a modal state and will not allow the debugger to stop your application.
Windows enters "hard mode" whenever processing an inter-task SendMessage, when there is no task queue, or when the menu
system is active. You will not generally encounter hard mode unless you are debugging DDE or OLE processes within Delphi.

A standalone debugger such as the Turbo Debugger for Windows can be used to debug applications even when Windows is in
hard mode.

3.2.5.6 Error creating process: <Process> (<ErrorCode>)
Delphi was unable to start your application for the reason specified.

For more information about "Insufficient memory to run" errors, see the README.TXT file.

3.2.5.7 A component class named <name> already exists
A package with the name you specified is already installed in the IDE. Rename the package or check if the package you are
trying to install is already there.

3.2.5.8 A field or method named <name> already exists
The name you have specified is already being used by an existing method or field.

For a complete list of all fields and methods defined, check the form declaration at the top of the unit source file.

3.2.5.9 The project already contains a form or module named
<Name>

Every module name (program or library, form, and unit) in a project must be unique.

3.2.5.10 Incorrect field declaration in class <ClassName>
In order to keep your form and source code synchronized, Delphi must be able to find and maintain the declaration of each field
in the first section of the form's class definition. Though the compiler allows more complex syntax, the form Designer will report
an error unless each field that is declared in this section is equivalent to the following:

type
 ...
 TForm1 = class(TForm)
 Field1:FieldType;

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Error Messages

763

3

 Field2:FieldType;
 ...

This error has occurred because one or more declarations in this section have been deleted, commented out, or incorrectly
modified. Use undo to reverse your changes or correct the declaration manually.

Note that this first section of the form's class declaration is reserved for use by the form Designer. To declare your own fields and
methods, place them in a separate public, private, or protected section.

3.2.5.11 Field <Field Name> does not have a corresponding
component. Remove the declaration?

The first section of your form's class declaration defines a field for which there is no corresponding component on the form. Note
that this section is reserved for use by the form Designer.

To declare your own fields and methods, place them in a separate public, private, or protected section.

This error will also occur if you load the binary form file (.DFM) into the Code editor and delete or rename one or more
components.

3.2.5.12 Field <Field Name> should be of type <Type1> but is
declared as <Type2>. Correct the declaration?

The type of specified field does not match its corresponding component on the form. This error will occur if you change the field
declaration in the Code editor or load the binary form file (.DFM) into the Code editor and modify the type of a component.

If you select No and run your application, an error will occur when the form is loaded.

3.2.5.13 Declaration of class <ClassName> is missing or incorrect
Delphi is unable to locate the form's class declaration in the interface section of the unit. This is probably because the type
declaration containing the class has been deleted, commented out, or incorrectly modified. This error will occur if Delphi cannot
locate a class declaration equivalent to the following:

type
 ...
 TForm1 = class(TForm)
 ...

Use UNDO to reverse your edits, or correct the declaration manually.

3.2.5.14 Module header is missing or incorrect
The module header has been deleted, commented out, or otherwise incorrectly modified. Use UNDO to reverse your changes, or
correct the declaration manually.

In order to keep your form and source code synchronized, Delphi must be able to find a valid module header at the beginning of
the source file. A valid module header consists of the reserved word unit, program or library, followed by an identifier (for
example, Unit1, Project1), followed by a semi-colon. The file name must match the identifier.

For example, Delphi will look for a unit named Unit1 in UNIT1.PAS, a project named Project1 in PROJECT1.DPR, and a library
(.DLL) named MyDLL in MYDLL.DPR.

Error Messages RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

764

3

Note that module identifiers cannot exceed eight characters in length.

3.2.5.15 IMPLEMENTATION part is missing or incorrect
In order to keep your form and source code synchronized, Delphi must be able to find the unit's implementation section. This
reserved word has been deleted, commented out, or misspelled.

Use UNDO to reverse your changes or correct the reserved word manually.

3.2.5.16 Insufficient memory to run
Delphi was unable to run your application due to insufficient memory or Windows resources. Close other Windows applications
and try again.

This error sometimes occurs because of insufficient low (conventional) memory. For further information, see the README.TXT
file.

3.2.5.17 Breakpoint is set on line that contains no code or debug
information. Run anyway?

A breakpoint is set on a line that does not generate code or in a module which is not part of the project. If you choose to run
anyway, invalid breakpoints will be disabled (ignored).

3.2.5.18 <IDname> is not a valid identifier
The identifier name is invalid. Ensure that the first character is a letter or an underscore (_). The characters that follow must be
letters, digits, or underscores, and there cannot be any spaces in the identifier.

3.2.5.19 <Library Name>is already loaded, probably as a result of an
incorrect program termination. Your system may be unstable and
you should exit and restart Windows now.

An error occurred while attempting to initialize Delphi's component library. One or more DLLs are already in memory, probably as
a result of an incorrect program termination in a previous Delphi or BDE session.

You should exit and then restart Windows.

3.2.5.20 Incorrect method declaration in class <ClassName>
In order to keep your form and source code synchronized, Delphi must be able to find and maintain the declaration of each
method in the first section of the form's class definition. The form Designer will report an error unless the field and method
declarations in this section are equivalent to the following:

type
 ...

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Error Messages

765

3

 TForm1 = class(TForm)
 Field1:FieldType;
 Field2:FieldType;
 ...
 <Method1 Declaration>;
 <Method2 Declaration>;
 ...
 ...

This error has occurred because one or more method declarations in this section have been deleted, commented out, or
incorrectly modified. Use undo to reserve your changes or correct the declaration manually.

Note that this first section of the form's class declaration is reserved for use by the form Designer. To declare your own fields and
methods, place them in a separate public, private, or protected section.

3.2.5.21 Cannot find implementation of method <MethodName>
The indicated method is declared in the form's class declaration but cannot be located in the implementation section of the unit. It
probably has been deleted, commented out, renamed, or incorrectly modified.

Use UNDO to reverse your changes, or correct the procedure declaration manually. Be sure the declaration in the class is
identical to the one in the implementation section. (This is done automatically if you use the Object Inspector to create and
rename event handlers.)

3.2.5.22 The <Method Name> method referenced by <Form
Name>.<Event Name> has an incompatible parameter list. Remove
the reference?

A form has been loaded that contains an event property mapped to a method with an incompatible parameter list. Parameter lists
are incompatible if the number or types of parameters are not identical.

For a list of methods declared in this form which are compatible for this event property, use the dropdown list on the Object
Inspector's Events page.

This error occurs when you manually modify a method declaration that is referenced by an event property.

Note that it is unsafe to run this program without removing the reference or correcting the error.

3.2.5.23 The <Method Name> method referenced by <Form Name>
does not exist. Remove the reference?

The indicated method is no longer present in the class declaration of the form. This error occurs when you manually delete or
rename a method in the form's class declaration that is assigned to an event property.

If you select No and run this application, an error will occur when the form is loaded.

3.2.5.24 No code was generated for the current line
You are attempting to run to the cursor position, but you have specified a line that did not generate code, or is in a module which
is not part of the project.

Error Messages RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

766

3

Specify another line and try again.

Note that the smart linker will remove procedures that are declared but not called by the program (unless they are virtual method
of an object that is linked in).

3.2.5.25 Property and method <MethodName> are not compatible
You are assigning a method to an event property even though they have incompatible parameter lists. Parameter lists are
incompatible if the number of types of parameters are not identical. For a list of compatible methods in this form, see the
dropdown list on the Object Inspector Events page.

3.2.5.26 Cannot find <FileName.PAS> or <FileName.DCU> on the
current search path

The .pas or .dcu file you just specified cannot be found on the search path.

You can modify the search path, copy the file to a directory along the path, or remove the file from the list of installed units.

3.2.5.27 Source has been modified. Rebuild?
You have made changes to one or more source or form modules while your application is running. When possible, you should
terminate your application normally (select No, switch to your running application, and select Close on the System Menu), and
then run or compile again.

If you select Yes, your application will be terminated and then recompiled.

3.2.5.28 Symbol <BrowseSymbol> not found.
The browser cannot find the specified symbol. This error occurs if you enter an invalid symbol name or if debug information is not
available for the module that contains the specified symbol.

3.2.5.29 Debug session in progress. Terminate?
Your application is running and will be terminated if you proceed. When possible, you should cancel this dialog and terminate
your application normally (for example, by selecting Close on the System Menu).

3.2.5.30 Uses clause is missing or incorrect
In order to keep your forms and source code synchronized, Delphi must be able to find and maintain the uses clause of each
module.

In a unit, a valid uses clause must be present immediately following the interface reserved word. In a program or library, a valid
uses clause must be present immediately following the program or library header.

This error occurs because the uses clause has been deleted, commented out, or incorrectly modified. Use undo to reverse your
changes or correct the declaration manually.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Error Messages

767

3

3.2.5.31 Invalid event profile <Name>
The VBX control you are installing is invalid.

3.2.6 File

Topics

Name Description

Active Form Wizard (see page 771) File New Other... Active Form
Use the Active Form wizard to add an Active Form to an ActiveX Library project.
The wizard creates an ActiveX Library project (if needed), a type library, a form,
an implementation unit, and a unit containing corresponding type library
declarations.

Active Server Object wizard (see page 772) File New Other Active Server Object
Use the Active Server Object wizard to create a simple active server object.
Before you create an Active Server Object, create or open the project for an
application containing functionality that you want to implement. The project can
be either an application or ActiveX library, depending on your needs.
In the dialog, specify the properties of your Active Server Object, which is a
special Automation object created by and called from the script running in an
Active Server Page.

Add (see page 773) Use this dialog box to add a package to the Requires clause in the current
package.

Automation Object Wizard (see page 773) File New Other...
Use the New Automation Object wizard to add an Automation server to an
ActiveX Library project. The wizard creates a type library, and the definition for
the Automation object.

Browse With Dialog box (see page 774) Use this dialog box to maintain a list of external browsers and specify which
browser to use by default.

Browse With Dialog box (see page 775) Use this dialog box to specify the properties for the selected external browser.

COM Object Wizard (see page 775) File New Other...
Use the New COM Object wizard to create a simple COM object such as a shell
extension. Before you create a COM object, create or open the project for an
application containing functionality that you want to implement. The project can
be either an application or ActiveX library, depending on your needs.

COM+ Event Interface Selection dialog box (see page 776) On the COM+ Subscription Object wizard, use the Browse button to display the
COM+ Event Interface Selection dialog box. It lists all event classes currently
installed in the COM+ Catalog. The dialog also contains a Browse button that you
can use to search for and select a type library containing the event interface.

COM+ Event Object Wizard (see page 776) File New Other...
The COM+ Event Object wizard creates a COM+ event object that can be called
by a transactional server to generate events on clients. Because the project for a
COM+ object can only contain other COM+ objects, you may be prompted to
start a new project when you launch this wizard.

COM+ Subscription Object Wizard (see page 776) File New Other COM+ Subscription Object
You can create the COM+ event subscriber component using the COM+
Subscription Object wizard. You use this with a COM+ Event Object to receive
notification of events fired by COM+ publisher applications.

Customize New Menu (see page 777) File New Customize
Use this dialog box to customize the content of the File New menu by
dragging menu items from the center pane and dropping them on the right pane.

Change Destination File Name (see page 777) Use this dialog box to rename the selected file when it is copied to the
destination directory. The rename will not occur until you copy the file to the
destination directory. The source file will not be renamed.
If the file already exists in the destination directory with its original name, that file
will remain in the destination directory until you delete it.

FTP Connection Options (see page 778) Use this dialog box to specify FTP server connection information for the
Deployment Manager.

File RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

768

3

Interface Selection Wizard (see page 778) File New Other... New COM Object
The Interface Selection wizard is accessed by clicking the List button on the
New COM Object wizard. The Interface Selection wizard lets you select a
predefined dual or custom interface that you want to implement with a COM
object you are creating. The selected interface becomes the default interface of
the newly created COM object. The COM object wizard adds skeletal method
implementations for all the methods on this interface to the generated
implementation unit. You can then fill in the bodies of these methods to provide
an implementation of the interface.
Warning: The... more (see page 778)

New ASP.NET Application (see page 779) File New Other ASP NET Application
Use this dialog box to set options for new Web Forms applications.

New ASP.NET Content Page (see page 779) File New Other Delphi for .NET Projects ASP NET Content Page
Use this dialog box to create a new Content Page for an ASP.NET application.

New ASP.NET Generic Handler (see page 779) File New Other Delphi for .NET Projects Generic Handler
Use this dialog box to create a new HTTP Generic Handler for an ASP.NET
application.

New ASP.NET Master Page (see page 780) File New Other Delphi for .NET Projects ASP NET Master Page
Use this dialog box to create a new Master Page for an ASP.NET application.

New ASP.NET Master Page (see page 780) File New Other Delphi for .NET Projects ASP NET Page
Use this dialog box to create a new Page for an ASP.NET application.

New ASP.NET User Control (see page 780) File New Other Delphi for .NET Projects ASP NET User Control
Use this dialog box to create a new User Control for an ASP.NET application.

New ASP.NET Web Service (see page 780) File New Other Delphi for .NET Projects ASP NET Web Service
Use this dialog box to create a new Web Service for an ASP.NET application.

New Console Application (see page 780) File New Other
Use this dialog box to create an application that runs in a console window.

New DBWeb Control Wizard (see page 781) File New Other Delphi ASP Projects DBWeb Control Library
Use this dialog box to create a data aware WebControl. This DB Web Control
can suppplement the DB Web Controls provided on the Tool Palette.

New Dynamic-link Library (see page 781) File New Other
Use this dialog box to create a DLL project. A dynamic-link-library is a module of
compiled code that provides functionality for applications.

New Items (see page 781) File New Other
Use this dialog box to create a new project or other entity. The New Items dialog
box displays project templates that are stored in the RAD Studio Object
Repository.

New Application (see page 782) File New
Use this dialog box to specify a name and location for the new application.

New Remote Data Module Object (see page 782) File New Other
Use this dialog box to create a data module that can be accessed remotely as a
dual-interface Automation server.

New Thread Object (see page 783) File New Other Delphi Projects Delphi Files Thread Object
Use this dialog box to define a thread class that encapsulates a single execution
thread in a multi-threaded application.

Open (see page 784) File Open
Use this dialog box to locate and open a file. The title of this dialog box varies,
depending on the function being performed.

Package (see page 784) File New Other Delphi for .NET Projects Package
Use this dialog box to create a package.

Print Selection (see page 785) File Print
Use this dialog box to print the current file.

Project Upgrade (see page 785) File Open
Use this dialog box to upgrade an older Delphi project that has no corresponding
.bdsproj project file. When you upgrade the project, the .bdsproj file and
other files and directories used by RAD Studio will be created in the project's
directory.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) File

769

3

Project Updated (see page 785) File Open
This dialog box appears when a project from a previous version is automatically
updated for RAD Studio. The following changes are made to the project:

• The encoding of project data is updated.

• References to .libs, .bpis, and .csms are updated as
needed.

Note: For compatibility issues, see the release notes.

Remote Data Module Wizard (see page 786) File New Other Remote Data Module
Use the Remote Data Module wizard to create a data module that can be
accessed remotely as a dual-interface Automation server. A remote data module
resides in the application server between a client and server in a multi-tiered
database environment.

Satellite Assembly Wizard (see page 787) File New Other Delphi for .NET Projects Satellite Assembly Wizard
Use this wizard to add one or more satellite assemblies to a project. Follow the
instructions on each wizard page.

Revert to Previous Revision (see page 787) This confirmation message appears when you click Revert to previous revision
on the History tab of the Create Project dialog box.

Add New WebService (see page 787) File New Other Delphi Projects Web Services SOAP Server
Interface
Use this dialog box to define a new invokable interface and its implementation
class. The dialog generates a new unit that declares an invokable interface and
the implementation class. The interface descends from IInvokable, and the
implementation class from TInvokableClass. It also generates the code to
register the interface and implementation class with the invocation registry. After
exiting the wizard, edit the generated interface and class definitions, adding in
the properties and methods you want to expose as your Web Service.

SOAP Data Module Wizard (see page 788) File New Other Delphi Projects Web Services SOAP Server Data
Module
Use this dialog box to add a SOAP data module to a Web Service application. A
SOAP data module allows a Web Service application to export database
information as a Web Service. Client datasets on the client application can
display and update this database information.

New SOAP Server Application (see page 788) File New Other Delphi Projects Web Services SOAP Server
Application
Use this dialog box to specify the type of server your Web Service application will
work with.

Save As (see page 788) File Save As
Use this dialog box to to save the active file.

Select Directory (see page 789) Use this dialog box to to choose a working directory for your new project.

Transactional Object Wizard (see page 789) File New Other...
Use the New Transactional Object wizard to create a server object that runs
under MTS or COM+. Transactional objects are used in distributed applications
to make use of the special services supplied by MTS or COM+ for resource
management, transaction support, or security.

Use Unit (see page 790) File Use Unit
Use this dialog box to make the contents of a unit available to the current unit.
This dialog lists of all units in the project that are not currently used or included by
the current unit. You can only use units that are part of the current project.

WSDL Import Options (see page 791) Use this dialog box to specify information that the importer needs to connect to
the server that publishes a WSDL document or to configure the way the wizard
generates code to represent the definitions in a WSDL document.

WSDL Import Wizard (see page 792) File New Other Delphi Projects Web Services WSDL Importer
Use this wizard to import a WSDL document or XML schema that describes a
Web Service. Once you have imported the WSDL document or XML schema, the
wizard generates all the interface and class definitions you need for calling on
those Web Services using a remote interfaced object (THTTPRIO). You can also
tell the wizard to generate skeletal code you can complete to create a Web
Service application (for example, if you want to implement a Web Service that is
already defined in a WSDL document).

New Web Server Application (see page 793) File New Other Delphi Projects New Web Server Application
Use this dialog box to specify the type of server your Web server application will
work with.

File RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

770

3

Add New WebService (see page 793) File New Other Delphi Projects WebServices SOAP Server
Interface
Use this dialog box to generate a new unit that declares a invokable interface
and its implementation class. The interface descends from IInvokable, and the
implementation class from TInvokableClass. It also generates the code to
register the interface and implementation class with the invocation registry. After
exiting the wizard, edit the generated interface and class definitions, adding in
the properties and methods you want to expose as your Web Service.

Application Module Page Options/New WebSnap Page Module (see page 794) Use this dialog box to define the basic properties of a page module. The dialog
title varies based on how you accessed the dialog.

New WebSnap Application (see page 795) File New Other Delphi Projects WebSnap WebSnap Application
Use this dialog box to configure a new WebSnap application.

New WebSnap Data Module (see page 796) Use this dialog box to specify how the server handles the creation and
destruction of your data module.

Web App Components (see page 796) Use this dialog box to select component categories and to select specific
components in each of the following categories (some categories offer only one
choice).

XML Data Binding Wizard Options (see page 797) File New Other Delphi Project New XML Data Binding Options
button
Use this dialog box to determine how the XML Data Binding Wizard generates
interfaces and implementation classes to represent an XML document or
schema.

XML Data Binding Wizard, page 1 (see page 797) File New Other Delphi Project New XML Data Binding
Use this wizard to generate interface and class definitions that correspond to the
structure of an XML document or schema. The wizard generates a global
function that returns the interface for the root element of the document.
After you use the wizard to create these definitions, you can use the classes and
interfaces to work with XML documents that have the structure of the specified
document or schema.

XML Data Binding Wizard, page 2 (see page 798) File New Other Delphi Project New XML Data Binding
Use this wizard page to specify what code the wizard generates.

XML Data Binding Wizard, page 3 (see page 799) File New Other Delphi Project New XML Data Binding
Use this wizard page to confirm the choices you have made, specify unit-wide
code generation options, indicate where you want your choices saved, and tell
the wizard to generate code to represent the XML document or schema.

Close (see page 799) File Close
File Close All
Closes the current open project or all the open projects.

Exit (see page 799) File Exit
Closes the IDE and all open projects and files.

New (see page 800) File New
Creates a project of the selected type.

3.2.6.1 Active Form Wizard
File New Other... Active Form

Use the Active Form wizard to add an Active Form to an ActiveX Library project. The wizard creates an ActiveX Library project (if
needed), a type library, a form, an implementation unit, and a unit containing corresponding type library declarations.

Item Description

VCL Class Name When creating Active forms, this control is disabled because active forms are always based on
TActiveForm.

New ActiveX Name The wizard provides a default name that clients will use to identify your Active form. Change this
name to provide a different OLE class name.

Implementation Unit The wizard a default name for the unit that contains.CPP and .H files that contain the code that
implements the behavior of the Active form. You can accept the default name or type in a new name.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) File

771

3

Project Name Active forms must be added to an ActiveX library project. If you currently don't have an ActiveX
Library project open, a fourth field allows you to specify which ActiveX Library project to add the
ActiveForm control. A default Project Name is provided. This control is disabled if you have an
ActiveX Library open..

Threading Model Choose the threading model to indicate how COM serializes calls to your ActiveX form. Note: The
threading model you choose determines how the object is registered. You must make sure that your
object implementation adheres to the model selected.

Include Version
Information

This option includes version information in the .OCX file. Adding this resource to your control allows
your control to expose information about the module, such as copyright and file description, which
can be viewed in the browser. Version information can be specified by choosing Project Options
and selecting the Version Info page.

Include About Box When this box is checked, an About box is included in the project. The About box is a separate form
that you can modify. By default, the About box includes the name of the Active Form, an image,
copyright information, and an OK button.

3.2.6.2 Active Server Object wizard
File New Other Active Server Object

Use the Active Server Object wizard to create a simple active server object. Before you create an Active Server Object, create or
open the project for an application containing functionality that you want to implement. The project can be either an application or
ActiveX library, depending on your needs.

In the dialog, specify the properties of your Active Server Object, which is a special Automation object created by and called from
the script running in an Active Server Page.

Item Description

CoClass Name Specify the name for the object that you want to implement. This is the CoClass name that appears in
the type library. The generated implementation class has the same name with a ‘T’ prepended.

Instancing Specify an instancing mode to indicate how your Active server is launched. (This value is ignored for
in-process servers.)

Instancing Meaning

Internal The object can only be created internally. An external application cannot create an instance of the
object directly.

Single Instance Allows only a single COM interface for each executable (application), so creating multiple instances
results in launching multiple instances of the application.

Multiple Instance Specifies that multiple clients can connect to the application. Any time a client requests the object, a
separate instance is created within a single process space. (That is, there can be multiple instances
in a single executable.)

Threading Model Choose the threading model to indicate how COM serializes calls to your active server object’s
interface. The threading model you choose determines how the object is registered. You must make
sure that your object implementation adheres to the model selected.

Active server objects can use the following threading models:

Model Description

Single Only one client thread can be serviced at a time. COM serializes all incoming calls to enforce this.
Your code needs no thread support.

File RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

772

3

Apartment Each object instantiated by a client is accessed by one thread at a time. You must protect against
multiple threads accessing global memory, but objects can safely access their own instance data
(object properties and members).

Free Each object instance may be called by multiple threads simultaneously. You must protect instance
data as well as global memory.

Both This is the same as the Free-threaded model, except that all callbacks supplied by clients are
guaranteed to execute in the same thread. This means you do not need protect values supplied as
parameters to callback functions.

Neutral Multiple clients can call the object on different threads at the same time, but COM ensures that no
two calls conflict. You must guard against thread conflicts involving global data and any instance data
that is accessed by more than one method. This model should not be used with objects that have a
user interface. This model is only available under COM+. Under COM, it is mapped to the Apartment
model.

Page-level event
methods (OnStartPage/
OnEndPage)

Creates an active server object that implements OnStartPage and OnEndPage. These methods are
called by the web server on initialization and finalization of the page. This style of active server
objects is available for use with IIS 3 and IIS 4. Active server objects used by IIS 5 should be created
using the Object Context option.

Object Context Creates an active server object that uses MTS or COM+ to retrieve the correct instance data of your
object. Recommended for use with IIS 5 (may also work with IIS 4 and MTS).

Generate a template
test script for this object

Optionally provide a pop-up link to a topic for the first of an unfamiliar term in a Help topic.

Item G Generates a simple .ASP page that creates the Active Server Object based on its ProgID. You can
then edit this Active Server page to call the methods of your object.

3.2.6.3 Add
Use this dialog box to add a package to the Requires clause in the current package.

Item Description

Package name Enter the name of the package to add. If the package is in the Search Path, a full path name is not
required. (If the package directory is not in the Search Path, it will be added to the end.)

Search Path If you haven't included a full directory path in the Package Name edit box (see above), make sure
the directory where your package resides is in this list. If you add a directory in the Search Path edit
box, you will be changing the global Library Search Path.

When a Delphi package is required by another package, the product must find the package's .dcpil
file in order to compile.

3.2.6.4 Automation Object Wizard
File New Other...

Use the New Automation Object wizard to add an Automation server to an ActiveX Library project. The wizard creates a type
library, and the definition for the Automation object.

Item Description

CoClass Name Specify the class whose properties and methods you want to expose to client applications. (Delphi
prepends a T to this name.)

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) File

773

3

Instancing Specify an instancing mode to indicate how your Automation server is launched.

Threading Model Choose the threading model to indicate how COM serializes calls to your Automation object’s
interface. The threading model you choose determines how the object is registered. You must make
sure that your object implementation adheres to the model selected.

Generate Event
support code

Check this box to tell the wizard to implement a separate interface for managing events on your
Automation object. The separate interface has the name ICoClassNameEvents, and defines the
event handlers that must be implemented by the client. Your application does not implement this
interface.

The Instancing dropdown list can have any of the following instancing types:

Instancing Meaning

Internal The object can only be created internally. An external application cannot create an instance of the
object directly.

Single Instance Allows only a single COM interface for each executable (application), so creating multiple instances
results in launching multiple instances of the application.

Multiple Instance Specifies that multiple clients can connect to the application. Any time a client requests the object, a
separate instance is created within a single process space. (That is, there can be multiple instances
in a single executable.)

Note: Under COM+, the serialization of calls to your object is also influenced by how it participates in activities. This can be
configured using the COM+ page of the type library editor or the COM+ Component Manager.

The Threading Model dropdown list can have any of the following values:

Threading Model Meaning

Single Apartment Only one client thread can be serviced at a time. COM serializes all incoming calls to enforce this.
Your code needs no thread support.

Free Each object instance may be called by multiple threads simultaneously. You must protect instance
data as well as global memory.

Both This is the same as the Free-threaded model, except that all callbacks supplied by clients are
guaranteed to execute in the same thread. This means you do not need protect values supplied as
parameters to callback functions.

Neutral Multiple clients can call the object on different threads at the same time, but COM ensures that no
two calls conflict. You must guard against thread conflicts involving global data and any instance data
that is accessed by more than one method. This model should not be used with objects that have a
user interface. This model is only available under COM+. Under COM, it is mapped to the Apartment
model.

Note: Under COM+, the serialization of calls to your object is also influenced by how it participates in activities. This can be
configured using the COM+ page of the type library editor or the COM+ Component Manager.

3.2.6.5 Browse With Dialog box
Use this dialog box to maintain a list of external browsers and specify which browser to use by default.

Item Description

Browser List Displays the list of available browsers.

Add, Delete, Edit Enable you to add or delete browsers, and edit information selected browsers in the list.

File RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

774

3

Set as Default Specifies which external browser to use by default for viewing web pages and web services.

3.2.6.6 Browse With Dialog box
Use this dialog box to specify the properties for the selected external browser.

Item Description

Program Displays path and name of the executable for the browser.

Title Specifies the name of the browser as you want it to appear in the Browser List in the Browse With
dialog box.

3.2.6.7 COM Object Wizard
File New Other...

Use the New COM Object wizard to create a simple COM object such as a shell extension. Before you create a COM object,
create or open the project for an application containing functionality that you want to implement. The project can be either an
application or ActiveX library, depending on your needs.

Item Description

CoClass Name Specify the class whose properties and methods you want to expose to client applications. This is the
name of the CoClass. The implementation class has the same name with a T prepended.

Instancing Specify an instancing mode to indicate how your COM object is launched. When your COM object is
used only as an in-process server, instancing is ignored.

Threading Model Choose the threading model to indicate how client applications can call your COM object’s interface.
The threading model you choose determines how the object is registered. You must make sure that
your object implementation adheres to the model selected.

Implemented Interface Indicates the name of the COM object’s default interface. By default, the COM object’s interface is the
same as the CoClass name, with an ‘I’ prepended. When you accept the default interface, your object
gets a new interface that descends from IUnknown, which you can then define using the Type Library
editor. You can change the default name of the interface by typing a name into the edit box.

Instead of implementing a new interface, you can choose to have your object implement any dual or
custom interface that is in a type library registered on your system. To choose the interface to
implement, click the List button, which displays the Interface Selection wizard. Note that this wizard
takes a bit of time to load because it must locate all interfaces that are defined in type libraries
registered on your system. Note that you must use the Interface Selection wizard to implement an
existing interface. If you type in the name of an existing interface, the wizard does not recognize this
as an existing interface and assumes you are simply providing the object with a different interface
name.

Description Enter a description of the COM object you are creating.

Include Type Library Check this box to generate a type library for this object. A type library contains type information that
allows you to expose any object interface and its methods and properties to client applications.

Mark interface
OleAutomation

Check this box to allow type library marshaling. This flag lets you avoid writing your own proxy-stub
DLL for custom marshaling.

When marking an interface as OleAutomation, you must ensure that it uses OLE Automation
compatible types.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) File

775

3

3.2.6.8 COM+ Event Interface Selection dialog box
On the COM+ Subscription Object wizard, use the Browse button to display the COM+ Event Interface Selection dialog box. It
lists all event classes currently installed in the COM+ Catalog. The dialog also contains a Browse button that you can use to
search for and select a type library containing the event interface.

3.2.6.9 COM+ Event Object Wizard
File New Other...

The COM+ Event Object wizard creates a COM+ event object that can be called by a transactional server to generate events on
clients. Because the project for a COM+ object can only contain other COM+ objects, you may be prompted to start a new
project when you launch this wizard.

Item Description

CoClassName This is the name of your COM+ event object. Server objects that generate COM+ events create an
instance of this object and call its events, which COM+ dispatches so that they fire on registered
clients.

Interface This is the name of the interface that defines the event handlers for all events managed by the COM+
event object. It is implemented by client event sinks, which means the wizard does not generate an
implementation unit.

Description Optionally, enter a brief description of your event objects so that clients can easily understand the
purpose of the events.

When the COM+ Event Object wizard exits, you can define the methods of the generated interface using the Type Library
editor. When defining this interface, the following rules must be followed:

• All method names must be unique across all interfaces of the event object.

• All methods must return an HRESULT value.

• The modifier for all method parameters must be blank.

3.2.6.10 COM+ Subscription Object Wizard
File New Other COM+ Subscription Object

You can create the COM+ event subscriber component using the COM+ Subscription Object wizard. You use this with a COM+
Event Object to receive notification of events fired by COM+ publisher applications.

Item Description

Class Name Enter the name of the class that will implement the event interface.

Threading Model Choose the threading model. The threading model of a component determines how the methods of
the component are assigned to threads to be executed.

Interface In the Interface field, you can type the name of the event interface, or use the Browse button to bring
up a list of all event classes currently installed in the COM+ Catalog. The COM+ Event Interface
Selection dialog, which is displayed, also contains a Browse button that can be used to search for
and select a type library containing the event interface.

File RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

776

3

Implement Existing
Interface

When you select an interface, the wizard gives you the option of automatically implementing the
interface supported by that event class. If you check the Implement Existing Interface checkbox, the
wizard will automatically stub out each method in the interface for you.

Implement Ancestor
Interfaces

When you select an interface, the wizard gives you the option of automatically implementing the
ancestor interfaces of that event class. You can elect to have the wizard implement inherited
interfaces by checking the Implement Ancestor Interfaces checkbox. Three ancestor interfaces are
never implemented by the wizard: IUnknown, IDispatch, and IAppServer.

Description Enter a brief description of your event subscriber component.

3.2.6.11 Customize New Menu
File New Customize

Use this dialog box to customize the content of the File New menu by dragging menu items from the center pane and dropping
them on the right pane.

Item Description

Gallery Items (left
pane)

Displays the folders of gallery items that are available in the Object Repository. Click a folder to
display its content in the center pane.

Menu Items (right
pane)

Displays the items that are currently listed on the File New menu.

To remove an item from the File New menu, drag it away from the list until its icon displays an X,
and release the mouse button. To change the text for a menu item, double-click the text and enter
new text. To add a separator bar between menu items, drag the Separator item from the center pane
to the menu list.

Drag an item here If you want to set a default application type, drag the item that represents the application type from
the center pane and drop it on this button. To remove the default application, click the button.

3.2.6.12 Change Destination File Name
Use this dialog box to rename the selected file when it is copied to the destination directory. The rename will not occur until you
copy the file to the destination directory. The source file will not be renamed.

If the file already exists in the destination directory with its original name, that file will remain in the destination directory until you
delete it.

Item Description

Source Filename Indicates the name of the file in the source directory.

Subdirectory Indicates the name of the subdirectory in which the source file resides.

Destination Filename Enter the new name for the destination file.

See Also

Deploying ASP.NET Applications

Using the ASP.NET Deployment Manager

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) File

777

3

3.2.6.13 FTP Connection Options
Use this dialog box to specify FTP server connection information for the Deployment Manager.

Item Description

Server Specifies the internet host name or IP address for the FTP server. It will be prefixed with FTP://.

Port Indicates the port to use on the FTP server for the connection. The default port is 21.

Passive Mode Causes the connection to be established by your computer, rather than the FTP server. Check
Passive Mode if your computer is protected by a firewall that would block a connection initiated by
the FTP server.

Directory Specifies the directory on the FTP server to which you want to copy files.

Anonymous Login Logs into the FTP server with a user name of anonymous and a password of your email address,
rather than using an actual account on the server. (The FTP server must be configured to accept
anonymous logins.)

Email If you checked Anonymous Login, specify your email address, for example,
YourName@domain.com.

Username Specifies the user name for the connection when not using an anonymous login.

Password Specifies the password for the connection when not using an anonymous login.

Save Password (Clear
Text)

Stores the password in the Deployment Manager file (.bdsdeploy)as plain, unencrypted text in
the project directory and may compromise security.

Test Tests the connection to the FTP server and provides feedback.

See Also

Deploying ASP.NET Applications

Using the ASP.NET Deployment Manager

3.2.6.14 Interface Selection Wizard
File New Other... New COM Object

The Interface Selection wizard is accessed by clicking the List button on the New COM Object wizard. The Interface
Selection wizard lets you select a predefined dual or custom interface that you want to implement with a COM object you are
creating. The selected interface becomes the default interface of the newly created COM object. The COM object wizard adds
skeletal method implementations for all the methods on this interface to the generated implementation unit. You can then fill in
the bodies of these methods to provide an implementation of the interface.

Warning: The Interface Selection

wizard does not add the interface to your project’s type library. This means that when you deploy your object, you must also
deploy the type library that defines your object’s interface.

Item Description

Interface list The wizard lists all the interfaces defined in registered type libraries. You can select any dual or
custom interface from this list. Each interface is prefixed with the name of the file that contains its
type library. This can be an executable (.exe), a library (.dll or .ocx), or a type library file (.tlb).

File RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

778

3

Add Library If the desired interface is in a type library that is not currently registered, click the Add Library button,
navigate to the type library that contains the interface you want, and click OK. This registers the
selected type library and refreshes the interface list in the Interface Selection wizard.

3.2.6.15 New ASP.NET Application
File New Other ASP NET Application

Use this dialog box to set options for new Web Forms applications.

Item Description

Name Specify the name of your ASP.NET application.

Location Enter the root directory for your application.

Server Indicate the default Web Server for new Web application.

View Server Options Show/Hide server options such as access priviledges.

Alias Specify the name used to gain access to the virtual directory.

Permissions Specify access permissions for your application. These options are specific to Microsoft IIS server. To
select options for the Cassini Web Server, use the drop-down list.

Read: View directory of file content and properties.

Run scripts (such as ASP): Allows the Web Server to execute scripts.

Execute (such as ISAPI applications or CGI): Allows application execution for ISAPI or CGI type
applications.

Write: Allows you to upload files to the directory.

Browse: Allows you to access list of files and directories.

3.2.6.16 New ASP.NET Content Page
File New Other Delphi for .NET Projects ASP NET Content Page

Use this dialog box to create a new Content Page for an ASP.NET application.

Item Description

Name Specifies the name of the ASP.NET Content Page.

Master Page File Specifies the Master Page referenced by the Content page.

3.2.6.17 New ASP.NET Generic Handler
File New Other Delphi for .NET Projects Generic Handler

Use this dialog box to create a new HTTP Generic Handler for an ASP.NET application.

Item Description

Name Specifies the name of the Generic Handler.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) File

779

3

3.2.6.18 New ASP.NET Master Page
File New Other Delphi for .NET Projects ASP NET Master Page

Use this dialog box to create a new Master Page for an ASP.NET application.

Item Description

Name Specifies the name of the ASP.NET Content Page.

3.2.6.19 New ASP.NET Master Page
File New Other Delphi for .NET Projects ASP NET Page

Use this dialog box to create a new Page for an ASP.NET application.

Item Description

Name Specifies the name of the ASP.NET Page.

3.2.6.20 New ASP.NET User Control
File New Other Delphi for .NET Projects ASP NET User Control

Use this dialog box to create a new User Control for an ASP.NET application.

Item Description

Name Specifies the name of the ASP.NET User Control.

3.2.6.21 New ASP.NET Web Service
File New Other Delphi for .NET Projects ASP NET Web Service

Use this dialog box to create a new Web Service for an ASP.NET application.

Item Description

Name Specifies the name of the ASP.NET Web Service.

3.2.6.22 New Console Application
File New Other

Use this dialog box to create an application that runs in a console window.

Item Description

Source Type Specifies the language to use for the main module of the application.

File RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

780

3

Use VCL Creates an application that can contain VCL components. This option is available only if you choose
C++ as your Source Type. Checking this option causes the IDE to include vcl.h and to change the
startup code and linker options for compatibility with VCL objects.

Multi Threaded Specifies more than one thread of execution. This option is required if you check Use VCL.

Console Application Creates a console window for your application.

Specify project source Allows you to specify an existing source file for the console application. To specify a source file,
check this option and click [...] to locate a file.

3.2.6.23 New DBWeb Control Wizard
File New Other Delphi ASP Projects DBWeb Control Library

Use this dialog box to create a data aware WebControl. This DB Web Control can suppplement the DB Web Controls provided
on the Tool Palette.

Item Description

Control Name The unit name to assign to the DB Web Control you are generating.

Bind to DataTable Check this option to generate a DB Web Control that implements the IDBWebDataLink interface,
which provides access to the DBDataSource and TableName properties for all controls.

Bind to DataColumn Check this option to generate a DB Web Control that implements the IDBWebColumnLink interface,
which provides access to the ColumnName property for controls that retrieve data from a specific
column.

Support Lookup Check this option to generate a DB Web Control that implements the IDBWebLookupColumnLink
interface, which provides access to the LookupTableName, DataTextField, and DataValueField
properties for lookup controls. This check box is only enabled when Bind to DataColumn is selected.

3.2.6.24 New Dynamic-link Library
File New Other

Use this dialog box to create a DLL project. A dynamic-link-library is a module of compiled code that provides functionality for
applications.

Item Description

Source Type Specifies the language to use for the main module of the DLL.

Use VCL Creates a DLL that can contain VCL components. This option is available only if you choose C++ as
your Source Type. Checking this option causes the IDE to include vcl.h and to change the startup
code and linker options for compatibility with VCL objects.

Multi Threaded Specifies more than one thread of execution. This option is required if you check Use VCL.

VC++ Style DLL Sets the DLL entry point to DLLMain. Leave this option unchecked to use DLLEntryPoint as the
entry point.

3.2.6.25 New Items
File New Other

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) File

781

3

Use this dialog box to create a new project or other entity. The New Items dialog box displays project templates that are stored
in the RAD Studio Object Repository.

Item Description

Item Categories Click a folder displayed in the Item Categories pane to display the types of entities that you can
create.

Tip: Right-click the right pane to display a context menu for controlling the appearance of this dialog box.

See Also

New ASP.NET Application (see page 779)

New ASP.NET Content Page (see page 779)

New ASP.NET Generic Handler (see page 779)

New ASP.NET Master Page (see page 780)

New ASP.NET User Control (see page 780)

New ASP.NET Web Service (see page 780)

New Console Application (see page 780)

New DBWeb Control Wizard (see page 781)

New Dynamic-link Library (see page 781)

New Application (see page 782)

New Remote Data Module Object (see page 782)

New Thread Object (see page 783)

Active Form Wizard (see page 771)

Active Server Object Wizard (see page 772)

3.2.6.26 New Application
File New

Use this dialog box to specify a name and location for the new application.

Item Description

Name Enter the name for the application or accept the suggested application name.

Location Enter a directory path or use the browse button to navigate to a directory. The default path for the
application is displayed.

3.2.6.27 New Remote Data Module Object
File New Other

Use this dialog box to create a data module that can be accessed remotely as a dual-interface Automation server.

File RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

782

3

Item Description

CoClass Name Specifies the base name for the Automation interface and the remote data module. The class name
for the remote data module will be the CoClass Name prepended with a T. The implementation class
will inherit from an interface named using the CoClass Name prepended with an I.

To enable a client application to access this interface, set the ServerName property of the client
application's connection component to the CoClass Name.

Threading Model Specifies how client calls are passed to the interface of the remote data module.

Model Description

Single The data module services one client request at a time. Because client requests are serialized by
COM, you do not need to address thread conflicts.

Apartment Each instance of the remote data module services one request at a time. The DLL might handle
multple requests on separate threads if it creates multiple COM objects. Instance data is safe, but
you must ensure that global memory is guarded against thread conflicts.

This threading model is recommended if you use BDE-enabled datasets.

Free The remote data module can receive simultaneous client requests on multiple threads. You must
ensure that instance data and global memory are guarded against thread conflicts.

This threading model is recommended if you use ADO datasets.

Both This threading model is equivalent to the Free threading model, except all callbacks to client
interfaces are serialized.

Neutral Multiple clients can call the remote data module on different threads at the same time, but COM
ensures that no two calls conflict. You must guard against thread conflicts involving global data and
any instance data that is accessed by multiple interface methods.

This threading model is only available under COM+. Otherwise, it is mapped to the Apartment
threading model.

Description Specifies the text that appears in the registry next to the ProgID for the application server interface.
The Description text also acts as a help string for the interface in the type library.

Generate Event
support code

Implements a separate interface for managing events.

See Also

Managing Events in Your Automation Object

3.2.6.28 New Thread Object
File New Other Delphi Projects Delphi Files Thread Object

Use this dialog box to define a thread class that encapsulates a single execution thread in a multi-threaded application.

Item Description

Class Name Type the full class name that you want to define. This dialog box does not prepend a T to the
supplied class name; type the full class name, such as TMyThread, rather than typing MyThread.

Named Thread If you want to name the thread, check Named Thread and then type a name in the Thread Name
field.

Naming the thread class adds a method to your thread class called SetName. When the thread starts
running, it calls the SetName method first.

Naming the thread class can make it easier to identify threads in the debugger Thread Status
window.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) File

783

3

Thread Name Type the thread name you want to use.

Tip: Clicking OK

creates a new unit that defines a thread class with the name(s) supplied in the dialog. You must then supply the code that
executes when the thread is run by writing the Execute method in the new unit.

3.2.6.29 Open
File Open

Use this dialog box to locate and open a file. The title of this dialog box varies, depending on the function being performed.

Item Description

Look in Lists the current directory. Use the drop-down list to select a different drive or directory.

Go To Last Folder
Visited

Moves to the last directory that you were in.

Up one directory Moves up one directory level from the current directory.

Create New Folder Creates a new subdirectory in the current directory.

View Menu Displays a list of files and directories along with time stamp, size, and attribute information in one of
five different ways: large icons, small icons, a vertical list, details (including time stamp, size, and
attribute information), and thumbnails (a miniature version of a graphical image of a file).

Files Displays the files in the current directory that match the wildcards in File name or the file type in Files
Of Type. You can display a list of files (default) or you can show details for each file.

File name Displays the name of the file you want to load. You can type wildcards to use as filters in the Files list
box, or click the drop-down arrow to select a previously opened file.

Files of type Displays the type of file you want to open. All files in the current directory of the selected type appear
in the Files list box.

Open Opens the selected file.

Tip: Press F1

in any list box or column to display tooltips with more information.

3.2.6.30 Package
File New Other Delphi for .NET Projects Package

Use this dialog box to create a package.

Item Description

Compile Compiles the current package. If changes to the package are required, a dialog box appears that lists
the changes that will be made to the package before it is compiled.

Add Adds an item to the package.

Remove Removes the selected item from the package.

Options Displays the Project Options dialog box.

File RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

784

3

Install Installs the current package as a design time package. If changes to the package are required, a
dialog box appears that lists the changes that will be made to the package before it is compiled.

Contains Displays the units included in the package. To add a unit to the package, click the Add button. To edit
a unit's source code, double-click it.

Requires Displays the other packages required by the current package. To add a package, click Add. To
display a package in its own package editor, double-click it.

Tip: Right-click the package editor for a context menu with additional commands.

3.2.6.31 Print Selection
File Print

Use this dialog box to print the current file.

Item Description

Print selected block Prints only the selected block of text in the current file.

Header/page number Prints the file path and name as a heading on each page and numbers each page.

Line numbers Prints line numbers on the printed pages.

Syntax print Prints any syntax highlighting, such as bold keywords.

Use color Prints syntax highlighting in color when printing to a color printer.

Wrap lines Causes lines that exceed the width of the printed page to continue to the next line.

Left margin Sets the left margin for the printed pages.

Setup Opens the Print Setup dialog box.

3.2.6.32 Project Upgrade
File Open

Use this dialog box to upgrade an older Delphi project that has no corresponding .bdsproj project file. When you upgrade the
project, the .bdsproj file and other files and directories used by RAD Studio will be created in the project's directory.

3.2.6.33 Project Updated
File Open

This dialog box appears when a project from a previous version is automatically updated for RAD Studio. The following changes
are made to the project:

• The encoding of project data is updated.

• References to .libs, .bpis, and .csms are updated as needed.

Note: For compatibility issues, see the release notes.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) File

785

3

3.2.6.34 Remote Data Module Wizard
File New Other Remote Data Module

Use the Remote Data Module wizard to create a data module that can be accessed remotely as a dual-interface Automation
server. A remote data module resides in the application server between a client and server in a multi-tiered database
environment.

Item Description

CoClass Name Enter the base name for the Automation interface of your remote data module. The class name for
your remote data module (a descendant of TRemoteDataModule) will be this name with a T
prepended. It will implement an interface named using this base name with an I prepended. To
enable a client application to access this interface, set the ServerName property of the client
application’s connection component to the base name you specify here.

Instancing Use the instancing combo box to indicate how your remote data module application is launched. The
following table lists the possible values:

Value Meaning

Internal The remote data module is created in an in-process server. Choose this option when creating a
remote data module as part of an active library (DLL).

Single Instance Only a single instance of the remote data module is created for each executable. Each client
connection launches its own instance of the executable. The remote data module instance is
therefore dedicated to a single client.

Multiple Instance A single instance of the application (process) instantiates all remote data modules created for clients.
Each remote data module is dedicated to a single client connection, but they all share the same
process space.

Threading Model Use the threading combo box to indicate how client calls are passed to your remote data module’s
interface. The following table lists the possible values:

Value Meaning

Single The data module only receives one client request at a time. Because all client requests are serialized
by COM, you don’t need to deal with threading issues.

Apartment Each instance of your remote data module services one request at a time. However, the DLL may
handle multiple requests on separate threads if it creates multiple COM objects. Instance data is safe,
but you must guard against thread conflicts on global memory. This is the recommended model when
using BDE-enabled datasets. (Note that when using BDE-enabled datasets you must add a session
component with AutoSessionName set to Ttrue.)

Free Your remote data module instances can receive simultaneous client requests on several threads. You
must protect instance data as well as global memory against thread conflicts. This is the
recommended model when using ADO datasets.

Both The same as Free except that all callbacks to client interfaces are serialized.

Neutral Multiple clients can call the remote data module on different threads at the same time, but COM
ensures that no two calls conflict. You must guard against thread conflicts involving global data and
any instance data that is accessed by multiple interface methods. This model is only available under
COM+. Otherwise, it is mapped to the Apartment model.

Description Enter the text that appears in the registry next to the ProgID for the application server interface. This
text also acts as a help string for the interface in the type library.

File RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

786

3

Generate Event
Support Code

Check this box to tell the wizard to implement a separate interface for managing events.

3.2.6.35 Satellite Assembly Wizard
File New Other Delphi for .NET Projects Satellite Assembly Wizard

Use this wizard to add one or more satellite assemblies to a project. Follow the instructions on each wizard page.

See Also

Using Translation Tools (see page 18)

Adding Languages to a Project (see page 169)

3.2.6.36 Revert to Previous Revision
This confirmation message appears when you click Revert to previous revision on the History tab of the Create Project dialog
box.

Item Description

Yes Reverts the file or project to the previous saved version and abandons any changes you have made
in the editor buffer.

Note that reverting to the previous version does not automatically change the version in your
repository. You still need to check the reverted version into your source repository.

No Retains the contents of the editor buffer and cancels the revert operation.

3.2.6.37 Add New WebService
File New Other Delphi Projects Web Services SOAP Server Interface

Use this dialog box to define a new invokable interface and its implementation class. The dialog generates a new unit that
declares an invokable interface and the implementation class. The interface descends from IInvokable, and the implementation
class from TInvokableClass. It also generates the code to register the interface and implementation class with the invocation
registry. After exiting the wizard, edit the generated interface and class definitions, adding in the properties and methods you
want to expose as your Web Service.

Item Description

Service name Enter the name of the invokable interface (port type) that your Web Service application exposes to
clients. This name is used as the name of the interface. It is also used to generate the name of the
implementation class. Thus, for example, if you enter MyWebService, the wizard generates the
definition of an invokable interface named MyWebService, and an implementation class named
TMyWebServiceImpl.

Unit identifier Enter the name of the unit that the wizard should create to contain the interface and implementation
class definitions.

Generate comments Optional. Adds comments to the unit generated by the wizard, indicating what the code does.

Generate sample
methods

Optional. Adds sample code, as comments, to the unit generated by the wizard. You can then use the
sample code as a guideline for defining and implementing the invokable interface and implementation
class.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) File

787

3

Service activation
model

Select the activation model you want from the drop-down list:

Per Request creates a new instance of your implementation class in response to each request it
receives. That instance is freed after the request is handled.

Global Object creates a single instance of your implementation class, which is used to handle all
requests.

3.2.6.38 SOAP Data Module Wizard
File New Other Delphi Projects Web Services SOAP Server Data Module

Use this dialog box to add a SOAP data module to a Web Service application. A SOAP data module allows a Web Service
application to export database information as a Web Service. Client datasets on the client application can display and update this
database information.

Item Description

Module Name Enter the base name of a TSoapDataModule descendant that your application creates. It is also the
base name of the interface for that class. For example, if you specify the class name MyDataServer,
the wizard creates a new unit declaring TMyDataServer, a descendant of TSoapDataModule, which
implements IMyDataServer, a descendant of IAppServerSOAP.

3.2.6.39 New SOAP Server Application
File New Other Delphi Projects Web Services SOAP Server Application

Use this dialog box to specify the type of server your Web Service application will work with.

Item Description

ISAPI/NSAPI Dynamic
Link Library

ISAPI and NSAPI Web server applications are DLLs that are loaded by the Web server. Client
request information is passed to the DLL as a structure. Each request message is handled in a
separate execution thread.

CGI stand-alone
executable

A CGI stand-alone Web server application is a console application that receives client request
information on standard input and passes the results back to the server on standard output. Each
request message is handled by a separate instance of the application.

Web App Debugger
executable

The Web Application Debugger provides an easy way to monitor HTTP requests, responses, and
response times. The Web Application Debugger takes the place of the Web server. Once you have
debugged your application, you can convert it to one of the other types of Web application and install
it with a commercial Web server.

Class Name If selecting Web App Debugger executable, provide a class name for the debugger to use to call
your Web module.

3.2.6.40 Save As
File Save As

Use this dialog box to to save the active file.

Item Description

Save in Lists the current directory. Use the drop-down list to select a different drive or directory.

File RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

788

3

Go To Last Folder
Visited

Moves to the last directory that you were in.

Up one directory Moves up one directory level from the current directory.

Create New Folder Creates a new subdirectory in the current directory.

View Menu Displays a list of files and directories along with time stamp, size, and attribute information in one of
five different ways: large icons, small icons, a vertical list, details (including time stamp, size, and
attribute information), and thumbnails (a miniature version of a graphical image of a file).

Files Displays the files in the current directory that match the wildcards in File name or the file type in Files
Of Type. You can display a list of files (default) or you can show details for each file.

File name Displays the name of the file you want to save. You can type wildcards to use as filters in the Files
list box, or click the drop-down arrow to select a previously saved file.

Save as type Displays the type of file you want to save. All files in the current directory of the selected type appear
in the Files list box.

Save Saves the selected file.

Tip: Press F1

in any list box or column to display tooltips with more information.

3.2.6.41 Select Directory
Use this dialog box to to choose a working directory for your new project.

Item Description

Directory Name Displays the current directory. If you enter a directory that does not exist, the product creates it.

Directories Lists the current directory.

Files (*.*) Lists all the files in the current directory. You cannot select any of these files. The product displays
this file list so you know the contents of the current directory.

Drives Lists all the available drives. You can select one of the available drives.

3.2.6.42 Transactional Object Wizard
File New Other...

Use the New Transactional Object wizard to create a server object that runs under MTS or COM+. Transactional objects are
used in distributed applications to make use of the special services supplied by MTS or COM+ for resource management,
transaction support, or security.

Item Description

CoClassName Specify the name for the object that you want to implement. The wizard generates an interface that
has this name with an ‘I’ prepended and an implementation class that has this name with a ‘T’
prepended.

Threading Model Choose the threading model to indicate how MTS or COM+ serializes calls to the transactional
object’s interface. The threading model you choose determines how the object is registered. You
must make sure that your object implementation adheres to the model selected. Threading model
values are shown below.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) File

789

3

Transaction model Specify the transaction attribute that is assigned to your object when you register it. The possible
values are shown below.

Generate event support
code

Do not describe standard buttons, such as OK and Cancel.

The Threading Model combo box can take the following values:

Model Description

Single Your code has no thread support. Only one client thread can be serviced at a time.

Apartment Under COM+, each object instantiated by a client is accessed by one thread at a time. You must
protect against multiple threads accessing global memory, but objects can safely access their own
instance data (object properties and members). Under MTS, it is also the case that all client calls use
the thread under which the object was created.

Both The same as Apartment except that callbacks to clients are serialized as well.

Neutral Multiple clients can call the object on different threads at the same time, but COM ensures that no
two calls conflict. You must guard against thread conflicts involving global data and any instance data
that is accessed by more than one method. This model should not be used with objects that have a
user interface. This model is only available under COM+. Under COM, it is mapped to the Apartment
model.

Note: The serialization of calls to your object is also influenced by how it participates in activities. Under MTS, objects are
always synchronized by the current activity. Under COM+, this can be configured using the COM+ page of the Type Library
Editor

or the COM+ Component Manager. The Transaction model combo box can take the following values:

Value Meaning

Requires a transaction The object must execute within the scope of a transaction. When a new object is created, its object
context inherits the transaction from the context of the client. If the client does not have a transaction
context, a new transaction context is automatically generated.

Requires a new
transaction

The object must execute within its own transaction. When a new object is created, a new transaction
context is automatically created as well, regardless of whether its client has a transaction. The object
never runs inside the scope of its client's transaction. Instead, the system always creates
independent transactions for the new objects.

Supports Transactions The object can execute within the scope of its client's transactions. When a new object is created, its
object context inherits the transaction from the context of the client if there is one. Otherwise, the
object is not created in the scope of a transaction.

Does not support
transactions

Under MTS, this setting behaves like Transactions Ignored under COM+ (see above). Under COM+,
the object can’t run in the context of a transaction at all. If the client has a transaction, attempts to
create the object will fail.

Ignores Transactions The object does not run within the scope of transactions. When a new object is created, its object
context is created without a transaction, regardless of whether the client has a transaction. This
model is not supported under MTS.

3.2.6.43 Use Unit
File Use Unit

Use this dialog box to make the contents of a unit available to the current unit. This dialog lists of all units in the project that are
not currently used or included by the current unit. You can only use units that are part of the current project.

File RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

790

3

3.2.6.44 WSDL Import Options
Use this dialog box to specify information that the importer needs to connect to the server that publishes a WSDL document or to
configure the way the wizard generates code to represent the definitions in a WSDL document.

Connection Tab

Use the Connection tab page to provide information the wizard needs for connecting to the server that hosts the WSDL
document.

Item Description

User Name Specify the user name to use if the WSDL document is on a secure server that requires
authentication.

Password Specify the password to use with User Name when the WSDL document is on a secure server that
requires authentication.

Proxy Specify the host names for any proxy servers that must forward requests to the URL specified on the
Source page of the Web Services Import dialog.

Code Generation Tab

Use the Code Generation tab page to configure how the importer translates between the definitions in the WSDL document and
the native code that it generates.

Item Description

Declare Namespace This option is only valid when the importer generates C++ code. When checked, it puts all generated
type definitions in a C++ namespace that is named after the imported service.

One OutParam is
Return

When checked, the importer maps operations with a single output message into functions where the
output message is the return value. If this is not checked, the output message is mapped to an output
parameter.

Unwind Literal Params In document literal encoding, the Web Service does not describe operations. Rather, it describes two
records, one that describes the expected input and one that describes the output. When Unwind
Literal Params is checked, the importer converts these two records into method calls.

Generate Destructors When checked, the importer generates destructors on the classes that represent types. These
destructors free any nested members whose types are classes or arrays of classes. The generated
destructors simplify the work you must do when freeing instances of classes that represent types,
because you do not need to explicitly free class members that also use classes to represent the
remotable type.

Ignore Schema Errors When checked, the importer attempts to import WSDL documents that are not well-formed. Often the
importer can deduce the appropriate information even when the schema is badly formed.

Warnings Comments When checked, the importer adds warning messages to the comments it puts in the top of generated
files. These warnings describe problems such as invalid type definitions in the WSDL document when
Ignore Schema Errors is checked, problems encountered when unwinding literal parameters when
Unwind Literal Params is checked, and so on.

Emit Literal Types In document literal encoding, the Web Service does not describe operations. Rather, it describes two
records, one that describes the expected input and one that describes the output. When Generate
Literal Types is checked, the importer generates type definitions for these two records, even if it
converts them to method calls (that is, even if Unwind Literal Params is checked).

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) File

791

3

Ambiguous Types as
Array

In some cases when the WSDL document does not make consistent use of schema definitions, the
importer has problems importing array types, which results in a type that is represented by a class
with no members. When Ambiguous Types as Array is checked, the importer compensates by
changing these empty classes to arrays. This option is always safe to use unless the WSDL
document describes a Web Service that uses document literal encoding. Document literal encoding
can also give rise to an empty class that represents a procedure. If you check Ambiguous Types as
Array when importing a WSDL document for a Web Service that uses document literal encoding, the
resulting generated code may not work.

Generate Server
Implementation

When checked, the importer generates implementation classes for the imported interfaces. Use this
option when writing a server that implements a Web Service that is already defined in a WSDL
document.

Map String to
WideString

When checked, the importer maps all string types to WideString values. When Unchecked, the
importer uses the string type instead. WideString values may be required to handle values that use
extended characters. If string values do not use extended characters, it is more efficient to use the
string type.

3.2.6.45 WSDL Import Wizard
File New Other Delphi Projects Web Services WSDL Importer

Use this wizard to import a WSDL document or XML schema that describes a Web Service. Once you have imported the WSDL
document or XML schema, the wizard generates all the interface and class definitions you need for calling on those Web
Services using a remote interfaced object (THTTPRIO). You can also tell the wizard to generate skeletal code you can complete
to create a Web Service application (for example, if you want to implement a Web Service that is already defined in a WSDL
document).

Source Page

The Source page of the wizard lets you specify the name of the WSDL document or XML schema to import.

Item Description

Location of WSDL File
or URL

Enter either a WSDL file name or the URL where the document is published. Click the ellipsis button
next to the edit box to browse for a file location.

If you do not know the URL of the WSDL document, or (for client applications) if you want to include
fail-over support, click the Search UDDI button to launch the UDDI browser. When you import a
WSDL document using the UDDI browser, it initializes the location in the WSDL importer, and causes
the importer to generate code that stores the location of the UDDI entry where you found the
document.

After entering a file name, you can click the Next button to move to the Preview page or click the
Options button to provide information the wizard needs for connecting to a server that contains the
WSDL document or for configuring how the wizard generates code to represent the definitions in that
document.

Preview Page

The Preview page of the wizard lets you preview the code it generates for the definitions in the specified WSDL document. It
lists only those definitions for which it knows how to generate code. When you are finished viewing the generated code, you can
move back to the Source page to select a different WSDL document, click the Options button to change the connection
information or configure how the wizard generates code for the definitions in the WSDL document, or click the Finish button,
which tells the wizard to define and register invokable interfaces and native type definitions.

File RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

792

3

Item Description

WSDL Components Select the item for which you want to preview the generated code. You can select a service to see all
the definitions generated for that service, or you can select a single item that is a part of that service
(for example, a single interface, method, or type definition).

Code Preview This tab page shows the code that the wizard generates for the selected item.

Attributes This tab page shows information about the selected item such as its name, the namespace in which it
is defined, and details about its definition, such as the name of the class or type the wizard uses to
represent a defined type, the parameters and Soap Action for a method (operation), binding
information for an interface (port type), and so on.

Options Display the WSDL Import Options dialog, where you can specify the information the importer needs
to connect to the server that publishes the WSDL document or configure the way the wizard
generates code.

3.2.6.46 New Web Server Application
File New Other Delphi Projects New Web Server Application

Use this dialog box to specify the type of server your Web server application will work with.

Item Description

ISAPI/NSAPI Dynamic
Link Library

ISAPI and NSAPI Web server applications are shared objects that are loaded by the Web server.
Client request information is passed to the DLL as a structure and evaluated by TISAPIApplication.
Each request message is handled in a separate execution thread. Selecting this type of application
adds the library header of the project files and required entries to the uses list and exports clause of
the project file.

CGI Stand-alone
executable

A CGI stand-alone Web server application is a console application that receives client request
information on standard input and passes the results back to the server on standard output. This data
is evaluated by TCGIApplication. Each request message is handled by a separate instance of the
application. In Delphi, selecting this type of application adds the required entries to the uses clause of
the project file and adds the appropriate $APPTYPE directive to the source.

Web App Debugger
executable

The Web Application Debugger provides an easy way to monitor HTTP requests, responses, and
response times. The Web Application Debugger takes the place of the Web server. Once you have
debugged your application, you can convert it to one of the other types of Web application and install
it with a commercial Web server.

When you select this type of application, you must specify a Class Name for the debugger
executable. This is simply a name used by the Web App Debugger to refer to your application. Most
developers use the application’s name as the Class Name.

3.2.6.47 Add New WebService
File New Other Delphi Projects WebServices SOAP Server Interface

Use this dialog box to generate a new unit that declares a invokable interface and its implementation class. The interface
descends from IInvokable, and the implementation class from TInvokableClass. It also generates the code to register the
interface and implementation class with the invocation registry. After exiting the wizard, edit the generated interface and class
definitions, adding in the properties and methods you want to expose as your Web Service.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) File

793

3

Item Description

Service name Enter the name of the invokable interface (port type) that your Web Service application exposes to
clients. This name is used as the name of the interface. It is also used to generate the name of the
implementation class. For example, if you enter MyWebService, the wizard generates the definition of
an invokable interface named MyWebService, and an implementation class named
TMyWebServiceImpl.

Unit identifier Enter the name of the unit that the wizard should create to contain the interface and implementation
class definitions.

Generate comments Adds comments to the unit that it generates telling you what the generated code does.

Generate sample
methods

Adds comments to the unit that show sample code similar to the code you should add to define and
implement your invokable interface and implementation class.

Service activation
model

Select the activation model you want from the drop-down list:

Per Request creates a new instance of your implementation class in response to each request it
receives. That instance is freed after the request is handled.

Global Object creates a single instance of your implementation class, which is used to handle all
requests.

3.2.6.48 Application Module Page Options/New WebSnap Page
Module

Use this dialog box to define the basic properties of a page module. The dialog title varies based on how you accessed the
dialog.

Item Description

Type The producer type for the page can be set to one of AdapterPageProducer, DataSetPageProducer,
InetXPageProducer, PageProducer, or XSLPageProducer.

Script Engine If the selected page producer supports scripting, use the Script Engine drop-down list to select the
language used to script the page.

AdapterPageProducer supports only JScript.

New File Creates a template file and manages it as part of the unit. A managed template file will appear in the
project manager and have the same file name and location as the unit source file. Uncheck New File
if you want to use the properties of the producer component (typically, the HTMLDoc or HTMLFile
property).

Template When New File is checked, choose the default content for the template file from the Template
drop-down. The Standard template displays the title of the application, the title of the page, and
hyperlinks to published pages.

Name Enter a page name and title for the page module. The page name is used to reference the page in an
HTTP request or within the application's logic.

Title Specifies the name that the end user will see when the page is displayed in a browser.

Published Check Published to allow the page to automatically respond to HTTP requests where the page name
matches the pathinfo in the request message.

Login Required Requires the user to log on before the page can be accessed.

Creation Displayed only on the New WebSnap Page Module. This parameter controls when an instance of
this module is created. If you want the instance created only when it is referenced, select On
Demand. If you want the instance created on startup, select Always.

File RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

794

3

Caching Displayed only on the New WebSnap Page Module. This parameter controls when a module is
destroyed. At runtime, the instance of this module can be either kept in cache, or removed from
memory when the request has been serviced. Select Cache Instance to keep the instance in memory
even if there are no current references to it. Select Destroy Instance to allow the server to remove the
instance from memory if there are no references to it.

See Also

WebSnap Overview

Building a WebSnap Application

3.2.6.49 New WebSnap Application
File New Other Delphi Projects WebSnap WebSnap Application

Use this dialog box to configure a new WebSnap application.

Item Description

ISAPI/NSAPI Dynamic
Link Library

ISAPI and NSAPI Web server applications are shared objects that are loaded by the Web server.
Client request information is passed to the DLL as a structure and evaluated by TISAPIApplication.
Each request message is handled in a separate execution thread. Selecting this type of application
adds the library header of the project files and required entries to the uses list and exports clause of
the project file.

CGI Stand-alone
executable

A CGI stand-alone Web server application is a console application that receives client request
information on standard input and passes the results back to the server on standard output. This data
is evaluated by TCGIApplication. Each request message is handled by a separate instance of the
application. In Delphi, selecting this type of application adds the required entries to the uses clause of
the project file and adds the appropriate $APPTYPE directive to the source.

Web App Debugger
executable

The Web Application Debugger provides an easy way to monitor HTTP requests, responses, and
response times. The Web Application Debugger takes the place of the Web server. Once you have
debugged your application, you can convert it to one of the other types of Web application and install
it with a commercial Web server.

When you select this type of application, you must specify a class name for the debugger executable.
This is simply a name used by the Web Application Debugger to refer to your application. Most
developers use the application name as the class name.

Page Module Displays a Web data module that includes a PageProducer, WebAppServices, ApplicationAdapter,
LogicalPageDispatcher, and AdapterDispatcher component. With a Web Page Module, on the Code
Editor you can view a Web page’s unit, HTML code, and a preview the Web page after the module
has been compiled and run.

Data Module Displays a Web data module that includes a PageProducer, WebAppServices, ApplicationAdapter,
LogicalPageDispatcher, and AdapterDispatcher component.

Components Displays the Web App Components dialog box so you can select one or more components to add
functionality to your application.

Page Name If the selected application module type is page module, you can associate a name with the page by
entering a name in the this field.

Page Options Displays the Application Page Module Options dialog box, allowing you to define the basic
properties of a page module.

Caching At runtime, the instance of this module can be either kept in cache, or removed from memory when
the request has been serviced. Select one of the following:

Cache Instance stores the module in memory between user sessions.

Destroy Instance removes the module from memory as soon as the active session ends.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) File

795

3

See Also

WebSnap Overview

Building a WebSnap Application

3.2.6.50 New WebSnap Data Module
Use this dialog box to specify how the server handles the creation and destruction of your data module.

Item Description

Creation Controls when an instance of this module is created:

On Demand creates the instance only when it is referenced.

Always creates the instance on startup.

Caching Controls when a module is destroyed. At runtime, the instance of this module can be either kept in
cache, or removed from memory when the request has been serviced.

Cache Instance keeps the instance in memory even if there are no current references to it.

Destroy Instance allows the server to remove the instance from memory if there are no references
to it.

See Also

WebSnap Overview

Building a WebSnap Application

3.2.6.51 Web App Components
Use this dialog box to select component categories and to select specific components in each of the following categories (some
categories offer only one choice).

Item Description

Application Adapter Contains the field and action components that are available through the Application script variable.

End User Adapter Provides information about a user such as their name, access rights, and whether they are logged in.
TEndUserAdapter calls event handlers to retrieve user information.

Page Dispatcher Dispatches HTTP requests that reference a Web page module by name.

Adapter Dispatcher Handles HTML form submissions, and requests for dynamic images, by calling adapter action and
field components.

Dispatch Actions Passes an HTTP request message to the appropriate action items that assemble a response.

Locate File Service Controls the location of templates and include files at runtime.

Sessions Service Stores information about end user data that is needed for a short period of time. For example, the
TSessionsService can be used to keep track of all users that are currently logged in and
automatically log a user out after a period of inactivity..

User List Service Contains a list of user names, password, and access rights. It is used to validate login and check
access rights for a particular user.

See Also

WebSnap Overview

File RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

796

3

Building a WebSnap Application

3.2.6.52 XML Data Binding Wizard Options
File New Other Delphi Project New XML Data Binding Options button

Use this dialog box to determine how the XML Data Binding Wizard generates interfaces and implementation classes to
represent an XML document or schema.

Item Description

Category Choose a category of options such as Code Generation. The table at the right displays the options
for the selected category.

Options table Edit the values in the second column of the Options table to change one of the options that the wizard
uses.

When the Category is Data Type Map, this table displays the types that the wizard generates for
each XML type that appears in the XML schema. You can edit these values to change the mapped
type. For example, you may want to change a data type to Variant so that you can distinguish
between an empty string and a blank value.

Property Get Prefix Controls the name the wizard assigns to the methods it creates for reading property values. These
methods consist of the Get prefix followed by the name of the property (element).

Property Set Prefix Controls the name the wizard assigns to the methods it creates for writing property values. These
methods consist of the Set prefix followed by the name of the property (element).

Class Name Prefix Controls the names that the wizard assigns to implementation classes for nodes. These classes are
given the name of the element or attribute with the Class Name Prefix prepended.

Interface Prefix Controls the names that the wizard assigns to interfaces. These interfaces are given the name of the
element with Interface Prefix prepended.

Node List Type Suffix Controls the names that the wizard assigns to the classes and interfaces it generates for repeating
collections of child nodes. These classes get the name of the child node tag, with Node List Type
Suffix appended (and Class Name Prefix or Interface Prefix prepended).

Node Interface Base Specifies the interface that is used as a base from which all generated interfaces for nodes are
derived.

Node Class Base Specifies the class that is used as a base class from which all generated implementation classes are
derived. Node Class Base should implement the interface specified by Node Interface Base.

Collection Intf. Base Specifies the interface that is used as a base from which all generated interfaces that represent
repeating child nodes are derived.

Collection Class Base Specifies the class that is used as a base class from which all classes that represent repeating child
nodes

Default Data Type Specifies the type that is assigned to nodes by default on the second page of the wizard.

3.2.6.53 XML Data Binding Wizard, page 1
File New Other Delphi Project New XML Data Binding

Use this wizard to generate interface and class definitions that correspond to the structure of an XML document or schema. The
wizard generates a global function that returns the interface for the root element of the document.

After you use the wizard to create these definitions, you can use the classes and interfaces to work with XML documents that
have the structure of the specified document or schema.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) File

797

3

Item Description

Schema or XML Data
File

Enter the file name of a schema or XML document for which you want the wizard to generate
interfaces and implementation classes. Beside the edit control is a browse button (labeled with
ellipsis) that you can click to browse for an XML document or schema file.

Use XDB Settings File Indicates whether the wizard should be initialized to reflect the choices you made the last time you
used the wizard and saved your settings. When checked, the wizard starts by using the last XDB file
that you saved using the third page of the wizard.

Options Displays the XML Data Binding Wizard Options dialog box. You can select various options that
influence how the wizard generates code for the interfaces and implementation classes in your XML
document or schema.

3.2.6.54 XML Data Binding Wizard, page 2
File New Other Delphi Project New XML Data Binding

Use this wizard page to specify what code the wizard generates.

Item Description

Schema components Displays a hierarchy of elements for which the wizard can generate interfaces and classes. This
hierarchy is divided into complex elements (nodes that correspond to tags that have child nodes) and
simple elements (simple data types that the schema defines for elements in the XML document).
Nodes for complex types can be expanded to display nodes for the child elements.

When you select a node in the Schema Components hierarchy, the right side of the dialog displays
detailed information about the node and lets you indicate what code, if any, the wizard should
generate for that node.

Source Name Displays the name of the type or tag in the XML schema. Edit the value if you want the wizard to
create or modify the schema file.

Source Datatype Displays the type of the selected node, as defined in the XML schema. Edit the value if you want the
wizard to create or modify the schema file.

Documentation Displays any comments from the XML schema to describe the type or node. Edit the value if you
want the wizard to create or modify the schema file.

Generate Binding Creates an interface and implementation class for a selected complex type, or a property on the
parent interface and class for simple elements that are children of a complex type.

Identifier Name Specifies the name of the interface to generate for a top-level complex type. For the children of a
complex type, Identifier Name specifies the name of the property created for this child in the parent
element’s interface.

Doc Element Type This option is available only for top-level complex types and indicates the type of the document
element (the root of the data hierarchy).

Element Name Specifies the tag name of the document element.

Data Type For any child node, indicates the type for the property that represents this child element. If the child
represents an element node that has children of its own, the drop-down list lets you select any
interface type that the wizard generates for a complex type. If the child represents a simple element,
the drop-down list lets you select a type such as Integer, String, or Variant. Note that representing
simple child elements as Variants allows your application to distinguish between elements with an
empty string for a value, and elements that do not appear in a particular document (Null Variants).

Repeating For child elements that represent complex types, indicates whether the parent node can have more
than one child node of this type.

Access Mode For child nodes that represent simple elements (as opposed to complex types), indicates whether the
generated property is read/write or read-only.

File RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

798

3

Native Type When a simple type is selected, specifies the data type that the wizard uses to represent values of
that type.

Options Displays the XML Data Binding Wizard Options dialog box. You can select various options that
influence how the wizard generates code for the interfaces and implementation classes in your XML
document or schema.

3.2.6.55 XML Data Binding Wizard, page 3
File New Other Delphi Project New XML Data Binding

Use this wizard page to confirm the choices you have made, specify unit-wide code generation options, indicate where you want
your choices saved, and tell the wizard to generate code to represent the XML document or schema.

Item Description

Generated Interfaces indicates what interfaces the wizard will generate. When you select an interface in this control, you
can see the interface definition the wizard will generate in the Code Preview control.

Code Preview Displays the code that the wizard will generate for the currently selected interface in the Generated
Interfaces control.

Do not store settings Generates code for the choices you have made with the wizard, but does not save the choices.

Store in XML schema Updates the schema file with information about the choices you have made.

Store in file Enter the name of a schema file where the wizard stores information about your choices. This
schema file is independent of the XML document or schema file you selected on the first page of the
wizard. The wizard uses this file to initialize itself the next time you use it.

Options Displays the XML Data Binding Wizard Options dialog box. You can select various options that
influence how the wizard generates code for the interfaces and implementation classes in your XML
document or schema.

Finish Exits the wizard and generates the interfaces and implementation classes for your XML document or
schema.

3.2.6.56 Close
File Close

File Close All

Closes the current open project or all the open projects.

Item Description

Close Closes the active project.

Close All Closes all open projects.

3.2.6.57 Exit
File Exit

Closes the IDE and all open projects and files.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) File

799

3

3.2.6.58 New
File New

Creates a project of the selected type.

Item Description

C++ Builder Projects
Only

Package - C++ Builder Creates a skeleton of a C++ package project.

Unit - C++Builder Creates a new C++ unit skeleton. Typically you create a new unit after creating a new package or
application.

VCL Forms Application
- C++Builder

Creates a new C++ form-based application using VCL components.

Form - C++Builder Creates a new C++ VCL form. Typically you would create a new form after creating a new package or
application.

Delphi for Win32
Projects Only

Package - Delphi for
Win32

Creates a skeleton for a Delphi package project.

Unit - Delphi for Win32 Creates a new Delphi unit skeleton (using Pascal source). Typically you would create a new unit after
creating a new package or application.

VCL Forms Application
- Delphi for Win32

Creates a new form-based application using VCL components.

Form - Delphi for
Win32

Creates a new Delphi VCL form. Typically you create a new form after creating a new package or
application.

Delphi for .NET
Projects Only

ASP.NET Web
Application - Delphi
.NET

Creates a new web form application using ASP.NET. A Web Form Application runs in a browser.

VCL Forms Application
- Delphi for .NET

Creates a new form-based application using VCL components.

All Personalities

Other The New Items dialog box, which lists every file or project the IDE understands. Examples: XML files,
text files, and C++ projects.

Customize Opens the Customize New Menu dialog box that allows you to customize how projects and files are
listed in the File New menu.

See Also

Packages (see page 640)

Program and Units (see page 683)

VCL Overview

Customize New Menu (see page 777)

HTML Elements RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

800

3

3.2.7 HTML Elements

Topics

Name Description

A (Anchor) HTML Element (see page 801) The A (anchor) element designates the start or destination of a hypertext link.
The anchor element requires the HREF= or the NAME= attribute to be specified
and provides the following attributes and events.

Unit (see page 803) Use this dialog box to specify a value and unit of measure for the CSS attribute
selected from the Code Completion window.

DIV HTML Element (see page 803) The DIV element is used with the CLASS= attribute to represent different kinds of
containers and provides the following attributes and events.

HR HTML Element (see page 804) The HR element draws a horizontal rule in a document and provides the following
attributes and events.

IMG HTML Element (see page 805) The IMG element embeds an image or a video clip in the document and provides
the following attributes and events.

INPUT HTML Element (see page 806) The INPUT element specifies a form input control and provides the following
attributes and events.

SELECT HTML Element (see page 808) The SELECT element specifies a list box or dropdown list and provides the
following attributes and events.

SPAN HTML Element (see page 809) The SPAN element lets you to define your own method of rendering, using style
sheets and provides the following attributes and events.

TABLE HTML Element (see page 810) The TABLE element specifies that the contained content is organized into a table
with rows and columns. Use the TR, TD, and TH elements in the container to
create the rows, columns, and cells. The TABLE element provides the following
attributes and events.
Tip: From the IDE main menu, choose View->Toolbars->HTML Table
to display a toolbar for formatting tables.

TEXTAREA HTML Element (see page 811) The TEXTAREA element specifies a multi-line text input control and provides the
following attributes and events.

3.2.7.1 A (Anchor) HTML Element
The A (anchor) element designates the start or destination of a hypertext link. The anchor element requires the HREF= or the
NAME= attribute to be specified and provides the following attributes and events.

Item Description

accesskey Assigns an access key to an element. An access key is a single character from the document
character set. Authors should consider the input method of the expected reader when specifying an
accesskey.

charset Specifies the character encoding of the resource designated by the link.

class Assigns a class name or set of class names to an element. Any number of elements may be
assigned the same class name or names. Multiple class names must be separated by white space
characters.

coords Specifies the position and shape on the screen relative to the top, left corner of the object. The
number and order of values depends on the shape being defined. Possible combinations:

rect left-x, top-y, right-x, bottom-y.

circle center-x, center-y, radius. When the radius value is a percentage value, user agents should
calculate the final radius value based on the associated object's width and height. The radius should
be the smaller value of the two.

poly x1, y1, x2, y2, ..., xN, yN. The first x and y coordinate pair and the last should be the same to
close the polygon. When these coordinate values are not the same, user agents should infer an
additional coordinate pair to close the polygon.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) HTML Elements

801

3

dir Specifies the direction of directionally neutral text in an element's content and attribute values:

ltr indicates left-to-right text or table.

rtl indicates right-to-left text or table.

href Specifies the location of a Web resource and definines a link between the current element (the
source anchor) and the destination anchor defined by this attribute.

hreflang Specifies the base language of the resource designated by href and may only be used when href is
specified.

id Assigns a name to an element. This name must be unique in a document.

lang Specifies the base language of an element's attribute values and text content. The default value of
this attribute is unknown.

name Assigns the control name.

onblur The onblur event occurs when an element loses focus either by the pointing device or by tabbing
navigation.

onclick The onclick event occurs when the pointing device button is clicked over an element.

ondblclick The ondblclick event occurs when the pointing device button is double clicked over an element.

onfocus The onfocus event occurs when an element receives focus either by the pointing device or by tabbing
navigation.

onkeydown The onkeydown event occurs when a key is pressed down over an element.

onkeypress The onkeypress event occurs when a key is pressed and released over an element.

onkeyup The onkeyup event occurs when a key is released over an element. This attribute may be used with
most elements.

onmousedown The onmousedown event occurs when the pointing device button is pressed over an element.

onmousemove The onmousemove event occurs when the pointing device is moved while it is over an element.

onmouseout The onmouseout event occurs when the pointing device is moved away from an element.

onmouseover The onmousemove event occurs when the pointing device is moved while it is over an element.

onmouseup The onmouseup event occurs when the pointing device button is released over an element.

rel Specifies the relationship from the current document to the anchor specified by the href attribute. The
value of this attribute is a space-separated list of link types.

rev Specifies a reverse link from the anchor specified by the href attribute to the current document. The
value of this attribute is a space-separated list of link types.

shape When the type attribute is set to image, this attribute specifies the location of the image to be used to
decorate the graphical submit button.

style Specifies style information for the current element. The syntax of the value of the style attribute is
determined by the default style sheet language.

tabindex Specifies the position of the current element in the tabbing order for the current document. This value
must be a number between 0 and 32767. User agents should ignore leading zeros.

title Specifies advisory information about the element for which it is set.

type Provides an advisory hint as to the content type of the content available at the link target address. It
allows user agents to opt to use a fallback mechanism rather than fetch the content if they are
advised that they will get content in a content type they do not support. Authors who use this attribute
take responsibility to manage the risk that it may become inconsistent with the content available at
the link target address. For the current list of registered content types, please consult the www.w3.org
web site.

HTML Elements RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

802

3

See Also

W3C HTML Home Page

3.2.7.2 Unit
Use this dialog box to specify a value and unit of measure for the CSS attribute selected from the Code Completion window.

Item Description

Value Select a number of units for the attribute.

Units Select one of the following units of measure for the attribute:

em equal to the font size of the current element

ex approximately half the height of the font-size

px pixel

in inch

cm centimeter

mm millimeter

pt point (one point is 1/72 of an inch)

pc pica (about 12 points)

3.2.7.3 DIV HTML Element
The DIV element is used with the CLASS= attribute to represent different kinds of containers and provides the following
attributes and events.

Item Description

align Specifies the horizontal alignment of its element with respect to the surrounding context. Possible
values are left, right, center, and justify.

class Assigns a class name or set of class names to an element. Any number of elements may be
assigned the same class name or names. Multiple class names must be separated by white space
characters.

dir Specifies the direction of directionally neutral text in an element's content and attribute values:

ltr indicates left-to-right text or table.

rtl indicates right-to-left text or table.

id Assigns a name to an element. This name must be unique in a document.

lang Specifies the base language of an element's attribute values and text content. The default value of
this attribute is unknown.

onclick The onclick event occurs when the pointing device button is clicked over an element.

ondblclick The ondblclick event occurs when the pointing device button is double clicked over an element.

onkeydown The onkeydown event occurs when a key is pressed down over an element.

onkeypress The onkeypress event occurs when a key is pressed and released over an element.

onkeyup The onkeyup event occurs when a key is released over an element. This attribute may be used with
most elements.

onmousedown The onmousedown event occurs when the pointing device button is pressed over an element.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) HTML Elements

803

3

http://www.w3.org/MarkUp

onmousemove The onmousemove event occurs when the pointing device is moved while it is over an element.

onmouseout The onmouseout event occurs when the pointing device is moved away from an element.

onmouseover The onmousemove event occurs when the pointing device is moved while it is over an element.

onmouseup The onmouseup event occurs when the pointing device button is released over an element.

style Specifies style information for the current element. The syntax of the value of the style attribute is
determined by the default style sheet language.

title Specifies advisory information about the element for which it is set.

See Also

W3C HTML Home Page

3.2.7.4 HR HTML Element
The HR element draws a horizontal rule in a document and provides the following attributes and events.

Item Description

align Specifies the horizontal alignment of its element with respect to the surrounding context. Possible
values are left, right, center, and justify.

class Assigns a class name or set of class names to an element. Any number of elements may be
assigned the same class name or names. Multiple class names must be separated by white space
characters.

dir Specifies the direction of directionally neutral text in an element's content and attribute values:

ltr indicates left-to-right text or table.

rtl indicates right-to-left text or table.

id Assigns a name to an element. This name must be unique in a document.

lang Specifies the base language of an element's attribute values and text content. The default value of
this attribute is unknown.

noshade If set to true, the horizontal rule is rendered in a solid color. If set to false, the rule is rendered as a
two-color groove.

onclick The onclick event occurs when the pointing device button is clicked over an element.

ondblclick The ondblclick event occurs when the pointing device button is double clicked over an element.

onkeydown The onkeydown event occurs when a key is pressed down over an element.

onkeypress The onkeypress event occurs when a key is pressed and released over an element.

onkeyup The onkeyup event occurs when a key is released over an element. This attribute may be used with
most elements.

onmousedown The onmousedown event occurs when the pointing device button is pressed over an element.

onmousemove The onmousemove event occurs when the pointing device is moved while it is over an element.

onmouseout The onmouseout event occurs when the pointing device is moved away from an element.

onmouseover The onmousemove event occurs when the pointing device is moved while it is over an element.

onmouseup The onmouseup event occurs when the pointing device button is released over an element.

size Specifies the initial width of the control. The width is given in pixels except when type attribute is set
to text or password. In that case, its value refers to the (integer) number of characters.

HTML Elements RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

804

3

http://www.w3.org/MarkUp

src When the type attribute is set to image, this attribute specifies the location of the image to be used to
decorate the graphical submit button.

style Specifies style information for the current element. The syntax of the value of the style attribute is
determined by the default style sheet language.

title Specifies advisory information about the element for which it is set.

width Specifies the width of the rule. The default width is 100%, which extends the rule across the entire
canvas.

See Also

W3C HTML Home Page

3.2.7.5 IMG HTML Element
The IMG element embeds an image or a video clip in the document and provides the following attributes and events.

Item Description

align Specifies the horizontal alignment of its element with respect to the surrounding context. Possible
values are left, right, center, and justify.

alt For user agents that cannot display images, forms, or applets, this attribute specifies alternate text.
The language of the alternate text is specified by the lang attribute.

border Specifies the width of an image border, in pixels.

class Assigns a class name or set of class names to an element. Any number of elements may be
assigned the same class name or names. Multiple class names must be separated by white space
characters.

dir Specifies the direction of directionally neutral text in an element's content and attribute values:

ltr indicates left-to-right text or table.

rtl indicates right-to-left text or table.

height Specifies the image and object height override.

hspace Specifies the amount of white space to be inserted to the left and right of an image.

id Assigns a name to an element. This name must be unique in a document.

ismap For the IMG and INPUT elements, associates a server-side image map with the element.

lang Specifies the base language of an element's attribute values and text content. The default value of
this attribute is unknown.

longdesc Specifies a link to a long description of the image.

name Assigns the control name.

onclick The onclick event occurs when the pointing device button is clicked over an element.

ondblclick The ondblclick event occurs when the pointing device button is double clicked over an element.

onkeydown The onkeydown event occurs when a key is pressed down over an element.

onkeypress The onkeypress event occurs when a key is pressed and released over an element.

onkeyup The onkeyup event occurs when a key is released over an element. This attribute may be used with
most elements.

onmousedown The onmousedown event occurs when the pointing device button is pressed over an element.

onmousemove The onmousemove event occurs when the pointing device is moved while it is over an element.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) HTML Elements

805

3

http://www.w3.org/MarkUp

onmouseout The onmouseout event occurs when the pointing device is moved away from an element.

onmouseover The onmousemove event occurs when the pointing device is moved while it is over an element.

onmouseup The onmouseup event occurs when the pointing device button is released over an element.

src Specifies the location of the image to be used in the control.

style Specifies style information for the current element. The syntax of the value of the style attribute is
determined by the default style sheet language.

title Specifies advisory information about the element for which it is set.

usemap Associates an image map with an element. The image map is defined by a MAP element. The value
of usemap must match the value of the name attribute of the associated MAP element.

vspace Specifies the amount of white space to be inserted above and below an image.

width Specifies the image and object width override.

See Also

W3C HTML Home Page

3.2.7.6 INPUT HTML Element
The INPUT element specifies a form input control and provides the following attributes and events.

Item Description

accept Specifies a comma-separated list of content types that a server processing this form will handle
correctly. User agents may use this information to filter non-conforming files when prompting a user
to select files to be sent to the server.

accesskey Assigns an access key to an element. An access key is a single character from the document
character set. Authors should consider the input method of the expected reader when specifying an
accesskey.

align Specifies the horizontal alignment of its element with respect to the surrounding context. Possible
values are left, right, center, and justify.

alt For user agents that cannot display images, forms, or applets, this attribute specifies alternate text.
The language of the alternate text is specified by the lang attribute.

checked When the type attribute has the value radio or checkbox, this boolean attribute specifies that the
button is on. User agents must ignore this attribute for other control types.

class Assigns a class name or set of class names to an element. Any number of elements may be
assigned the same class name or names. Multiple class names must be separated by white space
characters.

dir Specifies the direction of directionally neutral text in an element's content and attribute values:

ltr indicates left-to-right text or table.

rtl indicates right-to-left text or table.

disabled When set for a form control, this boolean attribute disables the control for user input.

id Assigns a name to an element. This name must be unique in a document.

ismap For the IMG and INPUT elements, associates a server-side image map with the element.

lang Specifies the base language of an element's attribute values and text content. The default value of
this attribute is unknown.

HTML Elements RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

806

3

http://www.w3.org/MarkUp

maxlength When the type attribute is set to text or password, this attribute specifies the maximum number of
characters the user may enter. This number may exceed the specified size, in which case the user
agent should offer a scrolling mechanism. The default value for this attribute is an unlimited number.

name Assigns the control name.

onblur The onblur event occurs when an element loses focus either by the pointing device or by tabbing
navigation.

onchange The onchange event occurs when a control loses the input focus and its value has been modified
since gaining focus. This attribute applies to the following elements: INPUT, SELECT, and
TEXTAREA.

onclick The onclick event occurs when the pointing device button is clicked over an element.

ondblclick The ondblclick event occurs when the pointing device button is double clicked over an element.

onfocus The onfocus event occurs when an element receives focus either by the pointing device or by tabbing
navigation.

onkeydown The onkeydown event occurs when a key is pressed down over an element.

onkeypress The onkeypress event occurs when a key is pressed and released over an element.

onkeyup The onkeyup event occurs when a key is released over an element. This attribute may be used with
most elements.

onmousedown The onmousedown event occurs when the pointing device button is pressed over an element.

onmousemove The onmousemove event occurs when the pointing device is moved while it is over an element.

onmouseout The onmouseout event occurs when the pointing device is moved away from an element.

onmouseover The onmousemove event occurs when the pointing device is moved while it is over an element.

onmouseup The onmouseup event occurs when the pointing device button is released over an element.

onselect The onselect event occurs when a user selects some text in a text field. This attribute may be used
with the INPUT and TEXTAREA elements.

readonly When set for a form control, this boolean attribute prohibits changes to the control.

size Specifies the initial width of the control. The width is given in pixels except when type attribute is set
to text or password. In that case, its value refers to the (integer) number of characters.

src When the type attribute is set to image, this attribute specifies the location of the image to be used to
decorate the graphical submit button.

style Specifies style information for the current element. The syntax of the value of the style attribute is
determined by the default style sheet language.

tabindex Specifies the position of the current element in the tabbing order for the current document. This value
must be a number between 0 and 32767. User agents should ignore leading zeros.

title Specifies advisory information about the element for which it is set.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) HTML Elements

807

3

type Specifies the type of control to create and can be set to:

button creates a push button. User agents should use the value of the value attribute as the button's
label.

checkbox creates a checkbox.

file creates a file select control. User agents may use the value of the value attribute as the
initial file name.

hidden creates a hidden control.

image creates a graphical submit button. The value of the src attribute specifies the URI of the
image that will decorate the button. For accessibility reasons, authors should provide
alternate text for the image via the alt attribute.

password creates a single-line text input control, but the input text is rendered to hide the
characters (for example, a series of asterisks). This control type is often used for sensitive
input such as passwords. Note that the current value is the text entered by the user, not the
text rendered by the user agent.

radio creates a radio button.

reset creates a reset button.

submit creates a submit button.

text creates a single-line text input control.

usemap Associates an image map with an element. The image map is defined by a MAP element. The value
of usemap must match the value of the name attribute of the associated MAP element.

value Specifies the initial value of the control. It is optional except when the type attribute has the value
radio or checkbox.

See Also

W3C HTML Home Page

3.2.7.7 SELECT HTML Element
The SELECT element specifies a list box or dropdown list and provides the following attributes and events.

Item Description

class Assigns a class name or set of class names to an element. Any number of elements may be
assigned the same class name or names. Multiple class names must be separated by white space
characters.

dir Specifies the direction of directionally neutral text in an element's content and attribute values:

ltr indicates left-to-right text or table.

rtl indicates right-to-left text or table.

disabled When set for a form control, this boolean attribute disables the control for user input.

id Assigns a name to an element. This name must be unique in a document.

lang Specifies the base language of an element's attribute values and text content. The default value of
this attribute is unknown.

multiple If set to true, allows multiple selections in the list box or dropdown list. If set to false, the SELECT
element only permits single selections.

name Assigns the control name.

onblur The onblur event occurs when an element loses focus either by the pointing device or by tabbing
navigation.

HTML Elements RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

808

3

http://www.w3.org/MarkUp

onchange The onchange event occurs when a control loses the input focus and its value has been modified
since gaining focus. This attribute applies to the following elements: INPUT, SELECT, and
TEXTAREA.

onclick The onclick event occurs when the pointing device button is clicked over an element.

ondblclick The ondblclick event occurs when the pointing device button is double clicked over an element.

onfocus The onfocus event occurs when an element receives focus either by the pointing device or by tabbing
navigation.

onkeydown The onkeydown event occurs when a key is pressed down over an element.

onkeypress The onkeypress event occurs when a key is pressed and released over an element.

onkeyup The onkeyup event occurs when a key is released over an element. This attribute may be used with
most elements.

onmousedown The onmousedown event occurs when the pointing device button is pressed over an element.

onmousemove The onmousemove event occurs when the pointing device is moved while it is over an element.

onmouseout The onmouseout event occurs when the pointing device is moved away from an element.

onmouseover The onmousemove event occurs when the pointing device is moved while it is over an element.

onmouseup The onmouseup event occurs when the pointing device button is released over an element.

size Specifies the initial width of the control. The width is given in pixels except when type attribute is set
to text or password. In that case, its value refers to the (integer) number of characters.

style Specifies style information for the current element. The syntax of the value of the style attribute is
determined by the default style sheet language.

tabindex Specifies the position of the current element in the tabbing order for the current document. This value
must be a number between 0 and 32767. User agents should ignore leading zeros.

title Specifies advisory information about the element for which it is set.

See Also

W3C HTML Home Page

3.2.7.8 SPAN HTML Element
The SPAN element lets you to define your own method of rendering, using style sheets and provides the following attributes and
events.

Item Description

class Assigns a class name or set of class names to an element. Any number of elements may be
assigned the same class name or names. Multiple class names must be separated by white space
characters.

dir Specifies the direction of directionally neutral text in an element's content and attribute values:

ltr indicates left-to-right text or table.

rtl indicates right-to-left text or table.

id Assigns a name to an element. This name must be unique in a document.

lang Specifies the base language of an element's attribute values and text content. The default value of
this attribute is unknown.

onclick The onclick event occurs when the pointing device button is clicked over an element.

ondblclick The ondblclick event occurs when the pointing device button is double clicked over an element.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) HTML Elements

809

3

http://www.w3.org/MarkUp

onkeydown The onkeydown event occurs when a key is pressed down over an element.

onkeypress The onkeypress event occurs when a key is pressed and released over an element.

onkeyup The onkeyup event occurs when a key is released over an element. This attribute may be used with
most elements.

onmousedown The onmousedown event occurs when the pointing device button is pressed over an element.

onmousemove The onmousemove event occurs when the pointing device is moved while it is over an element.

onmouseout The onmouseout event occurs when the pointing device is moved away from an element.

onmouseover The onmousemove event occurs when the pointing device is moved while it is over an element.

onmouseup The onmouseup event occurs when the pointing device button is released over an element.

style Specifies style information for the current element. The syntax of the value of the style attribute is
determined by the default style sheet language.

title Specifies advisory information about the element for which it is set.

See Also

W3C HTML Home Page

3.2.7.9 TABLE HTML Element
The TABLE element specifies that the contained content is organized into a table with rows and columns. Use the TR, TD, and
TH elements in the container to create the rows, columns, and cells. The TABLE element provides the following attributes and
events.

Tip: From the IDE main menu, choose View->Toolbars->HTML Table

to display a toolbar for formatting tables.

Item Description

align Specifies the horizontal alignment of its element with respect to the surrounding context. Possible
values are left, right, center, and justify.

bgcolor Sets the background color for the table cells.

border Specifies the width (in pixels only) of the frame around a table.

cellpadding Specifies the amount of space between the border of the cell and its contents. If the value of this
attribute is a pixel length, all four margins should be this distance from the contents. If the value of the
attribute is a percentage length, the top and bottom margins should be equally separated from the
content based on a percentage of the available vertical space, and the left and right margins should
be equally separated from the content based on a percentage of the available horizontal space.

cellspacing Specifies how much space the user agent should leave between the left side of the table and the
left-hand side of the leftmost column, the top of the table and the top side of the topmost row, and so
on for the right and bottom of the table.

class Assigns a class name or set of class names to an element. Any number of elements may be
assigned the same class name or names. Multiple class names must be separated by white space
characters.

datapagesize Specifies the number of records displayed in a table bound to a data source.

dir Specifies the direction of directionally neutral text in an element's content and attribute values:

ltr indicates left-to-right text or table.

rtl indicates right-to-left text or table.

HTML Elements RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

810

3

http://www.w3.org/MarkUp

frame

id Assigns a name to an element. This name must be unique in a document.

lang Specifies the base language of an element's attribute values and text content. The default value of
this attribute is unknown.

onclick The onclick event occurs when the pointing device button is clicked over an element.

ondblclick The ondblclick event occurs when the pointing device button is double clicked over an element.

onkeydown The onkeydown event occurs when a key is pressed down over an element.

onkeypress The onkeypress event occurs when a key is pressed and released over an element.

onkeyup The onkeyup event occurs when a key is released over an element. This attribute may be used with
most elements.

onmousedown The onmousedown event occurs when the pointing device button is pressed over an element.

onmousemove The onmousemove event occurs when the pointing device is moved while it is over an element.

onmouseout The onmouseout event occurs when the pointing device is moved away from an element.

onmouseover The onmousemove event occurs when the pointing device is moved while it is over an element.

onmouseup The onmouseup event occurs when the pointing device button is released over an element.

rules Specifies which rules will appear between cells within a table. The rendering of rules is user agent
dependent. Possible values:

none No rules. This is the default value.

groups Rules will appear between row groups and column groups only.

rows Rules will appear between rows only.

cols Rules will appear between columns only.

all Rules will appear between all rows and columns.

style Specifies style information for the current element. The syntax of the value of the style attribute is
determined by the default style sheet language.

title Specifies advisory information about the element for which it is set.

width Specifies the desired width of the entire table and is intended for visual user agents. When the value
is a percentage value, the value is relative to the user agent's available horizontal space. In the
absence of any width specification, table width is determined by the user agent.

See Also

W3C HTML Home Page

3.2.7.10 TEXTAREA HTML Element
The TEXTAREA element specifies a multi-line text input control and provides the following attributes and events.

Item Description

accesskey Assigns an access key to an element. An access key is a single character from the document
character set. Authors should consider the input method of the expected reader when specifying an
accesskey.

class Assigns a class name or set of class names to an element. Any number of elements may be
assigned the same class name or names. Multiple class names must be separated by white space
characters.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) HTML Elements

811

3

http://www.w3.org/MarkUp

cols Specifies how many characters wide the text area is. Users should be able to enter longer lines than
this, so user agents should provide some means to scroll through the contents of the control when
the contents extend beyond the visible area. User agents may wrap visible text lines to keep long
lines visible without the need for scrolling.

dir Specifies the direction of directionally neutral text in an element's content and attribute values:

ltr indicates left-to-right text or table.

rtl indicates right-to-left text or table.

disabled When set for a form control, this boolean attribute disables the control for user input.

id Assigns a name to an element. This name must be unique in a document.

lang Specifies the base language of an element's attribute values and text content. The default value of
this attribute is unknown.

name Assigns the control name.

onblur The onblur event occurs when an element loses focus either by the pointing device or by tabbing
navigation.

onchange The onchange event occurs when a control loses the input focus and its value has been modified
since gaining focus. This attribute applies to the following elements: INPUT, SELECT, and
TEXTAREA.

onclick The onclick event occurs when the pointing device button is clicked over an element.

ondblclick The ondblclick event occurs when the pointing device button is double clicked over an element.

onfocus The onfocus event occurs when an element receives focus either by the pointing device or by tabbing
navigation.

onkeydown The onkeydown event occurs when a key is pressed down over an element.

onkeypress The onkeypress event occurs when a key is pressed and released over an element.

onkeyup The onkeyup event occurs when a key is released over an element. This attribute may be used with
most elements.

onmousedown The onmousedown event occurs when the pointing device button is pressed over an element.

onmousemove The onmousemove event occurs when the pointing device is moved while it is over an element.

onmouseout The onmouseout event occurs when the pointing device is moved away from an element.

onmouseover The onmousemove event occurs when the pointing device is moved while it is over an element.

onmouseup The onmouseup event occurs when the pointing device button is released over an element.

onselect The onselect event occurs when a user selects some text in a text field. This attribute may be used
with the INPUT and TEXTAREA elements.

readonly When set for a form control, this boolean attribute prohibits changes to the control.

rows Specifies the number of visible text lines in the control. Users should be able to enter more lines than
this, so user agents should provide some means to scroll through the contents of the control when
the contents extend beyond the visible area.

style Specifies style information for the current element. The syntax of the value of the style attribute is
determined by the default style sheet language.

tabindex Specifies the position of the current element in the tabbing order for the current document. This value
must be a number between 0 and 32767. User agents should ignore leading zeros.

title Specifies advisory information about the element for which it is set.

See Also

W3C HTML Home Page

Insert RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

812

3

http://www.w3.org/MarkUp

3.2.8 Insert

Topics

Name Description

Insert User Control (see page 813) Insert Insert User Control
Use this dialog box to insert a user control into a Web Form or a User Control
template.

Insert Image (see page 813) Insert Image
Use this dialog box to insert an image file into your ASP.NET Web Form or HTML
page. Once inserted, you can select and change the following image attributes.

Insert Input (see page 814) Insert Input
Use this dialog box to create and modify controls on your ASP.NET Web Form or
HTML page before submitting it for deployment.

Insert Table (see page 814) Insert Table
Use this dialog box to insert a table into your ASP.NET Web Form or HTML
page. Once inserted, you can modify the physical appearance of the table.

Color Selector (see page 815) Use this dialog box to change the foreground and background color from the
HTML Designer.

3.2.8.1 Insert User Control
Insert Insert User Control

Use this dialog box to insert a user control into a Web Form or a User Control template.

Item Description

Browse Search for the .ascx file in a directory.

OK Add the .ascx file to your project.

Cancel Exits the dialog without saving.

3.2.8.2 Insert Image
Insert Image

Use this dialog box to insert an image file into your ASP.NET Web Form or HTML page. Once inserted, you can select and
change the following image attributes.

Item Description

Alignment Specifies the position of the image or object with respect to its context.

Border size Specifies the width of an image or object border in pixels.

Width Specifies a new width for the image or object selected.

Horizontal spacing Specifies the amount of white space to be inserted to the left and right of an image or object.

Height Specifies a new height for the image or object selected.

Vertical spacing Specifies the amount of white space to be inserted above and below an image or object.

Alternate text Specify alternate text to serve as content when the element cannot be rendered normally.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Insert

813

3

Image map Specifies a client-side image map (or other navigation mechanism) that may be associated with
another element.

Image map information
on server

Defines a server-side image map for the specified image.

3.2.8.3 Insert Input
Insert Input

Use this dialog box to create and modify controls on your ASP.NET Web Form or HTML page before submitting it for
deployment.

Item Description

Input type Specifies the type of controls to create.

Name Specifies a name of the form.

Alignment Specifies the horizontal alignment of its element with respect to the surrounding context.

Value Specifies the initial value of the control.

Alt text Specifies alternative text when the element cannot be rendered normally, such as images or applets.

Tab Index Specifies the position of the current element in the tabbing order for the current document. Values
should be between 0 and 32767.

Read only Prohibits changes to the control.

Max length Specifies the maximum number of characters you may enter if the attribute has the text or password
value.

3.2.8.4 Insert Table
Insert Table

Use this dialog box to insert a table into your ASP.NET Web Form or HTML page. Once inserted, you can modify the physical
appearance of the table.

Item Description

Rows Specifies the number of visible text lines.

Columns Specifies the number of columns that appear in the table.

Width Specifies the desired width of the entire table.

pixels Specifies an integer value that represents the number of pixels on the screen.

percent Specifies a value in %.

Height Specifies the desired height of the entire table in pixels.

Alignment Specifies the position of the table with respect to the document.

Background color Sets the background color for the table.

Background Image Sets the background image for the table.

Border color Sets the color of the surrounding frame of the table.

Border size Specifies the width (in pixels only) of the table frame.

Insert RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

814

3

Highlight color Specifies the color used to draw the light portion of the table frame.

Cell spacing Specifies how much space you should leave between the left side of the table and the left-hand side
of the leftmost column, the top of the table and the top side of the topmost row, and so on for the right
and bottom of the table. The attribute also specifies the amount of space to leave between cells.

Shadow color Specifies the color used to draw the shaded portion of the table frame.

Cell padding Specifies the amount of space between the border of the cell and its contents.

Summary Provides a summary of the table's purpose and structure to render non-visual media.

Background Color for
Cell Attributes

Sets the background color for the individual cells within a table.

Border color for Cell
Attributes

Sets the color of the surrounding frame of individual cells within a table.

Text Alignment Specifies the alignment of data and the justification of text in a cell.

Wrap text Check this box to specify the text to be wrapped in the same width as the table.

3.2.8.5 Color Selector
Use this dialog box to change the foreground and background color from the HTML Designer.

Item Description

Web palette Use this tab to select from a variety of web colors available.

Use color name Select to use either a web color string, i.e., #FF00FF, or a web color name like "snow." If checked,
the dialog will use the web color name when available.

Customize Selected
Color

Lets you specify and modify the values of the color scheme to increase or decrease the composition
of the selected color.

Named Web Colors Use this tab to easily select a named web color.

Other Colors Use this tab to select from a list of system or standard colors.

System Colors Lists available colors from the Windows system palette.

Standard Colors Lists of available colors from the Windows standard 16 color palette.

3.2.9 Testing Wizards

Topics

Name Description

Unit Test Case Wizard (see page 816) File New Other Unit Test Test Case
Use this wizard to create a test case for your current project.

Unit Test Case Wizard (see page 816) File New Other Unit Test Test Case
Use this wizard page to supply the details for the test case you want to create.

Unit Test Project Wizard (see page 816) File New Other Unit Tests Test Project
Use this wizard to create a test suite that includes a number of tests.

Unit Test Project Wizard (see page 817) File New Other Unit Tests Test Project
Use this wizard to specify the framework and test runner for your test project.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Testing Wizards

815

3

3.2.9.1 Unit Test Case Wizard
File New Other Unit Test Test Case

Use this wizard to create a test case for your current project.

Item Description

Source File Specifies the path and file name of the code file to which you want to add tests. By default, this
textbox is prefilled with the name of the primary code file of the active project. You can change the
location and the name of the file to a file other than the default. If the file does not exist, you will be
unable to select classes and methods to test and will be unable to complete the wizard. For example,
if you add a unit to your project and you want to add test cases to the unit, you must add at least one
class to the unit to be able to use this wizard successfully.

Available Classes and
Methods

Displays a treeview of the available classes and methods for the current file. You can deselect items
in the tree. By default, all classes and methods are selected. If you deselect individual methods within
a class, the wizard ignores those methods when building test cases. If you deselect the class, the
wizard ignores the entire class and all of its methods, even if you do not deselect the methods. If you
select a class but do not select any methods in that class, the wizard generates a test case for the
class, but does not generate any test methods for that class.

See Also

Unit Testing Overview (see page 70)

3.2.9.2 Unit Test Case Wizard
File New Other Unit Test Test Case

Use this wizard page to supply the details for the test case you want to create.

Item Description

Test Project Specifies the name of the project. Prefilled with the default, which is the current project.

File Name Specifies the name of the code file containing the classes and methods you want to test. Prefilled
with the default, which is the current code file.

Test Framework Specifies the testing framework you want to use. RAD Studio auto-detects the type of project you are
testing and sets this to the correct framework that is currently supported for that code personality.

Base Class Specifies the base class to be inherited by the test. By default, the test case is built using the base
class of the active code file. Optional.

See Also

Unit Testing Overview (see page 70)

3.2.9.3 Unit Test Project Wizard
File New Other Unit Tests Test Project

Use this wizard to create a test suite that includes a number of tests.

Item Description

Project Name Specify the name of the project or accept the default, which is the name of the active project.

Testing Wizards RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

816

3

Location Specify the path for the project file.

Personality Select a personality. Prefilled based on the type of the active project.

Add to project group Select this if you want to add the new Test Project to your current project group. By default, this is
selected. If you are creating a test project to be used in multiple projects, you might opt to deselect
this option.

See Also

Unit Testing Overview (see page 70)

3.2.9.4 Unit Test Project Wizard
File New Other Unit Tests Test Project

Use this wizard to specify the framework and test runner for your test project.

Item Description

Test Framework Specify the framework you want to use to build the test project. By default, this is set to NUnit for the
Delphi for .NET and C# personalities; for Delphi for Win32 and C++ this can only be DUnit. For the
C# personality, only NUnit is supported.

Test Runner Specify the test runner you want to use for running the test project. The GUI Test Runner is selected
by default. You can also choose the Console Test Runner, which causes the test project assembly to
contain a command to execute the console test runner from the framework directory.

See Also

Unit Testing Overview (see page 70)

3.2.10 NET_VS

Topics

Name Description

Advanced Data Binding (see page 818) This dialog is a component of the Microsoft .NET Framework.
Use this dialog to bind a property to a value from a valid data provider to a
Windows Form.
For more information, refer to the documentation resources on the Microsoft
Developer Network (MSDN).

AutoFormat (see page 818) This dialog is a component of the Microsoft .NET Framework.
Use this dialog to apply a predefined format, including borders, colors, and fill
patterns, to a tabular control.
For more information, refer to the documentation resources on the Microsoft
Developer Network (MSDN).

Collection Editor (see page 818) This dialog is a component of the Microsoft .NET Framework.
Use this dialog to create and edit individual members of a collection.
For more information, refer to the documentation resources on the Microsoft
Developer Network (MSDN).

Databindings (see page 818) This dialog is a component of the Microsoft .NET Framework.
Use this dialog to bind to a data item and set formatting.
For more information, refer to the documentation resources on the Microsoft
Developer Network (MSDN).

Dynamic Properties (see page 818) Use this dialog to set dynamic properties that can be changed in a configuration
file, without recompiling the application.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) NET_VS

817

3

Properties (see page 819) This dialog is a component of the Microsoft .NET Framework.
Use this dialog to set properties for the currently selected object.
For more information, refer to the documentation resources on the Microsoft
Developer Network (MSDN).

3.2.10.1 Advanced Data Binding
This dialog is a component of the Microsoft .NET Framework.

Use this dialog to bind a property to a value from a valid data provider to a Windows Form.

For more information, refer to the documentation resources on the Microsoft Developer Network (MSDN).

3.2.10.2 AutoFormat
This dialog is a component of the Microsoft .NET Framework.

Use this dialog to apply a predefined format, including borders, colors, and fill patterns, to a tabular control.

For more information, refer to the documentation resources on the Microsoft Developer Network (MSDN).

3.2.10.3 Collection Editor
This dialog is a component of the Microsoft .NET Framework.

Use this dialog to create and edit individual members of a collection.

For more information, refer to the documentation resources on the Microsoft Developer Network (MSDN).

3.2.10.4 Databindings
This dialog is a component of the Microsoft .NET Framework.

Use this dialog to bind to a data item and set formatting.

For more information, refer to the documentation resources on the Microsoft Developer Network (MSDN).

3.2.10.5 Dynamic Properties
Use this dialog to set dynamic properties that can be changed in a configuration file, without recompiling the application.

Item Description

Properties Check the properties that you want to add to the configuration file.

Key mapping Optionally, override the default key for the property that appears in the configuration file. This is
useful if you want to provide a more descriptive key for the property.

Note: Property values stored in a configuration file are not secure. Confidential information, such as passwords, should not be
stored as dynamic properties.

See Also

Introduction to Dynamic Properties

NET_VS RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

818

3

Using Dynamic Properties (see page 161)

3.2.10.6 Properties
This dialog is a component of the Microsoft .NET Framework.

Use this dialog to set properties for the currently selected object.

For more information, refer to the documentation resources on the Microsoft Developer Network (MSDN).

3.2.11 Project

Topics

Name Description

ASP.NET Deployment Manager (see page 821) To open the Deployment Manager, right-click the Deployment node in the
Project Manager, and then choose the New ASP.NET Deployment option. Use
this dialog box to automatically collect all of the .aspx, .asax, web.config, and
related assembly files that are needed to deploy your ASP.NET or IntraWeb
project.

Project Options (see page 822)

COM Imports (see page 846) Project Add Reference
Adds a COM type library to the current project.
The Add Reference dialog box is also available in the Project Manager by
right-clicking a References folder and choosing Add Reference.

C++ Project Options (see page 847)

.NET Assemblies (see page 900) Project Add Reference
Adds a .NET assembly reference to the current project.
The Add Reference dialog box is also available in the Project Manager by
right-clicking a References folder and choosing Add Reference.

Project References (see page 901) Project Add Reference
Adds a reference to a project that produces an assembly (.dll), such as a Class
Library or Control Library. The reference will be added to the current project.
The Add Reference dialog box is also available in the Project Manager by
right-clicking a References folder and choosing Add Reference.

Add to Repository (see page 901) Project Add to Repository
Saves a customized form or project template in the Object Repository for reuse
in other projects. The saved forms and templates are then available in the New
Items dialog box when you choose File New Other.

UDDI Browser (see page 902) Project Add Web Reference
Searches for services and providers in the UDDI services sites with WSDL
described services. Search by name or browse through available categorization
schemas.

Change Package (see page 902) Adds required units to your package. This dialog box appears when the Package
Editor tries to compile a package and detects that the package cannot be built,
or is incompatible with another package currently loaded by the IDE. This occurs
because the package uses one or more units that are found in another package.

Project Dependencies (see page 903) Project Dependencies
Creates project dependencies within a project group. From the list, choose the
projects to build before building the selected project.

Add Languages (see page 903) Project Languages Add Language
Adds one or more language resource DLLs to a project. Follow the instructions
on each wizard page.

Remove Language (see page 903) Project Languages Remove Language
Removes one or more languages from the project. Follow the instructions on
each wizard page.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

819

3

Set Active Language (see page 903) Project Languages Set Active Language
Determines which language module loads when you run your application in the
IDE. Before changing the active language, make sure you have recompiled the
satellite assembly for the language you want to use.
Select the desired language and click Finish.

New Category Name (see page 904) Tools Repository Edit button New Category button
Use this dialog box to assign a name to a new category in the Object
Repository.

Information (see page 904) Project Information
Views the program compilation information and compilation status for your
project.

Project Page Options (see page 904) Project Project Page Options
Specifies an HTML file in your project as the Project Page for recording a
description of the project, and various other notes and information. This page is
automatically displayed in the IDE when you open the project.

Remove from Project (see page 904) Project Remove from Project
Removes one or more files from the current project.

Options (see page 905) Project Manager Right-click a satellite assembly Options command
Sets the assembly linker (al.exe) options for the satellite assembly selected in
the Project Manager.

Select Icon (see page 906) Selects a bitmap to represent your template in the New Items dialog box.
You can use a bitmap of any size, but it will be cropped to 60 x 40 pixels.

Web Deploy Options (see page 906) Project Web Deploy Options
Configures a finished ActiveX control or ActiveForm for deployment to a Windows
Web server.
Tip: Set these options before you compile the ActiveX project and deploy it by
choosing Project->Web Deploy.

Build All Projects (see page 907) Project Build All Projects
Compiles all of the source code in the current project group, regardless of
whether any source code has changed. Building is useful when you are unsure
which files have changed, or if you have changed project or compiler options.

Build Project (see page 908) Project Build Project
Rebuilds all files in your current project regardless of whether they have
changed. Building is useful when you are unsure which files have changed, or if
you have changed project or compiler options.

Compile and Make All Projects (see page 908) Project Compile
Project Make All Projects
Compile (for Delphi) and Make (for C++) compiles only those files that have
changed since the last build, as well as any files that depend on them. Compiling
or making does not execute the application (see Run Run).

Add to Project (see page 908) Project Add to Project
Adds another source file to an already open project.

Add New Project (see page 909) Project Add New Project
Adds new projects via the New Items dialog box .

Clean Package (see page 909) Project Clean Package
Removes previously compiled files and leaves behind only the source files
needed to build the project. Specifically , it cleans out any .dcu's, .bpl's, etc., that
were generated.

Default Options (see page 909) Project Default Options
Opens the default Project Options dialog box for the specified project type: C++
Builder, Delphi for Win32, Delphi for .NET, C# Builder, and Basic Builder. This
option is only available when there is not an open project.
After the Project Options dialog opens help is available from each page of the
dialog. Click Help or press F1.

Options (see page 909) Project Options
Opens the Project Options dialog that manages application and compiler
options for your project. Making changes to your project only affects the current
project. However, you can also save your selections as the default settings for
new projects.

Syntax Check for Project (see page 910) Project Syntax Check for Project
Checks the active project for incorrect symbols. This is an efficient way to check
and see if a large project will build correctly prior to compiling. Errors are reported
in the Compiling dialog with details shown in the Messages pane.

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

820

3

Update Localized Projects (see page 910) Project Languages Update Localized Projects
Updates resource modules. When you add an additional resource, such as a
button on a form, you must update your resource modules to reflect your
changes. Build and save your project before you update the resources.

View Source (see page 910) Project View Source
Shows the source of the project file that manages the running of the application.
Dephi and Delphi .NET show a .dpr file. C++ shows .cpp file.

3.2.11.1 ASP.NET Deployment Manager
To open the Deployment Manager, right-click the Deployment node in the Project Manager, and then choose the New
ASP.NET Deployment option. Use this dialog box to automatically collect all of the .aspx, .asax, web.config, and related
assembly files that are needed to deploy your ASP.NET or IntraWeb project.

Deployment Page

Specifies file locations and status of Source and Destination files for your ASP.NET deployment.

Item Description

Source Directory Displays the directory where your project is located.

Destination Choose a target for your deployment, either a folder location or an FTP location. The target is the
directory where your executable, .dlls, mark-up files, configuration, and other files that are necessary
to run your application will be located.

• If you choose Folder Location, the Browse for Folder dialog box is displayed. To change a
folder location you have chosen, click the button with the ellipsis label (...) to browse again.

• If you choose FTP Location, the FTP Connection Options dialog box is displayed.

Source Files Lists most of the files that you need to include in your deployment directory (such as mark-up files,
executables, and config files).

Note: You may need to open the References node for your project (in the Project Manager) and set
the Copy Local option to True for some of the .dll files, before you can add them to your project.. (For
instance, if you're using BDP, you will have to do this with the Borland.Data.Common.dll and
Borland.Data.Provider.dll files.) After you have set the Copy Local option, recompile your project.
Now these additional files will show up in the Source list.

To add database-specific drivers, right-click the References node for your project, and then select the
Add References option. Choose the driver that corresponds to the database you are using.

Status Displays the status of the files that you are going to deploy. Before you deploy the files, their satus is
Not Connected. After you select a target destination, the status of these files will change to New.

Destination Files Specifies the target destination for your application deployment and displays files that are already
present at that destination.

To move files from the Source Files list to the Destination Files list, right-click the file name, and
choose either Copy Selected File(s) to Destination, or Copy All New and Modified Files to the Source
Destination. You can also use the icons in the center gutter to copy files to and delete files from the
destination list.

Status Displays the status of the files that you are deploying. After you deploy your application, the files are
listed with a status of Current.

Deployment Listbox Context Menu

When you right-click the Deployment Manager, you see the following deployment options.

Item Description

Refresh Re-display the lists, after changes have been made.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

821

3

Copy Selected File(s)
to Destination

Copy all of the specified Source files to the Destination directory.

Delete Selected
Destination File(s)

Delete the selected files from the Destination list.

Change Destination
Filename

Change the name of a Destination file.

Copy All New and
Modified Files to
Destination

Copy all of the specified Source files to the Destination directory.

Delete All Destination
Files Not in Project

Delete all files from the destination list, that are not included in the project.

Show Assembly
References

When selected, the Deployment Manager shows all of the assemblies referenced by the project. The
system assemblies are shown, but disabled (grayed). These disabled assemblies can't be deployed.

External Files... Allows you to pick the external files that you want to deploy. The External Files dialog box appears,
with a list of check boxes. This list includes the BDP database libraries and the database-specific
libraries, since these often need to be deployed with your ASP.NET application. You can add more
files to the list using a File Open dialog. The list has a column that indicates the destination
subdirectory for each external file. You can edit this destination. Check the boxes next to the libraries
that you want to add to your application deployment, and then click the Add button.

Show Ignored Groups
and Files

Display group and files that you have previously chosen to ignore.

Ignore Groups Choose groups to filter out of the reference list.

Ignore Files Choose files to filter out of the reference list.

Enable Logging Create a log of your application deployment.

View Log View the log created during the deployment of your project.

See Also

Deploying ASP.NET Applications

Using the ASP.NET Deployment Manager

FTP Connection Options Dialog Box (see page 778)

3.2.11.2 Project Options
Topics

Name Description

Configure Virtual Directory (see page 824) Project Options ASP NET
Use this dialog box to specify and configure your server and its virtual root
directory for your ASP.NET application.

Configure Cassini (see page 824) Project Options Debugger ASP NET
Use this dialog box to specify a path and port number to the Cassini Web Server.
The dialog appears only when you have not configured Cassini using
Tools Options ASP NET Options.

ASP .NET (see page 825) Project Options Debugger ASP NET
Use this dialog box to setup debugger options for your ASP.NET applications.

Add Design Packages (see page 825) Project Options Packages Design packages Add button
Use this dialog box to navigate to a design time package and add it to the
Design packages list.

Add Runtime Packages (see page 825) Project Options Packages Ellipsis button Ellipsis button
Use this dialog box to add a runtime package to the Design packages list.

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

822

3

Add Symbol Table Search Path (see page 826) Project Options Symbol Table New
Use this dialog box to specify a new module name and path to be added to the
list of symbols tables to be used during debugging. The module name and path
are added to the list on the Symbol Tables page of the Project Options dialog
box.

Application (see page 826) Project Options Application
Use this dialog box to change the name and type of the current Delphi for .NET
application.

Application (see page 827) Project Options Application
Use this dialog box to change the name and type of the current application.
Note: Not all of the options described below are available for all types of
projects. For instance, the LIB attribute options are not available for all projects.

Apply Option Set (see page 828) Project Options Load...
Use this dialog to apply a named option set to a project configuration.

Build Configuration Manager (see page 828) Project Configuration Manager
Applies a named build configuration to a specific project or projects.

Build Events (see page 829) Project Options Build Events
Use the Build Events dialog box to add events for the pre-build, pre-link and
post-build stages. Results of the commands you specify in this dialog box are
displayed in the Output pane. To control the level of output, choose
Tools Options Environment Options and adjust the Verbosity level.
Note: Some of the build options are not available for some project types.

Compiler (see page 829) Project Options Compiler
Use this dialog box to set the C# compiler options for the current project.

Compiler (see page 831) Project Options Compiler
Use this page to set the compiler options for the current project.
Note: Not all of the options described below are available for all types of
projects.

Compiler Messages (see page 835) Project Options Compiler Messages
Use this page to control the information that the compiler provides at compile
time.

Compiler (Visual Basic) (see page 836) Project Options Compiler
Use this dialog box to set the Visual Basic compiler options for the current
project. For additional information about the Visual Basic compiler options, see
the .NET Framework SDK online Help.

Components (see page 836) Project Options Packages Components button
Use this dialog box to display the components in the selected package, along
with the icons that represent the components in the Tool Palette if the package
is installed.

Debugger (see page 836) Project Options Debugger
Use this dialog to pass command-line parameters to your application, specify a
host executable for testing a DLL, or load an executable into the debugger. This
dialog is also available from Run Parameters.

Description (see page 837) Project Options Description
Use the Description page to specify a description for the package, the uses of
the package, and how the package is built.
Note: This page appears only if you are developing a package.

Directories/Conditionals (see page 838) Project Options Directories/Conditionals
Use this page to set your directory and conditional defines paths for C# and VB.

Directories/Conditionals (see page 838) Project Options Directories/Conditionals
Use this page to set your directory and conditional defines paths. You can also
set the namespace prefix, to simplify your uses clause.

Debugger Environment Block (see page 839) Project Options Debugger Environment Block
Use this page to indicate which environment variables are passed to your
application while you are debugging it. This page is also available by choosing
Run Parameters.

Forms (see page 840) Project Options Forms
Use this page to select the main form for the current VCL Forms project and to
choose which of the available forms are automatically created when your
application begins.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

823

3

Linker (see page 840) Project Options Linker
Use this page to set linker options for your application.
Note: Not all of the options described below are available for all types of
projects.

Project Options (see page 842) Project Options
Use this dialog box to set project options.
In the left pane, click an item in a category to display its option page. If you leave
the cursor over text describing an option, a tool tip gives you an option
description, its default value, and a switch for the option if one exists.
Each configuration, except the Base, is based on another configuration. In the
Project Manager pane, the Build Configurations node under the project
represents the Base configuration. All configurations are listed under the Build
Configurations node in a hierarchical list that shows the parent-child
relationship... more (see page 842)

Packages (see page 843) Project Options Packages
Use this page to specify the design time packages installed in the IDE and the
runtime packages required by your project.

Pre-Build, Pre-Link, or Post-Build Events (see page 844) Use this dialog box to create a list of commands and macros to execute at certain
points in the build process. Enter any valid list of DOS commands. The
commands and their results are displayed in the on the Output tab of the
Messages pane.
Project Options Build Events Edit...
Note: Pre-Link events are available only for C++ projects.

Signing (see page 844) Project Options Signing
Use the Signing dialog to sign the assembly produced by the project using the
Microsoft Strong Name (SN) utility.
Note: Signing can only be used in the .NET framework.

Debugger Symbol Tables (see page 845) Project Options Debugger Symbol Tables
Use this dialog box to specify the location of the symbols tables to be used
during debugging. This dialog is also available from Run Parameters.

Version Info (see page 845) Project Options Version Info
Use this dialog box to specify version information for a Delphi Win32 project.
When version information is included, a user can right-click the program icon and
select properties to display the version information.

3.2.11.2.1 Configure Virtual Directory
Project Options ASP NET

Use this dialog box to specify and configure your server and its virtual root directory for your ASP.NET application.

Item Description

Location Specify the root directory of your ASP.NET application.

Alias Specify the name used to gain access to the virtual directory.

Read Allows the Web Server to execute scripts.

Run scripts Allows application execution for ISAPI or CGI type applications.

Execute Allows you to upload files to the directory.

Write Check this box to enable Write permissions.

Browse Allows you to access list of files and directories.

3.2.11.2.2 Configure Cassini
Project Options Debugger ASP NET

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

824

3

Use this dialog box to specify a path and port number to the Cassini Web Server. The dialog appears only when you have not
configured Cassini using Tools Options ASP NET Options.

Item Description

Path Indicate the path to the Cassini Web Server executable. To search for the executable file, click the
elipse (...).

Port Indicate the TCP/IP port used by the Cassini Web server.

Note: If you do not have access to the Cassini Web Server, you can download the server from
http://www.asp.net/Projects/Cassini/Download.

3.2.11.2.3 ASP .NET
Project Options Debugger ASP NET

Use this dialog box to setup debugger options for your ASP.NET applications.

Item Description

Launch Browser Select the check box to automatically launch a web browser when the Run or Run without
Debugging command is executed.

Start Page Display the .asp file to be launched from a web browser.

HTTP Address Specify the web location of the specified .asp file.

Host with Web Server Select the check box to run the application under a web server when the Run or Run without
Debugging command is executed.

Server Indicate the default Web Server for new Web applications.

Virtual Directory Specify the application root directory.

Server Options Display the Configure Virtual Directory dialog box.

Default Saves the current project settings as the default settings for new projects.

3.2.11.2.4 Add Design Packages
Project Options Packages Design packages Add button

Use this dialog box to navigate to a design time package and add it to the Design packages list.

3.2.11.2.5 Add Runtime Packages
Project Options Packages Ellipsis button Ellipsis button

Use this dialog box to add a runtime package to the Design packages list.

Item Description

Package Name Type the name of the package to add to the Runtime Packages list, or click the Browse button to
search for the package using the Package File Name dialog. If the package is in the Search Path, a
full path name is not required. (If the package directory is not in the Search Path, it is added at the
end.)

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

825

3

http://www.asp.net/Projects/Cassini/Download

Search Path If you haven't included a full directory path in the Package Name edit box, make sure the directory
where your package resides is in this list. If you add a directory in the Search Path edit box, you are
changing the global Library Search Path. Click [...] to get an ordered list of search paths that you can
edit. You can also change the path list in this field.

3.2.11.2.6 Add Symbol Table Search Path
Project Options Symbol Table New

Use this dialog box to specify a new module name and path to be added to the list of symbols tables to be used during
debugging. The module name and path are added to the list on the Symbol Tables page of the Project Options dialog box.

Item Description

Module Name The name of the module to be added to the list of symbol tables. If the Load all symbols option is
checked, all symbols are loaded and the list of modules is ignored. If the Load all symbols option is
not checked, you can add the names of modules that the debugger will look for when loading symbol
tables. Note that if you specify Load unspecified options, then only those in that list are not loaded.

The string is interpreted as a module file name (such as foo.dll). This string can contain wildcards to
specify multiple modules. For example, you can specify *core*.bpl to indicate modules such as
oldcore1.bpl, newcore2.bpl, and so on.

Symbol Table Path One or more directories containing the module to be added to the list of symbol tables. If you specify
multiple directories for a module, use a semicolon to separate them. Click the ... button to display the
Directory List dialog, where you can choose a directory.

See Also

Overview of Debugging (see page 10)

Setting the Search Order for Debug Symbol Tables (see page 129)

Symbol Tables (see page 845)

3.2.11.2.7 Application
Project Options Application

Use this dialog box to change the name and type of the current Delphi for .NET application.

Item Description

Debug/Release Indicates the current set of project options. By default, the distributed Debug and Release option sets
have settings appropriate for debugging and deploying an application, respectively. The option sets
provide an easy way to change project options based on your development activity. To create a
user-defined option set, use the Save as button.

Save as Displays a dialog box for naming and saving a user-defined set of project options.

Delete Deletes the current option set. Only user-defined option sets can be deleted. The distributed Debug
and Release option sets can not be deleted.

Windows executable Creates a Windows executable next time you run the application. This option does not alter your
code.

Console executable Creates a console executable next time you run the application. This option does not alter your code.

Assembly Creates an assembly next time you run the application. This option does not alter your code.

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

826

3

Application Name Indicates the current name of the executable. By default, the project name is used as the executable
name. To change the name, enter a new name in this field.

Startup object Specify the class that contains the Main method to be used as the entry point for the program. This is
useful is if your program contains more than one class with a Main method.

Default namespace Specify the default namespace to be used for items that you add to the project by using the New
Items dialog box. By default, the project name (without the extension) is used as the default
namespace.

Application icon Specify an icon (.ico) file to be inserted into the output file. The icon will be displayed next to the
output file in Windows Explorer.

3.2.11.2.8 Application
Project Options Application

Use this dialog box to change the name and type of the current application.

Note: Not all of the options described below are available for all types of projects. For instance, the LIB attribute options are not
available for all projects.

Application settings Description

Title Specify a title to appear next to the application icon when the application is minimized. The character
limit is 255 characters.

Help file Specify the location of the help file for the given application. Click the Browse... button to display an
Application Help File dialog.

Icon Specify an icon (.ico) file to be inserted into the output file. The icon is displayed next to the output file
in Windows Explorer. Click the Load Icon... button to display an Application Icon dialog.

This option corresponds to the /win32icon C# compiler option.

Enable runtime themes Specifies that the application you are developing is to use runtime themes as for Windows Vista. The
default value is true for preexisting projects and false for new projects.

Output settings Description

Target file extension Specifies the extension that is applied to the final executable file.

Library name settings Description

LIB prefix Adds the specified prefix to the DLL or package output file name.

LIB suffix Adds the specified suffix to the DLL or package output file name before the extension.

LIB version Adds a second extension to the DLL or package output file name after the extension. For example, if
you specify 1.1.3 as the version for a DLL named WebApp, the output file is named WebApp.dll.1.1.3.

General option Description

Default Saves the current settings as the default for each new project.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

827

3

3.2.11.2.9 Apply Option Set
Project Options Load...

Use this dialog to apply a named option set to a project configuration.

Item Description

Option Set File Navigates to the named option set. file. Click [...] to display a file selection dialog.

Action You have three choices for how you apply values: Overwrite, Replace, or Preserve.

Overwrite replaces the current configuration with the values from the option set entirely. That is, the
values from the option set overwrite the current configuration and all other option values are set to
their defaults. You get exactly the same configuration as when the option set was originally saved.

Replace writes all the values from the option set to the current configuration, but no other values are
changed. The values in the option set replace the current values, giving priority to the option set.

Preserve writes only the values from the option set that are not already set in the active
configuration. If the active configuration changed any of the values from their default values, they are
not changed. This gives priority to the configuration.

See Also

Working with Named Option Sets (see page 113)

3.2.11.2.10 Build Configuration Manager
Project Configuration Manager

Applies a named build configuration to a specific project or projects.

Item Description

Configuration Name Displays the names of the named build configurations. The two default configurations (Debug and
Release) are listed, along with the build configurations you have created and named on the
Project Options dialog box.

Available Projects Lists the names of your projects, the active configuration associated with each project, and the path
to the project. To apply the named build configuration listed in Configuration Name, select a project
or projects and click Apply.

Tip: To create a named build configuration, use the Project->Options

dialog box. You can save options on several pages of this dialog box to a named configuration. The Compiler, Compiler
Messages, Linker, and Directories/Conditionals pages each contain a Configuration field.

See Also

MSBuild Overview (see page 4)

Build Configurations Overview (see page 5)

Creating Named Build Configurations for C++ (see page 107)

Creating Named Build Configurations in Delphi (see page 108)

Applying the Active Build Configuration (see page 104)

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

828

3

3.2.11.2.11 Build Events
Project Options Build Events

Use the Build Events dialog box to add events for the pre-build, pre-link and post-build stages. Results of the commands you
specify in this dialog box are displayed in the Output pane. To control the level of output, choose
Tools Options Environment Options and adjust the Verbosity level.

Note: Some of the build options are not available for some project types.

Item Description

Pre-Build Enter the commands in the Commands: window that are to be performed before the rest of the build.
To display the Events List dialog box for creating a command list, click Edit.

Pre-Link For C++ only. Enter the commands in the Commands: window that are to be performed before
linking. To display the Events List dialog box for creating a command list, click Edit.

Post-Build Enter the commands in the Commands: window that are to be performed after the build has
completed. To display the Events Listdialog box for creating the command list, click Edit.

See Also

Pre-Build Event or Post-Build Event Dialog Box (see page 844)

Creating Build Events (see page 107)

3.2.11.2.12 Compiler
Project Options Compiler

Use this dialog box to set the C# compiler options for the current project.

Item Description

Debug/Release Indicates the current set of project options. By default, the distributed Debug and Release option sets
have settings appropriate for debugging and deploying an application, respectively. The option sets
provide an easy way to change project options based on your development activity. To create a
user-defined option set, use the Save as button.

Save as Displays a dialog box for naming and saving a user-defined set of project options.

Delete Deletes the current option set. Only user-defined option sets can be deleted. The distributed Debug
and Release option sets can not be deleted.

Optimization Enables optimizations performed by the compiler to make your output file smaller, faster, and more
efficient. This option also tells the common language runtime to optimize code at runtime.

Corresponds to /optimize.

Allow unsafe code Allows code that uses the unsafe keyword to compile.

Corresponds to /unsafe.

Treat warnings as
errors

Reports all warnings as errors. Any messages that would ordinarily be reported as warnings are
instead reported as errors, and the build process is halted (no output files are built).

Corresponds to /warnaserror.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

829

3

Warning level Specifies the warning level for the compiler to display.

0 Suppresses all warning messages.

1 Displays severe warning messages.

2 Displays level 1 warnings plus certain less severe warnings, such as warnings about hiding class
members.

3 Displays level 2 warnings plus certain less severe warnings, such as warnings about expressions
that always evaluate to true or false.

4 Displays all level 3 warnings plus informational warnings.

Corresponds to /warn. The default is 4.

Debug information Causes the compiler to generate debugging information and place it in a program database file
(.pdb) the next time you compile the application.

• None — No debugging information will be available.

• Full — Enables attaching a debugger to the running program.

• PDB only — Allows source code debugging when the program is started in the debugger but will
only display assembler when the running program is attached to the debugger.

Corresponds to /debug. The default is Full for the Debug configuration, or PDB Only for the Release
configuration.

Target platform Specifies which version of the common language runtime (CLR) can run the assembly.

• Any CPU — Compiles your assembly to run on any platform.

• x86 — Compiles your assembly to be run by the 32-bit, x86-compatible common language
runtime.

• x64 — Compiles your assembly to be run by the 64-bit common language runtime on a computer
that supports the AMD64 or EM64T instruction set.

Corresponds to /platform. The default is x86 for the Debug configuration, or Any CPU for the
Release configuration..

Base address Specifies the preferred base address at which to load the DLL. The default base address for a DLL is
set by the .NET Framework common language runtime. This address can be specified as a decimal
or hexadecimal number.

Corresponds to /baseaddress.

File alignment Specifies the alignment used for output file sections. Choose a value (in bytes) that specifies the size
of sections in the output file. Choices are 512, 1024, 2048, 4096, and 8192 bytes.

Corresponds to /filealign. There is no fixed default. If /filealign is not specified, the CLR picks a default
at compile time.

Generate XML
documentation

Processes documentation comments in the code and creates an XML file named ProjectDoc.xml
in the same directory as the project file (.csproj for MSBuild format).

Lines beginning with /// and preceding a user-defined type such as a class, delegate, or interface; a
member such as a field, event, property, or method; or a namespace declaration can be processed
as comments and placed in the file.

Corresponds to /doc.

Do not reference
mscorlib.dll

Prevents the import of mscorlib.dll, which defines the entire System namespace. Use this option if
you want to define or create your own System namespace and objects.

Corresponds to /nostdlib.

Generate overflow
checks

Specifies whether an integer arithmetic statement that is not in the scope of the checked or
unchecked keywords and that results in a value outside the range of the data type shall cause a
run-time exception.

Corresponds to /checked.

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

830

3

Codepage Specifies the codepage to use during compilation if the required page is not the current default
codepage for the system.

If you compile one or more source code files that were not created to use the default code page on
your computer, you can use this option to specify which code page should be used. This option
applies to all source code files in your compilation.

If the source code files were created with the same codepage that is in effect on your computer or if
the source code files were created with UNICODE or UTF-8, you need not use this option.

Corresponds to /codepage.

Language version Specifies whether the compiler will only accept syntax that is included in the ISO/IEC 23270:2003 C#
language specification.

Corresponds to /langversion. The default is to accept all valid language syntax

Tip: To display the compiler options in the Message

window when you compile a project, choose Tools Options Environment Options and select the Show command line
option. The next time you compile a project, the command used to compile the project will be displayed in the Messages
window.

3.2.11.2.13 Compiler
Project Options Compiler

Use this page to set the compiler options for the current project.

Note: Not all of the options described below are available for all types of projects.

Code generation items Description

Build Configuration Displays the current named build configuration associated with the options on this page. There are
two default build configurations: Debug and Release. To create additional build configurations, enter
a name in this field and click Save As. To delete the named build configuration displayed in this field,
click Delete.

Optimization Controls code optimization. When enabled (equivalent to {$O+}), the compiler performs a number of
code optimizations, such as placing variables in CPU registers, eliminating common subexpressions,
and generating induction variables. When disabled, (equivalent to {$O-}), all such optimizations are
disabled. Other than for certain debugging situations, you should never have a need to turn
optimizations off. All optimizations performed by the Delphi compiler are guaranteed not to alter the
meaning of a program. In other words, the compiler performs no "unsafe" optimizations that require
special awareness by the programmer.

This option can only turn optimization on or off for an entire procedure or function. You can't turn
optimization on or off for a single line or group of lines within a routine.

Stack frames Delphi for Win32 only. Controls the generation of stack frames for procedures and functions. When
enabled, (equivalent to {$W+}), stack frames are always generated for procedures and functions,
even when they're not needed. When disabled, (equivalent to {$W-}), stack frames are only
generated when they're required, as determined by the routine's use of local variables. Some
debugging tools require stack frames to be generated for all procedures and functions, but other than
that you should never have a need to enable this option.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

831

3

Pentium-save FDIV Delphi for Win32 only. Controls generation of floating-point code that guards against the flawed FDIV
instruction exhibited by certain early Pentium processors. Windows 95, Windows NT 3.51, and later
Windows OS versions contain code that corrects the Pentium FDIV bug system-wide. When enabled
(equivalent to {$U+}), all floating-point divisions are performed using a runtime library routine. The
first time the floating-point division routine is invoked, it checks whether the processor's FDIV
instruction works correctly, and updates the TestFDIV variable (declared in the System unit)
accordingly. For subsequent floating-point divide operations, the value stored in TestFDIV is used to
determine what action to take.

-1 means that FDIV instruction has been tested and found to be flawed.

0 means that FDIV instruction has not yet been tested.

1 means that FDIV instruction has been tested and found to be correct.

For processors that do not exhibit the FDIV flaw, enabling this option results in only a slight
performance degradation. For a flawed Pentium processor, floating-point divide operations may take
up to three times longer in the enabled state but always produce correct results. In the disabled
(equivalent to {$U-}) state, floating-point divide operations are performed using in-line FDIV
instructions. This results in optimum speed and code size, but may produce incorrect results on
flawed Pentium processors. You should use the disabled state only in cases where you are certain
that the code is not running on a flawed Pentium processor.

Record field alignment Controls alignment of fields in Delphi record types and class structures.

If you select option 1 (equivalent to {$A1}) or disable the option (equivalent to {$A-}), fields are never
aligned. All record and class structures are packed.

If you select 2 (equivalent to {$A2}), fields in record types that are declared without the packed
modifier and fields in class structures are aligned on word boundaries.

If you select option 4 (equivalent to {$A4}), fields in record types that are declared without the packed
modifier and fields in class structures are aligned on double-word boundaries.

If you select 8 (equivalent to {$A8} or {$A+}), fields in record types that are declared without the
packed modifier and fields in class structures are aligned on quad word boundaries. Regardless of
the state of the $A directive, variables and typed constants are always aligned for optimal access. By
setting the option to 8, execution is faster.

Codepage Enter the codepage for your application's language. Codepage is a decimal number representing a
specific character encoding table, and there are standard values for various languages.

Syntax options items Description

Strict var-strings This option (equivalent to $V directive) is meaningful only for Delphi code that uses short strings, and
is provided for backwards compatibility with early versions of Delphi and CodeGear Pascal. The
option controls type checking on short strings passed as variable parameters. When enabled
(equivalent to {$V+}), strict type checking is performed, requiring the formal and actual parameters to
be of identical string types. When disabled (equivalent to {$V-}) (relaxed), any short string type
variable is allowed as an actual parameter, even if the declared maximum length is not the same as
that of the formal parameter.

Complete boolean eval Switches between the two different models of Delphi code generation for the AND and OR Boolean
operators. When enabled (equivalent to {$B+}), the compiler generates code for complete Boolean
expression evaluation. This means that every operand of a Boolean expression built from the AND
and OR operators is guaranteed to be evaluated, even when the result of the entire expression is
already known. When disabled (equivalent to {$B-}), the compiler generates code for short-circuit
Boolean expression evaluation, which means that evaluation stops as soon as the result of the entire
expression becomes evident in left to right order of evaluation.

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

832

3

Extended syntax Provided for backward compatibility. You should not use this option (equivalent to {$X-} mode) when
writing Delphi applications. This option enables or disables Delphi's extended syntax:

Function statements. In the {$X+} mode, function calls can be used as procedure calls; that is, the
result of a function call can be discarded, rather than passed to another function or used in an
operation or assignment. Generally, the computations performed by a function are represented
through its result, so discarding the result makes little sense. Sometimes, however, a function is
called because it performs a task such as setting the value of a global variable, without producing a
useful result.

The Result variable. When enabled (equivalent to {$X+}, the predefined variable Result can be used
within a function body to hold the function's return value.

Null-terminated strings. When enabled, Delphi strings can be assigned to zero-based character
arrays (array[0..X] of Char), which are compatible with PChar types.

Typed @ operator Controls the types of pointer values generated by the @ operator and the compatibility of pointer
types. When disabled (equivalent to {$T-}), the result of the @ operator is always an untyped pointer
(Pointer) that is compatible with all other pointer types. When @ is applied to a variable reference in
the enabled (equivalent to {$T+}), the result is a typed pointer that is compatible only with Pointer and
with other pointers to the type of the variable. When disabled, distinct pointer types other than Pointer
are incompatible (even if they are pointers to the same type). When enabled, pointers to the same
type are compatible.

Open parameters Meaningful only for code compiled supporting huge strings, and is provided for backwards
compatibility with early versions of Delphi and CodeGear Pascal. This option, (equivalent to $P)
controls the meaning of variable parameters declared using the string keyword in the huge strings
disabled (equivalent to {$H-}) state. When disabled (equivalent to {$P-}), variable parameters
declared using the string keyword are normal variable parameters, but when enabled (equivalent to
{$P+}), they are open string parameters. Regardless of the setting of this option, the openstring
identifier can always be used to declare open string parameters.

Huge strings Delphi for Win32 only. This option (equivalent to the $H directive) controls the meaning of the
reserved word string when used alone in a type declaration. The generic type string can represent
either a long, dynamically-allocated string (the fundamental type AnsiString) or a short, statically
allocated string (the fundamental type ShortString). By default, Delphi defines the generic string type
to be the long AnsiString.

All components in the component libraries are compiled in this state. If you write components, they
should also use long strings, as should any code that receives data from component library
string-type properties. The disabled (equivalent to {$H-}) state is mostly useful for using code from
versions of Delphi that used short strings by default. You can locally override the meaning of
string-type definitions to ensure generation of short strings. You can also change declarations of short
string types to string[255] or ShortString, which are unambiguous and independent of the enabled
option.

Assignable typed
constants

Controls whether typed constants can be modified or not. When enabled (equivalent to {$J+}), typed
constants can be modified, and are in essence initialized variables. When disabled (equivalent to
{$J-}), typed constants are truly constant, and any attempt to modify a typed constant causes the
compiler to report an error. Writable consts refers to the use of a typed const as a variable modifiable
at runtime.

Old source code that uses writable typed constants must be compiled with this option enabled, but for
new applications it is recommended that you use initialized variables and compile your code with the
option disabled.

Target platform items Description (only for .NETprojects)

AnyCPU The executable runs on any CPU.

x86 The executable runs only on the 32–bit x86 common language runtime.

x64 The executable runs only on the 64–bit common language runtime on computers that support the
AMD64 or EM64T instruction set.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

833

3

Runtime errors items Description

Range checking Enables or disables the generation of range-checking code. When enabled, (equivalent to {$R+}), all
array and string-indexing expressions are verified as being within the defined bounds, and all
assignments to scalar and subrange variables are checked to be within range. If a range check fails,
an ERangeError exception is raised (or the program is terminated if exception handling is not
enabled). Enabling range checking slows down your program and makes it somewhat larger.

I/O checking Enables or disables the automatic code generation that checks the result of a call to an I/O
procedure. If an I/O procedure returns a nonzero I/O result when this switch is on, an EInOutError
exception is raised (or the program is terminated if exception handling is not enabled). When this
switch is off, you must check for I/O errors by calling IOResult.

Overflow checking Controls the generation of overflow checking code. When enabled (equivalent to {$Q+}), certain
integer arithmetic operations (+, -, *, Abs, Sqr, Succ, Pred, Inc, and Dec) are checked for overflow.
The code for each of these integer arithmetic operations is followed by additional code that verifies
that the result is within the supported range. If an overflow check fails, an EIntOverflow exception is
raised (or the program is terminated if exception handling is not enabled). This switch is usually used
in conjunction with the range checking option ($R switch), which enables and disables the generation
of range-checking code. Enabling overflow checking slows down your program and makes it
somewhat larger.

Debugging items Description

Debug information Enables or disables the generation of debug information. This information consists of a line-number
table for each procedure, which maps object-code addresses into source text line numbers. For units,
the debug information is recorded in the unit file along with the unit's object code. Debug information
increases the size of unit file and takes up additional memory when compiling programs that use the
unit, but it does not affect the size or speed of the executable program. When a program or unit is
compiled with this option enabled (equivalent to {$D+}), the integrated debugger lets you single-step
and set breakpoints in that module. The Include debug info and Map file options (on the Linker
page of the Project Options dialog) produce complete line information for a given module only if
you've compiled that module with this option set on. This option is usually used in conjunction with
the Local symbols option (the $L switch), which enables and disables the generation of local symbol
information for debugging.

Local symbols Enables or disables the generation of local symbol information. Local symbol information consists of
the names and types of all local variables and constants in a module, that is, the symbols in the
module's implementation part and the symbols within the module's procedures and functions. For
units, the local symbol information is recorded in the unit file along with the unit's object code. Local
symbol information increases the size of unit files and takes up additional memory when compiling
programs that use the unit, but it does not affect the size or speed of the executable program. When
a program or unit is compiled with this option enabled (equivalent to {$L+}), the integrated debugger
lets you examine and modify the module's local variables. Furthermore, calls to the module's
procedures and functions can be examined by way of the View | Call Stack. The Include TD32 debug
info and Map file options (on the Linker page of the Project Options dialog) produce local symbol
information for a given module only if that module was compiled with this option set on. This option is
usually used in conjunction with the Debug information option, which enables and disables the
generation of line-number tables for debugging. This option is ignored if the compiler has the Debug
information option disabled.

Reference info Generates symbol reference information used by the Code Editor and the Project Manager.
Corresponds to {$Y}. If Reference info and Definitions only are both checked ({$YD}), the compiler
records information about where identifiers are defined. If Reference info is checked but Definitions
only is unchecked ({$Y+}), the compiler records information about where each identifier is defined
and where it is used. These options have no effect unless Debug information and Local symbols
(see above) are selected.

Definitions only See description of Reference info.

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

834

3

Assertions Enables or disables the generation of code for assertions in a Delphi source file. The option is
enabled (equivalent to {$C+}) by default. Since assertions are not usually used at runtime in shipping
versions of a product, compiler directives that disable the generation of code for assertions are
provided. Uncheck this option to disable assertions.

Use Debug
DCUIL/DCUs

The debug DCUILs (.NET) or DCUs (Win32) contain debug information and are built with stack
frames. When this option is checked, the compiler prepends the debug DCUIL/DCU path to the unit
search path specified in Debug Source Path on the Directories/Conditionals page.

Documentation items Description

Generate XML
Documentation

Generates a file containing the XML representation in your project directory. Corresponds to the --doc
compiler switch.

General item Description

Default Saves the current settings as the default for each new project.

Tip: To display the compiler options in the Messages

window when you compile a project, choose Tools Options Environment Options and select \ Show command line. The
next time you compile a project, both the command used to compile the project and the response file are displayed in the
Messages window. The response file lists the compiler options and the files to be compiled.

See Also

Compiling (see page 2)

Creating Named Build Configurations for C++ (see page 107)

Creating Named Build Configurations in Delphi (see page 108)

3.2.11.2.14 Compiler Messages
Project Options Compiler Messages

Use this page to control the information that the compiler provides at compile time.

Item Description

Build Configuration Displays the current named build configuration associated with the options on this page. There are
two default build configurations: Debug and Release. To create additional build configurations, enter
a name in this field and click Save As. To delete the named build configuration displayed in this field,
click Delete.

Show hints Enables hints during compile time.

Show warnings Enables warnings during compile time.

Warnings Allows you to select which warnings are displayed during compile time.

Default Saves the current settings as the default for each new project.

See Also

Compiler Errors (see page 311)

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

835

3

3.2.11.2.15 Compiler (Visual Basic)
Project Options Compiler

Use this dialog box to set the Visual Basic compiler options for the current project. For additional information about the Visual
Basic compiler options, see the .NET Framework SDK online Help.

Item Description

Debug/Release Indicates the current set of project options. By default, the distributed Debug and Release option sets
have settings appropriate for debugging and deploying an application, respectively. The option sets
provide an easy way to change project options based on your development activity. To create a
user-defined option set, use the Save as button.

Save as Displays a dialog box for naming and saving a user-defined set of project options.

Delete Deletes the current option set. Only user-defined option sets can be deleted. The distributed Debug
and Release option sets can not be deleted.

Debug information Causes the compiler to generate debugging information and place it in a program database file (.pdb)
the next time you run the application.

Corresponds to /debug.

Optimization Enables optimizations performed by the compiler to make your output file smaller, faster, and more
efficient. This option also tells the common language runtime to optimize code at runtime.

Corresponds to /optimize.

Treat warnings as
errors

Treats all warnings as errors. Any messages that would ordinarily be reported as warnings are
instead reported as errors, and the build process is halted (no output files are built).

Corresponds to /warnaserror.

Show warnings Generates compiler warnings.

Corresponds to /nowarn.

Conditional Defines Enter symbols referenced in conditional compiler directives. Separate multiple symbols with
semicolons.

Output Directory Specifies where the compiler will put the executable file.

Corresponds to /out.

Tip: To display the compiler options in the Message

window when you compile a project, choose Tools Options Environment Options and select the Show command line
option. The next time you compile a project, the command used to compile the project and the response file will be displayed in
the Messages window. The response file lists the compiler options and the files to be compiled.

3.2.11.2.16 Components
Project Options Packages Components button

Use this dialog box to display the components in the selected package, along with the icons that represent the components in
the Tool Palette if the package is installed.

3.2.11.2.17 Debugger
Project Options Debugger

Use this dialog to pass command-line parameters to your application, specify a host executable for testing a DLL, or load an

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

836

3

executable into the debugger. This dialog is also available from Run Parameters.

Item Description

Host Application Specifies the path to an executable file. (Click Browse to bring up a file-selection dialog.) If the
current project is a DLL or package, use this edit box to specify a host application that calls it. You
can also enter the name of any executable that you want to run in the debugger. If you want to run
the project that you have open, there is no need to enter anything in Host Application.

Parameters Specifies the command-line parameters to pass to your application. Enter the command-line
arguments you want to pass to your application (or the host application) when it starts. You can use
the drop-down button to choose from a history of previously specified parameters.

Working Directory Specifies name of the directory to use for the debugging process. By default, this is the same
directory as the one containing the executable of your application.

Source Path Specifies the directories containing the source files. By default, the debugger searches paths defined
by the compiler. If the directory structure has changed since the last compile or if the debugger
cannot find a source file, a path can be entered here to include the file in the debugging session.
Click the ellipsis button to display a dialog box that allows you to edit an ordered list of directory
source paths Additional directories are searched in the following order:

1. Debug Source path (this option).

2. The Browsing path, as specified for Delphi for Win32 or .NET or for C++:

— For Delphi for Win32, the Tools Options Environment Options Delphi Options Library
— Win32 page.

— For Delphi.NET, the Tools Options Environment Options Delphi Options Library —
NET page.

— For C++,Tools Options Debugger Options Borland Debuggers page.

3. Debug Source path, specified on the Tools Options Debugger Options Borland
Debuggers page.

Note: The Browsing path is not used for C# or Visual Basic.

Default Saves the current settings as the default for each new project.

3.2.11.2.18 Description
Project Options Description

Use the Description page to specify a description for the package, the uses of the package, and how the package is built.

Note: This page appears only if you are developing a package.

Description option Description

Description Specifies the description that appears when the package is installed.

Usage options Description

Designtime only The package is installable on the Tools Palette.

Runtime only The package can be deployed with an application.

Designtime and runtime The package is both installable and deployable.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

837

3

Build control options Description

Rebuild as needed Builds the package as needed.

Explicit rebuild Builds the package only when you choose Project->Build. Use this option if the package is low-level
and does not change often.

Package name
options

Description

LIB Prefix Adds a specified prefix to the output file name.

LIB Version Adds a second extension to the output file name after the .bpl extension.

For example, specify 2.1.3 here for Package1 to generate Package1.bpl.2.1.3.

LIB Suffix Adds a specified suffix to the output file name before the extension.

For example, specify -2.1.3 here for Package1 to generate Package1-2.1.3.bpl.

General option Description

Default Saves the current settings as the default for each new project.

3.2.11.2.19 Directories/Conditionals
Project Options Directories/Conditionals

Use this page to set your directory and conditional defines paths for C# and VB.

Item Description

Debug/Release Indicates the current set of project options. By default, the distributed Debug and Release option sets
have settings appropriate for debugging and deploying an application, respectively. The option sets
provide an easy way to change project options based on your development activity. To create a
user-defined option set, use the Save as button.

Save as Displays a dialog box for naming and saving a user-defined set of project options.

Delete Deletes the current option set. Only user-defined option sets can be deleted. The distributed Debug
and Release option sets cannot be deleted.

Conditional Defines Enter symbols referenced in conditional compiler directives. Separate multiple symbols with
semicolons.

Corresponds to the /define compiler switch for both C# and VB.

Output directory Specifies where the compiler should put the executable file. Corresponds to the /out compiler switch
for both C# and VB.

Default Saves the current settings as the default for each new project.

3.2.11.2.20 Directories/Conditionals
Project Options Directories/Conditionals

Use this page to set your directory and conditional defines paths. You can also set the namespace prefix, to simplify your uses
clause.

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

838

3

Item Description

Build Configuration Displays the current named build configuration associated with the options on this page. There are
two default build configurations: Debug and Release. To create additional build configurations, enter
a name in this field and click Save As. To delete the named build configuration displayed in this field,
click Delete.

Output directory Specifies where the compiler should put the executable file.

Unit output directory Specifies a separate directory to contain the .dcu (Win32) or .dcuil (.NET) files.

Search path Specifies the location of your source files. Only those files on the compiler's search path or the library
search path are included in the build. If you try to build your project with a file not on the search path,
you will receive a compiler error. You must include the entire search path.

Separate multiple directory path names with a semicolons. Whitespace before or after the semicolon
is allowed but not required. Relative and absolute path names are allowed, including path names
relative to the current position.

If you check the Use Debug DCUILs option on the Project Options Compiler page, the Debug
DCUIL path from Tools Debugger Options CodeGear .NET Debugger is prepended to this
search path.

Package output
directory

Specifies where the compiler puts generated package files.

DCP/DCPIL output
directory

Specifies where the .dcp (Win32) or .dcpil (.NET) file is placed at compilation time. If left blank,
the global DCP/DCPIL output directory specified in the Tools Options Environment
Options Delphi Options Library page is used instead.

Conditional defines Specify the symbols referenced in conditional compiler directives. Separate multiple defines with
semicolons.

Unit aliases Useful for backwards compatibility. Specify alias names for units that may have changed names or
were merged into a single unit. The format is <oldunit>=<newunit> (for example,
Forms=Xforms). Separate multiple aliases with semicolons.

The default value for Delphi is WinTypes=Windows;WinProcs=Windows.Default.

Namespace prefixes Specifies the prefixes for namespaces, to allow you to create a shorthand version of the namespace
in the uses clause in your code file. For example, instead of writing Borland.Vcl.DB, you could
specify Borland.Vcl as your namespace prefix. In the uses clause, you could then specify uses
DB;.

Default Namespace Indicates the default namespace used for all units in the project.

Default Saves the current settings as the default for each new project.

3.2.11.2.21 Debugger Environment Block
Project Options Debugger Environment Block

Use this page to indicate which environment variables are passed to your application while you are debugging it. This page is
also available by choosing Run Parameters.

Item Description

System variables Lists all environment variables and their values defined at a system level. You cannot delete an
existing system variable, but you can override it.

Add Override... Displays the Override System Variable dialog box, allowing you to modify an existing system
variable to create a new user override. This button is disabled until you select a variable in the
System variables list.

User overrides Lists all defined user overrides and their values. A user override takes precedence over an existing
system variable until you delete the user override.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

839

3

New Displays the New User Variable dialog box allowing you to create new user override to a system
variable.

Edit Displays the Edit User Variable dialog box allowing you to change the user override currently
selected in the User overrides list.

Delete Deletes the user override currently selected in the User overrides list.

Include System
Variables

Passes the system environment variables to the application you are debugging. If unchecked, only
the user overrides are passed to your application.

Default Saves the current settings as the default for each new project.

3.2.11.2.22 Forms
Project Options Forms

Use this page to select the main form for the current VCL Forms project and to choose which of the available forms are
automatically created when your application begins.

Item Description

Main form: Indicates which form users see when they start your application. Use the drop-down list to select the
main form for the project. The main form is the first form listed in the Auto-create forms list box.

Auto-create forms: Lists the forms that are automatically added to the startup code of the project file and created at
runtime. These forms are automatically created and displayed when you first run your application.
You can rearrange the create order of forms by dragging and dropping forms to a new location. To
select multiple forms, hold down the SHIFT key while selecting the form names.

Available forms: Lists those forms that are used by your application but are not automatically created. If you want to
create an instance of one of these forms, you must call its Create method.

Arrow buttons Use the arrow buttons to move files from one list box to the other.

Default Saves the current settings as the default for each new project.

3.2.11.2.23 Linker
Project Options Linker

Use this page to set linker options for your application.

Note: Not all of the options described below are available for all types of projects.

Build Configuration
options

Description

Build Configuration Displays the current named build configuration associated with the options on this page. There are
two default build configurations: Debug and Release. To create additional build configurations, enter
a name in this field and click Save As.... To delete the named build configuration displayed in this
field, click Delete.

Save As... Saves the current configuration to a build configuration with the name specified in the Build
Configuration field.

Delete Deletes the configuration specified in the Build Configuration field..

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

840

3

Map file items Description

Off The linker does not produce a map file.

Segments Causes the linker to produce a map file that includes a list of segments, the program start address,
and any warning or error messages produced during the link.

Publics Causes the linker to produce a map file that includes a list of segments, the program start address,
any warning or error messages produced during the link, and a list of alphabetically sorted public
symbols.

Detailed Causes the linker to produce a map file that includes a list of segments, the program start address,
any warning or error messages produced during the link, a list of alphabetically sorted public
symbols, and an additional detailed segment map. The detailed segment map includes the segment
address, length in bytes, segment name, group, and module information.

Linker output items Description

Generate DCUs Creates the standard Delphi .dcu format files

Generate C object files Creates a C object file for linking with a C program (no name mangling).

Generate C++ object
files

Creates a C++ object file for linking with C++ (uses C++ name mangling).

Include namespaces Include C++ namespace information in the OBJ and HPP files generated.

Export all symbols Include symbol information in the OBJ and HPP files generated.

Generate header files Include header file information in the OBJ and HPP files generated.

Generate all C++
Builder files

Select this to include all namespace, symbol, and header file information in the package. This option
applies only to packages. It is recommended that you check this item rather than the items under
Generate C++ object files.

EXE and DLL options
items

Description

Generate console
application

Causes the linker to set a flag in the application’s .exe file indicating a console mode application.

Generate .PDB debug
info file (.NET)

Include TD32 debug
info (Win32)

Causes the compiler to generate debugging information and place it in a program database file the
next time you run the application.

Include remote debug
symbols

Check this if you are using remote debugging.

Generate .DRCIL file Creates a .drcil file containing string resources, which can be compiled into a resource file.

Memory sizes items Description

Min stack size Indicates the initial committed size of the stack (only applicable to executable projects; disabled for
DLLs). Memory-size settings can also be specified in your source code with the $M compiler
directive.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

841

3

Max stack size Indicates the total reserved size of the stack (only applicable to executable projects; disabled for
DLLs). Memory-size settings can also be specified in your source code with the $M compiler
directive.

Image base Specifies the preferred load address of the compiled image. This value is typically only changed
when compiling DLLs.

Description item Description

EXE Description This field can contain a string of up to 255 characters. The string is linked to $D and included in the
executable file. It is most often used to insert copyright information into the application. Copyright
information can also be included as part of the VersionInfo file. Note that this option is only applicable
to DLLs and application executables but not for packages.

COM items Description

Auto Register Type
Library

Available only for projects with a type library. Adds an entry for the type library to your system's
Windows registry.

Generate Import
Assembly

Available only for projects with a type library. After the project is built, tlbimp.exe is executed to
generate an interop assembly.

General item Description

Default Saves the current settings as the default for each new project.

3.2.11.2.24 Project Options
Project Options

Use this dialog box to set project options.

In the left pane, click an item in a category to display its option page. If you leave the cursor over text describing an option, a tool
tip gives you an option description, its default value, and a switch for the option if one exists.

Each configuration, except the Base, is based on another configuration. In the Project Manager pane, the Build
Configurations node under the project represents the Base configuration. All configurations are listed under the Build
Configurations node in a hierarchical list that shows the parent-child relationship for each configuration.

If an option's value differs from its parent's configuration, its associated text is boldface. To revert to the parent configuration
value, right-click the option text and click Revert on the context menu. If you change option values, you can save your set of
changes in a new configuration or a named option set. You can switch to this configuration or load this option set into the active
configuration.

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

842

3

Build Configuration
options

Description

Build Configuration Displays the active build configuration. Use the drop-down menu to select another build configuration.

The Build Configuration drop-down menu lists the configurations for that project—not option sets.
Each project has its own list of configurations, independent of other projects.

An active configuration's option values can be saved to an option set file with the Save As... button.
An option set may be applied entirely or partially to a project's active configuration with the Load...
button.

Three initial configurations are provided: Base, Debug, and Release. The Base configuration provides
a base set of configuration options. It cannot be deleted, so you always have at least one
configuration.

Some options that contain a list of items, such as defines or paths, have a Merge check box. If
checked, the IDE merges the option's list with that of its immediate ancestor's configuration's list for
that option. Note that the IDE does not actually change the contents of the option, but acts as if the
list included the ancestor's list. If the ancestor's Merge check box is also checked, the IDE also
merges this ancestor's list for that option, and so on up the inheritance chain. If unchecked, the IDE
uses only the items in the current configuration.

Save As... Displays the Save As dialog box to save the current configuration's options to a file that can be
loaded as a named option set.

Only the values in the current active configuration that are different than their parent's configuration
are saved in the option set file. This includes any values that you changed in the active configuration
as well as any that were already changed from their default values in the configuration.

Load... Displays the Apply Option Set dialog box to apply the options in a named option set to the current
configuration.

You have three choices for how you load the values: Overwrite, Replace, or Preserve.

General option Description

Default Saves the current settings as the default for each new project.

See Also

Apply Option Set dialog (see page 828)

Build Configurations Overview (see page 5)

Build Configuration Manager (see page 828)

Working With Named Option Sets (see page 113)

Applying the Active Build Configuration (see page 104)

3.2.11.2.25 Packages
Project Options Packages

Use this page to specify the design time packages installed in the IDE and the runtime packages required by your project.

Item Description

Design packages Lists the design time packages available to the IDE and all projects. Check the design packages you
want to make available for your current project.

Add Installs a design time package. The package will be available to your current project.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

843

3

Remove Deletes the selected package. The package becomes unavailable for your current project.

Edit Opens the selected package in the Package Editor if the source code or .dcp file is available.

Components Displays a list of the components included in the selected package.

Runtime packages Determines which runtime packages to use when the executable file is created. Separate package
names with semicolons.

As packages are installed and uninstalled, the runtime package list is updated. The product
automatically adds runtime packages that are required by installed design time packages.

Build with runtime
packages

Dynamically links the runtime packages in your project and enables the runtime packages edit box.

Ellipsis Displays Runtime Package dialog box, allowing you to specify the name of a runtime package to add
to the Runtime packages list.

Default Saves the current settings as the default for each new project.

3.2.11.2.26 Pre-Build, Pre-Link, or Post-Build Events
Use this dialog box to create a list of commands and macros to execute at certain points in the build process. Enter any valid list
of DOS commands. The commands and their results are displayed in the on the Output tab of the Messages pane.

Project Options Build Events Edit...

Note: Pre-Link events are available only for C++ projects.

Item Description

Execute when Executes the specified events always or only if the target is out of date. This option applies only to
Post-Build events.

Cancel build on error Cancels the project build if a command returns a nonzero error code.

Commands Specifies the commands to execute. Separate each command by a newline character.

Macros Lists macros available to use as command arguments. Clicking a macro places its text in the
Commands window at the cursor position.

3.2.11.2.27 Signing
Project Options Signing

Use the Signing dialog to sign the assembly produced by the project using the Microsoft Strong Name (SN) utility.

Note: Signing can only be used in the .NET framework.

Item Description

Sign the assembly Use the Microsoft Strong Name utility to sign the assembly (executable, DLL, etc.) produced by the
project. Refer to the Microsoft .NET SDK for more information about signing.

Strong name key file Specifies the file with the signature. Click [...] to display a dialog to browse for the file.

Delay sign only Delay signing the assembly produced by the project. You would use this only if there is some post
build step you need to perform on the assembly. This is typically not checked, since failing to sign
prevents you from running or debugging the assembly.

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

844

3

Warning: If you sign the assembly, delaying signing prevents you from running or debugging the assembly produced by the
project.

3.2.11.2.28 Debugger Symbol Tables
Project Options Debugger Symbol Tables

Use this dialog box to specify the location of the symbols tables to be used during debugging. This dialog is also available from
Run Parameters.

Item Description

Debug symbols search
path:

Specifies the directory containing the symbol tables used for debugging. This path is used if you
check the Load all symbols check box.

Load all symbols Sets the state of the Mappings from Module Name to Symbol Table Path list. If checked, the list is
disabled and all symbol tables are loaded by the debugger. The debugger uses the Debug symbols
search path to search for the symbol table file associated with each module loaded by the process
being debugged. If unchecked, the Mappings from Module Name to Symbol Table Pathlist is
enabled and its settings are used.

Mappings from Module
Name to Symbol Table
Path

Displays the current mapping of each module name to a symbol table search path that is defined for
the project. Use the up and down arrows (to the right of the dialog) to move the selected item up or
down in the list. The debugger searches this list, in order, to find a match for the name of the module
being loaded. When the debugger finds a matching module name, it uses the corresponding path to
locate that module's symbol table.

For example, if module foo123.dll is loaded, and the list shows foo*.dll as the first item and *123.dll
as a later item, the debugger only uses the symbol table path for foo*.dll, even though both items
match the module being loaded.

Load symbols for
unspecified modules

Specifies whether symbol tables for modules not in the Mappings from Module Name to Symbol
Table Path list (either explicitly or via a file mask) are loaded during debugging. If checked, the
symbol tables for modules not specified are loaded using the Debug symbols search path. If
unchecked, symbol tables are loaded only for modules in the list.

New Displays the Add Symbol Table Search Path dialog, where you can specify a module name and an
associated search table path. The module and path are added to the Mappings from Module Name
to Symbol Table Path list. Note that you can add a blank path to prevent a symbol table for a
module from being loaded.

Edit Displays the selected module and path in the Add Symbol Table Search Path dialog, enabling you
to edit the module name or path that displays in the Mappings from Module Name to Symbol Table
Path list.

Delete Removes the selected module from the Mappings from Module Name to Symbol Table Path list.

Default Saves the current settings as the default for each new project.

See Also

Debugging Applications (see page 10)

Preparing Files for Remote Debugging (see page 128)

3.2.11.2.29 Version Info
Project Options Version Info

Use this dialog box to specify version information for a Delphi Win32 project. When version information is included, a user can
right-click the program icon and select properties to display the version information.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

845

3

Item Description

Include version
information in project

Determines whether the user can view product identification information.

For this option to be available in console applications, you must add {$R *.res} to your project source.

Module version number Sets hierarchical nested version, release, and build identification.

Major, Minor, Release, and Build each specify an unsigned integer between 0 and 65,535. The
combined string defines a version number for the application, for example 2.1.3.5.

Check Auto-increment build number to increment the build number each time the Project Build
<Project> menu is selected. Other compilations do not change the build number.

Module attributes Indicates the intent of this version: whether for debugging, pre-release, or other purposes. Module
attributes can be included in the version information and are for informational use only. If a project is
compiled in debug mode, the debug flag is included in the version information. You can select each of
the remaining flags as needed.

Debug build Indicates that the project was compiled in debug mode.

Pre-release Indicates the version is not the commercially released product.

DLL Indicates that the project includes a dynamic-link library.

Special build Indicates that the version is a variation of the standard release.

Private build Indicates that the version was not built using standard release procedures.

Language Indicates which Code Page the user's system requires to run the application.

You can only choose a language that is listed in the Control Panel Regional Settings dialog of your
computer. Some versions of the Windows operating system do not include support for all languages
(such as Far Eastern languages), and you may need to install the appropriate Language Pack before
you can use those languages.

Key/Value list box Sets typical product identification properties.

Key entries can be edited by selecting the key and reentering the name. Key entries can be added by
right-clicking within the Key/Value table and selecting Add Key.

Default Saves the current settings as the default for each new project.

Tip: To obtain version information programmatically from your compiled Win32 application, use the Windows GetFileVersionInfo
and VerQueryValue API functions.

3.2.11.3 COM Imports
Project Add Reference

Adds a COM type library to the current project.

The Add Reference dialog box is also available in the Project Manager by right-clicking a References folder and choosing Add
Reference.

Item Description

TypeLib Name The name of the type library.

TypeLib Version The version of the type library.

TypeLib Path The location of the type library.

Add Reference Adds the selected (highlighted) reference to the New References list.

Browse Displays a dialog box allowing you to navigate to a type library.

Remove Removes the reference currently selected in the New References list from the list.

OK If the New References list contains any references, they are added to the project when you click OK.

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

846

3

Tip: Click any column heading to sort the display.

3.2.11.4 C++ Project Options
Topics

Name Description

ATL (see page 847) Project Options ATL
Use this dialog box to specify ATL options. These options apply to every COM
server in the project.

C++ Compiler (see page 848)

Folder or Directory View (see page 867) Use this dialog box to add a folder node to the active project. You can use a
folder node or a directory view to browse frequently used files that are not part of
your project.

Resource Compiler (see page 867)

DCC32 (see page 869)

Find Option (see page 878) Project Options
Use this dialog box to find a specific option for the selected build tool.

iLink 32 (see page 878)

List Editor (see page 885) Project Options various paths
Use this dialog box to edit a list of semicolon-delimited strings.
Note: Not all of the options described below are available for all types of
projects.

Implib (see page 886)

Paths and Defines (see page 887) Project Options Paths and Defines
Use this dialog box to set project paths and defines.

Project Properties (see page 888) Project or Tools Options Project Properties or Environment
Options\C++ Options
Use this dialog box to set Project Properties that control certain aspects of how
the project is managed in the IDE.
Note that this dialog can be displayed from either Project Options or Tools
Options. If options are set in the dialog from Project Options, they apply only to
that project. If options are set in the dialog from Tools Options, they apply to
new projects.

tasm32 (see page 889)

Unavailable Options (see page 893) Project Options
Some project options are no longer available in C++ Builder 2007. They may be
available by using the tool switches.
For reference, they are listed here by major topics: C++ Compiler, Resource
Compiler. Pascal Compiler, IDL to C++ Compiler, Linker, Librarian, and Turbo
Assembler.

3.2.11.4.1 ATL
Project Options ATL

Use this dialog box to specify ATL options. These options apply to every COM server in the project.

Item Description

Single Use An instance of the COM server object is created for each client.

Multiple Use All clients operate on a single instance of the COM server object.

APARTMENTTHREADED An object is referenced only by the thread in which it was constructed.

Use this option for projects that contain only single-threaded and apartment-threaded objects.

MULTITHREADED Objects can be referenced by any thread.

Use this option for projects that contain free-threaded, both-threaded, or neutral-threaded objects.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

847

3

Single All COM server objects are implemented using a single thread.

Apartment The project may be multi-threaded, but each instance of the COM server object must has its own
dedicated thread for OLE calls.

Free The project may be multithreaded and each instance of the COM server object can receive
simultaneous requests from multiple threads.

Your code must provide thread concurrency support.

Both Same as Free except that outgoing calls such as callbacks are guaranteed to execute in the same
thread.

Neutral Multiple clients can call the object on different threads at the same time, but COM ensures that no
two calls conflict.

Trace Query Interface Sends a message to the event log whenever a client makes a QueryInterface call. The event
log also shows the status of the call.

Check Ref Counts message is sent to the event log whenever the reference count of a COM server object is increased
or decreased. When Check Ref Counts is enabled, an assertion occurs if the project attempts to
release the object from memory with a nonzero reference count.

General Tracing Sends a messages to the event log when an ATL function is called.

Note: Threading Model

options are provided only for backward compatibility. You now specify threading models on a per-object basis.

See Also

ATL Overview (MSDN)

3.2.11.4.2 C++ Compiler
Topics

Name Description

C++ Compiler Advanced Compilation (see page 849) Project Options C++ Compiler Advanced Compilation
Use this dialog box to set C++ Compiler General Compilation options.

C++ Compiler C++ Compatibility (see page 851) Project Options C++ Compiler C++ Compatibility
Use this dialog box to set specifically C++ Compiler Compatibility options.
These options provide backward compatibility with previous versions of the
compiler. In general, these options should not be set to true unless such
compatibility is required. Their default value is false.

C++ Compiler C++ Compilation (see page 853) Project Options C++ Compiler C++ Compilation
Use this dialog box to set C++ Compiler options.

C++ Compiler Debugging (see page 856) Project Options C++ Compiler Debugging
Use this dialog box to set C++ compiler debugging and CodeGuard options.

C++ Compiler General Compatibility (see page 857) Project Options C++ Compiler General Compatibility
Use this dialog box to set C++ Compiler General Compatibility options.
Some of these options provide backward compatibility with previous versions of
the compiler, and their default value is false. In general, such options should not
be set to true unless such compatibility is required.

C++ Compiler General Compilation (see page 858) Project Options C++ Compiler General Compilation
Use this dialog box to set C++ Compiler General Compilation options.

C++ Compiler (see page 861) Project Options C++ Compiler
This is the top-level node of the C++ Compiler command line options.
Note: Options marked with an asterisk (*) on the options pages are the default
values.

C++ Compiler Optimizations (see page 862) Project Options C++ Compiler Optimizations
Use this dialog box to set C++ Compiler Optimization options.

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

848

3

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore/html/_atl_ATL_Article_Overview.asp

C++ Compiler Output (see page 863) Project Options C++ Compiler Output
Use this dialog box to set C++ Compiler Output options.

C++ Compiler Paths And Defines (see page 864) Project Options C++ Compiler Paths and Defines
Use this dialog box to set C++ Compiler Paths and Defines options.

C++ Compiler Precompiled Headers (see page 865) Project Options C++ Compiler Precompiled headers
Use this dialog box to set C++ Compiler Precompiled headers options.

C++ Compiler Warnings (see page 866) Project Options C++ Compiler Warnings
Use this dialog box to set C++ Compiler Warning options.

3.2.11.4.2.1 C++ Compiler Advanced Compilation

Project Options C++ Compiler Advanced Compilation

Use this dialog box to set C++ Compiler General Compilation options.

Build Configuration
options

Description

Build Configuration Displays the active build configuration. You can use the drop-down menu to select another build
configuration.

Save As... Displays the Save As dialog box to save the current configuration's options to a file that can be
loaded as a named option set.

Load... Displays the Apply Option Set dialog box to apply the options in a named option set to the current
configuration.

Floating point options Description

Fast floating point (-ff) Floating-point operations are optimized without regard to explicit or implicit type conversions.
Calculations can be faster than under ANSI operating mode.

The purpose of the fast floating-point option is to allow certain optimizations that are technically
contrary to correct C semantics.
double x; x = (float) (3.5*x);

To execute this correctly, x is multiplied by 3.5 to give a double that is truncated to float precision,
then stores as a double in x. Under fast floating-point operation, the long double product is converted
directly to a double. Since very few programs depend on the loss of precision on passing to a
narrower floating-point type, fast floating point is on by default.

When this option is disabled (-ff-), the compiler follows strict ANSI rules regarding floating-point
conversions.

(Default = true)

Correct FDIV flaw (-fp) Some early Pentium chips do not perform specific floating-point division calculations with full
precision. Although chances of encountering this problem are slim, this switch inserts code that
emulates floating-point division, so that you are assured of the correct result. This option decreases
your program's FDIV instruction performance.

Use of this option only corrects FDIV instructions in modules that you compile. The runtime library
also contains FDIV instructions that are not modified by setting this switch. To correct the runtime
libraries, you must recompile them using this switch.

The following functions use FDIV instructions in assembly language that are not corrected if you use
this option: acos, acosl, acos, asinasinl, atanatan2, atan2latanl, coscosh, coshlcosl,
expexpl, fmodfmodl, powpow10, pow10lpowl, sinsinh, sinhlsinl, tantanh, tanhltanl

In addition, this switch does not correct functions that convert a floating-point number to or from a
string (such as printf or scanf).
(Default = false)

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

849

3

Quiet floating point
compares (-fq)

Use the quiet floating point instruction (FUCOMP). (Default = true)

Strings options Description

Writable strings (-dw) Put memory allocated for strings into the writable data segment. (Default = false)

Read-only strings (-dc) Put memory allocated for strings into the read-only data segment. (Default = false)

Merge duplicate strings
(-d)

Merges two literal strings when one matches another. This produces smaller programs (at the
expense of a slightly longer compile time), but can introduce errors if you modify one string. (Default
= false)

Other options Description

Code page (-CP) Enables support for user-defined code pages. Its primary use is to tell the compiler how to parse and
convert multi-byte character strings (MBCS).

There are two distinct areas where code pages come into effect:

1. String constants, comments, #error, and #pragma directives

2. Wide-char string constants (as specified by L'<MBCS string>')

For MBCS strings belonging to the first set, you must specify the correct codepage using a call to
the Windows API function IsDBCSLeadByteEx. Using this function, specify the code page to
correctly parse the MBCS strings for a particular locale (this, for example, enables the compiler to
correctly parse backslashes in MBCS trail bytes).

For MBCS strings belonging to the second set (wide-char string constants), specify the correct code
page to convert the MBCS strings to Unicode strings using the Windows API function
MultiByteToWideChar.

Syntax

Enable code paging with the following command-line switch:

-CPnnnn

In this syntax, nnnn is the decimal value of the code page you need to use for your specific locale.

The following rules apply:

1. When setting code paging, numeric settings for nnnn must adhere to the Microsoft NLS Code
Page ID values. For example, use 437 for United States MS-DOS applications. Use 932 for
Japanese.

2. The numeric value nnnn must be a valid code page supported by the OS.

3. Users may need to install the relevant Windows NLS files to make certain Asian locales and code
pages accessible. Refer to the Microsoft NLS Code Page documentation for specifics.

4. If you do not specify a code page value, the compiler calls the Windows API function GetACP to
retrieve the system's default code page and uses this value when handling strings as indicated
above.

The default is to not use a code page.

Other options Any additional options to pass to the compiler.

Default char to
unsigned (-K)

The compiler treats char declarations as if they were unsigned char type, which provides
compatibility with other compilers. (Default = false)

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

850

3

Source options Description

Identifier length (-i) Specifies the number of significant characters (those which are recognized by the compiler) in an
identifier.

Except in C++, which recognizes identifiers of unlimited length, all identifiers are treated as distinct
only if their significant characters are distinct. This includes variables, preprocessor macro names,
and structure member names.

Valid numbers for length are 0, and 8 to 250, where 0 means use the maximum identifier length of
250.

By default, C++Builder uses 250 characters per identifier. Other systems (including some UNIX
compilers) ignore characters beyond the first eight. If you are porting to other environments, you
might want to compile your code with a smaller number of significant characters, which helps you
locate name conflicts in long identifiers that have been truncated.

Enable nested
comments (-C)

Nests comments in your C and C++ source files.

Nested comments are not allowed in standard C implementations, and they are not portable.

(Default = false)

General option Description

Default Saves the current settings as the default for each new project.

3.2.11.4.2.2 C++ Compiler C++ Compatibility

Project Options C++ Compiler C++ Compatibility

Use this dialog box to set specifically C++ Compiler Compatibility options.

These options provide backward compatibility with previous versions of the compiler. In general, these options should not be set
to true unless such compatibility is required. Their default value is false.

Build Configuration
options

Description

Build Configuration Displays the active build configuration. Use the drop-down menu to select another build configuration.

Save As... Displays the Save As dialog box to save the current configuration's options to a file that can be
loaded as a named option set.

Load... Displays the Apply Option Set dialog box to apply the options in a named option set to the current
configuration.

Note: There are several compatibility options that have switches beginning with -Vb

. These options are summarized in the following table:

Switch Meaning

-Vb Turn on all -Vb switches.

-Vb+ Turn on all -Vb switches.

-Vb- Turn off all -Vb switches.

-Vb. Reset all -Vb switches.

-Vbe Allow old-style explicit template specialization.

-Vbn Allow calling a non-const member function for a const object.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

851

3

-Vbo Use old overload resolution rules.

-Vbr Allow non-const reference binding.

-Vbs Do not treat string literals as const.

-Vbx Allow explicit template specializations as member functions.

C++ Compatibility
options

Description

Non-const calls for
const object (-Vbn)

Allow calling a non-const member function for a const object. Default = false

Old overload resolution
(-Vbo)

Use old overload resolution rules. Default = false

Non-const reference
binding (-Vbr)

Allow non-const reference binding. Default = false

Explicit template
specialization as
member function (-Vbx)

Allow explicit template specializations as member functions. Default = false

Old-style explicit
template specialization
(-Vbe)

Allow old-style explicit template specialization. Default = false

Old style class
arguments (-Va)

Supports old style class arguments. Default = false

Constructor
displacements (-Vc)

Supports constructor displacements. Default = false

Old for-statement
scoping (-Vd)

Specifies the scope of variables declared in for loop expressions. The output of the following code
segment changes, depending on the setting of this option.
int main(void)

{

for(int i=0; i<10; i++)

{

cout << "Inside for loop, i = " << i

<< endl;

} //end of for-loop block

cout << "Outside for loop, i = " << i <<

endl; //error without -Vd

} //end of block containing for loop

If this option is disabled (the default), the variablei goes out of scope when processing reaches the
end of the for loop. Because of this, you'll get an Undefined Symbol compilation error if you compile
this code with this option disabled.

If this option is set (-Vd), the variable i goes out of scope when processing reaches the end of the
block containing the for loop. In this case, the code output would be:
Inside for loop, i = 0

...

Outside for loop, i = 10

Default = false

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

852

3

Old Borland class
layout (-VI)

This is a backward compatibility switch that causes the C++ compiler to lay out derived classes the
same way it did in older versions of C++Builder. Enable this option if you need to compile source files
that you intend to use with older versions of C++Builder (for example, if you need to work with a DLL
that you cannot recompile, or if you have older data files that contain hardwired class layouts).
Default = false

Push 'this' first (-Vp) Like Pascal, pushes 'this' first. The compiler typically pushes parameters on the stack from right to
left. Default = false

VTable in front (-Vt) Puts virtual table pointer at front of object layout. Default = false

'Slow' virtual base
pointers (-Vv)

Uses 'slow' virtual base pointers. Default = false

Zero-length empty
class member functions
(-Vx)

Usually the size of a data member in a class definition is at least one byte. When this option is
enabled, the compiler allows an empty structure of zero length. Default = false

Zero-length empty
base class (-Ve)

Usually the size of a class is at least one byte, even if the class does not define any data members.
When you set this option, the compiler ignores this unused byte for the memory layout and the total
size of any derived classes; empty base classes do not consume space in derived classes. Default =
false

General option Description

Default Saves the current settings as the default for each new project.

3.2.11.4.2.3 C++ Compiler C++ Compilation

Project Options C++ Compiler C++ Compilation

Use this dialog box to set C++ Compiler options.

Build Configuration
options

Description

Build Configuration Displays the active build configuration. Use the drop-down menu to select another build configuration.

Save As... Displays the Save As dialog box to save the current configuration's options to a file that can be
loaded as a named option set.

Load... Displays the Apply Option Set dialog box to apply the options in a named option set to the current
configuration.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

853

3

C++ options Description

Template generation Default (-Jgd)*

The compiler generates public (global) definitions for all template instances. If more than one module
generates the same template instance, the linker automatically merges duplicates to produce a single
copy of the instance.

To generate the instances, the compiler must have available the function body (in the case of a
template function) or the bodies of member functions and definitions for static data members (in the
case of a template class), typically in a header file.

This is a convenient way of generating template instances.

This is the default.

External (-Jgx)

The compiler generates external references to all template instances.

If you use this option, all template instances that need to be linked must have an explicit instantiation
directive in at least one other module.

Virtual tables Smart (-V)*

Generates common C++ virtual tables and out-of-line inline functions across the modules in your
application. As a result, only one instance of a given virtual table or out-of-line inline function is
included in the program.

The Smart option generates the smallest and most efficient executables, but produces .OBJ and
.ASM files compatible only with CodeGear linkers and assemblers.

This is the default.

External (-V0)

Generate external references to virtual tables. If you don’t want to use the Smart option, use the
External and Public options to produce and reference global virtual tables.

When you use this option, one or more of the modules comprising the program must be compiled
with the Public option to supply the definitions for the virtual tables.

Public (-V1)

Public produces public definitions for virtual tables. When using the External option (-V0), at least one
of the modules in the program must be compiled with the Public option to supply the definitions for
the virtual tables. All other modules should be compiled with the External option to refer to that Public
copy of the virtual tables.

Member pointers Smallest possible (-Vmd)

Member pointers use the smallest possible representation that allows them to point to all members of
their particular class. If the class is not fully defined at the point where the member pointer type is
declared, the most general representation is chosen by the compiler and a warning is issued.

This is the default.

Multiple inheritance (-Vmm)

Member pointers can point to members of multiple inheritance classes (with the exception of virtual
base classes).

Single inheritance (-Vms)

Member pointers can point only to members of base classes that use single inheritance.

Default *
No options set for member pointers. This is the default.

Honor member
precision (-Vmp)

The compiler uses the declared precision for member pointer types. Use this option when a pointer to
a derived class is explicitly cast as a pointer-to-member of a simpler base class (when the pointer is
actually pointing to a derived class member). Default = false

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

854

3

Exception handling
options

Description

Enable RTTI (-RT) Causes the compiler to generate code that allows runtime type identification (RTTI).

In general, if you set Enable Destructor Cleanup (-xd), you need to set this option as well.

Default = true

Enable exceptions (-x) Sets C++ exception handling. If this option is disabled (-x-) and you attempt to use exception handling
routines in your code, the compiler generates error messages during compilation.

Disabling this option makes it easier for you to remove exception handling information from programs;
this might be useful if you are porting your code to other platforms or compilers.

Disabling this option turns off only the compilation of exception handling code; your application can
still include exception code if you link object and library files that were built with exceptions enabled
(such as the CodeGear runtime libraries).

Default = true

Destructor cleanup (-xd) When this option is set and an exception is thrown, destructors are called for all automatically
declared objects between the scope of the catch and throw statements.

In general, when you set this option, you should also set Enable Runtime Type Information (-RT) as
well.

Destructors are not automatically called for dynamic objects allocated with new, and dynamic objects
are not automatically freed.

Default = true

No DLL/MT destructor
cleanup (-xds)

Does not perform DLL or multi-threaded destructor cleanups. Default = false

Fast exception prologs
(-xf)

Expands inline code for every exception handling function. This option improves performance at the
cost of larger executable file sizes. Default = false

Location information
(-xp)

When this option is set, runtime identification of exceptions is available, because the compiler
provides the file name and source code line number where the exception occurred. This enables the
program to use the __ThrowFileName global to obtain the file where the exception occurred and the
__ThrowLineNumber global to access the line number from where the C++ exception was thrown.
Default = false

Slow exception
epilogues (-xs)

When this option is set, the exception handling epilogue code is not expanded inline. This option
decreases performance slightly. Default = false

Hide exception
variables (-xv)

The compiler treats the following exception handling symbols as special:

__exception_info

__exception_code

__abnormal_termination
These are all mapped to special compiler/RTL constructs for Structured Exception Handling (SEH)
code. If you are not using SEH and you have variables of this name, it means that you could not
reference those variables, and your code would not compile. -xv causes the compiler to hide its
special symbols in this event, so that you can use variables of this name.

Default = false

Global destructor count
(-xdg)

Use global destructor count (for compatibility with older versions of the compiler). Default = false

General option Description

Default Saves the current settings as the default for each new project.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

855

3

3.2.11.4.2.4 C++ Compiler Debugging

Project Options C++ Compiler Debugging

Use this dialog box to set C++ compiler debugging and CodeGuard options.

Build Configuration Displays the active build configuration. Use the drop-down menu to select another build configuration.

Save As... Displays the Save As dialog box to save the current configuration's options to a file that can be
loaded as a named option set.

Load... Displays the Apply Option Set dialog box to apply the options in a named option set to the current
configuration.

Debugging options Description

Debug information (-v) Includes debugging information in your .OBJ files. The compiler passes this option to the linker so it
can include the debugging information in the .EXE file. For debugging, this option treats C++ inline
functions as normal functions.

You need debugging information to use either the integrated debugger or the standalone Turbo
Debugger.

When this option is off (-v-), you can link and create larger object files. While this option does not
affect execution speed, it does affect compilation and link time.

When Line Numbers is on, make sure you turn off Pentium scheduling in the Compiler options. When
this option is set, the source code does not exactly match the generated machine instructions, which
can make stepping through code confusing.

Default = false

Debug line number
information (-y)

Automatically includes line numbers in the object and object map files. Line numbers are used by
both the integrated debugger and Turbo Debugger.

Although the Debug Info in OBJs option (-v) automatically generates line number information, you
can turn that option off (-v-) and turn on Line Numbers (-y) to reduce the size of the debug
information generated. With this setup, you can still step, but you cannot watch or inspect data items.

Including line numbers increases the size of the object and map files but does not affect the speed of
the executable program.

When Line Numbers is on, make sure you turn off Pentium scheduling in the Compiler options. When
this option is set, the source code does not exactly match the generated machine instructions, which
can make stepping through code confusing.

Default = false

Expand inline functions
(-vi)*

Expands C++ inline functions inline.

To control the expansion of inline functions, the Debug Information In OBJs option (-v) acts slightly
different for C++ code: when inline function expansion is disabled, inline functions are generated and
called like any other function.

Default = true

Generate
CodeView4–compatible
debug info (-v4)

Generates CodeView4 compatible debug information. Default = false

CodeGuard(tm)
options

Description

Enable all CodeGuard
options (-vG)

Enables all CodeGuard options, independent of CodeGuard level. Default = false

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

856

3

Monitor inline pointer
access (-vGc)

This CodeGuard option generates calls to verify all accesses in your code. This option identifies
almost all pointer errors. Program execution is typically five to ten times slower.

Selecting any of these CodeGuard options can have a noticeable effect on runtime performance.

Default = false

Monitor global and
stack data accesses
(-vGd)

Creates data and stack layout descriptors for fast lookup by CodeGuard. These descriptors allow
CodeGuard to report overruns and invalid pointers to locals, globals, and statics. You should always
use this option. Default = false

Monitor 'this' pointer on
member function entry
(-vGt)

Creates special epilogs for member functions, constructors, and destructors. CodeGuard verifies the
this pointer on entry to every method in C++ code. This option is useful because it reports calls to
methods of deleted or invalid objects even if the methods themselves do not access this. Default =
false

General option Description

Default Saves the current settings as the default for each new project.

Note: If you want to turn both debugging and inline expansion on, use the -v and -vi options.

3.2.11.4.2.5 C++ Compiler General Compatibility

Project Options C++ Compiler General Compatibility

Use this dialog box to set C++ Compiler General Compatibility options.

Some of these options provide backward compatibility with previous versions of the compiler, and their default value is false. In
general, such options should not be set to true unless such compatibility is required.

Build Configuration
options

Description

Build Configuration Displays the active build configuration. Use the drop-down menu to select another build configuration.

Save As... Displays the Save As dialog box to save the current configuration's options to a file that can be
loaded as a named option set.

Load... Displays the Apply Option Set dialog box to apply the options in a named option set to the current
configuration.

Note: There are several compatibility options that have switches beginning with -Vb

, summarized in this table:

Switch Meaning

-Vb Turn on all -Vb switches.

-Vb+ Turn on all -Vb switches.

-Vb- Turn off all -Vb switches.

-Vb. Reset all -Vb switches.

-Vbe Allow old-style explicit template specialization.

-Vbn Allow calling a non-const member function for a const object.

-Vbo Use old overload resolution rules.

-Vbr Allow non-const reference binding.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

857

3

-Vbs Do not treat string literals as const.

-Vbx Allow explicit template specializations as member functions.

General Compatibility
options

Description

Non-const string literals
(-Vbs)

Do not treat string literals as const. Default = false

Global functions in
segments (-VA)*

Generates all global functions in their own virtual or weak segment. Default = true

Don't mangle calling
convention (-VC)

When this option is set, the compiler disables the distinction of function names where the only
possible difference is incompatible code generation options. For example, with this option set, the
linker does not detect if a call is made to a __fastcall member function with the cdecl calling
convention.

This option is provided for backward compatibility only; it lets you link old library files that you cannot
recompile. Default = false

Microsoft header
search algorithm (-VI)*

Uses Microsoft search algorithms to locate the header files. Default = true

VC++ compatibility
(-VM)

To provide compatibility with Microsoft Visual C++ , substitutes __msfastcall for __fastcall calling
convention. This switch should not be used when working with a VCL application. It causes
numerous linker errors. Default = false

Disable lexical digraph
scanner (-Vg)

Disables the lexical digraph scanner. Digraphs are two character sequences that stand in for a single
character that may be hard to produce on certain keyboards. If this option is true, then such
diagraphs are not recognized. Default = false

Enable new operator
names (-Vn)

Enables new operator names such as 'and', 'or', 'and_eq', 'bitand', etc. Default = false

Enable all compatibility
options (-Vo)

Sets most of the compatibility flags used with old code, enabling -Vv , -Va, -Vp, -Vt, -Vc, -Vd, and -Vx.
Default = false

Reverse
Multi-character
constants (-Vr)

The compiler reverses the order of Multi-character constants. Default = false

Old style virdef
generation (-Vs)

Uses old-style virdef generation. Default = false

Native code for MBCS
(-Vw)

Emits native code instead of Unicode for multi-byte character. Default = false

Old 8.3 include search
(-Vi)

Use old 8.3 search algorithm to locate header files. Default = false

General option Description

Default Saves the current settings as the default for each new project.

3.2.11.4.2.6 C++ Compiler General Compilation

Project Options C++ Compiler General Compilation

Use this dialog box to set C++ Compiler General Compilation options.

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

858

3

Build Configuration
options

Description

Build Configuration Displays the active build configuration. You can use the drop-down menu to select another build
configuration.

Save As... Displays the Save As dialog box to save the current configuration's options to a file that can be
loaded as a named option set.

Load... Displays the Apply Option Set dialog box to apply the options in a named option set to the current
configuration.

Compilation options Description

Instruction Set 80386 (-3)*

Generates 80386 protected-mode compatible instructions. This is the default.

80486 (-4)

Generates i486 protected-mode compatible instructions.

Pentium (-5)

Generates Pentium instructions.

While this option increases the speed at which the application runs on Pentium machines, expect the
program to be a bit larger than when compiled with the 80386 or i486 options. In addition,
Pentium-compiled code sustains a performance hit on non-Pentium systems.

Pentium Pro (-6)

Generates Pentium Pro instructions.

Data Alignment Byte (-a1)

Does not force alignment of variables or data fields to any specific memory boundaries. The compiler
aligns data at even or odd addresses, depending on the next available address.

While byte alignment produces more compact programs, the programs tend to run slower. The other
data alignment options increase the speed at which 80x86 processors fetch and store data.

Word (-a2)

2 byte data alignment. Aligns non-character data at even addresses. Automatic and global variables
are aligned properly. char and unsigned char variables and fields can be placed at any address; all
others are placed at even-numbered addresses.

Double word (-a4)*

4 byte data alignment. Aligns non-character data at 32–bit word (4–byte) boundaries. Data type sizes
of less than four bytes are aligned on their type size. This is the default.

Quad word (-a8)

8 byte data alignment. Aligns non-character data at 64–bit word (8–byte) boundaries. Data with type
sizes of less than eight bytes are aligned on their type size.

Paragraph (-a16)

16 byte data alignment. Aligns non-character data at 128–bit (16–byte) boundaries. Data with type
sizes of less than 16 bytes are aligned on their type size.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

859

3

Register variables None (-r-)*

Disables the use of register variables. Tells the compiler not to use register variables, even if you
have used the register keyword. This is the default.

Explicit (-rd)

Use register variables only if you use the register keyword and a register is available. Use this option
or the Always option (-r) to optimize the use of registers.

You can use -rd in #pragma options.

Always (-r)

Automatically assign register variables if possible, even when you do not specify a register variable
by using the register keyword.

Generally, you can use Always, unless you are interfacing with preexisting assembly code that does
not support register variables.

Calling convention Pascal (-p)
Tells the compiler to generate a Pascal calling sequence for function calls (do not generate
underbars, all uppercase, calling function cleans stack, pushes parameters left to right). This is the
same as declaring all subroutines and functions with the __pascal keyword. The resulting function
calls are usually smaller and faster than those made with the C (-pc) calling convention. Functions
must pass the correct number and type of arguments.

You can use the __cdecl, __fastcall, or __stdcall keywords to specifically declare a function or
subroutine using another calling convention.

C (-pc)*
Tells the compiler to generate a C calling sequence for function calls (generate underbars, case
sensitive, push parameters right to left). This is the same as declaring all subroutines and functions
with the __cdecl keyword. Functions declared using the C calling convention can take a variable
parameter list (the number of parameters does not need to be fixed).

You can use the __pascal, __fastcall, or __stdcall keywords to specifically declare a function or
subroutine using another calling convention.

This is the default.

_msfastcall (-pm)

Tells the compiler to substitute the __msfastcall calling convention for any function without an
explicitly declared calling convention.

Fastcall (register) (-pr)

Forces the compiler to generate all subroutines and all functions using the Register
parameter-passing convention, which is equivalent to declaring all subroutine and functions with the
__fastcall keyword. With this option enabled, functions or routines expect parameters to be passed
in registers.

You can use the __pascal, __cdecl, or __stdcall keywords to specifically declare a function or
subroutine using another calling convention.

stdcall (-ps)

Tells the compiler to generate a stdcall calling sequence for function calls (does not generate
underscores, preserve case, called function pops the stack, and pushes parameters right to left). This
is the same as declaring all subroutines and functions with the __stdcall keyword. Functions must
pass the correct number and type of arguments.

You can use the __cdecl, __pascal, __fastcall keywords to specifically declare a function or
subroutine using another calling convention.

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

860

3

Compliance ANSI (-A)

Use ANSI keywords and extensions. Compiles C and C++ ANSI-compatible code, allowing for
maximum portability. Non-ANSI keywords are ignored as keywords.

K & R (-AK)

Use Kernighan and Ritchie (KR) keywords and extensions. Tells the compiler to recognize only the
KR extension keywords and treat any of CodeGear's C++ extension keywords as normal identifiers.

Borland (also -A-) (-AT)*

Use Borland/CodeGear C++ keywords and extensions. Tells the compiler to recognize CodeGear's
extensions to the C language keywords, including near, far, huge, asm, cdecl, pascal, interrupt,
_export, _ds, _cs, _ss, _es, and the register pseudovariables (_AX, _BX, and so on).

This is the default.

Unix System V (-AU)

Use UNIX System V keywords and extensions. Tells the compiler to recognize only UNIX V keywords
and treat any of CodeGear's C++ extension keywords as normal identifiers.

Hint:If you get declaration syntax errors from your source code, check that this option is set to
Borland Extensions.

Extended error info (-Q) Compiler generates more extended information on errors. (Default = false)

Standard stack frames
(-k)

Generates a standard stack frame (standard function entry and exit code). This is helpful when
debugging, since it simplifies the process of stepping through the stack of called subroutines.

When this option is off, any function that does not use local variables and has no parameters is
compiled with abbreviated entry and return code. This makes the code smaller and faster.

The Standard Stack Frame option should always be on when you compile a source file for debugging.

(Default = false)

Integer-sized enums
(-b)

Allocates a whole word (a four-byte int for 32–bit programs) for enumeration types (variables of type
enum).

When this option is off (-b-), the compiler allocates the smallest integer that can hold the enumeration
values: the compiler allocates an unsigned or signed char if the values of the enumeration are within
the range of 0 to 255 (minimum) or -128 to 127 (maximum), or an unsigned or signed short if the
values of the enumeration are within the following ranges:

0..65535 or -32768..32767.

The compiler allocates a four-byte int (32-bit) to represent the enumeration values if any value is out
of these ranges.

(Default = true)

Treat warnings as
errors (-w!)

Causes the compiler to treat warnings as errors. (Default = false)

Force C++ compile (-P) Causes the compiler to compile all source files as C++ files, regardless of their extension. (Default =
false)

Batch compile Enable batch file compile. (Default = false)

General option Description

Default Saves the current settings as the default for each new project.

3.2.11.4.2.7 C++ Compiler

Project Options C++ Compiler

This is the top-level node of the C++ Compiler command line options.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

861

3

Note: Options marked with an asterisk (*) on the options pages are the default values.

Build Configuration
option

Description

Build Configuration Displays the active build configuration. Use the drop-down menu to select another build configuration.

Save As... Displays the Save As dialog box to save the current configuration's options to a file that can be
loaded as a named option set.

Load... Displays the Apply Option Set dialog box to apply the options in a named option set to the current
configuration.

General option Description

Default Saves the current settings as the default for each new project.

See Also

General Compilation (see page 858)

Advanced Compilation (see page 849)

C++ Compilation (see page 853)

General Compatibility (see page 857)

C++ Compatibility (see page 851)

Debugging (see page 856)

Output (see page 863)

Optimizations (see page 862)

Paths and Defines (see page 864)

Precompiled headers (see page 865)

Warnings (see page 866)

3.2.11.4.2.8 C++ Compiler Optimizations

Project Options C++ Compiler Optimizations

Use this dialog box to set C++ Compiler Optimization options.

Build Configuration
option

Description

Build Configuration Displays the active build configuration. Use the drop-down menu to select another build configuration.

Save As... Displays the Save As dialog box to save the current configuration's options to a file that can be
loaded as a named option set.

Load... Displays the Apply Option Set dialog box to apply the options in a named option set to the current
configuration.

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

862

3

Optimizations options Description

None (-Od)* Disables all optimization settings, including ones which you may have specifically set and those that
would normally be performed as part of the speed/size trade-off.

Because this disables code compaction (tail merging) and cross-jump optimizations, using this option
can keep the debugger from jumping around or returning from a function without warning, which
makes stepping through code easier to follow.

This is the default.

Size (-O1) Sets an aggregate of optimization options that tells the compiler to optimize your code for size. For
example, the compiler scans the generated code for duplicate sequences. When such sequences
warrant, the optimizer replaces one sequence of code with a jump to the other and eliminates the first
piece of code. This occurs most often with switch statements. The compiler optimizes for size by
choosing the smallest code sequence possible.

Speed (-O2) This switch sets an aggregate of optimization options that tells the compiler to optimize your code for
speed.

Selected Chooses specific optimizations to enable.

Click Select All to enable all optimizations in the list.

Click Clear All to clear all selected optimizations in the list

Click Defaults to enable the default optimizations in the list

General option Description

Default Saves the current settings as the default for each new project.

3.2.11.4.2.9 C++ Compiler Output

Project Options C++ Compiler Output

Use this dialog box to set C++ Compiler Output options.

Build Configuration
options

Description

Build Configuration Displays the active build configuration. Use the drop-down menu to select another build configuration.

Save As... Displays the Save As dialog box to save the current configuration's options to a file that can be
loaded as a named option set.

Load... Displays the Apply Option Set dialog box to apply the options in a named option set to the current
configuration.

.obj Content options Description

Disable compiler
autodependency output
(-X)

Disable compiler autodependency output. Default = false

Exclude system
headers from
dependency info (-mm)

Ignores system header files while generating dependency information. Default = false

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

863

3

Generate underscores
on symbol names (-u)*

The compiler automatically adds an underscore character (_) in front of every global identifier
(functions and global variables) before saving them in the object module. Pascal identifiers (those
modified by the __pascal keyword) are converted to uppercase and are not prefixed with an
underscore.

Underscores for C and C++ are optional, but you should turn this option on to avoid errors if you are
linking with the CodeGear C++ libraries.

Default = true

Don't prefix underbars
to exported symbols
(-vu)

Do not prefix underscore characters to exported symbol names. Default = false

Include browser
information .obj files
(-R)

Includes browser information in generated .OBJ files. Default = false

General option Description

Default Saves the current settings as the default for each new project.

3.2.11.4.2.10 C++ Compiler Paths And Defines

Project Options C++ Compiler Paths and Defines

Use this dialog box to set C++ Compiler Paths and Defines options.

Build Configuration
options

Description

Build Configuration Displays the active build configuration. Use the drop-down menu to select another build configuration.

Save As... Displays the Save As dialog box to save the current configuration's options to a file that can be
loaded as a named option set.

Load... Displays the Apply Option Set dialog box to apply the options in a named option set to the current
configuration.

Paths and Defines
options

Description

Include path (-I) Specifies the drive and/or directories that contain program include files. Standard include files are
those you specify in angle brackets (<>) in an #include statement (for example, #include <myfile>).
Click [...] to display a dialog allowing you to edit a list of search paths. Check the Merge box to act as
if the immediate ancestor's paths are merged into this list, though this list is not actually changed.

Defines (-D) Defines the specified identifier name to the null string. -Dname=string defines name to string. In this
assignment, string cannot contain spaces or tabs. You can also define multiple #define options on
the command line using either of the following methods:

Include multiple definitions after a single -D option by separating each define with a semicolon (;) and
assigning values with an equal sign (=). For example: BCC32.EXE -Dxxx;yyy=1;zzz=NO
MYFILE.C

Include multiple -D options, separating each with a space. For example: BCC32.EXE -Dxxx
-Dyyy=1 -Dzzz=NO MYFILE.C

Click [...] to display a dialog allowing you to edit a list of defines. Check the Merge box to act as if the
immediate ancestor's defines are merged into this list, though this list is not actually changed.

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

864

3

.obj output directory (-n) Sets output directory to specified path. Click [...] to browse for a folder.

Windows version target Conditional defines targeting the highest version of Windows API header files to use. Choose an OS
version from the drop down list. See http://msdn2.microsoft.com/en-us/library/aa383745.aspx for
more information.

The default is “Not specified”.

General option Description

Default Saves the current settings as the default for each new project.

3.2.11.4.2.11 C++ Compiler Precompiled Headers

Project Options C++ Compiler Precompiled headers

Use this dialog box to set C++ Compiler Precompiled headers options.

Build Configuration
options

Description

Build Configuration Displays the active build configuration. Use the drop-down menu to select another build configuration.

Save As... Displays the Save As dialog box to save the current configuration's options to a file that can be
loaded as a named option set.

Load... Displays the Apply Option Set dialog box to apply the options in a named option set to the current
configuration.

Usage options Description

Usage Do not use
Do not use precompiled headers.

Generate and use (-H)*

The IDE generates and uses precompiled headers. The default file name is <projectname>.CSM for
IDE projects, and is BC32DEF.CSM for command-line compiles. This is the default.

Use but don't generate (-Hu)

Compilers use preexisting precompiled header files; new precompiled header files are not generated.

PCH filename (-H=) Specify the name of your precompiled header file. The compiler sets the name of the precompiled
header to the specified filename. Click [...] to display a file dialog to select a file.

When this option is set, the compilers generate and use the precompiled header file that you specify.

Cache precompiled
headers (-Hc)

The compiler caches the precompiled headers it generates. This is useful when you are precompiling
more than one header file. Default = false

Enable smart cached
precompiled headers
(-Hs)*

The compiler smart-caches the precompiled headers it generates (smart-caching uses less memory
than the regular caching option -Hc). Caching header files in memory is useful when you are
precompiling more than one header file. Default = true

Warning: If you import a project from BDS2006, it does not import the project's PCH file location due to Windows Vista
compatibility, since Vista restricts where users may place files.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

865

3

http://msdn2.microsoft.com/en-us/library/aa383745.aspx

Generation options Description

Replace header
names: (-Hr)

Replaces header name from name1 to name2. Click [...] to display a dialog that allows you to
manage a list of header files.

Stop precompiling
after: (-Hh=)

Terminates compiling the precompiled header after processing the specified file. You can use this
option to reduce the disk space required for precompiled headers. Click [...] to display a file selection
dialog.

When you use this option, the file you specify must be included from a source file for the compiler to
generate a .CSM file.

You can also use #pragma hdrstop within your .CPP files to specify when to stop the generation of
precompiled headers.

You cannot specify a header file that is included from another header file. For example, you cannot
list a header included by windows.h, because this would cause the precompiled header file to be
closed before the compilation of windows.h was completed.

Include header content
(-Hi)

Includes the contents of the specified header file(s). Click [...] to display a dialog that allows you to
manage a list of header files. Check the Merge box to act as if the immediate ancestor's files are
merged into this list, though this list is not actually changed.

Enable PCH with
external type files (-He)*

The compiler generates a file or files that contain debug type information for all the symbols
contained in the precompiled headers. The files end with the .#xx extension, where xx is 00 for the
first file generated and is incremented for each additional type-information file required.

Using this option dramatically decreases the size of your .OBJ files, since debug type information is
centralized and is not duplicated in each .OBJ file.

Default = true

General option Description

Default Saves the current settings as the default for each new project.

3.2.11.4.2.12 C++ Compiler Warnings

Project Options C++ Compiler Warnings

Use this dialog box to set C++ Compiler Warning options.

Build Configuration
options

Description

Build Configuration Displays the active build configuration. Use the drop-down menu to select another build configuration.

Save As... Displays the Save As dialog box to save the current configuration's options to a file that can be
loaded as a named option set.

Load... Displays the Apply Option Set dialog box to apply the options in a named option set to the current
configuration.

Warnings options Description

Enable all (-w) Display all warning and error messages.

Disable all (-w-) Disable all warning and error messages

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

866

3

Selected * Choose specific warnings to enable. This is the default.

Click Select All to display all warnings in the list.

Click Clear All to clear all selected warnings in the list

Click Defaults to display the default warnings in the list

General option Description

Default Saves the current settings as the default for each new project.

3.2.11.4.3 Folder or Directory View
Use this dialog box to add a folder node to the active project. You can use a folder node or a directory view to browse frequently
used files that are not part of your project.

Item Description

Location Specifies the path of the new folder node. The location can be an absolute path or a relative path.
You can click [...] to browse to a folder.

File Types Specifies the filter that you can use to hide unwanted files. By default, the File Types filter is *.*,
which displays all files.

Show Subdirectories Displays subdirectories in the folder node. If this option is disabled, only files are shown.

3.2.11.4.4 Resource Compiler
Topics

Name Description

Resource Compiler (see page 867) Project Options Resource Compiler
This is the top-level node of the Resource Compiler command line options.
Note: Options marked with an asterisk (*) on the options pages are the default
values.

Resource Compiler Options (see page 868) Project Options Resource Compiler Options
Use this dialog box to set Resource Compiler options.

Resource Compiler Paths And Defines (see page 869) Project Options Resource Compiler Paths and Defines
Use this dialog box to set Resource Compiler Paths and Defines options.

3.2.11.4.4.1 Resource Compiler

Project Options Resource Compiler

This is the top-level node of the Resource Compiler command line options.

Note: Options marked with an asterisk (*) on the options pages are the default values.

Build Configuration
option

Description

Build Configuration Displays the active build configuration. Use the drop-down menu to select another build configuration.

Save As... Displays the Save As dialog box to save the current configuration's options to a file that can be
loaded as a named option set.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

867

3

Load... Displays the Apply Option Set dialog box to apply the options in a named option set to the current
configuration.

General option Description

Default Saves the current settings as the default for each new project.

See Also

Paths and Defines (see page 869)

Options (see page 868)

3.2.11.4.4.2 Resource Compiler Options

Project Options Resource Compiler Options

Use this dialog box to set Resource Compiler options.

Build Configuration
option

Description

Build Configuration Displays the active build configuration. Use the drop-down menu to select another build configuration.

Save As... Displays the Save As dialog box to save the current configuration's options to a file that can be
loaded as a named option set.

Load... Displays the Apply Option Set dialog box to apply the options in a named option set to the current
configuration.

Options Description

Resource type Windows 3.1 (-31

Builds Windows 3.1-compatible .RES files.

16 bit (-16)

Builds a 16-bit resource.

32 bit (-32)*

Builds a 32-bit resource. This is the default.

Default language (-l) Specifies the default language. For example, —l409 represents English. See
http://msdn2.microsoft.com/en-us/library/ms776324.aspx for more information about specifying
language identifiers.

Code page (-c) Uses the specified code page for resource translation. If -c is not used, the default ANSI code page is
used.

Additional options Enter additional options for the resource compiler.

Ignore INCLUDE (-x) Ignore INCLUDE environment variable. Default = false

Verbose messages (-v) The linker emits detailed information messages. Default = false

Multi-byte character
support (-m)

Multi-byte character support. Default = false

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

868

3

http://msdn2.microsoft.com/en-us/library/ms776324.aspx

General option Description

Default Saves the current settings as the default for each new project.

3.2.11.4.4.3 Resource Compiler Paths And Defines

Project Options Resource Compiler Paths and Defines

Use this dialog box to set Resource Compiler Paths and Defines options.

Build Configuration
option

Description

Build Configuration Displays the active build configuration. Use the drop-down menu to select another build configuration.

Save As... Displays the Save As dialog box to save the current configuration's options to a file that can be
loaded as a named option set.

Load... Displays the Apply Option Set dialog box to apply the options in a named option set to the current
configuration.

Paths and Defines
options

Description

Include path: (-I) Specifies the drive and/or directories that contain program include files. Standard include files are
those you specify in angle brackets (<>) in an #include statement (for example, #include <myfile>).
Click [...] to display a Include file search path dialog to manage a list of paths. Check the Merge box
to act as if the immediate ancestor's paths are merged into this list, though this list is not actually
changed.

Defines: (-d) Defines list of preprocessor symbols. Click [...] to display a Defines a preprocessor symbol dialog
to manage a list of preprocessor symbols. Check the Merge box to act as if the immediate ancestor's
defines are merged into this list, though this list is not actually changed.

.obj output directory Sets the .obj output directory to the specified directory. Click [...] to display a directory selection
dialog.

General option Description

Default Saves the current settings as the default for each new project.

3.2.11.4.5 DCC32
Topics

Name Description

Delphi Compiler Compiling (see page 870) Project Options Delphi Compiler Compiling
Use this dialog box to set Delphi Compiler Compiling options.

Delphi Compiler (see page 874) Project Options Delphi Compiler
This is the top-level node of the C++ Compiler command line options.
Note: Options marked with an asterisk (*) on the options pages are the default
values.

Delphi Compiler Other Options (see page 875) Project Options Delphi Compiler Other Options
Use this dialog box to set Delphi Compiler Other options.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

869

3

Delphi Compiler Paths and Defines (see page 876) Project Options Delphi Compiler Paths and Defines
Use this dialog box to set CodeGear Pascal Compiler Path and Define options.

Delphi Compiler Warnings (see page 877) Project Options Delphi Compiler Warnings
Use this dialog box to set Delphi Compiler Warning options.

3.2.11.4.5.1 Delphi Compiler Compiling

Project Options Delphi Compiler Compiling

Use this dialog box to set Delphi Compiler Compiling options.

Build Configuration
option

Description

Build Configuration Displays the active build configuration. Use the drop-down menu to select another build configuration.

Save As... Displays the Save As dialog box to save the current configuration's options to a file that can be
loaded as a named option set.

Load... Displays the Apply Option Set dialog box to apply the options in a named option set to the current
configuration.

Syntax options Description

Strict var-strings (-$V+)* This option (equivalent to $V directive) is meaningful only for Delphi code that uses short strings and
is provided for backwards compatibility with early versions of Delphi and Borland Pascal. The option
controls type checking on short strings passed as variable parameters. When enabled (equivalent to
{$V+}), strict type checking is performed, requiring the formal and actual parameters to be of identical
string types. When disabled (equivalent to {$V-}) (relaxed), any short string type variable is allowed
as an actual parameter, even if the declared maximum length is not the same as that of the formal
parameter.

Default = true

Full boolean evaluation
(-$B+)

Switches between the two different models of Delphi code generation for the AND and OR Boolean
operators. When enabled (equivalent to {$B+}), the compiler generates code for complete Boolean
expression evaluation. This means that every operand of a Boolean expression built from the AND
and OR operators is guaranteed to be evaluated, even when the result of the entire expression is
already known. When disabled (equivalent to {$B-}), the compiler generates code for short-circuit
Boolean expression evaluation, which means that evaluation stops as soon as the result of the entire
expression becomes evident in left to right order of evaluation.

Default = false

Extended syntax
(-$X+)*

Provided for backward compatibility. You should not use this option (equivalent to {$X-} mode) when
writing Delphi applications. This option enables or disables Delphi's extended syntax:

Function statements. In the {$X+} mode, function calls can be used as procedure calls; that is, the
result of a function call can be discarded, rather than passed to another function or used in an
operation or assignment. Generally, the computations performed by a function are represented
through its result, so discarding the result makes little sense. Sometimes, however, a function is
called because it performs a task such as setting the value of a global variable, without producing a
useful result.

The Result variable. When enabled (equivalent to {$X+}, the predefined variable Result can be used
within a function body to hold the function's return value.

Null-terminated strings. When enabled, Delphi strings can be assigned to zero-based character
arrays (array[0..X] of Char), which are compatible with PChar types.

Default = true

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

870

3

Typed '@' operator
(-$T+)

Controls the types of pointer values generated by the @ operator and the compatibility of pointer
types. When disabled (equivalent to {$T-}), the result of the @ operator is always an untyped pointer
(Pointer) that is compatible with all other pointer types. When @ is applied to a variable reference in
the enabled (equivalent to {$T+}), the result is a typed pointer that is compatible only with Pointer and
with other pointers to the type of the variable. When disabled, distinct pointer types other than Pointer
are incompatible (even if they are pointers to the same type). When enabled, pointers to the same
type are compatible.

Default = false

Open string parameters
(-$P+)*

Meaningful only for code compiled supporting huge strings, and is provided for backwards
compatibility with early versions of Delphi and Borland Pascal. This option, (equivalent to $P) controls
the meaning of variable parameters declared using the string keyword in the huge strings disabled
(equivalent to {$H-}) state. When disabled (equivalent to {$P-}), variable parameters declared using
the string keyword are normal variable parameters, but when enabled (equivalent to {$P+}), they are
open string parameters. Regardless of the setting of this option, the openstring identifier can always
be used to declare open string parameters.

Default = true

Long strings by default
(-$H+)*

Delphi for Win32 only. This option (equivalent to the $H directive) controls the meaning of the
reserved word string when used alone in a type declaration. The generic type string can represent
either a long, dynamically-allocated string (the fundamental type AnsiString) or a short, statically
allocated string (the fundamental type ShortString). By default, Delphi defines the generic string type
to be the long AnsiString.

All components in the component libraries are compiled in this state. If you write components, they
should also use long strings, as should any code that receives data from component library
string-type properties. The disabled (equivalent to {$H-}) state is mostly useful for using code from
versions of Delphi that used short strings by default. You can locally override the meaning of
string-type definitions to ensure generation of short strings. You can also change declarations of short
string types to string[255] or ShortString, which are unambiguous and independent of the enabled
option.

Default = true

Writeable structured
constants (-$J+)

Controls whether typed constants can be modified or not. When enabled (equivalent to {$J+}), typed
constants can be modified, and are in essence initialized variables. When disabled (equivalent to
{$J-}), typed constants are truly constant, and any attempt to modify a typed constant causes the
compiler to report an error. Writeable consts refers to the use of a typed const as a variable
modifiable at runtime.

Old source code that uses writeable typed constants must be compiled with this option enabled, but
for new applications it is recommended that you use initialized variables and compile your code with
the option disabled.

Default = false

Debugging options Description

Debug information
(-$D+)

Enables or disables the generation of debug information. This information consists of a line-number
table for each procedure, which maps object-code addresses into source text line numbers. For units,
the debug information is recorded in the unit file along with the unit's object code. Debug information
increases the size of unit file and takes up additional memory when compiling programs that use the
unit, but it does not affect the size or speed of the executable program. When a program or unit is
compiled with this option enabled (equivalent to {$D+}), the integrated debugger lets you single-step
and set breakpoints in that module. The Full debug information and Map file options (on the Linker
pages of the Project Options dialog) produce complete line information for a given module only if
you've compiled that module with this option set on. This option is usually used in conjunction with
the Local symbols option (the $L switch), which enables and disables the generation of local symbol
information for debugging.

Default = false

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

871

3

Local debug symbols
(-$L+)*

Enables or disables the generation of local symbol information. Local symbol information consists of
the names and types of all local variables and constants in a module, that is, the symbols in the
module's implementation part and the symbols within the module's procedures and functions. For
units, the local symbol information is recorded in the unit file along with the unit's object code. Local
symbol information increases the size of unit files and takes up additional memory when compiling
programs that use the unit, but it does not affect the size or speed of the executable program. When
a program or unit is compiled with this option enabled (equivalent to {$L+}), the integrated debugger
lets you examine and modify the module's local variables. Furthermore, calls to the module's
procedures and functions can be examined by way of the View|Call Stack. The Include TD32 debug
info and Map file options (on the Linker page of the Project Options dialog) produce local symbol
information for a given module only if that module was compiled with this option set on. This option is
usually used in conjunction with the Debug information option, which enables and disables the
generation of line-number tables for debugging. This option is ignored if the compiler has the Debug
information option disabled.

Default = true

Assertions (-$C+)* Enables or disables the generation of code for assertions in a Delphi source file. The option is
enabled (equivalent to {$C+}) by default. Since assertions are not usually used at runtime in shipping
versions of a product, compiler directives that disable the generation of code for assertions are
provided. Uncheck this option to disable assertions. Default = true

Reference info None
Use no reference info.

Definitions only -$DEFINITIONINFO ON*

This is the default.

Reference info -$REFERENCEINFO ON

Runtime error checks
options

Description

Range checking (-$R+) Enables or disables the generation of range-checking code. When enabled, (equivalent to {$R+}), all
array and string-indexing expressions are verified as being within the defined bounds, and all
assignments to scalar and subrange variables are checked to be within range. If a range check fails,
an ERangeError exception is raised (or the program is terminated if exception handling is not
enabled). Enabling range checking slows down your program and makes it somewhat larger.

Default = false

I/O checking (-$I+) Enables or disables the automatic code generation that checks the result of a call to an I/O
procedure. If an I/O procedure returns a nonzero I/O result when this switch is on, an EInOutError
exception is raised (or the program is terminated if exception handling is not enabled). When this
switch is off, you must check for I/O errors by calling IOResult.

Default = true

Overflow checking
(-$Q+)

Controls the generation of overflow checking code. When enabled (equivalent to {$Q+}), certain
integer arithmetic operations (+, -, *, Abs, Sqr, Succ, Pred, Inc, and Dec) are checked for overflow.
The code for each of these integer arithmetic operations is followed by additional code that verifies
that the result is within the supported range. If an overflow check fails, an EIntOverflow exception is
raised (or the program is terminated if exception handling is not enabled). This switch is usually used
in conjunction with the range checking option ($R switch), which enables and disables the generation
of range-checking code. Enabling overflow checking slows down your program and makes it
somewhat larger.

Default = false

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

872

3

Code generation
options

Description

Optimization (-$O+)* Controls code optimization. When enabled (equivalent to {$O+}), the compiler performs a number of
code optimizations, such as placing variables in CPU registers, eliminating common subexpressions,
and generating induction variables. When disabled, (equivalent to {$O-}), all such optimizations are
disabled. Other than for certain debugging situations, you should never need to turn optimizations off.
All optimizations performed by the Delphi compiler are guaranteed not to alter the meaning of a
program. In other words, the compiler performs no "unsafe" optimizations that require special
awareness by the programmer.

This option can only turn optimization on or off for an entire procedure or function. You can’t turn
optimization on or off for a single line or group of lines within a routine.

Default = true

Generate stack frames
(-$W+)

Delphi for Win32 only. Controls the generation of stack frames for procedures and functions. When
enabled, (equivalent to {$W+}), stack frames are always generated for procedures and functions,
even when they're not needed. When disabled, (equivalent to {$W-}), stack frames are only
generated when they're required, as determined by the routine's use of local variables. Some
debugging tools require stack frames to be generated for all procedures and functions, but other than
that you should never need to enable this option.

Default = false

Pentium(tm)-safe
divide (-$U+)

Delphi for Win32 only. Controls generation of floating-point code that guards against the flawed FDIV
instruction exhibited by certain early Pentium processors. Windows 95, Windows NT 3.51, and later
Windows OS versions contain code that corrects the Pentium FDIV bug system-wide. When enabled
(equivalent to {$U+}), all floating-point divisions are performed using a runtime library routine. The
first time the floating-point division routine is invoked, it checks whether the processor's FDIV
instruction works correctly, and updates the TestFDIV variable (declared in the System unit)
accordingly. For subsequent floating-point divide operations, the value stored in TestFDIV is used to
determine what action to take.

-1 means that FDIV instruction has been tested and found to be flawed.

0 means that FDIV instruction has not yet been tested.

1 means that FDIV instruction has been tested and found to be correct.

For processors that do not exhibit the FDIV flaw, enabling this option results in only a slight
performance degradation. For a flawed Pentium processor, floating-point divide operations may take
up to three times longer in the enabled state, but they always produce correct results. In the disabled
(equivalent to {$U-}) state, floating-point divide operations are performed using in-line FDIV
instructions. This results in optimum speed and code size, but may produce incorrect results on
flawed Pentium processors. You should use the disabled state only in cases where you are certain
that the code is not running on a flawed Pentium processor.

Default = false

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

873

3

Record alignment Off (-$A-)

Fields are aligned using the compiler defaults.

Byte (-$A1)

Fields are never aligned. All record and class structures are packed.

Word (-$A2)

Fields in record types that are declared without the packed modifier and fields in class structures are
aligned on word boundaries.

Double word (-$A4)

Fields in record types that are declared without the packed modifier and fields in class structures are
aligned on double-word boundaries.

Quad word (-$A8)*

Fields in record types that are declared without the packed modifier and fields in class structures are
aligned on quad word boundaries. Regardless of the state of the $A directive, variables and typed
constants are always aligned for optimal access. By setting the option to-$A8, execution is faster.
This is the default.

Minimum enum size Byte (-$Z1)

The minimum enum size is 1 byte.

Word (-$Z2)

The minimum enum size is 2 bytes.

Double word (-$Z4)*

The minimum enum size is 4 bytes. This is the default.

Quad word (-$Z8)

The minimum enum size is 8 bytes.

Codepage
(—codepage)

Enter the codepage for your application's language. Codepage is a decimal number representing a
specific character encoding table, and there are standard values for various languages.

Default = 0, no code page

General item Description

Default Saves the current settings as the default for each new project.

General option Description

Default Saves the current settings as the default for each new project.

3.2.11.4.5.2 Delphi Compiler

Project Options Delphi Compiler

This is the top-level node of the C++ Compiler command line options.

Note: Options marked with an asterisk (*) on the options pages are the default values.

Options marked with an asterisk (*) on the options pages are the default values.

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

874

3

Build Configuration
option

Description

Build Configuration Displays the active build configuration. Use the drop-down menu to select another build configuration.

Save As... Displays the Save As dialog box to save the current configuration's options to a file that can be
loaded as a named option set.

Load... Displays the Apply Option Set dialog box to apply the options in a named option set to the current
configuration.

General option Description

Default Saves the current settings as the default for each new project.

See Also

Paths and Defines (see page 876)

Compiling (see page 870)

Other options (see page 875)

Warnings (see page 877)

3.2.11.4.5.3 Delphi Compiler Other Options

Project Options Delphi Compiler Other Options

Use this dialog box to set Delphi Compiler Other options.

Build Configuration
option

Description

Build Configuration Displays the active build configuration. Use the drop-down menu to select another build configuration.

Save As... Displays the Save As dialog box to save the current configuration's options to a file that can be
loaded as a named option set.

Load... Displays the Apply Option Set dialog box to apply the options in a named option set to the current
configuration.

Other Options Description

Unit aliases: (-A) Sets unit aliases to the specified aliases.

Use these packages
when compiling: (-LU)

Dynamically link with the specified packages.

Additional options: Additional switches to pass to the compiler.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

875

3

C/C++ Output options Description

Object files and headers No C/C++ output*
No intermediate output specified. This is the default.

C .objs (-J)

Generates C .obj files.

C++ .objs (-JP)

Generates C++ .obj files.

C++ .objs, headers (-JPH)

Generates C++ .obj and .hpp files.

C++ .objs, headers, namespaces (-JPHN)

Generates C++ .obj and .hpp files including namespaces.

C++ .objs, headers, namespaces, export (-JPHNE)

Generates C++ .obj and .hpp files with namespaces and export symbols.

C++ .objs, namespaces (-JPN)

Generates C++ .obj files with namespaces.

C++ .objs, namespaces, export (-JPNE)

Generates C++ .obj files with namespaces and export symbols.

C++ .objs, headers, exports (-JPHE)

Generates C++ .obj and .hpp files and export symbols.

C++ .objs, exports (-JPE)

Generates C++ .obj and export symbols.

Generate all C++ Builder files (including package libs)
Generates C++ .obj and .hpp files with namespaces and export symbols and package.

Header file output (-NH) Sets the .hpp output directory to the specified directory. Click [...] to display a Browse for Folder
dialog.

General item Description

Default Saves the current settings as the default for each new project.

3.2.11.4.5.4 Delphi Compiler Paths and Defines

Project Options Delphi Compiler Paths and Defines

Use this dialog box to set CodeGear Pascal Compiler Path and Define options.

Build Configuration
option

Description

Build Configuration Displays the active build configuration. Use the drop-down menu to select another build configuration.

Save As... Displays the Save As dialog box to save the current configuration's options to a file that can be
loaded as a named option set.

Load... Displays the Apply Option Set dialog box to apply the options in a named option set to the current
configuration.

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

876

3

Paths and Defines
options

Description

Include path: (-I) Includes the specified search paths.

Click [...] to display the Include path dialog to manage a list of defines. Check the Merge box to act
as if the immediate ancestor's paths are merged into this list, though this list is not actually changed.

Defines: (-D) Defines a conditional symbol. The directive -Dsymbol defines symbol. The defined symbol can be
used by the {$IFDEF symbol} or {$IFNDEF symbol} directives or DEFINED symbol in the
conditional expression part of a {$IFC cond-expr} directive.

You can also define a symbol by using the {$DEFINE symbol} directive in the source file.

Include multiple defines after a single -D option by separating each define with a semicolon (;). For
example: DCC32.EXE -Dxxx;yyy;zzz MYFILE.PAS

You can also include multiple -D options, separating each with a space. For example: DCC32.EXE
-Dxxx -Dyyy -Dzzz MYFILE.PAS

Click [...] to display a Defines symbol dialog to manage a list of defines. Check the Merge box to act
as if the immediate ancestor's defines are merged into this list, though this list is not actually
changed.

.obj output directory
(-NO)

Sets the .obj output directory to the specified directory. Click [...] to display a directory selection
dialog.

General option Description

Default Saves the current settings as the default for each new project.

3.2.11.4.5.5 Delphi Compiler Warnings

Project Options Delphi Compiler Warnings

Use this dialog box to set Delphi Compiler Warning options.

Build Configuration
option

Description

Build Configuration Displays the active build configuration. Use the drop-down menu to select another build configuration.

Save As... Displays the Save As dialog box to save the current configuration's options to a file that can be
loaded as a named option set.

Load... Displays the Apply Option Set dialog box to apply the options in a named option set to the current
configuration.

Warnings options Description

Hints (-H)* Outputs hint messages. Default = true

Warnings (-W)* Outputs warning messages. Default = true

Selected warnings Chooses specific hints and warnings to enable.

Click Select All to display all hints and warnings in the list.

Click Clear All to clear all selected hints and warnings in the list

Click Defaults to display the default hints and warnings in the list

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

877

3

General option Description

Default Saves the current settings as the default for each new project.

3.2.11.4.6 Find Option
Project Options

Use this dialog box to find a specific option for the selected build tool.

Item Description

Search for Specifies the search criteria. You can search for an option by typing its description, such as data
alignment, or its command-line switch, such as -a.

Options list Lists all command-line options that match the search text. When you select an option and click OK,
the Project Options page with the selected option is displayed.

3.2.11.4.7 iLink 32
Topics

Name Description

Linker Linking (see page 878) Project Options Linker Linking
Use this dialog box to set Linker Linking options.

Linker (see page 880) Project Options Linker
This is the top-level node of the Linker command line options.
Note: Options marked with an asterisk (*) on the options pages are the default
values.

Linker Output Options (see page 881) Project Options Linker Output options
Use this dialog box to set Linker Output Setting options.

Linker Warnings (see page 884) Project Options Linker Warnings
Use this dialog box to set Linker Warning options.

3.2.11.4.7.1 Linker Linking

Project Options Linker Linking

Use this dialog box to set Linker Linking options.

Build Configuration
option

Description

Build Configuration Displays the active build configuration. Use the drop-down menu to select another build configuration.

Save As... Displays the Save As dialog box to save the current configuration's options to a file that can be
loaded as a named option set.

Load... Displays the Apply Option Set dialog box to apply the options in a named option set to the current
configuration.

Linking options Description

Dynamic RTL Controls whether C RTL links statically or dynamically with runtime library (cc3280.dll). Default = false

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

878

3

Full debug information
(-v)

Includes information in the output file needed to debug your application with the C++Builder
integrated debugger or Turbo Debugger.

On the command line this option causes the linker to include debugging information in the executable
file for all object modules that contain debugging information. You can use the -v+ and -v- options to
selectively enable or disable debugging information on a module-by-module basis (but not on the
same command line where you use -v). For example, the following command includes debugging
information for modules mod2 and mod3, but not for mod1 and mod4:
ILINK32 mod1 —v+ mod2 mod3 -v- mod4

Default = false

Keep output files (-Gk) Tells the linker to keep output files that would otherwise be deleted on errors. The linker has been
changed to delete its output file (EXE/DLL) if there are errors in the link. The old behavior was to
leave these files and not delete them. Default = false

Maximum errors (-Enn) Sets the specified number of errors encountered (nn) before the link is aborted. Default = 0

Generate package
library (-Gl)

Generates a static package library containing code from all the .OBJs in the package so that it can be
linked to. Default = false

Generate .drc file (-GD) ILink32 generates Delphi compatible .RC files (drc files). The drc file has the same name as the
executable file and is emitted to the same directory as the executable file. Default = false

Generate import library
(-Gi)

Generates import library (DLL and package projects only). Default = false

Disable incremental
link (-Gn)

Suppresses the generation of linker state files, disabling incremental linking. If you use -Gn,
subsequent links take just as long as the first one. Default = false

Advanced options Description

Do image checksum
(-Gz)

Calculates the checksum of the target and places the result in the target’s PE header. This is used for
NT Kernel mode drivers and system DLLs. Default = false

Fast TLS (-Gt) Allocate TLS (thread-local storage) from Windows instead of using the mechanism to share TLS.
Default = false

Replace resources (-Rr) Add and/or replace resources without stripping away the existing resources. Default = false

Case sensitive link (-c) The linker differentiates between upper and lowercase characters in public and external symbols.
Normally, this option should be set, since C and C++ are both case-sensitive languages. Default =
true

Verbose (-r) Sets the verbose option rlink32 and detailed information is emitted during the resource link. Default =
false

Clear state before
linking (-C)

Deletes the existing incremental linker state files and then recreates these files and continues with
the link. This option allows you to refresh the state files. Default = false

File alignment (-Af) Specifies page alignment for code and data within the executable file. The linker uses the file
alignment value when it writes the various objects and sections (such as code and data) to the file.
For example, if you use the default value of 0x200, the linker stores the section of the image on
512-byte boundaries within the executable file.

When using this option, you must specify a file alignment value that is a power of 2, with the smallest
value being 16.

The old style of this option (/A:dd) is still supported for backward compatibility. With this option, the
decimal number dd is multiplied by the power of 2 to calculate the file alignment value.

The command-line version of this option (/Afxxxx) accepts either decimal or hexadecimal numbers as
the file alignment value. The value setting is 512 (0x200).

Default = 0x200

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

879

3

Object alignment (-Ao) The linker uses the object alignment value to determine the virtual addresses of the various objects
and sections (such as code and data) in your application. For example, if you specify an object
alignment value of 8192, the linker aligns the virtual addresses of the sections in the image on
8192-byte (0x2000) boundaries.

When using this option, you must specify an object alignment value that is a power of 2, with the
smallest value being 4096 (0x1000) , the default.

The command-line version of this option (/Ao) accepts either decimal or hexadecimal numbers as the
object alignment value.

Default = 0x1000

Delay load .DLLs (-d) Delayed loading of DLLs is useful for DLLs that are used very infrequently by an application, but
might have high startup costs. DLLs that have been delay loaded are not loaded and initialized until
an entry point in the DLL is actually called. There is accompanying RTL support for delayed load
DLLs that the user can hook into to handle errors on loading and to supplant the delayed load
system, if so desired.

Click [...] to display a dialog to manage of list of DLLs. Check the Merge box to act as if the
immediate ancestor's DLLs are merged into this list, though this list is not actually changed.

Additional options Enter any additional linker options.

General option Description

Default Saves the current settings as the default for each new project.

3.2.11.4.7.2 Linker

Project Options Linker

This is the top-level node of the Linker command line options.

Note: Options marked with an asterisk (*) on the options pages are the default values.

Build Configuration
option

Description

Build Configuration Displays the active build configuration. Use the drop-down menu to select another build configuration.

Save As... Displays the Save As dialog box to save the current configuration's options to a file that can be
loaded as a named option set.

Load... Displays the Apply Option Set dialog box to apply the options in a named option set to the current
configuration.

General option Description

Default Saves the current settings as the default for each new project.

Note: Many linker options and their switches are described in the other linker option pages for which links are provided below.
You can also get information about Linker options by entering ilink32

in a command window:

 -C Clear state before linking
 -wxxx Warning control

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

880

3

 -Enn Max number of errors
 -r Verbose linking
 -q Supress banner
 -c Case sensitive linking
 -v Full debug information
 -Gn No state files
 -Gi Generate import library
 -GD Generate .DRC file
Map File Control:
 -M Map with mangled names
 -m Map file with publics
 -s Detailed segment map
 -x No map
Paths:
 -I Intermediate output dir
 -L Specify library search paths
 -j Specify object search paths
Image Control:
 -d Delay load a .DLL
 -Af:nnnn Specify file alignment
 -Ao:nnnn Specify object alignment
 -ax Specify application type
 -b:xxxx Specify image base addr
 -Txx Specify output file type
 -H:xxxx Specify heap reserve size
 -Hc:xxxx Specify heap commit size
 -S:xxxx Specify stack reserve size
 -Sc:xxxx Specify stack commit size
 -Vd.d Specify Windows version
 -Dstring Set image description
 -Vd.d Specify subsystem version
 -Ud.d Specify image user version
 -GC Specify image comment str
 -GF Set image flags
 -Gl Static package
 -Gpd Design time only package
 -Gpr Runtime only package
 -GS Set section flags
 -Gt Fast TLS
 -Gz Do image checksum
 -Rr Replace resources

See Also

Linking (see page 878)

Output options (see page 881)

Warnings (see page 884)

3.2.11.4.7.3 Linker Output Options

Project Options Linker Output options

Use this dialog box to set Linker Output Setting options.

Build Configuration
option

Description

Build Configuration Displays the active build configuration. Use the drop-down menu to select another build configuration.

Save As... Displays the Save As dialog box to save the current configuration's options to a file that can be
loaded as a named option set.

Load... Displays the Apply Option Set dialog box to apply the options in a named option set to the current
configuration.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

881

3

Map File options Description

Type Map file with segments *

Only include segments in the map file. Happens when none of —m, —s, or —x is specified. This is the
default.

Map file with publics (-m)

Instructs the linker to produce a map file that contains an overview of the application segments and
two listings of the public symbols.

The segments listing has a line for each segment showing the segment starting address, segment
length, segment name, and the segment class.

The public symbols are broken down into two lists, the first showing the symbols in sorted
alphabetically, the second showing the symbols in increasing address order. Symbols with absolute
addresses are tagged Abs.

A list of public symbols is useful when debugging: many debuggers use public symbols, which lets
you refer to symbolic addresses while debugging.

Detailed segment map (-s)

Creates the most comprehensive map file by adding a detailed map of segments to the map file
created with the Publics option (-m). The detailed list of segments contains the segment class, the
segment name, the segment group, the segment module, and the segment ACBP information. If the
same segment appears in more than one module, each module appears as a separate line.

The ACBP field encodes the A (alignment), C (combination), and B (big) attributes into a set of four
bit fields, as defined by Intel. ILINK32 uses only three of the fields: A, C, and B. The ACBP value in
the map is printed in hexadecimal. The following field values must be ORed together to arrive at the
ACBP value printed.

Field Value Description
A (alignment) 00 An absolute segment

20 A byte-aligned segment

40 A word-aligned segment

60 A paragraph-aligned segment

80 A page-aligned segment

A0 An unnamed absolute portion

of storage

C (combination) 00 Cannot be combined

08 A public combining segment

B (big) 00 Segment less than 64K

02 Segment exactly 64K

With the Segments options set, public symbols with no references are flagged idle. An idle symbol is
a publicly defined symbol in a module that was not referenced by an EXTDEF record or by any other
module included in the link. For example, this fragment from the public symbol section of a map file
indicates that symbols Symbol1 and Symbol3 are not referenced by the image being linked:
0002:00000874 Idle Symbol1

0002:00000CE4 Symbol2

0002:000000E7 Idle Symbol3

Do not generate map (-x)

Turns off the creation of the default linker map file.

By default, the linker generates a map file with that contains general segment information including a
list of segments, the program start address, and any warning or error messages produced during the
link. There is no switch for this setting. Use the -x option to suppress the creation of this default map
file.

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

882

3

Mangle names (-M) Prints the mangled C++ identifiers in the map file, not the full name. This can help you identify how
names are mangled (mangled names are needed as input by some utilities).

Versioning items Description

OS version (-V) Specifies the Windows version ID on which you expect your application to be run. The linker sets the
Subsystem version field in the .EXE header to the number you specify in the input box.

You can also set the Windows version ID in the SUBSYSTEM portion of the module definition file
(.DEF file) However, any version setting you specify in the IDE or on the command line overrides the
setting in the .DEF file.

When you use the -Vd.d command-line option, the linker sets the Windows version ID to the number
specified by d.d. For example, if you specify -V4.0, the linker sets the Subsystem version field in the
.EXE header to 4.0, which indicates a Windows 95 application.

User version (-U) Specifies the version ID of your executable. The linker sets the user version field in the executable's
header to the number you specify.

When you use the -Ud.d command-line option, the linker sets the application version ID to the
number specified by d.d. For example, if you specify -V4.0, the linker sets the user version field in the
executable's header to 4.0.

Image description
option

Description

Image description (-D) Saves the specified description in the PE image.

Intermediate output
option

Description

Intermediate output Tells the linker to place intermediate output files in the directory specified. Click [...} to display a
Browse for Folder dialog.

PE file options Description

Base address (-B) Specify image base address. Preserve relocation table. Value in hex or decimal on 0x200 or 512 byte
boundaries. Default value = 0x00400000

Minimum stack size
(-Sc)

Spcifies the size of the committed stack in hexadecimal or decimal. The minimum allowable value for
this field is 4K (0x1000) and any value specified must be equal to or less than the Reserved Stack
Size setting (-S).

Specifying the committed stack size here overrides any STACKSIZE setting in a module definition file.

Default value = 0x00002000

Maximum stack size
(-S)

Specifies the size of the reserved stack in hexadecimal or decimal. The minimum allowable value for
this field is 4K (0x1000).

Specifying the reserved stack size here overrides any STACKSIZE setting in a module definition file.

Default value = 0x00100000

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

883

3

Minimum heap size
(-Hc)

Specifies the size of the committed heap in hexadecimal or decimal. The minimum allowable value
for this field is 0 and any value specified must be equal to or less than the Reserved Heap Size
setting (-H).

Specifying the committed heap size here overrides any HEAPSIZE setting in a module definition file.

Default value = 0x00001000

Maximum heap size
(-H)

Specifies the size of the reserved heap in hexadecimal or decimal. The minimum allowable value for
this field is 0.

Specifying the reserved heap size here overrides any HEAPSIZE setting in a module definition file.

Default value = 0x00100000

Section flags (-GS) The -GS switch lets you add flags to a named image section.

This switch adds the flags to the existing flags for a given section. There is no way to remove default
flags from a section.

Allowable flags are:

E - Executable

C - Contains Code

I - Contains initialized data

R - Section is readable

W - Section is writable

S - Section is shared

D - Section is discardable

K - Section must not be cached

P - Section must not be paged

Default value = No flags

Image flags (-GF) The GF switch allows you to set several flags on the image. The following flags are supported:

-GF:SWAPNET

-GF:SWAPCD

-GF:UNIPROCESSOR

-GF:LARGEADDRESSAWARE

-GF:AGGRESSIVE

SWAPNET tells the OS to copy the image to a local swap file and run it from there if the image
resides on a network drive.

SWAPCD tells the OS to copy the image to a local swap file and run it from there if the image resides
on removable media (for example, CD, floppy, USB memory stick).

UNIPROCESSOR tells the OS that this application cannot run on a multiprocessor system.

LARGEADDRESSAWARE tells the OS that the application understands addresses bigger than 4G.

AGGRESSIVE permits the OS to aggressively trim the working set of an application when the
application is idle. This is ideal for screen savers and other processes that wish to stay out of the way
of main line processes as much as possible.

Default value = None

General option Description

Default Saves the current settings as the default for each new project.

3.2.11.4.7.4 Linker Warnings

Project Options Linker Warnings

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

884

3

Use this dialog box to set Linker Warning options.

Build Configuration
option

Description

Build Configuration Displays the active build configuration. Use the drop-down menu to select another build configuration.

Save As... Displays the Save As dialog box to save the current configuration's options to a file that can be
loaded as a named option set.

Load... Displays the Apply Option Set dialog box to apply the options in a named option set to the current
configuration.

Warnings options Description

Enable all (-w) Displays all warning and error messages.

Disable all (-w-) Disables all warning and error messages

Selected Chooses specific warnings to enable. This is the default.

Click Select All to display all warnings in the list.

Click Clear All to clear all selected warnings in the list

Click Defaults to display the default warnings in the list

General option Description

Default Saves the current settings as the default for each new project.

3.2.11.4.8 List Editor
Project Options various paths

Use this dialog box to edit a list of semicolon-delimited strings.

Note: Not all of the options described below are available for all types of projects.

Item Description

String list Lists the strings currently set in the active build configuration.

Text field Specifies a string to add or replace in the String list. Shows the currently selected string.

[Up Arrow] Moves the selected string up in the list.

[Down Arrow] Moves the selected string down in the list.

Ellipsis Displays the Browse for Folder dialog box. Use this dialog box to specify a path.

Replace Replaces the selected string with the text field content.

Add Adds the string in the text field to the list.

Delete Deletes the selected string.

Delete Invalid Paths Deletes all invalid paths from the string list.

Inherited values Lists the strings inherited from All Configurations. You cannot modify this list.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

885

3

Inherit values from
lower level settings

Causes the active build configuration to inherit the strings specified in All Configurations.

3.2.11.4.9 Implib
Topics

Name Description

Librarian (see page 886) Projects Options TLib
Use this dialog box to set Librarian (TLib) options.
Note: Options marked with an asterisk (*) on the options pages are the default
values.

3.2.11.4.9.1 Librarian

Projects Options TLib

Use this dialog box to set Librarian (TLib) options.

Note: Options marked with an asterisk (*) on the options pages are the default values.

Build Configuration
option

Description

Build Configuration Displays the active build configuration. Use the drop-down menu to select another build configuration.

Save As... Displays the Save As dialog box to save the current configuration's options to a file that can be
loaded as a named option set.

Load... Displays the Apply Option Set dialog box to apply the options in a named option set to the current
configuration.

TLib options Description

Dynamic RTL Controls whether C RTL links statically or dynamically with runtime library (cc3280.dll). Default = false

Case sensitive library
(/c)

Warnings on case sensitive symbols. Default = false

Create extended
directory (/E)

Creates extended directory. Default = false

Purge Comment
Records (/0)

Purges comment records. Removes extra records such as line numbers. Default = false

Page size (/P) Sets library page size. Default = 0x0010

Listing filename Set listing filename. Click [...] to display a file selection dialog.

General option Description

Default Saves the current settings as the default for each new project.

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

886

3

3.2.11.4.10 Paths and Defines
Project Options Paths and Defines

Use this dialog box to set project paths and defines.

Build Configuration
options

Description

Build Configuration Displays the active build configuration. Use the drop-down menu to select another build configuration.

Save As... Displays the Save As dialog box to save the current configuration's options to a file that can be
loaded as a named option set.

Load... Displays the Apply Option Set dialog box to apply the options in a named option set to the current
configuration.

Paths options Description

Include path: (-I) Specifies the directories to be searched for include files. This is a set of include paths that are
appended to any tool-specific include paths for the project as a whole. Standard include files are
those you specify in angle brackets (<>) in an #include statement (for example, #include <myfile>).
Click [...] to display a dialog allowing you to edit a list of paths. Check the Merge box to act as if the
immediate ancestor's paths are merged into this list, though this list is not actually changed.

Library Path: (-L) Specifies the directories the linker searches if there is no explicit path given for an .LIB module in the
compile/link statement.

The Specify Library Search Path uses the following command-line syntax:
/L<PathSpec>[;<PathSpec>][..]

The linker uses the specified library search path(s) if there is no explicit path given for the .LIB file
and the linker cannot find the library file in the current directory. For example, the command
ILINK32 /Lc:\mylibs;.\libs splash.\common\logo,,,utils logolib

directs the linker to first search the current directory for SPLASH.LIB. If it is not found in he current
directory, the linker then searches for the file in the C:\MYLIBS directory, and then in the .\LIBs
directory. However, notice that the linker does not use the library search paths to find the file
LOGO.LIB because an explicit path was given for this file.

Click [...] to display a dialog to manage a list of paths. Check the Merge box to act as if the immediate
ancestor's paths are merged into this list, though this list is not actually changed.

Intermediate Output: Tells the linker to place intermediate output files in the directory specified. Also tells the compilers
(dcc, bcc, tasm, brcc) where to put their compiled output; these are normally .obj and ..rcs files.
Currently files that qualify for this placement are the linker state files. The .map file and .tds files go to
the same directory as the output image, unless otherwise specified for the .map file.

Click [...] to display a directory selection dialog.

Final Output: Designates the directory where the final output of the build, such as the executable or DLL, is put.
Click [...] to display a directory selection dialog.

BPI/Lib output: (-l) Tells the linker to place bpi/lib output files in the directory specified, if they are generated. Click [...] to
display a directory selection dialog.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

887

3

Conditional Defines
options

Description

Conditional Defines Defines the specified identifier name to the null string. -Dname=string defines name to string. In this
assignment, string cannot contain spaces or tabs. You can also define multiple #define options on
the command line using either of the following methods: This option applies to the entire project: all
these defines are appended to those for specific compilers.

Include multiple definitions after a single -D option by separating each define with a semicolon (;) and
assigning values with an equal sign (=). For example: BCC32.EXE -Dxxx;yyy=1;zzz=NO
MYFILE.C

Include multiple -D options, separating each with a space. For example: BCC32.EXE -Dxxx
-Dyyy=1 -Dzzz=NO MYFILE.C

Click [...] to display a dialog to manage a list of defines.Check the Merge box to act as if the
immediate ancestor's defines are merged into this list, though this list is not actually changed.

General option Description

Default Saves the current settings as the default for each new project.

3.2.11.4.11 Project Properties
Project or Tools Options Project Properties or Environment Options\C++ Options

Use this dialog box to set Project Properties that control certain aspects of how the project is managed in the IDE.

Note that this dialog can be displayed from either Project Options or Tools Options. If options are set in the dialog from
Project Options, they apply only to that project. If options are set in the dialog from Tools Options, they apply to new projects.

C++ Project
Properties options

Description

Manage include and
library paths

If this option is checked, when a user adds files to the project, adds the paths for these files to the
appropriate include path options to ensure the compiler/linker can find the files. If unchecked, does
not update include paths automatically and the user takes responsibility for ensuring includes and
library paths are correct. Default = true

Verify package imports
and libraries

If checked, verifies that all package-related libraries can be found before linking. If a file is not found,
displays a dialog asking the user for the location and update the include paths accordingly. If
unchecked, don't perform this verification. Default = true

Show header
dependencies in
project manager

If checked, creates and shows a list of all header files on which a C/C++ file depends in the Project
Manager if the information is available. If unchecked, does not generate the list. Default = false

Use auto-dependency
checking when
available

If an object file already exists for a source file, a tool creates a new object file if the modification date
of the source is newer than that of the object file. If this option is checked, the tool builds a new object
file if any of the include files on which a source file depends have a newer modification date than the
object file. If unchecked, the tool does not check all include files. Enabling this option helps guarantee
more accurate builds. Default = true

Show general
messages

Show all messages from tools without filtering. Default = false

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

888

3

General option Description

Default Saves the current settings as the default for each new project.

3.2.11.4.12 tasm32
Topics

Name Description

Turbo Assembler (see page 889) Project Options Tasm
This is the top-level node of the Turbo Assembler command line options.
Note: Options marked with an asterisk (*) on the options pages are the default
values.

Turbo Assembler Options (see page 889) Project Options Tasm Options
Use this dialog box to set Assembler Options.

Turbo Assembler Paths and Defines (see page 891) Project Options Tasm Paths and Defines
Use this dialog box to set Assembler Path and Define options.

Turbo Assembler Warnings (see page 892) Project Options Tasm Warnings
Use this dialog box to set Assembler Warnings options.

3.2.11.4.12.1 Turbo Assembler

Project Options Tasm

This is the top-level node of the Turbo Assembler command line options.

Note: Options marked with an asterisk (*) on the options pages are the default values.

Build Configuration
option

Description

Build Configuration Displays the active build configuration. Use the drop-down menu to select another build configuration.

Save As... Displays the Save As dialog box to save the current configuration's options to a file that can be
loaded as a named option set.

Load... Displays the Apply Option Set dialog box to apply the options in a named option set to the current
configuration.

General option Description

Default Saves the current settings as the default for each new project.

See Also

Paths and Defines (see page 891)

Options (see page 889)

Warnings (see page 892)

3.2.11.4.12.2 Turbo Assembler Options

Project Options Tasm Options

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

889

3

Use this dialog box to set Assembler Options.

Build Configuration
option

Description

Build Configuration Displays the active build configuration. Use the drop-down menu to select another build configuration.

Save As... Displays the Save As dialog box to save the current configuration's options to a file that can be
loaded as a named option set.

Load... Displays the Apply Option Set dialog box to apply the options in a named option set to the current
configuration.

Debugging options Description

Debugging Full (/zi)

Lets you use all the features of the debugger to step through your program and examine or change
data items.

Line numbers only (/zd)*

Tells the Turbo Assembler to include line-number records to synchronize source code display and
data type information. This is the default.

None (/zn)

Disables debug information in the object file.

Code generation
options

Description

Overlay Standard (no overlays) (/os)*

Creates standard object code without overlays. This is the default.

Standard (TLINK overlays) (/o)

Creates standard object code with TLINK overlays.

Phar Lap fixups (/op)

Creates object code with Phar Lap overlay-compatible fixups.

IBM fixups (/oi)

Creates object code with IBM overlay-compatible fixups.

Segment ordering Alphabetic (/a)

Orders the segments in alphabetic order.

Sequential (/s)*

Orders in the segments in the order in which they are encountered. This is the default.

Floating point Emulated (/e)*

Enable emulated floating-point instructions. This is the default.

Real (/r)
Enable real floating-point instructions.

Case sensitivity Case insensitive (/mu)*

Disables case sensitivity; treats symbol names as case-insensitive. This is the default.

Case sensitive (/ml)

Treats as uppercase all symbols used within the source file.

Globals case sensitive (/mx)

Treats only external and public symbols as case-sensitive.

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

890

3

General options Description

Symbol table size (/kh) Sets the maximum number of symbols an assembler file (.ASM) can use. The minimum allowable
Hash table capacity is 8,192 bytes. The maximum allowable Hash table capacity is 32,768 bytes.

Default = 8192

Maximum symbol
length (/mv)

Sets the maximum length of symbols that Tasm can distinguish between. The minimum number
allowed is 12.

Default = 12

Maximum passes (/m) Sets the maximum number of assembly passes. This is useful if you want the assembler to remove
NOP instructions that were added because of forward references.

Default = 1

Version id (/u) Sets version emulation to specified version number. Default = 0

Impure code check (/p) Checks for code segment overrides in protected mode. Default = false

Suppress .obj records
(/q)

Suppresses .obj records not needed for linking. Default = false

Suppress messages (/t) Suppresses messages if successful. Default = false

Display source lines in
messages (/z)

Displays source line with error messages.

Assembler Directives
option

Description

Assembler Directives
(/j)

Defines an assembler startup directive (e.g., jIDEAL). This directive is assembled before the first line
of the source file. Click [...] to display a dialog to manage a list of assembler directives. Check the
Merge box to act as if the immediate ancestor's directives are merged into this list, though this list is
not actually changed.

Default = No directives specified.

General option Description

Default Saves the current settings as the default for each new project.

3.2.11.4.12.3 Turbo Assembler Paths and Defines

Project Options Tasm Paths and Defines

Use this dialog box to set Assembler Path and Define options.

Build Configuration
option

Description

Build Configuration Displays the active build configuration. Use the drop-down menu to select another build configuration.

Save As... Displays the Save As dialog box to save the current configuration's options to a file that can be
loaded as a named option set.

Load... Displays the Apply Option Set dialog box to apply the options in a named option set to the current
configuration.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

891

3

Paths and Defines
option

Description

Include path: (/i) Specifies the drive and/or directories that contain program include files. Click [...] to display a Include
file search path dialog to manage a list of paths. Check the Merge box to act as if the immediate
ancestor's paths are merged into this list, though this list is not actually changed.

Defines: (/d) Defines a list of defined symbols of the form name=value. Click [...] to display a Define symbols
dialog to manage a list of defined symbols. Check the Merge box to act as if the immediate
ancestor's defines are merged into this list, though this list is not actually changed.

.obj output directory Sets the .obj output directory to the specified directory. Click [...] to display a directory selection
dialog.

General item Description

Default Saves the current settings as the default for each new project.

General option Description

Default Saves the current settings as the default for each new project.

3.2.11.4.12.4 Turbo Assembler Warnings

Project Options Tasm Warnings

Use this dialog box to set Assembler Warnings options.

Build Configuration
option

Description

Build Configuration Displays the active build configuration. Use the drop-down menu to select another build configuration.

Save As... Displays the Save As dialog box to save the current configuration's options to a file that can be
loaded as a named option set.

Load... Displays the Apply Option Set dialog box to apply the options in a named option set to the current
configuration.

Warnings options Description

Enable All (/w+) Generates all warnings.

Disable All (/w-) Disables all warnings.

Selected * Chooses specific warnings to enable. This is the default.

Click Select All to display all warnings in the list.

Click Clear All to clear all selected warnings in the list

Click Defaults to display the default warnings in the list

Note: Default is Selected

.

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

892

3

General option Description

Default Saves the current settings as the default for each new project.

3.2.11.4.13 Unavailable Options
Project Options

Some project options are no longer available in C++ Builder 2007. They may be available by using the tool switches.

For reference, they are listed here by major topics: C++ Compiler, Resource Compiler. Pascal Compiler, IDL to C++ Compiler,
Linker, Librarian, and Turbo Assembler.

C++ Compiler:
CodeGuard compile
support

Description

CodeGuard debug level None *

CodeGuard is off. This is the default.

Level 0 (-vG0)

Enables CodeGuard level 0.

Level 1 (-vG1)

Enables CodeGuard level 1. This turns on the -vGd option.

Level 2 (-vG2)

Enables CodeGuard level 2. This turns on the -vGd and -vGt options.

Level 3 (-vG3)

Enables CodeGuard level 3. This turns on the -vGd, -vGc , and -vGt options.

C++ Compiler:
Compatibility options

Description

Place no restrictions on
where member pointers
can point (-Vmv)

When this option is enabled, the compiler places no restrictions on where member pointers can point.
Member pointers use the most general (but not always the most efficient) representation.

C++ Compiler: Paths
and defines option

Description

Undefine any previous
definitions of name (-U)

Undefines the previous definition of the specified identifier

C++ Compiler: Other
Options

Description

Ignore system header
files while generating
dependency info (-mm)

Ignores system header files while generating dependency information

Console application
(-tC)

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

893

3

C++ Compiler: Target
Setting option

Description

Windows application
(-tW)

Target is a Windows application (same as -W)

Console application
(-tWC)

Target is a console application (same as -WC)

Dynamic-link library
(-tWD)

Generate a .DLL executable (same as -WD)

32–bit multi-threaded
project (-tWM)

The compiler creates a multi-threaded .EXE or .DLL. (The command-line option -WM is supported for
backward compatibility only; it has the same functionality as -tWM.)

This option is not needed if you include a module definition file in your compile and link commands
which specifies the type of 32-bit application you intend to build.

Generate a Unicode
application (-tWU)

Generates a Unicode application

C++ Compiler:
Assembler option

Description

Compile to .ASM (-S),
then assemble to .OBJ
(-B)

Causes the compiler to first generate an .ASM file from your C++ (or C) source code (same as the -S
command-line option). The compiler then calls TASM32 (or the assembler specified with the -E
option) to create an .OBJ file from the .ASM file. The .ASM file is then deleted.

Your program will fail to compile with the -B option if your C or C++ source code declares static global
variables that are keywords in assembly. This is because the compiler does not precede static global
variables with an underscore (as it does other variables), and the assembly keywords will generate
errors when the code is assembled.

Specify which
assembler to use (-E)

Assemble instructions using the specified filename as the assembler. The 32-bit compiler uses
TASM32 as the default assembler.

Specify assembler
option, e.g. (-Tx) (-T)

Passes the specified option(s) to the assembler you specify with the -E option.

C++ Compiler: Batch
Compile Support
options

Description

Specify Stop batch
compilation after n
warnings (Default =
255) (-g)

Warnings: Stop After causes compilation to stop after the specified number of warnings has been
detected. You can enter any number from 0 to 255.

Entering 0 causes compilation to continue until either the end of the file or the error limit set in Stop
after n errors has been reached, whichever comes first.

Specify Stop batch
compilation after n
errors (Default = None)
(-j)

Errors: Stop After causes compilation to stop after the specified number of errors has been detected.
You can enter any number from 0 to 255.

Entering 0 causes compilation to continue until the end of the file or the warning limit set in Stop after
n warnings has been reached, whichever comes first.

Stop batch compilation
after first file with errors
(-jb)

Aborts batch compilations after the first file that causes errors. For example,
BCC32 –c -gb *.ccp

BCC32 –c –gb file1.cpp file2.cpp

Without the –jb flag, batch compilations continue to the next scheduled file, even after an earlier file
has caused a error.

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

894

3

C++ Compiler:
Template options

Description

Generate definitions for
all template instances
and merge duplicates
(-Jgd)*

The compiler generates public (global) definitions for all template instances. If more than one module
generates the same template instance, the linker automatically merges duplicates to produce a single
copy of the instance.

To generate the instances, the compiler must have available the function body (in the case of a
template function) or the bodies of member functions and definitions for static data members (in the
case of a template class), typically in a header file.

This is a convenient way of generating template instances.

Print out all requested
instantiations, using
C++ syntax (-Jgi)

Prints out all requested instantiations using C++ syntax

Generate external
references for all
template instances
(-Jgx)

The compiler generates external references to all template instances.

If you use this option, all template instances that need to be linked must have an explicit instantiation
directive in at least one other module.

Resource Compiler:
Other options

Description

Instruction filename (@) Takes instructions from the specified command file.

Resource (.RC) to
compile

Lists resource files to compile

Resource Compiler:
Output Setting
options

Description

Output (.RES) file (-fo) Renames the output .RES file. (By default, BRCC32 creates the output .RES file with the same name
as the input .RC file.)

Pascal Compiler: :
Map File options

Description

Detailed map file (-GD) Creates detailed map file.

Map file with publics
(-GP)

Creates map file with publics.

Map file with segments
(-GS)

Creates map file with segments.

No map file* No Map file specified

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

895

3

Pascal Compiler:
Paths and Defines
options

Description

Object file search paths
(-O)

Sets the object file search paths to the specified paths.

Resource file search
paths (-R)

Sets resource file search paths to the specified paths.

Unit search paths (-U) Sets the unit search paths to the specified paths.

Pascal Compiler: Other
options

Description

Build all units (-B) Builds all units.

Find error (-F) Finds specified error.

Make modified units (-M) Makes modified units.

Look for 8.3 names also
(-P)

Looks for 8.3 names also

Quiet compile (-Q) Performs a quiet compile

Compiler directives (-$) Sets compiler directives to the specified directives.

Imported data (-$G+)* Enables imported data.

Runtime type info (-$M+) Enables runtime type info.

Byte sized enumerations
(-$Z1)*

Enables byte sized enumerations.

Word sized enumerations
(-$Z2)

Enables word sized enumerations.

Double-word sized
enumerations (-$Z4)

Enables double-word sized enumerations.

Export symbols
(-$ObjExportAll On)

Exports symbols.

Real-type compatibility
(-$REALCOMPATIBILITY
ON)

Enables real-type compatibility.

Pascal Compiler:
Linker EXE and DLL
Output options

Description

Console target (-CC) Outputs to console target.

GUI target (-CG)* Outputs to GUI target.

Debug information in
output (-V)

Displays debug information in output.

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

896

3

Generate remote
debug symbols (.rsm)
(-VR)

Generates remote debug symbols.

Pascal Compiler:
Linker Memory option

Description

Set image base
address (-K)

Sets image base address to the specified address.

Pascal Compiler:
Message option

Description

Output hint messages
(-H)*

Outputs hint messages.

Output warning
messages (-W)*

Outputs warning messages.

IDL to C++ Compiler Description

General The IDL to C++ Compiler is no longer in the product.

Linker: Linking
Options

Description

Suppress banner (-q) Suppresses the banner.

Display time spent on
link (-t)

Displays the time spent on link

Linker: Output
Settings options

Description

Exe file The name you want given to the executable file (.EXE, or .DLL). If you don't specify an executable
file name, ILINK32 derives the name of the executable by appending .EXE or .DLL to the first object
file name listed. (The linker assumes or appends an .EXE extensions for executable files if no
extension is present. It also assumes or appends a .DLL extension for dynamic link libraries if no
extension is present.)

Map file Is the name you want given to the map file. If you don't specify a name, the map file name is given
the same as exefile (but with the .MAP extension). (The linker appends a .MAP extensions if no
extension is present.)

Linker: Application
Type option

Description

32–bit Windows
application (-aa)

Generates a protected-mode executable that runs using the 32-bit Windows API.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

897

3

Windows device driver
(-ad)

The application type is set to NATIVE, and the image checksum is calculated and set.

Console application
(-ap)

Generates a 32-bit protected-mode executable file that runs in console mode.

Linker: Input Setting
option

Description

Object files The .OBJ files you want linked. Specify the path if the files aren't in the current directory. (The linker
appends an .OBJ extensions if no extension is present.)

Library files The library files you want included at link time. Do not use commas to separate the libraries listed. If a
file is not in the current directory or the search path then you must include the path in the link
statement. (The linker appends a .LIB extension if no extension is present.)

The order in which you list the libraries is very important; be sure to use the order defined in this list:

1. Code Guard libraries (if needed)

2. List any of your own user libraries, noting that if a function is defined more than once, the linker
uses the first definition encountered

3. IMPORT32.LIB (if you’re creating an executable that uses the Windows API)

4. Math libraries

5. Runtime libraries

Resource files A list of .RES files (compiled resource files) to bind to the executable. (The linker appends an .RES
extension if no extension is present.)

Def file The module definition file for a Windows executable. If you don't specify a module definition (.DEF)
file and you have used the /Twe or /Twd option, the linker creates an application based on default
settings. (The linker appends a .DEF extension if no extension is present.)

Linker: Other Options Description

Specify image
comment str (-GC)

Adds comment strings to the image. These strings are inserted into the image directly after the object
table in the PE file header. You can specify more than one string.

Linker: Packages
option

Description

Package base name
(-GB)

Assigns a base name for the package

Static package (-GI) Generates a static package

Design time only
package (-Gpd)

Generates a design-time-only package. (If neither /Gpr nor /Gpd is used, the resulting package works
at both design time and runtime.)

Runtime only package
(-Gpr)

Generates a runtime-only package. (If neither /Gpr nor /Gpd is used, the resulting package works at
both design time and runtime.)

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

898

3

Linker: Paths and
Defines option

Description

Library search path (-L) Specifies the directories the linker will search if there is no explicit path given for an .LIB module in
the compile/link statement.

The Specify Library Search Path uses the following command-line syntax:
/L<PathSpec>[;<PathSpec>][..]

The linker uses the specified library search path(s) if there is no explicit path given for the .LIB file
and the linker cannot find the library file in the current directory. For example, the command
ILINK32 /Lc:\mylibs;.\libs splash.\common\logo,,,utils logolib

directs the linker to first search the current directory for SPLASH.LIB. If it is not found in he current
directory, the linker then searches for the file in the C:\MYLIBS directory, and then in the .\LIBs
directory. However, notice that the linker does not use the library search paths to find the file
LOGO.LIB because an explicit path was given for this file.

Specify object search
paths (-j)

Specifies the directories the linker will search if there is no explicit path given for an object module in
the compile/link statement.

The Specify Object Search Path uses the following command-line syntax:
\j<PathSpec>[;<PathSpec>][..]

The linker uses the specified object search path(s) if there is no explicit path given for the object file
and the linker cannot find the object file in the current directory. For example, the command
ILINK32 /jc:\myobjs;.\objs splash.\common\logo,,,utils logolib

directs the linker to first search the current directory for SPLASH.OBJ. If it is not found in he current
directory, the linker then searches for the file in the C:\MYOBJS directory, and then in the .\OBJs
directory. However, notice that the linker does not use the object search paths to find the file
LOGO.OBJ because an explicit path was given for this file

Linker: PE FiIe
options

Description

Specify image base
address (preserve
relocation table) (-b)

Spcifies an image base address for your executable or DLL. The load address of the first object in the
application or library is set to the number you specify, if possible, and all successive objects are
aligned on 64K linear address boundaries; internal fixups are ignored. However, if the module cannot
be loaded using the specified address, the operating system reverts to its default setting and applies
internal fixups.

Linker: Windows
Application Type
options

Description

Windows Dynamic-link
Library (-Tpd)

The linker generates a 32-bit protected-mode Windows .DLL file.

Windows Executable
(-Tpe)

The linker generates a 32-bit protected-mode Windows .EXE file.

C++ Builder Package
(-Tpp)

The linker generates a package. This switch is included automatically in package makefiles.

Librarian: Other
options

Description

Force imports (-f) Force imports by name

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

899

3

Ignore WEP (-i) Ignores WEP

Remove module
extentions (-o)

Removes module extensions

No warnings (-w) No warnings

Librarian: Input
Setting option

Description

Sourcefile name Assigns a name to the sourcefile

Librarian: Output
Setting option

Description

Library name Assigns a name to the library

Turbo Assembler:
Listing File options

Description

Generate
cross-reference in
listing file (/c)

Enables cross-reference in listing file. Tasm adds the cross-reference information to the symbol table
at the end of the listing file.

Generate expanded
listing (/la)

Generates the normal listing and includes the subset of C/C++ that generated the .ASM file.

Suppress symbol
tables in listing file (/n)

Suppresses the symbol table in the listing file.

Include false
conditionals in listing
file (/x)

Includes false conditionals in listing. If a conditional (such as #if, #ifndef, #ifdef) evaluates to False,
this option causes the statements inside the conditional block to appear in the listing file.

Turbo Assembler:
Output Setting
options

Description

Output object filename Assigns a filename for the output object file

Listing file filename Assigns a filename for the listing file

Cross-reference file
filename

Assigns a filename for the cross-reference file

3.2.11.5 .NET Assemblies
Project Add Reference

Adds a .NET assembly reference to the current project.

The Add Reference dialog box is also available in the Project Manager by right-clicking a References folder and choosing Add

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

900

3

Reference.

Item Description

Assembly Name The name of the assembly.

Version The version of the assembly.

Path The location of the assembly.

Add Reference Adds the selected (highlighted) reference to the New References list.

Browse Displays a dialog box allowing you to navigate to an assembly.

Remove Removes the reference currently selected in the New References list from the list.

OK If the New References list contains any references, they are added to the project when you click OK.

Tip: Click any column heading to sort the display.

3.2.11.6 Project References
Project Add Reference

Adds a reference to a project that produces an assembly (.dll), such as a Class Library or Control Library. The reference will be
added to the current project.

The Add Reference dialog box is also available in the Project Manager by right-clicking a References folder and choosing Add
Reference.

Item Description

Project Name The name of the project that produces an assembly. Only projects within the current project group are
listed.

Project Directory The location of the project.

Add Reference Adds the selected (highlighted) reference to the New References list.

Browse Displays a dialog box allowing you to navigate to an assembly.

Remove Removes the reference currently selected in the New References list from the list.

OK If the New References list contains any references, they are added to the project when you click OK.

Tip: Click any column heading to sort the display.

3.2.11.7 Add to Repository
Project Add to Repository

Saves a customized form or project template in the Object Repository for reuse in other projects. The saved forms and
templates are then available in the New Items dialog box when you choose File New Other.

Item Description

Category Lists the current category names.

New Category Adds a folder with a new category to the Object Repository.

Title Gives the template a name.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

901

3

Description Gives a description of the template. The description appears when you choose File New Other,
select the template in the Object Repository, right-click, and choose View Details from the context
menu.

Author Identifies the author of the application. Author information appears only when you choose
File New Other, select the template, right-click, and choose View Details from the context menu.

Browse Opens the Select icon dialog box where you can select an icon to represent the item in the Object
Repository. You can use a bitmap of any size, but it will be cropped to 60 x 40 pixels.

Tip: You can specify the path where you want the product to look for the file (BorlandStudioRepository.xml) that describes
where the Object Repository

templates are located. If you want to change the path, choose Tools Options Environment Options and enter the path in
the Directory text box.

After you save a form or project as a template, you can edit its description, delete the template, or change its icon by choosing
Tools Repository and clicking the Edit button.

3.2.11.8 UDDI Browser
Project Add Web Reference

Searches for services and providers in the UDDI services sites with WSDL described services. Search by name or browse
through available categorization schemas.

Item Description

Microsoft production Launches Microsoft's Production site for existing Web Services.

Microsoft Test Launches Microsoft's Test site for existing Web Services.

XMethods Most recent Launches www.xmethods.com/ home page and provides the most recent listings of Web Services.

XMethods full Launches a full service list of all available Web Services.

IBM Secure Launches IBMs UDDI Browser and lets you search for UDDI Business registeries.

Web reference folder
name

Displays the name of the web reference as defined in the active WSDL document.

Add Reference Adds the reference displayed in the Web reference folder name text box to your project and
generates a proxy unit for the web reference.

3.2.11.9 Change Package
Adds required units to your package. This dialog box appears when the Package Editor tries to compile a package and detects
that the package cannot be built, or is incompatible with another package currently loaded by the IDE. This occurs because the
package uses one or more units that are found in another package.

Item Description

View Details Displays a list of the units that are required to build the package.

OK Adds the missing package(s) to the requires clause of the package you are editing.

Cancel Leaves the package you are editing as is.

Note: If you click Cancel

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

902

3

and do not apply the changes, errors may occur when the package is loaded.

3.2.11.10 Project Dependencies
Project Dependencies

Creates project dependencies within a project group. From the list, choose the projects to build before building the selected
project.

Item Description

Project Name Displays the projects in the project group except for the selected project.

Path Displays the location of the project file.

3.2.11.11 Add Languages
Project Languages Add Language

Adds one or more language resource DLLs to a project. Follow the instructions on each wizard page.

See Also

Localizing Applications (see page 18)

Adding Languages to a Project (see page 169)

3.2.11.12 Remove Language
Project Languages Remove Language

Removes one or more languages from the project. Follow the instructions on each wizard page.

See Also

Localizing Applications (see page 18)

Adding Languages to a Project (see page 169)

3.2.11.13 Set Active Language
Project Languages Set Active Language

Determines which language module loads when you run your application in the IDE. Before changing the active language, make
sure you have recompiled the satellite assembly for the language you want to use.

Select the desired language and click Finish.

See Also

Localizing Applications (see page 18)

Adding Languages to a Project (see page 169)

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

903

3

3.2.11.14 New Category Name
Tools Repository Edit button New Category button

Use this dialog box to assign a name to a new category in the Object Repository.

Item Description

New Category Name Specifies the name for the new category being added to the Object Repository.

3.2.11.15 Information
Project Information

Views the program compilation information and compilation status for your project.

Item Description

Source compiled Displays total number of lines compiled.

Code size Displays total size of the executable or assembly without debug information.

Data size Displays memory needed to store the global variables.

Initial stack size Displays memory needed to store the local variables.

File size Displays size of final output file.

Status Displays whether your last compile succeeded or failed.

3.2.11.16 Project Page Options
Project Project Page Options

Specifies an HTML file in your project as the Project Page for recording a description of the project, and various other notes and
information. This page is automatically displayed in the IDE when you open the project.

Item Description

Name Specifies the name of the Project Page. The drop down list shows all HTML files in your project.

Resource Folder Specifies the folder for additional HTML files or images files referenced by the Project Page.

3.2.11.17 Remove from Project
Project Remove from Project

Removes one or more files from the current project.

Item Description

File list Select the file that you want to remove. To select multiple files, press the CTRL key while selecting
the files.

Note: If you attempt to remove a file that has been modified during the current edit session, you will be prompted to save your

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

904

3

changes. If you have not modified the file, it is removed without a confirmation prompt.

Warning: Remove the file from your project before deleting the file from disk so that the product can update the project file
accordingly.

3.2.11.18 Options
Project Manager Right-click a satellite assembly Options command

Sets the assembly linker (al.exe) options for the satellite assembly selected in the Project Manager.

Item Description

Culture Specifies the culture string to associate with the assembly. Select a culture from the drop-down list.

Corresponds to the /culture option.

Company Specifies a string for the Company field in the assembly.

Corresponds to the /company option.

Configuration Specifies a string for the Configuration field in the assembly.

Corresponds to the /configuration option.

Copyright Specifies a string for the Copyright field in the assembly.

Description Specifies a string for the Description field in the assembly.

Corresponds to the /description option.

Trademark Specifies a string for the Trademark field in the assembly.

Corresponds to the /trademark option.

Product Specifies a string for the Product field in the assembly.

Corresponds to the /product option.

Product Version Specifies a string for the Product Version field in the assembly.

Corresponds to the /productversion option.

Title Specifies a string for the Title field in the assembly.

Corresponds to the /title option.

File Version Specifies a string for the File Version field in the assembly.

Corresponds to the /fileversion option.

Evidence Specifies the file to embed in the assembly with the resource name of Security.Evidence.

Corresponds to the /evidence option.

Keyfile Specifies the file that contains a key pair or public key to sign an assembly. The compiler inserts the
public key in the assembly manifest and then signs the final assembly with the private key.

Corresponds to the /keyfile option.

Keyname Specifies a container for a key pair. This will sign the assembly with a strong name by inserting a
public key into the assembly manifest.

Corresponds to the /keyname option.

Tip: The attributes listed in the Options

box will be available for viewing with reflection. For more information about the assembly linker, satellite assemblies, and
reflection, refer to the .NET Framework SDK online Help.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

905

3

3.2.11.19 Select Icon
Selects a bitmap to represent your template in the New Items dialog box.

You can use a bitmap of any size, but it will be cropped to 60 x 40 pixels.

3.2.11.20 Web Deploy Options
Project Web Deploy Options

Configures a finished ActiveX control or ActiveForm for deployment to a Windows Web server.

Tip: Set these options before you compile the ActiveX project and deploy it by choosing Project->Web Deploy.

Project Page

Use this page to specify file locations, a URL, and CAB file compression and version information.

Item Description

Target Dir Specifies the location of the ActiveX library file as a path on the Web server. This can be a standard
path name or a UNC path. Click the Browse button to navigate to a desired directory, for example,
C:\INETPUB\wwwroot.

Target URL Specifies the URL for the ActiveX library file. See your Web server documentation for information on
how it specifies URLs, for example, http://mymachine.borland.com/.

HTML Dir Specifies the location where the HTML file that contains a reference to the ActiveX control should be
generated. This can be a standard path name or a UNC path. Click the Browse button to navigate to
the desired directory, for example, C:\INETPUB\wwwroot.

Use CAB file
compression

Compresses the ActiveX library and all required packages and additional files that do not specify
otherwise. Cabinet compression stores files in a file library, which can decrease download time by up
to 70 percent.

Include file version
number

Includes the version information specified on the VersionInfo page of the Project Options dialog
box.

Auto increment release
number

Automatically increments the project’s release number every time you choose Project Web Deploy.
This updates the value on the VersionInfo page of the Project Options dialog box.

Deploy required
packages

Deploys all packages listed on the Packages page along with the project.

Deploy additional files Deploys all files listed on the Additional Files page along with the project.

Packages Page

Use this page to indicate which packages must be deployed with your project and how they should be deployed. Each package
can specify its own options, overriding the defaults on the Project page. Packages that ship with this product are code signed
with the CodeGear signature.

Note: You must check Deploy required packages

on the Project page to include these files. Otherwise, these packages are not deployed and you will not be able to select
packages in the packages list.

Item Description

Packages used by this
project

Lists the packages that are required by your ActiveX library project. Select a package in this list to
modify its options.

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

906

3

Compress in a
separate CAB

Creates a separate .cab file for the package.

Compress in project
CAB

Includes the package in the project .cab file.

Use file VersionInfo If the package includes a VersionInfo resource, the version information in that resource is added to
the .inf file for the project.

Target URL Specifies the URL for the package file. If this is blank, the Web browser assumes the file already
exists on the client machine. If the client does not have the package, the download of the ActiveX
library fails.

Target directory Specifies the directory where the package should be written on the server. This can be a standard
path name or a UNC path. If this is blank, it indicates that the file already exists and should not be
overwritten.

Additional Files Page

Use this page to indicate files other than packages that must be deployed with your project and how they should be deployed.
You can use this page to add files or to specify the options for any file, overriding the defaults on the Project page.

Note: You must check Deploy additional files

on the Project page to include these files. Otherwise, these files are not deployed, and you will not be able to add or select files
in the files list.

Item Description

Files associated with
project

Lists the files (other than packages) that are required by your ActiveX library project. You can add
files to the list by clicking the Add button. You can remove the selected file by clicking the Remove
button. Select a file to modify its options.

Compress in a
separate CAB

Creates a separate .cab file for the package.

Compress in project
CAB

Includes the package in the project .cab file.

Use file VersionInfo If the package includes a VersionInfo resource, the version information in that resource is added to
the .inf file for the project.

Target URL Specifies the URL for the package file. If this is blank, the Web browser assumes the file already
exists on the client machine. If the client does not have the package, the download of the ActiveX
library fails.

Target directory Specifies the directory where the package should be written on the server. This can be a standard
path name or a UNC path. If this is blank, it indicates that the file already exists and should not be
overwritten.

3.2.11.21 Build All Projects
Project Build All Projects

Compiles all of the source code in the current project group, regardless of whether any source code has changed. Building is
useful when you are unsure which files have changed, or if you have changed project or compiler options.

See Also

Project Manager (see page 1038)

Compiling (see page 2)

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

907

3

3.2.11.22 Build Project
Project Build Project

Rebuilds all files in your current project regardless of whether they have changed. Building is useful when you are unsure which
files have changed, or if you have changed project or compiler options.

See Also

Project Manager (see page 1038)

Compiling (see page 2)

3.2.11.23 Compile and Make All Projects
Project Compile

Project Make All Projects

Compile (for Delphi) and Make (for C++) compiles only those files that have changed since the last build, as well as any files
that depend on them. Compiling or making does not execute the application (see Run Run).

See Also

Project Manager (see page 1038)

Compiling (see page 2)

3.2.11.24 Add to Project
Project Add to Project

Adds another source file to an already open project.

Item Description

Look in Specifies the location where you want to locate a file or folder.

Files Displays the files in the current directory that match the wildcards in File name or the file type in Files
Of Type. You can display a list of files (default) or you can show details for each file.

File name Displays a default name for the file you want to add.

File of type Displays the files of the specified type. Only those files in the current directory that are of the
specified type appear in the Files list box.

Open Click Open to add the file or open a folder.

Tip: Press F1

in any list box or column to display tooltips with more information.

See Also

Project Manager (see page 1038)

Project RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

908

3

3.2.11.25 Add New Project
Project Add New Project

Adds new projects via the New Items dialog box .

See Also

Project Manager (see page 1038)

New Items (see page 781)

3.2.11.26 Clean Package
Project Clean Package

Removes previously compiled files and leaves behind only the source files needed to build the project. Specifically , it cleans out
any .dcu's, .bpl's, etc., that were generated.

3.2.11.27 Default Options
Project Default Options

Opens the default Project Options dialog box for the specified project type: C++ Builder, Delphi for Win32, Delphi for .NET, C#
Builder, and Basic Builder. This option is only available when there is not an open project.

After the Project Options dialog opens help is available from each page of the dialog. Click Help or press F1.

See Also

Setting Project Options (see page 162)

Setting IDE

Project Options (see page 842)

3.2.11.28 Options
Project Options

Opens the Project Options dialog that manages application and compiler options for your project. Making changes to your
project only affects the current project. However, you can also save your selections as the default settings for new projects.

See Also

Setting Project Options (see page 162)

Build Configurations Overview (Delphi) (see page 5)

Build Configurations Overview (C++) (see page 6)

Named Option Sets Overview (see page 7)

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Project

909

3

3.2.11.29 Syntax Check for Project
Project Syntax Check for Project

Checks the active project for incorrect symbols. This is an efficient way to check and see if a large project will build correctly prior
to compiling. Errors are reported in the Compiling dialog with details shown in the Messages pane.

3.2.11.30 Update Localized Projects
Project Languages Update Localized Projects

Updates resource modules. When you add an additional resource, such as a button on a form, you must update your resource
modules to reflect your changes. Build and save your project before you update the resources.

3.2.11.31 View Source
Project View Source

Shows the source of the project file that manages the running of the application. Dephi and Delphi .NET show a .dpr file. C++
shows .cpp file.

3.2.12 Propeditors

Topics

Name Description

Delete Templates (see page 914) Menu Designer context menu Delete Templates
Use this dialog box to remove predefined templates from the list in the Insert
Template dialog.

Insert Template (see page 915) Menu Designer context menu Insert From Template
Use this dialog box to add a menu using a predefined template.

Select Menu (see page 915) Menu Designer context menu Select Menu
Use this dialog box to select from a list of menus associated with the form whose
menu is currently open in the Menu Designer.

Browse dialog box (see page 915)
• Insert Object dialog box Browse (when Create From

File is selected)

• Change Icon dialog box Browse

The Browse dialog box has multiple uses, depending on
where you opened it:

• To load an existing file into an OLE container. The file you
select must be associated with an application that can be
used as an OLE server.

• To select an icon to represent an OLE object on the form.

Propeditors RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

910

3

Change Icon dialog box (see page 916) Use the Change Icon dialog box to specify an icon and a label for the object you
are placing on the form.
To open the Change Icon dialog box:

1. On the Insert Object dialog box, check Display As Icon.

2. Click Change Icon.

Color editor (see page 917) Use the Color editor to specify or define a color for the selected component.
Changes you make using the Color editor are reflected in the Color property for a
component.
To open the Color editor:

1. Select any component or the form.

2. Double-click the Value column for the Color property or
one of the other properties that use the Color editor.

DDE Info dialog box (see page 918) Use the DDE Info dialog box to specify, at design time, a DDE server application
and a topic for a DDE conversation.
To open the DDE Info dialog box:

1. Place a DDEClientConv component on the form.

2. With the component selected, do one of the following:

• Click the ellipsis button in the Value column for the
DdeService property or DdeTopic property.

• Double-click the Value column for the DdeService
property or DdeTopic property.

Filter editor (see page 918) Use the Filter editor to define filters for the OpenDialog component and the
SaveDialog component. These common dialog boxes use the value of Filters in
the List Files Of Type combo box to display certain files in the Files list box.
Use the Filter editor to edit the Filter property.
To open the Filter editor:

1. Place an OpenDialog component or SaveDialog
component on the form.

2. With that component selected, do one of the following:

• Click the ellipsis button in the Value column for the Filters
property.

• Double-click the Value column for the Filters property.

Font editor (see page 919) Use the Font editor to specify, at design time, a font and other font attributes for
the selected component or form. Changes you make using the Font editor are
reflected in the Font property for a component.

Action Manager editor (see page 919) Use the Action Manager editor at design time to add actions to ActionBands
menus and toolbars through a TActionManager component.
To display the Action Manager editor, select the TActionManager object and
double-click the component or right-click and select Customize.

Action List editor (see page 921) Use the Action List editor at design time to add actions to a TActionList
component.

Add Page dialog box (see page 922) Use the Add Page dialog box to add notebook pages to either the Notebook
component or the TabbedNotebook component.
To open this dialog box, in the Notebook editor, click Add.

Collection Editor (see page 922) The Collection Editor is used to edit the items maintained by a collection object. A
collection object is a descendant of TCollection. The Collection Editor displays
information about the items in the collection, and allows you to add, remove, or
rearrange the individual items. For some collections, additional buttons are
provided to allow other manipulations of the list.
The items displayed in the list window of the Collection Editor can be selected
using the mouse. Once an item is selected, its properties and events can be set
using the Object Inspector.

Edit Page dialog box (see page 923) Use the Edit Page dialog box to edit existing notebook pages from either the
Notebook component or the TabbedNotebook component.
To open this dialog box, in the Notebook editor, click Edit.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Propeditors

911

3

IconView Items editor (see page 924) Use the IconView Items editor at design time to add or delete the items displayed
in an iconview component. You can add or delete new items, and you can set the
caption and image index for each item using the IconView Items editor.

Image List Editor (see page 925) Use the ImageList Editor at design time to add bitmaps and icons to a TImageList
component.
While working in the image list editor, you can click Apply to save your current
work without exiting the editor, or click OK to save your changes and exit the
dialog. Using the Apply button is especially useful because once you exit the
dialog, you can't make any more changes to the existing images.
To display the ImageList editor select the TImageList object and double-click the
component or right-click and select ImageList Editor.

ListView Items Editor (see page 926) Use the ListView Items editor at design time to add or delete the items displayed
in a listview component. You can add or delete new items and sub-items, and
you can set the caption and image index for each item in the ListView Items
editor.
To display the ListView Items editor, select the TListView object and double-click
the Items property value in the Object Inspector.

New Standard Action Classes dialog box (see page 927) Use the New Standard Action Classes dialog box to add a predefined action to
your action list. Standard actions perform common tasks such as navigating
datasets, managing the windows in an MDI application, or working with the
Windows clipboard. Each standard action performs a specific function when
invoked, and enables or disables any linked controls as appropriate.
Choose the action you want to add from the list and click OK. For a description of
each predefined action class, see Predefined Action Classes.

String List editor (see page 927) Use the String List editor at design time to add, edit, load, and save strings into
any property that has been declared as TStrings.
To open the String List editor:

1. Place a component that uses a string list on the form.

2. With that component selected, do one of the following:

• Click the ellipsis in the Value column for any property that
has been declared as TStrings, such as the Items
property of the ComboBox property.

• Double-click the word (TStrings) in the Value column for
any property that has been declared as TStrings.

Note: If the property is a value list,... more (see page
927)

TreeView Items Editor (see page 927) Use the TreeView Items editor at design time to add items to a tree view
component, delete items from a tree view component, or load images from disk
into a tree view component. You can specify the text associated with individual
tree view items, and set the image index, selected index, and state index for
items.
To display the TreeView Items editor, select the TTreeView object and
double-click the Items property value in the Object Inspector.

Value List editor (see page 928) Use the Value List editor at design time to add, edit, load, and save name-value
pairs into any property that has been declared as TStrings.
To open the Value List editor:

1. Place a component that uses a string list on the form.

2. With that component selected, do one of the following:

• Click the ellipsis in the Value column for any property that
has been declared as TStrings.

• Double-click the word (TStrings) in the Value column for
any property that has been declared as TStrings.

To add items to the value list, type the name of the item in
the Key... more (see page 928)

Propeditors RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

912

3

Input Mask editor (see page 929) Use the Input Mask editor to define an edit box that limits the user to a specific
format and accepts only valid characters. For example, in a data entry field for
telephone numbers you might define an edit box that accepts only numeric input.
If a user then tries to enter a letter in this edit box, your application will not accept
it.
Use the Input Mask editor to edit the EditMask property of the MaskEdit
component.

Insert Object dialog box (see page 930) Use the Insert Object dialog box at design time to insert an OLE object into an
OleContainer component. The OleContainer component enables you to create
applications that can share data with an OLE server application. After you insert
an OLE server object in your application, you can double-click the OleContainer
component to start the server application.
Select whether or not you want to create a new file using the associated OLE
server or use an existing file. If you use an existing file, it must be associated with
an application that can act as an OLE server.

Loading an image at design time (see page 931) Use the Picture Editor to load images onto any of several graphic-compatible
components and to specify an image to represent a form when it is minimized at
runtime.
Each graphic-compatible component has a property that uses the Picture Editor.
To load an image at design time:

1. Add a graphic-compatible component (such as TImage) to
your form.

2. To automatically resize the component so that it fits the
graphic, set the component's AutoSize property to true
before you load the graphic.

3. In the Object Inspector, select the property that uses the
Picture Editor.

4. Either double-click in the Value column,... more (see
page 931)

Load Picture dialog box (see page 931) Use the Load Picture dialog box to select an image to add to any of the
graphic-compatible components and to specify an icon for your form.
To open the Load Picture dialog box, in the Picture editor, click Load.

Load String List dialog box (see page 932) Use the Load String List dialog box to select a text file to load into a property of
type TStrings.
To open this dialog box:

1. Bring up the String List Editor.

2. Right-click and choose Load.

Masked Text editor (see page 932) Use the Mask Test editor to enter Values into the edit mask.
Use the Masked Text editor to edit the Text property of the MaskEdit component.
To open the Masked Text editor:

1. Place an MaskEdit component on the form.

2. With that component selected, do one of the following:

• Click the ellipsis button in the Value column for the Text
property.

• Double-click the Value column for the Text property.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Propeditors

913

3

Notebook editor (see page 933) Use the Notebook editor to add, edit, remove, or rearrange pages in either a
TabbedNotebook component or Notebook component. You can also use the
Notebook editor to add or edit Help context numbers for each notebook page.
The Notebook editor displays the current pages of the notebook in their current
order, and it also displays the Help context associated with that page.
To open the Notebook editor:

1. Place a Notebook component or TabbedNotebook
component from the Win 3.1 Component palette page on
the form.

2. With that component selected, do one of the following:

• Click the ellipsis button in the Value... more (see page
933)

Open dialog box (see page 933) Use the Open dialog box at design time to load a multimedia file into the
MediaPlayer component.
To open the Open dialog box:

1. Place a MediaPlayer component on the form.

2. With that component selected, do one of the following:

• Click the ellipsis button in the Value column for any of the
properties listed below.

• Double-click the Value column for either of the properties
listed below.

Paste Special dialog box (see page 934) Use the Paste Special dialog box to insert an object from the Windows clipboard
into your OLE container.

Picture editor (see page 934) Use the Picture editor to select an image to add to any of the graphic-compatible
components and to specify an icon for your form.
To open the Picture editor:

1. Place a graphic-compatible component (such as TImage)
on the form.

2. With that component selected, do one of the following:

3. Click the ellipsis button in the Value column for properties
(such as the Picture property of TImage) related to editing
the picture.

4. Double-click the Value column for properties related to
editing the picture.

Note: To open the Picture editor from an Image
component, you can also double-click the component on
the form.... more (see page 934)

Save Picture As dialog box (see page 935) Use the Save Picture As dialog box to store the image loaded in the Picture
Editor into a new file or directory.
To open the Save Picture As dialog box, in the Picture Editor, click Save As.

Save String List dialog box (see page 936) Use the Save string list dialog box to store the string list from the String List editor
into a text file.
To open this dialog box:

1. Bring up the String List Editor.

2. Right-click and choose Save.

3.2.12.1 Delete Templates
Menu Designer context menu Delete Templates

Use this dialog box to remove predefined templates from the list in the Insert Template dialog.

Propeditors RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

914

3

Edit Menu Removes the standard Edit menu with items that include Undo, Repeat, Cut, Copy, Paste, Paste
Special, Find, Replace, Go To, Links, and Objects.

File Menu Removes the standard File menu with items that include New, Open, Save, Save As, Print, Print
Setup, and Exit.

File Menu (for TextEdit
Example)

Removes the File menu with the standard items, and also includes the Close item.

Help Menu Removes the Help menu with items that include Contents, Search for Help On, How to Use Help, and
About.

Help Menu (Expanded) Removes the Help menu with the standard items, along with additional items that include Index,
Commands, Procedures, Keyboard, and Tutorial.

MDI Frame Menu Removes the set of menus that contain the same items as the File, Edit, Window, and Help
(Expanded) menus.

Window Removes the Window menu with items that include New Window, Tile, Cascade, Arrange All, Hide,
and Show.

3.2.12.2 Insert Template
Menu Designer context menu Insert From Template

Use this dialog box to add a menu using a predefined template.

Edit Menu Adds a standard Edit menu with items that include Undo, Repeat, Cut, Copy, Paste, Paste Special,
Find, Replace, Go To, Links, and Objects.

File Menu Adds a standard File menu with items that include New, Open, Save, Save As, Print, Print Setup, and
Exit.

File Menu (for TextEdit
Example)

Adds a File menu with the standard items, and also includes the Close item.

Help Menu Adds a Help menu with items that include Contents, Search for Help On, How to Use Help, and
About.

Help Menu (Expanded) Adds a Help menu with the standard items, along with additional items that include Index,
Commands, Procedures, Keyboard, and Tutorial.

MDI Frame Menu Adds a set of menus that contain the same items as the File, Edit, Window, and Help (Expanded)
menus.

Window Adds a Window menu with items that include New Window, Tile, Cascade, Arrange All, Hide, and
Show.

3.2.12.3 Select Menu
Menu Designer context menu Select Menu

Use this dialog box to select from a list of menus associated with the form whose menu is currently open in the Menu Designer.

3.2.12.4 Browse dialog box
• Insert Object dialog box Browse (when Create From File is selected)

• Change Icon dialog box Browse

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Propeditors

915

3

The Browse dialog box has multiple uses, depending on where you opened it:

• To load an existing file into an OLE container. The file you select must be associated with an application that can be used as
an OLE server.

• To select an icon to represent an OLE object on the form.

Item Description

Source Enter the name of the file you want to load or wildcards to use as filters in the Files list box.

Files Displays the files in the current directory that match the wildcards in the Source edit box or the file
type in the Files of Type combo box.

Files of Type Choose the type of file you want to use as the OLE server. By default all files in the current directory
are displayed in the Files list box.

Directories Select the directory whose contents you want to view. In the current directory, files that match the
wildcards in the Source edit box or the file type in the Files of Type combo box appear in the Files list
box.

Drives Select the current drive. The directory structure for the current drive appears in the Directories list
box.

3.2.12.5 Change Icon dialog box
Use the Change Icon dialog box to specify an icon and a label for the object you are placing on the form.

To open the Change Icon dialog box:

1. On the Insert Object dialog box, check Display As Icon.

2. Click Change Icon.

Item Description

Icon Radio Select the icon to use:

Current uses the current icon.

Default uses the default icon.

From File enables you to specify an icon using a fully qualified path name. If you do not know the
icon name or the path, click Browse to open the Browse dialog box. The display box below the edit
box shows all the available icons in the specified file. To choose an icon, select it.

Label Enter the label that is to appear below the icon on the form.

Browse Click Browse to open the Browse dialog box, where you can select an icon to represent the inserted
object on the form.

Sample Icon Display Displays how the icon and label will appear on the form.

See Also

Browse (see page 915)

Propeditors RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

916

3

3.2.12.6 Color editor
Use the Color editor to specify or define a color for the selected component. Changes you make using the Color editor are
reflected in the Color property for a component.

To open the Color editor:

1. Select any component or the form.

2. Double-click the Value column for the Color property or one of the other properties that use the Color editor.

Basic colors grid

Displays selection of standard colors. Click a color to apply it to the selected component.

Custom colors grid

Displays the colors that you have created. You can create custom colors by clicking Define Custom Colors.

Define Custom Colors

Click Define Custom Colors to expand the Color editor to show options that enable you to create your own colors.

Color field

Displays the spectrum of available colors. The crosshairs indicate the current color.

Click anywhere or drag in the color field to select a color. When you select a color here and then click Add To Custom Colors,
the selected color is added to one of the Custom Color boxes so you can use it again.

Color|Solid

Displays the currently selected color and its closest solid color. Double-click the solid color to make it the current color.

Hue

Enter a value for the hue. Hue is the "actual" color, for example, red, yellow-green, or purple. Hue refers to the color without
regard to saturation or brightness (luminosity).

Sat(uration)

Enter a value for the saturation. Saturation refers to how much gray is in the color. The Sat(uration) field shows the saturation
from 0 (medium gray) to 240 (pure color).

Note: Saturation affects how clear the color is. Luminosity affects how bright the color is.

Lum(inosity) and the Slider Control

Enter a value for the luminosity, or drag the pointer on the slider to set the luminosity. Luminosity is the brightness of a color. The
Lum(inosity) field shows the luminosity from 0 (black) to 240 (white). The column to the right of the color field shows the range of
luminosity for the current color. Slide the arrow to the right of the column up or down to adjust the luminosity. When you change
the luminosity, the Red/Green/Blue color values also change accordingly.

Red/Green/Blue

Enter values for the proportion of red, green, and blue you want in your color. The values in these fields show the balance of red,
green, and blue in the current color. This is sometimes called the RGB color. The range of available values for an RGB color is 0
to 255.

Add To Custom Colors

Click to add the color you have defined to the Custom Color grid on the Color editor.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Propeditors

917

3

3.2.12.7 DDE Info dialog box
Use the DDE Info dialog box to specify, at design time, a DDE server application and a topic for a DDE conversation.

To open the DDE Info dialog box:

1. Place a DDEClientConv component on the form.

2. With the component selected, do one of the following:

• Click the ellipsis button in the Value column for the DdeService property or DdeTopic property.

• Double-click the Value column for the DdeService property or DdeTopic property.

DDE Info options

The following options are available in the DDE Info dialog box:

Dde Service

Specify the server application for the DDE conversation. The application you specify is entered into the Value column for the
DdeService property.

You do not need to specify an extension for the server application.

If the directory containing the application is not on your path, you need to specify a fully qualified path.

Dde Topic

Enter the topic for a DDE conversation. The topic is a unit of data, identifiable to the server, containing the linked text. For
example, the topic could be the file name of a spreadsheet.

When the server is a VCL-based application, the topic is the name of the form containing the data you want to link.

If the directory containing the topic is not on your path, you need to specify a fully qualified path.

Paste Link

Click Paste Link to paste the application name and file name from the contents of the Clipboard into the App and File edit boxes.

This button is active only when the clipboard contains data from an application that can be a DDE server.

3.2.12.8 Filter editor
Use the Filter editor to define filters for the OpenDialog component and the SaveDialog component. These common dialog boxes
use the value of Filters in the List Files Of Type combo box to display certain files in the Files list box.

Use the Filter editor to edit the Filter property.

To open the Filter editor:

1. Place an OpenDialog component or SaveDialog component on the form.

2. With that component selected, do one of the following:

• Click the ellipsis button in the Value column for the Filters property.

• Double-click the Value column for the Filters property.

Filter Name column

Enter the name of the filter you want to appear in the Files of Type combo box.

Propeditors RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

918

3

Filter column

Enter wildcards and extensions that will define your filter. For example, *.txt would display only files with the .txt extension.

To apply multiple file extensions to your filter, separate them using a semicolon.

3.2.12.9 Font editor
Use the Font editor to specify, at design time, a font and other font attributes for the selected component or form. Changes you
make using the Font editor are reflected in the Font property for a component.

Opening the Font editor

To open the Font editor:

1. Select any component or the form.

2. Do one of the following:

• Click the ellipsis button in the Value column for the Font property or one of the other properties that use the Font editor.

• Double-click the Value column for the Font property or one of the other properties that use the Font editor.

Font

Select a font from the list of all the available fonts you can use in your application.

Font style

Select a style for the font. This combo box displays only those styles that are available for the selected font. For most of the
available fonts, there are four possible styles:

• Regular

• Italic

• Bold

• Bold Italic

Size

Select a size for the font (in points). This combo box displays only those font sizes that are available for the selected font.

Effects

Check these options to make the text strike-through or underlined.

Color

Select a color for the font. This combo box lists all the available colors for the selected font.

Sample area

Displays a sample of the selected font before you apply it to the components. The font within this area is updated with every
change you make to the font settings.

Script

Lists the available language scripts for the selected font.

3.2.12.10 Action Manager editor
Use the Action Manager editor at design time to add actions to ActionBands menus and toolbars through a TActionManager
component.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Propeditors

919

3

To display the Action Manager editor, select the TActionManager object and double-click the component or right-click and select
Customize.

Toolbars tab

The toolbars tab allows you to quickly add toolbars (of type TActionToolBar) to your application by pressing the New button. Use
the Delete button to remove unwanted toolbars. All of the ActionBands toolbars in the application are listed in the Toolbars box.
Check or uncheck them to make them visible or invisible. You can change the caption options for the toolbars by changing the
Caption Options in the Toolbar Options box.

Actions tab

At the top right corner of the actions tab is a toolbar containing four buttons. These are as follows:

Button When clicked

New Action Inserts a new action into the list. By clicking the drop-down arrow next to the button, you can choose whether to add
a new action that you define, or a standard (predefined) action. If you choose Standard Action, you will be presented with a
dialog where you can choose the predefined action.

Delete Deletes the action currently selected in the list boxes.

Arrow buttons Moves the currently selected action up or down to change its position in the list.

The lower portion of the actions tab contains two list boxes that represent the current list of actions. The first list indicates the
value of the Category property of the action. You can change this value by selecting the action and changing the value of the
Category property in the Object Inspector.

The second list indicates the name of the action. You can change this value by selecting the action and changing the value of the
Name property in the Object Inspector.

Right click in the lower portion of the Action Manager editor to display the ActionManager context menu. This contains the
following items:

Command When checked

New Action Adds a new (not predefined) action to the Action Manager editor. You can then use the Object Inspector to edit its
properties.

New Standard Action Displays the Standard Actions dialog box, where you can select a predefined action.

Move Up Moves the currently selected action toward the beginning of the list.

Move Down Moves the currently selected action toward the end of the list.

Cut Cuts the currently selected action to the clipboard, removing it from the list.

Copy Copies the currently selected action to the clipboard without removing it from the list.

Paste Pastes an action from the clipboard above the currently selected action.

Delete Deletes the currently selected action.

Select All Selects all actions in the list.

Options tab

This tab has two sections. The top section, Personalized Menus and Toolbars, has a check box (marked "Menus show recently
used items first") that dictates how menu items will be shown. There is also a button, marked "Reset Usage Data," which
restores the action bands of the application to their initial settings.

The Other section of the Options tab contains a check box which causes large icons to appear on action bands. Another check
box causes tips to appear on toolbars. A third check box will (if tips are selected) show shortcut keys in the tips. Finally, there is a
field that allows you choose what type of animation will be used when menus open.

Propeditors RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

920

3

3.2.12.11 Action List editor
Use the Action List editor at design time to add actions to a TActionList component.

Opening the Action List editor

To display the Action List editor, Select the TActionList object and double-click the component or right-click and select Action List
editor.

Toolbar

At the top of the Action List editor is a toolbar containing four buttons. These are as follows:

Button

When clicked

New Action Inserts a new action into the list. By clicking the drop-down arrow next to the button, you can choose whether to add
a new action that you define, or a standard (predefined) action. If you choose Standard Action, you will be presented with a
dialog where you can choose the predefined action.

Delete Deletes the action currently selected in the list boxes.

Arrow buttons Moves the currently selected action up or down to change its position in the list.

Right click the Toolbar to display the ActionList toolbar context menu. This contains one item:

Command When clicked

Text labels Displays or hides the labels on the buttons in the toolbar.

List boxes

The lower portion of the Action List editor contains two list boxes that represent the current list of actions. The first list indicates
the value of the Category property of the action. You can change this value by selecting the action and changing the value of the
Category property in the Object Inspector.

The second list indicates the name of the action. You can change this value by selecting the action and changing the value of the
Name property in the Object Inspector.

Right click in the lower portion of the Action List editor to display the ActionList context menu. This contains the following items:

CommandWhen clicked

New Action Adds a new (not predefined) action to the Action List editor. You can then use the object Inspector to edit its
properties.

New Standard Action Displays the Standard Actions dialog box, where you can select a predefined action.

Move Up Moves the currently selected action toward the beginning of the list.

Move Down Moves the currently selected action toward the end of the list.

Cut Cuts the currently selected action to the clipboard, removing it from the list.

Copy Copies the currently selected action to the clipboard without removing it from the list.

Paste Pastes an action from the clipboard above the currently selected action.

Delete Deletes the currently selected action.

Select All Selects all actions in the list.

Panel Descriptions Displays or hides labels over the listbox indicating their purpose.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Propeditors

921

3

Toolbar Displays or hides the toolbar.

3.2.12.12 Add Page dialog box
Use the Add Page dialog box to add notebook pages to either the Notebook component or the TabbedNotebook component.

To open this dialog box, in the Notebook editor, click Add.

The following options are available in the Add Page dialog box:

Page Name

Enter the name of the notebook page. There is a 255-character limit on page names.

Help Context

Enter the context ID number for the notebook page. This number is significant if you want to have context-sensitive Help for the
individual pages of the notebook. The Help context is optional.

3.2.12.13 Collection Editor
The Collection Editor is used to edit the items maintained by a collection object. A collection object is a descendant of
TCollection. The Collection Editor displays information about the items in the collection, and allows you to add, remove, or
rearrange the individual items. For some collections, additional buttons are provided to allow other manipulations of the list.

The items displayed in the list window of the Collection Editor can be selected using the mouse. Once an item is selected, its
properties and events can be set using the Object Inspector.

Opening the Collection editor

To display the Collection editor, first place the component that uses the collection on a form. Select the property that is
implemented using the collection (listed in parentheses in the preceding table), and click on the ellipsis. For some components,
the Collection Editor may also be displayed by right-clicking the component, and selecting the appropriate editor from the context
menu.

Dialog box options

The following options are available in the Collection editor.

Item list

The Item list displays the properties listed in the third column of the preceding table for each item in the collection. The properties
for a selected item are displayed in the Object Inspector and are edited there.

Add button

Adds a new item to the collection. You can select the item and edit its parameters in the Object Inspector.

Delete button

Removes the selected item from the collection.

Move Up/Down buttons

Change the order of the items. For most collections, the order determines the order in which items are displayed or used by the
object that maintains the collection.

Add All Fields button (TDBGridColumns only)

Add a column for every field in the dataset to which the data-aware grid is bound. This button is only enabled if the data-aware
grid is bound to an active dataset.

Propeditors RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

922

3

Restore Defaults button (not for all collections)

Restore the default properties (obtained from the field component) of the currently selected column. This button is enabled if the
currently selected column is bound to a field (the FieldName property is set).

Read From Dictionary button (TCheckConstraints only)

Add a CheckConstraint object for every record-level constraint in the data dictionary. Each CheckConstraint object will have its
ImportedConstraint property set to the constraint from the dictionary.

Examples of collection items

The following table provides examples of collection items. Note that the list is not complete as new collection items are being
added all the time.

Collection Item type Properties
displayed

Use

TAggregates TAggregate Aggregates At design time, you can use the editor to add aggregate fields to
a client dataset. When you define aggregate fields at design
time, the editor automatically creates the TAggregate objects for
them.

TCheckConstraints TCheckConstraint ImportedConstraint,
or, if no
ImportedConstraint
is blank,
CustomConstraint

Represents record-level constraints for the data in a dataset.

(Constraints property)

TCoolBands TCoolBand Text Represents a set of bands in a CoolBar component.

(Bands property)

TDBGridColumns TColumn FieldName Represents the field binding and display properties of a column
in a data-aware grid.

(Columns property)

TIndexDefs TIndexDef IndexDefs Describes an index in a database table.

THeaderSections THeaderSection Text Represents the display properties of the sections in a
HeaderControl object.

(Sections property)

TListColumns TListColumn Caption Represents the columns of a report-style List View component.

(Columns property)

TStatusPanels TStatusPanel Text Represents the individual panels of a StatusBar component.

(Panels property)

TWebActionItems TWebActionItem Name, PathInfo,
Enabled, and
Default

Represents the action items that create the responses to HTTP
request messages for a Web dispatcher or Web module.

(Actions property)

3.2.12.14 Edit Page dialog box
Use the Edit Page dialog box to edit existing notebook pages from either the Notebook component or the TabbedNotebook
component.

To open this dialog box, in the Notebook editor, click Edit.

Edit Page options

The following options are available:

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Propeditors

923

3

Page Name

Enter the name of the notebook page. There is a 255-character limit on page names.

Help Context

Enter the context ID number for the notebook page. This number is significant if you want to have context-sensitive help for the
individual pages of the notebook. The Help context is optional.

3.2.12.15 IconView Items editor
Use the IconView Items editor at design time to add or delete the items displayed in an iconview component. You can add or
delete new items, and you can set the caption and image index for each item using the IconView Items editor.

Opening the IconView Items editor

You can display the IconView Items editor in these ways:

• Select a TIconView object on a form and click the ellipsis next to the Items property value in the Object Inspector, or

• Double-click a TIconView object on a form, or

• Right-click a TIconView object on a form and choose Items Editor on the context menu.

Using the IconView Items editor

The IconView Items editor contains an Items group box with an Items list box, a New Item button and a Delete button. When you
first add an iconview control to a form, the Items list box is empty and the Delete button as well as the Item properties on the
right are disabled. When you enter or change item properties for a selected item, the Apply button is enabled so that you can
activate changes immediately.

The IconView Items editor also contains an Item Properties group box for setting the properties of the iconview item currently
selected in the Items list box. The Item Properties group box contains a Caption edit box and an Image Index edit box.

Items group box

Items list box Shows the iconview items. These are contained in the Items property of the iconview control.

New Items button Lets you add items to the iconview.

Delete button Lets you delete a selected item in the Items list box.

Create and delete iconview items and subitems in the Items group box. To create a new item, click New Item. A default item
caption appears in the Items list box. Specify an item's properties, including its caption, in the Items Properties group box. When
you create a new item, or select an existing item, the New SubItem button is enabled so that you can nest items within other
items in the iconview. If the Items list box contains items, the Delete button is also enabled. To delete an item, select it in the
Items list box and click Delete.

Item Properties group box

Caption Names the selected item in the Items list box. The name appear in the icon view.

Image Index Lets you specify the number of an image to be used next to the selected iconview item. These are contained in the
Images property of the iconview control.

Set the properties for a selected item in the Item Properties group box. Enter a name for the item in the Caption edit box. As you
enter the name, it changes in the Items list box.

To display an image to the left of an item that is not currently selected, specify the index number of the image in the Image Index
edit box. To suppress image display, set Image Index to 0 (the default).

Propeditors RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

924

3

3.2.12.16 Image List Editor
Use the ImageList Editor at design time to add bitmaps and icons to a TImageList component.

While working in the image list editor, you can click Apply to save your current work without exiting the editor, or click OK to save
your changes and exit the dialog. Using the Apply button is especially useful because once you exit the dialog, you can't make
any more changes to the existing images.

To display the ImageList editor select the TImageList object and double-click the component or right-click and select ImageList
Editor.

Selected Image

The selected image control displays the currently selected image. This image can be changed by clicking on another image in
the Images list view below. When an image is selected, you can delete it from the list of images. If the image was not added to
the image list before the current invocation of the editor, you can use the other controls to alter its properties. However, once the
image list editor is closed, these properties are fixed and the selected image controls are grayed if the ImageList Editor is again
displayed and that image is selected.

Transparent color

Use the Transparent color drop-down to specify which color is used to create a mask for drawing the image transparently. The
default transparent color is the color of the bitmap's left-most pixel in the bottom line. You can also change the transparent color
by clicking directly on a pixel in the selected image.

When an image has a transparent color, any pixels in the image of that color are not rendered in that color, but instead appear
transparent, allowing whatever is behind the image to show through.

If the image is an icon, Transparent color appears grayed and the transparent color is set to clNone. This is because icons are
already masked.

Fill color

Use the Fill color drop-down to specify a color that is added around the edges of the selected image when it is smaller than the
dimensions indicated by the Height and Width properties of the image list control.

This control is grayed if the selected image completely fills the dimensions specified by the image list (that is, if it is at least as
big as the Height and Width properties). This control is also grayed for icon images, because icons act like masks with any outer
boundaries transparent.

Options

Use the Options radio buttons to indicate how the image list should render the selected image if it does not fit exactly in the
dimensions specified by the image list's Height and Width properties. (These buttons are disabled for icons.)

SettingDescription

Crop Displays the section of the image beginning at the top-left, extending the image list width and height towards the
bottom-right.

Stretch Causes the entire image to stretch so that it fits the image list width and height.

Center Centers the image within the image list width and height. If the image width or height is larger than the image list width or
height, the image may be clipped.

Images

Contains a preview list view of all the images in the image list, and controls for adding or deleting images from the list. Each
image is displayed within a 24x24 area for easier viewing of multiple images. Beneath each image is a caption that indicates the
zero-based position of the image within the image list. You can edit the caption to change an image's position in the list or drag

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Propeditors

925

3

the image to its new position.

Add

Displays the Add Images dialog box, which lets you select one or more bitmaps or icons to add to the image list. The images
then appear highlighted in the preview list view and their captions are assigned sequential values in the image list.

If a bitmap is larger than the image list width or height by even increments, a prompt appears asking whether the ImageList
editor should divide the bitmap into several images. This is useful for toolbar bitmaps, which are usually composed of several
small images in a sequence and stored as one larger bitmap.

Delete

Removes the selected images from the image list. All images left after clicking Delete are repositioned so they are a contiguous
zero-based list.

Clear

Removes all images from the image list.

Export

Allows you to save the selected image to a file. This file contains the bitmap in its currently altered state, including any cropping
or stretching.

3.2.12.17 ListView Items Editor
Use the ListView Items editor at design time to add or delete the items displayed in a listview component. You can add or delete
new items and sub-items, and you can set the caption and image index for each item in the ListView Items editor.

To display the ListView Items editor, select the TListView object and double-click the Items property value in the Object Inspector.

Using the ListView Items editor

The ListView Items editor contains an Items group box with an Items list box, a New Item button, a New SubItem button, and a
Delete button. When you first add a listview control to a form, the Items list box is empty and the New SubItem and Delete
buttons are disabled. When you enter or change item properties for a selected item, the Apply button is enabled so that you can
activate changes immediately.

The ListView Items editor also contains an Item Properties group box for setting the properties of the listview item currently
selected in the Items list box. The Item Properties group box contains a Caption edit box and an Image Index edit box.

Items group box

Create and delete listview items and subitems in the Items group box. To create a new item, click New Item. A default item
caption appears in the Items list box. Specify an item's properties, including its caption, in the Items Properties group box. When
you create a new item, or select an existing item, the New SubItem button is enabled so that you can nest items within other
items in the listview. If the Items list box contains items, the Delete button is also enabled. To delete an item, select it in the Items
list box and click Delete.

Item Properties group box

Set the properties for a selected item in the Item Properties group box. Enter a name for the item in the Caption edit box. As you
enter the name, it changes in the Items list box.

To display an image to the left of an item that is not currently selected, specify the index number of the image in the Image Index
edit box. To suppress image display, set Image Index to -1 (the default).

Propeditors RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

926

3

3.2.12.18 New Standard Action Classes dialog box
Use the New Standard Action Classes dialog box to add a predefined action to your action list. Standard actions perform
common tasks such as navigating datasets, managing the windows in an MDI application, or working with the Windows
clipboard. Each standard action performs a specific function when invoked, and enables or disables any linked controls as
appropriate.

Choose the action you want to add from the list and click OK. For a description of each predefined action class, see Predefined
Action Classes.

3.2.12.19 String List editor
Use the String List editor at design time to add, edit, load, and save strings into any property that has been declared as TStrings.

To open the String List editor:

1. Place a component that uses a string list on the form.

2. With that component selected, do one of the following:

• Click the ellipsis in the Value column for any property that has been declared as TStrings, such as the Items property of the
ComboBox property.

• Double-click the word (TStrings) in the Value column for any property that has been declared as TStrings.

Note: If the property is a value list, the Value List Editor

is displayed.

Code editor button

To convert the list to text, click Code Editor. The list is displayed on a separate page in the editor where you can edit is using all
of the editing commands.

String list editor context menu

The String List editor context menu (right-click on the editor) contains the following commands:

Load

Click Load to display the Load String List dialog box, where you can select an existing file to read into the String List editor.

Save

Click Save to write the current string list to a file. The product opens the Save String List dialog box, where you can specify a
directory and file name.

See Also

Value List Editor (see page 928)

Load String List (see page 932)

Save String List (see page 936)

3.2.12.20 TreeView Items Editor
Use the TreeView Items editor at design time to add items to a tree view component, delete items from a tree view component,
or load images from disk into a tree view component. You can specify the text associated with individual tree view items, and set
the image index, selected index, and state index for items.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Propeditors

927

3

To display the TreeView Items editor, select the TTreeView object and double-click the Items property value in the Object
Inspector.

Using the TreeView Items editor

The TreeView Items editor contains an Items group box with an Items list box, a New Item button, a New SubItem button, a
Delete button, and a Load button. When you first add a tree view control to a form, the Items list box is empty, and the New
SubItem and Delete buttons are disabled. When you enter or change item properties for a selected item the Apply button is
enabled so that you can activate changes immediately.

The TreeView Items editor contains a SubItems group box with a SubItems list box, an Add SubItem button and a Delete button.

The TreeView Items editor also contains an Item Properties group box for setting the properties of the tree view item currently
selected in the Items list box. The Item Properties group box contains a Text edit box, and Image Index edit box, a Selected
Index edit box, and a State Index edit box.

Items group box

Create, load, and delete tree view items and subitems in the Items group box. To load a set of existing tree view items from disk,
click Load. To create a new item, click New Item. Default text for the item appears in the Items list box. Specify an item's
properties, including its text, in the Items Properties group box.

When you create a new item, or select an existing item, the New SubItem button is enabled so that you can nest items within
other items in the tree view. If the Items list box contains items, the Delete button is also enabled. To delete an item, select it in
the Items list box and click Delete.

Item Properties group box

Set the properties for a selected item in the Item Properties group box. Enter text for the item in the Text edit box. As you enter
the name, it changes in the Items list box.

To display an image to the left of an item that is not currently selected, specify the index number of the image in the Image Index
edit box. To suppress image display, set Image Index to -1 (the default).

To display an image to left of a selected item, specify the index number of the image in the Selected Index edit box. The index is
zero-based. To suppress image display, set Selected Index to -1 (the default).

To display an additional image to the left of an item, specify the index number of the image in the State Index edit box. The index
number represents an index into the StateImages property of the listview component. The index is zero-based. To suppress
image display, set State Index to -1 (the default).

3.2.12.21 Value List editor
Use the Value List editor at design time to add, edit, load, and save name-value pairs into any property that has been declared
as TStrings.

To open the Value List editor:

1. Place a component that uses a string list on the form.

2. With that component selected, do one of the following:

• Click the ellipsis in the Value column for any property that has been declared as TStrings.

• Double-click the word (TStrings) in the Value column for any property that has been declared as TStrings.

To add items to the value list, type the name of the item in the Key column and its value in the value column. When you click OK,
the string list is saved.

To convert the list to text, click Code Editor. The list is displayed on a separate page in the editor where you can edit it using all
of the editing commands.

Propeditors RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

928

3

Value List editor context menu

The Value List editor context menu (right-click on the editor) contains the following commands:

Load

Click Load to display the Load String List dialog box, where you can select an existing file to read into the Value List editor.

Save

Click Save to write the current string list to a file. The product opens the Save String List dialog box, where you can specify a
directory and file name.

See Also

Load String List (see page 932)

Save String List (see page 936)

3.2.12.22 Input Mask editor
Use the Input Mask editor to define an edit box that limits the user to a specific format and accepts only valid characters. For
example, in a data entry field for telephone numbers you might define an edit box that accepts only numeric input. If a user then
tries to enter a letter in this edit box, your application will not accept it.

Use the Input Mask editor to edit the EditMask property of the MaskEdit component.

Opening the Input Mask editor

To open the Input Mask editor:

1. Place a MaskEdit component on the form.

2. With that component selected, do one of the following:

• Click the ellipsis button in the Value column for the EditMask property.

• Double-click the Value column for the EditMask property.

Input mask

Define your own masks for the edit box. You can use special character to specify the mask; for a listing of those characters, see
the EditMask property.

The mask consists of three fields separated by semicolons. The three fields are:

• The mask itself; you can use predefined masks or create your own.

• The character that determines whether or not the literal characters of the mask are saved as part of the data.

• The character used to represent a blank in the mask.

Character for Blanks

Specify a character to use as a blank in the mask. Blanks in a mask are areas that require user input.

This edit box changes the third field of your edit mask.

Save Literal Characters

Check to store the literal characters from the edit mask as part of the data. This option affects only the Text property of the
MaskEdit component. If you save data using the EditText property, literal characters are always saved.

This check box toggles the second field in your edit mask.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Propeditors

929

3

Test Input

Use Test Input to verify your mask. This edit box displays the edit mask as it will appear on the form.

Sample Masks

Select a predefined mask to use in the MaskEdit component. When you select a mask from this list, the product places the
predefined mask in the Input Mask edit box and displays a sample in the Test Input edit box. To display masks appropriate to
your country, choose the Masks button.

Masks button

Choose Masks to display the Open Mask File dialog box, where you choose a file containing the sample masks shown in the
Sample Masks list box.

3.2.12.23 Insert Object dialog box
Use the Insert Object dialog box at design time to insert an OLE object into an OleContainer component. The OleContainer
component enables you to create applications that can share data with an OLE server application. After you insert an OLE
server object in your application, you can double-click the OleContainer component to start the server application.

Select whether or not you want to create a new file using the associated OLE server or use an existing file. If you use an existing
file, it must be associated with an application that can act as an OLE server.

Create New

Choose Create New to specify that you want to launch a server application to create a new OLE object. After choosing Create
New, the ObjectType list box is displayed.

Create From File

Choose Create From File to specify that the OLE object has already been saved as a file. After choosing Create From File, the
File, Browse and Link controls are displayed.

Object Type

Select an application that you want to use as the OLE server. This list box displays all available applications that can be used as
an OLE server. After you select an application, the product launches that application.

File

Enter the fully qualified path for the file you want to insert into your application. The file you choose must be associated with an
application that can be used as an OLE server.

Note: This option is available only when you have selected the Create From File radio button.

Browse

Click Browse to display the Browse dialog box, where you can select a file to use as the OLE server.

Note: This option is available only when you have selected the Create From File radio button.

Link

Check Link to link the object on the form to a file. When an object is linked, it is automatically updated whenever the source file is
modified. When Link is unchecked, you are embedding the object, and changes made to the original are not reflected in your
container.

Display As Icon

Check to display the inserted object as an icon on the form. When this option is checked, the Change Icon button is displayed.

Propeditors RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

930

3

Change Icon

Click Change Icon to open the Change Icon dialog box, where you can specify an icon and label for the object you inserted onto
the form.

Note: This option is available only when you have selected the Create From File radio button.

See Also

Browse (see page 915)

3.2.12.24 Loading an image at design time
Use the Picture Editor to load images onto any of several graphic-compatible components and to specify an image to represent
a form when it is minimized at runtime.

Each graphic-compatible component has a property that uses the Picture Editor.

To load an image at design time:

1. Add a graphic-compatible component (such as TImage) to your form.

2. To automatically resize the component so that it fits the graphic, set the component's AutoSize property to true before you
load the graphic.

3. In the Object Inspector, select the property that uses the Picture Editor.

4. Either double-click in the Value column, or choose the ellipsis button to open the Picture editor.

(To open the Picture Editor from an Image component, you can also double-click the component in the form.)

1. Choose the Load button to open the Load Picture dialog box.

2. Use the Load Picture dialog box to select the image you want to display, then choose OK.

The image you choose is displayed in the Picture Editor.

1. Choose OK to accept the image you have selected and exit the Picture Editor dialog box.

2. The image appears in the component on the form.

Note: When loading a graphic into an Image component, you can automatically resize the graphic so that it fits the
component by setting the Image component's Stretch property to true. (Stretch has no effect on the size of icon (.ICO) files.)

See Also

Picture Editor (see page 934)

Load Picture (see page 931)

3.2.12.25 Load Picture dialog box
Use the Load Picture dialog box to select an image to add to any of the graphic-compatible components and to specify an icon
for your form.

To open the Load Picture dialog box, in the Picture editor, click Load.

Dialog box options

The following options are available for the Load Picture dialog box:

File name

Enter the name of the file you want to load or wildcards to use as filters in the Files list box.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Propeditors

931

3

Files (main list box)

Displays the files in the current directory that match the wildcards in the File Name edit box or the file type in the Files of Type
combo box.

Files of Type

Choose a filter to display the different types of image files. By default, the icon files (*.ICO) for the current directory are displayed
in the Files list box.

Directories

Select the directory whose contents you want to view. In the current directory, files that match the wildcards in the File name edit
box or the file type in the Files of Type combo box appear in the Files list box.

Drives

Select the current drive. The directory structure for the current drive appears in the Directories list box.

3.2.12.26 Load String List dialog box
Use the Load String List dialog box to select a text file to load into a property of type TStrings.

To open this dialog box:

1. Bring up the String List Editor.

2. Right-click and choose Load.

Load String List options

The following options are available in the Load String List dialog box:

File name

Enter the name of the file you want to load or wildcards to use as filters in the Files list box.

Files (main list box)

Displays the files in the current directory that match the wildcards in the File Name edit box or the file type in the Files Of Type
combo box.

Files Of Type

Choose a filter to display the different types of files. By default, the text files (*.txt) for the current directory are displayed in the
Files list box.

Directories

Select the directory whose contents you want to view. In the current directory, files that match the wildcards in the File name edit
box or the file type in the Files of Type combo box appear in the Files list box.

Drives

Select the current drive. The directory structure for the current drive appears in the Directories list box.

See Also

String List Editor (see page 927)

3.2.12.27 Masked Text editor
Use the Mask Test editor to enter Values into the edit mask.

Propeditors RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

932

3

Use the Masked Text editor to edit the Text property of the MaskEdit component.

To open the Masked Text editor:

1. Place an MaskEdit component on the form.

2. With that component selected, do one of the following:

• Click the ellipsis button in the Value column for the Text property.

• Double-click the Value column for the Text property.

Input Text edit box

Enter initial values for the MaskEdit component. You can overwrite these values at runtime.

Edit Mask label

Displays the mask definition for the current component.

3.2.12.28 Notebook editor
Use the Notebook editor to add, edit, remove, or rearrange pages in either a TabbedNotebook component or Notebook
component. You can also use the Notebook editor to add or edit Help context numbers for each notebook page.

The Notebook editor displays the current pages of the notebook in their current order, and it also displays the Help context
associated with that page.

To open the Notebook editor:

1. Place a Notebook component or TabbedNotebook component from the Win 3.1 Component palette page on the form.

2. With that component selected, do one of the following:

• Click the ellipsis button in the Value column for the Pages property.

• Double-click the Value column for the Pages property.

Edit

Click Edit to open the Edit Page dialog box, where you can modify the page name and Help context number for the selected
notebook page.

Add

Click Add to open the Add Page dialog box, where you can create a new notebook page.

Delete

Click Delete to remove the selected page from the notebook.

Move Up/Move Down

Click Move Up or Move Down to rearrange the order of the selected page or pages.

See Also

Edit Page (see page 923)

Add Page (see page 922)

3.2.12.29 Open dialog box
Use the Open dialog box at design time to load a multimedia file into the MediaPlayer component.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Propeditors

933

3

To open the Open dialog box:

1. Place a MediaPlayer component on the form.

2. With that component selected, do one of the following:

• Click the ellipsis button in the Value column for any of the properties listed below.

• Double-click the Value column for either of the properties listed below.

Open dialog box options

The following options are available for the Open dialog box":

File name

Enter the name of the file you want to load or wildcards to use as filters in the Files list box.

Files

Displays the files in the current directory that match the wildcards in the File Name edit box or the file type in the Files Of Type
combo box.

Files Of Type

Choose the type of file you want to load. By default, all files in the current directory are displayed. However, you can limit the
display to wave files, midi files, or Windows video files.

Directories

Select the directory whose contents you want to view. In the current directory, files that match the wildcards in the File Name edit
box or the file type in the Files Of Type combo box appear in the Files list box.

Drives

Select the current drive. The directory structure for the current drive appears in the Directories list box.

3.2.12.30 Paste Special dialog box
Use the Paste Special dialog box to insert an object from the Windows clipboard into your OLE container.

Source label

Displays the path of the file you are going to paste.

Paste/Paste Link Radio

Select Paste to embed the object on the form. When you embed an object on a form, your container application stores all the
information for the object. It is not necessary to have an external file.

Select Paste Link to link the object to the form. When you link an object to a form, the main source is stored in a file so that when
you update the object, the source file is also updated.

As

Lists the type of application object you are pasting. The application listed is the source application from which you received the
object that you are pasting.

3.2.12.31 Picture editor
Use the Picture editor to select an image to add to any of the graphic-compatible components and to specify an icon for your
form.

Propeditors RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

934

3

To open the Picture editor:

1. Place a graphic-compatible component (such as TImage) on the form.

2. With that component selected, do one of the following:

3. Click the ellipsis button in the Value column for properties (such as the Picture property of TImage) related to editing the
picture.

4. Double-click the Value column for properties related to editing the picture.

Note: To open the Picture editor from an Image component, you can also double-click the component on the form.

Picture editor commands

The Picture editor provides the following commands:

Load

Display the Load Picture dialog box, where you can select an existing file to read into the Picture editor. For more information
about loading images into the Picture editor, see the information on loading an image at design time.

Save

Display the Save Picture As dialog box, where you can specify a directory and file name in which to store the image.

Clear

Remove the association between the current image and the selected component.

See Also

Load Picture (see page 931)

Loading an image (see page 931)

Save Picture As (see page 935)

3.2.12.32 Save Picture As dialog box
Use the Save Picture As dialog box to store the image loaded in the Picture Editor into a new file or directory.

To open the Save Picture As dialog box, in the Picture Editor, click Save As.

Save Picture As options

The following options are available in the Save Picture As dialog box:

File name

Enter the name of the file you want to load or wildcards to use as filters in the Files list box.

Files (main list box)

Displays the files in the current directory that match the wildcards in the File Name edit box or the file type in the Files of Type
combo box.

Files of Type

Choose filter to display the different types of image files. By default, the icon files (*.ICO) for the current directory are displayed in
the Files list box.

Directories

Select the directory whose contents you want to view. In the current directory, files that match the wildcards in the File name edit
box or the file type in the Files of Type combo box appear in the Files list box.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Propeditors

935

3

Drives

Select the current drive. The directory structure for the current drive appears in the Directories list box.

See Also

Picture Editor (see page 934)

3.2.12.33 Save String List dialog box
Use the Save string list dialog box to store the string list from the String List editor into a text file.

To open this dialog box:

1. Bring up the String List Editor.

2. Right-click and choose Save.

Save String List options

The following options are available in the Save String List dialog box:

File name

Enter the name of the file you want to save or wildcards to use as filters in the Files list box.

Files (main list box)

Displays the files in the current directory that match the wildcards in the File Name edit box or the file type in the Files of Type
combo box.

Files of Type

Choose a filter to display the different types of files. By default, the text files (*.txt) in the current directory are displayed in the
Files list box.

Directories

Select the directory whose contents you want to view. In the current directory, files that match the wildcards in the File name edit
box or the file type in the Files of Type combo box appear in the Files list box.

Drives

Select the current drive. The directory structure for the current drive appears in the Directories list box.

See Also

String List Editor (see page 927)

3.2.13 Run

Topics

Name Description

Add Address Breakpoint or Add Data Breakpoint (see page 938) Run Add Breakpoint Address Breakpoint
Run Add Breakpoint Data Breakpoint
Sets a breakpoint on either an address or a data item, and to change the
properties of an existing breakpoint. The title might also be Address Breakpoint
Properties or Data Breakpoint Properties, if you accessed the dialog box
through the context menu Properties command.

Run RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

936

3

Add Source Breakpoint (see page 940) Run Add Breakpoint Source Breakpoint
Sets a breakpoint on a line in your source code or to change the properties of an
existing breakpoint. The dialog box title can also be Source Breakpoint
Properties or Address Breakpoint Properties, depending on how it is
accessed.

Attach to Process (see page 941) Run Attach to Process
Debugs a process that is currently running on the local or remote computer.

Change (see page 941) Assigns a new value to the data item currently selected on the Data tab in the
Debug Inspector.

Debug Inspector (see page 942) Run Inspect
Inspects the following types of data: arrays, classes, constants, functions,
pointers, scalar variables, and interfaces.
The Debug Inspector contains three areas:

Debugger Exception Notification (see page 943) This dialog box appears when the program you are debugging raises a language
exception or operating system exception, and you have set options that instruct
the debugger to handle exceptions on the Language Exceptions and Native OS
Exceptions pages of Tools Options Debugger Options.
The message format is:
Project <project-name> raised exception class <yyyy> with
message <message-text>.

If yyyy is a class name, the exception is a language exception. If yyyy is a
hexadecimal value, the exception is an operating system exception.

Evaluate/Modify (see page 944) Run Evaluate/Modify
Evaluates or changes the value of an existing expression or property. This is
useful if you want to test a code correction without having to exit the debugger,
change the source code, and recompile the program.

Find Package Import (see page 944) Run Run (F9)
The Find Package Import dialog appears when your application cannot locate
one of the runtime packages specified in Project Options Packages dialog.

Inspect (see page 945) Run Inspect
Used to enter the expression that you want to inspect in the Debug Inspector.

Load Process Environment Block (see page 945) Run Load Process Environment Block
Indicates which environment variables are passed to your application while you
are debugging it.

Load Process Local (see page 946) Run Load Process Local
Passes command-line parameters to your application, specify a host executable
for testing a DLL, or load an executable into the debugger.

Load Process Remote (see page 946) Run Load Process Remote
Connects to a remote computer running the remote debug server and start a
remote debugging session.

Load Process Symbol Tables (see page 947) Run Load Process Symbol Tables
Specifies the location of the symbols tables to be used during debugging.

New Expression (see page 948) Inspects a new expression. Enter the expression or select a previously entered
expression from the drop-down list.

Debug session in progress. Terminate? (see page 948) Your application is running during a debugging session and will be terminated if
you click OK. When possible, click Cancel and terminate your application
normally.

Type Cast (see page 948) Specifies a different data type for an item you want to inspect. Type casting is
useful if the Debug Inspector contains a symbol for which there is no type
information, and when you want to explicitly set the type for untyped pointers.

Watch Properties (see page 948) Run Add Watch
Adds a watch or to change the properties of an existing watch. The watch
appears in the Watch List.
Note: The format specifiers listed in the Watch Properties
dialog box will depend on the format specifiers supported by the current
evaluator. Not all of the format specifiers listed below will be available for every
evaluator. In most cases the evaluator is specified by the Personality.

Detach From Program (see page 949) Run Detach From Program
Disconnects the debugger from the current (running) program and refocuses on
the IDE.

Load Process (see page 949) Run Load Process
Opens the Load Process dialog box. This command provides a separate UI for
loading an arbitrary process into the debugger.
Tip: Press F1
in any item in the list to bring up a help page on the selected topic.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Run

937

3

Parameters (see page 950) Run Parameters
Specifies the command-line parameters to pass to your application. Opens
Project Options Debugger dialog.

Program Reset (see page 950) Run Program Reset
Terminates the application or process that is currently under the debugger's
control.

Register ActiveX Server (see page 950) Run Register ActiveX Server
Registers an "in-process" automation server into the registry. An In-Process
Automation Server is a set of COM Automation Objects for connecting to
databases, executing SQL statements and PL/SQL blocks, and accessing the
results. In-process automation objects are inside of .dlls; out-of-process
automation servers are applications (.exes). ActiveX is used when you create a
new application and then select File New Other Active X Automation
Server Object.

Run (see page 950) Run Run
Compiles any changed source code and, if the compile is successful, executes
your application, allowing you to use and test it in the IDE .

Run To Cursor and Run Until Return (see page 950) Run Run To Cursor
Run Run Until Return
Executes the current program you are working on and stops either at the cursor
location or when the function returns.

Show Execution Point (see page 951) Run Show Execution Point
Opens the Code Editor window and bring the line of code that contains the
current execution point to the front. Use this command if you closed or minimized
the Code Editor window because the debugger automatically displays the
execution point in the Code Editor.

Step Over (see page 951) Run Step Over
Tells the debugger to execute the next line of code. If the line contains a function,
Step Over executes the function and then stops at the first line after the function.

Trace Into (see page 951) Run Trace Into
Tells the debugger to execute the next line of code. If the line contains a function,
Trace Intro executes the function and then stops at the first line of code inside
the function.

Trace to Next Source Line (see page 951) Run Trace to Next Source Line
Executes a single source line.

Unregister ActiveX Server (see page 951) Run Unregister ActiveX Server
Unregisters an "in-process" automation server from the registry.

3.2.13.1 Add Address Breakpoint or Add Data Breakpoint
Run Add Breakpoint Address Breakpoint

Run Add Breakpoint Data Breakpoint

Sets a breakpoint on either an address or a data item, and to change the properties of an existing breakpoint. The title might also
be Address Breakpoint Properties or Data Breakpoint Properties, if you accessed the dialog box through the context menu
Properties command.

Item Description

Address Specifies the address for the address breakpoint. When the address is executed, the program
execution will halt if the condition (optional) evaluates to true and the pass count (optional) has been
completed. If the address can be correlated to a source line number, the address breakpoint is
created as a source breakpoint.

Length (for data
breakpoint only)

Specifies the length of the data breakpoint, beginning at “Address.” The length is automatically
calculated for standard data types.

Run RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

938

3

Condition Specifies a conditional expression that is evaluated each time the breakpoint is encountered.
Program execution stops when the expression evaluates to true. Enter a conditional expression to
stop program execution.

Enter any valid language expression. All symbols in the expression must be accessible from the
breakpoint's location. Functions are valid if they return a Boolean type. For data breakpoints, if no
condition is set, the breakpoint is hit when any change is made to the data in the range specified in
the Length field.

Pass count Stops program execution at a certain line number after a specified number of passes.

Enter the number of passes. The debugger increments the pass count each time the line containing
the breakpoint is encountered. When the pass count equals the specified number, the debugger
pauses program execution. For example, if the pass count is set to 3, you will see 0 of 3, 1 of 3, 2 of
3, then 3 of 3 in the pass count. Program execution stops at 3 of 3.

Because the debugger increments the count with each pass, you can use the count to determine the
iteration of a loop that fails. Set the pass count to the maximum loop count and run your program.
When the program fails, you can calculate the number of loop iterations by examining the number of
passes that occurred.

When you use pass counts with conditions, program execution pauses the nth time that the
conditional expression is true. the debugger decrements the pass count only when the conditional
expression is true.

Group Creates a breakpoint group, and makes this breakpoint a member of the group. Using breakpoint
groups is useful for performing a similar set of actions on all breakpoints within a group.

To create a group, enter a name in this field. To use an existing group, select a group from the
drop-down list.

Advanced Expands the dialog box to include fields for associating actions with breakpoints.

Break Halts execution; the traditional and default action of a breakpoint.

Ignore subsequent
exceptions

Ignores all subsequent exceptions raised by the current process during the current debug session
(the debugger will not stop on any exception). Use this with Handle subsequent exceptions as a
pair. You can surround specific blocks of code with the Ignore/Handle pair to skip any exceptions
which occur in that block of code.

Handle subsequent
exceptions

Handles all subsequent exceptions raised by the current process during the current debug session
(the debugger will stop on exceptions based on the current exception settings in
Tools Options Debugger Options Language Exceptions. This option does stop on all
exceptions. Use it to turn on normal exception behavior after another breakpoint disabled normal
behavior using the Ignore subsequent exceptions option.

Log message Writes the specified message to the event log. Enter the message that you want to log.

Eval expression Evaluates the specified expression and, because Log result is checked by default, writes the result
of the evaluation to the event log. Uncheck Log result to evaluate without logging.

Log result If text is entered in Eval expression, writes the result of the evaluation in the to the event log. If
unchecked, the evaluation is not logged.

Enable group Enables all breakpoints in the specified group. Select the group name.

Disable group Disables all breakpoints in the specified group. Select the group name.

Log Call Stack Displays all or part of the call stack in the Event Log window when a breakpoint is encountered.

Entire Stack displays all of the call stack.

Partial Stack displays only the number of frames specified in Number of frames.

See Also

Setting and Modifying Breakpoints (see page 118)

Add Module Load Breakpoint dialog box (see page 1019)

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Run

939

3

Add Source Breakpoint dialog box (see page 940)

3.2.13.2 Add Source Breakpoint
Run Add Breakpoint Source Breakpoint

Sets a breakpoint on a line in your source code or to change the properties of an existing breakpoint. The dialog box title can
also be Source Breakpoint Properties or Address Breakpoint Properties, depending on how it is accessed.

Item Description

Filename Specifies the source file for the source breakpoint. Enter the name of the source file for the
breakpoint.

Line number Sets or changes the line number for the breakpoint. Enter or change the line number for the
breakpoint.

Condition Specifies a conditional expression that is evaluated each time the breakpoint is encountered.
Program execution stops when the expression evaluates to true. Enter a conditional expression to
stop program execution.

Enter any valid language expression. All symbols in the expression must be accessible from the
breakpoint's location. Functions are valid if they return a Boolean type.

Pass count Stops program execution at a certain line number after a specified number of passes.

Enter the number of passes. The debugger increments the pass count each time the line containing
the breakpoint is encountered. When the pass count equals the specified number, the debugger
pauses program execution. For example, if the pass count is set to 3, you will see 0 of 3, 1 of 3, 2 of
3, then 3 of 3 in the pass count. Program execution stops at 3 of 3.

Because the debugger increments the count with each pass, you can use them to determine which
iteration of a loop fails. Set the pass count to the maximum loop count and run your program. When
the program fails, you can calculate the number of loop iterations by examining the number of passes
that occurred.

When you use pass counts with conditions, program execution pauses the nth time that the
conditional expression is true. the debugger decrements the pass count only when the conditional
expression is true.

Group Creates a breakpoint group, of which this breakpoint becomes a member. To use an existing group,
select a group from the drop-down list. Using breakpoint groups is useful for performing a similar set
of actions on all breakpoints within a group.

Keep existing
Breakpoint

When checked, the breakpoint will not be modified, and a new breakpoint will be created with the
changes made to the existing breakpoint.

Advanced Expands the dialog box to include fields for associating actions with breakpoints.

Break Halts execution; the traditional and default action of a breakpoint.

Ignore subsequent
exceptions

Ignores all subsequent exceptions raised by the current process during the current debug session
(the debugger will not stop on any exception). Use this with Handle subsequent exceptions as a
pair. You can surround specific blocks of code with the Ignore/Handle pair to skip any exceptions
which occur in that block of code.

Handle subsequent
exceptions

Handles all subsequent exceptions raised by the current process during the current debug session
(the debugger will stop on exceptions based on the current exception settings in
Tools Options Debugger Options Language Exceptions. This option does stop on all
exceptions. Use it to turn on normal exception behavior after another breakpoint disabled normal
behavior using the Ignore subsequent exceptions option.

Log message Writes the specified message to the event log. Enter the message that you want to log.

Eval expression Evaluates the specified expression and, because Log result is checked by default, writes the result
of the evaluation to the event log. Uncheck Log result to evaluate without logging.

Run RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

940

3

Log result If text is entered in Eval expression, writes the result of the evaluation in the to the event log. If
unchecked, the evaluation is not logged.

Enable group Enables all breakpoints in the specified group. Select the group name.

Disable group Disables all breakpoints in the specified group. Select the group name.

Log Call Stack Displays all or part of the call stack in the Event Log window when a breakpoint is encountered.

Entire Stack displays all of the call stack.

Partial Stack displays only the number of frames specified in Number of frames.

See Also

Setting and Modifying Breakpoints (see page 118)

Add Address Breakpoint or Add Data Breakpoint dialog box (see page 938)

Add Module Load Breakpoint dialog box (see page 1019)

3.2.13.3 Attach to Process
Run Attach to Process

Debugs a process that is currently running on the local or remote computer.

Item Description

Debugger Select the appropriate debugger from the list of registered debuggers. If you choose the CodeGear
.NET debugger, only managed processes are displayed Running Processes list. If you choose the
CodeGear Win32 debugger, both managed and unmanaged processes are displayed.

Remote Machine The name of the remote machine that is running the application that you want to debug.

Running Processes Lists the processes currently running on the local or if specified, the remote computer. Note that the
Remote Server must be running.

PID Lists the process identifier of the process.

Path Lists the location of the process.

Show System
Processes

Displayed if the Debugger option indicates the CodeGear Win32 debugger. Includes system
processes in the Running Processes list.

Pause After Attach Pauses the process after the debugger attaches to it and displays the CPU View. You will need to
run, step, or trace to resume execution.

Refresh Refreshes and redisplays the list of running processes.

Attach Attaches the debugger to the selected process and, if Pause After Attach is enabled, displays the
CPU window.

The Attach button is disabled for the IDE itself or for any process that you have already attached to
with the debugger.

3.2.13.4 Change
Assigns a new value to the data item currently selected on the Data tab in the Debug Inspector.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Run

941

3

3.2.13.5 Debug Inspector
Run Inspect

Inspects the following types of data: arrays, classes, constants, functions, pointers, scalar variables, and interfaces.

The Debug Inspector contains three areas:

Area Description

Top pane Displays the name, type, and address or memory location of the inspected element, if available.
When inspecting a function call that returns an object, record, set, or array, the debugger displays “In
debugger” in place of the temporarily allocated address.

Middle pane Displays one or more of the following tabs, depending on the type of data you inspect:

Data - Shows data names (or class data members) and current values.

Methods - Displayed only when you inspect a class, or interface and shows the class methods
(member functions) and current address locations.

Properties - Displayed only when you inspect an object class with properties and shows the property
names and current values.

Bottom pane Displays the data type of the item currently selected in the middle pane.

Status bar Displays the data type of the element being inspected.

Context Menu

Right-click the Debug Inspector to display the following commands.

Item Description

Change Lets you assign a new value to a data item. An ellipsis (…) appears next to an item that can be
changed. You can click the ellipsis as an alternative to choosing the change command.

This command is only enabled when you can modify the data item being inspected.

Show Inherited Switches the view in the Data, Methods, and Properties panes between two modes: one that shows
all intrinsic and inherited data members or properties of a class, or one that shows only those
declared in the class.

Show Fully Qualified
Names

Shows inherited members using their fully qualified names.

Sort By Sorts the data elements displayed in the Debug Inspector by their name or by the order in which
they were declared in the code.

Bind to Object (For Delphi.NET and managed code only) Attaches the Inspector to the data item currently displayed.
When the Debug Inspector is bound to an object, “(Bound)” is appended to the name of the
inspected element displayed at the top of the dialog box.

Once an Inspector is bound, the displayed value cannot be subinspected. The Debug Inspector
remains bound until you close it or until you open another Debug Inspector by selecting the Inspect,
Descend, New Expression, or Typecast command from the context menu.

Inspect Opens a new Debug Inspector on the data element you have selected. This is useful for seeing the
details of data structures, classes, and arrays.

Descend Same as the Inspect command, except the current Debug Inspector is replaced with the details that
you are inspecting (a new Debug Inspector is not opened). To return to a higher level, use the
history list.

New Expression Lets you inspect a new expression.

Run RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

942

3

Type Cast Lets you specify a different data type for an item you want to inspect. Type casting is useful if the
Debug Inspector contains a symbol for which there is no type information, and when you want to
explicitly set the type for untyped pointers.

Dockable Toggles whether the Debug Inspector window is dockable.

Stay On Top Keeps the window visible when out of focus.

See Also

Inspecting and Changing the Value of Data Elements (see page 122)

3.2.13.6 Debugger Exception Notification
This dialog box appears when the program you are debugging raises a language exception or operating system exception, and
you have set options that instruct the debugger to handle exceptions on the Language Exceptions and Native OS Exceptions
pages of Tools Options Debugger Options.

The message format is:

Project <project-name> raised exception class <yyyy> with message <message-text>.

If yyyy is a class name, the exception is a language exception. If yyyy is a hexadecimal value, the exception is an operating
system exception.

Item Description

Ignore this exception
type

Causes the debugger to ignore this type of language exception or OS exception and sets the
corresponding check box in the Exception Types to Ignore list on the Tools Options Debugger
Options Language Exceptions page.

If you choose to ignore the OS exception, the Handled by option is set to Debugger on the Native
OS Exceptions page for all exception ranges that include the exception that was raised.

Inspect exception object Displayed only on exceptions when using the CodeGear .NET Debugger. Displays the Debug
Inspector dialog box for the exception object if you click Break to halt execution.

This option has no effect if you click Continue.

Show CPU view This option is displayed only if the location of the exception does not correspond to a source location.
Displays the CPU View if you click Break to halt execution.

If Show CPU view is displayed and you do not check it, the IDE traverses the call stack looking for a
call in the stack that contains source and will show you the first call found that has source.

This option has no effect if you click Continue.

Break Halts program execution where the exception occurred and positions the Code Editor to that line of
code.

Continue Continues program execution.

Tip: To copy this or other messages to the clipboard, type CTRL+C

.

Note: In some cases, the state of the program will prevent you from continuing, and you will repeatedly see the Debugger
Exception Notification

dialog box. If this occurs, click Break and then choose Run Program Reset to end the current program run and release it
from memory.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Run

943

3

3.2.13.7 Evaluate/Modify
Run Evaluate/Modify

Evaluates or changes the value of an existing expression or property. This is useful if you want to test a code correction without
having to exit the debugger, change the source code, and recompile the program.

Item Description

Evaluate Evaluates the expression in the Expression edit box and displays its value in the Result edit box.

Modify Changes the value of the expression in the Expression edit box using the value in the New Value
edit box.

Watch Creates a watch for the expression you have selected.

Inspect Opens a new Debug Inspector on the data element you have selected. This is useful for seeing the
details of data structures, classes, and arrays.

Expression Enter the variable, field, array, or object to evaluate or modify. By default, the word at the cursor
position in the Code Editor is placed in the Expression edit box. You can accept this expression,
enter another one, or choose an expression from the history list of previously evaluated expressions.

To evaluate a function call, enter the function name, parentheses, and arguments as you would type
it in your program, but leave out the statement-ending semicolon (;).

Result Displays the value of the item specified in the Expression text box after you choose Evaluate or
Modify.

New value Assigns a new value to the item specified in the Expression edit box. Enter a new value for the item
if you want to change its value.

Note: You can evaluate any valid language expression or static variables that are accessible from the current execution point.

Display Format Specifiers

By default, the debugger displays the result in the format that matches the data type of the expression. For example, Integer
values are displayed in decimal format. To change the display format, type a comma (,) followed by a format specifier after the
expression.

The following table describes the Evaluate/Modify format specifiers.

Specifier Types
affected

Description

,C Char, strings Character. Shows characters for ASCII 0 to 31 in the Delphi language #nn notation.

,S Char, strings String. Shows ASCII 0 to 31 in Delphi language #nn notation.

,D Integers Decimal. Shows integer values in decimal form, including those in data structures.

,H or ,X Integers Hexadecimal. Shows integer values in hexadecimal with the $ prefix, including those in data
structures.

,Fn Floating
point

Floating point. Shows n significant digits where n can be from 2 to 18. For example, to display the
first four digits of a floating-point value, type ,F4. If n is not specified, the default is 11.

3.2.13.8 Find Package Import
Run Run (F9)

The Find Package Import dialog appears when your application cannot locate one of the runtime packages specified in

Run RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

944

3

Project Options Packages dialog.

Item Description

Package Import Lists the name of the package that cannot be located.

Browse Displays a file browser so that you can locate the correct package name.

Remove this reference Deletes the name of the package import from the list of runtime packages for the project.

Don't ask me this again Specifies that RAD Studio is to proceed with loading runtime packages without displaying this dialog
again.

See Also

Packages Overview (see page 640)

Runtime Packages

Loading Packages in an Application

3.2.13.9 Inspect
Run Inspect

Used to enter the expression that you want to inspect in the Debug Inspector.

Item Description

Expression Enter a valid expression.

See Also

Inspecting and Changing the Value of Data Elements (see page 122)

3.2.13.10 Load Process Environment Block
Run Load Process Environment Block

Indicates which environment variables are passed to your application while you are debugging it.

Item Description

Debugger The name of the debugger to be used. You can select CodeGear Win32 Debugger or CodeGear
.NET Debugger, depending on the type of application you are debugging.

System variables Lists all environment variables and their values defined at a system level. You cannot delete an
existing system variable, but you can override it.

Add Override Displays the Override System Variable dialog box, allowing you to modify an existing system
variable to create a new user override. This button is dimmed until you select a variable in the
System variables list.

User overrides Lists all defined user overrides and their values. A user override takes precedence over an existing
system variable until you delete the user override.

New Displays the New User Variable dialog box allowing you to create new user override to a system
variable.

Edit Displays the Edit User Variable dialog box allowing you to change the user override currently
selected in the User overrides list.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Run

945

3

Delete Deletes the user override currently selected in the User overrides list.

Include System
Variables

Passes the system environment variables to the application you are debugging. If unchecked, only
the user overrides are passed to your application.

3.2.13.11 Load Process Local
Run Load Process Local

Passes command-line parameters to your application, specify a host executable for testing a DLL, or load an executable into the
debugger.

Item Description

Debugger The name of the debugger to be used. You can select either the Borland Win32 Debugger or the
CodeGear .NET Debugger from the pull-down menu.

Process Enter the path to an executable file that you want to run in the debugger. Then click Load to load the
executable. The executable will be paused at its entry point. If there is no debug information at the
entry point, the CPU window will be opened. Select Run Run to run the executable.

Parameters Enter the command-line arguments you want to pass to your application when it starts.

Working Directory Enter the name of the directory to use for the debugging process. By default, this is the same
directory as the one containing the executable of your application.

Execute Startup Code
on Load

Executes the startup code that was automatically generated when you created the project. The
startup code is executed before reaching the program's main entry point.

Load Loads the application (the process is loaded and stopped).

3.2.13.12 Load Process Remote
Run Load Process Remote

Connects to a remote computer running the remote debug server and start a remote debugging session.

Item Description

Debugger The name of the debugger to be used. You can select CodeGear Win32 Debugger or CodeGear
.NET Debugger, depending on the type of application you are debugging.

Remote Path Enter the path of the .exe file on the remote computer, relative to the directory that contains the
remote debug server (rmtdbg105.exe).

Remote Host Enter the name or TCP/IP address of the remote computer on which you want to run the application.
The remote debug server (rmtdbg100.exe) must be running on the remote computer.

If a port was specified when starting rmtdbg100.exe, enter a colon after the host name, followed by
the port. For example, if you specified port 8000, specify the remote host assomehost:8000 or
127.0.0.1:8000. Otherwise, the default port 64447 will be used.

Parameters Enter the command-line arguments you want to pass to your application (or the host application)
when it starts.

Working Directory Enter the name of the directory to use for the debugging process. By default, this is the same
directory as the one containing the executable of your application.

Execute startup code
on Load

Executes the startup code that was automatically generated when you created the project. The
startup code is executed before reaching the program's main entry point.

Run RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

946

3

See Also

Debugging Remote Applications (see page 125)

3.2.13.13 Load Process Symbol Tables
Run Load Process Symbol Tables

Specifies the location of the symbols tables to be used during debugging.

Item Description

Debugger The name of the debugger to be used. You can select CodeGear Win32 Debugger or CodeGear
.NET Debugger, depending on the type of application you are debugging.

Debug symbols search
path

Specifies the directory containing the symbol tables used for debugging. This path is used if you
check the Load all symbols check box.

Load all symbols Sets the state of the Mappings from Module Name to Symbol Table Path list. If checked, the list is
disabled and all symbol tables are loaded by the debugger. The debugger uses the Debug symbols
search path to search for the symbol table file associated with each module loaded by the process
being debugged. If unchecked, the Mappings from Module Name to Symbol Table Pathlist is
enabled and its settings are used.

Mappings from Module
Name to Symbol Table
Path

Displays the current mapping of each module name to a symbol table search path that is defined for
the project. Use the up and down arrows (to the right of the dialog) to move the selected item up or
down in the list. The debugger searches this list, in order, to find a match for the name of the module
being loaded. When the debugger finds a matching module name, it uses the corresponding path to
locate that module's symbol table.

For example, if module foo123.dll is loaded, and the list shows foo*.dll as the first item and *123.dll
as a later item, the debugger only uses the symbol table path for foo*.dll, even though both items
match the module being loaded.

Load symbols for
unspecified modules

Specifies whether symbol tables for modules not in the Mappings from Module Name to Symbol
Table Path list (either explicitly or via a file mask) are loaded during debugging. If checked, the
symbol tables for modules not specified will be loaded using the Debug symbols search path. If
unchecked, symbol tables are loaded only for modules in the list.

New Displays the Add Symbol Table Search Path dialog, where you can specify a module name and an
associated search table path. The module and path are added to the Mappings from Module Name
to Symbol Table Path list. Note that you can add a blank path to prevent a symbol table for a
module from being loaded.

Edit Displays the selected module and path in the Add Symbol Table Search Path dialog, enabling you
to edit the module name or path that displays in the Mappings from Module Name to Symbol Table
Path list.

Delete Removes the selected module from the Mappings from Module Name to Symbol Table Path list.

See Also

Debugging Applications (see page 10)

Preparing Files for Remote Debugging (see page 128)

Local (see page 946)

Remote (see page 946)

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Run

947

3

3.2.13.14 New Expression
Inspects a new expression. Enter the expression or select a previously entered expression from the drop-down list.

3.2.13.15 Debug session in progress. Terminate?
Your application is running during a debugging session and will be terminated if you click OK. When possible, click Cancel and
terminate your application normally.

3.2.13.16 Type Cast
Specifies a different data type for an item you want to inspect. Type casting is useful if the Debug Inspector contains a symbol for
which there is no type information, and when you want to explicitly set the type for untyped pointers.

3.2.13.17 Watch Properties
Run Add Watch

Adds a watch or to change the properties of an existing watch. The watch appears in the Watch List.

Note: The format specifiers listed in the Watch Properties

dialog box will depend on the format specifiers supported by the current evaluator. Not all of the format specifiers listed below
will be available for every evaluator. In most cases the evaluator is specified by the Personality.

Item Description

Expression Specifies the expression to watch. Enter or edit the expression you want to watch. Use the drop-down
list to choose from previously entered expressions.

Group name Specifies the group in which the selected watch resides. If you specify a new group, the new group is
added and the watch is moved to the new group. Use the drop-down list to choose the name from a
list of the existing watch groups.

Repeat count Specifies the repeat count when the watch expression represents a data element, or specifies the
number of elements in an array when the watch expression represents an array. When you watch an
array and specify the number of elements as a repeat count, the Watch List displays the value of
every element in the array.

Digits Specifies the number of significant digits in a watch value that is a floating-point expression. Enter the
number of digits. This option takes affect only when you select Floating Point as the Display format.

Enabled Enables or disables the watch. Disabling a watch hides the watch from the current program run.
When you disable a watch, its settings remain defined, but the debugger does not evaluate the
watch. Disabling watches improves performance of the debugger because it does not monitor the
watch as you step through or run your program. When you set a watch, it is enabled by default.

Allow Function Calls Evaluates the watch even if doing so causes function calls. This option is off by default for all
watches. When off, watches that would make function calls are not evaluated but instead generate
the error message ”Inaccessible value.”

Character Shows special display characters for ASCII 0 to 31 (displayed as #$0, #$1F, and so on). This format
type affects characters and strings.

Run RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

948

3

String Shows characters for ASCII 0 to 31 in the Pascal #nn notation (#$0, and so on.) This format type
affects characters and strings.

Decimal Shows integer values in decimal form, including those in data structures. This format type affects
integers.

Hexadecimal Shows integer values in hexadecimal with the 0x (for C++, C#) or $ (for Delphi) prefix, including those
in data structures. This format type affects integers.

Floating point Shows integer values in floating-point notation (real numbers or numbers that can contain fractional
parts).

Pointer Used for Win32 applications only.

Record/Structure Shows both field names and values such as (X:1;Y:10;Z:5) instead of (1,10,5).

Default Shows the result in the display format that matches the data type of the expression. This format type
affects all.

Memory Dump Used for Win32 applications only.

Tip: By default, the debugger displays the result of a watch in the format that matches the data type of the expression. For
example, integer values are displayed in decimal form. However, if you select the Hexadecimal

for an integer type expression, the display format changes from decimal to hexadecimal.

When setting up a watch on an element in a data structure (such as an array), you can display the values of consecutive data
elements. For example, suppose you have an array of five integers named xarray. Type the number 5 in Repeat Count to see
all five values of the array. To use a repeat count, however, the watch expression must represent a single data element.

To change the value of a watch expression, use the Evaluate/Modify dialog box.

Tip: To format a floating-point expression, select Floating Point

and enter a number for Digits to indicate the number of significant digits you want displayed in the Watch List.

3.2.13.18 Detach From Program
Run Detach From Program

Disconnects the debugger from the current (running) program and refocuses on the IDE.

3.2.13.19 Load Process
Run Load Process

Opens the Load Process dialog box. This command provides a separate UI for loading an arbitrary process into the debugger.

Tip: Press F1

in any item in the list to bring up a help page on the selected topic.

See Also

Load Process Environmental Block

Load Process Local (see page 946)

Load Process Remote (see page 946)

Load Process Symbol Tables (see page 947)

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Run

949

3

3.2.13.20 Parameters
Run Parameters

Specifies the command-line parameters to pass to your application. Opens Project Options Debugger dialog.

See Also

Parameters (see page 672)

Debugger (see page 836)

3.2.13.21 Program Reset
Run Program Reset

Terminates the application or process that is currently under the debugger's control.

See Also

Attach Process (see page 117)

3.2.13.22 Register ActiveX Server
Run Register ActiveX Server

Registers an "in-process" automation server into the registry. An In-Process Automation Server is a set of COM Automation
Objects for connecting to databases, executing SQL statements and PL/SQL blocks, and accessing the results. In-process
automation objects are inside of .dlls; out-of-process automation servers are applications (.exes). ActiveX is used when you
create a new application and then select File New Other Active X Automation Server Object.

3.2.13.23 Run
Run Run

Compiles any changed source code and, if the compile is successful, executes your application, allowing you to use and test it in
the IDE .

See Also

Compiling (see page 2)

3.2.13.24 Run To Cursor and Run Until Return
Run Run To Cursor

Run Run Until Return

Executes the current program you are working on and stops either at the cursor location or when the function returns.

Run RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

950

3

Item Description

Run To Cursor Executes the current active program to the line containing the cursor. The cursor must be on a line of
source code.

Run Until Return Executes the current active program until the current procedure or function returns to its caller.

3.2.13.25 Show Execution Point
Run Show Execution Point

Opens the Code Editor window and bring the line of code that contains the current execution point to the front. Use this
command if you closed or minimized the Code Editor window because the debugger automatically displays the execution point
in the Code Editor.

3.2.13.26 Step Over
Run Step Over

Tells the debugger to execute the next line of code. If the line contains a function, Step Over executes the function and then
stops at the first line after the function.

See Also

Overview of Debugging (see page 10)

Using Tooltips During Debugging (see page 122)

3.2.13.27 Trace Into
Run Trace Into

Tells the debugger to execute the next line of code. If the line contains a function, Trace Intro executes the function and then
stops at the first line of code inside the function.

See Also

Overview of Debugging (see page 10)

3.2.13.28 Trace to Next Source Line
Run Trace to Next Source Line

Executes a single source line.

3.2.13.29 Unregister ActiveX Server
Run Unregister ActiveX Server

Unregisters an "in-process" automation server from the registry.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Run

951

3

See Also

Register ActiveX Server (see page 950)

3.2.14 Search

Topics

Name Description

Find (see page 952) Search Find
Specifies the text you want to locate and sets options that affect the search. Find
locates the line of code containing the first occurrence of the string and highlights
it.

Find in Files (see page 953) Search Find in Files
Specifies the text you want to locate and sets options that affect the search. The
Find In Files command works with the Repeat Search command available on the
context menu of the Messages pane.

Find References (see page 954) Search Find References
Locates references to a selected identifier.

Enter Address to Position (see page 954) Search Goto Address
Positions to an address in the CPU window.

Go to Line Number (see page 954) Search Go to Line Number
Jumps to a line number in the Code Editor.

Replace Text (see page 955) Search Replace
Searches for specified text and then replaces with other text or with nothing.

Search Again (see page 955) Search Search Again
Continues to search for a specified string that was entered in Find.

Find Class (see page 955) Search Find Class
Opens the Find Class dialog box. The Find Class dialog box searches for all or
part of a class name and lists the all classes currently in scope (from the uses
and references list) that match the entered name. Select a class name from the
list to open the file containing the class declaration.

Find Local References (see page 956) Search Find Local References
Locates references in the active code file.

Find Original Symbol (see page 956) Search Find Original Symbol
Searches through the list of files in the Project Manager and then displays the
original declaration of the symbol in question.
Select a symbol (e.g., TForm) that you are using, in another file or another
section fo the project, before selecting Search for Original Symbol.

Find References (see page 956) Search Find References
Locates references to a selected identifier.

Incremental Search (see page 956) Search Incremental Search
Allows you to interactively search for text. As you type, the first matching result is
highlighted in the editor. The status bar of the editor shows "Searching for:" with
the text you looking for.
To begin a new search, press Backspace to clear the status bar, or select
Incremental Search again.

3.2.14.1 Find
Search Find

Specifies the text you want to locate and sets options that affect the search. Find locates the line of code containing the first
occurrence of the string and highlights it.

Search RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

952

3

Item Description

Text to find Enter a search string or use the down arrow to select a previously entered search string.

Case sensitive Differentiates uppercase from lowercase when performing a search.

Whole words only Searches for words only. (With this option off, the search string might be found within longer words.)

Regular expressions Recognizes regular expressions in the search string. A list of regular expressions is given (as “special
characters”) in GREP.

Forward Searches from the current position to the end of the file. Forward is the default.

Backward Searches from the current position to the beginning of the file.

Global Searches the entire file in the direction specified by the Direction setting. Global is the default scope.

Selected text Searches only the selected text in the direction specified by the Direction setting. You can use the
mouse or block commands to select a block of text.

From Cursor The search starts at the cursor's current position, and then proceeds either forward to the end of the
scope, or backward to the beginning of the scope depending on the Direction setting. From cursor
is the default Origin setting.

Entire scope Searches the entire block of selected text or the entire file (no matter where the cursor is in the file),
depending upon the Scope options.

3.2.14.2 Find in Files
Search Find in Files

Specifies the text you want to locate and sets options that affect the search. The Find In Files command works with the Repeat
Search command available on the context menu of the Messages pane.

Item Description

Case sensitive Differentiates uppercase from lowercase when performing a search.

Whole words only Searches for words only. If unchecked, the search string might be found within longer words.

Regular expressions Recognizes regular expressions in the search string.

Search all files in
project

Searches all files in the open project.

Search all open files Searches files that are currently open.

Search in directories When selected, the Search Directory Options are available. The search proceeds through all files
indicated.

File mask Specify the path of the files to be searched.

To search other files, use a wildcard entry (such as *.* or *.txt) at the end of the path.

To enter multiple masks, separate the masks with semicolons.

To search for files in the product root directory, specify the root directory using the appropriate
environment variable.

Include subdirectories Searches subdirectories of the directory path specified.

Display results in
separate tab in
message view

Causes the results of the search to be displayed in a new search tab in the Messages view. The tab
is labeled Search for <string>, where string is the text you searched for.

If not checked, a new search tab is created unless one already exists. If a search tab exists, the
search results are placed in the existing search tab and the label is changed. If no results are found,
that search tab is deleted.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Search

953

3

Tip: Each occurrence of a string is listed in the Messages

view at the bottom of the Code Editor. Double-click a list entry to move to that line in the code.

Tip: To repeat the last search, right-click in the Messages

view and select Repeat Search.

Tip: While a lengthy search is in progress, the Find in Files

command changes to Cancel Find in Files. To stop a search in progress, either right-click the search result tab for that search
and choose Close Tab, or choose Search Cancel Find in Files.

3.2.14.3 Find References
Search Find References

Locates references to a selected identifier.

Item Description

Remove Red X button deletes the selected reference.

Remove All Documents with small x icon is a button that removes all references from the Find References
window. Successive find operations display a cumulative list of references unless you explicitly delete
them.

+/- Expands and collapses the nodes in the references tree. Each node denotes a separate file.

See Also

Finding References (see page 141)

Find References Overview (Delphi (see page 65)

3.2.14.4 Enter Address to Position
Search Goto Address

Positions to an address in the CPU window.

Item Description

Edit Box Enter the symbol, such as main, to which you want to position the CPU window.

Alternatively, for managed code, you can enter an address in the just in time (JIT) compiler format:
@(module token,function token,offset)

For example:
@($3,$60005C4,$62)

For unmanaged code, you can enter any flat 32-bit address value, for example, $401018.

3.2.14.5 Go to Line Number
Search Go to Line Number

Jumps to a line number in the Code Editor.

Search RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

954

3

Item Description

Enter New Line
Number

Enter the line number in the code that you want to go to, or select a number from a list of previously
entered line numbers.

3.2.14.6 Replace Text
Search Replace

Searches for specified text and then replaces with other text or with nothing.

Item Description

Text to find Enter a search string or use the down arrow to select a previously entered search string.

Replace with Enter the replacement string. To select from a list of previously entered search strings, click the down
arrow next to the input box. To replace the text with nothing, leave this input box blank.

Case sensitive Differentiates uppercase from lowercase when performing a search.

Whole words only Searches for words only. If unchecked, the search string might be found within longer words.

Regular expressions Recognizes regular expressions in the search string.

Prompt on replace Displays a confirmation prompt before replacing each occurrence of the search string. If unchecked,
the Code Editor automatically replaces the search string.

Forward Searches from the current position to the end of the file. Forward is the default.

Backward Searches from the current position to the beginning of the file.

Global Searches the entire file in the direction specified by the Direction setting. Global is the default scope.

Selected text Searches only the selected text in the direction specified by the Direction setting. You can use the
mouse or block commands to select a block of text.

From Cursor Starts the search at the current cursor position, and then proceeds either forward to the end of the
scope, or backward to the beginning of the scope depending on the Direction setting.

Entire scope Searches the entire block of selected text or the entire file (no matter where the cursor is in the file),
depending on the Scope options.

Replace All Replaces every occurrence of the search string. If checked, the Confirm dialog box appears on each
occurrence of the search string.

3.2.14.7 Search Again
Search Search Again

Continues to search for a specified string that was entered in Find.

3.2.14.8 Find Class
Search Find Class

Opens the Find Class dialog box. The Find Class dialog box searches for all or part of a class name and lists the all classes
currently in scope (from the uses and references list) that match the entered name. Select a class name from the list to open the
file containing the class declaration.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Search

955

3

3.2.14.9 Find Local References
Search Find Local References

Locates references in the active code file.

See Also

Finding References (see page 141)

findrefov.xml (see page 65)

3.2.14.10 Find Original Symbol
Search Find Original Symbol

Searches through the list of files in the Project Manager and then displays the original declaration of the symbol in question.

Select a symbol (e.g., TForm) that you are using, in another file or another section fo the project, before selecting Search for
Original Symbol.

See Also

Find References Overview (Delphi (see page 65)

3.2.14.11 Find References
Search Find References

Locates references to a selected identifier.

Item Description

Remove Red X button deletes the selected reference.

Remove All Documents with small x icon is a button that removes all references from the Find References
window. Successive find operations display a cumulative list of references unless you explicitly delete
them.

+/- Expands and collapses the nodes in the references tree. Each node denotes a separate file.

See Also

Finding References (see page 141)

Find References Overview (Delphi (see page 65)

3.2.14.12 Incremental Search
Search Incremental Search

Allows you to interactively search for text. As you type, the first matching result is highlighted in the editor. The status bar of the
editor shows "Searching for:" with the text you looking for.

To begin a new search, press Backspace to clear the status bar, or select Incremental Search again.

Together RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

956

3

3.2.15 Together

Topics

Name Description

Add New Diagram dialog box (see page 960) Context menu Add Other Diagram
To open this dialog box, right click the project root or a namespace element in the
Diagram View or Model View, and choose Add Other Diagram on the
context menu. Alternatively, with the project root selected or a namespace
element selected, you can use the keyboard shortcut, CTRL+SHIFT+D to open
the dialog box.
This dialog box displays the available diagrams that you can add to your project.

Add/Remove Parameters for Operation dialog box (see page 961) To open this dialog box, select a function or procedure on a diagram in the
Model View or Diagram View, and click the elipsis at the right of the Params
property in the Object Inspector.
This dialog box is used to specify parameters for functions or procedures. You
can add, edit, and delete entries.

Add/Remove User Properties dialog box (see page 961) Context menu User Properties
To open this dialog, right-click the diagram or model element in the Model View
or Diagram View, and choose User Properties on the context menu.
This dialog box is used for creating user properties and OCL constraints. The
dialog box displays a list of properties, if any, each entry consisting of a pair
Name-Value.
You can add and delete entries, and edit names and values. For editing names,
use the Name text field. For editing values, you can either use the text field, or
click the button and enter the text in the editor widow.... more (see page 961)

Change Parameters dialog box (see page 961) Refactor Change Parameters
You can open the Change Parameters dialog box on the Refactoring main
menu, or by using the Refactoring Change Parameters command on the
context menu for methods.
Note: This feature is available for implementation projects only.

Choose Destination (or: Source) dialog box (see page 962) Model View context menu Transform to Source (or: Transform Code from
Design Project)
This dialog box is invoked from the context menu of a project in the Model View.
Select the desired target project and click Transform.

Diagram Layout Algorithms (see page 963) The following diagram layout algorithms are available:

• Autoselect: several algorithms can be available for each
diagram type. This option analyzes internal information of
each algorithm, and selects the one that best suits the
current diagram type. If autoselect: Each of the layout
algorithms contains internal information about the types of
diagrams it will work with and the numeric characteristics
for the final quality of the produced layout when applied to
each applicable diagram type. Several algorithms can be
available for the same diagram type. The autoselect
option uses such internal information and picks the best
algorithm for the current... more (see page 963)

Edit Hyperlinks for Diagram dialog box (see page 963) Context menu Hyperlinks Edit
This dialog box is invoked from the context menus in the Diagram Editor or the
Model View. This dialog box contains two tabbed pages that enable you to
create hyperlinks to the model elements and external resources.

Export Diagram to Image dialog box (see page 964) File Export Diagram to Image
This dialog box allows you to save the active diagram in the specified format. To
open this dialog box, place the focus on the diagram to export in the Diagram
View and choose [File | Export Diagram to Image...].

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Together

957

3

Extract Interface or Superclass dialog box (see page 964) Refactor Extract Superclass (or: Extract Interface)
You can open the Extract Interface/Superclass dialogs from the Refactoring main
menu, or by using the Refactoring | Extract Superclass (or Extract Interface)
commands on the context menu of applicable class diagram elements. The
Extract Interface command is available for classes, structures, methods,
properties, events, and indexers. The Extract Superclass command is available
for classes, interfaces (Extract Superinterface), methods, properties, events,
fields, and indexers.
Note: This feature is available for implementation projects.

Extract Method dialog box (see page 965) Refactor Extract Method
You can open the Extract Method dialog box from the Refactoring main menu,
or by using the Refactoring Extract Method command on several complete
statements in the RAD Studio Editor.
Note: This feature is available for implementation projects.

Generate Documentation dialog box (see page 966) Tools Options Together Generate Documentation
Together features a UML documentation wizard that you can use to generate
HTML documentation for your projects. To open this dialog, choose [Tools |
Generate Documentation...] from the main menu. The Together dialog boxes
have built-in help, in addition to this help.

Generate Sequence Diagram dialog box (see page 966) Context menu Generate Sequence Diagram
To open this dialog box, right-click a method (or function) and choose Generate
Sequence Diagram from the context menu. The Generate Sequence Diagram
dialog box lists the classes and namespaces involved in the method (function)
and allows you to choose which classes/namespaces to display on the generated
sequence diagram.

Inline Variable dialog box (see page 967) Refactor Inline Variable
The dialog box reports the number of variable occurrences that the Inline
Variable command will be applied to. Click OK to complete the changes.
You can open the Inline Variable dialog box from the Refactoring main menu, or
by using the Refactoring | Inline Variable command on a local variable in the
Delphi Code EditorVisual Studio Editor.
Note: The variable that you select should not be updated later in the source
code. If it is, the error message "Variable index is accessed for writing." opens.
Note: This feature is available for implementation projects only.
Note:... more (see page 967)

Introduce Field dialog box (see page 968) Refactor Introduce Field
You can open the Introduce Field dialog from the Refactoring main menu, or by
using the Refactoring | Introduce Field command on an expression in the Delphi
Code EditorVisual Studio Editor.
Note: This feature is available for implementation projects only.
Note: This command is only available while working in the Delphi Code Editor
Visual Studio Editor.

Introduce Variable dialog box (see page 968) Refactor Introduce Variable
You can open the Introduce Variable dialog from the Refactoring main menu, or
by using the Refactoring | Introduce Variable command on a variable in the Code
Editor.
Note: This feature is available for implementation projects only.
Note: This command is only available while working in the Code Editor.

Model Support (see page 969) Project Together Support
This dialog box lets you enable or disable Together modeling support for the
currently opened projects.

Move dialog box (see page 969) Refactor Move
The Move dialog opens when you choose the Move command from the
Refactoring menu, or by using the Refactoring | Move command on the context
menu of static methods, static fields, and static properties (collectively, static
members).
Note: This feature is available for implementation projects only.

Together RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

958

3

Together Options dialog window (see page 969) Tools Options Together
The Options dialog window displays a tree view of configuration option
categories, each of which displays a set of individual configuration options when
selected. To open this dialog box, choose Tools Options on the main menu.
Select the Together folder from the tree view list on the left of the dialog window.
The Together dialog boxes have built-in help, in addition to this help. The help for
a selected option is displayed at the bottom of the dialog window.
The following option categories exist in the tree view under the configuration
levels:

Print Audit dialog box (see page 970) Audit results pane Print button
This dialog box enables you to print selected sets of audit report results to the
specified printer. The dialog box is invoked from the audit results report view.

Print Diagram dialog box (see page 971) File Print
This dialog box enables you to print selected diagrams to the specified printer.
The dialog box is invoked by choosing File | Print from the main menu with a
diagram open in the Diagram View.

Pull Members Up and Push Members Down dialog boxes (see page 972) Refactor Pull Members Up (or: Push Members Down)
You can open the Pull Members Up/Push Members Down dialog boxes from the
Refactoring main menu, or by using the Refactoring | Pull Members Up (or Push
Members Down) commands on the context menu of applicable class diagram
elements. Both the Pull Members Up/Push Members Down commands are
available for methods, properties, fields, indexers, and events.
Warning: This feature is available for implementation projects only.

QA Audits dialog window (see page 972) Context menu QA Audits
Open the Audits dialog window by choosing Tools | Together | QA Audits from
the main menu or by choosing QA Audits from the Diagram View, Model View,
or class/interface context menus.
Warning: This feature is available for implementation projects only.

QA Metrics dialog window (see page 974) Context menu QA Metrics
Open the Metrics dialog by choosing [Tools | Together | QA Metrics...] from the
main menu, or by choosing QA Metrics from the Diagram View, Model View, or
class/interface context menus.
Warning: This feature is available for implementation projects only.

Rename (see page 975) Refactor Rename
Opens when you choose the Rename command from the Refactoring menu, or
by using the Refactoring | Rename command on the context menu of
code-generating class diagram elements. Renaming is applicable to classes,
interfaces, enumerators, structures, delegates, methods, properties, events, and
fields.
Warning: This feature is available for implementation projects only.

Safe Delete dialog box (see page 975) Refactor Safe Delete
You can open the Safe Delete dialog box from the Refactoring main menu, or by
using the Refactoring | Safe Delete command on the context menu of applicable
class diagram elements. The Safe Delete command is available for all
code-generating class diagram elements. It is not available for namespace
elements.
Warning: This feature is available for implementation projects only.

Save Audit and Metric Results dialog box (see page 976) QA Audits (or: Metrics) pane Save button
This dialog box is invoked from the audit or metrics results report on pressing the
Save button.
Note: This feature is available in implementation projects only.

Search for Usages dialog box (see page 977) Search Search for Usages
This dialog box provides a flexible tool to track references to, and overrides of,
elements and members in the source-code projects.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Together

959

3

Select element dialog box (see page 977) This dialog box displays a tree view of the available contents within your project
groupsolution. Expand the project nodes to reveal the nested classes, select the
required element, and click OK when ready.
This dialog box belongs to a general group of selection dialogs where you can
choose interactions, operations, ancestor classes, instantiated classes for the
objects, etc. This dialog opens when you press the chooser button in a field of
the Object InspectorProperties Window, or when More is selected from the
Choose Class or Choose Method menu nodes.

Selection Manager (see page 978) This dialog belongs to a general group of selection dialogs where you can select
elements from the available contents and add them to a certain destination
scope. All Selection Manager dialogs have a similar structure and varying title
strings.

XMI Export dialog box (see page 978) File Export Project to XMI
Use this dialog box to export a Together model to an XML file with the model
described in XMI.
To open this dialog box, choose File | Export Project to XMI from the main menu
while the project root node is selected in the Model View. You can also right-click
the project root node in the Model View and choose Export Project to XMI from
the context menu.

XMI Import dialog box (see page 979) File Import Project from XMI
Use this dialog box to import an XML file with the model described in XMI.
To open this dialog box, choose File | Import Project from XMI from the main
menu while the project root node is selected in the Model View. You can also
right-click the project root node in the Model View, and choose Import Project
from XMI from the context menu.

3.2.15.1 Add New Diagram dialog box
Context menu Add Other Diagram

To open this dialog box, right click the project root or a namespace element in the Diagram View or Model View, and choose
Add Other Diagram on the context menu. Alternatively, with the project root selected or a namespace element selected, you
can use the keyboard shortcut, CTRL+SHIFT+D to open the dialog box.

This dialog box displays the available diagrams that you can add to your project.

Item Description

Diagrams tab The Diagrams tab lists the available UML diagram types. You can change the view of the UML
diagram icons by pressing the Small Icons or Large Icons buttons. By default, large icons display in
the Diagrams tab.

Diagram name By default, your selected diagram type is displayed in the Name field. You can edit its name or enter
a new name for the new diagram. This name is displayed in the Model View and in the diagram's tab
in the Diagram View when the diagram is open for editing.

Buttons

Large Icons The default setting. This button controls the appearance of the UML diagram icons. Large UML
diagram icons display in the dialog box when selecting this button.

Small Icons This button controls the appearance of the UML diagram icons. Small UML diagram icons display in
the dialog box when selecting this button.

OK Creates the new diagram of the selected type, opens it in the Diagram View on a new tab, and
closes the Add New Diagram dialog box.

Cancel Discards all changes and closes the Add New Diagram dialog box.

Help Displays this help topic.

See Also

Diagram Overview (see page 90)

Creating a Diagram (see page 196)

Together RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

960

3

3.2.15.2 Add/Remove Parameters for Operation dialog box
To open this dialog box, select a function or procedure on a diagram in the Model View or Diagram View, and click the elipsis at
the right of the Params property in the Object Inspector.

This dialog box is used to specify parameters for functions or procedures. You can add, edit, and delete entries.

Add Creates a new entry in the list of parameters.

Remove Deletes the selected entry from the list of parameters.

OK Saves changes and closes the dialog box.

Cancel Discards changes and closes the dialog box.

Help Displays this topic.

3.2.15.3 Add/Remove User Properties dialog box
Context menu User Properties

To open this dialog, right-click the diagram or model element in the Model View or Diagram View, and choose User Properties
on the context menu.

This dialog box is used for creating user properties and OCL constraints. The dialog box displays a list of properties, if any, each
entry consisting of a pair Name-Value.

You can add and delete entries, and edit names and values. For editing names, use the Name text field. For editing values, you
can either use the text field, or click the button and enter the text in the editor widow.

Add Creates a new entry in the list of properties.

Remove Deletes the selected entry from the list of properties.

OK Saves changes and closes the dialog box.

Cancel Discards changes and closes the dialog box.

Help Displays this topic.

See Also

OCL support overview (see page 95)

Working with user properties (see page 206)

3.2.15.4 Change Parameters dialog box
Refactor Change Parameters

You can open the Change Parameters dialog box on the Refactoring main menu, or by using the Refactoring Change
Parameters command on the context menu for methods.

Note: This feature is available for implementation projects only.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Together

961

3

Class A read-only field displaying the name of the class where the method resides.

Method A read-only field displaying the selected member and its current parameters, if applicable.

Select members A table displays all existing parameters and any new parameters that you add to the method. The
order of the parameters in the table is the order of the parameters in the method. Use the Add and
Remove buttons to add and remove parameters from the method. If adding a new parameter, you
can edit its Type, Name, and Default value. If editing an existing parameter, you can edit its Name.
You can rearrange the order of the parameters using the Move Up and Move Down buttons.

Preview Usages By default, Preview Usages is checked. If this option is checked when you click OK, the Refactoring
window opens allowing you to review the refactoring before committing to it. If this option is cleared
when you click OK, the Refactoring window opens with the change parameters operation completed.

Buttons

Add Adds a new parameter to the method.

Remove Removes the currently-selected parameter from the method.

Move Up Moves the currently-selected parameter up one row.

Move Down Moves the currently-selected parameter down one row.

OK Opens the Refactoring window.

Cancel Discards all changes and closes the dialog box.

See Also

Refactoring overview (see page 98)

Changing parameters in methods (see page 184)

3.2.15.5 Choose Destination (or: Source) dialog box
Model View context menu Transform to Source (or: Transform Code from Design Project)

This dialog box is invoked from the context menu of a project in the Model View. Select the desired target project and click
Transform.

Item Description

Existing projects Displays the list within the current project groupsolution.

For implementation projects, the design projects are greyed out. For design projects, the
implementation projects are greyed out.

Use name mapping
files for code generation

This checkbox enables or disables support of the name mapping feature.

Transform Press this button to start transforming design project to source code. Note that the button is only
enabled when a valid source-code project is selected in the list.

Cancel Press this button to discard selection and close the dialog box.

Help Opens this topic.

See Also

Transformation to source code overview (see page 94)

Transforming design project to source code (see page 269)

Together RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

962

3

3.2.15.6 Diagram Layout Algorithms
The following diagram layout algorithms are available:

• Autoselect: several algorithms can be available for each diagram type. This option analyzes internal information of each
algorithm, and selects the one that best suits the current diagram type. If autoselect: Each of the layout algorithms contains
internal information about the types of diagrams it will work with and the numeric characteristics for the final quality of the
produced layout when applied to each applicable diagram type. Several algorithms can be available for the same diagram
type. The autoselect option uses such internal information and picks the best algorithm for the current diagram type.

• Hierarchical: this type of algorithm is most suitable to analyze hierarchical structure (for example study inheritance
relationships). The Hierarchical algorithm originates from the Sugiyama algorithm. The algorithm draws the UML diagram
hierarchically according to the preferences that you select.

• Together: algorithm applicable to all types of diagrams. It includes the layout options used in version 6.1 of Together
ControlCenter and Together Edition for JBuilder.

• Tree: the algorithm draws a tree diagram in a tree layout. The algorithm draws the given graph in a tree layout according to its
maximum spanning tree.

• Orthogonal: simple structural algorithm is used when hierarchy is not important. The Orthogonal algorithm uses heuristics to
distribute diagram nodes among a lattice.

• Spring Embedder: Spring Embedder are force-directed layout algorithms that model the input graph as a system of forces
and try to find a minimum energy configuration of this system. All edges are drawn as straight lines. This type of layout is
especially suitable for projects with numerous diagram elements based on large amount of source code. When you lay out a
graph according to the Spring Embedder layout algorithm, the program will simulate the graph as a physical model (masses
and springs) and subject it to physical forces. The unnecessarily-long edges will be the most tense, and will try to contract the
most. When the nodes and edges have been balanced, you will have a geometric representation of the graph.

See Also

Diagram Layout Overview (see page 92)

Laying Out a Diagram Automatically (see page 202)

3.2.15.7 Edit Hyperlinks for Diagram dialog box
Context menu Hyperlinks Edit

This dialog box is invoked from the context menus in the Diagram Editor or the Model View. This dialog box contains two tabbed
pages that enable you to create hyperlinks to the model elements and external resources.

Dialog title The title of the dialog box varies depending on the way it is invoked. It displays the string that
corresponds to the invoking object.

Model Elements tab The pane on the left of the dialog box displays the content available in your project. You can use the
explorer to navigate to the element and select it for inclusion in the pane of values returned by the
dialog to the invoking object.

External Documents tab The Recently Used Documents pane displays the external contents that you make available for your
project. Such contents may be represented by the file system resources or by URLs. Use the Browse
and URL buttons to specify these resources.

Browse Click this button to invoke the Open dialog box. Navigate to the desired file and click OK.

URL Click this button to invoke the Documents URL dialog box. Type a URL in the text field and click OK.

Clear Click this button to remove all entries in the list of the Recently Used Documents.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Together

963

3

Selected pane This pane displays two kinds of data: Values already existing and passed from the invoking object, if
any. Values of the selections you have added from the left-hand pane, if any.

Buttons

Add Enabled when an element is selected in the left-hand pane. Adds the selected element to the
right-hand pane.

Remove Enabled when you select an item in the right-hand pane. Removes the selected item from the pane.
All removed values or objects are removed from the invoking property or diagram upon clicking OK.

Remove All Enabled when items are present in the right-hand pane. Removes all items from that pane. All
removed values or objects are removed from the invoking property or diagram upon clicking OK.

See Also

Hyperlinking overview (see page 92)

Hyperlinking diagrams (see page 201)

3.2.15.8 Export Diagram to Image dialog box
File Export Diagram to Image

This dialog box allows you to save the active diagram in the specified format. To open this dialog box, place the focus on the
diagram to export in the Diagram View and choose [File | Export Diagram to Image...].

Zoom Use this section to specify the zoom factor and dimensions of the image.

Z Enter a zoom factor.

W Enter the image width in pixels.

H Enter the image height in pixels.

Preview Click the down arrow to show the print preview page.

Preview zoom Use the slider to set up the preview zoom. The current value of the zoom factor is displayed to the left
of the slider.

Auto preview zoom Check this option to fit the image to the preview window.

Save Click this button to open the Save dialog box. Specify the target file name, target location, and the
format of the exported image.

See Also

Export and import features (see page 100)

Exporting diagram to image (see page 197)

3.2.15.9 Extract Interface or Superclass dialog box
Refactor Extract Superclass (or: Extract Interface)

You can open the Extract Interface/Superclass dialogs from the Refactoring main menu, or by using the Refactoring | Extract
Superclass (or Extract Interface) commands on the context menu of applicable class diagram elements. The Extract Interface

Together RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

964

3

command is available for classes, structures, methods, properties, events, and indexers. The Extract Superclass command is
available for classes, interfaces (Extract Superinterface), methods, properties, events, fields, and indexers.

Note: This feature is available for implementation projects.

Interface/Superclass
name

Enter the name of the interface or superclass to be created.

Namespace Use this field to specify a namespace where the interface/superclass will reside. You must enter a
fully-qualified name for the namespace. Alternatively, press the button and select the desired target
namespace.

Select members A table displays the detected members that you can choose to extract to the new interface or
superclass. By default, all detected members are selected. Use the checkboxes in the first column of
the table to indicate which members to extract.

View references before
refactoring

By default, View references before refactoring is checked. If this option is checked when you click
OK, the Refactoring window opens allowing you to review the refactoring before committing to it. If
this option is cleared when you click OK, the Refactoring window opens with the extraction
completed.

Buttons

OK Opens the Refactoring window.

Cancel Discards all changes and closes the dialog.

See Also

Refactoring overview (see page 98)

Extracting interfaces and superclasses (see page 185)

3.2.15.10 Extract Method dialog box
Refactor Extract Method

You can open the Extract Method dialog box from the Refactoring main menu, or by using the Refactoring Extract Method
command on several complete statements in the RAD Studio Editor.

Note: This feature is available for implementation projects.

Note This command is only available while working in the RAD Studio Editor.

Name Enter the name of the method to be created from the selected fragment of code.

Visibility Choose a visibility modifier from the drop-down list. Your choices are: public, protected, private,
internal, internal protected.

Header comment Enter a code comment describing the new method.

Static Check the checkbox to set the Static field, if necessary.

See Also

Refactoring Overview (see page 98)

Extracting Methods (see page 185)

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Together

965

3

3.2.15.11 Generate Documentation dialog box
Tools Options Together Generate Documentation

Together features a UML documentation wizard that you can use to generate HTML documentation for your projects. To open
this dialog, choose [Tools | Generate Documentation...] from the main menu. The Together dialog boxes have built-in help, in
addition to this help.

Scope options You can limit the scope of the documentation to a smaller set by choosing a different Scope option.
The Scope section at the top of the dialog has radio buttons to indicate what parts of the project
should be parsed and included in the generated documentation:

Current namespace Generated output includes only the current namespace selected in the Model View or in the
Diagram View.

Current namespace
with descendent
namespaces

Generated output includes the current namespace selected in the Model View and any descendent
namespaces under it.

Current diagram Generated output for the current diagram that is in focus in the Diagram View.

All Generated output covers the entire project.

Options settings The Options section of the dialog has options to specify the destination and other optional actions:

Output folder Enter the location for the generated output, or select from the file chooser.

Include diagrams Check to include diagram images in the output.

Include navigation tree Check to include a navigation tree in the output.

Launch HTML browser Check to load the documentation into your external web browser.

Note The navigation frame in the documentation will work only if JDK/JRE 1.4 is installed and enabled in
your browser.

Buttons

OK Accepts the input and starts the generate documentation process.

Cancel Cancels your input and closes the dialog box without generating documentation.

See Also

Generating project documentation overview (see page 100)

Generating project documentation (see page 248)

3.2.15.12 Generate Sequence Diagram dialog box
Context menu Generate Sequence Diagram

To open this dialog box, right-click a method (or function) and choose Generate Sequence Diagram from the context menu. The
Generate Sequence Diagram dialog box lists the classes and namespaces involved in the method (function) and allows you to
choose which classes/namespaces to display on the generated sequence diagram.

Together RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

966

3

Fields

Name Lists the names of namespaces/classes involved in the method (function).

Show On Diagram Check the namespaces/classes that you want to show on the generated sequence diagram. All
namespaces and classes are selected by default. However, some classes may not be relevant. To
increase the meaningfulness of the generated diagram, clear the checkboxes that are not helpful in
explaining the sequence of operations.

Show Implementation For the elements that you decide to show in the diagram, check whether to show the implementation
details in the generated sequence diagram.

Buttons

OK Generates the new sequence diagram and opens the diagram in a new tab in the Diagram View.

Cancel Closes the dialog box without generating a sequence diagram.

Help Displays this help topic.

See Also

Roundtrip engineering overview

Options for sequence diagram generation (see page 1102)

3.2.15.13 Inline Variable dialog box
Refactor Inline Variable

The dialog box reports the number of variable occurrences that the Inline Variable command will be applied to. Click OK to
complete the changes.

You can open the Inline Variable dialog box from the Refactoring main menu, or by using the Refactoring | Inline Variable
command on a local variable in the Delphi Code EditorVisual Studio Editor.

Note: The variable that you select should not be updated later in the source code. If it is, the error message "Variable index is
accessed for writing." opens.

Note: This feature is available for implementation projects only.

Note: This command is only available while working in the Delphi Code Editor

Visual Studio Editor, not in the Diagram View.

Buttons

OK Creates the inline variable and closes the dialog box.

Cancel Discards all changes and closes the dialog box.

See Also

Refactoring overview (see page 98)

Creating inline variables (see page 186)

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Together

967

3

3.2.15.14 Introduce Field dialog box
Refactor Introduce Field

You can open the Introduce Field dialog from the Refactoring main menu, or by using the Refactoring | Introduce Field command
on an expression in the Delphi Code EditorVisual Studio Editor.

Note: This feature is available for implementation projects only.

Note: This command is only available while working in the Delphi Code Editor

Visual Studio Editor.

Name Enter a name for the new field.

Visibility Choose the visibility for the new field. Using the combo box, choose from public, protected, private,
internal, or internal protected.

Initialize Choose where to initialize the new field. Using the combo box, choose from Current method, Class
constructor(s), or Field declaration.

Static If applicable, check the Static field.

Replace all occurrences If applicable, check this field to replace all occurrences of the expression.

Buttons

OK Creates the new field and closes the dialog box.

Cancel Discards all changes and closes the dialog box.

See Also

Refactoring overview (see page 98)

Introducing Fields (see page 187)

3.2.15.15 Introduce Variable dialog box
Refactor Introduce Variable

You can open the Introduce Variable dialog from the Refactoring main menu, or by using the Refactoring | Introduce Variable
command on a variable in the Code Editor.

Note: This feature is available for implementation projects only.

Note: This command is only available while working in the Code Editor.

Name Enter a name for the new variable. The variable created is given the same type as the original
variable.

Replace all occurrences If applicable, check this field to replace all occurrences of the expression. The Introduce Variable
dialog indicates the number of occurrences that it will replace with the new variable. Note that the
refactoring does not replace any occurrences of the variable prior to the point in the code at which
you selected to introduce the new variable.

Buttons

OK Creates the new variable and closes the dialog box.

Cancel Discards all changes and closes the dialog box.

Together RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

968

3

See Also

Refactoring overview (see page 98)

Introducing new variables (see page 187)

3.2.15.16 Model Support
Project Together Support

This dialog box lets you enable or disable Together modeling support for the currently opened projects.

Item Description

Project list Displays the project in the current project groupsolution.

See Also

Activating Together Support for Projects (see page 263)

3.2.15.17 Move dialog box
Refactor Move

The Move dialog opens when you choose the Move command from the Refactoring menu, or by using the Refactoring | Move
command on the context menu of static methods, static fields, and static properties (collectively, static members).

Note: This feature is available for implementation projects only.

Move Members This field displays the list of selected static members. You can move more than one static member at
a time. Deselect/select the static members by clearing/checking the check box next to the name of a
member.

To (namespace fully
qualified name)

Use this field to select a class where the static member or members will reside. You must enter a
fully-qualified name for the class or click the browse button to select one.

Preview Usages By default, Preview Usages is checked. If this option is checked when you click OK, the Refactoring
window opens allowing you to review the refactoring before committing to it. If this option is cleared
when you click OK, the Refactoring window opens and the move is completed.

Buttons

OK Opens the Refactoring window.

Cancel Discards all changes and closes the dialog box.

See Also

Refactoring overview (see page 98)

Moving code elements (see page 188)

3.2.15.18 Together Options dialog window
Tools Options Together

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Together

969

3

The Options dialog window displays a tree view of configuration option categories, each of which displays a set of individual
configuration options when selected. To open this dialog box, choose Tools Options on the main menu. Select the Together
folder from the tree view list on the left of the dialog window.

The Together dialog boxes have built-in help, in addition to this help. The help for a selected option is displayed at the bottom of
the dialog window.

The following option categories exist in the tree view under the configuration levels:

General The General options allow you to customize certain behaviors in the user interface that do not pertain
to any other specific category of options such as Diagram.

Diagram The Diagram options control a number of default behaviors and appearances of diagrams:
Appearance, Layout, Print, and View Management.

Generate
documentation

The Generate Documentation options control the variety of content (as well as appearance) to
include or exclude from your generated HTML documentation.

Model View The Model View options control how diagram content displays in the Model View.

Sequence diagram
roundtrip

The Sequence Diagram Roundtrip options apply to generating sequence diagrams from source code
and generating source code from a sequence diagram.

Source code The Source Code options allows you to control several LiveSource parameters.

Buttons

OK Applies changes, and closes the dialog window.

Cancel Closes the dialog window without saving any changes.

Help Displays the RAD Studio online help.

See Also

Configuring Together (see page 183)

Configuration levels (see page 1088)

Option value editors (see page 1101)

General options (see page 1098)

Diagram Appearance options (see page 1089)

Diagram Layout options (see page 1091)

Diagram Print options (see page 1094)

Diagram View Filters options (see page 1096)

Generate Documentation options (see page 1099)

Model View options (see page 1101)

Sequence Diagram Roundtrip options (see page 1102)

Source Code options (see page 1103)

3.2.15.19 Print Audit dialog box
Audit results pane Print button

Together RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

970

3

This dialog box enables you to print selected sets of audit report results to the specified printer. The dialog box is invoked from
the audit results report view.

Select View Choose the scope of the results to print using the Select View list box. Audit results display in
tabbed-pages in the audit results report view. You can group and ungroup the results using the Group
by command on the report view context menu.

Unless the results have been grouped using the Group by command, the Active Group option is not
enabled in the dialog. The possible view options are:

All Results: If the results are grouped, choosing All Results prints a report for all groups in the
current tabbed-page. If the results are not grouped, then all results print for the current tabbed-page.

Active Group : If the results are grouped, you can select a group in the current tabbed page to print
a report for the selected group.

Selected Rows: You can select single or multiple rows in the audit results report view. Choosing
Selected Rows prints a report for such selections.

Print zoom Type in a zoom factor for the printout. By default, the zoom factor is set to 1.

Fit to page Check this option if you want to print the results on a single page. If checked, the Print zoom field is
disabled.

Preview Click the down arrow to show the print preview page.

Preview zoom Use the Preview zoom (auto) slider to set the preview zoom. The current value of the zoom factor is
displayed to the left of the slider.

Auto preview zoom Check this option to fit the image to the preview window.

Buttons

Print Click Print to send the selected audits report to the default printer. Use the down arrow to choose the
Print dialog command, which enables you to configure the printer options.

Cancel Click to close the dialog box without printing the audits report.

Help Clicking Help opens this page.

See Also

Viewing audit results (see page 274)

Print Audit dialog box

Audit results pane (see page 1111)

3.2.15.20 Print Diagram dialog box
File Print

This dialog box enables you to print selected diagrams to the specified printer. The dialog box is invoked by choosing File | Print
from the main menu with a diagram open in the Diagram View.

Print diagrams From this list box, choose the diagrams to be printed. The possible options are:

Active diagram

Active with neighbors (all diagrams within the same namespace)

All opened diagrams

All diagrams in the model

Print zoom Enter a zoom factor for the printout. By default, the zoom factor is set to 1.

Fit to page Check this option if you want to print the diagram on a single page. If checked, the Print zoom field is
disabled.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Together

971

3

Preview Click the down arrow to show the print preview page.

Preview zoom Use the slider to set up the preview zoom. The current value of the zoom factor is displayed to the left
of the slider.

Auto preview zoom Check this option to fit the image to the preview window.

Print Press this button to send the selected diagrams to the default printer. Use the down arrow to choose
the Print dialog box command, which enables you to configure the printer options.

See Also

Printing a diagram (see page 197)

3.2.15.21 Pull Members Up and Push Members Down dialog boxes
Refactor Pull Members Up (or: Push Members Down)

You can open the Pull Members Up/Push Members Down dialog boxes from the Refactoring main menu, or by using the
Refactoring | Pull Members Up (or Push Members Down) commands on the context menu of applicable class diagram elements.
Both the Pull Members Up/Push Members Down commands are available for methods, properties, fields, indexers, and events.

Warning: This feature is available for implementation projects only.

Select members: A table displays the selected members that you have chosen to pull up (or push down). By default, all
members are selected. Use the checkboxes in the first column of the table to indicate which members
to pull up/push down. The third column allows you to indicate whether to make the member abstract.

Select the class to pull
(or push) member to:

At the bottom of the dialog, a hierarchy displays. Select the class where you want to pull up/push
down your selected members.

View references before
refactoring:

By default, View references before refactoring is checked. If this options is checked when you click
OK, the Refactoring window opens allowing you to review the refactoring before committing to it. If
this option is cleared when you click OK, the Refactoring window opens with the pull up/push down
operation completed.

Buttons

OK Opens the Refactoring window.

Cancel Discards all changes and closes the dialog box.

See Also

Refactoring overview (see page 98)

Pulling up and pushing down members (see page 188)

3.2.15.22 QA Audits dialog window
Context menu QA Audits

Open the Audits dialog window by choosing Tools | Together | QA Audits from the main menu or by choosing QA Audits from the
Diagram View, Model View, or class/interface context menus.

Warning: This feature is available for implementation projects only.

Together RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

972

3

Toolbar Use the Toolbar on the Audits dialog to load and save custom audit sets and to specify which audits
to run on your projects. The Toolbar buttons are descibed in the table below.

Toolbar button Description

Load Set Opens a file chooser for selecting an .adt file to load a custom set of audits.

Save Set As Opens a Save dialog for specifying the name and location to save the currently selected set of audits
as an .adt file.

Select All Checks the boxes for all audits in the dialog.

Unselect All Unchecks the boxes for all audits in the dialog box.

Set Defaults Resets the selected audits to correspond to the default set (saved in the default.adt file).

Find Audit Navigates to the audit whose name starts with the specified string.

Scope This field indicates the parts of the project that the Audits will be run against. Use the drop down
arrow to set the Scope for either the current Selection or for the entire Model. When choosing
Selection, audits are processed only for the diagram, namespace, or class that you selected before
invoking the Audits dialog. If you choose Model, audits are processed for the entire project.

Tip: If you have not selected any items in the Diagram or Model View, the Scope option defaults to
the entire project. If you want to run audits on specific classes, namespaces, or diagrams, make sure
you correctly select them before you open the Audits dialog.

Selection pane The selection pane provides a list of available audits, organized by category. Check the boxes for the
audits that you want to run. Check or clear the box for a category to select or unselect all of the audits
in the category. As you click on an audit in the selection pane, its corresponding description displays
in the lower pane of the dialog window. The descriptions include brief explanations of what the audit
looks for, examples of violations, and advice on how to correct the code.

Options pane The set of options vary depending on the selected audit. Where necessary, option controls are
explained in the description for the particular audit. Use the toolbar buttons to display properties in the
desired manner.

Other options are displayed when applicable to the selected audit.

Button Description

Categorized Displays the properties of the audit in expandable groups.

Alphabetic Displays the properties of the audit in alphabetical order.

Severity Severity is always present; you can assign an Info, Warning, Error, or Fatal level of severity to each
selected audit. The severity level defines how serious the violations are. The selected severity level is
displayed in the results.

Buttons

Start Runs the selected set of audits.

Cancel Discards all changes and closes the dialog box.

Help Opens this Help topic.

See Also

Quality Assurance facilities overview (see page 98)

Running audits (see page 273)

Viewing audit results (see page 274)

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Together

973

3

3.2.15.23 QA Metrics dialog window
Context menu QA Metrics

Open the Metrics dialog by choosing [Tools | Together | QA Metrics...] from the main menu, or by choosing QA Metrics from the
Diagram View, Model View, or class/interface context menus.

Warning: This feature is available for implementation projects only.

Toolbar Use the Toolbar on the Metrics dialog window to load and save custom metrics sets and to specify
which metrics to run on your projects. The Toolbar buttons are described in the table below.

Button Description

Load Set Opens a file chooser for selecting a .mts file to load a custom set of metrics.

Save Set As Opens a Save dialog for specifying the name and location to save the currently-selected set of
metrics as a .mts file.

Select All Checks the boxes for all metrics in the dialog.

Unselect All Unchecks the boxes for all metrics in the dialog.

Set Defaults Resets the selected metrics to correspond to the default set (saved in the default.mts file).

Find Metrics Navigates to the metric whose name starts with the specified string.

Scope This field indicates the parts of the project that the Metrics will be run against. Use the drop-down
arrow to set the Scope for either the current Selection or for the entire Model. When choosing
Selection, Metrics are processed only for the diagram, namespace, or class that you selected before
invoking the Metrics dialog. If you choose Model, Metrics are processed for the entire project.

Tip: If you have not selected any items in the Diagram or Model View, the Scope option defaults to
the entire project. If you want to run Metrics on specific classes, namespaces, or diagrams, make
sure you correctly select them before you open the Metrics dialog.

Selection pane The selection pane provides a list of available Metrics, organized by category. Check the boxes for
the Metrics that you want to run. Check or clear the box for a category to select or unselect all of the
Metrics in the category. As you click on an metric in the selection pane, its corresponding description
displays in the lower pane of the dialog box. The descriptions include brief explanations of what the
metric looks for, examples of violations, and advice on how to correct the code.

Options pane The set of options vary depending on the selected metric. Where necessary, option controls are
explained in the description for the particular metric. Use the toolbar buttons to display properties in
the desired manner.

Other options are displayed when applicable to the selected metric.

Button Description

Categorized Displays the properties of the metric in expandable groups.

Alphabetic Displays the properies of the metric in alphabetical order.

Properties Displays property pages, if any.

Aggregation Aggregation is always present; Aggregation defines how the metric results are handled. You can
select the type of aggregation from the drop-down list (sum, average, maximum, and so on). It is
important to note that results are aggregated on each level separately. For example, if you have
nested namespaces, only the classes that belong to each namespace are aggregated.

Buttons

Together RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

974

3

Start Runs the selected set of Metrics.

Cancel Discards all changes and closes the dialog box.

Help Opens this Help topic.

See Also

Quality Assurance facilities overview (see page 98)

Running Metrics (see page 276)

Viewing metric results (see page 276)

3.2.15.24 Rename
Refactor Rename

Opens when you choose the Rename command from the Refactoring menu, or by using the Refactoring | Rename command on
the context menu of code-generating class diagram elements. Renaming is applicable to classes, interfaces, enumerators,
structures, delegates, methods, properties, events, and fields.

Warning: This feature is available for implementation projects only.

New name: Use this field to enter a new name for the element.

Refactor Ancestors: If this option is checked, the selected member is renamed in the current node element and in its
parent elements. This option is available for members only.

Rename Overloads: If this option is checked, all methods with the same name are also renamed. This option is available
for members only.

View references before
refactoring:

By default, View references before refactoring is checked. If this option checked when you click
Rename, the Refactoring window opens allowing you to review the refactoring before committing to it.
If this option is cleared when you click Rename, the Refactoring window opens with the rename
completed.

Buttons

Rename: Opens the Refactoring window.

Cancel: Discards all changes and closes the dialog box.

See Also

Refactoring overview (see page 98)

Renaming (see page 189)

3.2.15.25 Safe Delete dialog box
Refactor Safe Delete

You can open the Safe Delete dialog box from the Refactoring main menu, or by using the Refactoring | Safe Delete command
on the context menu of applicable class diagram elements. The Safe Delete command is available for all code-generating class
diagram elements. It is not available for namespace elements.

Warning: This feature is available for implementation projects only.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Together

975

3

Going to safely delete
the following elements:

A read-only field displaying the name of the element to delete.

Usages: A read-only field reporting if there are any usages of the element.

Buttons

Delete: Deletes the element and opens the Refactoring window. This button is active only if there are not any
usages found for the element.

View usages: The button is active only if usages are found. Clicking View usages opens the Refactoring window
where you can view the usages before you delete the element.

Cancel: Closes the dialog without deleting the element.

See Also

Refactoring overview (see page 98)

Safely deleting elements (see page 189)

3.2.15.26 Save Audit and Metric Results dialog box
QA Audits (or: Metrics) pane Save button

This dialog box is invoked from the audit or metrics results report on pressing the Save button.

Note: This feature is available in implementation projects only.

Select View Choose the scope of the results to export using the Select View list box. Audit results display in
tabbed pages in the audit results report view. You can group and ungroup the results using the Group
by command on the report view context menu.

Note: Unless the results have been grouped using the Group by command, the Active Group option
is not enabled in the dialog box.

The possible view options are:

All Results: If the results are grouped, choosing All Results prints a report for all groups in the
current tabbed page. If the results are not grouped, then all results export for the current tabbed
page.

Active Group: If the results are grouped, you can select a group in the current tabbed page, and the
generated report contains the results from the selected group.

Selected Rows: You can select single or multiple rows in the audit results report view. Choosing
Selected Rows generates a report for such selections.

Select Format Choose the output type from the list box.

XML: Generates an XML-based report.

HTML: Generates an HTML-based report.

Checkboxes Activated when generating an HTML report.

Add Description If this option is checked, the audit descriptions are saved in a separate folder with hyperlinks to the
descriptions from the results file.

Launch Browser If the option is checked, the generated HTML file is opened in the default viewer.

Select the Destination Specify the fully qualified path to the destination file, or click the Browse button.

Together RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

976

3

Buttons

OK Applies specified settings, launches the report generation process, and closes the dialog box.

Cancel Discards all changes and closes the dialog box.

See Also

Quality Assurance Facilities Overview (see page 98)

Running Audits (see page 273)

Viewing Audit Results (see page 274)

3.2.15.27 Search for Usages dialog box
Search Search for Usages

This dialog box provides a flexible tool to track references to, and overrides of, elements and members in the source-code
projects.

Option Description

Usages of element
itself:

Find references to selected element.

Usages of members: Find references to members of selected element.

Usages of derived
classes:

Find references to derived classes (or interfaces, in case of interface).

Usages of
implementations:

Find references to implementing classes (members).

Usages of overloads: Find references to members that overload the selected one.

Include Usings\Imports: Find references in using\import statements.

Skip self: Do not show references that are contained inside the selected element.

See Also

Searching source code for usages (see page 210)

3.2.15.28 Select element dialog box
This dialog box displays a tree view of the available contents within your project groupsolution. Expand the project nodes to
reveal the nested classes, select the required element, and click OK when ready.

This dialog box belongs to a general group of selection dialogs where you can choose interactions, operations, ancestor classes,
instantiated classes for the objects, etc. This dialog opens when you press the chooser button in a field of the Object
InspectorProperties Window, or when More is selected from the Choose Class or Choose Method menu nodes.

See Also

Instantiating a classifier (see page 211)

Role binding (see page 222)

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Together

977

3

3.2.15.29 Selection Manager
This dialog belongs to a general group of selection dialogs where you can select elements from the available contents and add
them to a certain destination scope. All Selection Manager dialogs have a similar structure and varying title strings.

Dialog title: The title of the dialog varies depending on the way it is invoked. It displays the string that corresponds
to the invoking object or property.

Model Elements tab or
Diagram elements tab:

The pane on the left of the dialog displays the content available in your project. You can use the
explorer to navigate to the element and select it for inclusion in the pane of values returned by the
dialog to the invoking object.

Existing and/or ready to
add:

This pane displays two kinds of data:

Values already existing and passed from the invoking object, if any.

Values of the selections you have added from the left-hand pane, if any.

Add: Enabled when an element is selected in the left-hand pane. Adds the selected element to the
right-hand pane.

Remove: Enabled when you select an item in the right-hand pane. Removes the selected item from the pane.
All removed values or objects are removed from the invoking property or diagram upon clicking OK.

Remove All: Enabled when items are present in the right-hand pane. Removes all items from that pane. All
removed values or objects are removed from the invoking property or diagram upon clicking OK.

See Also

Creating a Shortcut (see page 208)

Hyperlinking Diagrams (see page 201)

Hiding (and Showing) Model Elements (see page 232)

3.2.15.30 XMI Export dialog box
File Export Project to XMI

Use this dialog box to export a Together model to an XML file with the model described in XMI.

To open this dialog box, choose File | Export Project to XMI from the main menu while the project root node is selected in the
Model View. You can also right-click the project root node in the Model View and choose Export Project to XMI from the context
menu.

Select XMI type Choose the required XMI type from the list of supported types. Some of the elements supported by
Together are not allowed in IBM Rational Rose. The option, UML 1.3 (with Unisys Extension
recommended for Rose), drops all Rose-inconsistent elements. If such messages are encountered,
appropriate messages appear in the Output tab.

XMI Encoding Click the drop-down arrow to choose the required encoding of the output stream.

Select the Export
Destination:

Specify the fully-qualified name of the output XML file. Use the Browse button to define the target
location.

Buttons

Export Accepts the input and exports the model to XMI.

Cancel Cancels your input and closes the dialog box without exporting the model.

Together RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

978

3

See Also

Import and export features overview (see page 100)

3.2.15.31 XMI Import dialog box
File Import Project from XMI

Use this dialog box to import an XML file with the model described in XMI.

To open this dialog box, choose File | Import Project from XMI from the main menu while the project root node is selected in the
Model View. You can also right-click the project root node in the Model View, and choose Import Project from XMI from the
context menu.

Select the Source File Specify the fully-qualified name of the XML file. Use the Browse button to navigate to the target
location.

Buttons

Import Imports the XML file.

Cancel Cancels your input and closes the dialog without importing the model.

See Also

Import and export features overview (see page 100)

3.2.16 Tools

Topics

Name Description

CodeGuard Configuration (see page 980) Tools CodeGuard Configuration
Use the CodeGuard Configuration dialog box to specify how the CodeGuard
runtime debugger behaves.
Note: CodeGuard is available for only C++ projects.

Tools Options (see page 982)

Configure Tools (see page 1008) Tools Configure Tools
Indicates which programs are available on the Tools menu.

Edit Object Info (see page 1008) Tools Template Libraries Properties Edit button
Use this dialog box to edit information about an object in the Object Repository.

Edit Tools (see page 1008) Tools Build Tools Add or Edit button
Use this dialog box to add or change build tool titles and file associations.

Export Visual Studio Project (see page 1009) Tools Export to Visual Studio...
Use this dialog to convert the current project to a Microsoft Visual Studio project.

History Manager (see page 1009) The History Manager lets you see and compare versions of a file, including
multiple backup versions, saved local changes, and the buffer of unsaved
changes for the active file. If the current file is under version control, all types of
revisions are available in the History Manager.
The History Manager is displayed on the History tab, which is in the center of
the IDE to the right of the Code tab. The History Manager contains the following
tabbed pages:

Object Repository (see page 1010) Tools Template Libraries Properties
Use this dialog box to edit, move, and remove form and project template libraries.

Template Libraries (see page 1010) Tools Template Libraries
Adds, edits, and removes template libraries from the IDE.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Tools

979

3

Tools Properties (see page 1011) Tools Configure Tools Add and Edit button
Use this dialog box to enter or edit the properties for a program listed on the
Tools menu.

XML Mapper (see page 1011) Tools XML Mapper
At design-time, defines the mappings between generic XML documents and the
data packets that client datasets use. Each mapping describes the
correspondences between the nodes of an XML document and the fields in a
data packet.
You can define mappings from an existing XML schema (or document) to a client
dataset that you define, from an existing data packet to a new XML schema you
define, or between an existing XML schema and an existing data packet.

Web App Debugger (see page 1013) Tools Web App Debugger
Acts like a Web server on your development machine. If you build your Web
server application as a Web App Debugger executable, deployment happens
automatically during the build process. To debug your application, start it using
Run Run. Next, select Tools Web App Debugger, click the default URL
and select your application in the Web browser that appears. Your application will
launch in the browser window, and you can use the IDE to set breakpoints and
obtain debugging information.

3.2.16.1 CodeGuard Configuration
Tools CodeGuard Configuration

Use the CodeGuard Configuration dialog box to specify how the CodeGuard runtime debugger behaves.

Note: CodeGuard is available for only C++ projects.

Item Description

Enable (CodeGuard) Enables or disables CodeGuard.

Stack Fill Frequency Specifies how frequently CodeGuard fills the uninitialized portion of the runtime stack with a unique
byte pattern. Values are:

• -1 = Never

• 0 = After every call to a runtime function covered by CodeGuard.

• n [0...15] = After every 2^n calls to a runtime function covered by CodeGuard. For example, if n
is 1, then the stack is filled every other time a runtime function is called.

Statistics Reports function and resource usage statistics.

Resource Leaks Reports resource leaks detected after the application terminates.

Send To
OutputDebugString

Uses the OutputDebugString function to send CodeGuard messages to an external debugger.

Append To Log File Appends the error log to the existing log. When this option is disabled, CodeGuard writes over the
existing error log.

Repeated Errors Reports errors that occur repeatedly per function.

Limit Number Of Error
Messages

Limits the number of errors reported. You can specify a maximum value of 65535.

Enable (Error Message
Box)

Enables the Error Message Box. If you run a CodeGuard-enabled application outside of RAD
Studio, the Error Message Box displays when runtime errors occur.

Caption Specifies the text that appears in the title bar.

Message Specifies the error message to display.

Read Debug Info Enables CodeGuard to use the debugging information in your project to point to a source line when a
runtime error is reported.

Tools RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

980

3

Source Path If the source code is in a different location from the executable, specify the path (or paths separated
by semicolons). CodeGuard checks its own debug source path first, then (if it is running in the IDE)
checks the IDE debug source path.

Resource Options

Use the Resource Options page to specify how CodeGuard covers various types of resources.

Item Description

Resources Lists the resource types that CodeGuard can cover, as follows:

Memory Block — Memory managed by malloc and free functions.

Object — Memory managed by new and delete operators.

Object Array — Memory managed by new[] and delete[] operators.

File handle — A file managed by the open and close functions.

File stream — A file managed by the fopen and fclose functions.

Pipe stream — A command processor pipe managed by the _popen and _pclose functions.

Directory stream — A directory managed by the opendir and closedir functions.

Enable Tracking Enables tracking on the selected resource. Disabling tracking results in lower memory usage and
faster execution.

Track Resource Leaks Reports resource allocations that have no matching deallocations. For example, a leak can be
caused by failing to free a file handle before the program terminates.

Report Invalid Handle /
Resource Parameters

Reports incorrect usage of resources in function arguments.

Delay Free Tracks the selected resource after it has been deallocated. When you enable the Delay Free option,
CodeGuard marks the each resource once it has been freed and prevents Windows and runtime
libraries from attempting to reuse the resource.

Some resources, such as stack memory allocations, cannot be queued for delayed release.

Delay Queue Length Specifies the number of objects that can be queued for delayed release. You can set a maximum
value of 65535 objects.

Maximum Memory
Block Size

Specifies the maximum memory block size that CodeGuard can store in the delay queue. You can
set a maximum value of 65535 bytes.

Function Options

Use the Function Options page to specify how CodeGuard covers various types of functions.

Item Description

Functions Lists the functions that CodeGuard can track.

Disable Function
Tracking

Disables function tracking for the selected functions.

Memory Access Errors Reports a runtime error if a function uses a pointer to reference invalid memory.

Log Each Call Reports each call to the selected functions.

Warnings Reports situations where your application may be accessing memory beyond a buffer's maximum
size.

Warnings are reported for only the following runtime library functions: strncmp, strnicmp,
strncmpi, _fstrncmp, _fstrnicmp, memcmp, memicmp, _fmemcmp, _fmemicmp, fnmerge,
fnsplit, getcurdir.

Function Results Errors Reports if the selected functions return a value that indicates failure.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Tools

981

3

Invalid Handle /
Resource Parameters

If any of the selected functions' parameters is a handle or resource identifier, verify that it has been
properly allocated and is currently valid.

Set Default Function
Options

Displays the Set Default Function Options dialog box, which you can use to view and set the
default function options.

Reset To Default
Function Options

Applies the default function options to the selected functions.

Ignored Modules

Use the Ignored Modules page to specify modules that you want CodeGuard to skip when it reports errors.

See Also

CodeGuard overview

Using CodeGuard

3.2.16.2 Tools Options
Topics

Name Description

ASP.NET (see page 984) Tools Options HTML/ASP.NET Options ASP. NET
Use this dialog box to set default information for creating ASP .NET Web
applications.

Add Exception Range (see page 985) Tools Options Debugger Options Native OS Exceptions Add button
Use this dialog box to specify the range of exceptions on which you want the
product to break execution. The numeric value that you associate with each
exception will be displayed at the bottom of the Exceptions list on the Native OS
Exceptions page of the Debugger Options dialog box.

Add Language Exception (see page 985) Tools Options Debugger Options CodeGear .NET
Debugger Language Exceptions Add button
Use this dialog box to add a language exception to the list on the Language
Exceptions page. To add the Notify on Language Exception button to a
toolbar, use Tools Toolbars Customize.

Apply Updates (see page 985) Use this dialog box to review and confirm proposed changes to the sources when
you refresh, save, or register the type library by using the Type Library editor.

CodeGear Debuggers (see page 986) Tools Options Debugger Options CodeGear Debuggers
Use this page to set the debugger options for the IDE.

Paths and Directories (C++) (see page 987) Tools Options Environment Options C++ Options Paths and
Directories
Use the Paths and Directories page to specify directories, compiler, and linker
options for all packages.

Type Library (C++) (see page 988) Tools Options Environment Options C++ Options Type Library
Use the Type Library page to select options for the Type Library editor.

Code Insight (see page 988) Tools Options Editor Options Code Insight
Use this page to configure how Code Insight works while editing code in the
Code Editor.
Note: HTML and CSS support only the Code Completion
, Error Insight, and Code Template Completion features.

Colors (see page 989) Tools Options Editor Options Code Insight Colors
Use the Colors page to change the appearance of the Code Completion
window.

Color (see page 989) Tools Options Editor Options Color
Use this page to specify how the different elements of your code appear in the
Code Editor.

Debugger Options (see page 990) Tools Options Debugger Options
Use this page to set general debugger options for the IDE.

VCL Designer (see page 990) Tools Options VCL Designer
Use this page to specify preferences for the VCL Forms Designer.

Tools RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

982

3

Library (see page 991) Tools Options Delphi Options Library
Use this page to specify directories, compiler, and linker options for all packages.

Display (see page 992) Tools Options Editor Options Display
Use this page to set display and font options for the Code Editor.

Editor Options (see page 993) Tools Options Editor Options
Use this page to customize the behavior of the Code Editor.

Environment Options (see page 994) Tools Options Environment Options
Specifies IDE configuration preferences.

Environment Variables (see page 995) Tools Options Environment Options Environment Variables
Use this page to view system environment variables and to create, edit, and
delete user overrides.

Event Log Options (see page 995) Tools Options Debugger Options Event Log
Use this dialog box to control the content, size, and appearance of the event log.

Explorer (see page 996) Tools Options Environment Options Explorer
Use this page to control the behavior of the Structure view and Project
Manager.
Note: Right-click an item in the Structure
view and choose Properties to display this page as a separate Explorer
Options dialog box.

<generic_ordered_list> Dialog Box (see page 997) This generic dialog box can have several different titles (such as Conditional
Defines, Directories, or Include path), and the box is typically invoked from a
field on either theTools->Options or Project->Options dialog box. Use this generic
dialog box to manage an ordered list of items, such as paths or defines.
Note: Not all of the options described below are available for all occurrences of
this dialog.

HTML/ASP.NET Options (see page 998) Tools Options HTML/ASP.NET Options
Use this dialog box to specify preferences for editing HTML on the Designer.

HTML Formatting (see page 998) Tools Options HTML/ASP.NET Options HTML Formatting
Use this dialog box to specify formatting preferences for auto-generated HTML
on the Code tab.

HTML Tidy Options (see page 999) Tools Options HTML/ASP.NET Options HTML Tidy Options
Use this dialog box to control how HTML Tidy formats HTML in the Code tab.
HTML Tidy is the standard "pretty print" formatting tool from www.w3c.org.

Language Exceptions (see page 999) Tools Options Debugger Options Language Exceptions
Use this page to configure how the debugger handles thrown language
exceptions. The debugger always stops on unhandled exceptions.

Native OS Exceptions (see page 999) Tools Options Debugger Options Native OS Exceptions
Use this dialog box to determine how exceptions are handled by the debugger.
Select an exception from the list and adjust the Handled By and On Resume
options.

New Tags (see page 1000) Tools Options HTML/ASP.NET Options HTML Tidy Options New
Tags
Use this page to list tags that would normally cause HTML Tidy to issue a
warning or error, such as ASP tags.

Override System Variable/New User Variable/Edit User Variable (see page
1000)

Tools Options Environment Options Environment Variables Add
Override, New, and Edit buttons
or
Project Options Debugger Environment block Add Override, New,
and Edit buttons
Use this dialog box to create or modify user overrides for system variables.

Object Inspector (see page 1000) Tools Options Environment Options Object Inspector
Use this page to configure the Object Inspector. You can also access this page
by right-clicking the Object Inspector and choosing Properties.

Source Control Options (see page 1001) Tools Options Source Control Options
Use this page to set source control system options.

Source Options (see page 1001) Tools Options Editor Options Source Options
Use this page to configure Code Editor settings for various types of source files.

Colors (see page 1002) Tools Options Environment Options Tool Palette Colors
Use this dialog box to change the colors of the Tool Palette.

Tool Palette (see page 1003) Tools Options Environment Options Tool Palette
Use this dialog box to change the appearance of the Tool Palette.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Tools

983

3

Color (see page 1004) Tools Options Translation Tools Options Color
Use this dialog box to define a color scheme for the Translation Manager.

Font (see page 1004) Tools Options Translation Tools Options Font
Use this dialog box to set font preferences for the Translation Manager.

Form Designer (see page 1004) Tools Options Translation Tools Options Form Designer
Use this dialog box to specify preferences for the forms displayed while using the
Translation Manager.

Packages (see page 1005) Tools Options Packages
Use this dialog box to add or remove designtime packages from the resource
project in the External Translation Manager.

Translation Tools Options (see page 1005) Tools Options Translation Tools Options
Use this dialog box to configure the Satellite Assembly Wizard, Resource DLL
Wizard, Translation Manager, and Translation Repository.

Repository (see page 1006) Tools Options Translation Tools Options Repository
Use this dialog box to configure the Translation Repository.

Translation Repository (see page 1006) View Translation Manager Translation Repository
Use the Translation Repository dialog to find, edit, and delete resource strings.
While in the Translation Manager, you can use the Translation Repository to
store and retrieve translated strings. By default, the Translation Repository stores
data in default.tmx, located in the RAD Studio/bin directory.
Use the toolbar icons to create, open, and save a Translation Repository .tmx
file. After opening a .tmx file, you can use the right-click context menu
commands to perform actions on individual resource strings.
Tip: To configure the Translation Repository, close it and choose
Tools->Options->Translation Tools Options->Repository
.

Type Library (Delphi) (see page 1007) Tools Options Environment Options Delphi Options Type Library
Use this dialog box to select options for the Type Library editor.

WebSnap (see page 1007) Tools Options WebSnap
Use this page to examine and set WebSnap options.

3.2.16.2.1 ASP.NET
Tools Options HTML/ASP.NET Options ASP. NET

Use this dialog box to set default information for creating ASP .NET Web applications.

Browser options Description

Name Indicates the internet browser used to open the Web application when you run it within the IDE.

Path Indicates the path to the internet browser executable file. To change the path, select Other from the
Name drop-down list and then use the browse button to navigate to a browser executable file.

Parameters Optional. Enter parameters to be passed to the internet browser application.

Cassini web server
options

Description

Path Indicates the path to the Cassini Web server executable file.

Port Indicates the TCP/IP port used by the Cassini Web server.

Start Cassini Use the drop-down menu to choose when the Cassini web server starts: when the project opens or
when the project runs.

Tools RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

984

3

New web project
defaults options

Description

Base Directory Indicates the default directory path used for new Web applications. This path is displayed on the New
ASP .NET Application dialog box, however, you can change the path as needed.

Web Server Indicates the default Web server for new Web applications. When you create a new Web application,
this server is displayed on the New ASP .NET Web Application dialog box. However, you can
change the server as needed.

Note: The Cassini Web Server can be downloaded from http://www.asp.net/Projects/Cassini/Download.

3.2.16.2.2 Add Exception Range
Tools Options Debugger Options Native OS Exceptions Add button

Use this dialog box to specify the range of exceptions on which you want the product to break execution. The numeric value that
you associate with each exception will be displayed at the bottom of the Exceptions list on the Native OS Exceptions page of
the Debugger Options dialog box.

Item Description

Range Low Specify the low value for the range.

Range High Specify the high value for the range.

Tip: To stop on a single value, specify the same value for the low and high range.

3.2.16.2.3 Add Language Exception
Tools Options Debugger Options CodeGear .NET Debugger Language Exceptions Add button

Use this dialog box to add a language exception to the list on the Language Exceptions page. To add the Notify on Language
Exception button to a toolbar, use Tools Toolbars Customize.

Item Description

Text Box Enter any intrinsic, framework-defined, or user-defined language type, for example,
System.Windows.Forms.Panel, Project123.WinForm, or MyClass.

3.2.16.2.4 Apply Updates
Use this dialog box to review and confirm proposed changes to the sources when you refresh, save, or register the type library
by using the Type Library editor.

Item Description

Select Updates Displays the changes, in order, that will be made to your project. Check or uncheck the box next to
each change to include or exclude the changes to that file. If you uncheck a change on which later
changes depend (for example the creation of a file to which later changes add code), the later
changes are automatically unchecked.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Tools

985

3

http://www.asp.net/Projects/Cassini/Download

Details Displays all the changes that will be added to implement the currently selected change. When you
click OK, the changes in this edit window, including any modifications you make within the dialog, are
added for every update checked in the Select Updates list.

If an update consists of new code that is added to a file, the Details box shows a single edit control
that displays the new code. If the update modifies existing code, the Details page shows two text
windows: the first is the new code that reflects the modifications, and the second shows the original
code that has been changed.

Don’t show this dialog
again

Prevents this dialog box from being displayed each time you modify a type library and attempt to
refresh, save, or register the type library. Check this box to implement changes without checking with
you.

Checking this box also unchecks the Display updates before refreshing option on the Type
Library page of Tools Options Environment Options Delphi Options.

3.2.16.2.5 CodeGear Debuggers
Tools Options Debugger Options CodeGear Debuggers

Use this page to set the debugger options for the IDE.

Item Description

Allow side effects in
new watches

Causes the watch to be evaluated even if doing so would cause side effects. Can be set for individual
watches using the Watch Properties dialog box. By default, this option is not set.

Multiple evaluators Specifies that the appropriate evaluator (C++ or Delphi) is used for each module that is loaded in the
process you are debugging. For example, if your Delphi program loads a dll build with the C++
personality, the C++ evaluator is used when debugging into the C++ dll. If you uncheck this option,
only the evaluator that is appropriate for the active personality is used. Note that this option is only
available for the CodeGear Win32 Debugger.

Debug spawned
processes

Debugs processes that are spawned by the process you are debugging. If not checked, spawned
processes are run but are not under control of the debugger.

Ignore non-user
breakpoints

Breaks only at breakpoints you have explicitly set using the IDE. When this option is checked, the
native debugger ignores hardcoded int 3 breakpoints as well as breakpoints that result from a call
to the Windows API method DebugBreak . Additionally, pressing F12 while a native application is
running does not break into the debugger when this option is checked. The managed debugger also
ignores breakpoints that result from a call to System.Diagnostics.Debugger.Break.

When you change this option, the change takes effect immediately. The default value is Off.

Show inherited Switches the Debug Inspector dialog Data, Methods, and Properties panes between two modes:
one that shows all intrinsic and inherited data members or properties of a class, or one that shows
only those declared in the class. For class objects, this lets you determine whether you see members
that are part of an ancestor class or only members declared in the immediate class whose object you
are inspecting.

Show fully qualified
names

Shows inherited members using their fully qualified names.

Sort by name Alphabetically sorts the pages of the Debug Inspector. If this option is not selected, the pages are
sorted by declaration order. Note that this option is ignored in Delphi for Win32 projects.

Inspectors stay on top Keeps all debugger inspector windows visible even if they are inactive.

Embedded in editor Specifies that the Disassembly view comes up as an integral part of the CPU view. This is the default.

Separate dockable
window

Specifies that the Disassembly view comes up as a separate window that you can move around in
the IDE.

Debug Symbols Search
Path

Specifies the path to your debug symbols files (.pdb) and .tds files. These files are normally stored
with your executable, or dynamic link library (DLL).

Tools RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

986

3

Debug Source path Specifies directories where the CodeGear debuggers look for unit files that cannot be found on the
project search path or project source path.

Additional directories are searched in the following order:

1. Project-specific Debug Source path, specified on the Project Options Debugger page.

2. Browsing path, specified as follows:

• For Delphi for Win32: on Tools Options Environment Options Delphi Options Library
— Win32.

• For Delphi.NET, on Tools Options Environment Options Delphi Options Library —
NET.

• For C++, on Tools Options Environment Options C++ Options Paths and Directories.

3. Debug Source path (this option), for projects that do not have a project-specific Debug source
path and for debugging with no project loaded.

If no project is loaded in the IDE, only the directories specified with this option are searched.

See Also

Setting the Search Order for Debug Symbol Tables (see page 129)

3.2.16.2.6 Paths and Directories (C++)
Tools Options Environment Options C++ Options Paths and Directories

Use the Paths and Directories page to specify directories, compiler, and linker options for all packages.

Item Description

Include Path Specifies the directories with header files used by default for C++ projects.

Library Path Specifies where to find C++ header and library files for installed components and packages.

Package output
directory

Specifies where the compiler should put compiled packages files.

BPI / LIB output
directory

Specifies where package bpi and lib files are placed by default. The lib is a static library and the
bpi is an import library. The default specified here can be overridden in individual packages by using
the package options.

Browsing path Specifies directories where the Project Browser searches for files when it cannot find an identifier on
the project search path or source path.

Restrict refactoring path Specifies the directories that you want to restrict from refactoring. For example, if you attempt to
rename a symbol, and a reference is found in a file on one of the paths specified here, the refactoring
ends with an error message.

Two built-in directories are automatically restricted from refactoring: $(BDS)\include\vcl and
$(BDS)\include\dinkumware. These two paths restrict refactoring from VCL sources and the
Dinkumware STL sources.

If you are using other third-party libraries (such as Boost), enter in this field the path where the library
header files are located.

Tip: You can enter a path relative to the RAD Studio root directory using the $(BDS)

environment variable.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Tools

987

3

3.2.16.2.7 Type Library (C++)
Tools Options Environment Options C++ Options Type Library

Use the Type Library page to select options for the Type Library editor.

Item Description

Use dispinterfaces in
control wrappers

If the component supports both vtable and IDispatch-based interfaces, checking this option
causes the importer to make the dispinterface the default interface for the component. The
default behavior is to make the vtable-based interface the default interface.

MS-style property
getter/setter prefixes

If this option is checked, the importer uses Microsoft Visual C++ style prefixes on property getter and
setter methods. Otherwise, the default prefixes get_ and set_ are used.

Change suffix The type library importer appends the suffix _OCX to the component wrapper files it generates. You
can change this behavior by clicking Change suffix and typing a new suffix in the text field.

Ignore special CoClass
Flags when importing

When you import an ActiveX Control, the type library importer only imports CoClasses that are not
marked as Hidden, Restricted, or Predefined, and marked as CanCreate. These flags are
supposed to be set if the object is intended for general use. However, if you want to create a control
for an internal application only, you can override the flags to generate the CoClass wrappers. In this
case, you would check Ignore special CoClass flags when importing, Hidden, Restricted, and
uncheck CanCreate.

Check the coclass flags you want to ignore when importing ActiveX controls.

Predefined Client applications should automatically create a single instance of this object.

Restricted A coclass marked restricted is supposed to be ignored by tools that access COM objects. It is
exposed by the type library but restricted to those authorized to use it.

Hidden The interface exists but should not be displayed in a user-oriented browser.

Can Create The instance can be created with CoCreateInstance.

3.2.16.2.8 Code Insight
Tools Options Editor Options Code Insight

Use this page to configure how Code Insight works while editing code in the Code Editor.

Note: HTML and CSS support only the Code Completion

, Error Insight, and Code Template Completion features.

Item Description

Source file type Displays a list of programming languages for which you can use Code Insight features. You can
specify different Code Insight options for each language.

Use Editor Font Use the same font as the Code Editor instead of the standard IDE font.

Code completion Displays a list of properties, methods and events when you enter a class name followed by a period
in the Code Editor. You can then select an item and press ENTER to add it to your code.

If this option is not checked, you can still invoke code completion by pressing CTRL+SPACE. The
default value is On (checked).

Error Insight Underlines invalid code and HTML in red. Positioning the cursor over invalid text displays a tooltip
window containing the probable cause of the error. The default value is On (checked).

Tools RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

988

3

Code Template
Completion

Automatically adds a code template when you type a token that starts a template and press TAB. The
default value is On (checked).

Auto Complete
Templates

Invokes code template completion when you press SPACE after you begin an existing template. When
this option is disabled, you must press TAB to invoke template completion after you type in the
template name. The default value is On (checked).

Template Hints Enables template hints. Template hints appear when you add a template in the Code Editor and tab
between the preset cursor positions in the template. The default value is Off (unchecked).

Delay Sets the duration of the pause before a Code Insight window displays. Select from None, Low,
Medium or High.

See Also

Code Editor Overview (see page 42)

Using Code Insight (see page 146)

Using Class Completion (see page 145)

3.2.16.2.9 Colors
Tools Options Editor Options Code Insight Colors

Use the Colors page to change the appearance of the Code Completion window.

Item Description

Source file type Displays a list of programming languages for which you can use Code Insight features. You can
specify different Code Insight options for each language.

Code Completion
Listbox Colors

Specifies the color for each component of the Code Completion window.

See Also

Code Editor Overview (see page 42)

Using Code Insight (see page 146)

Using Class Completion (see page 145)

3.2.16.2.10 Color
Tools Options Editor Options Color

Use this page to specify how the different elements of your code appear in the Code Editor.

Item Description

Color SpeedSetting Enables you to quickly configure the Code Editor display using predefined color combinations.
Select a Color SpeedSetting from the drop-down list and look at the sample code window to see how
the settings will appear in the Code Editor.

Bold Applies bold formatting to the selected element.

Italic Italicizes the selected element.

Underline Underlines the selected element.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Tools

989

3

Foreground Displays the code element using default system colors for the foreground. Unchecking this option
restores the previously selected color or, if no color has been previously selected, sets the code
element to the system color.

Background Displays the code element using default system colors for the background. Unchecking this option
restores the previously selected color or, if no color has been previously selected, sets the code
element to the system color.

Element Specifies syntax highlighting for a particular code element. You can choose from the Element list box
or click the element in the sample Code Editor. As you change highlighting on code elements, you
can see the effect in sample code window.

Foreground Color Sets the foreground color for the selected code element. The foreground color changes automatically
for each element you choose in the Element list box.

Background Color Sets the background color for the selected code element.

Language display pane Click on the language tab to see how option choices affect appearance of that language's code
source.

Note: The foreground color and background colorsof the Modified line

item in the Element list are the colors used to mark lines modified since last save and lines modified and saved in the current
session, respectively.

3.2.16.2.11 Debugger Options
Tools Options Debugger Options

Use this page to set general debugger options for the IDE.

Item Description

Integrated Debugging Activates the Integrated Debugger.

Map TD32 keystrokes
on run

Allows you to use the keystrokes from TD32 (Turbo Debugger 32-bit) in the IDE. When this option is
checked, the TD32 keymapping will be active anytime a debug session is in progress. Note that if this
option is selected, the Mark buffers read-only on run option is automatically checked as well and
cannot be unchecked.

Mark buffers read-only
on run

Marks all editor files, including project and workgroup files, read-only when the program is run. When
this option is selected, it will not change the attributes of the files after the program terminates. If the
file was not marked read-only before running the program, the product will change the attributes of
the file back to their original configuration after the program terminates.

Rearrange editor local
menu on run

Moves the Debugger area of the Code Editor context menu to the top when you run a program from
the IDE, for easier access the Debugger commands. Display the Code Editor context menu by
right-clicking anywhere in the Code Editor window.

Automatically close
files implicitly opened
while debugging

Closes all files that you did not explicitly open. If the debugger opened a file implicitly, that file is
closed automatically at the end of the debug session if it has not been changed. Files that have been
edited or for which you have set a breakpoint are not closed automatically.

Registered debuggers An information-only list of the registered debuggers in the system. The current active debugger is
displayed in boldface. (Only displayed when there is more than one registered debugger.)

3.2.16.2.12 VCL Designer
Tools Options VCL Designer

Use this page to specify preferences for the VCL Forms Designer.

Tools RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

990

3

Item Description

Display grid Displays a grid of dots on the Designer to aid in aligning controls.

Use designer guidelines Enables guidelines on the Forms Designer. Guidelines facilitate the alignment of components on a
form.

Snap to grid Automatically aligns controls on the Designer to the nearest grid line as you move the control.

Grid size/Snap
tolerance

Sets grid spacing in pixels along the x- and y-axis. Specify a higher number increase grid spacing.

Show Component
Captions

Displays captions for nonvisual components you drop on a form or data module.

Show Designer hints Displays a class name in a tooltip for a nonvisual component on a form or data module.

Show extended control
hints

Displays a tooltip for controls that include the origin (position on the form), size (width and height), tab
stop (whether the user can tab to a control), and order that you added the control to the form.
Disabled if Show Designer hints is turned off.

Embedded Designer Displays VCL Forms on the Design tab next to the Code tab. If unchecked, VCL Forms are displayed
as undocked, floating windows, which is useful for viewing both the form and code at the same time.
If unchecked, you must use either the Classic Undocked Layout or the Default Layout with the
Dock Edit Window option unchecked.

Show virtual screen
position

Displays the virtual screen position view in the lower-right corner of the Form Designer. Use this
view to quickly set the on-screen runtime position of the form.

New forms as text Toggles the format in which form files are saved. The form files in your project can be saved in binary
or text format. Text files can be modified more easily by other tools and managed by a version control
system. Binary files are backward compatible with earlier versions of the product. (You can override
this setting on individual forms by right-clicking and checking or unchecking the Text DFM or Text
XFM command.)

Auto create forms &
data modules

Toggles whether or not to automatically create forms. When unchecked, forms added to the project
after the first one are put into the Available Forms list rather than the Auto Create list.

You can change where each form is listed by chooing Project Options Forms.

3.2.16.2.13 Library
Tools Options Delphi Options Library

Use this page to specify directories, compiler, and linker options for all packages.

Item Description

Library path Specifies search paths where compiler can find the source files for the package. The compiler can
find only those files listed in the library path. If you try to build your package with a file not on the
library path, you will receive a compiler error.

Package output
directory

Specifies where the compiler should put compiled packages files.

DCP/DCPIL output
directory

Specifies a separate directory to contain the .dcp (Win32) or .dcpil (.NET) files.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Tools

991

3

Browsing path Specifies the directories where the Project Browser looks for unit files when it cannot find an
identifier on the project search path or source path.

For Win32 and .NET Delphi language projects, the directories specified with this option are appended
to the debug source path for the project. So the debugger search order for unit files is determined by
the following path settings:

1. The project-specific Debug Source path, specified on the Project Options Debugger page.

2. Browsing path (this option).

3. The global Debug Source path, specified on the Tools Options Debugger
Options CodeGear Debuggers page.

For C# and Visual Basic projects, or if no project is loaded in the IDE, only the Debug Source path
specified on the Tools Options Debugger Options CodeGear Debuggers page is
searched for source files.

Namespace prefixes Specifies the prefixes for dotted namespaces, to allow you to create a shorthand version of the
namespace in the uses clause in your code. For example, instead of writing CodeGear.Vcl.DB,
you could specify CodeGear.Vcl as your namespace prefix. In the uses clause, you could then
specify uses DB;.

Debug DCU/DCUIL
path

To use this option, you must set Use Debug DCU/DCUILs on the Project Options Compiler
page. When that option is set and a path is given, the debugger looks for the .dcu (Win32) or
.dcuil (.NET) files in this path before looking in the unit search path.

Tip: To list multiple values in an edit box, separate the values with a semicolon. Alternatively, click the ellipsis button next to
each edit box to add multiple values through an appropriate dialog box.

To specify operating system environment variables in an edit box, use the following syntax:

$(VariableName)

3.2.16.2.14 Display
Tools Options Editor Options Display

Use this page to set display and font options for the Code Editor.

Item Description

BRIEF cursor shapes Uses BRIEF editor cursor shapes.

Zoom to full screen Maximizes the Code Editor to fill the entire screen. When this option is off, the Code Editor does not
cover the main window when maximized.

Sort popup pages menu Sorts alphabetically the list of pages displayed when you right-click a Code Editor tab and click
Pages. If unselected, the pages are sorted in the order that they were created.

Show image on tabs Displays an icon on each tab in the Code Editor.

Visible right margin Displays a vertical line at the right margin of the Code Editor.

Show line numbers Displays the current line number and every tenth line number in the left margin of the Code Editor.

Number all lines Displays all line numbers in the left margin of the Code Editor.

Visible gutter Displays the gutter on the left edge of the Code Editor.

Right margin Sets the right margin of the Code Editor. The default is 80 characters.

Gutter width Sets the width of the gutter, default is 30.

Tools RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

992

3

Editor font Select a font type from the available screen fonts installed on your system (shown in the list). The
Code Editor displays and uses only monospaced screen fonts, such as Courier. Sample text is
displayed in the Sample box.

Size Select a font size from the predefined font sizes associated with the font you selected in the Editor
font list box. Sample text is displayed below the Sample box.

Sample Displays a sample of the selected editor font and size.

3.2.16.2.15 Editor Options
Tools Options Editor Options

Use this page to customize the behavior of the Code Editor.

Item Description

Insert mode Inserts text at the cursor without overwriting existing text. If Insert Mode is disabled, text at the cursor
is overwritten. (Use the Ins key to toggle Insert Mode in the Code Editor without changing this
default setting.)

Group undo Undoes your last editing command as well as any subsequent editing commands of the same type, if
you press ALT+BACKSPACE or choose Edit Undo.

Cursor beyond EOF Positions the cursor beyond the end-of-file character.

Double click line Highlights the line when you double-click any character in the line. If this option is not selected, only
the selected word is highlighted.

Force cut and copy
enabled

Enables Edit Cut and Edit Copy, even when there is no text selected.

Auto-complete text to
find

Enables auto-complete in the find dialog.

Create backup files Creates a backup file everytime you update and save a file in the IDE. Backup files are stored in the
current directory in a hidden directory named __history and can be managed from the History tab.

Use File backup limit to specify the number of backup files maintained in the __history directory.

Undo after save Allows you to retrieve changes after a save.

BRIEF regular
expressions

Uses BRIEF regular expressions. Regular expressions assist in pattern-matching operations.

Persistent blocks Keeps marked blocks selected, even when the cursor is moved using the arrow keys, until a new
block is selected.

Overwrite blocks Replaces a marked block of text with whatever is typed next. If Persistent blocks is also selected,
text that you enter is appended following the currently selected block.

Find text at cursor Places the text at the cursor into the Text To Find list box in the Find Text dialog box when you
choose Search Find. When this option is disabled you must type in the search text, unless the
Text To Find list box is blank, in which case the editor still inserts the text at the cursor.

Preserve line ends Preserves end-of-line position.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Tools

993

3

Editor SpeedSetting Provides a quick way to set the editor options by using preconfigured settings in the drop-down list.

Default uses key bindings that match CUA mappings (default).

IDE classic uses key bindings that match Borland Classic editor keystrokes.

BRIEF emulation uses key bindings that emulate most of the standard BRIEF keystrokes.

Epsilon emulation uses key bindings that emulate a large part of the Epsilon editor.

Visual Studio emulation uses key bindings that emulate a large part of the Visual Studio editor.

Visual Basic emulation uses key bindings that emulate a large part of the Visual Basic editor.

Undo limit Indicates the number of keystrokes that can be undone. The default value is 32,767.

The undo buffer is cleared each time the product generates code.

File backup limit If Create backup files is checked, controls how many backup files are maintained for files updated
and saved in the IDE. The default value is 10, but can be set to 1 through 90.

Reducing the File backup limit does not cause existing backup files to be deleted from the
__history directory.

See Also

Default Key Mapping (see page 1073)

IDE Classic Key Mapping (see page 1070)

BRIEF Emulation Key Mapping (see page 1069)

Epsilon Emulation Key Mapping (see page 1076)

Visual Studio Key Mapping (see page 1079)

Visual Basic Key Mapping (see page 1078)

3.2.16.2.16 Environment Options
Tools Options Environment Options

Specifies IDE configuration preferences.

Item Description

Editor files Saves all modified files in the Code Editor when you run, compile, build the project, or exit the
product.

Project desktop Saves the arrangement of your desktop when you close a project or exit the product. When you later
open the same project, all files opened when the project was last closed are opened again,
regardless of whether they are used by the project.

Show compiler progress Displays the compilation status of your program as it compiles.

Minimize on run Minimizes the IDE when you run an application by choosing Run Run. When you close the
application, the IDE is restored. When you run an application without using the debugger, the IDE
remains minimized.

Hide designers on run Hides Designer windows, such as the Object Inspector and Alignment Palette, while the
application is running. The windows reappear when the application closes.

Show command line Displays the command used to compile the project in the Messages window when you compile a
project. In a C# environment, displays the command used to compile the project and the content of
the response file. The response file lists the compiler options and source files to be compiled.

Verbosity Specifies the verbosity level of the build output. Select Quiet, Minimal, Normal, Detailed, or
Diagnostics. The build output is written to the Output tab of the Messages window.

Tools RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

994

3

Auto drag docking For undocked windows, allows you to dock tool windows by dragging the outline of the one window
over another window. If this option selected, pressing the CTRL key while dragging a window disables
the function. If this option is not selected, pressing the CTRL key enables it.

Shared Repository Specifies the path in which the product looks for the shared repository. Click the Browse button to
search directories.

Default Project Specifies the path in which the product looks for default project files. Click the Browse button to
search directories.

3.2.16.2.17 Environment Variables
Tools Options Environment Options Environment Variables

Use this page to view system environment variables and to create, edit, and delete user overrides.

Item Description

System variables Lists all environment variables and their values defined at a system level. You cannot delete an
existing system variable, but you can override it.

Add Override Displays the Override System Variable dialog box, allowing you to modify an existing system
variable to create a new user override. This button is dimmed until you select a variable in the
System variables list.

User overrides Lists all defined user overrides and their values. A user override takes precedence over an existing
system variable until you delete the user override.

New Displays the New User Variable dialog box allowing you to create new user override to a system
variable.

Edit Displays the Edit User Variable dialog box allowing you to change the user override currently
selected in the User overrides list.

Delete Deletes the user override currently selected in the User overrides list.

3.2.16.2.18 Event Log Options
Tools Options Debugger Options Event Log

Use this dialog box to control the content, size, and appearance of the event log.

Item Description

Clear log on run Causes the event log to be purged at the start of each debug session. If this option is checked while
debugging multiple processes, the event log view is cleared when the very first process is started.
However, any process started while at least one process is already being debugged will not cause
the event log view to be cleared.

Unlimited length Removes the limit on the length of the event log. When this option is unchecked, set the maximum
length of the event log in the Length field.

Length Displays the maximum length of the event log. If the Unlimited length check box is checked, this
option is inactive. For multiple process debugging, length is the total for the event log, not for a
process. The default length is 100.

Scroll new events into
view

Controls scrolling of the event log. Disable this option to prevent the event log from scrolling new
events into view as they occur. (Set by default.)

Display process info
with event

Shows the process name and process ID for the process that generated each event.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Tools

995

3

Breakpoint Messages Writes a message to the event log each time a breakpoint or First-chance exception is encountered.
The message includes the current EIP address of the program being debugged in addition to
information about the breakpoint (pass count, condition, source file name, and line number) or
exception. (Set by default.)

Process Messages Writes a message to the event log each time a process loads or terminates, whenever a module is
loaded or unloaded by the process. (Set by default.)

Thread Messages Writes a message to the event log each time a thread is created or destroyed during a debugging
session. (Set by default.)

Module Messages Writes a message to the event log each time a module (executable, shared object, or package) is
loaded or unloaded. It includes the name of the module, its base address, and whether it has debug
information. (Set by default.)

Output Messages Writes a message to the event log each time your program or one of its modules calls
OutputDebugString. (Set by default.)

This setting is used only by the CodeGear Win32 Debugger.

Application Domain
Messages

Writes out a message to the event log each time an application domain is created or unloaded. The
application domain creation message precede process load messages for the application. The
application event unload message follows the process load messages for the application. (Set by
default.) This setting is used only by the CodeGear .NET Debugger.

Managed Debug
Assistant Messages

Writes out a message to the event log each time a Managed Debug Assistant is triggered. (Set by
default.) This setting is used only by the CodeGear .NET Debugger. More information on Managed
Debug Assistants can be found on MSDN at
http://msdn2.microsoft.com/en-us/library/d21c150d.aspx.

Windows Messages Writes a message to the event log for each window message that is sent or posted to one of your
application's windows. The log entry will have details about the message, including the message
name and any relevant data encoded in its parameters. Messages are not immediately written to the
log if your process is running and not stopped in the debugger. As soon as you pause the process in
the debugger (by encountering a breakpoint or using Run| Pause) the messages will be written to the
event log. (Off by default)

This setting is used only by the CodeGear Win32 Debugger.

Use Event Log Colors Associates colors with specific message types so that the message is displayed in that color in the
event log.

Foreground Sets the color for text that appears in the event log.

Background Sets the color for the background of the event log.

3.2.16.2.19 Explorer
Tools Options Environment Options Explorer

Use this page to control the behavior of the Structure view and Project Manager.

Note: Right-click an item in the Structure

view and choose Properties to display this page as a separate Explorer Options dialog box.

Item Description

Highlight incomplete
class items

Displays incomplete properties and methods in bold in the Structure view .(Not applicable for C++
development.)

Show declaration
syntax

Displays the syntax and type of methods or properties. By default, only the names of code elements
are displayed in the Structure view . (Not applicable for C++ development.)

Tools RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

996

3

http://msdn2.microsoft.com/en-us/library/d21c150d.aspx

Explorer Sorting:
Alphabetical

Lists source elements alphabetically in the Structure view .

Explorer Sorting:
Source

Lists source elements in the order in which they are declared in the source file.

Class Completion:
Finish incomplete
properties

If you write a property declaration, completes the remainder of the declaration for reading and writing
that property. If unchecked, class completion applies only to methods. (Not applicable for C++
development.)

Explorer categories Controls how source elements are categorized in the Structure view or Project Manager. If a
category is checked, elements of that type are grouped under a single node in the tree diagram.

If a category is unchecked, each element in that category is displayed independently on the
diagram's trunk.

The folders in bold take precedence when a conflict exists and an element can appear in two folders.
For example, a private field would be listed in the private folder if both Private and Field were
checked.

If a folder is checked, the glyph to the right of the check box shows whether the folder is expanded.
Click there to expand or close a folder in the Structure view. The change goes into effect when you
click OK.

3.2.16.2.20 <generic_ordered_list> Dialog Box
This generic dialog box can have several different titles (such as Conditional Defines, Directories, or Include path), and the
box is typically invoked from a field on either theTools->Options or Project->Options dialog box. Use this generic dialog box to
manage an ordered list of items, such as paths or defines.

Note: Not all of the options described below are available for all occurrences of this dialog.

Item Description

<ordered list> Lists the items that are to be searched, in the order shown. To add items to this list, use the text field
below the list.

 or Moves the selected item up or down in the ordered list.

<text_field> Specifies an item to add or replace in the ordered list. You can type an item in this field, or click an
item in the list to select it and display it in this text field.

[...] (Ellipsis) Displays a dialog box allowing you to navigate to and select a folder. The item that you select is
displayed in the text field.

Replace Replaces the selected item with the item in the text field.

Add Adds the item in the text field to the ordered list of items.

Delete Removes the selected item from the ordered list.

Delete Invalid Paths Removes all greyed paths from the ordered list. A path is greyed if it is no longer valid.

Inherit values from
configuration “Base”

Check this box if you want values for this list to be inherited from the Base build configuration.

<display_field> This display box lists the items that are controlled by the checkbox labeled Inherit values from
configuration “Base.” Items listed here are grayed to indicate that you cannot enter items into this
field or select individual items.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Tools

997

3

3.2.16.2.21 HTML/ASP.NET Options
Tools Options HTML/ASP.NET Options

Use this dialog box to specify preferences for editing HTML on the Designer.

Item Description

Show grid Displays a grid of dots on the Designer to aid in aligning controls.

Snap to grid Automatically aligns controls on the Designer to the nearest grid line as you move the control.

Grid size Sets grid spacing in pixels along the x- and y-axis. Specify a higher number increase grid spacing.

Render HTML controls
using...

Applies the current Windows theme to HTML controls on the Designer page (if you have Windows
XP installed and a theme enabled). This is useful for determining the effect of a theme on controls at
design time. At run time, the user's theme settings determines how the controls are displayed.

Insert DIV tag... Inserts a <DIV> tag to indicate a division or section in the HTML file when you press ENTER.
Otherwise, a <P> tag is inserted, indicating a paragraph.

Default Page Layout Sets the positioning of added components. Flow Layout: When a component is dropped, it is
positioned in a top to bottom, left to right fashion, flowing similarly to text in word processing. Grid
Layout: Components are positioned using absolute x- and y-coordinates.

Auto show Smart
Tasks when...

If true, a Smart Task window displays after a control is dropped on a Web Form.

Highlight Designer
element when...

Highlights the HTML control on the Designer when the corresponding tag is edited in the tag editor.

Select highlight color Activated when Highlight Designer element when.. is checked. Clicking this button displays a color
picker for the HTML control highlight color. Default is yellow.

Web Forms Used only for ASP.NET. Indicates what is displayed in the edit window when creating a Web
document. Designer: Displays a WYSIWIG designer. Markup Editor: Displays a code editor for
markup, such as HTML or ASP code. Code Editor: Displays a code editor for programming
languages, such as C#, C++, or Delphi.

HTML Similar to Web Forms. Indicates what is displayed in the edit window when creating a Web
document. Designer: Displays a WYSIWIG designer. Markup Editor: Displays a code editor for
markup, such as HTML or ASP code.

3.2.16.2.22 HTML Formatting
Tools Options HTML/ASP.NET Options HTML Formatting

Use this dialog box to specify formatting preferences for auto-generated HTML on the Code tab.

Item Description

Using Spaces Indents generated HTML by using spaces.

Using Tabs Indents generated HTML by using the tab character.

Size Specifies the number of spaces used for tab indentation.

Place end tags on the
same line

Places closing HTML tags on the same line as the opening HTML tag.

Tags Indicates whether HTML tags are generated in uppercase or lowercase.

Attributes Indicates whether HTML tag attributes are generated in uppercase or lowercase.

Tools RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

998

3

3.2.16.2.23 HTML Tidy Options
Tools Options HTML/ASP.NET Options HTML Tidy Options

Use this dialog box to control how HTML Tidy formats HTML in the Code tab. HTML Tidy is the standard "pretty print" formatting
tool from www.w3c.org.

Item Description

HTML Tidy Option
Window

List of HTML Tidy options to be used for all HTML formatting within the IDE. You can change each
option with a context menu.

Description Displays a description of the selected HTML Tidy option.

3.2.16.2.24 Language Exceptions
Tools Options Debugger Options Language Exceptions

Use this page to configure how the debugger handles thrown language exceptions. The debugger always stops on unhandled
exceptions.

Item Description

Exception Types to
Ignore

Lists the types of exceptions you want the debugger to ignore (checked) or not (unchecked). The
debugger will not halt execution of your program if the exception raised is listed and checked, or
derived from any exception that is listed and checked.

Add Displays the Add Exception dialog box, allowing you to add a user-defined exception to the list.

Remove Removes the highlighted, user-defined exception from the list. You can not removed default language
exceptions from the list.

Notify on Language
Exceptions

Halts the execution of your program when your program raises a language exception. If this box is
checked, the debugger ignores the exception types you select in Exception Types to Ignore. To
place this command on your toolbar for easy access, use the
View Toolbars Customize Commands page.

3.2.16.2.25 Native OS Exceptions
Tools Options Debugger Options Native OS Exceptions

Use this dialog box to determine how exceptions are handled by the debugger. Select an exception from the list and adjust the
Handled By and On Resume options.

Item Description

Exceptions Lists the native operating system exceptions and any user-defined exceptions.

Handled By Specifies whether the exception will be handled by the debugger or by your program. If you have
added exception handling to your project, select User Program.

On Resume Specifies whether the product will continue to handle the exception, or whether the project will run
unhandled.

Add Displays the Add Exception Range dialog box, allowing you to add user-defined exceptions to be
handled by the debugger.

Remove Removes the selected user-defined exception from the list. Native operating system exceptions can
not be removed.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Tools

999

3

3.2.16.2.26 New Tags
Tools Options HTML/ASP.NET Options HTML Tidy Options New Tags

Use this page to list tags that would normally cause HTML Tidy to issue a warning or error, such as ASP tags.

Item Description

Block level tags Enter the tags that HTML Tidy should process as block tags. Omit the begin (<) and end (>) symbols.
Separate multiple tags by a comma, for example:

asp:button,asp:checkbox

Empty tags Enter the tags that HTML Tidy should process as empty inline tags. Omit the begin (<) and end (>)
symbols. Separate multiple tags by a comma.

Inline tags Enter the tags that HTML Tidy should process as non-empty inline tags. Omit the begin (<) and end
(>) symbols. Separate multiple tags by a comma.

Pre tags Enter the tags that HTML Tidy should process the same way it processes the HTML <PRE> tag. Omit
the begin (<) and end (>) symbols. Separate multiple tags by a comma.

3.2.16.2.27 Override System Variable/New User Variable/Edit User Variable
Tools Options Environment Options Environment Variables Add Override, New, and Edit buttons

or

Project Options Debugger Environment block Add Override, New, and Edit buttons

Use this dialog box to create or modify user overrides for system variables.

Item Description

Variable Name Type a new variable name or modify an existing one.

Variable Value Type a new value or modify an existing one.

3.2.16.2.28 Object Inspector
Tools Options Environment Options Object Inspector

Use this page to configure the Object Inspector. You can also access this page by right-clicking the Object Inspector and
choosing Properties.

Item Description

SpeedSettings Displays a drop-down list box to choose from the following color schemes: Custom colors and
settings, Default colors and settings, Traditional colors and settings, Classic colors and settings, and
Visual Studio(TM) emulation.

Show instance list Displays the drop-down list box of components and their class names (called the instance list) at the
top of the Object Inspector. The list is useful when you have many components on your form or data
module and can’t find the one you want right away.

Show classname in
instance list

Displays the component’s class name for every component in the instance list, not just the first one.

Show status bar Displays the status bar at the bottom of the Object Inspector. The status bar indicates how many
properties or events are not shown as a result of right-clicking the Object Inspector and selecting
View. If all properties or events are visible in the Object Inspector, it says All shown.

Tools RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1000

3

Render background
grid

Adds horizontal background lines to designate columns and rows on the Properties and Events
pages.

Integral height (when
not docked)

Adjusts the Object Inspector between a full row instead of a partial row as you vertically resize the
Object Inspector with your cursor.

Show read only
properties

Displays the properties for components even if the properties are read only. By default, they are
grayed out.

Bold non default values Displays non-default values as bold text in the current Non Default Value color setting.

Show gutter Draws an outline along the left edge of the Object Inspector and fills the outlined area with the
current Gutter Color setting for additional readability.

Colors To customize one of the imported color schemes, select it from the SpeedSettings list. Then select
an option and select a different color from the drop-down list below. For example, to change the color
of Value, the text color for properties’ values, select Value and click clYellow from the Options list.
You save your new settings once you click OK. This automatically saves the changes to the Custom
colors and settings scheme, not the original scheme.

To return to your default settings, click Default colors and settings or one of the others.

Expand inline Displays the properties of the referenced component. To view these properties, click the plus sign (+)
next to the referenced component. By default, referenced components are red and their properties
green.

Show on events page Displays the events of the referenced component. By default, referenced properties are red and their
events green.

3.2.16.2.29 Source Control Options
Tools Options Source Control Options

Use this page to set source control system options.

Item Description

Source Code Control
Providers

Activates a particular source code system provider. The providers must implement the SCC API or a
wrapped client that exposes the API.

User Name Specifies a valid source control system user name. This user name must be defined in the source
control system.

3.2.16.2.30 Source Options
Tools Options Editor Options Source Options

Use this page to configure Code Editor settings for various types of source files.

Item Description

Source file type Choose a predefined or customized source file type.

New Displays the New source file type dialog box, allowing you to create a new file type. Enter a name
and click OK, and then enter an extension in the Extensions drop-down list. You must add an
extension if you add a new source file type, or cancel the operation.

Delete Deletes the predefined or customized file type displayed in the Source file type drop-down list box.

Auto indent mode Positions the cursor under the first nonblank character of the preceding nonblank line when you press
ENTER in the Code Editor.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Tools

1001

3

Use tab character Inserts tab characters when you press TAB in the Code Editor. If not checked, pressing TAB inserts
spaces. If Smart tab is enabled, this option is off. To view tab characters, select Show tab
character.

Smart tab Tabs to the first non-whitespace character in the preceding line. If Use tab character is enabled, this
option is off.

Cursor through tabs Enables the arrow keys to move the cursor to the logical spaces within each tab character.

Optimal fill Begins every auto-indented line with the minimum number of characters possible, using tabs and
spaces as necessary.

Backspace unindents Aligns the insertion point to the previous indentation level (outdents it) when you press BACKSPACE, if
the cursor is on the first nonblank character of a line.

Keep trailing blanks Prevents trailing blanks from being truncated.

Show tab character Displays tab characters as >>, if Use tab characters is selected.

Show space character Displays typed spaces as dots (.).

Use syntax highlight Enables syntax highlighting. To set highlighting options, use the Color page.

Show line breaks Displays line break symbols at the end of each line.

Highlight current line Highlights the current line in the Code Editor.

Syntax Highlighter Choose an option to change the format for displaying code elements. Check Use syntax
highlighting to enable this option.

Block indent Specifies the number of spaces to indent a marked block. The default is 2; the upper limit is 16.

Tab stops Set tabs stops that the cursor will move to when you press TAB. Enter one or more integers
separated by spaces. If multiple tab stops are specified, the numbers indicate the columns in which
the tab stops are placed. Each successive tab stop must be larger than the previous tab stop. If a
single tab stop is specified, it indicates the number of spaces to jump each time you tab.

3.2.16.2.31 Colors
Tools Options Environment Options Tool Palette Colors

Use this dialog box to change the colors of the Tool Palette.

Item Description

Color Schemes Lists predefined color combinations. Select a color scheme from the drop-down list to display it
immediately in the Tool Palette.

You can not modify the default color schemes, however, you can select a color scheme and change
any of the colors associated with it to create your own unnamed color scheme.

Base Color (Category
Colors)

Specifies the color used for the category window background.

Gradient Color
(Category Colors)

Specifies the color used for shading the Base Color.

Text Color Specifies the color used for the category captions.

Bold Captions Applies bold formatting to the category captions.

Vertical Gradient Applies the Gradient Color value to the top of the category window, rather than the left side of the
window.

Caption Only Border Applies the Base Color, Gradient Color, and Text Color values only to the category captions, not
the entire category window.

Use +/– Icons Displays plus (+) and minus (–) signs next to category captions, instead of carets.

Tools RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1002

3

Vertical Captions Displays the category captions vertically on the left side of the category windows.

Normal Color Specifies the color used for the button background.

Selected Color Specifies the color used for the background of a button when it is selected and highlighted.

Hot Color Specifies the color used for the button when you hover the mouse over the button.

Base Color
(Background Colors)

Specifies the color used for the frame around each category window.

Gradient Color
(Background Colors)

Specifies the color used to shade the frame around each category window.

Gradient Direction Specifies whether the Gradient Color shading around the category window is vertical or horizontal.

Tip: As you change options in this dialog box, the Tool Palette

is automatically updated to show the result of the changes.

See Also

Adding Components to the Tool Palette (see page 160),

3.2.16.2.32 Tool Palette
Tools Options Environment Options Tool Palette

Use this dialog box to change the appearance of the Tool Palette.

Item Description

Button Size Changes the size of the icons that represent items on the Tool Palette.

Auto Collapse
Categories

Allows only one category to be expanded at a time.

Vertical Category
Captions

Displays the category captions vertically to the left of items on the Tool Palette.

Lock Palette Ordering Disables drag-and-drop reordering of items on the Tool Palette.

Show Button Captions Displays captions along with item icons.

Vertical Flow Layout Displays the categories vertically.

Show Palette Wizards Displays items from the New Items dialog box in the Tool Palette when the Code Editor is active or
the Project Manager has focus. The New Items dialog box is also available by choosing
File New Other.

Always Show Designer
Items

Displays Designer items, even when the Code Editor is active (similar to Delphi 7 behavior).
Uncheck this option to omit Designer items from the Tool Palette when the Code Editor is active.

Tip: As you change options in this dialog box, the Tool Palette

is automatically updated to show the result of the changes.

See Also

Adding Components to the Tool Palette (see page 160)

Adding Components to a Form (see page 152)

Using Code Snippets (see page 148)

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Tools

1003

3

3.2.16.2.33 Color
Tools Options Translation Tools Options Color

Use this dialog box to define a color scheme for the Translation Manager.

Item Description

Color Scheme Lets you choose from a selection of predefined color schemes.

Save As Lets you add your own color scheme to the list.

Remove Removes a user-defined color scheme from the list.

Element Lists the elements in the Translation Manager. To set a color for an element, click the element and
then click a color in the color box.

Sample Shows how some of the selected colors will look in the Translation Manager.

User colors Controls color-coding in the Translation Manager.

See Also

Localizing Applications (see page 18)

3.2.16.2.34 Font
Tools Options Translation Tools Options Font

Use this dialog box to set font preferences for the Translation Manager.

Item Description

Grid fonts Displays the languages and the fonts available to your project.

Sample Shows a sample of the selected font.

Font Displays the Font dialog box, allowing you to choose a font, font style, font size, effect, color, and
script for the language(s) you have selected in the Grid fonts box.

See Also

Localizing Applications (see page 18)

3.2.16.2.35 Form Designer
Tools Options Translation Tools Options Form Designer

Use this dialog box to specify preferences for the forms displayed while using the Translation Manager.

Item Description

Display grid Displays dots on the form to make the grid visible.

Snap to grid Automatically aligns components on the form with the nearest gridline. You cannot place a
component in between gridlines.

Grid size Sets the grid spacing in pixels along the x- and y-axis. Specify a higher number increase grid
spacing.

Tools RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1004

3

3.2.16.2.36 Packages
Tools Options Packages

Use this dialog box to add or remove designtime packages from the resource project in the External Translation Manager.

Item Description

Add Lets you navigate to the designtime packages that you want to add to the project. You can add one or
more designtime packages at a time.

Remove Removes the selected designtime packages from the project.

3.2.16.2.37 Translation Tools Options
Tools Options Translation Tools Options

Use this dialog box to configure the Satellite Assembly Wizard, Resource DLL Wizard, Translation Manager, and Translation
Repository.

Item Description

Automatically query
repository

Automatically populates resource modules with translations for any strings that have matches in the
Translation Repository, each time your assemblies are updated.

If only one match for a string is found in the Translation Repository, that translated string is copied to
the resource modules project. If more than one match is found, the first matching translation in the
Repository is copied to the assembly. You can change this behavior by choosing
Tools Translation Tools Options, clicking the Repository tab, then changing the Multiple Find
Action setting.

Automatically compile
projects

Compiles projects, without asking first, whenever required by the translation tools (for example, when
running the Satellite Assembly Wizard).

Show Translation
Manager after wizard

Opens the Translation Manager automatically after running the Satellite Assembly Wizard or
Resource DLL Wizard unless one of the resource module projects is active in the Project Manager
when you use the wizard.

Automatically quote
strings

Supplies required quotation marks around translated strings, unless the strings already contain
apostrophes, quotation marks, or control characters (such as #13).

Use 'Newly Translated'
Status

When a string is manually translated, or automatically translated from the Translation Repository, the
status of the string is changed Newly Translated instead of Translated. This status is used to
determine items which are translated in current translation.

Automatically save files Saves the current project, without asking first, whenever appropriate (for example, before closing the
Translation Manager or running the Satellite Assembly Wizard or Resource DLL Wizard).

Hide empty items Hides files that do not contain translation items, such as .nfn and .resN files, in the Workspace tab
tree view of the Translation Manager. This can improve performance when processing many files,
some of which are empty, with the Add strings to repository or Get strings from repository commands.

External editor Indicates the name of the editor to use when using an external editor in the Translation Manager, for
example, notepad.exe.

See Also

Localizing Applications (see page 18)

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Tools

1005

3

3.2.16.2.38 Repository
Tools Options Translation Tools Options Repository

Use this dialog box to configure the Translation Repository.

Item Description

Filename Sets the location of the Translation Repository, a database for translations that can be shared by
different projects.

Enter the full name and directory path of the .tmx file where the Translation Repository is stored.
The default is $(ETM)\default.tmx.

Duplicate action Determines how the repository responds when it finds a duplicate translation string for the same
source string.

Skip does not add the string.

Add adds the string to the repository if no translated string exists for the original string.

Force Add always adds the string to the repository, regardless of whether it exists in the repository.

Replace overwrites the existing string with new string.

Display selection offers the user a choice.

Multiple find action Determines how the repository responds when it finds more than one translation for the same source
string.

Skip does not retrieve anything if the repository contains more than one match.

Use first retrieves the first match.

Display selection offers the user a choice.

See Also

Localizing Applications (see page 18)

3.2.16.2.39 Translation Repository
View Translation Manager Translation Repository

Use the Translation Repository dialog to find, edit, and delete resource strings. While in the Translation Manager, you can use
the Translation Repository to store and retrieve translated strings. By default, the Translation Repository stores data in
default.tmx, located in the RAD Studio/bin directory.

Use the toolbar icons to create, open, and save a Translation Repository .tmx file. After opening a .tmx file, you can use the
right-click context menu commands to perform actions on individual resource strings.

Tip: To configure the Translation Repository, close it and choose Tools->Options->Translation Tools Options->Repository

.

See Also

Localizing Applications (see page 18)

Adding Languages to a Project (see page 169)

Editing Resource Files in the Translation Manager (see page 170)

Setting Up the External Translation Manager (see page 172)

Tools RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1006

3

3.2.16.2.40 Type Library (Delphi)
Tools Options Environment Options Delphi Options Type Library

Use this dialog box to select options for the Type Library editor.

Item Description

SafeCall function
mapping

Determines which functions are declared as safecall when declarations specified in Delphi are
converted to Interface Definition Language (IDL) in the generated type library.

Safecall functions automatically implement COM conventions for errors and exception handling,
converting HRESULT error codes into exceptions. If you are entering function declarations in IDL,
you must explicitly specify the calling convention as safecall or stdcall.

All v-table interfaces uses SafeCall for all interfaces.

Only dual interfaces uses SafeCall only for dual interfaces.

Do not map does not use the SafeCall calling convention.

Pascal Delphi language.

IDL Microsoft Interface Definition Language.

Ignore special CoClass
Flags when importing

When you import an ActiveX Control, the type library importer only imports CoClasses that are not
marked as Hidden, Restricted, or Predefined, and marked as Can Create (actually noncreatable).
These flags are supposed to be set if the object is intended for general use. However, if you want to
create a control for an internal application only, you can override the flags to generate the CoClass
wrappers. In this case, you would check Ignore special CoClass flags when importing, Hidden,
Restricted, and uncheck Can Create (noncreatable).

Predefined Client applications should automatically create a single instance of this object.

Restricted A coclass marked Restricted is ignored by tools that access COM objects. It is exposed by the type
library but restricted to those authorized to use it.

Hidden The interface exists but should not be displayed in a user-oriented browser.

Can Create The instance can be created with CoCreateInstance.

Display updates before
refreshing

Displays the Apply Updates dialog box, which provides a chance to preview proposed changes to
the sources when you try to refresh, save, or register the type library.

If this option is not checked, the type library editor automatically updates the sources of the
associated object when you make changes in the editor.

3.2.16.2.41 WebSnap
Tools Options WebSnap

Use this page to examine and set WebSnap options.

Item Description

Enable Debugging Enables the active script debugger when an error occurs while debugging a web page module.

HTML File Extension Specifies which file extension you want the New WebSnap Application wizard to apply to HTML
files it generates.

Sample Image File Used by adapter components to display a sample image in the event that the correct image is not
available at design time. Click Browse to locate the path for the sample image.

Note: WebSnap is being deprecated in RAD Studio. Although WebSnap is still documented in the online help, the WebSnap
product is no longer fully supported. As an alternative, you should begin using IntraWeb (VCL for the Web). IntraWeb is

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Tools

1007

3

documented in this online help. For more documentation on VCL for the Web, go to http://www.atozed.com/intraweb/docs/.

3.2.16.3 Configure Tools
Tools Configure Tools

Indicates which programs are available on the Tools menu.

Item Description

Tools Lists programs that have been added to the Tools menu.

Add Displays the Tools Properties dialog box, allowing you to add a program.

Delete Deletes the tool selected in the Tools list, allowing you to change the properties of the program.

Edit Displays the Tools Properties dialog box.

Up and Down arrows Moves the tool selected in the Tools list up or down, which changes the order in which the tools
appear on the Tools menu.

Tip: Added programs appear at the bottom of the Tools menu.

3.2.16.4 Edit Object Info
Tools Template Libraries Properties Edit button

Use this dialog box to edit information about an object in the Object Repository.

Item Description

Category Displays the categories that appear in the New Items dialog box displayed when you choose
File New Other.

Title Indicates the title of the selected item.

Description Indicates the description of the selected item. The description is displayed when you right-click the
New Items dialog box and choose View Details.

Author Indicates the name of the author of the selected item.

Browse button Displays the Select icon dialog box, allowing you to select a different icon to represent the object in
the New Items dialog box. You can use a bitmap of any size, but it will be cropped to 60 x 40 pixels.

New Category Displays the New Category Name dialog box where you enter the name for a new Object
Repository category.

3.2.16.5 Edit Tools
Tools Build Tools Add or Edit button

Use this dialog box to add or change build tool titles and file associations.

Item Description

Title Enter the name you want to use for the tool.

Tools RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1008

3

http://www.atozed.com/intraweb/docs

Default Extensions List the file extensions that the tool will compile by default. The tool will be run automatically for files
in your project with this extension whenever you compile or build the project. Separate multiple
extensions with semicolons. In the Project Manager, you can right-click on files with this extension to
access the tool.

Other Extensions List the file extensions for which the tool will be used occasionally. This is useful for tools such as
preprocessors, archiving tools, diagnostics, or auto-help generators. Separate multiple extensions
with semicolons. In the Project Manager, you can right-click on files with this extension to access the
tool.

Target Extension Specify the extension of files that the tool creates (if any).

Command Line Specify the command line to be executed when a file of this type is built.

Filter Indicate a custom filter in a package (created using the Tools API) used to filter the tool output
information and display it in the Messages window.

If no filter is specified, a default filter is used. The default filter sends anything written by the tool to
stdout and stderr to the Messages window.

Macros Displays a list of macros that you can use in the command line (for example, $NAME gets a file
name). The macros are expanded when the tool runs. Double-click the macro or click Insert to add it
to Command Line.

Inserts Adds the selected macro to Command Line.

3.2.16.6 Export Visual Studio Project
Tools Export to Visual Studio...

Use this dialog to convert the current project to a Microsoft Visual Studio project.

Item Description

Name Prefilled with the current project name. You can change the name.

3.2.16.7 History Manager
The History Manager lets you see and compare versions of a file, including multiple backup versions, saved local changes, and
the buffer of unsaved changes for the active file. If the current file is under version control, all types of revisions are available in
the History Manager.

The History Manager is displayed on the History tab, which is in the center of the IDE to the right of the Code tab. The History
Manager contains the following tabbed pages:

Page Description

Contents Displays the current and previous versions of the file.

Info Displays all labels and comments for the active file.

Diff Displays the differences between the selected versions of the file.

History Manager Toolbar Buttons

Button Description

 Refresh revision info updates the revision list to include unsaved changes to the file.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Tools

1009

3

 Revert to previous revision makes the selected version the current version and is available on the
Contents and Info pages.

Reverting a prior version deletes any unsaved changes in the editor buffer.

 Synchronize scrolling synchronizes scrolling in the Contents and Diff pages and the Code Editor. It
matches the line of text that contains the cursor with the nearest matching line of text in the other view.
If there is no matching text in that region of the file, it matches line numbers.

 Go to next difference repositions the source on the Diff page to the next block of different code.

 Go to previous difference repositions the source on the Diff page to the previous block of different
code.

 Follow text movement locates the same line in the source viewer when switching between views.

The following icons are used to represent file versions in the revision lists.

Revision Icons Used in the History Manager

Icon Description

 The latest saved file version.

 A backup file version.

 The file version that is in the buffer and includes unsaved
changes.

 A file version that is stored in a version control repository.

 A file version that you have checked out from a version control
respository.

See Also

IDE Tour (see page 34)

Using the History Manager (see page 149)

3.2.16.8 Object Repository
Tools Template Libraries Properties

Use this dialog box to edit, move, and remove form and project template libraries.

Item Description

Categories Lists the categories available that contain project and form templates in the Object Repository.

Repository Objects Lists the project and form templates within each category.

Edit Displays the Edit Object Info dialog box, allowing you to edit the properties of templates in the
Object Repository.

Delete Removes a template from the Object Repository.

3.2.16.9 Template Libraries
Tools Template Libraries

Adds, edits, and removes template libraries from the IDE.

Tools RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1010

3

Item Description

Name column Displays the names of each template library listed.

Version column Displays the current version of each template library listed.

Description column Displays the descriptions of each template library listed.

Path column Displays the complete path to the location of each template library.

Properties Opens a window which displays the Categories in which the template library is listed in the Object
Repository and the name and description of each object in the template library.

Add Opens a browser enabling you to select an existing template library to add to the list.

Remove Deletes the selected template library from the list. It does not delete the template library from the disc.

3.2.16.10 Tools Properties
Tools Configure Tools Add and Edit button

Use this dialog box to enter or edit the properties for a program listed on the Tools menu.

Item Description

Title Enter a name for the program you are adding. This name will appear on the Tools menu. To add an
accelerator to the menu command, precede that letter with an ampersand (&). If you specify a
duplicate accelerator, the Tool Options dialog box displays a red asterisk (*) next to the program
names.

Program Enter the location of the program you are adding. Include the full path to the program. To search your
drives and directories to locate the path and file name for the program, click the Browse button.

Working Dir Specify the working directory for the program. The product specifies a default working directory when
you select the program name in the Program text box. You can change the directory path if needed.

Parameters Enter parameters to pass to the program at startup. For example, you might want to pass a file name
when the program launches. Type the parameters or use the Macros button to supply startup
parameters. You can specify multiple parameters and macros.

Macros Expands the Tool Properties dialog box to display a list of available macros. You can use these
macros to supply startup parameters for your application. Select a macro and click Insert to add the
macro to the Parameters text box.

Browse Displays the Select Transfer Item dialog box opens, allowing you to navigate to a program.

3.2.16.11 XML Mapper
Tools XML Mapper

At design-time, defines the mappings between generic XML documents and the data packets that client datasets use. Each
mapping describes the correspondences between the nodes of an XML document and the fields in a data packet.

You can define mappings from an existing XML schema (or document) to a client dataset that you define, from an existing data
packet to a new XML schema you define, or between an existing XML schema and an existing data packet.

Document View Page

This page shows the contents of the currently loaded XML document, represented as a hierarchical tree view. Each node in the
tree represents a tag or tag attribute in the XML document. Next to each node is an icon that indicates the type of tag it

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Tools

1011

3

represents:

Item Description

 Represents an element node that is a tag that acts as a parent to other nodes (tags), but does not
have a value. The name of the node is the tag name. Typically, element nodes map to datasets (the
data packet itself or a nested detail set), although they can also map to fields whose values are a
composite of the child node values.

 Represents a text node. Text nodes represent tagged elements with text values. In the tree, they
have the form Nodename="TextValue", where Nodename is the tag name and TextValue is the text
that appears between the starting tag and the ending tag. Typically, text nodes map to fields in the
corresponding data packet.

 Represents an attribute node. Attribute nodes correspond to attributes of the parent element’s tag in
the XML document. In the tree, attributes have the form Nodename="AttributeValue", where
Nodename is the name of the attribute and AttributeValue is its value. Typically, A nodes map to
fields in the corresponding data packet, where the element for which they are attributes maps to a
record.

 Represents a nested node. Nested nodes are element nodes that can appear replicated sequentially
in the XML document. Typically, nested nodes map to records in the corresponding data packet.

Data View If unchecked, the hierarchy displays only the names and types of nodes. No values are shown for text
or attribute nodes, and only a single instance is shown for any nested nodes.

If checked, the hierarchy displays sample values on text and attribute nodes, and repetitions of
nested nodes. If you loaded a sample XML file, the Data View shows the values stored in that file. If
the document was generated from a schema or data packet, sample values are generated for the
nodes.

When examining a large XML document, it is sometimes easier to uncheck Data View, so you can
see more of the logical structure with the detailed information removed.

Schema View Page

This page shows the XML schema information. This page has three tabs, which represent the different schema formats
supported by XML mapper. These include DTD, XDR (reduced XMLData), and XSD (XML schema). The information on the
Schema View page can be read from a file or deduced from an actual XML document.

Node Properties Page

This page lets you assign properties to the currently selected node in the XML document pane. These properties are used when
generating a transformation file to ensure that data packets generated from XML documents have the correct field types and
constraints, and that XML documents generated from data packets have the correct nodes. When you generate a transformation
file, it reflects the values currently specified on the Node Properties page.

Item Description

UTF-8 encoded Controls whether extended characters are encoded using UTF-8 (when checked) or using an escape
sequence in the XML (when unchecked). When checked, the Data Format property for Strings,
Memos, and WideStrings changes from ANSI to UTF-8.

User Defined
Translation

Controls whether the selected node should be transformed automatically. This allows you to perform
conversions that are not simple one-to-one mappings that can be specified by giving a data type. For
example, you can create a user-defined node to convert an element node that has children for first
name and last name into a single "full name" field in the data packet. When you check the User
Defined check box, you must assign an ID string to represent the node. This ID string is passed to
the OnTranslate event handler of TXMLTransform so that you can perform the translation in code. If
you do not identify a node as user-defined, the OnTranslate event does not occur for the node.

Node Description Optional. Enter a description of the node. This description is not added to the XML document or the
data packet, but is useful for identifying the purpose of a base set element when you are saving
property sets to a node repository file

Tools RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1012

3

Tip: To save the current node settings to a node repository file, right-click and choose Save Repository. To read a set of node
settings from a node repository file, right-click and choose Open Repository. To back out all changes made on the Node
Properties

page, reverting to the values deduced from the XML document, right-click and choose Clear.

Mapping Page

This page lets you specify the mapping between fields in the data packet and nodes in the XML document, create a
transformation file, and save the transformation file.

The top of the page displays a two-column table that lists the nodes from the XML document and the corresponding fields in the
data packet. When you first display the mapping page, this table is empty. In order to define a mapping, you must fill this table.

Note: You can only add nodes with values (text and attribute nodes), or nodes that have been marked as user-defined using the
Node Properties

page.

Field View Page

This page displays the field attributes for all the fields in the data packet. Each node in the hierarchy represents a dataset, field,
or field attribute:

Item Description

 Represents the entire data packet or a dataset field. The children of a dataset node represent the
fields in that dataset.

 Represents a field that is not a dataset field. The children of a field node represent the attributes of
the field.

 Represents a field attribute, such as the data type, maximum length, and so on. The node is labeled
with a string of the form AttributeName = Value, where AttributeName is the name of the field
attribute and Value is its value.

Datapacket View Page

This page displays the structure of the data packet. The icons in this view are the same as those in the XML document pane,
because data packets can be treated as special types of XML documents.

Item Description

 Represents an element node. Element nodes in data packets represent datasets or dataset fields.

 Represents an attribute node. Attribute nodes in data packets represent fields (unless they are
dataset fields).

 Represents a nested node. Nested nodes in data packets represent records.

Note: XML mapper can use a data packet in binary format (a .cds

file) as well as data packets that have been saved as XML. If you use a data packet in binary format, XML mapper converts it to
XML format.

See Also

Using XML in Database Applications

3.2.16.12 Web App Debugger
Tools Web App Debugger

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Tools

1013

3

Acts like a Web server on your development machine. If you build your Web server application as a Web App Debugger
executable, deployment happens automatically during the build process. To debug your application, start it using Run Run.
Next, select Tools Web App Debugger, click the default URL and select your application in the Web browser that appears.
Your application will launch in the browser window, and you can use the IDE to set breakpoints and obtain debugging
information.

See Also

Types of Web Server Applications

3.2.17 View

Topics

Name Description

Add to Repository (see page 1017) Adds strings in the selected unit to the Translation Repository. This dialog is
displayed when you right-click a node on the Workspsace tab of the Translation
Manager and use the Add strings to repository comand.
To add individual strings, rather than adding the strings for an entire unit,
right-click the string in the Translation Manager and choose Repository Add
strings to repository.
The following options determine the criteria used for adding the strings.

Debug Windows (see page 1018)

Code Explorer (see page 1033) View Code Explorer
Navigates through the unit files. The Code Explorer contains a tree diagram that
shows all of the types, classes, properties, methods, global variables, and global
routines defined in your unit. It also shows the other units listed in the uses
clause. Right-click an item in the Code Explorer to display its context menu.
When you select an item in the Code Explorer, the cursor moves to that item’s
implementation in the Code Editor. When you move the cursor in the Code
Editor, the highlight moves to the appropriate item in the Code Explorer.
The Code Explorer uses... more (see page 1033)

Customize Toolbars (see page 1033) View Toolbars Customize
Changes the toolbar configuration. Using this dialog box, you can add, remove,
and rearrange buttons on toolbars.

Data Explorer (see page 1034) View Data Explorer
Adds new connections, modifies; deletes, or renames your connections. You can
browse database server-specific schema objects including tables, fields, stored
procedure definitions, triggers, and indexes. Additionally, you can drag and drop
data from a data source to a project to build your database application quickly.
The Data Explorer commands available depend upon the object selected in the
tree view. Commands are available for the following nodes:

• Provider types

• Provider connections

• Tables node

• Individual tables

• Individual views

• Individual stored procedures

Delete Saved Desktop (see page 1036) View Desktops Delete Desktop
Delete a saved desktop by selecting it from the list and clicking Delete.

Desktop Toolbar (see page 1036) Selects an existing desktop layout or saves the current settings as a desktop
layout. The Desktop toolbar is located at the far right end of the upper toolbar in
the IDE.

View RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1014

3

File Browser (see page 1036) View File Browser
Dockable Windows-style File Browser views files and directories and performs
simple operations on files while you are running the IDE. The File Browser
supports standard Windows context menu options, as well as the following
commands that are specific to RAD Studio:

Add to Repository (see page 1037) Use this dialog box to add strings in the selected unit to the Translation
Repository. This dialog is displayed when you right-click a node on the
Workspsace tab of the Translation Manager and use the Add strings to
repository comand.
To add individual strings, rather than adding the strings for an entire unit,
right-click the string in the Translation Manager and choose Repository Add
strings to repository.
The following options determine the criteria used for adding the strings.

Message View (see page 1038) Displays messages such as compiler errors and warnings. You can copy one or
more lines from the Message view to the clipboard.
The Build tab displays the build command. The Output tab displays build output
messages. To select the verbosity level for build output, use the
Tools Options Environment Options page.

Object Inspector (see page 1038) View Object Inspector
Sets the properties and events for the currently selected object.

Project Manager (see page 1038) View Project Manager
Displays and organizes the contents of your current project group and any project
it contains. You can perform several project management tasks, such as adding,
removing, and compiling files.
Note: Some features described here are available only in specific editions of the
product. For example, some functionality in the Project Manager is available only
for the C++ personality.

Save Desktop (see page 1047) View Desktops Save Desktop
Saves your current IDE desktop arrangement as a desktop layout.

Select Debug Desktop (see page 1047) View Desktops Set Debug Desktop
Determines which saved desktop layout is used when you are debugging.

Structure View (see page 1047) View Structure
Shows the hierarchy of source code or HTML displayed in the Code Editor, or
components displayed on the Designer. When displaying the structure of source
code or HTML, you can double-click an item to jump to its declaration or location
in the Code Editor. When displaying components, you can double-click a
component to select it on the form.
If your code contains syntax errors, they are displayed in the Errors node in the
Structure View. You can double-click an error to locate the corresponding
source in the Code Editor. ((Not applicable for... more (see page 1047)

Templates Window (see page 1048) View Templates
Creates, edits, or deletes live code templates.

To-Do List (see page 1049) View To-Do List
Creates and manages a to-do list.

Add or Edit To-Do Item (see page 1049) Adds items to a to-do list or to change an item.

Filter To-Do List (see page 1050) Controls which items are displayed in a to-do list.

Table Properties (see page 1050) Controls the appearance of the resulting to-do list when using the Copy
as HTML table command from the right-click menu of the To-do List dialog.

Tool Palette (see page 1051) View Tool Palette
Assists with a new project, adds components to a form, or adds code snippets to
the Code Editor.

Translation Manager (see page 1052) View Translation Manager
Views and edits language resource files.

Multi-line Editor (see page 1054) Edits translations that are lengthy or contain multiple lines of text separated by
hard returns. The editor displays the source and target languages in separate
panes. Only the target language is editable.

Type Library Editor (see page 1054) View Type Library
Makes changes to your type library. The Type Library editor generates the
required IDL syntax automatically. Any changes you make in the editor are
reflected in the corresponding implementation class (if it was created using a
wizard).
The View Type Library command is available only for projects that contain a
type library. The wizards on the ActiveX page automatically add a type library to
the project when they create a COM object.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) View

1015

3

View Form (see page 1057) View Forms
Views any form in the current project. When you select a form, it becomes the
active form, and its associated unit becomes the active module in the Code
Editor.

View Units (see page 1057) View Units
Views the project file or any unit in the current project. When you open a unit, it
becomes the active page in the Code Editor.

Window List (see page 1057) View Window List
Displays a list of open windows.

New Edit Window (see page 1057) View New Edit Window
Brings up a new Code Editor window as a separate window. The previous Code
Editor window remains open.

Toggle Form/Unit (see page 1058) View Toggle Form/Unit
Toggles the view between Form and Unit.

Model View Window (see page 1058) View Model View
Shows the logical structure and containment hierarchy of your project. Note the
ECO framework is available only for C# and Delphi for .NET, and in the Architect
SKU and higher. ECO-related icons and topic links are unavailable in other
product SKUs.

CodeGuard Log (see page 1059) View Debug Windows CodeGuard Log
Provides runtime debugging for C++ applications being developed. CodeGuard
reports errors that are not caught by the compiler because they do not violate the
syntax rules. CodeGuard tracks runtime libraries with full support for
multithreaded applications.

Desktops (see page 1059) View Desktops
Allows you to choose between preset desktop layouts. Desktop layouts can be
used to create and manage windows.

Dock Edit Window (see page 1060) View Dock Edit Window
Sizes new Code Editor windows to fit appropriately inside the IDE. You can
reselect Dock Edit Window to toggle between the new Code Editor window and
the original Code Editor window.

Find Reference Results (see page 1060) View Find Reference Results
Brings up the Find References pane. This pane is dockable and is used in
conjunction with the Search Find function.

Help Insight (see page 1060) View Help Insight
Displays a hint containing information about the symbol such as type, file,
location of declaration, and any XML documentation associated with the symbol
(if available).
Alternative ways to invoke Help Insight is to hover the mouse over an identifier in
your code while working in the Code Editor, or by pressing CTRL+SHIFT+H.

Show Borders (see page 1060) View Show Borders
Displays gray borders that represent page margins in the Diagram View and
Overview. Diagrams exist within the context of a namespace (or a package). This
feature is only applies to ASP .NET applications.

Show Grid (see page 1061) View Show Grid
Shows the design grid in the background behind diagrams. Diagrams exist within
the context of a namespace (or a package). This feature is only applies to ASP
.NET applications.
To turn on the grid, open Tools Options HTML/ASP.NET. In the Designer
Options select Grid Layout from the pull-down menu.

Show Tag Glyphs (see page 1061) View Show Tag Glyphs
Displays tags in an ASP form. This feature only applies to ASP .NET applications.

Snap To Grid (see page 1061) View Snap To Grid
Allows diagram elements to "snap" to the border of a control to the nearest
coordinate of the diagram background design grid. The snap function works
whether the grid is visible or not. Diagrams exist within the context of a
namespace (or a package). This feature is only applies to ASP .NET applications.

Toolbars (see page 1061) View Toolbars
Allows you to choose the toolbars that are displayed in the IDE.

Translation Editor (see page 1062) View Translation Manager Translation Editor
Edits resource strings directly, adds translated strings to the Translation
Repository, or gets strings from the Translation Repository.

View RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1016

3

Welcome Page (see page 1062) View Welcome Page
Opens the product's Welcome Page, which displays lists of your recent projects
and favorites. The Welcome Page also contains links to developer resources,
such as product-related online help. As you develop projects, you can quickly
access them from the list of recent projects at the top of the Welcome Page.

3.2.17.1 Add to Repository
Adds strings in the selected unit to the Translation Repository. This dialog is displayed when you right-click a node on the
Workspsace tab of the Translation Manager and use the Add strings to repository comand.

To add individual strings, rather than adding the strings for an entire unit, right-click the string in the Translation Manager and
choose Repository Add strings to repository.

The following options determine the criteria used for adding the strings.

Item Description

Status Adds strings based on the status displayed in the Status column on the Workspace tab. Check the
statuses that you want to add.

Duplicate action Determines how the repository responds when it finds a duplicate translation string for the same
source string.

Skip does not add the string.

Add adds the string to the repository if no translated string exists for the original string.

Force Add always adds the string to the repository, regardless of whether it exists in the repository.

Replace overwrites the existing string with new string.

Display selection offers the user a choice.

Include context
information

Adds the unit path, and the value displayed in the Id column of the Workspace tab, to the Translation
Repository. This context information is displayed in the status bar when you select a string in the
Translation Repository.

Value Indicates whether a string is added based on changes to its original value.

Changed adds the string only if the original and translated values are different.

Unchanged adds the string even if the original and translated values are the same.

Don't care adds the string, whether it has changed or not, provided the string meets the other criteria
set in this dialog box.

Comment Adds or excludes strings based on the text in the Comment column on the Workspace tab. Type the
comment text in the edit box and check Include to add strings with a matching comment, or check
Not include to exclude strings with a matching comment.

Tip: To set general options for the Translation Repository, choose Tools->Translation Tools Options

and select Repository.

See Also

Localizing Applications (see page 18)

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) View

1017

3

3.2.17.2 Debug Windows
Topics

Name Description

Add/Edit Module Load Breakpoint (see page 1019) Run Add Breakpoint Module Load
Adds a module load breakpoint that will halt program execution when the module
is loaded. You also use this dialog when you click Edit Type the module name
(usually a DLL or package) into the edit box, or click the Browse button to
navigate to the module.
This dialog box also adds the module to the Modules window. Modules are
automatically added to the Modules window when they are loaded into memory,
but if you want to halt execution for debugging when the module first loads into
memory, you must add it to the modules... more (see page 1019)

Add Watch Group (see page 1019) Enters a name for a new watch group, or selects a name from the list of
previously entered watch group names.
The watch group will be added as a tab in the Watch List.

Breakpoint List Window (see page 1019) View Debug Windows Breakpoints
Displays, enables, or disables breakpoints currently set in the loaded project.
Also changes the condition, passes count, or groups associated with a
breakpoint. If no project is loaded, it shows all breakpoints set in the active Code
Editor or in the CPU window.
Tip: Several items on the Breakpoint List
context menu are also available on the Breakpoint List toolbar.

Call Stack Window (see page 1021) View Debug Windows Call Stack
Displays the function calls that brought you to your current program location and
the arguments passed to each function call. The Call Stack window lists the last
function called, followed by each previously called function. The first function
called is at the bottom of the list. If debug information is available for a function, it
is followed by the arguments that were passed when the call was made.
Double-clicking an item in the Call Stack window displays both the source for the
frame and the locals for the frame.
To toggle a breakpoint on a... more (see page 1021)

CPU Window (see page 1022) View Debug Windows CPU Windows
Displays the assembly language code for the program you are debugging. This
window opens automatically when program execution stops at a location for
which source code is unavailable.
The CPU window is divided into the following panes:

Enter New Value (see page 1025) Modifies the value located at the current cursor position in the CPU or FPU views.
This dialog is displayed when you right-click and choose Change from the Dump,
Stack, or Register pane of the CPU window or the Register pane of the FPU
window. Enter a value for the currently selected item. Precede hexadecimal
values with $.
From the Dump and Stack panes of the CPU window, you can enter more than
one value separated by a space. You must enter a value that corresponds to the
current display type set using Display As.
From the Register pane... more (see page 1025)

Enter Search Bytes (see page 1025) Searches forward in the Disassembly pane of the CPU window for an
expression or byte list.

Event Log Window (see page 1025) View Debug Windows Event Log
Shows messages for breakpoints, process control, threads, modules, and output
that occur during a debug session.
You can copy text in the Event Log by using Ctrl-C or the Edit->Copy
command.
Right-click the Event Log window to display the following commands.
Note: To copy Event Log
messages to the clipboard, use Edit Copy or Ctrl-C.

Add Comment to Event Log (see page 1026) Adds a comment to the end of the Event Log window.

FPU (see page 1026) View Debug Windows FPU
Displays the contents of the Floating-point Unit and SSE registers in the CPU.

Local Variables Window (see page 1028) View Debug Windows Local Variables
Shows the current function’s local variables while in debug mode. To view local
variables from a non-current stack frame, select a frame from the drop-down list.
Right-click the Local Variables window to display the following commands.

View RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1018

3

Modules Window (see page 1028) View Debug Windows Modules
Shows processes under control of the debugger and the modules currently
loaded by each process. This window is divided into the following areas.

Source File Not Found (see page 1030) Locates a file that the debugger can not find.

Threads (see page 1030) View Debug Windows Threads
Shows the status of all processes and threads that are executing in each
application being debugged.

Watch List Window (see page 1031) View Debug Windows Watch List
Displays the current value of the watch expression based on the scope of the
execution point. The Watch List window is a multi-tabbed view with each tab
representing a distinct watch group. Only the watch group on the active tab is
evaluated while debugging.
Tip: To enable or disable a watch expression quickly, use the check box next
to the watch.

Disassembly (see page 1032) View Debug Windows CPU Windows Disassembly
Displays the address, the hexadecimal representation of the machine code
instructions (opcodes), and the assembly instructions for each line of source
code. The address is the offset into the disassembled method.

Memory (see page 1032) View Debug Windows CPU Windows Memory
Displays the raw values contained in addressable areas of your program.
Displayed only for unmanaged code. The pane displays the memory addresses,
the current values in memory, and an ASCII representation of the values in
memory.
There are four different views in order to view four distinct areas in memory at the
same time. You can have more than one view and then use Search Goto
Address in the separate views to look at different places in memory at the same
time.

Registers (see page 1032) View Debug Windows CPU Windows Registers
Displays the contents of the CPU registers of the 80386 and greater processors.

Stack (see page 1032) View Debug Windows CPU Windows Stack
Displays the raw values contained in the program stack. Displayed only for
unmanaged code.

3.2.17.2.1 Add/Edit Module Load Breakpoint
Run Add Breakpoint Module Load

Adds a module load breakpoint that will halt program execution when the module is loaded. You also use this dialog when you
click Edit Type the module name (usually a DLL or package) into the edit box, or click the Browse button to navigate to the
module.

This dialog box also adds the module to the Modules window. Modules are automatically added to the Modules window when
they are loaded into memory, but if you want to halt execution for debugging when the module first loads into memory, you must
add it to the modules window.

See Also

Modules Window (see page 1028)

3.2.17.2.2 Add Watch Group
Enters a name for a new watch group, or selects a name from the list of previously entered watch group names.

The watch group will be added as a tab in the Watch List.

3.2.17.2.3 Breakpoint List Window
View Debug Windows Breakpoints

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) View

1019

3

Displays, enables, or disables breakpoints currently set in the loaded project. Also changes the condition, passes count, or
groups associated with a breakpoint. If no project is loaded, it shows all breakpoints set in the active Code Editor or in the CPU
window.

Tip: Several items on the Breakpoint List

context menu are also available on the Breakpoint List toolbar.

Column Description

 Indicates whether the breakpoint is enabled or disabled. Check the box to enable the breakpoint.
Uncheck it to disable the breakpoint.

Filename/Address The source file for the source breakpoint or the address for the address breakpoint.

Line/Length The code line number for the breakpoint or the length (the number of bytes to watch) for the data
breakpoint.

Condition The conditional expression that is evaluated each time the breakpoint is encountered. Click a
condition value to edit it.

Action The action associated with breakpoints.

Pass Count The current pass and the total number of passes specified for the breakpoint. Click a pass count
value to edit it.

Group The group name with which the breakpoint is associated. Click a group value to edit it.

The following icons are used to represent breakpoints in the Breakpoint List window.

Icon Description

 The breakpoint is valid and enabled.

 The breakpoint is valid and disabled.

 The breakpoint is set at an invalid location, such as a comment, a blank line, or invalid declaration.

Context Menu if No Breakpoint is Selected

Right-click the Breakpoint List window (not on an actual breakpoint) to display the following commands:

Item Description

Add Opens dialog boxes where you can create new breakpoints.

Delete All Removes all breakpoints. This command is not reversible.

Disable All Disables all enabled breakpoints. When you disable a breakpoint, its settings remain defined, but the
breakpoint does not cause your program to stop. Disabling is useful when you temporarily do not
need a breakpoint but want to preserve its settings.

Enable All Enables all disabled breakpoints.

Disable Group Disables the breakpoint group that you select.

Enable Group Enables the breakpoint group you select.

Dockable Toggles whether the Breakpoint List window is dockable.

Stay On Top Keeps the window visible when out of focus.

Context Menu if a Breakpoint is Selected

Right-click on a breakpoint to display the following commands:

View RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1020

3

Item Description

Enabled Toggles between enabling and disabling a breakpoint.

Delete Removes a breakpoint.

View Source For source breakpoints, locates a breakpoint in your source code. For address breakpoints, displays
the location in the CPU window.

Edit Source For source breakpoints, locates a breakpoint in your source code and activates the Code Editor. For
address breakpoints, displays the location in the CPU window.

Properties Displays the Breakpoint Properties dialog box, where you can modify breakpoints.

Breakpoints Displays a menu of breakpoint commands.

Stay On Top Keeps the window visible when out of focus.

Dockable Enables drag-and-dock for the Breakpoint List window.

3.2.17.2.4 Call Stack Window
View Debug Windows Call Stack

Displays the function calls that brought you to your current program location and the arguments passed to each function call. The
Call Stack window lists the last function called, followed by each previously called function. The first function called is at the
bottom of the list. If debug information is available for a function, it is followed by the arguments that were passed when the call
was made.

Double-clicking an item in the Call Stack window displays both the source for the frame and the locals for the frame.

To toggle a breakpoint on a particular frame, either click the breakpoint icon in the far left column, or right-click the frame and
click the Toggle Breakpoint command on the context menu. The icon in the far left column of the Call Stack window indicates the
following:

• A blue arrow () indicates the top stack frame.

• A red checkmark () indicates there is an enabled breakpoint set on a frame.

• A grey checkmark () indicates there is a disabled breakpoint set on a frame.

• A blue circle () indicates that the frame has debug information (symbols are available).

• A grey circle () indicates that the frame has no debug information (no symbols are available).

Item Description

View Source Scrolls the Code editor to the location of the function call that is selected in the Call Stack window,
but does not give the Code editor focus.

Edit Source Scrolls the Code Editor window to the location of the function call that is selected in the Call Stack
window, and sets the focus to the Code Editor.

View Locals Displays in the Local Variables window any local variables associated with function call currently
selected in the Call Stack window.

Toggle Breakpoint Sets a breakpoint that is disabled, or disables a breakpoint that is set. Breakpoint icons are displayed
in colors that indicate the symbols status of the frame. See the description of icon colors preceding
this list.

Show Fully Qualified
Names

Displays full paths of file names.

Stay On Top Keeps the Call Stack window visible when out of focus.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) View

1021

3

Dockable Enables drag-and-dock for Call Stack window.

See Also

Compiling (see page 2)

Setting and Modifying Source Breakpoints (see page 118)

3.2.17.2.5 CPU Window
View Debug Windows CPU Windows

Displays the assembly language code for the program you are debugging. This window opens automatically when program
execution stops at a location for which source code is unavailable.

The CPU window is divided into the following panes:

Area Description

Address Status (at the
top of the window)

Displays the effective address (when available) and the value stored at that address. For example, if
you select an address containing an expression in brackets such as [eax+edi*4-0x0F], the location in
memory being referenced and its current value is displayed.

The current thread ID is also displayed.

Disassembly pane
(upper left side)

Displays the address, the hexadecimal representation of the machine code instructions (opcodes),
and the assembly instructions for each line of source code. The address is the offset into the
disassembled method.

If you are debugging managed code, the assembly instructions correspond to the native code created
by the JIT compiler. The Microsoft Intermediate Language (MSIL) created by the compiler is also
displayed. Note that there is not a one-to-one relationship between the native code instructions and
the MSIL instructions. You can not step into or set breakpoints on the MSIL instructions.

If debug information is available, the debugger displays the source code that corresponds to the
assembly instructions.

A right arrow () to the left of an address indicates the current execution point.

When the current instruction is a transfer instruction (for example, call or jmp), either an up or down
arrow after the instruction indicates the target direction for the transfer instruction. For example, if the
target is located before the current instruction, an up arrow is displayed. If the target is after the
current instruction, a down arrow is displayed.

For conditional transfer instructions (for example, jz or jle), an arrow is displayed only if the
condition is true. For conditional set instructions (for example, seta or setz), a left arrow is
displayed if the condition is true.

Register pane (upper
middle pane)

Displays the contents of the CPU registers of the 80386 and greater processors. These registers
consist of eight 32-bit general purpose registers and the 32-bit program counter (EIP).

When debugging Win32 code, the flags (EFL) register and the six segment registers are also
displayed.

After you execute an instruction, any registers that have changed value since the program was last
paused are highlighted in red.

Memory Dump pane
(lower left side)

Displayed only for unmanaged code. Displays the raw values contained in addressable areas of your
program. The pane displays the memory addresses, the current values in memory, and an ASCII
representation of the values in memory. The leftmost part of each line shows the starting address of
the line. Following the address listing is an 8-byte hexadecimal listing of the values contained at that
location in memory. Each byte in memory is represented by two hexadecimal digits. Following the
hexadecimal display is an ASCII display of the memory. Non-printable values are represented with a
period.

Press CTRL+LEFT ARROW or CTRL+RIGHT ARROW to shift the starting point of the display up or
down one byte.

View RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1022

3

Flags pane (upper right
side)

Displayed only for unmanaged code. Displays the current state of the flags and information bits
contained in the 32-bit register EFL. After you execute an instruction, the Flags pane highlights in red
any flags that have changed value since the program was last paused.

The processor uses the bits in this register to control certain operations and indicate the state of the
processor after it executes certain instructions.

Pass the mouse over a flag to display the flag name.

Machine Stack pane
(lower right side)

Displayed only for unmanaged code. Displays the raw values contained in the your program stack.
The pane has three sections: the memory addresses, the current values on the stack, and an ASCII
representation of the stack values. A green arrow indicates the value at the top of the call stack.

Single Panes of the CPU Window Are Dockable

You can now open a single pane of the CPU window (such as the Disassembly, Registers, or Stack views), from the
View Debug Windows submenu. A single pane becomes a dockable view that you can move around inside the IDE.

CPU Window Automatically Closes

If Automatically close files implicitly opened while debugging is checked on the Tools Options Debugger Options
window, the CPU window automatically closes when you end your debugging session. However, if the CPU window is the top
window, it does not close.

Scrolling the Disassembly Pane

Use any of the following methods to scroll the Disassembly pane:

• Press CTRL+LEFT ARROW and CTRL+RIGHT ARROW to shift the starting point of the display up or down one byte. Changing
the starting point of the display changes where the debugger begins disassembling the machine code.

• Click above or below the vertical scrollbar to scroll up or down a screen. (Due to the high volume of information available for
display in the Disassembly pane, dragging the scrollbar is disabled.)

• Use the Goto Address, Goto Current EIP, Follow, and Previous context menu commands, as described in the following
section.

Context Menu

The following table lists alphabetically the commands for the panes in the CPU window. Right-click CPU window to display the
following context menu commands.

Item Description

Breakpoint Properties Displays the Address Breakpoint Properties dialog box.

Caller Positions the Disassembly pane to the instruction past the one that called the current interrupt or
subroutine. If the current interrupt routine has pushed data items onto the stack, the debugger might
not be able to determine where the routine was called from.

Caller works best when you turn on Stack frames option under Code Generation (on the
Project Options Compiler page).

Change Lets you modify the bytes located at the current cursor location and prompts you for an item of the
current display type.

Change register Displays the Change Register dialog box where you enter a new value for the register. You can
make full use of the expression evaluator to enter new values. Be sure to precede hexadecimal
values with $.

Change thread Displays the Select a Thread dialog box, where you can select the thread you want to debug from
the threads listed. When you choose a new thread from the Flags pane, all panes in the CPU window
reflect the state of the CPU for that thread.

Copy Copies all selected instructions to the clipboard. From the disassembly pane, you can select a single
instruction or you can use the SHIFT key to select multiple instructions. In all other panes, you can
only select a single item to copy.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) View

1023

3

Decrement register Subtracts 1 from the value in the currently highlighted register. This option lets you test “off-by-one”
bugs by making small adjustments to the register values.

Display as Formats the data listed in the Machine Stack pane of the CPU window. Choose from the following
formats:

Data type displays format.

Bytes displays data in hexadecimal bytes.

Words displays data in 2-byte hexadecimal numbers.

DWords displays data in 4-byte hexadecimal numbers.

Singles displays data in 4-byte floating-point numbers using scientific notation.

Enabled Available only when right-clicking a breakpoint. Toggles the breakpoint between enabled and
disabled.

Follow Positions the pane at the destination address of the currently instruction highlighted.

Goto Address Displays the Enter Address to Position dialog box where you can enter a symbol or, for managed
code, an address in just in time (JIT) compiler format.

Goto Current EIP Positions the CPU window to the location of the current program counter (the location indicated by
the EIP register). This location indicates the next instruction to be executed by your program.

Increment register Adds 1 to the value in the currently highlighted register. This option lets you test "off-by-one” bugs by
making small adjustments to the register values.

Mixed IL Code When debugging managed code, toggles the display to include MSIL instructions.

Mixed Source Toggles the display between assembly instructions only and assembly instructions and their
corresponding source code (if debug information is available).

New EIP Changes the location of the instruction pointer (the value of EIP register) to the line currently
highlighted in the Disassembly pane. Use this command when you want to skip certain machine
instructions. When you resume program execution, execution starts at this address.

This command is not the same as stepping through instructions; the debugger does not execute any
instructions that you might skip.

Use this command with extreme care; it is easy to place your system in an unstable state when you
skip over program instructions.

Next Finds the next occurrence of the item you last searched for in the Memory Dump pane.

Previous Restores the CPU window to the display it had before the last Follow command.

Run to Current Runs your program at full speed to the instruction that you have selected in the CPU window. After
your program is paused, you can use this command to resume debugging at a specific program
instruction.

Search Displays the Enter Search Bytes dialog box where you can search forward in the CPU window for
an expression or byte list (click Help on the Enter Search Bytes dialog box for details).

Show addresses Includes instruction addresses.

Show opcodes Includes instruction opcodes. Choices are Auto, Always, and Never. Auto is the default value and
causes opcodes to be shown whenever the window is wide enough to contain the opcode column.

Toggle Breakpoint Set or removes a breakpoint at the currently selected address.

Toggle flag The flag and information bits in the Flags pane can each hold a binary value of 0 or 1. This command
toggles the selected flag or bit between these two binary values.

Top of stack Positions the Machine Stack pane at the address of the stack pointer (the address held in the ESP
register).

View FPU Available only when debugging Win32 code. Displays the FPU view, which displays the floating-point
registers, MMX registers, and SSE registers.

View RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1024

3

View Source Activates the Code Editor and positions the insertion point at the source code line that most closely
corresponds to the disassembled instruction selected in the CPU window. If there is no corresponding
source code, this command has no effect.

Zero register Sets the value of the currently highlighted register to 0.

3.2.17.2.6 Enter New Value
Modifies the value located at the current cursor position in the CPU or FPU views.

This dialog is displayed when you right-click and choose Change from the Dump, Stack, or Register pane of the CPU window
or the Register pane of the FPU window. Enter a value for the currently selected item. Precede hexadecimal values with $.

From the Dump and Stack panes of the CPU window, you can enter more than one value separated by a space. You must enter
a value that corresponds to the current display type set using Display As.

From the Register pane of the FPU view, specify a single 32-bit hexadecimal value (use of decimal numbers is allowed but is
not typical).

3.2.17.2.7 Enter Search Bytes
Searches forward in the Disassembly pane of the CPU window for an expression or byte list.

Item Description

Edit Box Enter a byte list for two or more values located in a specific order. Precede hexadecimal values with
0x. For example, if you enter 0x5D 0xC3, the debugger goes to the following location:
00000001 5D

00000002 C3

Alternatively, you can use a dollar sign ($) instead of 0x.

To search for DWords, reverse the order of the bytes. For example, if you enter 0X1234, the
debugger positions the pane to memory location 34 12.

3.2.17.2.8 Event Log Window
View Debug Windows Event Log

Shows messages for breakpoints, process control, threads, modules, and output that occur during a debug session.

You can copy text in the Event Log by using Ctrl-C or the Edit->Copy command.

Right-click the Event Log window to display the following commands.

Note: To copy Event Log

messages to the clipboard, use Edit Copy or Ctrl-C.

Item Description

Clear Events Removes all messages from the Event Log window.

Save Events to File Displays the Save Event Log to File dialog box, allowing you to save the messages in the Event
Log window to a text file.

Add Comment Displays the Add Comment to Event Log dialog, allowing you to add a comment to the end of the
event log.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) View

1025

3

Properties Displays the Debugger Event Log Properties page, allowing you control the content and
appearance of the Event Log window. You can also display this page by choosing
Tools Options Debugger Options Event Log.

Stay On Top Keeps the window visible when out of focus.

Dockable Enables drag-and-dock for the Event Log window.

3.2.17.2.9 Add Comment to Event Log
Adds a comment to the end of the Event Log window.

Item Description

Comment Enter the comment you want to appear in the Event Log window.

3.2.17.2.10 FPU
View Debug Windows FPU

Displays the contents of the Floating-point Unit and SSE registers in the CPU.

Item Description

Instruction Pointer
(IPTR)

Displays the Instruction Pointer (IPTR) address, opcode, operand (OPTR) address of the last
floating-point instruction executed.

FPU Registers pane Displays the floating-point register stack (ST0 through ST7) in ascending order. After the list, the
control word, status word, and tag word are shown. The information displayed for each of the eight
registers is shown as follows: Register name, register status, and register value.

The register status can be one of the following values:

Empty Indicates that the register contains invalid data. When a register is empty, no value is
displayed for that register, because the data in the register is presumed to be invalid.

Valid Indicates that the register contains nonzero valid data.

Spec. (Special) Indicates that the register contains valid data, but the valid data represents a special
condition, either NAN (not a number), infinity, or a denormalized value.

The status of each register is determined by examining the tag word and the eleventh through
thirteenth bits of the status word (top of stack indicator). When a register’s status is not Empty, the
value of the register in long double (extended) format is displayed immediately following the status.
The registers can be displayed in different formats (other than long doubles).

The control, status, and tag words are displayed in hexadecimal format only. For these three words,
any values that were altered by the last run operation are displayed in red.

View RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1026

3

Control Flags pane Lists the control flags encoded in the control word. Any flags that were altered by the last run
operation are displayed in red. The control flags and their bit number in the control word are as
follows:

IM Invalid Operation Exception, 0

DM Denormalized Operation Exception Mask, 1

ZM Zero Divide Exception Mask, 2

OM Overflow Exception Mask, 3

UM Underflow Exception Mask, 4

PM Precision Exception Mask, 5

PC Precision Control, 8, 9

RC Rounding Control, 10, 11

IC Infinity Control (Obsolete), 12

Select any of the flags and right-click to change the flag’s value. For single-bit flags, it changes the
value from 0 to 1 or from 1 to 0. For multi-bit flags, it cycles through all possible values.

Status Flags pane Lists the status flags encoded in the status word. Any flags that were altered by the last run operation
are displayed in red. The flags and their bit number in the control word are as follows:

IE Invalid Operation Exception, 0

DE Denormalized Operation Exception, 1

ZE Zero Divide Exception, 2

OE Overflow Exception, 3

UE Underflow Exception, 4

PE Precision Exception, 5

SF Stack Fault, 6

ES Error Summary Status, 7

C0 Condition Code 0 (CF), 8

C1 Condition Code 1, 9

C2 Condition Code 2 (PF), 10

ST Top of Stack, 11-13

C3 Condition Code 3 (ZF), 14

BF FPU Busy, 15

Select any of the flags and right-click to change the flag’s value. For single-bit flags, it changes the
value from 0 to 1 or from 1 to 0. For multi-bit flags, it cycles through all possible values.

SSE pane Displays the Streaming SIMD Extensions (SSE) registers.

Right-click the SSE pane and choose Display As to change the display format of the register content.

Context Menu

Right-click FPU window to display the following context menu commands.

Item Description

Zero Sets the selected register's value to 0. When used on one of the seven FPU registers, this command
also sets that register's tag bits in the tag word to 01 indicating that the register holds a zero value.

Empty Sets the selected register's tag bits in the tag word to 11 indicating that the register is empty. This
command is grayed out if the selected register is the CTRL word, STAT word, or TAG word.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) View

1027

3

Change Displays the Change dialog, where you can enter a new value for the selected register. When used
on one of the seven FPU registers, this command also sets that register's tag bits in the tag word to
00 indicating that the register holds a valid value.

The value you enter in the Change dialog should match the format currently specified by the Display
As menu item. For example, if the currently displayed format is Extended, you should enter an
Extended value in the Change dialog.

Display As Determines how the values in registers are displayed. The items on the submenu change depending
on Show menu selection.

For FPU registers, the possible display types are Words and Extendeds (long doubles).

For MMX registers, the possible display types are Bytes, Words, DWords (double words), and
QWords (quad words).

For SSE registers, the possible values are Bytes, Words, DWords (double words), QWords (quad
words), DQWords (double quad words), Singles, and Doubles.

Radix Available only when MMX registers are shown. Determines how the values in the MMX register are
displayed. The possible values are Binary, Unsigned Decimal, Hexadecimal, and Signed Decimal.

Show Toggles the FPU Registers pane between between FPU and MMX registers:

Floating Point Registers displays the 10-byte FPU registers ST(0) through ST(7). The registers can
be viewed as either Extended (long double) values or as 5 DWord values.

MMX Registers displays the 8-byte MMX registers MM0 through MM7. The registers can be viewed
as 8 Byte values, 4 Word values, 2 DWord values, or 1 QWord value. These values can be shown in
either binary, decimal, or hexadecimal format (see Radix). MMX registers can only be shown on a
computer that is MMX enabled.

Toggle Flag In the Status Flags and Control Flags panes, changes the value of the selected flag. For single-bit
flags, changes the value from 0 to 1 or from 1 to 0. For multi-bit flags, cycles through all possible
values.

Stay on Top Keeps the FPU view on top of other windows.

3.2.17.2.11 Local Variables Window
View Debug Windows Local Variables

Shows the current function’s local variables while in debug mode. To view local variables from a non-current stack frame, select
a frame from the drop-down list.

Right-click the Local Variables window to display the following commands.

Item Description

Inspect Displays information about the currently selected variable in the Inspector window.

Stay On Top Keeps the Local Variables window visible, even when it does not have focus.

Dockable Enable drag-and-dock for the Local Variables window.

Tip: You can display this window by pressing CTRL+ALT+L

while any IDE window has focus, even if you are not in debug mode. However, the window will be empty unless the debugger is
paused. Keep this window open during your debugging sessions to monitor how your program updates the values of variables as
the program runs.

3.2.17.2.12 Modules Window
View Debug Windows Modules

View RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1028

3

Shows processes under control of the debugger and the modules currently loaded by each process. This window is divided into
the following areas.

Area Description

Modules pane (upper
left side)

Displays the processes and modules sorted, by default, in the order in which they are loaded. Each
process can have one or more modules which it loads. When a process terminates or a module is
unloaded, it is removed from the list.

 indicates the current process.

To sort the display, click a column heading.

Source pane (lower left
side)

If debug information is available, displays the source files that were used to build the module currently
selected in the Modules pane.

Scope Browser (right
side, for managed code
only)

Displays a hierarchical tree view of the namespaces, classes, and methods used in the application.

 represents a namespace.

 represents a class.

 represents a method.

Entry Point pane (right
side, for unmanaged
code only)

Displays the name and addresses of the entry points for the module currently selected in the
Modules pane.

The entry point is only shown if the source for it can found.

To sort the display, click a column heading.

The runtime image base address is the memory offset, in hexadecimal, where the module actually
loads, and is distinct from the preferred image base address you may have specified in the
Project Options window.

Context Menus

Right-click the Modules pane to display the following commands for unmanaged code.

Item Description

Break On Load Toggles a breakpoint to halt the execution of the application when it loads the selected module into
memory. This setting is used only by the Borland Win32 Debugger. You can also click on the module
icon to toggle a module load breakpoint.

Reload Symbol Table Displays the Reload Symbol Table dialog box, allowing you to load the debug symbol table into the
Modules window.

Add Module Displays the Add Module dialog, allowing you to add a module to the list. Use this command to add a
module load breakpoint on a module that is not currently loaded. This setting is used only by the
CodeGear Win32 Debugger.

Right-click the Source pane to display the following command.

Item Description

Edit Source Activates the Code Editor and positions it to the selected module.

Right-click the Scope Browser to display the following commands (the Scope Browser is only displayed in managed
debugging).

Item Description

Browse Class Displays the CodeGear Reflection tool, allowing you to inspect the currently selected class.

Edit Source Available for methods only. Activates the Code Editor and positions it to the method.

Selecting a method that has not been Just In Time compiled yet results in the message No native
code is available.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) View

1029

3

Right-click the Entry Point pane to display the following command.

Item Description

Go to Entry Point Displays the selected entry point in the CPU window if there is no source for the entry point. If source
can be found, it will be shown. Your program must be paused before you can jump to an entry point.

3.2.17.2.13 Source File Not Found
Locates a file that the debugger can not find.

Item Description

Path to source file Displays the name of the source file that the debugger can not find. Click the Browse button to
navigate to the source file or type the full path name of the source file.

Add directory to Debug
Source Path

Appends the file path to the end of the debug source path (in Project Options Debugger).

3.2.17.2.14 Threads
View Debug Windows Threads

Shows the status of all processes and threads that are executing in each application being debugged.

Item Description

Thread ID Displays the process name, the OS assigned thread ID, and, if the thread is named, its name.

State Indicates the execution state of the thread as Runnable, Stopped, Blocked, or None; for processes,
the state indicates how the process was created: Spawned, Attached, or Cross-process Attach.

Status Indicates the thread status as one of the following:

Breakpoint - The thread stopped due to a breakpoint.

Faulted - The thread stopped due to a processor exception.

Unknown - The thread is not the current thread so its status is unknown.

Stepped - The last step command was successfully completed.

Location Indicates the function name or address associated with the thread.

Tip: The current process is marked with a green arrow. Non-current processes are marked with a light blue arrow.

The current process and current thread become the context for the next user action, for example, run, pause, or reset.

Context Menu

Right-click the Thread Status window to display the following commands.

Item Description

View Source Displays the Code Editor at the corresponding source location of the selected thread ID, but does
not make the Code Editor the active window.

Go to Source Displays the Code Editor at the corresponding source location of the selected thread ID and makes
the Code Editor the active window.

Make Current Makes the selected thread the active thread if it is not so already. If the thread is not already part of
the active process, its process also becomes the active process.

Terminate Process Terminates the process, if a process is selected, or the process that the thread is part of, if a thread is
selected.

View RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1030

3

Detach Process Detaches the process, if a process is selected, or the process that the thread is part of, if a thread is
selected..

Pause Process Pauses the process, if a process is selected, or the process that the thread is part of, if a thread is
selected. This option is available only if the process is running.

Process Properties Lets you set debugger options temporarily for a particular process during the debugging session.

Dockable Enables drag-and-dock for the Thread Status window.

3.2.17.2.15 Watch List Window
View Debug Windows Watch List

Displays the current value of the watch expression based on the scope of the execution point. The Watch List window is a
multi-tabbed view with each tab representing a distinct watch group. Only the watch group on the active tab is evaluated while
debugging.

Tip: To enable or disable a watch expression quickly, use the check box next to the watch.

Item Description

Watch Name Shows the expression entered as a watch.

Value Lists the current value of the expression entered.

Note: If the execution point moves to a location where any of the variables in an expression is undefined (out of scope), the
entire watch expression becomes undefined. If the execution point reenters the scope of the expression, the Watch List

window displays the current value of the expression.

Tip: By grouping watches, you can prevent out of scope expressions from slowing down stepping.

Context menu

Right-click the Watch List window to display the following commands.

Item Description

Edit Watch Displays the Watch Properties dialog box that lets you modify the properties of a watch.

Add Watch Displays the Watch Properties dialog box that lets you create a watch

Enable Watch Enables a disabled watch expression.

Disable Watch Disables a watch expression and so that it is not monitored as you step through or run your program.
The watch settings remain defined. Disabling watches improves debugger performance.

Delete Watch Removes a watch expression. This command is not reversible.

Copy Watch Value Copies the text in the Value column of the selected watch to the clipboard.

Copy Watch Name Copies the text in the Watch Name column of the selected watch to the clipboard.

Enable All Watches Enables all disabled watch expressions.

Disable All Watches Disables all enabled watch expressions.

Delete All Watches Removes all watch expressions.

Add Group Displays a dialog box, allowing you to name a watch group and add it to the watch list as a new tab.

Delete Group Deletes a watch group from the watch list.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) View

1031

3

Move Watch to Group Moves one or more selected watches to another watch group.

Stay On Top Keeps the window visible when out of focus.

Show Column Headers Toggles the display of the Watch Name and Value column titles.

Inspect Displays information about the currently selected expression.

Dockable Enables drag-and-dock for the Watch List window.

3.2.17.2.16 Disassembly
View Debug Windows CPU Windows Disassembly

Displays the address, the hexadecimal representation of the machine code instructions (opcodes), and the assembly instructions
for each line of source code. The address is the offset into the disassembled method.

See Also

CPU Window (see page 1022)

3.2.17.2.17 Memory
View Debug Windows CPU Windows Memory

Displays the raw values contained in addressable areas of your program. Displayed only for unmanaged code. The pane
displays the memory addresses, the current values in memory, and an ASCII representation of the values in memory.

There are four different views in order to view four distinct areas in memory at the same time. You can have more than one view
and then use Search Goto Address in the separate views to look at different places in memory at the same time.

See Also

CPU Window (see page 1022)

3.2.17.2.18 Registers
View Debug Windows CPU Windows Registers

Displays the contents of the CPU registers of the 80386 and greater processors.

See Also

CPU Window (see page 1022)

3.2.17.2.19 Stack
View Debug Windows CPU Windows Stack

Displays the raw values contained in the program stack. Displayed only for unmanaged code.

See Also

CPU Window (see page 1022)

View RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1032

3

3.2.17.3 Code Explorer
View Code Explorer

Navigates through the unit files. The Code Explorer contains a tree diagram that shows all of the types, classes, properties,
methods, global variables, and global routines defined in your unit. It also shows the other units listed in the uses clause.
Right-click an item in the Code Explorer to display its context menu.

When you select an item in the Code Explorer, the cursor moves to that item’s implementation in the Code Editor. When you
move the cursor in the Code Editor, the highlight moves to the appropriate item in the Code Explorer.

The Code Explorer uses the following icons:

Icon Description

 Classes

 Interfaces

 Units

 Constants or variables (including fields)

 Methods or routines: Procedures (green)

 Methods or routines: Functions (yellow)

 Properties

 Types

Tip: To adjust the Code Explorer settings, choose Tools->Options->Delphi Options->Explorer

.

3.2.17.4 Customize Toolbars
View Toolbars Customize

Changes the toolbar configuration. Using this dialog box, you can add, remove, and rearrange buttons on toolbars.

Toolbars Page

The Toolbars page lists the toolbars you can show, hide, and reset.

Item Description

Toolbars Lists the toolbars available, such as Standard, Debug, and Desktop.

Reset Returns any selected toolbar to its default configuration.

Commands Page

The Commands page displays the menu commands you can drag and drop onto a toolbar.

Item Description

Categories Lists the menus available, such as Debug and Run.

Commands Lists all the commands available for the menu selected in the Categories list box. The icon to the left
of the menu command is the button that will appear on the toolbar.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) View

1033

3

Options Page

The Options page allows you to specify that the IDE displays or hides tooltips and shortcut keys for toolbar button.

Item Description

Show tooltips Displays tooltips for toolbar buttons when you move the mouse over the button.

Show shortcut keys on
tooltips

Displays any toolbar button shortcut keys in the tooltip text.

See Also

Customizing Toolbars (see page 156)

3.2.17.5 Data Explorer
View Data Explorer

Adds new connections, modifies; deletes, or renames your connections. You can browse database server-specific schema
objects including tables, fields, stored procedure definitions, triggers, and indexes. Additionally, you can drag and drop data from
a data source to a project to build your database application quickly. The Data Explorer commands available depend upon the
object selected in the tree view. Commands are available for the following nodes:

• Provider types

• Provider connections

• Tables node

• Individual tables

• Individual views

• Individual stored procedures

Provider Types Commands

The following commands are available when you select nodes for providers types, such as DB2 and Interbase:

Item Description

Refresh Re-initializes all connections defined for the selected provider.

Add New Conection Adds a new connection to the Data Explorer.

Migrate Data Opens a a tabbed Data Explorer page for data migration in the Code Editor. This data migration
page lets you select one or more tables from a source provider connection and a destination
connection to which the tables will be migrated. Click Migrate to migrate the tables.

Individual Provider Commands

The following commands are available when you select nodes for individual provider connections:

Item Description

Refresh Re-initializes all connections defined for the selected provider.

Delete Connection Deletes the current connection.

Modify Connection Makes changes to the appropriate values in the editor.

Close Connection Closes the current connection.

Rename Connection Provides a new name to a named connection.

View RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1034

3

SQL Window Opens the Active Query Builder, a tabbed page for writing and editing SQL statements in the Code
Editor. This SQL window can be used to write, edit and execute SQL statements. When you execute
the SQL, the results are displayed in the lower part of the page. For details on how to use the Active
Query Builder, see http://www.activequerybuilder.com/hs15.html.

Tables Node Commands

The following commands are available when you select the Tables node for a connection:

Item Description

Refresh Re-initializes all connections defined for the selected provider.

New Table Opens a tabbed Data Explorer page for table design in the Code Editor. This Table Design page
can be used to specify the data structure for a new table. The Table Design page lets you add and
remove columns, and alter column information. The Table Design page lets you change the following
column information: Column Name, Data Type, Precision, Scale, and Nullable (that is, whether or not
the column can be null). Right-click the page and choose Save Table to add the new table to your
database.

Individual Table Commands

The following commands are available when you select individual tables:

Item Description

Refresh Re-initializes all connections defined for the selected provider.

Retrieve Data From
Table

Opens a tabbed Data Explorer page in the Code Editor, displaying the data from the selected table.
The Data Explorer page lets you sort and modify the data, but changes will not be saved back to the
database.

Drop Table Removes the selected table and all its data from the database.

Alter Table Opens a tabbed Data Explorer page for table design in the Code Editor. This Table Design page
can be used to modify the data structure for an existing table. The Table Design page lets you add
and remove columns, and alter column information. The Table Design page lets you change the
following column information: Column Name, Data Type, Precision, Scale, and Nullable (that is,
whether or not the column can be null). If you make modifications, you are asked to save them when
you close the Table Design page.

Copy Table Copies the table structure and data for the selected table.

Paste Table Migrates the table structure and data copied from a given provider to the selected provider. Although
you must select a table in the target provider, no data will be overwritten.

View Commands

The following commands are available when you select individual views:

Item Description

Refresh Re-initializes all connections defined for the selected provider.

Retrieve Data From
View

Opens a tabbed Data Explorer page in the Code Editor, displaying the data from the selected view.
The Data Explorer page lets you sort and modify the data, but changes will not be saved back to the
database.

Stored Procedure Commands

The following commands are available when you select individual stored procedures:

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) View

1035

3

http://www.activequerybuilder.com/hs15.html

Item Description

Locate Implementation Navigate to the stored procedure's source code if you have a project with such source code open in
the project group. Supported for Blackfish SQL only.

Refresh Re-initializes all connections defined for the selected provider.

View Parameters Opens a tabbed Data Explorer page for viewing and editing stored procedure parameter data in the
Code Editor. The stored procedure can also be executed from this page.

See Also

Borland Data Providers for Microsoft .NET

Migrating Data Between Databases

ISQLSchemaCreate

BdpCopyTable

3.2.17.6 Delete Saved Desktop
View Desktops Delete Desktop

Delete a saved desktop by selecting it from the list and clicking Delete.

See Also

Saving Desktop Layouts

3.2.17.7 Desktop Toolbar
Selects an existing desktop layout or saves the current settings as a desktop layout. The Desktop toolbar is located at the far
right end of the upper toolbar in the IDE.

Item Description

Dropdown list Lists the distributed and user-defined desktop layouts. Click the desktop layout that you want to use,
such as Default Layout, Classic Undocked, or Debug Layout.

Save current desktop Displays the Save Desktop dialog box, allowing you to name and save the current desktop settings.

Set debug desktop Sets the current desktop as the debug desktop, which is automatically displayed during runtime.

Tip: You can also choose View->Desktops

to manage your desktop settings.

See Also

Saving Desktop Layouts (see page 161)

View Desktops Command (see page 1059)

3.2.17.8 File Browser
View File Browser

Dockable Windows-style File Browser views files and directories and performs simple operations on files while you are running

View RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1036

3

the IDE. The File Browser supports standard Windows context menu options, as well as the following commands that are
specific to RAD Studio:

Item Description

Open with RAD Studio. Opens the selected file in the IDE.

Add to Project Adds the selected file to the current project.

See Also

Using the File Browser (see page 166)

3.2.17.9 Add to Repository
Use this dialog box to add strings in the selected unit to the Translation Repository. This dialog is displayed when you right-click
a node on the Workspsace tab of the Translation Manager and use the Add strings to repository comand.

To add individual strings, rather than adding the strings for an entire unit, right-click the string in the Translation Manager and
choose Repository Add strings to repository.

The following options determine the criteria used for adding the strings.

Item Description

Status Adds strings based on the status displayed in the Status column on the Workspace tab. Check the
statuses that you want to add.

Duplicate action Determines how the repository responds when it finds a duplicate translation string for the same
source string.

Skip does not add the string.

Add adds the string to the repository if no translated string exists for the original string.

Force Add always adds the string to the repository, regardless of whether it exists in the repository.

Replace overwrites the existing string with new string.

Display selection offers the user a choice.

Include context
information

Adds the unit path, and the value displayed in the Id column of the Workspace tab, to the Translation
Repository. This context information is displayed in the status bar when you select a string in the
Translation Repository.

Value Indicates whether a string is added based on changes to its original value.

Changed adds the string only if the original and translated values are different.

Unchanged adds the string even if the original and translated values are the same.

Don't care adds the string, whether it has changed or not, provided the string meets the other criteria
set in this dialog box.

Comment Adds or excludes strings based on the text in the Comment column on the Workspace tab. Type the
comment text in the edit box and check Include to add strings with a matching comment, or check
Not include to exclude strings with a matching comment.

Tip: To set general options for the Translation Repository, choose Tools->Translation Tools Options

and select Repository.

See Also

Localizing Applications (see page 18)

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) View

1037

3

3.2.17.10 Message View
Displays messages such as compiler errors and warnings. You can copy one or more lines from the Message view to the
clipboard.

The Build tab displays the build command. The Output tab displays build output messages. To select the verbosity level for
build output, use the Tools Options Environment Options page.

3.2.17.11 Object Inspector
View Object Inspector

Sets the properties and events for the currently selected object.

Tab Description

Properties Displays the properties for the selected object on a form.

Events Displays the events for the selected object on a form.

Context Menu

Right-click the Object Inspector to display the following commands.

Item Description

View Filters the display of properties or events.

Arrange Sorts the property or events by name or by category.

Revert to Inherited Changes the property setting back to its original, inherited value.

Expand Expands the selected property or event.

Collapse Collapses the selected property or event.

Hide Close the Object Inspector. To redisplay it, choose View Object Inspector.

Help Displays this Help topic.

Properties Displays the Object Inspector Properties dialog box, allowing you to change the appearance of the
Object Inspector.

Stay on Top Displays the Object Inspector on top of the desktop even if other windows are displayed.

Dockable Enables drag-and-dock for the Object Inspector.

See Also

Setting Properties and Events (see page 164)

3.2.17.12 Project Manager
View Project Manager

Displays and organizes the contents of your current project group and any project it contains. You can perform several project
management tasks, such as adding, removing, and compiling files.

Note: Some features described here are available only in specific editions of the product. For example, some functionality in the

View RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1038

3

Project Manager is available only for the C++ personality.

Item Description

Project list box Displays the projects in the current project group.

New Displays the New Items dialog box so that you can add a new project to the current project group.

Remove Removes the selected project from the current project group.

Activate Displays the selected project on top of other projects in the IDE so that you can make changes to it.
You can also double-click the project to activate it. The active project is displayed in bold.

Files Displays a tree view of all the files in your project or project group. Click the plus sign (+) to display or
the minus sign (-) to hide all the source files in your project.

Common Context Menu Commands

The Project Manager has different context menus, depending on what you select (file, project, project group, and so on).
However, most context menus have the following common menu commands.

Item Description

Auto Collapse Collapses the tree structure of the project after you complete an operation.

Dockable Docks (attaches) the Project Manager window to other tool windows, such as the Code Editor.
Uncheck to make the Program Manager a floating window.

Show Path Adds an additional field (Path) to the Project Manager to display the path of the files, projects, and
project groups.

Status Bar Displays the full path name of the selected file at the bottom of the Project Manager window.

Stay on Top Displays the Project Manager on top of the desktop even if other windows are displayed.

Toolbar Shows or hides the toolbar on the top of the Project Manager.

Project Group Context Menu

Right-click a project group to display the following commands.

Item Description

Add New Project Displays the New Items dialog box, allowing you to create a new project and add it to the current
project group.

Add Existing Project Displays the Open Project dialog box, allowing you to add an existing project to the current project
group.

Customize... Opens the Customize New menu, which allows you to select items, including menu-item separators,
from a gallery and add them to your Add New... menu on the Project Manager.

Save Project Group Saves the project file (.bdsgroup) for the project group. Use this command after adding, removing, or
changing the order of projects in a project group.

Save Project Group As Displays the Save As dialog box, allowing to save the project with a new name and location.

Rename Renames the project file.

Configuration manager Opens the Build Configuration Manager dialog box. Use this dialog box to apply the active
configuration to a project or several projects.

Project Context Menu

Right-click a project file to display the context menu commands.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) View

1039

3

Item Description

Add Displays the Add to
Project dialog box,
allowing you to add files
to the selected project.

Add New Unit Adds a compilation unit
to the selected project,
assigning the name
Unit01.cpp for the first
unit added, and then
augmenting the number
for each subsequent unit
added. To rename a unit
and all its components,
right-click the unit name
in the Project Manager,
and select Rename.

Add New Form Adds a new form to the
selected project and
displays the new form in
the Code Editor.

Add New Password
Dialog

Adds a PassWord.cpp
node to the selected
project in C++Builder,
including a
PassWord.dfm file, and
sets up a template for
creating a PassWord
unit in your project.

Add New Other... Displays the New Items
dialog box and lists the
item categories that are
available to you, such as
C++Builder Files. Click a
category in the left-hand
pane, and then the
right-hand pane displays
the items of that
category that you can
add to your project.

Add New > Directory
View

Displays the Directory
View or Folder dialog
box, which allows you to
select a directory to add
to the Project Manager.
Adding a Directory View
adds a yellow-colored
folder node to the tree
structure.

View RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1040

3

Add New > Virtual
Folder

(C++ only) Adds a
greyed-out virtual folder
to the selected project.
Virtual folders are
displayed by default last
in the tree structure. Use
the context menu for the
virtual folder to manage
the folder.

Add New >
Customize...

Displays the Customize
New Menu dialog box
and allows you to
customize the
File New menu.

Add Reference Displays the Add
Reference dialog box,
allowing you to add an
assembly, COM type
library, or project
reference to the project.

Add Web Reference Displays the Add
Reference dialog box,
allowing you to Web
reference to your client
application and access
the Web Service you
want to use.

Browse with... Displays the Browse
With dialog box where
you can choose an
external browser to use
for viewing HTML-based
files. You can also add,
remove, or edit browsers
in browser list in this
dialog box.

Show Markup Displays the source view
for HTML-based files in
the editor.

Show Designer Displays an
HTML-based file in
design view.

Remove File Displays the Remove
From Project dialog
box, allowing you to
remove a file from the
selected project.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) View

1041

3

Save Stores changes made to
all files in the open
project using each file's
current name. If you try
to save a project that
has an unsaved code
file, the product opens
the Save As dialog box,
where you can enter the
new filename.

Save As... Displays theSave As
dialog box for each
compilation unit that
needs to be saved and
allows you to enter a
new name for each unit.

Rename Highlights the project
node and allows you to
enter a new name or
edit the existing name of
the project.

Remove Project Removes the active
project from its project
group. Removing the
target from the current
project group affects the
project group’s project
file (.bdsgroup); it
does not remove any
files from disk. Thus,
remove a project from
your project group
before deleting its file
from disk so that the
product can update the
project file accordingly.

Activate Makes the current
project active.

Clean Removes generated
files from the project,
such as object code
files.

Make Compiles all files in the
current project that have
changed since it was
last built and any files
that depend on them.
You can also choose
Project Compile
[project name].

View RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1042

3

Build Rebuilds all files in your
project regardless of
whether they have
changed. You can also
choose Project Build
[project name].

Close Closes all the open files
of the active project.
Before closing the file,
the IDE prompts you to
save any changes. If
you have not previously
saved the project, or any
file, the product opens
the Save As dialog box,
where you can enter the
new filename.

Build Sooner Moves a project up in
the list of projects within
a project group, which
changes the order in
which the projects are
compiled.

Build Later Moves a project down in
the list of projects within
a project group.

Make All From Here Compiles only the
selected projects and all
others listed below if
they have changed
since the last build. In
contrast, choose
Project Compile All
Projects to rebuild
every project in the
project group that has
changed.

Build All From Here Rebuilds only the
selected project and all
others listed below it
regardless of whether
they have changed. In
contrast, choose
Project Build All
Projects to rebuild all
projects in the project
group.

Dependencies Displays the
Project Dependencies
dialog box, allowing you
to change the build
order for the projects in
a project group.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) View

1043

3

Options Displays the
Project Options dialog
box, allowing you to
change the selected
project's application and
compiler options.

Set as Start Page Specifies the selected
HTML-based web form
or web service as the
Start Page for an ASP
project. The Start Page
is the page that is
displayed in the browser
when the project is run
from within the IDE. The
Set as Start Page option
is enabled ro .aspx
files, .asmx files, web
forms, and web
services.

View in Browser Displays the elected
HTML-based file in an
external browser.

View RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1044

3

Show All Files Shows all the project's
files in the Project
Manager. This menu
item is a toggle, so you
can click it to hide files.

ASP.NET
Configuration

Runs the Microsoft ASP.NET Web Site Administration
tool. This provides a UI for editing the web.config file
for ASP.NET projects. See
http://msdn2.microsoft.com/en-us/library/yy40ytx0(vs.80)
for more information.

View
Source

D
i
s
p
l
a
y
s

t
h
e

s
o
u
r
c
e

c
o
d
e

f
o
r

t
h
e

s
e
l
e
c
t
e
d

p
r
o
j
e
c
t
.

Deployment Context-Menu

Right-click the Deployment node in the Project Manager to display the context menu commands. The commands vary depending
on the type of project being deployed.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) View

1045

3

http://msdn2.microsoft.com/en-us/library/yy40ytx0(vs.80)

Item Description

New ASP.NET
Deployment

Opens the Deployment Manager for an ASP.NET project.

File Context Menu

Right-click a file within a project to display the context menu commands. The commands vary depending on the type of file
selected.

Item Description

Add Reference Displays the Add Reference dialog box, allowing you to add an assembly, COM type library, or
project reference to the project.

Add Web Reference Displays the Add Reference dialog box, allowing you to Web reference to your client application and
access the Web Service you want to use.

Build Is a shortcut that compiles the selected file.

Copy Local Copies the assembly to the local output directory. By default, Copy Local is checked for assemblies
that are not in the Global Assembly Cache (GAC).

Edit Local Options For C++, displays an abbreviated Project Options dialog box that contains only the Paths and
Defines page, nine pages of C++ compiler options, and the Build Events page.

Open Opens the selected files in the Code Editor.

Preprocess Runs the C++ preprocessor (cpp32).

Remove From Project Removes the selected files from the project. You will be prompted to save any changes.

Save Saves changes made to the selected files using their current names.

Save As Displays the Save As dialog box, allowing you to saves the selected files with new names and
locations.

Show Dependencies Displays

Rename Allows you to rename the file and any corresponding secondary files that appear as child nodes in the
Project Manager.

Build Configurations Context Menu (C++)

Right-click either the Build Configurations node in the Project Manager or the name of a specific build configuration within the
node to display the context menu.

Item Description

Add New Adds a child configuration, based on the selected configuration, and listed in the Project Manager
under the name of the parent configuration..

Save As Displays the Save as dialog box and allows you both to save the selected configuration to a specific
location and to rename the saved file.

Rename Allows you to rename the selected build configuration.

Delete Displays the Confirm dialog box and allows you to delete the selected configuration.

Activate Makes the selected build configuration the current active configuration for the project. The active build
configuration is listed in boldface.

Apply Option Set Displays the Apply Option Set dialog box and allows you to select an .optset file to apply to the
selected build configuration. You can choose to overwrite, replace, or preserve the existing option
values.

View RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1046

3

Edit Displays the Project Options dialog box preloaded with the values set in the selected build
configuration.

3.2.17.13 Save Desktop
View Desktops Save Desktop

Saves your current IDE desktop arrangement as a desktop layout.

Item Description

Save current desktop
as

Enter a new name for the desktop or select a name from the drop-down list.

See Also

Saving Desktop Layouts

3.2.17.14 Select Debug Desktop
View Desktops Set Debug Desktop

Determines which saved desktop layout is used when you are debugging.

Item Description

Debug desktop Select a desktop layout from the drop-down list.

See Also

Saving Desktop Layouts

3.2.17.15 Structure View
View Structure

Shows the hierarchy of source code or HTML displayed in the Code Editor, or components displayed on the Designer. When
displaying the structure of source code or HTML, you can double-click an item to jump to its declaration or location in the Code
Editor. When displaying components, you can double-click a component to select it on the form.

If your code contains syntax errors, they are displayed in the Errors node in the Structure View. You can double-click an error
to locate the corresponding source in the Code Editor. ((Not applicable for C++ development.)

Tip: You can control the content and appearance of the Structure View

by choosing Tools Options Environment Options Explorer and changing the settings.

Context Menu

Right-click the Structure View to display the following commands. The commands on the context menu depend on whether
source code or components are displayed in the Structure View.

Item Description

New Adds a new node to the Structure View.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) View

1047

3

Rename Changes the name of the selected node in the Structure View.

Edit Displays a submenu allowing you to undo changes, cut, copy, paste, delete, or select all of the
controls on the Designer.

Control Displays a submenu allowing you to bring the selected control to the front or send it to the back of the
the Designer.

Properties Displays the Explorer Options dialog box allowing you to change the content and appearance of the
Structure View.

Stay on Top Displays the Structure View on top of the desktop even if other windows are displayed.

Dockable Enables drag-and-dock for the Structure View.

Toolbar (C++)

The Structure view contains a toolbar for C++ application development that allows you to control how the contents of the
Structure view are displayed. It consists of the following buttons:

Sort Alphabetically Sorts the contents of the Structure view alphabetically.

Group by Type Groups items into folders by type in the Structure view.

Group by Visibility Groups class members into folders by visibility: public, protected, private, and published. For C++
, 'Classes' is a generic group that encompasses classes, structs, unions and templates.

Show Type Displays the type to the right of the member in the Structure view.

Show Visibility Toggles the Structure view display through different visibility levels: Show public only, show public
and protected, show public, protected, and private, and show all.

3.2.17.16 Templates Window
View Templates

Creates, edits, or deletes live code templates.

Item Description

Name Displays the name of the available live templates.

Description Describes the live template.

Templates Window Toolbar

Toolbar Button Description

New Code Template Creates an XML template file in the code editor with default code which you can edit. Specify the
template name, author, description, and template content.

Remove Code Template Removes the selected template from the list and deletes the template's .xml file from disk.

Edit Code Template Opens the content of the selected template file in the code editor where you can modify it.

Insert Live Template into
Code Editor

Inserts the code content from the selected template into the code editor at the cursor location.

Filter Code Templates by
Language

Displays only the templates related to the current project language.

View RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1048

3

See Also

Creating Live Templates (see page 138)

3.2.17.17 To-Do List
View To-Do List

Creates and manages a to-do list.

Item Description

Action Item This column includes a check box, an icon, and the task.

The check box indicates whether the item has been completed.

A window icon indicates the item was entered in the to-do list. A unit icon indicates it is a comment in
the source code.

The text is the actual task to be done. Grayed text indicates the item comes from a source file that is
part of the current project but is not open in the Code Editor. Bold text indicates the source is open in
the Code Editor. Double-click an item to open its source in the editor.

Priority Specifies the importance of the item using a decimal number from 1 (the highest) to 5 (the lowest).

Module For items that have been added as code comments, indicates the path and module in which the
comment exists.

Owner Indicates who is responsible for completing the task.

Category Indicates a type of task, for example, user interface task or an error handling task.

Tip: To sort the list, click any column heading. For additional processing options, right-click and use the context menu
commands.

See Also

Using To-Do Lists (see page 166)

3.2.17.18 Add or Edit To-Do Item
Adds items to a to-do list or to change an item.

Item Description

Text Specifies the to-do list item text.

Priority Specifies the importance of the item using a decimal number from 1 to 5. Type the number or select
one using the spin control.

Owner Indicates who is responsible for completing the task. Type the name or select one if others are listed
in the spin control.

Category Indicates the type of task, for example, a user interface or UI, or Interface implementation. Type the
category or select one if others are listed in the spin control.

See Also

Using To-Do Lists (see page 166)

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) View

1049

3

3.2.17.19 Filter To-Do List
Controls which items are displayed in a to-do list.

Item Description

Filter by Uncheck a category, owner, or item type to hide it from the to-do list.

Show All Checks everything in the Filter by list.

See Also

Using To-Do Lists (see page 166)

3.2.17.20 Table Properties
Controls the appearance of the resulting to-do list when using the Copy as HTML table command from the right-click menu of
the To-do List dialog.

Table tab

Specifies the properties for the HTML table used to display the to-do list.

Item Description

Caption Specifies a caption for the table.

Border Width Specifies the width (in pixels only) of the frame around a table.

Width (Percent) Specifies a value for how wide the table will appear on the page. The value is relative to the amount
of available horizontal space.

Cell Spacing Specifies how much space to leave between the left side of the table and the left side of the leftmost
column, the top of the table and the top-side attribute. Also specifies the amount of space to leave
between cells.

Cell Padding Specifies the amount of space between the border of the cell and its contents.

Background Color Indicates a background color for the HTML table cells.

Alignment Indicates the location (left, right, or center) of the table on the HTML page.

Columns tab

Specifies the properties for each of the columns in the to-do list.

Item Description

Column Indicates the column for which you want to specify properties.

Alignment Specifies the alignment of the text within the column (left, right, or center).

Vertical alignment Specifies the alignment of the text within the cell (top, middle, or bottom).

Title Indicates the column heading.

Width Specifies the width of the column in a percentage of the whole table width.

Height Specifies a recommended cell height in pixels.

Wrap text Allows text within cells to wrap.

Visible Determines whether or not this column will be included in the table or not.

View RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1050

3

Font Size Specifies the point size of the text in the column.

Face Sets the typeface of the text in the column.

Color Sets the color of the column.

Bold Makes the text in the column bold.

Italic Makes the text in the column italic.

See Also

Using To-Do Lists (see page 166)

3.2.17.21 Tool Palette
View Tool Palette

Assists with a new project, adds components to a form, or adds code snippets to the Code Editor.

Item Description

Categories Displays a list of the item categories, allowing you to position the Tool Palette to a category.

 Sets or removes the Tool Palette filter. Click anywhere in Tool Palette and begin typing the name of
the item you want to locate. The Tool Palette is automatically displays only those items that match
what you type. Click the filter icon to remove the filter.

Tip: To reorder categories or items in the Tool Palette

, click the item or category and drag and drop it elsewhere on the Tool Palette. The context menu command Lock Reordering
disables/enables drag and drop reordering.

Context Menu

Right-click the Tool Palette to display the following commands.

Item Description

Add New Category Displays the Create a New Category dialog box, allowing you to create an empty category. You can
then drag-and-drop components from other categories into the new category to create a customized
category.

Delete Category Deletes the selected category from the Tool Palette. To restore the category, choose Customize
.NET Components.

Delete Button Deletes the selected item from the Tool Palette.

Hide Button Removes the selected item from the Tool Palette, but does not delete it.

Unhide Button Redisplays items previously hidden by using the Hide Button.

Installed .NET
Components

Displays the Installed .NET Components dialog box, allowing you to add components to the Tool
Palette. This command is available only when the Tool Palette contains components.

Clear All Code
Snippets

Removes user defined code snippets from the Tool Palette.

Auto Collapse
Categories

Allows only one category to be expanded at a time.

Collapse All Displays only the categories of items.

Expand All Displays the items in each category.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) View

1051

3

Lock Ordering Disables drag and drop reordering of categories and items on the Tool Palette.

Reset Palette Removes all Tool Palette customizations.

Properties Displays the Tool Palette page of the Options dialog box, allowing you to change the appearance of
the Tool Palette.

Stay on Top Displays the Tool Palette on top of the desktop even if other windows are displayed.

Dockable Enables drag-and-dock for the Tool Palette.

See Also

Adding Components to the Tool Palette (see page 160)

Adding Components to a Form (see page 152)

Using Code Snippets (see page 148)

Finding Items on the Tool Palettes (see page 158)

3.2.17.22 Translation Manager
View Translation Manager

Views and edits language resource files.

Item Description

Project tab Displays the following tabs:

The Languages tab lists each language in the open project and the locale ID, file extension, and
translation directory for each language.

The Files tab lists the resource files for the language selected on the Languages tab. Double-click a
resource file to open it in a text editor.

Workspace tab Displays a tree view of the project. When you select a non-resource in the left pane, summary
information appears in the right pane. When you select a resource file in the left pane, a grid for
viewing and editing translations appears.

Workspace Tab Actions Context Menu

The Actions context menu provides quick access to commonly used function while using the Translation Manager/External
Translation Manager. To access the Actions menu, in the Workspace tab you can either double-click the Actions button or
right-click the grid.

Item Description

Filters Lets you can display or hide rows based on the following criteria: Show All, Toggle (jumps between
displaying criteria that are either checked and unchecked in the Columns context menu), Show None,
Show Untranslated, Show Translated, Show Newly Translated, Show Auto Translated, and Show
Unused (translations that were kept even after the resource was later deleted).

Columns Lets you display or hide columns by checking the column name. Show All displays all columns,
Toggle jumps between displaying criteria that are either checked and unchecked in the Columns
context menu), and Show None removes all of the columns from the display.

Edit Displays the Edit Selection dialog box where you can edit the value for the target language, status,
or comment field.

View RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1052

3

Repository Displays the following commands:

Add strings to Repository stores the translation from the selected row(s) into the Repository
database.

Get strings from Repository searches the Repository for a translation in the target language whose
source string matches the selected resource.

Font Displays the Font dialog box, allowing you to change the font of the values in the base language
column, the target language column, and the comment column.

Copy previous line Overwrites the selected value in the target language column with the value from the cell immediately
above (only if the value is the same type, such as a number or a text string).

Copy previous
translation

Pastes an earlier version of the source strings and their translations that have been overwritten by the
updater.

Copy from original Overwrites the target language value with the base language value and changes the status from
Translated to Untranslated.

Change status to
Translated

Changes Untranslated to Translated in the Status column. You can also click the arrow in each
Untranslated/Translated drop-down box to change the status.

Find next untranslated
item

Jumps to the next row in the grid that has a status of Untranslated.

Select all Selects the values in all rows and columns.

Workspace Tab Keyboard Shortcuts

The following keyboard shortcuts are available in the Workspace tab:

Item Description

Ctrl+A Select everything in grid.

Ctrl+C Copy selection to clipboard.

Ctrl+D Copy translation from prior row in grid.

Ctrl+E Show Multiline editor.

Ctrl+F Show Find dialog box.

Ctrl+K Keep forms on top.

Ctrl+N Find next untranslated item.

Ctrl+O Copy text from source (base language) column into translation column.

Ctrl+P Restore translation from Previous translation column.

Ctrl+Q Show Actions context menu.

Ctrl+S Save translations.

Ctrl+T Change status to Translated.

Ctrl+V Paste selection from clipboard.

Ctrl+W Reset column width.

Ctrl+X Cut selection and add to clipboard.

F6 Switch between left and right panes in Workspace tab.

Ctrl+F5 Refresh translated form.

Ctrl+F7 Show original form.

Ctrl+F8 Show translated form.

Shift+Ctrl+F5 Refresh grid.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) View

1053

3

Shift+Ctrl+F7 Synchronize the translated version with the base language version, for example, when changes are
made to the base version.

See Also

Localizing Applications (see page 18)

Adding Languages to a Project (see page 169)

Editing Resource Files in the Translation Manager (see page 170)

3.2.17.23 Multi-line Editor
Edits translations that are lengthy or contain multiple lines of text separated by hard returns. The editor displays the source and
target languages in separate panes. Only the target language is editable.

Item Description

Up and Down arrows Moves to the previous or next string in the Translation Manager grid. Clicking either button saves
your changes.

Tile Across and Tile
Down

Changes the orientation of the editor panes.

Save Saves your changes.

Close Discards unsaved changes and close the editor.

Font Changes the display font in the editor. The changes apply to whichever pane the cursor is in when
you click the Font button and affect the Translation Manager grid as well as the Multi-line editor.

Word Wrap Enables or disables wrapping of long lines.

See Also

Localizing Applications (see page 18)

Adding Languages to a Project (see page 169)

Editing Resource Files in the Translation Manager (see page 170)

3.2.17.24 Type Library Editor
View Type Library

Makes changes to your type library. The Type Library editor generates the required IDL syntax automatically. Any changes you
make in the editor are reflected in the corresponding implementation class (if it was created using a wizard).

The View Type Library command is available only for projects that contain a type library. The wizards on the ActiveX page
automatically add a type library to the project when they create a COM object.

Object List Pane

Each instance of an information type in the current type library appears in the object list, represented by a unique icon. Select an
icon to see its data pages displayed in the information pane at the right.

Attributes Page

Lists the type information associated with the object currently selected in the object list pane. You can use the controls to edit
these values. What attributes appear depends on the selected element.

View RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1054

3

Item Description

Name A descriptive name for the type library. The name can’t include spaces or punctuation.

GUID The globally unique 128-bit identifier of the type library’s interface (a descendant of ITypeLib).

Version A particular version of the library in cases where multiple versions of the library exist. The version is
either a pair of decimal integers separated by a period, or a single decimal integer. The first of the two
integers represents the major version number, and the second represents the minor version number.
If a single integer is used, it represents the major version number. Both major and minor version
numbers are short unsigned integers in the range between 0 and 65535, inclusive

LCID The locale identifier that describes the single national language used for all text strings in the type
library and its elements.

Help String A short description of the type library. Used with Help Context to provide Help as a Help file. This
string is mapped to the Help Context when creating the help file.

Help Context The Help context ID of for the type library’s main help. This ID identifies the Help topic within the Help
file.

Help String Context For help DLLs, the Help context ID of the type library’s main help. Used with Help String DLL to
provide Help as a separate DLL.

Help String DLL The fully-qualified name of the DLL used for help, if any.

Help File The name of the help file (.hlp) associated with the type library, if any.

Note: The Type Library editor supports two mechanisms for supplying help. The traditional help mechanism, where a standard
windows help file has been created for the library, or where the help information is located in a separate DLL (for localization
purposes). You must supply the help file to which the Help attributes apply.

Text Page

Contains the declarations for the currently selected element in IDL or Object Pascal. You can use this page to enter changes
more quickly than using the other pages or to review all the type information at once.

All type library elements have a text page that displays the IDL or Object Pascal syntax for the element. The Type Library page
of the Environment Options dialog determines which language is used on the text page. Any changes you make in other pages
of the element are reflected here. If you add IDL or Object Pascal code directly in the text page, changes are reflected in the
other pages of the Type Library editor.

Note: The Type Library editor generates syntax errors if you add IDL identifiers that are currently not supported by the editor;
the editor currently supports only those IDL identifiers that relate to type library support (not RPC support).

Flags Page

Lists various attributes that modify the object described on the Attributes page. This page is not available for all elements.

Some type library elements have flags that let you enable or disable certain characteristics or implied capabilities. The flags page
lists several check boxes let you turn these flags on or off.

Uses Page

Only available when the type library is selected in the Object List pane. Lists other type libraries that contain definitions on
which this one depends.

To add a dependency, check the box to the left of the type library name. The definitions in that type library can then be used by
this one. If the type library you want to add is not in the list, right click and choose Show All Type Libraries.

To remove a dependency, uncheck the box to the left of a type library name.

To view one of the other type libraries, select that type library, right click and choose View Type Library.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) View

1055

3

Implements Page

Only available when a CoClass is selected in the Object List pane. Lists the interfaces that the CoClass implements. Use this
page to change the interfaces associated with the object or change their properties.

Item Description

Interface Name of an interface or dispinterface that the CoClass supports. Note that the name for interfaces
and dispinterfaces is assigned on the Attributes page when the interface is selected.

GUID The globally unique identifier for the interface. This column is informational only: its value can’t be
changed.

Source Indicates whether the interface functions as an event source. If so, the CoClass does not implement
the interface. Rather, clients implement the interface and the CoClass calls them using this interface
when it fires events.

Default Indicates that the interface or dispinterface represents the default interface. This is the interface that
is returned by default when an instance of the class is created. A CoClass can have two default
members at most. One represents the primary interface, and the other represents an optional
dispinterface that serves as an event source.

Restricted Prevents the item from being used by a programmer. An interface cannot have both restricted and
default attributes.

VTable Indicates whether interface methods can be called using a VTable (as opposed to IDispatch calls).
This column is informational only: its value can’t be changed.

COM+ Page

Use this page to change the transaction attribute of a transactional object you will install with MTS or the COM+ attributes of a
CoClass you will install with COM+.

You can also use this page for Automation objects that were not created using the Transactional Object wizard, and it will
influence the way the IDE installs them into MTS packages or COM+ applications. However, objects that are not created using
the wizard do not automatically include support for IObjectControl. This means that they are not notified about activation and
deactivation (and so do not have OnActivate and OnDeactivate events). They also do not have an ObjectContext property. You
must therefore obtain the object context by calling the global GetObjectContext function.

Note: Only the Transaction Model attribute is used when installing into an MTS package, all other settings are ignored. If you
intend to install the object under MTS, it must be an Automation object in an in-process server (DLL).

Warning: The attributes you specify on the COM+ page are encoded as custom data in the type library. This data is not
recognized outside of Delphi. Therefore, it only has an effect if you install the transactional object from the IDE. If you deploy
your object in any other way, these settings must be explicitly set using the MTS Explorer or COM+ Component Manager.

Item Description

Call Syncronization COM+ only: Determines how the object participates in activities. These provide additional
synchronization support beyond that supplied by the threading model.

Transaction Model Specifies the transaction attribute, which indicates how the object participates in transactions, if at all.
The possible values differ depending on whether the object is to be deployed under MTS or COM+.
Note that if the transaction attribute indicates that transactions are supported, Just In time Activation
must be enabled.

Object Pooling COM+ only: Determines whether object instances can be pooled. When enabling Object Pooling, it is
your responsibility to ensure that the object is stateless.

View RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1056

3

Creation TimeOut COM+ only: Determines how long, in milliseconds, a pooled object remains in the object pool before
it is freed.

Allow Inproc
Subscribers

Only applicable when the CoClass represents a COM+ event object. Determines whether in-process
applications can register interest as clients of the event object.

Fire In Parallel Only applicable when the CoClass represents a COM+ event object.Determines whether COM+ fires
events in parallel (on multiple threads), or one by one on the same thread.

Parameters Page

Only available when a property or method is selected in the Object List pane. It lets you set the parameters and return value for
methods (including property access methods).

Item Description

Name Represents the parameter name. You can edit the value directly.

Type Represents the data type of the parameter. Select an available type from the drop-down list that
appears when you click in the Type column.

Default Value Specify a default value for an optional parameter by typing it into the column. All subsequent
parameters must be optional. Any preceding optional parameters should also have a default value.

When working in Object Pascal, local IDs are specified using a parameter type specifier of TLCID. In
IDL, this is specified using a parameter modifier.

3.2.17.25 View Form
View Forms

Views any form in the current project. When you select a form, it becomes the active form, and its associated unit becomes the
active module in the Code Editor.

3.2.17.26 View Units
View Units

Views the project file or any unit in the current project. When you open a unit, it becomes the active page in the Code Editor.

3.2.17.27 Window List
View Window List

Displays a list of open windows.

Item Description

Windows Select a window and click OK to display that window.

3.2.17.28 New Edit Window
View New Edit Window

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) View

1057

3

Brings up a new Code Editor window as a separate window. The previous Code Editor window remains open.

3.2.17.29 Toggle Form/Unit
View Toggle Form/Unit

Toggles the view between Form and Unit.

See Also

Form Designer (see page 46)

Program and Units (see page 683)

3.2.17.30 Model View Window
View Model View

Shows the logical structure and containment hierarchy of your project. Note the ECO framework is available only for C# and
Delphi for .NET, and in the Architect SKU and higher. ECO-related icons and topic links are unavailable in other product SKUs.

Code Visualization
Icon

Represents

A project

A UML package (ECO framework)

 A UML package (code visualization)

 A class (ECO framework)

 A class (code visualization)

 An interface (code visualization)

 An operation (ECO framework)

 An operation (code visualization)

 A property (ECO framework)

 A property of a class (code visualization)

The diagram for the project or UML package

 A link to another class or interface (code visualization)

 Generalization (ECO framework)

Association (ECO framework)

Derived association (ECO framework)

Note: On code visualization diagrams, each .NET namespace declaration corresponds to a UML package (this is not true for
ECO-enabled source code). Double-clicking on a namespace node in the Model View tree

cannot open a specific source code file, since namespaces can span multiple source files.

Tip: To quickly open the source code editor

for a specific class, interface, or member, double-click the item in the Model View tree.

View RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1058

3

See Also

Using Code Visualization

Using the Model View Window and Code Visualization Diagram

Using the Overview Window

UML Features in Delphi for .NET

Overview of the ECO Framework

Integrated Modeling Tools Overview

Using the ECO Wizards

Importing a Model

Using the ECO Space Designer

Using the OCL Expression Editor

Building an ECO Enabled User Interface

Deploying an ECO Application

3.2.17.31 CodeGuard Log
View Debug Windows CodeGuard Log

Provides runtime debugging for C++ applications being developed. CodeGuard reports errors that are not caught by the compiler
because they do not violate the syntax rules. CodeGuard tracks runtime libraries with full support for multithreaded applications.

See Also

Errors reported by CodeGuard

Warnings reported by CodeGuard

Using CodeGuard

3.2.17.32 Desktops
View Desktops

Allows you to choose between preset desktop layouts. Desktop layouts can be used to create and manage windows.

Item Description

None Does not specify a preset desktop layout.

Classic Undocked Emulates earlier Delphi versions, with separate windows for the menus and palette, designer, etc.

Debug Layout Customized for debugging, with call stack, thread, and other views shown instead of the default
windows used for designing applications.

Default Layout Shows all windows docked into one container, with the most-used designing windows shown,
including the tool palette, object inspector, design form, etc.

See Also

Saving Desktop Layouts (see page 161)

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) View

1059

3

Desktop Toolbar (see page 1036)

3.2.17.33 Dock Edit Window
View Dock Edit Window

Sizes new Code Editor windows to fit appropriately inside the IDE. You can reselect Dock Edit Window to toggle between the
new Code Editor window and the original Code Editor window.

See Also

New Edit Window (see page 1057)

3.2.17.34 Find Reference Results
View Find Reference Results

Brings up the Find References pane. This pane is dockable and is used in conjunction with the Search Find function.

See Also

Finding References (see page 141)

Finding References Overview (Delphi (see page 65)

Find References (see page 954)

3.2.17.35 Help Insight
View Help Insight

Displays a hint containing information about the symbol such as type, file, location of declaration, and any XML documentation
associated with the symbol (if available).

Alternative ways to invoke Help Insight is to hover the mouse over an identifier in your code while working in the Code Editor, or
by pressing CTRL+SHIFT+H.

See Also

Code Editor (see page 42)

3.2.17.36 Show Borders
View Show Borders

Displays gray borders that represent page margins in the Diagram View and Overview. Diagrams exist within the context of a
namespace (or a package). This feature is only applies to ASP .NET applications.

See Also

Together Diagram Overview (see page 90)

Creating a Diagram (see page 196)

Together Diagram Appearance Options (see page 1089)

View RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1060

3

3.2.17.37 Show Grid
View Show Grid

Shows the design grid in the background behind diagrams. Diagrams exist within the context of a namespace (or a package).
This feature is only applies to ASP .NET applications.

To turn on the grid, open Tools Options HTML/ASP.NET. In the Designer Options select Grid Layout from the pull-down
menu.

See Also

Together Diagram Overview (see page 90)

Creating a Diagram (see page 196)

Together Diagram Appearance Options (see page 1089)

3.2.17.38 Show Tag Glyphs
View Show Tag Glyphs

Displays tags in an ASP form. This feature only applies to ASP .NET applications.

3.2.17.39 Snap To Grid
View Snap To Grid

Allows diagram elements to "snap" to the border of a control to the nearest coordinate of the diagram background design grid.
The snap function works whether the grid is visible or not. Diagrams exist within the context of a namespace (or a package). This
feature is only applies to ASP .NET applications.

See Also

Together Diagram Overview (see page 90)

Creating a Diagram (see page 196)

Together Diagram Appearance Options (see page 1089)

3.2.17.40 Toolbars
View Toolbars

Allows you to choose the toolbars that are displayed in the IDE.

Item Description

Standard Adds buttons that are used for opening and saving files and other common tasks.

Debug Adds buttons that are used for stepping, tracing, and other debugging tasks.

Custom Adds buttons that links to Help Contents. See link below.

Spacing Adds buttons that control spacing of components on the design form.

Position Adds buttons that control positioning and visibility of components on the design form.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) View

1061

3

Personality Adds buttons that display the current personality.

Browser Adds buttons that allow browser-style navigation of code.

HTML Design Adds buttons for HTML document elements.

HTML Format Adds buttons that format HTML text.

HTML Table Adds buttons that insert and position HTML tables.

View Adds the Unit, Form and Toggle between the two buttons.

See Also

Packages (see page 156)

3.2.17.41 Translation Editor
View Translation Manager Translation Editor

Edits resource strings directly, adds translated strings to the Translation Repository, or gets strings from the Translation
Repository.

See Also

Editing Resource Files in the Translation Manager (see page 170)

Translation Manager (see page 1052)

3.2.17.42 Welcome Page
View Welcome Page

Opens the product's Welcome Page, which displays lists of your recent projects and favorites. The Welcome Page also contains
links to developer resources, such as product-related online help. As you develop projects, you can quickly access them from the
list of recent projects at the top of the Welcome Page.

See Also

IDE Tour (see page 34)

3.2.18 Win View

Topics

Name Description

Assembly Metadata Explorer (Reflection viewer) (see page 1063) File Open...
Use the assembly metadata explorer (Reflection viewer) to inspect types
contained within a .NET assembly.

Type Library Explorer (see page 1065) File Open...
Use the type library explorer to inspect types and interfaces defined within a
Windows type library.

Search (see page 1066) Use this dialog box to search for various kinds of elements (such as classes or
interfaces), or for a specific element within a .NET assembly, or a type library.

Win View RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1062

3

3.2.18.1 Assembly Metadata Explorer (Reflection viewer)
File Open...

Use the assembly metadata explorer (Reflection viewer) to inspect types contained within a .NET assembly.

Icon Type Available Tabs

 Assembly Properties, Attributes, Flags, Uses

 Namespace Properties

 Class Properties, Attributes, Flags, Implements

 Sealed
Class

Properties, Attributes, Flags, Implements

 Interface Properties, Attributes, Flags, Implements, Implementors

 Method Properties, Attributes, Flags, Parameters, Call Graph

 Method
with return
value

Properties, Attributes, Flags, Parameters, Call Graph

 Property
with getter
and setter

Properties, Flags

 Property
Getter
Method

Properties, Flags

 Property
Setter
Method

Properties, Flags

 Field Properties, Flags

 Event Properties, Attributes, Flags

The metadata fields shown on each tab differ according to the type of item selected in the tree. The sections below list the
metadata fields that are displayed on each tab.

Properties Tab

Displays properties of the selected item

Item Applicable to types Notes

Name All

GUID Assembly

Version Assembly

Culture Assembly

Revision Assembly

Build Number Assembly

Namespace Class

Assembly Class

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Win View

1063

3

ID Class, Field, Property, Method, Event The ID is an internal number that shows where to
find the type in the assembly's internal metadata
tables.

Extends Class The base class of the selected class

Extends ID Class The internal ID of the base class

Value Type Field

Value Field

Return Type Method

Attributes Tab

The Attributes tab shows all attributes (including custom attributes) that were applied to the selected item in source code. For
each attribute, the name is displayed alongside the attribute's value.

Flags Tab

The Flags tab displays the set of metadata flags that could apply to the selected item. Each flag is represented by a check box.
If the box is checked, the flag is set in the selected item's metadata. If the box is cleared, the flag has not been applied to the
selected item.

Uses Tab

The Uses tab displays the list of assemblies that the selected assembly depends on. Each assembly listed must be deployed on
the end-user's machine.

Implements Tab

The Implements tab is visible when the selected item is a class, sealed class, or interface. This tab lists each interface
implemented by the selected item. Each implemented interface is a link that you can click. Clicking an implemented interface link
will cause that item to be selected in the tree, and its metadata properties will be displayed. You can use the Forward and Back
browser buttons on the Toolbar to quickly navigate back to the previously selected class or interface.

Implementors Tab

The Implementors tab is visible when an interface is selected in the left-hand pane. This tab displays all those classes that
implement the interface.

Parameters Tab

The Parameters tab is visible when a method is selected in the left-hand pane. Each parameter is listed by name, alongside its
type, and modifier (such as ref and out).

Call Graph Tab

The Call Graph tab is visible when a method is selected in the left-hand pane. This tab is divided into two panes: The top pane
displays those methods that call the selected method. The bottom pane displays all the methods called by the selected method.

Certain methods, denoted by blue color and underlining, are clickable links; these are methods that are within the assembly you
are viewing. Click a method link to make that method the selected item in the left-hand pane. Other methods listed in the Calls
and Called By panes are not links; these methods are defined in assemblies outside the one you are viewing.

You can navigate forward and back to previously selected items using the browser buttons on the Toolbar.

See Also

Using COM Interop in Managed Applications

Exploring .NET Assembly Metadata (see page 158)

Adding a Reference to a COM Server

Win View RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1064

3

Adding an ActiveX Control to the Tool Palette

3.2.18.2 Type Library Explorer
File Open...

Use the type library explorer to inspect types and interfaces defined within a Windows type library.

Type
Library
Element

Icon Page of Type
Information

Contents of Page

Type Library Attributes Name, version, GUID, and registered location of the type
library. Also displays help context and help file information.

Uses A table showing the name and GUID of dependant type
libraries.

Flags Flags that determine how other applications can use the type
library.

CoClass Attributes Name, GUID, version, help context, and help file information.

Flags Flags that indicate how clients can create and use instances,
whether the CoClass is visible in a browser, whether the
CoClass is an ActiveX Control, and whether it can be
aggregated.

Implements A table listing the interfaces (along with their attributes) the
class implements.

Interface Attributes Name, version, GUID, help context, and help file information.

Flags Flags indicating whether the interface is hidden, dual,
automation-compatible, and/or extensible.

DispInterface Attributes Name, version, GUID, help context, and help file information.

Flags Flags indicating whether the DispInterface is hidden, dual,
automation-compatible, and/or extensible.

Method

Method with
return value

Attributes Name, dispatch ID, vtable offset, help string, and help context

information.

Flags Flags indicating how clients can view and use the method,
whether it is a default method for the interface, and whether it
is replacable.

Parameters A table showing the name and type of all parameters on the
method, and the return value if applicable.

SetByRef
Method

 Attributes ToDo

Getter
Method

Setter
Method

Attributes Name, dispatch ID, vtable offset, help string, help context

information.

Flags Flags indicating how the client can view and use the method,
and whether it is hidden and/or browsable.

Parameters A table showing the name and type of all parameters on the
method.

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Win View

1065

3

DispProperty Attributes Name, help string, and help context information.

Flags Flags to indicate how clients can view and use the property,
whether it is a default property for the interface, and so on.

Alias Attributes Name, version, GUID, the type the alias represents, and help
context information.

Record Attributes Name, version, GUID, help string and help context
information.

Union Attributes Name, version, GUID, help string and help context
information.

Enumeration Attributes Name, version, GUID, help string, and help context
information.

Module Attributes Name, version, GUID, associated DLL name, help string, and
help context information.

Field Attributes Name, type information, help string, and help context
information.

Flags Flags indicating how clients can view and use the field,
whether the field has a default value, and whether the field is
bindable.

Constant Attributes Name, value, type (for module constants), help string, and
help context information.

Flags Flags indicating how clients can view and use the constant,
whether it represents a default value, and whether it is
bindable.

See Also

Using COM Interop in Managed Applications

Adding a Reference to a COM Server

Adding an ActiveX Control to the Tool Palette

3.2.18.3 Search
Use this dialog box to search for various kinds of elements (such as classes or interfaces), or for a specific element within a
.NET assembly, or a type library.

Item Description

Text to find The text string to search for in the assembly or type library.

Type to find A drop-down list containing the types of elements you can search for. These are: Class, Interface,
Method, Property, Field, and Event. If no element type is specified, all elements matching the search
string will be returned.

Case sensitive If checked, elements matching the search string must also match case. If unchecked, all elements
matching the search string will be returned, regardless of case.

Search Click to begin the search.

Items matching the search criteria are displayed in a table in the Search dialog. Items in the table are clickable links; clicking on
an item will cause that item to be selected in the left-hand pane of the explorer view.

Tip: The Search

Win View RAD Studio (Common) 3.2 RAD Studio Dialogs and Commands

1066

3

dialog is modeless, so you can leave it open and continue working with the main explorer window.

See Also

Using COM Interop in Managed Applications

Adding a Reference to a COM Server

Adding an ActiveX Control to the Tool Palette

3.2 RAD Studio Dialogs and Commands RAD Studio (Common) Win View

1067

3

3.3 Keyboard Mappings
The following topics list the keyboard mappings available in RAD Studio. Use the Tools Options Editor Options Key
Mappings page to change the default keyboard mapping.

Topics

Name Description

Key Mappings (see page 1068) Tools Options Editor Options Key Mappings
Use this page to enable or disable key binding enhancement modules and
change the order in which they are initialized.

BRIEF Keyboard Shortcuts (see page 1069) The following table lists the BRIEF Mapping keyboard shortcuts for the Code
Editor.

IDE Classic Keyboard Shortcuts (see page 1070) The following table lists the IDE Classic Mapping keyboard shortcuts for the
Code Editor.
Note: Keyboard shortcuts that include the CTRL+ALT
key combination are disabled when the Use CTRL+ALT Keys option is
unchecked on the Tools Options Editor Options Key Mappings page.

Default Keyboard Shortcuts (see page 1073) The following table lists the Default Mapping keyboard shortcuts for the Code
Editor.
Note: Keyboard shortcuts that include the CTRL+ALT
key combination are disabled when the Use CTRL+ALT Keys option is
unchecked on the Tools Options Editor Options Key Mappings page.

Epsilon Keyboard Shortcuts (see page 1076) The following table lists the Epsilon Mapping keyboard shortcuts for the Code
Editor.
Note: Keyboard shortcuts that include the CTRL+ALT
key combination are disabled when the Use CTRL+ALT Keys option is
unchecked on the Tools Options Editor Options Key Mappings page.

Visual Basic Keyboard Shortcuts (see page 1078) The following table lists the Visual Basic Mapping keyboard shortcuts for the
Code Editor.
Note: Keyboard shortcuts that include the CTRL+ALT
key combination are disabled when the Use CTRL+ALT Keys option is
unchecked on the Tools Options Editor Options Key Mappings page.

Visual Studio Keyboard Shortcuts (see page 1079) The following table lists the Visual Studio Mapping keyboard shortcuts for the
Code Editor.
Note: Keyboard shortcuts that include the CTRL+ALT
key combination are disabled when the Use CTRL+ALT Keys option is
unchecked on the Tools Options Editor Options Key Mappings page.

3.3.1 Key Mappings

Tools Options Editor Options Key Mappings

Use this page to enable or disable key binding enhancement modules and change the order in which they are initialized.

Item Description

Key mapping modules Lists the available key bindings.

To set the default key binding, use the Editor Options page Editor SpeedSettings option.

Key Mappings RAD Studio (Common) 3.3 Keyboard Mappings

1068

3

Enhancement modules Enhancement modules are special packages that are installed and registered and use the keyboard
binding features that can be developed using the Open Tools API. You can create enhancement
modules that contain new keystrokes or apply new operations to existing keystrokes.

Once installed, the enhancement modules are displayed in the Enhancement modules list box.
Clicking the check box next to the enhancement module enables it and unchecking it disables it. Key
mapping defined in an installed and enabled enhancement module overrides any existing key
mapping defined for that key in the key mapping module which is currently in effect.

Move Up Moves the selected enhancement module up one level in the list.

Move Down Moves the selected enhancement module down one level in the list.

Use CTRL+ALT Keys If checked, the CTRL+ALT key combination is used in shortcuts throughout the IDE. If unchecked,
those shortcuts are disabled and CTRL+ALT can be used to perform other functions, such as entering
accent characters.

See Also

Default Key Mapping (see page 1073)

IDE Classic Key Mapping (see page 1070)

BRIEF Emulation Key Mapping (see page 1069)

Epsilon Emulation Key Mapping (see page 1076)

Visual Studio Key Mapping (see page 1079)

Visual Basic Key Mapping (see page 1078)

3.3.2 BRIEF Keyboard Shortcuts

The following table lists the BRIEF Mapping keyboard shortcuts for the Code Editor.

Shortcut Action

Alt+A Marks a non-inclusive block

Alt+B Displays a list of open files

Alt+Backspace Deletes the word to the right of the cursor

Alt+C Mark the beginning of a column block

Alt+D Deletes a line

Alt+F9 Displays the local menu

Alt+Hyphen Jumps to the previous page

Alt+I Toggles insert mode

Alt+K Deletes of the end of a line

Alt+L Marks a line

Alt+M Marks an inclusive block

Alt+N Displays the contents of the next page

Alt+P Prints the selected block

Alt+Page Down Goes to the next tab

Alt+Page Up Goes to the previous tab

3.3 Keyboard Mappings RAD Studio (Common) BRIEF Keyboard Shortcuts

1069

3

Alt+Q Causes next character to be interpreted as an ASCII sequence

Alt+R Reads a block from a file

Backspace Deletes the character to the left of the cursor

Ctrl+/ Adds or removes // to each line in the selected code block to comment the code.

Ctrl+- (dash) Closes the current page

Ctrl+B Moves to the bottom of the window

Ctrl+Backspace Deletes the word to the left of the cursor

Ctrl+C Centers line in window

Ctrl+D Moves down one screen

Ctrl+E Moves up one screen

Ctrl+Enter Inserts an empty new line

Ctrl+F1 Help keyword search

Ctrl+F5 Toggles case-sensitive searching

Ctrl+F6 Toggles regular expression searching

Ctrl+K Deletes to the beginning of a line

Ctrl+M Inserts a new line with a carriage return

Ctrl+O+A Open file at cursor

Ctrl+O+B Browse symbol at cursor

Ctrl+O+O Toggles the case of a selection

Ctrl+Q+[Finds the matching delimiter (forward)

Ctrl+Q+] Finds the matching delimiter (backward)

Ctrl+Q+Ctrl+[Finds the matching delimiter (forward)

Ctrl+Q+Ctrl+] Finds the matching delimiter (backward)

Ctrl+S Performs an incremental search

Ctrl+T Moves to the top of the window

Ctrl+Shift+C Invokes class completion for the class declaration in which the cursor is positioned

Del Deletes a character or block at the cursor

Enter Inserts a new line with a carriage return

Esc Cancels a command at the prompt

Shift+Backspace Deletes the character to the left of the cursor

Shift+F4 Tiles windows horizontally

Shift+F6 Repeats the last Search|Replace operation

Tab Inserts a tab character

3.3.3 IDE Classic Keyboard Shortcuts

The following table lists the IDE Classic Mapping keyboard shortcuts for the Code Editor.

IDE Classic Keyboard Shortcuts RAD Studio (Common) 3.3 Keyboard Mappings

1070

3

Note: Keyboard shortcuts that include the CTRL+ALT

key combination are disabled when the Use CTRL+ALT Keys option is unchecked on the Tools Options Editor
Options Key Mappings page.

Shortcut Action

Alt+[Finds the matching delimiter (forward)

Alt+] Finds the matching delimiter (backward)

Alt+Page Down Goes to the next tab

Alt+Page Up Goes to the previous tab

Alt+Shift+Down Arrow Moves the cursor down one line and selects the column from the left of the starting cursor position

Alt+Shift+End Selects the column from the cursor position to the end of the current line

Alt+Shift+Home Selects the column from the cursor position to the start of the current line

Alt+Shift+Left Arrow Selects the column to the left of the cursor

Alt+Shift+Page Down Moves the cursor down one line and selects the column from the right of the starting cursor position

Alt+Shift+Page Up Moves the cursor up one screen and selects the column from the left of the starting cursor position

Alt+Shift+Right Arrow Selects the column to the right of the cursor

Alt+Shift+Up Arrow Moves the cursor up one line and selects the column from the left of the starting cursor position

Click+Alt+mousemove Selects column-oriented blocks

Ctrl+/ Adds or removes // to each line in the selected code block to comment the code.

Ctrl+Alt+Shift+End Selects the column from the cursor position to the end of the current file

Ctrl+Alt+Shift+Home Selects the column from the cursor position to the start of the current file

Ctrl+Alt+Shift+Left
Arrow

Selects the column to the left of the cursor

Ctrl+Alt+Shift+Page
Down

Selects the column from the cursor position to the top of the screen

Ctrl+Alt+Shift+Page Up Selects the column from the cursor position to the bottom of the screen

Ctrl+Alt+Shift+Right
Arrow

Selects the column to the right of the cursor

Ctrl+Backspace Deletes the word to the right of the cursor

Ctrl+Del Deletes a currently selected block

Ctrl+Down Arrow Scrolls down one line

Ctrl+End Moves to the end of a file

Ctrl+Enter Opens file at cursor

Ctrl+Home Moves to the top of a file

Ctrl+I Inserts a tab character

Ctrl+J Templates pop-up menu

Ctrl+Left Arrow Moves one word left

Ctrl+N Inserts a new line

Ctrl+O+C Turns on column blocking

Ctrl+O+K Turns off column blocking

Ctrl+O+O Insert compiler options

3.3 Keyboard Mappings RAD Studio (Common) IDE Classic Keyboard Shortcuts

1071

3

Ctrl+P Causes next character to be interpreted as an ASCII sequence

Ctrl+PgDn Moves to the bottom of a screen

Ctrl+PgUp Moves to the top of a screen

Ctrl+Right Arrow Moves one word right

Ctrl+Shift+C Invokes class completion for the class declaration in which the cursor is positioned

Ctrl+Shift K+A Expands all blocks of code

Ctrl+Shift K+E Collapses a block of code

Ctrl+Shift K+O Toggles between enabling and disabling Code Folding

Ctrl+Shift K+T Toggles the current block between collapsed and expanded

Ctrl+Shift K+U Expands a block of code

Ctrl+Shift+End Selects from the cursor position to the end of the current file

Ctrl+Shift+G Inserts a new Globally Unique Identifier (GUID)

Ctrl+Shift+Home Selects from the cursor position to the start of the current file

Ctrl+Shift+I Indents block

Ctrl+Shift+Left Arrow Selects the word to the left of the cursor

Ctrl+Shift+PgDn Selects from the cursor position to the bottom of the screen

Ctrl+Shift+PgUp Selects from the cursor position to the top of the screen

Ctrl+Shift+Right Arrow Selects the word to the right of the cursor

Ctrl+Shift+space bar Code Parameters pop-up window

Ctrl+Shift+Tab Moves to the previous code page (or file)

Ctrl+Shift+Tab Moves to the previous page

Ctrl+Shift+U Outdents block

Ctrl+Shift+Y Deletes to the end of a line

Ctrl+space bar Code Completion pop-up window

Ctrl+T Deletes a word

Ctrl+Tab Moves to the next code page (or file)

Ctrl+Up Arrow Scrolls up one line

Ctrl+Y Deletes a line

F1 Displays Help for the selected fully qualified namespace

Shift+Alt+arrow Selects column-oriented blocks

Shift+Backspace Deletes the character to the left of the cursor

Shift+Down Arrow Moves the cursor down one line and selects from the right of the starting cursor position

Shift+End Selects from the cursor position to the end of the current line

Shift+Enter Inserts a new line with a carriage return

Shift+Home Selects from the cursor position to the start of the current line

Shift+Left Arrow Selects the character to the left of the cursor

Shift+PgDn Moves the cursor down one line and selects from the right of the starting cursor position

Shift+PgUp Moves the cursor up one screen and selects from the left of the starting cursor position

Shift+Right Arrow Selects the character to the right of the cursor

IDE Classic Keyboard Shortcuts RAD Studio (Common) 3.3 Keyboard Mappings

1072

3

Shift+Space Inserts a blank space

Shift+Tab Moves the cursor to the left one tab position

Shift+Up Arrow Moves the cursor up one line and selects from the left of the starting cursor position

3.3.4 Default Keyboard Shortcuts

The following table lists the Default Mapping keyboard shortcuts for the Code Editor.

Note: Keyboard shortcuts that include the CTRL+ALT

key combination are disabled when the Use CTRL+ALT Keys option is unchecked on the Tools Options Editor
Options Key Mappings page.

Shortcut Action

Alt+[Finds the matching delimiter (forward).

Alt+] Finds the matching delimiter (backward).

Alt+Left Arrow Go back after Alt+Up Arrow or Ctrl+Click (go to declaration) operation.

Alt+F7 Go to previous error or message in Message View.

Alt+F8 Go to next error / message in Message View.

Alt+Page Down Goes to the next tab.

Alt+Page Up Goes to the previous tab.

Alt+Right Arrow Go forward after Alt+Left Arrow operation.

Alt+Shift+Down Arrow Moves the cursor down one line and selects the column from the left of the starting cursor position.

Alt+Shift+End Selects the column from the cursor position to the end of the current line.

Alt+Shift+Home Selects the column from the cursor position to the start of the current line.

Alt+Shift+Left Arrow Selects the column to the left of the cursor.

Alt+Shift+Page Down Moves the cursor down one line and selects the column from the right of the starting cursor position.

Alt+Shift+Page Up Moves the cursor up one screen and selects the column from the left of the starting cursor position.

Alt+Shift+Right Arrow Selects the column to the right of the cursor.

Alt+Shift+Up Arrow Moves the cursor up one line and selects the column from the left of the starting cursor position.

Alt+Up Arrow Go to declaration.

Click+Alt+mousemove Selects column-oriented blocks.

Ctrl+/ Adds or removes // to each line in the selected code block to comment the code.

Ctrl+Alt+F12 Display a drop down list of open files.

Ctrl+Alt+Shift+End Selects the column from the cursor position to the end of the current file.

Ctrl+Alt+Shift+Home Selects the column from the cursor position to the start of the current file.

Ctrl+Alt+Shift+Left
Arrow

Selects the column to the left of the cursor.

Ctrl+Alt+Shift+Page
Down

Selects the column from the cursor position to the top of the screen.

3.3 Keyboard Mappings RAD Studio (Common) Default Keyboard Shortcuts

1073

3

Ctrl+Alt+Shift+Page Up Selects the column from the cursor position to the bottom of the screen.

Ctrl+Alt+Shift+Right
Arrow

Selects the column to the right of the cursor.

Ctrl+Backspace Deletes the word to the right of the cursor.

Ctrl+Click Go to declaration.

Ctrl+Del Deletes a currently selected block.

Ctrl+Down Arrow Scrolls down one line.

Ctrl+End Moves to the end of a file.

Ctrl+Enter Opens file at cursor.

Ctrl+Home Moves to the top of a file.

Ctrl+I Inserts a tab character.

Ctrl+J Templates pop-up menu.

Ctrl+K+n Sets a bookmark, where n is a number from 0 to 9.

Ctrl+K+T Select word.

Ctrl+Left Arrow Moves one word left.

Ctrl+n Jumps to a bookmark, where n is the number of the bookmark, from 0 to 9.

Ctrl+N Inserts a new line.

Ctrl+O+C Turns on column blocking.

Ctrl+O+K Turns off column blocking.

Ctrl+O+L Turn on line blocking mode.

Ctrl+O+O Insert compiler options.

Ctrl+P Causes next character to be interpreted as an ASCII sequence.

Ctrl+PgDn Moves to the bottom of a screen.

Ctrl+PgUp Moves to the top of a screen.

Ctrl+Q+# Go to bookmark.

Ctrl+Right Arrow Moves one word right.

Ctrl+Shift+C Invokes class completion for the class declaration in which the cursor is positioned.

Ctrl+Shift+# Set bookmark.

Ctrl+Shift+B Display buffer list.

Ctrl+Shift+Down Arrow Jump between declaration and implementation.

Ctrl+Shift+Enter Find usages.

Ctrl+Shift+J SyncEdit.

Ctrl+Shift K+A Expands all blocks of code.

Ctrl+Shift K+C Collapses all classes.

Ctrl+Shift K+E Collapses a block of code.

Ctrl+Shift K+G Initializes/finalize or interface/implementation.

Ctrl+Shift K+M Collapses all methods.

Ctrl+Shift K+N Collapses namespace/Unit.

Ctrl+Shift K+O Toggles between enabling and disabling Code Folding.

Default Keyboard Shortcuts RAD Studio (Common) 3.3 Keyboard Mappings

1074

3

Ctrl+Shift K+P Collapses nested procedures.

Ctrl+Shift K+R Collapses all regions.

Ctrl+Shift K+T Toggles the current block between collapsed and expanded.

Ctrl+Shift K+U Expands a block of code.

Ctrl+Shift+End Selects from the cursor position to the end of the current file.

Ctrl+Shift+G Inserts a new Globally Unique Identifier (GUID).

Ctrl+Shift+Home Selects from the cursor position to the start of the current file.

Ctrl+Shift+I Indents block.

Ctrl+Shift+Left Arrow Selects the word to the left of the cursor.

Ctrl+Shift+P Plays a recorded keystroke macro.

Ctrl+Shift+PgDn Selects from the cursor position to the bottom of the screen.

Ctrl+Shift+PgUp Selects from the cursor position to the top of the screen.

Ctrl+Shift+R Toggles between starting and stopping the recording of a keystroke macro.

Ctrl+Shift+Right Arrow Selects the word to the right of the cursor.

Ctrl+Shift+space bar Code Parameters pop-up window.

Ctrl+Shift+T Create ToDo entry.

Ctrl+Shift+Tab Moves to the previous code page (or file).

Ctrl+Shift+Tab Moves to the previous page.

Ctrl+Shift+U Outdents block.

Ctrl+Shift+Up Arrow Jump between declaration and implementation.

Ctrl+Shift+Y Deletes to the end of a line.

Ctrl+space bar Code Completion pop-up window.

Ctrl+T Deletes a word.

Ctrl+Tab Moves to the next code page (or file).

Ctrl+Up Arrow Scrolls up one line.

Ctrl+Y Deletes a line.

F1 Displays Help for the selected fully qualified namespace.

Shift+Alt+arrow Selects column-oriented blocks.

Shift+Backspace Deletes the character to the left of the cursor.

Shift+Down Arrow Moves the cursor down one line and selects from the right of the starting cursor position.

Shift+End Selects from the cursor position to the end of the current line.

Shift+Enter Inserts a new line with a carriage return.

Shift+Home Selects from the cursor position to the start of the current line.

Shift+Left Arrow Selects the character to the left of the cursor.

Shift+PgDn Moves the cursor down one line and selects from the right of the starting cursor position.

Shift+PgUp Moves the cursor up one screen and selects from the left of the starting cursor position.

Shift+Right Arrow Selects the character to the right of the cursor.

Shift+Space Inserts a blank space.

Shift+Tab Moves the cursor to the left one tab position.

3.3 Keyboard Mappings RAD Studio (Common) Default Keyboard Shortcuts

1075

3

Shift+Up Arrow Moves the cursor up one line and selects from the left of the starting cursor position.

3.3.5 Epsilon Keyboard Shortcuts

The following table lists the Epsilon Mapping keyboard shortcuts for the Code Editor.

Note: Keyboard shortcuts that include the CTRL+ALT

key combination are disabled when the Use CTRL+ALT Keys option is unchecked on the Tools Options Editor
Options Key Mappings page.

Shortcut Action

Alt+) Locates the next matching delimiter (cursor must be on ')', '}' or ']')

Alt+? Displays context-sensitive Help

Alt+\ Deletes spaces and tabs around the cursor on the same line

Alt+Backspace Deletes the word to the left of the current cursor position

Alt+C Capitalizes the first letter of the character after the cursor and lowercases all other letters to the end
of the word

Alt+D Deletes to word to the right of the cursor

Alt+Del Deletes all text in the block between the cursor and the previous matching delimiter (cursor must be
on ')', '}' or ']')

Alt+L Converts the current word to lowercase

Alt+Shift+/ Displays context-sensitive Help

Alt+Shift+O Locates the next matching delimiter (cursor must be on ')', '}' or ']')

Alt+T Transposes the two words on either side of the cursor

Alt+Tab Indents to the current line to the text on the previous line

Alt+U Converts a selected word to uppercase or converts from the cursor position to the end of the word to
uppercase

Alt+X Invokes the specified command or macro

Backspace Deletes the character to the left of the current cursor position

Ctrl+/ Adds or removes // to each line in the selected code block to comment the code.

Ctrl+_ Displays context-sensitive Help

Ctrl+Alt+B Locates the next matching delimiter (cursor must be on ')', '}' or ']')

Ctrl+Alt+F Locates the previous matching delimiter (cursor must be on ')', '}' or ']')

Ctrl+Alt+H Deletes the word to the left of the current cursor position

Ctrl+Alt+K Deletes all text in the block between the cursor and the next matching delimiter (cursor must be on ')',
'}' or ']')

Ctrl+D Deletes the currently selected character or character to the right of the cursor

Ctrl+H Deletes the character to the left of the current cursor position

Ctrl+K Cuts the contents of line and places it in the clipboard

Ctrl+L Centers the active window

Epsilon Keyboard Shortcuts RAD Studio (Common) 3.3 Keyboard Mappings

1076

3

Ctrl+M Inserts a carriage return

Ctrl+O Inserts a new line after the cursor

Ctrl+Q Interpret next character as an ASCII code

Ctrl+R Incrementally searches backward through the current file

Ctrl+S Incrementally searches for a string entered from the keyboard

Ctrl+Shift+- Displays context-sensitive Help

Ctrl+Shift+C Invokes class completion for the class declaration in which the cursor is positioned

Ctrl+T Transposes the two characters on either side of the cursor

Ctrl+X+, Browses the symbol at the cursor

Ctrl+X+0 Deletes the contents of the current window

Ctrl+X+Ctrl+E Invoke a command processor

Ctrl+X+Ctrl+T Transposes the two lines on either side of the cursor

Ctrl+X+Ctrl+X Exchanges the locations of the cursor position and a bookmark

Ctrl+X+I Inserts the contents of a file at the cursor

Ctrl+X+N Displays the next window in the buffer list

Ctrl+X+P Displays the previous window in the buffer list

Esc+) Locates the next matching delimiter (cursor must be on ')', '}' or ']')

Esc+? Displays context-sensitive Help

Esc+\ Deletes spaces and tabs around the cursor on the same line

Esc+BackSpace Deletes the word to the left of the current cursor position

Esc+C Capitalizes the first letter of the character after the cursor and lowercases all other letters to the end
of the word

Esc+Ctrl+B Locates the next matching delimiter (cursor must be on ')', '}' or ']')

Esc+Ctrl+F Locates the previous matching delimiter (cursor must be on ')', '}' or ']')

Esc+Ctrl+H Deletes the word to the left of the current cursor position

Esc+Ctrl+K Deletes all text in the block between the cursor and the next matching delimiter (cursor must be on ')',
'}' or ']')

Esc+D Deletes to word to the right of the cursor

Esc+Del Deletes all text in the block between the cursor and the previous matching delimiter (cursor must be
on ')', '}' or ']')

Esc+End Displays the next window in the buffer list

Esc+Home Displays the previous window in the buffer list

Esc+L Converts the current word to lowercase

Esc+T Transposes the two words on either side of the cursor

Esc+Tab Indents to the current line to the text on the previous line

Esc+U Converts a selected word to uppercase or converts from the cursor position to the end of the word to
uppercase

Esc+X Invokes the specified command or macro

F2 Invokes the specified command or macro

3.3 Keyboard Mappings RAD Studio (Common) Visual Basic Keyboard Shortcuts

1077

3

3.3.6 Visual Basic Keyboard Shortcuts

The following table lists the Visual Basic Mapping keyboard shortcuts for the Code Editor.

Note: Keyboard shortcuts that include the CTRL+ALT

key combination are disabled when the Use CTRL+ALT Keys option is unchecked on the Tools Options Editor
Options Key Mappings page.

Alt+[Finds the matching delimiter (forward)

Alt+] Finds the matching delimiter (backward)

Alt+F12 Browse symbol at cursor (Delphi)

Alt+Page Down Goes to the next tab

Alt+Page Up Goes to the previous tab

Alt+Shift+Backspace Edit|Redo

Alt+Shift+Down Arrow Moves the cursor down one line and selects the column from the left of the starting cursor position

Alt+Shift+End Selects the column from the cursor position to the end of the current line

Alt+Shift+Home Selects the column from the cursor position to the start of the current line

Alt+Shift+Left Arrow Selects the column to the left of the cursor

Alt+Shift+Page Down Moves the cursor down one line and selects the column from the right of the starting cursor position

Alt+Shift+Page Up Moves the cursor up one screen and selects the column from the left of the starting cursor position

Alt+Shift+Right Arrow Selects the column to the right of the cursor

Alt+Shift+Up Arrow Moves the cursor up one line and selects the column from the left of the starting cursor position

Backspace Deletes the character to the left of the cursor

Ctrl+Alt+Shift+End Selects the column from the cursor position to the end of the current file

Ctrl+Alt+Shift+Home Selects the column from the cursor position to the start of the current file

Ctrl+Alt+Shift+Left
Arrow

Selects the column to the left of the cursor

Ctrl+Alt+Shift+Page
Down

Selects the column from the cursor position to the top of the screen

Ctrl+Alt+Shift+Page Up Selects the column from the cursor position to the bottom of the screen

Ctrl+Alt+Shift+Right
Arrow

Selects the column to the right of the cursor

Ctrl+Backspace Deletes the word to the left of the cursor

Ctrl+F4 Closes the current page

Ctrl+G Open file at cursor

Ctrl+j Templates pop-up menu

Ctrl+K+C Adds or removes // to each line in the selected code block to comment the code.

Ctrl+K+E Converts the word under the cursor to lower case

Ctrl+K+F Converts the word under the cursor to upper case

Ctrl+L Deletes a line

Visual Basic Keyboard Shortcuts RAD Studio (Common) 3.3 Keyboard Mappings

1078

3

Ctrl+P Causes next character to be interpreted as an ASCII sequence

Ctrl+Q+[Finds the matching delimiter (forward)

Ctrl+Q+] Finds the matching delimiter (backward)

Ctrl+Q+Ctrl+[Finds the matching delimiter (forward)

Ctrl+Q+Ctrl+] Finds the matching delimiter (backward)

Ctrl+Q+Y Deletes to the end of a line

Ctrl+Shift+C Invokes class completion for the class declaration in which the cursor is positioned

Ctrl+Shift+End Selects from the cursor position to the end of the current file

Ctrl+Shift+Home Selects from the cursor position to the start of the current file

Ctrl+Shift+Left Arrow Selects the word to the left of the cursor

Ctrl+Shift+PgDn Selects from the cursor position to the bottom of the screen

Ctrl+Shift+PgUp Selects from the cursor position to the top of the screen

Ctrl+Shift+Right Arrow Selects the word to the right of the cursor

Ctrl+Shift+Tab Displays the previous window in the buffer list

Ctrl+T Deletes the word to the left of the cursor

Ctrl+Tab Displays the next window in the buffer list

Ctrl+y Deletes a line

Ctrl+Y Deletes to the end of a line

Delete Deletes a character or block at the cursor

Enter Inserts a new line character

Insert Toggles insert mode

Shift+Backspace Deletes the character to the left of the cursor

Shift+Down Arrow Moves the cursor down one line and selects from the right of the starting cursor position

Shift+End Selects from the cursor position to the end of the current line

Shift+Enter Inserts a new line character

Shift+Home Selects from the cursor position to the start of the current line

Shift+Left Arrow Selects the character to the left of the cursor

Shift+PgDn Moves the cursor down one line and selects from the right of the starting cursor position

Shift+PgUp Moves the cursor up one screen and selects from the left of the starting cursor position

Shift+Right Arrow Selects the character to the right of the cursor

Shift+Space Inserts a blank space

Shift+Up Arrow Moves the cursor up one line and selects from the left of the starting cursor position

Tab Inserts a tab character

3.3.7 Visual Studio Keyboard Shortcuts

The following table lists the Visual Studio Mapping keyboard shortcuts for the Code Editor.

3.3 Keyboard Mappings RAD Studio (Common) Visual Studio Keyboard Shortcuts

1079

3

Note: Keyboard shortcuts that include the CTRL+ALT

key combination are disabled when the Use CTRL+ALT Keys option is unchecked on the Tools Options Editor
Options Key Mappings page.

Shortcut Action

Alt+[Finds the matching delimiter (forward)

Alt+] Finds the matching delimiter (backward)

Alt+Backspace Edit|Undo

Alt+F12 Browse symbol at cursor (Delphi)

Alt+Page Down Goes to the next tab

Alt+Page Up Goes to the previous tab

Alt+Shift+Backspace Edit|Redo

Alt+Shift+Down Arrow Moves the cursor down one line and selects the column from the left of the starting cursor position

Alt+Shift+End Selects the column from the cursor position to the end of the current line

Alt+Shift+Home Selects the column from the cursor position to the start of the current line

Alt+Shift+Left Arrow Selects the column to the left of the cursor

Alt+Shift+Page Down Moves the cursor down one line and selects the column from the right of the starting cursor position

Alt+Shift+Page Up Moves the cursor up one screen and selects the column from the left of the starting cursor position

Alt+Shift+Right Arrow Selects the column to the right of the cursor

Alt+Shift+Up Arrow Moves the cursor up one line and selects the column from the left of the starting cursor position

Ctrl+Alt+Shift+End Selects the column from the cursor position to the end of the current file

Ctrl+Alt+Shift+Home Selects the column from the cursor position to the start of the current file

Ctrl+Alt+Shift+Left
Arrow

Selects the column to the left of the cursor

Ctrl+Alt+Shift+Page
Down

Selects the column from the cursor position to the top of the screen

Ctrl+Alt+Shift+Page Up Selects the column from the cursor position to the bottom of the screen

Ctrl+Alt+Shift+Right
Arrow

Selects the column to the right of the cursor

Ctrl+F4 Closes the current page

Ctrl+J Templates pop-up menu

Ctrl+K+C Adds or removes // to each line in the selected code block to comment the code.

Ctrl+K+E Converts the word under the cursor to lower case

Ctrl+K+F Converts the word under the cursor to upper case

Ctrl+L Search|Search Again

Ctrl+P Causes next character to be interpreted as an ASCII sequence

Ctrl+Q+[Finds the matching delimiter (forward)

Ctrl+Q+] Finds the matching delimiter (backward)

Ctrl+Q+Ctrl+[Finds the matching delimiter (forward)

Ctrl+Q+Ctrl+] Finds the matching delimiter (backward)

Ctrl+Q+Y Deletes to the end of a line

Visual Studio Keyboard Shortcuts RAD Studio (Common) 3.3 Keyboard Mappings

1080

3

Ctrl+Shift+C Invokes class completion for the class declaration in which the cursor is positioned

Ctrl+Shift+End Selects from the cursor position to the end of the current file

Ctrl+Shift+Home Selects from the cursor position to the start of the current file

Ctrl+Shift+Left Arrow Selects the word to the left of the cursor

Ctrl+Shift+PgDn Selects from the cursor position to the bottom of the screen

Ctrl+Shift+PgUp Selects from the cursor position to the top of the screen

Ctrl+Shift+Right Arrow Selects the word to the right of the cursor

Ctrl+Shift+Tab Displays the previous window in the buffer list

Ctrl+T Deletes the word to the left of the cursor

Ctrl+Tab Displays the next window in the buffer list

Ctrl+Y Deletes to the end of a line

Shift+Down Arrow Moves the cursor down one line and selects from the right of the starting cursor position

Shift+End Selects from the cursor position to the end of the current line

Shift+Enter Inserts a new line character

Shift+Home Selects from the cursor position to the start of the current line

Shift+Left Arrow Selects the character to the left of the cursor

Shift+PgDn Moves the cursor down one line and selects from the right of the starting cursor position

Shift+PgUp Moves the cursor up one screen and selects from the left of the starting cursor position

Shift+Right Arrow Selects the character to the right of the cursor

Shift+Space Inserts a blank space

Shift+Up Arrow Moves the cursor up one line and selects from the left of the starting cursor position

3.3 Keyboard Mappings RAD Studio (Common) Visual Studio Keyboard Shortcuts

1081

3

3.4 Command Line Switches and File Extensions
The following topic lists the IDE command line switches and options.

Topics

Name Description

IDE Command Line Switches and Options (see page 1082) Describes available options when starting the IDE from the command line.

File Extensions of Files Generated by RAD Studio (see page 1084) The following table lists the extensions of files generated by RAD Studio.
Note: MSBuild requires that the extension for all project files end in 'proj' (that is,
MSBuild uses the mask *.*proj).

3.4.1 IDE Command Line Switches and Options

Describes available options when starting the IDE from the command line.

IDE command line switches

The following options are available when starting the IDE from the command line. You must precede all options (unless
otherwise noted) with either a dash (-) or a slash (/). The options are not case-sensitive. Therefore, the following options are all
identical:

-d /d -D /D.

Use the IDE command line switches with the IDE startup command: bds.exe

For example:

Code Does this

bds.exe -ns Starts the RAD Studio IDE with no splash screen.

bds.exe
‑sdc:\test\source
-d c:\test\myprog.exe
\mbox{-}td

Starts the RAD Studio IDE and loads c:\test\myprog.exe into the debugger and uses c:\test\source
as the location for the source code while debugging. The -td and any other argument that appears
after the debugger option (-dexename) is used as an argument to c:\test\myprog.exe.

General options

Option Description

? Launches the IDE and displays online help for IDE command-line options.

-- (two hyphens) Ignore rest of command-line.

ns No splash screen. Suppresses display of the splash screen during IDE startup.

np No welcome page. Does not display the welcome page after starting the IDE.

ppersonality Starts the specified personality of the RAD Studio IDE. The possible values for personality are:
Delphi

CBuilder

DelphiDotNet

IDE Command Line Switches and Options RAD Studio (Common) 3.4 Command Line Switches and File

1082

3

rregkey Allows you to specify an alternate base registry key so you can run two copies of the IDE using
different configurations. This allows component developers to debug a component at design-time by
using the IDE as the hosting application without the debugging IDE interfering by trying to load the
component package being developed.

Debugger options

Option Description

attach:%1;%2 Performs a debug attach, using %1 as the process ID to attach to and %2 as the event ID for that
process. The attach option can be used manually, but is used mostly for Just in Time debugging.

dexename Loads the specified executable (exename) into the debugger. Any parameters specified after the
exename are used as parameters to the program being debugged and are ignored by the IDE. A
space is allowed between the -d and the exename.

The following options can only be used with the -d option:

debugger=[borwin32|
bordotnet]

Indicates which debugger to use.

• Borwin32 invokes the CodeGear Win32 Debugger.

• Bordotnet invokes the CodeGear .NET Debugger.

If this option is omitted, the debugger that was first registered in the IDE is used. You can use this
particular switch with the attach option as well as the -d option.

l (Lowercase L) Assembler startup. Do not execute startup code. Must be used with the d option.
Normally, when you specify the -d option, the debugger attempts to run the process to either main or
WinMain. When -l is specified, the process is merely loaded and no startup code is executed.

sddirectories Source Directories. Must be used with the -d option. The argument is either a single directory or a
semicolon delimited list of directories which are used as the Debug Source Path setting (can also be
set using the Project Options Debugger page). No space is allowed between sd and the
directory list argument.

hhostname Remote debugger host name. Must be used with the -d option. A remote debug session is initiated
using the specified host name as the remote host where debugging is performed. The remote debug
server program must be running on the remote host.

tworkingdirectory Specifies a working directory for your debug session (corresponds to "Working directory" setting on
the Load Process dialog).

Project options

Option Description

filename (No preceding dash) The specified filename is loaded in the IDE. It can be a project, project group, or
a single file.

b AutoBuild. Must be used with the filename option. When the -b option is specified, the project or
project group is built automatically when the IDE starts. Any hints, errors, or warnings are then saved
to a file. Then the IDE exits. This facilitates doing builds in batch mode from a batch file. The Error
Level is set to 0 for successful builds and 1 for failed builds. By default, the output file has the same
name as the filename specified with the file extension changed to .err. This can be overridden using
the -o option.

m AutoMake. Same as AutoBuild, but a make is performed rather than a full build.

ooutputfile Output file. Must be used the -b or -m option. When the -o option is specified, any hints, warnings,
or errors are written to the file specified instead of the default file.

3.4 Command Line Switches and File RAD Studio (Common) File Extensions of Files Generated by RAD

1083

3

3.4.2 File Extensions of Files Generated by RAD Studio

The following table lists the extensions of files generated by RAD Studio.

Note: MSBuild requires that the extension for all project files end in 'proj' (that is, MSBuild uses the mask *.*proj).

File
Extension

Description

app.config Dynamic properties and their values for .NET Windows applications.

asax,
ascx,
asmx,
aspx

ASP.NET application files.

bdsproj Project options file for BDS 2006 and earlier. Contains the current settings for project options, such as compiler
and linker settings, directories, conditional directives, and command-line parameters. Set these options using
Project Options.

bdsgroup Project group for BDS 2006 and earlier products.

bpk Source file for a C++ Builder package; produces a .bpl file when compiled and linked.

bpl A compiled Delphi package or a compiled C++ package (see also .dpk).

bpr C++ Builder project source; when compiled, produces .exe, .dll or .ocx file.

cbproj C++ project. This is not 'cproj', which is a VS.NET C++ project.

cfg Project configuration file used for command line compiles. The compiler searches for a dcc32.cfg in the
compiler executable directory, then for dcc32.cfg in the current directory, and then finally for
projectname.cfg in the project directory. You can type dcc32 projectname on the command line and
compile the project with same options specified in the IDE.

config Config files contain project option information and build logic. Each project has a .config file.

cpp C++ source file.

cs The code-behind file for ASP.NET; also a C# source code file.

csm C++ precompiled header file.

csproj C# project, in keeping with MSBuild convention.

dci Holds Code Insight changes you make in the IDE.

dcp Contains all compile and link information for a Delphi package in the same way that a .dcu file has this information
for a .pas file. Use this file if building with runtime packages.

dcpil Delphi.NET compiled CLR import. Same as .dcp file for .NET.

dcu Delphi compiled unit. An intermediate compiler output file produced for each Win32 unit's source code. You do not
need to open these binary files or distribute them with your application. The .dcu file enables rapid compiling and
linking.

dcuil An intermediate compiler output file produced for each .NET unit's source code. Same as .dcu file for .NET.

delphi.dct Component template changes you make in the IDE.

dfm A Windows VCL form file.

dpk The source file for a Delphi package. When compiled, produces a .bpl file.

dpr Delphi project source; when compiled produces .exe, .dll, or .ocx file.

File Extensions of Files Generated by RAD RAD Studio (Common) 3.4 Command Line Switches and File

1084

3

dproj Delphi project for both native and .NET.

dsk File used to save the desktop when the Autosave Project desktop option is On.

dst File used to save the desktop speed setting as set in the IDE toolbar desktop combo box.

exe Executable file.

exe.incr Incremental build information.

groupproj Project group.

h C++ header source file.

hpp Pascal generated C++ header file.

i C++ preprocessor output (not saved by default). Each .cpp and all of its included headers are preprocessed into a
.i file,

identcache Information used for refactoring.

il? C++ incremental linking state file.

nfm A .NET VCL form file.

nfn A file maintained by the Translation Tools, containing translated strings and other data displayed in the Translation
Manager. There is a separate .nfn file for each form in your application and each target language.

obj C++ compiled translation unit. Each .cpp and all of its included header are compiled into a resultant .obj file.

optset Named option set file that stores configuration options, separately from projects.

pas Delphi (Pascal) source code file.

pdb Contains project debugging information for .NET.

res, rc Compiled and uncompiled resource files.

resources A binary resource file that can be embedded in a runtime executable or compiled into satellite assembly for .NET.

resx An XML resource file containing nodes that represent objects and strings for .NET.

rsp Response file used by the C++ linker.

targets Targets file, an MSBuild-compliant XML file you add to your project to allow customizing the build process. It
contains MSBuild scripts among other information.

tlb Type library.

todo The project to-do list.

tvsconfig Modeling configuration file.

txvpck,
txvcls

Information for model diagram.

vproj Visual Basic projects, in keeping with VS.NET and MSBuild convention.

web.config Dynamic properties and their values for ASP.NET applications.

#nn #nn = #00, #01, #02, and so forth. C++ precompiled header file.

See Also

Packages and Standard DLLs

3.4 Command Line Switches and File RAD Studio (Common) File Extensions of Files Generated by RAD

1085

3

3.5 Together Reference
This section contains links to the reference material for UML modeling with Together.

Topics

Name Description

Together Configuration Options (see page 1086) This section describes UML modeling options.

Together Keyboard Shortcuts (see page 1104) Together enables you to perform many diagram actions without using the mouse.
You can navigate between diagrams, create diagram elements, and more, using
the keyboard only.

GUI Components for Modeling (see page 1105) This section describes GUI components of the RAD Studio interface you use for
UML modeling.

Together Refactoring Operations (see page 1115) The following refactoring operations are available in Together:
Refactoring operations

Project Types and Formats with Support for Modeling (see page 1116) There are two basic project types:

• Design project. Project file extension:
.bdsproj.tgproj. These projects are language-neutral
and comply with one of the two versions of UML
specifications: UML 1.5 or UML 2.0.

• Implementation project. Project file extension:
.bdsproj.csproj (Visual C# .NET), and .vbproj
(Visual Basic .NET). You can create models for
language-specific projects. Modeling that complies with
UML 1.5 specification is supported for C# and
DelphiVisual Basic .NET projects. Together modeling
features are automatically activated for these projects.

The set of available project types depends on your license.
Together Designer is required to work with... more (see
page 1116)

UML 1.5 Reference (see page 1116) This section contains reference material about UML 1.5 diagrams.

Together Glossary (see page 1139) This topic contains a dictionary of specific terms used in Together user interface
and documentation. This dictionary is sorted alphabetically.

UML 2.0 Reference (see page 1140) This section contains reference material about UML 2.0 diagrams.

Together Wizards (see page 1158) This section describes wizards used for UML modeling.

3.5.1 Together Configuration Options

This section describes UML modeling options.

Together Configuration Options RAD Studio (Common) 3.5 Together Reference

1086

3

Topics

Name Description

Configuration Levels (see page 1088) The configuration options apply to the four hierarchical levels. Each level
contains a number of categories, or groups, of options.
The configuration options can be specified at the following levels:

• Default: Options at this level apply to all the current
projects and project groupsolutions, as well as newly
created ones. Diagram options apply to newly created
diagrams within these projects and project groupsolutions.
All options are available at this level.

• Project groupSolution: Options at this level apply to the
current project groupsolution. Diagram options apply to
newly created diagrams within this... more (see page
1088)

Together Option Categories (see page 1088) This section describes modeling option categories.

Option Value Editors (see page 1101) To edit an option, click the value field to invoke the appropriate value editor.
There are several types of value editors:

• In-line text editor. To edit a value in a text field, type the
new value. Changes are applied when you press Enter or
move the focus to another field.

• Combo box or list box. Clicking a box field reveals the
list of possible values. Select the required value from the
list.

• Dialog box. Clicking a dialog box field reveals the button
that opens the dialog box. Specify the required values and
click OK to apply changes.... more (see page 1101)

Together Sequence Diagram Roundtrip Options (see page 1102) Tools Options Together Various Roundtrip Options
Descriptions for sequence diagram roundtrip options.
The Sequence Diagram Roundtrip options apply to generating sequence
diagrams from source code and generating source code from a sequence
diagram. The table below lists the Sequence Diagram Roundtrip options,
descriptions, and default values.

Together Source Code Options (see page 1103) Tools Options Together Various Source Code
Descriptions for source code options.
The Source Code options allows you to control whether dependency links are
drawn automatically on diagrams. The table below lists the Source Code general
options, descriptions, and default values.

System macros (see page 1103) The following system macros can be used inside the text of some options:

• TIME: current time

• LONGTIME: current time (long format)

• DATE: current date

• LONGDATE: current date (long format)

• PROJECT: project name

• DIAGRAM: diagram name

• USER: user name

• COMP: computer name

For example, if you use: Project: %PROJECT%,
diagram: %DIAGRAM%

It prints in the footer as: Project: Project1, diagram:
DgrClass1

3.5 Together Reference RAD Studio (Common) Together Configuration Options

1087

3

3.5.1.1 Configuration Levels
The configuration options apply to the four hierarchical levels. Each level contains a number of categories, or groups, of options.

The configuration options can be specified at the following levels:

• Default: Options at this level apply to all the current projects and project groupsolutions, as well as newly created ones.
Diagram options apply to newly created diagrams within these projects and project groupsolutions. All options are available at
this level.

• Project groupSolution: Options at this level apply to the current project groupsolution. Diagram options apply to newly
created diagrams within this project groupsolution. All options are available at this level.

• Project: Options at this level apply to the current project. Diagram options apply to newly created diagrams within this project.
All options except the Model View category are available at this level.

• Diagram: Options at this level apply to the current diagram. The Diagram options category is only available at this level.

See Also

Configuring Together (see page 183)

Options Dialog Window (see page 969)

3.5.1.2 Together Option Categories
This section describes modeling option categories.

Topics

Name Description

Together Diagram Appearance Options (see page 1089) Tools Options Together Various Diagram Appearance
Descriptions for diagram appearance options.
The Diagram options enable you to control a number of default behaviors and
appearances of diagrams. The table below lists the Appearance options,
descriptions, and default values.

Together Diagram Layout Options (see page 1091) Tools Options Together Various Diagram Layout
Descriptions for diagram layout options.
Layout options define the alignment of diagram elements.

Together Diagram Print Options (see page 1094) Tools Options Together Various Diagram Print
Descriptions for diagram print options.
The Print options define default settings that apply to your printed diagrams.
Note that after these settings are applied to the printed material, OS-specific and
printer-specific settings will be applied as well.
The tables below list the Print options, descriptions, and default values.

Together Diagram View Filters Options (see page 1096) Tools Options Together Various Diagram View Management
Descriptions for view filters options.
The View Filter group of options provide a set of filters that enable you to control
the type of data displayed in different views of a model.
The View Filters options control what elements display on your class and
namespace (package) diagrams. The table below lists the filters, descriptions,
and default values.

Together General Options (see page 1098) Tools Options Together Various General
Descriptions for general options.
The General options allow you to customize certain behaviors in the user
interface that do not pertain to any other specific category of options such as
Diagram or View Filters. The table below lists the General options, descriptions,
and default values.

Together Configuration Options RAD Studio (Common) 3.5 Together Reference

1088

3

Together Generate Documentation Options (see page 1099) Tools Options Together Various Generate Documentation
Descriptions for generate documentation options.
The Generate Documentation options control the variety of content (as well as
appearance) to include or exclude from your generated HTML documentation.
The table below lists the Generate Documentation options, descriptions, and
default values.

Together Model View Options (see page 1101) Tools Options Together Various Model View
Descriptions for Model View options.
The Model View options control how diagram content displays in the Model
View. The table below lists the Model View general options, descriptions, and
default values.

3.5.1.2.1 Together Diagram Appearance Options
Tools Options Together Various Diagram Appearance

Descriptions for diagram appearance options.

The Diagram options enable you to control a number of default behaviors and appearances of diagrams. The table below lists
the Appearance options, descriptions, and default values.

General group
Options

Description and default value

Custom diagram
background color

This parameter controls the background color of diagrams, if the Use default background color option
is set to false.

The default value is WhiteSmoke.

Diagram detail level This option controls the amount of information displayed for an element in a diagram. The default
value is Design.

• Design: Names and types (visibility signs are shown).

• Analysis: Names only (no visibility signs)

• Implementation: Names and types, parameters for the methods, and initial values of attributes
(visibility signs are shown).

Font in diagrams This option defines the font and font size that is used in printed diagrams.

The default value is Arial, 9.75pt.

Wrap text in nodes This option controls whether the text displayed in a node automatically continues on the next line
when it reaches the right border of the node. If set to False, the rest of the text is not displayed.

The default value is True.

Maximum width of text
labels (pixels)

This setting specifies a width limit for all text labels outside nodes (for example, link labels). The text
automatically continues on the next line when it reaches this limit. If set to 0, the text is always
displayed in a single line.

The default value is 200.

Member format This option controls the format of members in class diagrams.

The default value is UML.

UML Methods (functions) are displayed as <name> (parameters) : <type>. Fields are displayed as
<name> : type>

Language Methods in C# are displayed as <type> <name>. Fields in C# are displayed as <type> <name>.
Functions in Visual Basic are displayed as <name> (parameters) As <type>. Fields in Visual
Basic are displayed as <name> As <type>.

3.5 Together Reference RAD Studio (Common) Together Configuration Options

1089

3

Show page borders This option controls whether to show gray borders that represent page margins in the Diagram View
and Overview.

The default value is False.

Use default
background color

This parameter controls whether the system background color is used in diagrams. If this parameter
is true, then background color is defined according to the current Windows color scheme. If this
parameter is false, the background color is defined by the Custom diagram background color
parameter (see above).

The default value is True.

Grid group Options Description and default value

Grid color This parameter defines the color of the diagram grid.

The default value is LightGray.

Grid height (in pixels) This option enables you to specify the exact height of grid squares in pixels.

The default value is 10.

Grid style This parameter controls whether the grid is displayed as dotted or solid lines.

The default value is Lines.

Grid width (in pixels) This option enables you to specify the exact width of grid squares in pixels.

The default value is 10.

Show grid If this option is true, a design grid is visible in the background behind diagrams.

The default value is True.

Snap to grid If this option is true, diagram elements "snap" to the nearest coordinate of the diagram background
design grid. The snap function works whether the grid is visible or not.

The default value is True.

Nodes group Options Description and default value

3D look If this option is true, a shadow appears under each diagram element to create a three-dimensional
effect.

The default value is True.

Show compartments as
line

If this option is true, a control bar displays over the compartments of selected diagram elements
(fields, methods, classes, and properties). The compartments are represented as expandable nodes
that can be opened or closed by a mouse click.

The default value is True.

Show imported classes
with fully qualified
names

This parameter controls whether imported class names are shown in the fully qualified or short form.

The default value is True.

Show referenced class
names

With this parameter, you can optionally show or hide the name of the base class or interface in the
top-right corner of a classifier in the Diagram View. You can hide these references to simplify the
visual presentation of the project.

The default value is True.

Show referenced
classes with fully
qualified names

This parameter controls whether referenced class names are shown in the fully qualified or short form.

The default value is True.

Together Configuration Options RAD Studio (Common) 3.5 Together Reference

1090

3

Sort according to
positions in source code

Choose this option to sort fields, methods, subclasses and properties according to their positions in
the source code.

This option prevails over the others: if it is set to True, the options Sort elements alphabetically and
Sort elements by visibility are ignored.

Sort elements
alphabetically

This option controls the order of members displayed within elements on diagrams. If this option is
true, fields, methods, subclasses, and properties are sorted alphabetically within compartments.

The default value is True.

Sort elements by
visibility

This option controls the order of members displayed within elements on diagrams. If this option is
true, fields, methods, subclasses, and properties are sorted by visibility within compartments.

The default value is True.

UML In Color group
Options

Description and default value

Description stereotype This parameter controls the color of classifiers with the stereotype "description."

The default value is Light blue.

Mi-detail stereotype This parameter controls the color of classifiers with the stereotype "Mi-detail."

The default value is Light pink.

Moment-interval
stereotype

This parameter controls the color of classifiers with the stereotype "moment-interval."

The default value is Light pink.

Party stereotype This parameter controls the color of classifiers with the stereotype "party."

The default value is Light green.

Place stereotype This parameter controls the color of classifiers with the stereotype "place."

The default value is Light green.

Role stereotype This parameter controls the color of classifiers with the stereotype "role."

The default value is Yellow.

Thing stereotype This parameter controls the color of classifiers with the stereotype "thing."

The default value is Light green.

Enable UML in color This option controls if the color of a classifier depends on the stereotype assigned. For each
stereotype, you can select its individual color from the drop-down list (see above).

The default value is True.

See Also

Configuring Together (see page 183)

Options dialog window (see page 969)

3.5.1.2.2 Together Diagram Layout Options
Tools Options Together Various Diagram Layout

Descriptions for diagram layout options.

Layout options define the alignment of diagram elements.

3.5 Together Reference RAD Studio (Common) Together Configuration Options

1091

3

General group
Options

Description and default value

Layout algorithm UML diagrams can be thought of as graphs (with vertices and edges). Therefore, graph data
structures (algorithms) can be applied to the UML diagrams for diagram layout. Click the drop-down
arrow to select a layout algorithm. The various algorithms and their optional settings are described
below. The algorithm that you specify executes when choosing Layout Do full layout on the
diagram context menu. The following options are available:

· <autoselect>

· Hierarchical

· Together

· Tree

· Orthogonal

· Spring Embedder

The default value is Together.

Recursive layout This option is available for all layout algorithms. Selecting this option allows to layout all subelements
within containers while laying out diagram nodes, thus enabling to lay out inner substructure. This
option is useful for the composite states or components.

Hierarchical group
Options

Description and default value

Hybrid proportion
parameter

Used in conjunction with the Hybrid ordering heuristic. The optimal setting for this value is 0.7.

Inheritance This option defines how nodes are aligned with each other if they are connected by an inheritance
link.

Horizontal - Nodes connected by inheritance are aligned horizontally

Vertical - Nodes connected by inheritance are aligned vertically

Justification This option defines the adjustment of nodes. The Justification setting depends on the Inheritance
setting. Select from the following:

· Top: If the Inheritance option is set as Vertical, all nodes in a column are aligned at the left of the
column. If the Inheritance option is set as Horizontal, all nodes in a row are aligned at the top of the
row.

· Center: If the Inheritance option is set as Vertical, all nodes in a column are aligned at the center of
the column. If the Inheritance option is set as Horizontal, all nodes in a row are aligned at the center
of the row.

· Bottom: If the Inheritance option is set as Vertical, all nodes in a column are aligned at the right of
the column. If the Inheritance option is set as Horizontal, all nodes in a row are aligned at the bottom
of the row.

Layer ordering
heuristics

The heuristics are used to sort nodes among each layer to minimize edge-crossings:

· Barycenter: The Barycenter heuristic reorders the nodes on node N according to the barycenter
weight. The weight of node N is calculated as a simple average of all its successors/predecessors
relative coordinates.

· Median: The Median heuristic reorders the nodes on node N according to the median weight. The
weight of node N is calculated as a simple average of the relative positions of this node dealing only
with two central successors/predecessors coordinates.

· Hybrid: The Hybrid heuristic combines the Median and Barycenter heuristics.

Minimal horizontal /
vertical distance

Minimal allowed distance between elements in pixels. Here you can specify Vertical and Horizontal
distance options.

Together Configuration Options RAD Studio (Common) 3.5 Together Reference

1092

3

Together group
Options

Description and default value

Inheritance This option defines how nodes are aligned with each other if they are connected by an inheritance
link. Select either:

· From left to right - nodes connected by inheritance are aligned horizontally from left to right.

· From right to left - nodes connected by inheritance are aligned horizontally from right to left.

· From top to bottom - nodes connected by inheritance are aligned vertically from top to bottom.

· From bottom to top - nodes connected by inheritance are aligned vertically from bottom to top.

Justification This option defines the adjustment of nodes. The Justification setting depends on the Inheritance
setting. The elements are aligned as summarized in the following table:

Inheritance: Justification: Top:Center:Bottom:
Left-right Right of the columnCenter of the columnLeft of the column

Right-leftLeft of the columnCenter of the columnRight of the column

Top-bottomBottom of the rowCenter of the rowTop of the row

Bottom-topTop of the rowCenter of the rowBottom of the row

Tree group Option Description and default value

Hierarchy This option defines the hierarchy direction of the elements.

· Horizontal - Elements are aligned horizontally.

· Vertical - Elements are aligned vertically.

Reverse hierarchy The last in the hierarchy element is laid out first in the diagram.

Minimal horizontal (or:
vertical) distance

Distance between elements is in pixels. Here you can specify Vertical and Horizontal distance
options.

Justification This option defines the adjustment of elements. The Justification setting is dependent on the
Hierarchy direction setting. Select from the following:

· Top: If the Hierarchy direction option is set to Vertical, all nodes in a column are aligned at the left of
the column. If the Hierarchy direction option is set to Horizontal, all nodes in a row are aligned at the
top of the row.

· Center: If the Hierarchy direction option is set to Vertical, all nodes in a column are aligned at the
center of the column. If the Hierarchy direction option is set to Horizontal, all nodes in a row are
aligned at the center of the row.

· Bottom:If the Hierarchy direction option is set to Vertical, all nodes in a column are aligned at the
right of the column. If the Hierarchy direction option is set to Horizontal, all nodes in a row are aligned
at the bottom of the row.

Process non-tree edges If this option is selected, non-tree edges are bent to fit into the diagram layout.

3.5 Together Reference RAD Studio (Common) Together Configuration Options

1093

3

Orthogonal group
Options

Description and default value

Node placement
strategy

There are three strategies for node placement: Tree, Balanced, and Smart.

· Tree: The Tree node placement strategy creates a spanning-tree diagram layout. The spanning-tree
for the given graph is calculated and diagram nodes are placed on the lattice to minimize the tree
edges length. This minimizes the distance between nodes that are linked with a tree-edge.

· Balanced:The Balanced node placement strategy uses a balanced ordering of the vertices of the
graph as a starting point. Balanced means that the neighbors of each vertex V are as evenly
distributed to the left and right of V as possible.

· Smart:The Smart node placement strategy sorts all vertices according to the in/out degrees for each
vertex and fills the lattice starting from the center with the vertices with the greatest degree.

Distance between
elements

Distance is in pixels. Specifies the minimum distance between diagram elements.

Spring Embedder
group Options

Description and default value

Spring force Specify the rigidity of the springs. The greater value you specify, the less will be the length of edges
in the final graph.

Spring movement factor Specify the nodes movement factor. The more value you specify, the more distance will be between
the nodes in the final graph. If you specify 0 as the movement factor, you will get random layout of the
nodes.

See Also

Diagram Layout Overview (see page 92)

Configuring Together (see page 183)

Laying Out a Diagram (see page 202)

3.5.1.2.3 Together Diagram Print Options
Tools Options Together Various Diagram Print

Descriptions for diagram print options.

The Print options define default settings that apply to your printed diagrams.

Note that after these settings are applied to the printed material, OS-specific and printer-specific settings will be applied as well.

The tables below list the Print options, descriptions, and default values.

Appearance group
Options

Description and default value

Print compartments as
lines

When this option is true, a control bar displays over the compartments of diagram elements (fields,
methods, classes, properties, and so on). The compartment nodes are expanded in the printed
results.

The default value is False.

Print shadows When this option is true, a shadow appears under each diagram element in the printed results to
create a three-dimensional effect.

The default value is True.

Together Configuration Options RAD Studio (Common) 3.5 Together Reference

1094

3

Footer group Options Description and default value

Footer alignment This option enables you to select the footer alignment.

The default value is Left.

Footer text This option defines the text that is printed at the bottom of each page, if the Print footer option is true.

System macros can be used in the text. See System macros (see page 1103)

The default value is Printed by %USER% (%LONGDATE%).

Print footer If this option is true, the text specified in the Footer text option is printed at the bottom of each page.

The default value is True.

General print Options Description and default value

Fit to page If this option is true, the Print zoom setting is ignored, and the entire diagram prints on a single page.

The default value is False.

Font This option defines the font (and font size) used in printed diagrams.

The default value is Microsoft Sans Serif, 9.75pt.

Print border If this option is true, a border is printed around the edge of each page. The border corresponds to the
Margins settings.

The default value is True.

Print empty pages If this option is true, printing includes any blank pages that appear. If this option is false, blank pages
are skipped during printing.

The default value is False.

Print zoom This option defines the zoom factor for printing diagrams (1:1, 2:1, etc.). Think of the value 1 as being
equal to 100%. A value of 2 prints a diagram at 200%, while 0.5 prints it at 50%, and so on. Use the
decimal separator as defined in your regional settings.

The default value is 1.

Header group Options Description and default value

Header alignment This option enables you to select the header alignment.

The default value is Left.

Header text This option defines the text that is printed at the top of each page, if the Print header option is true.

System macros can be used in the text. See System macros (see page 1103).

The default value is %PROJECT%, %DIAGRAM%.

Print Header If this option is true, the text specified in the Header text option is printed at the top of each page.

The default value is True.

Margins group
Options

Description and default value

Bottom margin The bottom margin offset in inches. Use the decimal separator as defined in your regional settings.

The default value is 1.

Left margin The left margin offset in inches. Use the decimal separator as defined in your regional settings.

The default value is 1.

3.5 Together Reference RAD Studio (Common) Together Configuration Options

1095

3

Right margin The right margin offset in inches. Use the decimal separator as defined in your regional settings.

The default value is 1.

Top margin The top margin offset in inches. Use the decimal separator as defined in your regional settings.

The default value is 1.

Page numbers group
Options

Description and default value

Page number alignment This option enables you to select the page number alignment.

The default value is Left.

Print page numbers If this option is true, page numbers are printed.

The default value is True.

Paper group Options Description and default value

Custom paper height
(in inches)

This option defines custom paper dimensions for printing. Settings here are only effective if the Paper
size option is set to Custom.

The default value is 11.88.

Custom paper width (in
inches)

This option defines custom paper dimensions for printing. Settings here are only effective if the Paper
size option is set to Custom.

The default value is 8.4.

Paper orientation This option defines the orientation of the page. If a Custom paper size is selected, Portrait orientation
uses the width and height values specified in the Custom paper height and width settings, while
Landscape orientation exchanges the width and height values.

The default value is Portrait.

Paper size This option defines the default paper dimensions for printing. The list of choices includes the most
popular paper sizes. If you need to specify your own size, select Custom from the drop down list, and
define the dimensions in the Custom paper height and Custom paper width fields.

The default value is A4.

See Also

Configuring Together (see page 183)

Options dialog window (see page 969)

3.5.1.2.4 Together Diagram View Filters Options
Tools Options Together Various Diagram View Management

Descriptions for view filters options.

The View Filter group of options provide a set of filters that enable you to control the type of data displayed in different views of a
model.

The View Filters options control what elements display on your class and namespace (package) diagrams. The table below lists
the filters, descriptions, and default values.

Together Configuration Options RAD Studio (Common) 3.5 Together Reference

1096

3

Link filters group
Options

Description and default value

Show association links This filtering option controls showing/hiding association links in the current project. If it is set to true,
association links are displayed.

The default value is True.

Show dependency links This filtering option controls showing/hiding dependency links in the current project. If it is set to true,
dependency links are displayed.

The default value is True.

Show generalization
links

This filtering option controls showing/hiding generalization links in the current project. If it is set to
true, generalization links are displayed.

The default value is True.

Show implementation
links

This filtering option controls showing/hiding implementation links in the current project. If it is set to
true, implementation links are displayed.

The default value is True.

Member filters group
Options

Description and default value

Show fields This filtering option controls showing/hiding fields in the current project. If it is set to true, fields are
displayed.

The default value is True.

Show indexers This filtering option controls showing/hiding indexers in the current project. If it is set to true, indexers
are displayed.

The default value is True.

Show members This filtering option controls showing/hiding members in the current project. If it is set to true,
members are displayed.

The default value is True.

Show methods This filtering option controls showing/hiding methods in the current project. If it is set to true, methods
are displayed.

The default value is True.

Show non public
members

This filtering option controls showing/hiding nonpublic members in the current project. If it is set to
true, nonpublic members are displayed.

The default value is True.

Show properties This filtering option controls showing/hiding properties in the current project. If it is set to true,
properties are displayed.

The default value is True.

Node filters group
Options

Description and default value

Show classes This filtering option controls showing/hiding classes in the current project. If it is set to true, classes
are displayed.

The default value is True.

Show constraints This filtering option controls showing/hiding OCL constraints in the current project. If it is set to true,
constraints are displayed.

The default value is True.

3.5 Together Reference RAD Studio (Common) Together Configuration Options

1097

3

Show delegates This filtering option controls showing/hiding delegates in the current project. If it is set to true,
delegates are displayed.

The default value is True.

Show enumerations This filtering option controls showing/hiding enums in the current project. If it is set to true, enums are
displayed.

The default value is True.

Show events This filtering option controls showing/hiding events in the current project. If it is set to true, events are
displayed.

The default value is True.

Show interfaces This filtering option controls showing/hiding interfaces in the current project. If it is set to true,
interfaces are displayed.

The default value is True.

Show modules This filtering option controls showing/hiding modules in the current project. If it is set to true, modules
are displayed.

The default value is True.

Show namespaces This filtering option controls showing/hiding namespaces in the current project. If it is set to true,
namespaces are displayed.

The default value is True.

Show non public
classes

This filtering option controls showing/hiding nonpublic classes in the current project. If it is set to true,
nonpublic classes are displayed.

The default value is True.

Show notes This filtering option controls showing/hiding notes in the current project. If it is set to true, notes are
displayed.

The default value is True.

Show shortcuts This filtering option controls showing/hiding shortcuts in the current project. If it is set to true,
shortcuts are displayed.

The default value is True.

Show structures This filtering option controls showing/hiding structures in the current project. If it is set to true,
structures are displayed.

The default value is True.

See Also

Configuring Together (see page 183)

Options dialog window (see page 969)

3.5.1.2.5 Together General Options
Tools Options Together Various General

Descriptions for general options.

The General options allow you to customize certain behaviors in the user interface that do not pertain to any other specific
category of options such as Diagram or View Filters. The table below lists the General options, descriptions, and default values.

Together Configuration Options RAD Studio (Common) 3.5 Together Reference

1098

3

General Group
Options

Description and default value

Automatically reopen
diagrams

This option controls whether diagrams are reopened automatically when you reopen a project. If this
option is true, Together reopens all diagrams that were open at the time when you closed the project.
If this option is false, diagrams are not reopened, which helps to decrease project opening time.

The default value is True.

Delete Confirmation This option defines whether confirmation is requested before deleting a namespace, classifier, or
diagram.

The default value is True.

Together Support
Group Options

Description and default value

Automatically enable
Together support for
new and opened
projects

This option defines whether Together support is automatically enabled for opened and new projects
added to an existing project groupsolution. A project is considered new when it is created within an
existing project groupsolution using File | New | Project. Note that Together support, enabled using
the Model Support dialog, overrides this setting.

The default value is True.

Automatically enable
Together support for
opened projects

This option defines whether Together support is automatically enabled for projects opened within a
project groupsolution that have never been exposed to modeling support. When a project
groupsolution is created, its default project is regarded as opened. Note that Together support,
enabled using the Model Support dialog box, overrides this setting.

The default value is True.

Short name of the
folder where model
support files are stored

This option allows you to specify the name of the project subfolder where all model files are stored.
The option is useful when you import or share projects created in other editions of CodeGear
Together.

In order to make effect, this option needs to be adjusted before creating a project.

The default value is ModelSupport_%PROJECTNAME%ModelSupport

See Also

Interoperability Overview

Configuring Together (see page 183)

Activating Together Support for Projects (see page 263)

3.5.1.2.6 Together Generate Documentation Options
Tools Options Together Various Generate Documentation

Descriptions for generate documentation options.

The Generate Documentation options control the variety of content (as well as appearance) to include or exclude from your
generated HTML documentation. The table below lists the Generate Documentation options, descriptions, and default values.

General group
Options

Description and default value

Bottom Specifies the text to be placed at the bottom of each output file. The text will be placed at the bottom
of the page, below the lower navigation bar. The text can contain HTML tags and white spaces.

3.5 Together Reference RAD Studio (Common) Together Configuration Options

1099

3

Documentation Title Specifies the title to be placed at the top of the overview summary file. The title will be placed as a
centered, level-one heading directly beneath the upper navigation bar. It can contain HTML tags and
white spaces.

Footer Specifies the footer text to be placed at the bottom of each output file. The footer is placed to the right
of the lower navigation bar. It can contain HTML tags and white spaces.

Header Specifies the header text to be placed at the top of each output file. The header is placed to the right
of the upper navigation bar. It can contain HTML tags and white spaces.

Navigation type Specifies the location for descriptions of design elements:

Package: in package files

Diagram: in diagram files

The default value is Package.

Use Internal Browser When this options is true, an internal browser is used for documentation presentation.

The default value is False.

Window Title Specifies the title to be placed in the HTML <title> tag. This text appears in the window title and in
any browser bookmarks (favorites) created for this page. This title should not contain any HTML tags,
since the browser does not interpret them properly.

Include group Options Description and default value

internal (package) If this option is true, internal classes (friend in VB), interfaces and members are shown in the
generated documentation.

The default value is True.

private If this option is true, private classes, interfaces and members are shown in the generated
documentation.

The default value is False.

protected If this option is true, protected classes, interfaces and members are shown in the generated
documentation.

The default value is False.

protected internal If this option is true, protected internal classes (protected friend in VB), interfaces and members are
shown in the generated documentation.

The default value is False.

public If this option is true, public classes, interfaces and members are shown in the generated
documentation.

The default value is True.

Navigation group
Options

Description and default value

Generate Help This option controls whether to put the HELP link in the navigation bars at the top and bottom of each
page of output.

The default value is True.

Generate Index This option controls whether to generate the index.

The default value is True.

Generate Navbar This option controls whether to generate the navigation bar, header, and footer, otherwise found at
the top and bottom of the generated pages.

The default value is True.

Together Configuration Options RAD Studio (Common) 3.5 Together Reference

1100

3

Generate Tree This option controls whether to generate the class/interface hierarchy.

The default value is True.

Generate Use If this option is true, one Use page is included for each documented class and namespace. The page
describes which namespaces, classes, methods, constructors, and fields use any API of the given
class or namespace. Given class C, things that use class C would include subclasses of C, fields
declared as C, methods that return C, and methods and constructors with parameters of type C.

The default value is False.

See Also

Configuring Together (see page 183)

Options dialog window (see page 969)

3.5.1.2.7 Together Model View Options
Tools Options Together Various Model View

Descriptions for Model View options.

The Model View options control how diagram content displays in the Model View. The table below lists the Model View general
options, descriptions, and default values.

Option Description and default value

Show diagram nodes
expandable

If this option is set to true, the Model View displays expandable diagram nodes with the elements
contained therein.

The default value is True.

Show links If this option is set to true, the Model View displays links between nodes. Otherwise the links are
hidden.

The default value is False.

Sorting type This option enables you to select the type of sorting for the Model View (alphabetical, by metaclass,
or none).

The default value is Metaclass.

View type This option controls the type of presentation of the Model. Diagram-centric mode assumes that the
design elements are shown in their respective diagrams, and only the classes, interfaces and the
other source-code elements are shown in the namespaces. Model-centric mode assumes that all
elements are shown under namespaces.

The default value is Diagram-centric.

See Also

Configuring Together (see page 183)

Options dialog window (see page 969)

3.5.1.3 Option Value Editors
To edit an option, click the value field to invoke the appropriate value editor. There are several types of value editors:

• In-line text editor. To edit a value in a text field, type the new value. Changes are applied when you press Enter or move the
focus to another field.

• Combo box or list box. Clicking a box field reveals the list of possible values. Select the required value from the list.

3.5 Together Reference RAD Studio (Common) Together Configuration Options

1101

3

• Dialog box. Clicking a dialog box field reveals the button that opens the dialog box. Specify the required values and click OK
to apply changes.

See Also

Configuring Together (see page 183)

Options Dialog Window (see page 969)

3.5.1.4 Together Sequence Diagram Roundtrip Options
Tools Options Together Various Roundtrip Options

Descriptions for sequence diagram roundtrip options.

The Sequence Diagram Roundtrip options apply to generating sequence diagrams from source code and generating source
code from a sequence diagram. The table below lists the Sequence Diagram Roundtrip options, descriptions, and default values.

Option Description and default value

General

Show full diagnostic This option specifies whether to show diagnostic messages produced when generating sequence
diagrams.

If this option is True, the parser can report detailed progress as it runs.

The default value is True.

Generate sequence
diagram

Depth of call nesting During sequence diagram generation, this value limits how deep the parser traverses the source
code calling sequence. This value can help keep the generated sequence diagram from becoming so
large that it is unusable. You may want to use this option as a means for quickly generating a
high-level sequence diagram for a complex method by using a low call nesting value (1-3). Based on
the results of your diagram, you can choose to look deeper and/or create additional sequence
diagrams for each of the major methods uncovered.

The default value is 10.

Include messages to
self

This option specifies whether to show messages to self on the generated sequence diagram. If this
option is True, messages to self are shown.

The default value is True.

Generate source code

Never change existing
code

If this option is True, existing code can never be changed when generating source code from a
sequence diagram.

If this option is False and some source code already exists, a confirmation dialog opens when you
generate source code from a sequence diagram, and you can choose whether to modify the existing
code.

The default value is True.

See Also

Roundtrip engineering overview

Configuring Together (see page 183)

Options dialog window (see page 969)

Together Configuration Options RAD Studio (Common) 3.5 Together Reference

1102

3

3.5.1.5 Together Source Code Options
Tools Options Together Various Source Code

Descriptions for source code options.

The Source Code options allows you to control whether dependency links are drawn automatically on diagrams. The table below
lists the Source Code general options, descriptions, and default values.

Option Description and default value

Autocreate association
links derived from
properties

Set this option to True to create association links for properties automatically, while parsing the
source code.

The default value is False.

Autocreate
dependency links

If the option is true, the dependency links are drawn automatically on diagrams.

The default value is False.

Automatically maintain
namespace folder
structure

If this parameter is true, new classes will be created in subfolders. The structure of these subfolders
will be detected using the existing folder structure, if any. For new namespaces, new subfolders will
be created. If this parameter is false, new classes will be created in the project root folder.

The default value is True.

Encoding This parameter specifies the character encoding to be applied to source code files. System default
lets you use the current OS encoding.

The default value is system default.

Use cache Cache can be used for implementation projects. With this cache, reopening a project or a diagram
becomes much faster.

The default value is True.

See Also

Configuring Together (see page 183)

3.5.1.6 System macros
The following system macros can be used inside the text of some options:

• TIME: current time

• LONGTIME: current time (long format)

• DATE: current date

• LONGDATE: current date (long format)

• PROJECT: project name

• DIAGRAM: diagram name

• USER: user name

• COMP: computer name

For example, if you use: Project: %PROJECT%, diagram: %DIAGRAM%

It prints in the footer as: Project: Project1, diagram: DgrClass1

See Also

Configuring Together (see page 183)

3.5 Together Reference RAD Studio (Common) Together Keyboard Shortcuts

1103

3

3.5.2 Together Keyboard Shortcuts

Together enables you to perform many diagram actions without using the mouse. You can navigate between diagrams, create
diagram elements, and more, using the keyboard only.

Navigational shortcut keys

Keyboard shortcuts for navigation and browsing:

Action Shortcut Notes

Navigate between open diagrams in the Diagram View CTRL+Tab The title of
the
diagram
that has
focus is in
bold text.

Expand node in Model View Right arrow

Collapse node in Model View Left arrow

Open the Object InspectorProperties Window F4, or Alt + Enter

Close current diagram CTRL+F4

Toggle between a selected container node and its members PgDown/PgUp

Navigate between nodes or node members Arrow keys, Shift +
arrow keys

Shortcut keys for editing

Keyboard shortcuts for editing:

Action Shortcut

Cut, Copy, or Paste model elements or members. CTRL+X, CTRL+C,
CTRL+V

Activate the in-place editor for a diagram element to edit, rename a member. F2

Undo CTRL+Z

Redo CTRL+Y, CTRL+SHIFT+Z

Select all elements on the diagram CTRL+A

Close the Overview window ESC

Add a new namespace (package) to a diagram CTRL+E

Add a new class to a diagram CTRL+L

Add new method (operation) to a class or interface CTRL+M

Add a new field (attribute) to a class CTRL+W

Add a new interface to diagram CTRL+SHIFT+L

Open the Add Shortcuts dialog box CTRL+SHIFT+M

Add a new diagram from the Model View CTRL+SHIFT+D

Together Keyboard Shortcuts RAD Studio (Common) 3.5 Together Reference

1104

3

Zoom shortcut keys

Keyboard shortcuts for zooming the diagram image:

Action Shortcut Notes

Zoom in + Use the numeric keypad

Zoom out - Use the numeric keypad

Fit the entire diagram in the Diagram View * Use the numeric keypad

Display the actual size / Use the numeric keypad

Other shortcut keys

Other keyboard shortcuts:

Action Shortcut

Open the Print Diagram dialog box CTRL+P

Diagram update F6

See Also

Help on Help (see page 51)

About Together (see page 83)

3.5.3 GUI Components for Modeling

This section describes GUI components of the RAD Studio interface you use for UML modeling.

Topics

Name Description

Diagram View (see page 1106) Context menu (in the Model View) Open Diagram
The Diagram View displays model diagrams. Each diagram is presented in its
own tab.
To open the Diagram View, choose a diagram, namespace or a package in the
Model View, right-click it and choose Open Diagram on the context menu.
Most manipulations with diagram elements and links involve drag-and-drop
operations or executing right-click (or context) menu commands on the selected
elements.
Some of the actions provided by the context menus are:

• Add or delete diagram elements and links

• Add or delete members in the elements

• Create elements by pattern

• Cut,... more (see page 1106)

Pattern GUI Components (see page 1107) This section describes GUI components of the RAD Studio interface you use for
Together Pattern features.

Menus (see page 1110)

Quality Assurance GUI Components (see page 1110) This section describes GUI components of the RAD Studio interface you use for
Together Quality Assurance features.

3.5 Together Reference RAD Studio (Common) GUI Components for Modeling

1105

3

Model View (see page 1112) View Model View
The Model View provides the logical representation of the model of your project:
namespaces (packages) and diagram nodes. Using this view, you can add new
elements to the model; cut, copy, paste and delete elements, and more. Context
menu commands of the Model View are specific to each node. Explore these
commands as you encounter them.
In the Model View, only the nodes and their respective subnodes shown in the
Diagram View are listed under the corresponding diagram node. For example, if
you have a namespace (package) containing a class, both the namespace
(package) and class... more (see page 1112)

Object Inspector (see page 1113) View->Object Inspector View->Properties Window
When Together support is activated, the Object InspectorProperties Window
shows the properties of an element that is selected in the Model or Diagram
Views. To view the Object InspectorProperties Window, choose Object
InspectorProperties Window from the View menu, press F4, or press
ALT+ENTER. The content of the Object InspectorProperties Window depends on
the element type.
You can use the Object InspectorProperties Window to edit diagram or element
properties.
There are several categories of properties:

Tool Palette (see page 1114) View->Tool Palette View->Toolbox
Together extends the Tool PaletteToolbox of RAD Studio by adding model
elements to it.
The RAD Studio Tool PaletteToolbox displays special tabs for the supported
UML diagrams. When a diagram is opened in the Diagram View, the appropriate
tab appears in the Tool PaletteToolbox.
In the Tool PaletteToolbox you see model elements (nodes, links) that can be
placed on the current diagram. However, you can choose to show the tabs for all
diagram types. Use the Tool PaletteToolbox buttons to create the diagram
contents.
Note: The set of available model... more (see page 1114)

3.5.3.1 Diagram View
Context menu (in the Model View) Open Diagram

The Diagram View displays model diagrams. Each diagram is presented in its own tab.

To open the Diagram View, choose a diagram, namespace or a package in the Model View, right-click it and choose Open
Diagram on the context menu.

Most manipulations with diagram elements and links involve drag-and-drop operations or executing right-click (or context) menu
commands on the selected elements.

Some of the actions provided by the context menus are:

• Add or delete diagram elements and links

• Add or delete members in the elements

• Create elements by pattern

• Cut, copy, and paste the selected items

• Navigate to the source code

• Hyperlink diagrams

• Zoom in and out

Item Description

Working area The main part of the Diagram View shows the current diagram.

GUI Components for Modeling RAD Studio (Common) 3.5 Together Reference

1106

3

Context menu The context menus of the Diagram View are context-sensitive. Right-clicking model elements,
including class members, provides access to element-specific operations on the respective context
menu. Right-clicking the diagram background opens the context menu for the diagram.

Overview button Opens the Overview pane (see below).

Overview pane

The overview feature of the Diagram View provides a thumbnail view of the current diagram. The Overview button is located in
the bottom right corner of every diagram.

OCL Editor

The OCL Editor is used to enter and edit OCL expressions. Any changes to the names of your model components (classes,
operations, attributes, and so on) used in these expressions are automatically updated by Together. This guarantees that your
OCL constraints always stay up-to-date.

See Also

Diagram Overview (see page 90)

OCL Support Overview (see page 95)

Creating a Diagram (see page 196)

Synchronizing Model View (see page 267)

3.5.3.2 Pattern GUI Components
This section describes GUI components of the RAD Studio interface you use for Together Pattern features.

Topics

Name Description

Pattern Organizer (see page 1107) Tools Pattern Organizer
The Pattern Organizer window enables you to logically organize the patterns
found in the Pattern Wizard using virtual trees, folders and shortcuts. You can
also view and edit pattern properties.

Pattern Registry (see page 1109) Pattern Organizer context menu New Shortcut (or: Assign Pattern)
The Pattern Registry defines the virtual hierarchy of patterns. When you create
a folder or a shortcut in the Pattern Organizer and save the changes, a new entry
is added to the registry of shortcuts. All operations with the contents of the
Pattern Registry are performed in the Pattern Organizer, and synchronized with
the registry.
The window opens when using New Shortcut and Assign Pattern commands on
the Pattern Organizer context menu.

3.5.3.2.1 Pattern Organizer
Tools Pattern Organizer

The Pattern Organizer window enables you to logically organize the patterns found in the Pattern Wizard using virtual trees,
folders and shortcuts. You can also view and edit pattern properties.

Virtual pattern trees

This section displays the logical hierarchy of patterns. Context menus are provided for the root folder node, subfolders, and the
pattern elements. The root folder context menu items are as follows:

3.5 Together Reference RAD Studio (Common) GUI Components for Modeling

1107

3

Menu item Description

New Pattern Tree Use this command to create a new Pattern Tree node.

Sort Folder Sorts nodes in ascending alphabetical order.

The subfolders beneath the root folder contain the following context menu items:

Menu item Description

New Folder Use this command to create a new subfolder under the selected folder.

New Shortcut Opens the Pattern Registry allowing you to create a new shortcut to a pattern. The shortcut is
placed in the selected folder.

Cut Cuts the selected node to the clipboard.

Copy Copies the selected node to the clipboard.

Paste Pastes the clipboard contents to the selected node.

Delete Removes the selected node.

Sort Folder Sorts nodes in ascending alphabetical order.

The context menu for pattern elements contains the following menu items:

Assign Pattern Opens the Pattern Registry allowing you to assign a pattern to the selected pattern element.

Cut Cuts the selected node to the clipboard.

Copy Copies the selected node to the clipboard.

Paste Pastes the clipboard contents to the selected node.

Delete Removes the selected node.

Properties

This section displays properties of the selected pattern or folder. You can edit the Name and Visible fields.

Name The name displayed in the Virtual pattern tree. This field is editable.

Valid This field applies only to patterns. If you have registered the pattern using the Pattern Registry, then
the status is reported as valid. Otherwise, the pattern status is Invalid, and it will not display in the
Pattern Wizard. Folders are always considered valid and shown in the Pattern Wizard dialog (unless
hidden using the Visible property).

Visible Use the combobox to specify whether the pattern or folder is visible or hidden in the Pattern Wizard
dialog.

Pattern description

A read-only section that displays comments for the selected pattern.

Edit Shared Patterns Root

Click this button to open the list of shared patterns roots. Use Add and Remove buttons to make up the desired list, and click
OK when ready.

See Also

Patterns Overview (see page 96)

Pattern Registry (see page 1109)

Pattern Wizard (see page 1162)

GUI Components for Modeling RAD Studio (Common) 3.5 Together Reference

1108

3

3.5.3.2.2 Pattern Registry
Pattern Organizer context menu New Shortcut (or: Assign Pattern)

The Pattern Registry defines the virtual hierarchy of patterns. When you create a folder or a shortcut in the Pattern Organizer
and save the changes, a new entry is added to the registry of shortcuts. All operations with the contents of the Pattern Registry
are performed in the Pattern Organizer, and synchronized with the registry.

The window opens when using New Shortcut and Assign Pattern commands on the Pattern Organizer context menu.

Filters

The filters determine which patterns to display in the Patterns table. The Filters section provides the following set of filtering
options:

Option Description

Category The available options are:

Class Link Member Other All

Register This option filters patterns by status of registration: All - all existing patterns Already - the patterns
assigned to shortcuts None - the patterns not assigned to shortcuts

Containers This option filters patterns by the container metaclass.

Diagram type This option filters patterns that pertain to the selected diagram type.

Language This option is available for implementation projects only, and enables you to filter out
language-specific patterns.

Main sections

Option Description

Patterns Displays a table with the names and types of available patterns.

Pattern Properties Displays the properties of the pattern selected in the Patterns table.

Pattern Description A read-only section that displays comments for the pattern selected in the Patterns table.

Buttons

Button Description

Synchronize Click this button to search for patterns throughout your storage and update the Pattern Registry.

OK Click this button to save the filtering settings and close the window.

Cancel Click this button to discard the filtering settings and close the window.

Help Displays this page.

See Also

Patterns Overview (see page 96)

Pattern Organizer (see page 1107)

Pattern Wizard (see page 1162)

3.5 Together Reference RAD Studio (Common) GUI Components for Modeling

1109

3

3.5.3.3 Menus

Item Description

File menu You can use the File menu to export diagrams to image files, and print diagrams.

Edit menu Use the Edit menu to cut, copy, paste, and delete diagrams and diagram elements, select all items on
a diagram, and undo/redo actions.

View menu The View menu contains the command for opening the Model View.

Project menu Use the Project menu to enable or disable Together support for specific projects in the project
groupsolution currently open.

RefactorRefactoring
menu

The RefactorRefactoring menu contains refactoring commands for the implementation projects.

Tools menu Use the Tools menu to generate documentation, open the pattern registry and pattern organizer, run
audits and metrics (for the implementation projects), and set Together-specific options.

Diagram context menu Use the Diagram context menu to add new elements, manage the layout, zoom in and out, show or
hide diagram elements, synchronize your diagram with the Model view, and edit hyperlinks.

Model View context
menu

Context menus of the various elements of the Model View are context-sensitive. The list of elements
that can be added to a diagram from the Model View depends on the element and diagram type.

Element context menus You can add or delete members (or delete the element itself), cut/copy/paste, view source code,
show element information and more. Explore the context menus of the different elements as you
encounter them to see what is available for each one.

See Also

Model View (see page 1112)

Diagram View (see page 1106)

3.5.3.4 Quality Assurance GUI Components
This section describes GUI components of the RAD Studio interface you use for Together Quality Assurance features.

Topics

Name Description

Audit Results Pane (see page 1111) QA Audits dialog window Start button
Use this pane to view and export audit results.
Audit results are displayed as a table in the Audits View.
Each time that you generate audits for the same project, the audit results display
in a tabbed-page format with the most recent results having focus in the window.
Although the audit results open initially as a free-floating window, it is a dockable
window. The docking areas are any of the four borders of the RAD Studio
window. You can position the audit results window according to your preferences.
Tip: Press F1
with the Audits... more (see page 1111)

Metric Results Pane (see page 1112) QA Metrics dialog window Start button
Use this pane to view and export metric results.
The metrics results report is displayed as a table in the Metrics results pane.
The rows display the elements that were analyzed, and the columns display the
corresponding values of selected metrics. Context menus of the rows and
columns enable you to navigate to the source code, view descriptions of the
metrics, and produce graphical output.
Tip: Press F1
with the Metrics results pane having the focus to display this page.

GUI Components for Modeling RAD Studio (Common) 3.5 Together Reference

1110

3

3.5.3.4.1 Audit Results Pane
QA Audits dialog window Start button

Use this pane to view and export audit results.

Audit results are displayed as a table in the Audits View.

Each time that you generate audits for the same project, the audit results display in a tabbed-page format with the most recent
results having focus in the window.

Although the audit results open initially as a free-floating window, it is a dockable window. The docking areas are any of the four
borders of the RAD Studio window. You can position the audit results window according to your preferences.

Tip: Press F1

with the Audits View having the focus to display this page.

Item Description

Toolbar buttons

Save Audit results Saves audit results.

Print Audit results Prints audit results.

Refresh Recalculates the results that are currently displayed.

Restart Opens the Audits dialog window, define new settings and start new audits analysis.

Context menu
commands

Group By Groups items according to the selected column.

Show Description Displays a window with the full name and description of the selected audit.

Open Opens the selected element in the source code editor highlighting the relevant code.

Copy You can copy one row or multiple rows in the Audit results.

Use CTRL+CLICK to select multiple rows to copy.

Close Closes the current tab.

Close All Closes all tabs and the results window.

Close All But This Closes all tabs except for the tab currently in focus.

Note that only audit violations are shown in the results table. For this reason, the results do not necessarily display all of the
audits that you ran, or all the packages or classes that you processed. The table contains the following columns:

Audit violations

Violation
table column

Description

Abbreviation The abbreviation for the audit name. The full name is displayed in the description (choose Show Description
on the context menu of the violation).

Description Describes why the audit flagged the item.

Severity Indicates how serious, in general, violations of the audit are considered to be. This will help you sort the results
and assess which violations are critical and which are not.

Resource The source code item that was flagged by the audit.

File The file that contains the problem code.

3.5 Together Reference RAD Studio (Common) GUI Components for Modeling

1111

3

Line The line number in the file where the problem code is located.

See Also

Quality Assurance Facilities Overview (see page 98)

Viewing Audit Results (see page 274)

Running Audits (see page 273)

3.5.3.4.2 Metric Results Pane
QA Metrics dialog window Start button

Use this pane to view and export metric results.

The metrics results report is displayed as a table in the Metrics results pane. The rows display the elements that were
analyzed, and the columns display the corresponding values of selected metrics. Context menus of the rows and columns
enable you to navigate to the source code, view descriptions of the metrics, and produce graphical output.

Tip: Press F1

with the Metrics results pane having the focus to display this page.

Item Description

Toolbar buttons

Save Saves metric results.

Refresh Recalculates the results that are currently displayed.

Restart Opens the Metrics dialog window, define new settings and start new metrics analysis.

Context menu
commands

Show Description Displays a window with the full name and description of the selected metric.

Chart Builds a metric chart.

See Also

Quality Assurance Facilities Overview (see page 98)

Running Metrics (see page 276)

Viewing Metric Results (see page 276)

3.5.3.5 Model View
View Model View

The Model View provides the logical representation of the model of your project: namespaces (packages) and diagram nodes.
Using this view, you can add new elements to the model; cut, copy, paste and delete elements, and more. Context menu
commands of the Model View are specific to each node. Explore these commands as you encounter them.

In the Model View, only the nodes and their respective subnodes shown in the Diagram View are listed under the
corresponding diagram node. For example, if you have a namespace (package) containing a class, both the namespace
(package) and class are shown under the diagram node in the Model View. However, any members of the class are not shown

GUI Components for Modeling RAD Studio (Common) 3.5 Together Reference

1112

3

under the diagram node as they are displayed under the namespace (package) node only.

Although the Model View opens initially as a free-floating window, it is a dockable window. The docking areas are any of the four
borders of the RAD Studio window. You can position the Model View window according to your preferences.

The following options are applicable to the Model View:

• In the Show diagram nodes expandable field (Options Together Model View) choose True to show, or False to hide
expandable diagram nodes. By default, the Model View displays expandable diagram nodes with the elements contained
therein. You can hide expandable diagram nodes to further simplify the visual presentation of the project.

• In the Show links field (Options Together Model View) choose True to show, or False to hide expandable diagram
nodes. By default, the Model View does not display links between nodes. You can opt to show the links to make the visual
presentation of the project more detailed.

• In the Sorting type field (Options Together Model View) choose Metaclass, Alphabetical, or None to sort elements in the
Model View. By default, diagram nodes are sorted by metaclass. You can sort elements in the Model View by metaclass,
alphabetically, or none.

• In the View type field (Options Together Model View) choose Diagram-centric or Model-centic from the list box. For the
sake of better presentation you can opt to show your model in diagram-centric or in model-centric modes. The Diagram-centic
mode assumes that the design elements are shown under their respective diagrams; the namespaces only contain classes
and interfaces (and the source-code elements for implementation projects). The Model-centric mode assumes that all
elements are shown under the namespaces.

Item Description

Root project node The topmost item of a project structure.

Nodes Namespaces (packages), diagrams, then model elements of the current model.

Refresh Model View
button

Updates the model structure in the Model View to show possible changes in source code.

Regenerate ECO
source code button

Update ECO source
code button

Reload command

This command is available for implementation projects only.

You can use the Reload command (available at the root project node) to refresh the Together model from the source code. This
command provides a total refresh for the elements and removes invalid code elements from the model. Using this command has
the same effect as reopening the project groupsolution, but avoids the overhead of reinitializing RAD Studio.

See Also

Modeling Overview (see page 89)

Creating a Diagram (see page 196)

Synchronizing Model View (see page 267)

Troubleshooting a Model (see page 269)

Transforming Design Project to Source Code (see page 269)

3.5.3.6 Object Inspector
View->Object Inspector View->Properties Window

3.5 Together Reference RAD Studio (Common) GUI Components for Modeling

1113

3

When Together support is activated, the Object InspectorProperties Window shows the properties of an element that is selected
in the Model or Diagram Views. To view the Object InspectorProperties Window, choose Object InspectorProperties Window
from the View menu, press F4, or press ALT+ENTER. The content of the Object InspectorProperties Window depends on the
element type.

You can use the Object InspectorProperties Window to edit diagram or element properties.

There are several categories of properties:

Item Description

Description Text editor field where you can optionally provide textual description of an element.

Design These properties are used to define the appearance of an element.

General UML and source code element properties.

User properties This node appears when there are user properties defined. In addition to the standard properties, you
can define an unlimited number of user-defined properties.

Using the Object InspectorProperties Window, you can view and edit the properties of an element. Clicking on an editable field
reveals which type of internal editor is available: text area, combobox with a list of values, or a dialog box. The read-only fields
are displayed gray. As you click on the element properties, their respective descriptions display at the bottom of the Object
InspectorProperties Window.

See Also

Working with User Properties (see page 206)

Option Value Editors (see page 1101)

3.5.3.7 Tool Palette
View->Tool Palette View->Toolbox

Together extends the Tool PaletteToolbox of RAD Studio by adding model elements to it.

The RAD Studio Tool PaletteToolbox displays special tabs for the supported UML diagrams. When a diagram is opened in the
Diagram View, the appropriate tab appears in the Tool PaletteToolbox.

In the Tool PaletteToolbox you see model elements (nodes, links) that can be placed on the current diagram. However, you can
choose to show the tabs for all diagram types. Use the Tool PaletteToolbox buttons to create the diagram contents.

Note: The set of available model elements depends on the type of a diagram that is currently selected in the Diagram View

. For descriptions of available elements, refer to Together Reference.

Tip: You can control the diagram elements that appear in the Tool Palette

Toolbox and create your own Tool PaletteToolbox tabs with specified items. You can cut, copy, paste, delete, rename, move up,
and move down Tool PaletteToolbox items to customize your Tool PaletteToolbox view. You can also display Tool
PaletteToolbox items alphabetically or in a list. Use the Tool PaletteToolbox context menu to accomplish such tasks. For further
information, please refer to the RAD Studio documentation.

See Also

Creating a Single Element (see page 209)

Creating a Simple Link (see page 209)

Together Refactoring Operations RAD Studio (Common) 3.5 Together Reference

1114

3

3.5.4 Together Refactoring Operations

The following refactoring operations are available in Together:

Refactoring operations

Operation Description

Change
parameters

You can rename, add, or remove parameters for a single method using the Model View, Diagram View, or the
Editor.

Extract
interface

The Extract Interface command creates a new interface from one or more selected classes. Each selected class
should implement the interface.

Extract
method

You can extract method from a class or interface using the Editor only. It is important that the code fragment to be
extracted must contain complete statements.

Extract
superclass

The Extract Superclass command creates an ancestor class from several members of a given class.

Inline
variable

If you have a temporary variable that is assigned once with a simple expression, you can replace all references to
that variable with the expression using the Inline Variable command in the RAD Studio Editor.

Introduce
field

Creates a new field.

Introduce
variable

Creates a new variable. This command is available in the Editor.

Move
members

Moving members only applies to the static methods, static fields and static properties (static members). This
command is available on the Diagram View, on the Model View, and in the Editor.

Pull
Members
Up

Use this command to copy a member (field, method, property, indexer, and event) from a subclass to a
superclass, optionally making it abstract. If there are no superclasses, an error message is displayed.

Push
Members
Down

Use this command to copy a member (field, method, property, and event) from a superclass to a subclass,
optionally making it abstract. If there are no subclasses, an error message is displayed.

Indexers cannot be pushed down.

Rename You can rename certain code elements: class, interface, method, field, parameter, local variable, and so on.
Together propagates the name changes to the dependent code in your project files.

You cannot rename indexers, constructors, or destructors.

You can rename namespaces by changing their names in the Diagram or Model Views. Together makes the
appropriate changes in this case as well. This action does not require you to use the Refactoring commands.

When renaming a method, all descendant classes are scanned for possible overrides. All found overrides and
their usages are renamed too. However, if the method being renamed overrides some base class method, you
are asked if you want to rename this base class method (and all overrides as well), or only the selected method
(and its overrides). Refactoring also checks whether the method name that you enter coincides with some base
class method. In such cases, a warning is displayed. When renaming a method that belongs to a child class, you
can choose to propagate renaming to the parent classes and overloads, checking the respective options Refactor
Ancestors and Rename Overloads in the Rename Method dialog. If such renaming in the ancestor classes is
impossible, a warning message appears. However, you can still rename the selected method only.

If you rename a model element that is referenced from another project, RAD Studio updates both projects.

Safe
Delete

The Safe Delete command searches your code for any usages of the element that you wish to delete. You can
invoke the command from the Diagram View, Model View, or from the Editor.

See Also

Refactoring Overview (see page 98)

3.5 Together Reference RAD Studio (Common) Together Refactoring Operations

1115

3

Using Refactor Operations (see page 184)

3.5.5 Project Types and Formats with Support for Modeling

There are two basic project types:

• Design project. Project file extension: .bdsproj.tgproj. These projects are language-neutral and comply with one of the
two versions of UML specifications: UML 1.5 or UML 2.0.

• Implementation project. Project file extension: .bdsproj.csproj (Visual C# .NET), and .vbproj (Visual Basic .NET).
You can create models for language-specific projects. Modeling that complies with UML 1.5 specification is supported for C#
and DelphiVisual Basic .NET projects. Together modeling features are automatically activated for these projects.

The set of available project types depends on your license. Together Designer is required to work with design projects. Together
Developer is required to work with implementation projects.

There are multiple project formats of the types mentioned above, supported by Together:

Supported project formats

Project format Project type Basic supported actions

Delphi formats Implementation Create, open, save, edit

Delphi for .NET Implementation Create, open, save, edit

C++Builder Implementation Create, open, save, edit

Together design formats: UML 1.5, UML
2.0

Design Create, open, save, edit

Other editions of Together Design or implementation Import, share

IBM Rational Rose (MDL) format Design Create a new design project by using the import
wizard

XMI format Design Import, export

See Also

Modeling Project Overview (see page 89)

Transformation of Design Project to Source Code Overview (see page 94)

Creating a Project (see page 264)

3.5.6 UML 1.5 Reference

This section contains reference material about UML 1.5 diagrams.

Topics

Name Description

UML 1.5 Activity Diagrams (see page 1117) This section describes the elements of UML 1.5 Activity Diagrams.

UML 1.5 Class Diagrams (see page 1121) This section describes the elements of UML 1.5 Class Diagrams.

UML 1.5 Component Diagrams (see page 1128) This section describes the elements of UML 1.5 Component Diagrams.

UML 1.5 Deployment Diagrams (see page 1129) This section describes the elements of UML 1.5 Deployment Diagrams.

UML 1.5 Interaction Diagrams (see page 1131) This section describes the elements of UML 1.5 Sequence and Collaboration
diagrams.

UML 1.5 Reference RAD Studio (Common) 3.5 Together Reference

1116

3

UML 1.5 Statechart Diagrams (see page 1135) This section describes the elements of UML 1.5 Statechart diagrams.

UML 1.5 Use Case Diagrams (see page 1137) This section describes the elements of UML 1.5 Use Case Diagrams.

3.5.6.1 UML 1.5 Activity Diagrams
This section describes the elements of UML 1.5 Activity Diagrams.

Topics

Name Description

Deferred Event (see page 1117) A deferred event is like an internal transition that handles the event and places it
in an internal queue until it is used or discarded.
A deferred event may be thought of as an internal transition that handles the
event and places it in an internal queue until it is used or discarded. You can add
a deferred event to a state or activity element.

State (see page 1117) A state models a situation during which some (usually implicit) invariant condition
holds. The invariant may represent a static situation such as an object waiting for
some external event to occur. However, it can also model dynamic conditions
such as the process of performing some activity (for example, the model element
under consideration enters the state when the activity commences and leaves it
as soon as the activity is completed).

Transition (see page 1118) A single transition comes out of each state or activity, connecting it to the next
state or activity.
A transition takes operation from one state to another and represents the
response to a particular event. You can connect states with transitions and
create internal transitions within states.

UML 1.5 Activity Diagram Definition (see page 1119) This topic describes the UML 1.5 Activity Diagram.

UML 1.5 Activity Diagram Elements (see page 1120) The table below lists the elements of UML 1.5 Activity diagrams that are available
using the Tool PaletteToolbox.
UML 1.5 activity diagram elements

3.5.6.1.1 Deferred Event
A deferred event is like an internal transition that handles the event and places it in an internal queue until it is used or
discarded.

A deferred event may be thought of as an internal transition that handles the event and places it in an internal queue until it is
used or discarded. You can add a deferred event to a state or activity element.

See Also

UML 1.5 Statechart diagram (see page 1135)

UML 1.5 Activity diagram (see page 1117)

UML 2.0 State Machine diagram (see page 1155)

3.5.6.1.2 State
A state models a situation during which some (usually implicit) invariant condition holds. The invariant may represent a static
situation such as an object waiting for some external event to occur. However, it can also model dynamic conditions such as the
process of performing some activity (for example, the model element under consideration enters the state when the activity
commences and leaves it as soon as the activity is completed).

Actions

Entry and exit actions are executed when entering or leaving a state, respectively.

You can create these actions in statechart diagrams as special nodes, or as stereotyped internal transitions.

3.5 Together Reference RAD Studio (Common) UML 1.5 Reference

1117

3

Composite (nested) state

Create a composite state by nesting one or more levels of states within one state. You can also place start/end states and a
history state inside of a state, and draw transitions among the contained substates.

See Also

UML 1.5 Statechart Diagram Reference (see page 1135)

UML 1.5 Activity Diagram Reference (see page 1117)

UML 2.0 State Machine Diagram Reference (see page 1155)

3.5.6.1.3 Transition
A single transition comes out of each state or activity, connecting it to the next state or activity.

A transition takes operation from one state to another and represents the response to a particular event. You can connect states
with transitions and create internal transitions within states.

Internal transition

An internal transition is a way to handle events without leaving a state (or activity) and dispatching its exit or entry actions. You
can add an internal transition to a state or activity element.

An internal transition is shorthand for handling events without leaving a state and dispatching its exit or entry actions.

Self-transition

A self-transition flow leaves the state (or activity) dispatching any exit action(s), then reenters the state dispatching any entry
action(s). You can draw self-transitions for both activity and state elements on an Activity Diagram.

Self-transition for Statechart Diagrams

Self-transition for Activity Diagrams

Multiple transition

A transition can branch into two or more mutually-exclusive transitions.

A transition may fork into two or more parallel activities. A solid bar indicates a fork and the subsequent join of the threads
coming out of the fork.

A transition may have multiple sources (a join from several concurrent states) or it may have multiple targets (a fork to several
concurrent states).

You can show multiple transitions with either a vertical or horizontal orientation in your State and Activity Diagrams. Both the
State and Activity Diagram toolbars provide separate horizontal and vertical fork/join buttons for each orientation. The two
orientations are semantically identical.

Guard expressions

All transitions, including internal ones, are provided with the guard conditions (logical expressions) that define whether this
transition should be performed. Also you can associate a transition with an effect, which is an optional activity performed when
the transition fires. The guard condition is enclosed in the brackets (for example, "[false]") and displayed near the transition
link on a diagram. Effect activity is displayed next to the guard condition. You can define the guard condition and effect using the
Object InspectorProperties Window.

Guard expressions (inside []) label the transitions coming out of a branch. The hollow diamond indicates a branch and its
subsequent merge that indicates the end of the branch.

UML 1.5 Reference RAD Studio (Common) 3.5 Together Reference

1118

3

See Also

UML 1.5 Statechart Diagram (see page 1135)

UML 1.5 Activity Diagram (see page 1117)

UML 2.0 State Machine Diagram (see page 1155)

3.5.6.1.4 UML 1.5 Activity Diagram Definition
This topic describes the UML 1.5 Activity Diagram.

Definition

An Activity diagram is similar to a flowchart. Activity diagrams and Statechart diagrams are related. While a Statechart diagram
focuses attention on an object undergoing a process (or on a process as an object), an Activity diagram focuses on the flow of
activities involved in a single process. The Activity diagram shows how these single-process activities depend on one another.

Activity diagrams can be divided into object swimlanes that determine which object is responsible for an activity.

Sample Diagram

The Activity Diagram below uses the following process: "Withdraw money from a bank account through an ATM." The three
involved classes of the activity are Customer, ATM Machine, and Bank. The process begins at the black start circle at the top
and ends at the concentric white/black stop circles at the bottom. The activities are shown as rounded rectangles.

The three involved classes (people, and so on) of the activity are Customer, ATM, and Bank. The process begins at the black
start circle at the top and ends at the concentric white/black stop circles at the bottom. The activities are shown as rounded
rectangles.

3.5 Together Reference RAD Studio (Common) UML 1.5 Reference

1119

3

3.5.6.1.5 UML 1.5 Activity Diagram Elements
The table below lists the elements of UML 1.5 Activity diagrams that are available using the Tool PaletteToolbox.

UML 1.5 activity diagram elements

Name Type

Activity node

Decision node

Signal Receipt node

Signal Sending node

State node

Start State node

End State node

History node

Object node

Transition link

UML 1.5 Reference RAD Studio (Common) 3.5 Together Reference

1120

3

Horizontal Fork/Join node

Vertical Fork/Join node

Swimlane node

Object Flow link

Node by Pattern opens Pattern Wizard (see page 1162)

Link by Pattern opens Pattern Wizard (see page 1162)

Note annotation

Note Link annotation link

3.5.6.2 UML 1.5 Class Diagrams
This section describes the elements of UML 1.5 Class Diagrams.

Topics

Name Description

Association Class and N-ary Association (see page 1122) Association classes appear in diagrams as three related elements:

• Association class itself (represented by a class icon)

• N-ary association class link (represented by a diamond)

• Association connector (represented by a link between
both)

Association classes can connect to as many association end
classes (participants) as required.

The Object InspectorProperties Window of an association
class, association link, and connector contain an
additional Association tab. This tab contains the only label
property, its value being synchronized with the name of
the association class. For the association classes and
association end links, the Custom node of the Object
InspectorProperties Window displays... more (see page
1122)

Class Diagram Relationships (see page 1123) There are several kinds of relationships:

• Association: A relationship between instances of the two
classes. There is an association between two classes if an
instance of one class must know about the other to
perform its work. In a diagram, an association is a link
connecting two classes. Associations can be directed or
undirected. A directed link points to the supplier class (the
target). An association has two ends. An end may have a
role name to clarify the nature of the association. A
navigation arrow on an association shows which direction
the association can be traversed or queried.... more (
see page 1123)

3.5 Together Reference RAD Studio (Common) UML 1.5 Reference

1121

3

Class Diagram Types (see page 1124) There are two types of class diagrams used in Together:

• Package (namespace) diagrams. These diagrams are
referred to as package diagrams in design projects, and
namespace diagrams in implementation projects. They
are stored as XML files in the
ModelSupport_%PROJECTNAME%ModelSupport folder
of the project groupsolution with the file extension
.txvpck.

• Logical class diagrams. These diagrams are stored as
XML files in the
ModelSupport_%PROJECTNAME%ModelSupport folder
of the project groupsolution with the file extension
.txvcls.

Together automatically creates a default namespace
diagram for the project and for each subdirectory under
the project directory. The default project diagram... more
(see page 1124)

Inner Classifiers (see page 1124) The table below lists the diagram container elements along with the inner
classifiers that you can add to container elements.
Inner classifiers

LiveSource Rules (see page 1125) The impact of changing a class, interface, or namespace on a logical class
diagram varies according to the kind of change:

• Changing the name, adding a member, creating a new
link, or applying a pattern makes the corresponding
change in the actual source code.

• Choose Delete from View on the context menu of the
element to remove the element from a current diagram
and keep the element in the namespace (package).

• Choose Delete on the context menu to completely remove
the element from the model.

• When you press Delete on the keyboard, the Delete
from view command is applied, if... more (see page
1125)

Members (see page 1125) Note that the set of available members is different for the design and
implementation projects.
The table below lists the diagram elements along with the members that can be
added using the context menu of the element. The type of applicable project is
specified in square brackets.
Members available

UML 1.5 Class Diagram Definition (see page 1126) Using Together, you can create language-neutral class diagrams in design
projects, or language-specific class diagrams in implementation projects. For
implementation projects, all diagram elements are immediately synchronized with
the source code.

UML 1.5 Class Diagram Elements (see page 1127) The table below lists the elements of UML 1.5 class diagrams that are available
using the Tool PaletteToolbox.
UML 1.5 class diagram elements

3.5.6.2.1 Association Class and N-ary Association
Association classes appear in diagrams as three related elements:

• Association class itself (represented by a class icon)

• N-ary association class link (represented by a diamond)

• Association connector (represented by a link between both)

Association classes can connect to as many association end classes (participants) as required.

UML 1.5 Reference RAD Studio (Common) 3.5 Together Reference

1122

3

The Object InspectorProperties Window of an association class, association link, and connector contain an additional
Association tab. This tab contains the only label property, its value being synchronized with the name of the association class.
For the association classes and association end links, the Custom node of the Object InspectorProperties Window displays
additional properties that corresponds to the role of this part of n-ary association (associationClass and
associationEnd respectively).

You can delete each of the association end links or participant classes without destroying the entire n-ary association. However,
deleting the association class results in deleting all the components of the n-ary association.

See Also

Creating an Association Class (see page 239)

Class Diagram Relationships (see page 1123)

UML 2.0 Class Diagram (see page 1143)

UML 1.5 Class Diagram (see page 1121)

3.5.6.2.2 Class Diagram Relationships
There are several kinds of relationships:

• Association: A relationship between instances of the two classes. There is an association between two classes if an instance
of one class must know about the other to perform its work. In a diagram, an association is a link connecting two classes.
Associations can be directed or undirected. A directed link points to the supplier class (the target). An association has two
ends. An end may have a role name to clarify the nature of the association. A navigation arrow on an association shows which
direction the association can be traversed or queried. A class can be queried about its Item, but not the other way around. The
arrow also lets you know who "owns" the implementation of the association. Associations with no navigation arrows are
bi-directional.

• Generalization/Implementation: An inheritance link indicating that a class implements an interface. An implementation has a
triangle pointing to the interface.

• Dependency

There are several subtypes of an association relationship:

• Simple Association

• Aggregation: An association in which one class belongs to a collection. An aggregation has a diamond end pointing to the
part containing the whole.

• Composition

Every class diagram has classes and associations. Navigability, roles, and multiplicities are optional items placed in a diagram to
provide clarity.

The multiplicity of an association end is the number of possible instances of the class associated with a single instance of the
other end. Multiplicities are single numbers or ranges of numbers. This table lists the most common multiplicities:

Multiplicities

Multiplicity Meaning

0..1 Zero or one instance. The notation n . . m indicates n to m instances

0..* or * No limit on the number of instances (including none)

1 Exactly one instance

1..* At least one instance

See Also

UML 1.5 Class diagrams (see page 1121)

UML 2.0 Class diagrams (see page 1143)

3.5 Together Reference RAD Studio (Common) UML 1.5 Reference

1123

3

3.5.6.2.3 Class Diagram Types
There are two types of class diagrams used in Together:

• Package (namespace) diagrams. These diagrams are referred to as package diagrams in design projects, and namespace
diagrams in implementation projects. They are stored as XML files in the ModelSupport_%PROJECTNAME%ModelSupport
folder of the project groupsolution with the file extension .txvpck.

• Logical class diagrams. These diagrams are stored as XML files in the ModelSupport_%PROJECTNAME%ModelSupport
folder of the project groupsolution with the file extension .txvcls.

Together automatically creates a default namespace diagram for the project and for each subdirectory under the project
directory. The default project diagram is named default; the default namespace (package) diagrams are named after the
respective namespaces (packages).

You create logical class diagrams manually by using the Add Class Diagram or Add Other Diagram command on the
project context menu.

See Also

UML 1.5 Class Diagram (see page 1121)

UML 2.0 ?lass Diagram (see page 1143)

3.5.6.2.4 Inner Classifiers
The table below lists the diagram container elements along with the inner classifiers that you can add to container elements.

Inner classifiers

Container
element

Inner classifiers available

Class Class

Interface

Structure [C#, Visual Basic]

Delegate [C#, Visual Basic]

Delegate as Function [Visual Basic]

Enum [C#, Visual Basic]

Interface Class [Visual Basic]

Interface [Visual Basic]

Delegate [Visual Basic]

Delegate as Function [Visual Basic]

Enum [Visual Basic]

Structure Class

Interface

Structure

Delegate

Delegate as

Function [Visual Basic]

Enum

UML 1.5 Reference RAD Studio (Common) 3.5 Together Reference

1124

3

Module
[Visual
Basic]

Class [Visual Basic]

Interface [Visual Basic]

Structure [Visual Basic]

Delegate [Visual Basic]

Delegate as

Function [Visual Basic]

Enum [Visual Basic]

See Also

UML 1.5 Class Diagram Reference (see page 1121)

UML 2.0 Class Diagram Reference (see page 1143)

3.5.6.2.5 LiveSource Rules
The impact of changing a class, interface, or namespace on a logical class diagram varies according to the kind of change:

• Changing the name, adding a member, creating a new link, or applying a pattern makes the corresponding change in the
actual source code.

• Choose Delete from View on the context menu of the element to remove the element from a current diagram and keep the
element in the namespace (package).

• Choose Delete on the context menu to completely remove the element from the model.

• When you press Delete on the keyboard, the Delete from view command is applied, if it is available in this particular
situation. If it is not, the element is deleted completely.

• Direct changes in source code editor, such as renaming a class, cannot be tracked by Together. Use refactoring operations
for this purpose.

See Also

LiveSource Overview (see page 93)

UML 1.5 Class Diagram Reference (see page 1121)

3.5.6.2.6 Members
Note that the set of available members is different for the design and implementation projects.

The table below lists the diagram elements along with the members that can be added using the context menu of the element.
The type of applicable project is specified in square brackets.

Members available

3.5 Together Reference RAD Studio (Common) UML 1.5 Reference

1125

3

Container
element

Members available

Class Function [Visual Basic]

Subroutine [Visual Basic]

Method [C#]

Operation [Design]

Constructor [Design, C#, Visual Basic]

Destructor [C#]

Field [C#, Visual Basic]

Attribute [Design]

Property [C#, Visual Basic]

Indexer [C#]

Event [C#]

Interface Function [Visual Basic]

Subroutine [Visual Basic]

Method [C#]

Property [C#, Visual Basic]

Indexer [C#]

Event [C#]

Attribute [Design]

Operation [Design]

Structure Method

Constructor

Field

Property

Indexer

Event

Module Function

Subroutine

Constructor

Field

Property

Enumeration Enum Value

For implementation projects: If you set the abstract property for a method, property, or indexer (in abstract classes) as True in
the Properties Window, the method body is removed from the source code. This is the desired behavior. Resetting the abstract
property to False in the Object InspectorProperties Window, adds a new empty method body.

See Also

Adding a Member to a Container (see page 241)

UML 1.5 Class Diagram (see page 1121)

UML 2.0 Class Diagram (see page 1143)

3.5.6.2.7 UML 1.5 Class Diagram Definition
Using Together, you can create language-neutral class diagrams in design projects, or language-specific class diagrams in

UML 1.5 Reference RAD Studio (Common) 3.5 Together Reference

1126

3

implementation projects. For implementation projects, all diagram elements are immediately synchronized with the source code.

Definition

A class diagram provides an overview of a system by showing its classes and the relationships among them. Class diagrams are
static: they display what interacts but not what happens during the interaction.

UML class notation is a rectangle divided into three parts: class name, fields, and methods. Names of abstract classes and
interfaces are in italics. Relationships between classes are the connecting links.

In Together, the rectangle is further divided with separate partitions for properties and inner classes.

Sample Diagram

The following class diagram models a customer order from a retail catalog. The central class is the Order. Associated with it are
the Customer making the purchase and the Payment. There are three types of payments: Cash, Check, or Credit. The order
contains OrderDetails (line items), each with its associated Item.

There are three kinds of relationships used in this example:

• Association: For example, an OrderDetail is a line item of each Order.

• Aggregation: In this diagram, Order has a collection of OrderDetails.

• Implementation: Payment is an interface for Cash, Check, and Credit.

3.5.6.2.8 UML 1.5 Class Diagram Elements
The table below lists the elements of UML 1.5 class diagrams that are available using the Tool PaletteToolbox.

UML 1.5 class diagram elements

Name Type

Namespace (Package) node

Class node

Interface node

Association Class node

Structure node

Enumeration node

Delegate node

3.5 Together Reference RAD Studio (Common) UML 1.5 Reference

1127

3

Object node

Generalization/Implementation link

Association link

Dependency link

Node by Pattern opens Pattern Wizard (see page 1162)

Link by Pattern opens Pattern Wizard (see page 1162)

Constraint OCL node

Constraint link OCL link

Note annotation

Note Link annotation link

3.5.6.3 UML 1.5 Component Diagrams
This section describes the elements of UML 1.5 Component Diagrams.

Topics

Name Description

UML 1.5 Component Diagram Definition (see page 1128) Both component and deployment diagrams depict the physical architecture of a
computer-based system. Component diagrams show the dependencies and
interactions between software components.

UML 1.5 Component Diagram Elements (see page 1129) The table below lists the elements of UML 1.5 compoment diagrams that are
available using the Tool PaletteToolbox.
UML 1.5 component diagram elements

3.5.6.3.1 UML 1.5 Component Diagram Definition
Both component and deployment diagrams depict the physical architecture of a computer-based system. Component diagrams
show the dependencies and interactions between software components.

Definition

A component is a container of logical elements and represents things that participate in the execution of a system. Components
also use the services of other components through one of its interfaces. Components are typically used to visualize logical
packages of source code (work product components), binary code (deployment components), or executable files (execution
components).

Sample Diagram

Following is a component diagram that shows the dependencies and interactions between software components for a cash
register program.

UML 1.5 Reference RAD Studio (Common) 3.5 Together Reference

1128

3

3.5.6.3.2 UML 1.5 Component Diagram Elements
The table below lists the elements of UML 1.5 compoment diagrams that are available using the Tool PaletteToolbox.

UML 1.5 component diagram elements

Name Type

Subsystem node

Component node

Interface node

Supports link

Dependency link

Node by Pattern opens Pattern Wizard (see page 1162)

Link by Pattern opens Pattern Wizard (see page 1162)

Note annotation

Note Link annotation link

3.5.6.4 UML 1.5 Deployment Diagrams
This section describes the elements of UML 1.5 Deployment Diagrams.

3.5 Together Reference RAD Studio (Common) UML 1.5 Reference

1129

3

Topics

Name Description

UML 1.5 Deployment Diagram Definition (see page 1130) Both component and Deployment Diagrams depict the physical architecture of a
computer-based system.
Deployment Diagrams are made up of a graph of nodes connected by
communication associations to show the physical configuration of the software
and hardware.
Components are physical units of packaging in software, including:

• External libraries

• Operating systems

• Virtual machines

UML 1.5 Deployment Diagram Elements (see page 1131) The table below lists the elements of UML 1.5 deployment diagrams that are
available using the Tool PaletteToolbox.
UML 1.5 deployment diagram elements

3.5.6.4.1 UML 1.5 Deployment Diagram Definition
Both component and Deployment Diagrams depict the physical architecture of a computer-based system.

Deployment Diagrams are made up of a graph of nodes connected by communication associations to show the physical
configuration of the software and hardware.

Components are physical units of packaging in software, including:

• External libraries

• Operating systems

• Virtual machines

Definition

The physical hardware is made up of nodes. Each component belongs on a node. Components are shown as rectangles with
two tabs at the upper left.

Sample Diagram

Following is a Deployment Diagram that shows the relationships of software and hardware components for a real estate
transaction.

UML 1.5 Reference RAD Studio (Common) 3.5 Together Reference

1130

3

3.5.6.4.2 UML 1.5 Deployment Diagram Elements
The table below lists the elements of UML 1.5 deployment diagrams that are available using the Tool PaletteToolbox.

UML 1.5 deployment diagram elements

Name Type

Node node

Component node

Interface node

Supports link

Aggregates link

Object node

Association link

Dependency link

Node by Pattern opens Pattern Wizard (see page 1162)

Link by Pattern opens Pattern Wizard (see page 1162)

Note annotation

Note Link annotation link

3.5.6.5 UML 1.5 Interaction Diagrams
This section describes the elements of UML 1.5 Sequence and Collaboration diagrams.

Topics

Name Description

Activation Bar (see page 1132) Together automatically renders the activation of messages that show the period
of time that the message is active. When you draw a message link to the
destination object, the activation bar is created automatically.
You can extend or reduce the period of time of a message by vertically dragging
the top or bottom line of the activation bar as required. A longer activation bar
means a longer time period when the message is active.

3.5 Together Reference RAD Studio (Common) UML 1.5 Reference

1131

3

Conditional Block (see page 1132) Conditional block statement is a flexible tool to enhance a sequence diagram.
The following statements are supported:

• if

• else

• for

• foreach

• while

• do while

• try

• catch

• finally

• switch

• case

• default

UML 1.5 Message (see page 1133) By default, message links in a sequence diagram are numbered sequentially
from top to bottom. You can reorder messages.
A “self message” is a message from an object back to itself.

Nested Message (see page 1133) You can nest messages by originating message links from an activation bar. The
nested message inherits the numbering of the parent message.
For example, if the parent message has the number 1, its first nested message is
1.1. It is also possible to create message links back to the parent activation bars.

UML 1.5 Collaboration Diagram Definition (see page 1133) Class diagrams are static model views. In contrast, interaction diagrams are
dynamic, describing how objects collaborate.

UML 1.5 Interaction Diagram Elements (see page 1134) The table below lists the elements of UML 1.5 Interaction (Sequence and
Collaboration) diagrams that are available using the Tool PaletteToolbox.
UML 1.5 interaction diagram elements

UML 1.5 Sequence Diagram Definition (see page 1134) Class diagrams are static model views. In contrast, interaction diagrams are
dynamic, describing how objects collaborate.

3.5.6.5.1 Activation Bar
Together automatically renders the activation of messages that show the period of time that the message is active. When you
draw a message link to the destination object, the activation bar is created automatically.

You can extend or reduce the period of time of a message by vertically dragging the top or bottom line of the activation bar as
required. A longer activation bar means a longer time period when the message is active.

3.5.6.5.2 Conditional Block
Conditional block statement is a flexible tool to enhance a sequence diagram. The following statements are supported:

• if

• else

• for

• foreach

• while

• do while

• try

• catch

UML 1.5 Reference RAD Studio (Common) 3.5 Together Reference

1132

3

• finally

• switch

• case

• default

3.5.6.5.3 UML 1.5 Message
By default, message links in a sequence diagram are numbered sequentially from top to bottom. You can reorder messages.

A “self message” is a message from an object back to itself.

See Also

Messages in UML 2.0 (see page 1153)

3.5.6.5.4 Nested Message
You can nest messages by originating message links from an activation bar. The nested message inherits the numbering of the
parent message.

For example, if the parent message has the number 1, its first nested message is 1.1. It is also possible to create message links
back to the parent activation bars.

See Also

UML 1.5 message (see page 1133)

3.5.6.5.5 UML 1.5 Collaboration Diagram Definition
Class diagrams are static model views. In contrast, interaction diagrams are dynamic, describing how objects collaborate.

Definition

Like sequence diagrams, collaboration diagrams are also interaction diagrams. Collaboration diagrams convey the same
information as sequence diagrams, but focus on object roles instead of the times that messages are sent.

In a sequence diagram, object roles are the vertices and messages are the connecting links. In a collaboration diagram, as
follows, the object-role rectangles are labeled with either class or object names (or both). Colons precede the class names (:).

Sample Diagram

Each message in a collaboration diagram has a sequence number. The top-level message is numbered 1. Messages at the
same level (sent during the same call) have the same decimal prefix but suffixes of 1, 2, etc. according to when they occur.

3.5 Together Reference RAD Studio (Common) UML 1.5 Reference

1133

3

3.5.6.5.6 UML 1.5 Interaction Diagram Elements
The table below lists the elements of UML 1.5 Interaction (Sequence and Collaboration) diagrams that are available using the
Tool PaletteToolbox.

UML 1.5 interaction diagram elements

Name Type

Object node

Actor node

Message link

Self Message link

Message with delivery time link, Sequence only

Conditional Block node, Sequence only

Return link, Sequence only

Association link, Collaboration only

Aggregates link, Collaboration only

Node by Pattern opens Pattern Wizard (see page 1162)

Link by Pattern opens Pattern Wizard (see page 1162)

Note annotation

Note Link annotation link

You can add shortcuts to the interaction diagrams, by using the Add Shortcut command. However, referring to the elements
of the other interaction diagrams is not allowed.

3.5.6.5.7 UML 1.5 Sequence Diagram Definition
Class diagrams are static model views. In contrast, interaction diagrams are dynamic, describing how objects collaborate.

Definition

A sequence diagram is an interaction diagram that details how operations are carried out: what messages are sent and when.
Sequence diagrams are organized according to time. The time progresses as you go down the page. The objects involved in the

UML 1.5 Reference RAD Studio (Common) 3.5 Together Reference

1134

3

operation are listed from left to right according to when they take part in the message sequence.

Sample Diagram

Following is a Sequence Diagram for making a hotel reservation. The object initiating the sequence of messages is a
Reservation window (the UserInterface).

The UserInterface sends a makeReservation() message to a HotelChain. The HotelChain then sends a
makeReservation() message to a Hotel. If the Hotel has available rooms, then it makes a Reservation and a
Confirmation.

Each vertical dotted line is a lifeline, representing the time that an object exists. Each arrow is a message call. An arrow goes
from the sender to the top of the activation bar of the message on the receiver's lifeline. The activation bar represents the
duration of execution of the message.

In this diagram, the Hotel issues a self call to determine if a room is available. If so, then the Hotel creates a Reservation
and a Confirmation. The asterisk on the self call means iteration (to make sure there is available room for each day of the
stay in the hotel). The expression in square brackets, [], is a condition.

The diagram has a clarifying note, which is text inside a dog-eared rectangle. Notes can be included in any kind of UML diagram.

3.5.6.6 UML 1.5 Statechart Diagrams
This section describes the elements of UML 1.5 Statechart diagrams.

Topics

Name Description

UML 1.5 Statechart Diagram Definition (see page 1135) This topic describes the UML 1.5 Statechart Diagram.

UML 1.5 Statechart Diagram Elements (see page 1136) The table below lists the elements of UML 1.5 Statechart diagrams that are
available using the Tool PaletteToolbox.
UML 1.5 Statechart diagram elements

3.5.6.6.1 UML 1.5 Statechart Diagram Definition
This topic describes the UML 1.5 Statechart Diagram.

Definition

Objects have behaviors and states. The state of an object depends on its current activity or condition. A statechart diagram
shows the possible states of the object and the transitions that cause a change in state.

3.5 Together Reference RAD Studio (Common) UML 1.5 Reference

1135

3

Sample Diagram

The following diagram models the login part of an online banking system. Logging in consists of entering a valid social security
number and personal id number, then submitting the information for validation. Logging in can be factored into four
non-overlapping states: Getting SSN, Getting PIN, Validating, and Rejecting. Each state provides a complete set of
transitions that determines the subsequent state.

States are depicted as rounded rectangles. Transitions are arrows from one state to another. Events or conditions that trigger
transitions are written next to the arrows. This diagram has two self-transitions: Getting SSN and Getting PIN. The initial
state (shown as a black circle) is a dummy to start the action. Final states are also dummy states that terminate the action.

The action that occurs as a result of an event or condition is expressed in the form /action. While in its Validating state, the
object does not wait for an outside event to trigger a transition. Instead, it performs an activity. The result of that activity
determines its subsequent state.

3.5.6.6.2 UML 1.5 Statechart Diagram Elements
The table below lists the elements of UML 1.5 Statechart diagrams that are available using the Tool PaletteToolbox.

UML 1.5 Statechart diagram elements

Name Type

State node

Start State node

End State node

History node

Object node

Transition link

Horizontal Fork/Join node

Vertical Fork/Join node

Node by Pattern opens Pattern Wizard (see page 1162)

Link by Pattern opens Pattern Wizard (see page 1162)

UML 1.5 Reference RAD Studio (Common) 3.5 Together Reference

1136

3

Note annotation

Note Link annotation link

3.5.6.7 UML 1.5 Use Case Diagrams
This section describes the elements of UML 1.5 Use Case Diagrams.

Topics

Name Description

Extension Point (see page 1137) An extension point refers to a location within a use case where you can insert
action sequences from other use cases.
An extension point consists of a unique name within a use case and a description
of the location within the behavior of the use case.
In a use case diagram, extension points are listed in the use case with the
heading "Extension Points" (appears as bold text in the Diagram View).

UML 1.5 Use Case Diagram Definition (see page 1137) Use case diagrams are helpful in three areas:

• Determining features (requirements): New use cases
often generate new requirements as the system is
analyzed and the design takes shape.

• Communicating with clients: Notational simplicity makes
use case diagrams a good way for developers to
communicate with clients.

• Generating test cases: The collection of scenarios for a
use case may suggest a suite of test cases for those
scenarios.

UML 1.5 Use Case Diagram Elements (see page 1138) The table below lists the elements of UML 1.5 Use Case diagrams that are
available using the Tool PaletteToolbox.
UML 1.5 Use Case diagram elements

3.5.6.7.1 Extension Point
An extension point refers to a location within a use case where you can insert action sequences from other use cases.

An extension point consists of a unique name within a use case and a description of the location within the behavior of the use
case.

In a use case diagram, extension points are listed in the use case with the heading "Extension Points" (appears as bold text in
the Diagram View).

See Also

UML 1.5 Use case diagram (see page 1137)

UML 2.0 Use case diagram (see page 1157)

3.5.6.7.2 UML 1.5 Use Case Diagram Definition
Use case diagrams are helpful in three areas:

• Determining features (requirements): New use cases often generate new requirements as the system is analyzed and the
design takes shape.

• Communicating with clients: Notational simplicity makes use case diagrams a good way for developers to communicate with
clients.

3.5 Together Reference RAD Studio (Common) UML 1.5 Reference

1137

3

• Generating test cases: The collection of scenarios for a use case may suggest a suite of test cases for those scenarios.

Definition

Use Case Diagrams describe what a system does from the viewpoint of an external observer. The emphasis is on what a system
does rather than how.

Use Case Diagrams are closely connected to scenarios. A scenario is an example of what happens when someone interacts
with the system.

Sample Diagram

Following is a scenario for a medical clinic:

A patient calls the clinic to make an appointment for a yearly checkup. The receptionist finds the nearest empty time slot in the
appointment book and schedules the appointment for that time slot.

A use case is a summary of scenarios for a single task or goal. An actor is who or what initiates the events involved in that task.
Actors are simply roles that people or objects play. The following diagram is the Make Appointment use case for the medical
clinic. The actor is a Patient. The connection between actor and use case is a communication association (or communication
for short).

Actors are stick figures. Use cases are ovals. Communications are lines that link actors to use cases.

A use case diagram is a collection of actors, use cases, and their communications. Following is an example of the use case
Make Appointment as part of a diagram with four actors and four use cases. Notice that a single use case can have multiple
actors.

3.5.6.7.3 UML 1.5 Use Case Diagram Elements
The table below lists the elements of UML 1.5 Use Case diagrams that are available using the Tool PaletteToolbox.

UML 1.5 Use Case diagram elements

UML 1.5 Reference RAD Studio (Common) 3.5 Together Reference

1138

3

Name Type

Actor node

Use Case node

Communicates link

Extend link

Include link

Generalization link

System Boundary node

Node by Pattern opens Pattern Wizard (see page 1162)

Link by Pattern opens Pattern Wizard (see page 1162)

Note annotation

Note Link annotation link

3.5.7 Together Glossary

This topic contains a dictionary of specific terms used in Together user interface and documentation. This dictionary is sorted
alphabetically.

Term Description

Cardinality The number of elements in a set.

See also multiplicity.

Classifier In general, a classifier is a classification of instances — it describes a set of instances that have
features in common.

In Together, classifiers are the basic nodes of Class diagrams: class, interface, structure, delegate,
enum, module. Some of them can include other classifiers, or inner classifiers (see Inner Classifiers
(see page 1124)).

Compartment Some of Together model elements (basically, classes) are represented by rectangles with several
compartments inside.

You can change appearance of the compartments (see Diagram Appearance options (see page
1089)).

Design project One of the two basic project types supported by Together: design and implementation. A design
project is language-neutral. It does not contain source code.

Diagram A graphical presentation of a collection of model elements, most often rendered as a connected
graph of arcs (relationships) and vertices (other model elements).

The set of available diagram for a project depend on the project type.

Implementation project One of the two basic project types supported by Together: design and implementation. An
implementation project is language-specific. It includes diagrams and source code.

Invocation specification Invocation specification is an area within an execution specification on a UML 2.0 Sequence
Diagram. This element is not defined in the UML 2.0 specification, but introduced in Together. It is a
useful tool for modeling synchronous invocations with the reply messages. A message in UML 2.0
Sequence Diagrams has its origin in an invocation specification.

Model element Model element is any component of your model that you can put on a diagram.

Model elements include nodes and links between them.

3.5 Together Reference RAD Studio (Common) Together Glossary

1139

3

Multiplicity A specification of the range of allowable cardinalities that a set may assume. Multiplicity
specifications may be given for association ends, parts within composites, repetitions, and other
purposes. A multiplicity is a subset of the non-negative integers.

See also cardinality.

N-ary association An association among three or more classes. Each instance of the association is an n-tuple of values
from the respective classes.

Shortcut A shortcut is a representation of an existing node element placed on the same or a different
diagram.

View filter A view filter is mechanism to show or hide a specific kind of model elements.

When dealing with large projects, the amount of information shown on a diagram can become
overwhelming. In Together, you can selectively show or hide information.

See Using view filters (see page 233).

See Also

Help on Help (see page 51)

About Together (see page 83)

3.5.8 UML 2.0 Reference

This section contains reference material about UML 2.0 diagrams.

Topics

Name Description

UML 2.0 Activity Diagrams (see page 1140) This section describes the elements of UML 2.0 Activity Diagrams.

UML 2.0 Class Diagrams (see page 1143) This section describes the elements of UML 2.0 Class diagrams.

UML 2.0 Component Diagrams (see page 1145) This section describes the elements of UML 2.0 Component diagrams.

UML 2.0 Composite Structure Diagrams (see page 1146) This section describes the elements of UML 2.0 Composite Structure Diagrams.

UML 2.0 Deployment Diagrams (see page 1148) This section describes the elements of UML 2.0 Deployment diagrams.

UML 2.0 Interaction Diagrams (see page 1149) This section describes the elements of UML 2.0 Communication and Sequence
diagrams.

UML 2.0 State Machine Diagrams (see page 1155) This section describes the elements of UML 2.0 State Machine Diagrams.

UML 2.0 Use Case Diagrams (see page 1157) This section describes the elements of UML 2.0 Use Case Diagrams.

3.5.8.1 UML 2.0 Activity Diagrams
This section describes the elements of UML 2.0 Activity Diagrams.

Topics

Name Description

Pin (see page 1141) Actions can consume some input values or produce some output values. Input,
Output and Value pins hold such values.

UML 2.0 Activity Diagram Definition (see page 1141)

UML 2.0 Activity Diagram Elements (see page 1142) The table below lists the elements of UML 2.0 Activity diagrams that are available
using the Tool PaletteToolbox.
UML 2.0 Activity diagram elements

UML 2.0 Reference RAD Studio (Common) 3.5 Together Reference

1140

3

3.5.8.1.1 Pin
Actions can consume some input values or produce some output values. Input, Output and Value pins hold such values.

See Also

Creating Input Pins (see page 217)

UML 2.0 Activity Diagram Reference (see page 1140)

3.5.8.1.2 UML 2.0 Activity Diagram Definition
Definition

The activity diagram enables you to model the system behavior, including the sequence and conditions of execution of the
actions. Actions are the basic units of the system behavior.

An Activity diagram enables you to group and ungroup actions. If an action can be broken into a sequence of other actions, you
can create an activity to represent them.

In UML 2.0, activities consist of actions. Actions are not states (compared to UML 1.x) and can have subactions. An action
represents a single step within an activity, that is, one that is not further decomposed within the activity. An activity represents a
behavior which is composed of individual elements that are actions. An action is an executable activity node that is the
fundamental unit of executable functionality in an activity, as opposed to control and data flow among actions. The execution of
an action represents some transformation or processing in the modeled system, be it a computer system or otherwise.

The semantics of activities is based on token flow. By flow, we mean that the execution of one node affects and is affected by
the execution of other nodes, and such dependencies are represented by edges in the activity diagram. Data and control flows
are different in UML 2.0.

A control flow may have multiple sources (it joins several concurrent actions) or it may have multiple targets (it forks into several
concurrent actions).

Each flow within an activity can have its own termination, which is denoted by a flow final node. The flow final node means that a
certain flow within an activity is complete. Note that the flow final may not have any outgoing links.

Using decisions and merges, you can manage multiple outgoing and incoming control flows.

Use the Object InspectorProperties Window to adjust action properties, including:

• In the Properties, View, Description, and Custom tabs, configure standard properties of the element.

• In the Local Precondition and Local Postcondition tabs, select the language of the constraint expression from the Language
list box. The possible options are OCL and plain text. In the edit field below the list box, enter the constraint expression for this
action.

3.5 Together Reference RAD Studio (Common) UML 2.0 Reference

1141

3

Sample Diagram

3.5.8.1.3 UML 2.0 Activity Diagram Elements
The table below lists the elements of UML 2.0 Activity diagrams that are available using the Tool PaletteToolbox.

UML 2.0 Activity diagram elements

Name Type

Activity node

Activity parameter node component

Action node

Initial node

Activity final node

UML 2.0 Reference RAD Studio (Common) 3.5 Together Reference

1142

3

Decision node

Merge node

Flow Final node

Control Flow link

Input pin pin

Output pin pin

Value pin pin

Object node node

Central Buffer node

Data Store node

Object Flow link

Accept Event Action node

Accept Time Event Action node

Send Signal Action node

Node by Pattern opens Pattern Wizard (see page 1162)

Link by Pattern opens Pattern Wizard (see page 1162)

Note annotation

Note Link annotation link

3.5.8.2 UML 2.0 Class Diagrams
This section describes the elements of UML 2.0 Class diagrams.

Topics

Name Description

UML 2.0 Class Diagram Definition (see page 1143) UML 2.0 Class diagrams feature the same capabilities as the UML 1.5 diagrams.
The UML 2.0 class diagrams offer new diagram elements such as ports, provided
and required interfaces, and slots.
According to the UML 2.0 specification, an instance specification can instantiate
one or more classifiers. You can use classes, interfaces, or components as a
classifier.

UML 2.0 Class Diagram Elements (see page 1144) The table below lists the elements of UML 2.0 class diagrams that are available
using the Tool PaletteToolbox.
UML 2.0 class diagram elements

3.5.8.2.1 UML 2.0 Class Diagram Definition
UML 2.0 Class diagrams feature the same capabilities as the UML 1.5 diagrams.

The UML 2.0 class diagrams offer new diagram elements such as ports, provided and required interfaces, and slots.

According to the UML 2.0 specification, an instance specification can instantiate one or more classifiers. You can use classes,
interfaces, or components as a classifier.

Interfaces

A class implements an interface via the same generalization/implementation link, as in UML 1.5 class diagram. In addition to the
implementation interfaces, there are provided and required interfaces. Interfaces can be represented in class diagrams as

3.5 Together Reference RAD Studio (Common) UML 2.0 Reference

1143

3

rectangles or as circles. For the sake of clarity of your diagrams, you can show or conceal interfaces.

Tip: Applying a provided interface link between a class and an interface creates a regular generalization/implementation link. To
create provided interface, apply the provided interface link to a port on the client class.

UML 2.0 class diagram supports the ball-and socket notation for the provided and required interfaces. Choose Show as circle
command on the context menu of the interface to obtain a lollipop between the client class and the supplier interface.

Sample Diagram

The figure below shows a class diagram with some of the new elements.

3.5.8.2.2 UML 2.0 Class Diagram Elements
The table below lists the elements of UML 2.0 class diagrams that are available using the Tool PaletteToolbox.

UML 2.0 class diagram elements

Name Type

Package node

Class node

Interface node

Association Class node

Port node

Instance specification node

Generalization/Implementation link

Provided interface link

Required interface link

Association link

Association end link

Dependency link

Node by Pattern opens Pattern Wizard (see page 1162)

Link by Pattern opens Pattern Wizard (see page 1162)

Constraint OCL node

Constraint link OCL link

Note annotation

Note Link annotation link

UML 2.0 Reference RAD Studio (Common) 3.5 Together Reference

1144

3

3.5.8.3 UML 2.0 Component Diagrams
This section describes the elements of UML 2.0 Component diagrams.

Topics

Name Description

UML 2.0 Component Diagram Definition (see page 1145) This topic describes the UML 2.0 Component Diagram.

UML 2.0 Component Diagram Elements (see page 1145) The table below lists the elements of UML 2.0 compoment diagrams that are
available using the Tool PaletteToolbox.
UML 2.0 component diagram elements

3.5.8.3.1 UML 2.0 Component Diagram Definition
This topic describes the UML 2.0 Component Diagram.

Definition

According to the UML 2.0 specification, a component diagram can contain instance specifications. An instance specification can
be defined by one or more classifiers. You can use classes, interfaces, or components as a classifiers. You can instantiate a
classifier using the Object InspectorProperties Window, or the in-place editor.

Sample Diagram

The following component diagram specifies a set of constructs that can be used to define software systems of arbitrary size and
complexity.

3.5.8.3.2 UML 2.0 Component Diagram Elements
The table below lists the elements of UML 2.0 compoment diagrams that are available using the Tool PaletteToolbox.

UML 2.0 component diagram elements

Name Type

Component node

3.5 Together Reference RAD Studio (Common) UML 2.0 Reference

1145

3

Class node

Port node

Artifact node

Interface node

Instance specification node

Delegation connector link

Provided interface link

Required interface link

Association link

Aggregation link

Dependency link

Realization link

Node by Pattern opens Pattern Wizard (see page 1162)

Link by Pattern opens Pattern Wizard (see page 1162)

Note annotation

Note Link annotation link

3.5.8.4 UML 2.0 Composite Structure Diagrams
This section describes the elements of UML 2.0 Composite Structure Diagrams.

Topics

Name Description

Delegation Connector (see page 1146) An interface can delegate its obligations to another interface through the
delegation connector.

UML 2.0 Composite Structure Diagram Definition (see page 1146) Diagram courtesy of the Unified Modeling Language: Superstructure version 2.0.
August 2003. p. 178.

UML 2.0 Composite Structure Diagram Elements (see page 1147) The table below lists the elements of UML 2.0 composite structure diagrams that
are available using the Tool PaletteToolbox.
UML 2.0 composite structure diagram elements

3.5.8.4.1 Delegation Connector
An interface can delegate its obligations to another interface through the delegation connector.

See Also

UML 2.0 Composite Structure Diagram Reference (see page 1146)

3.5.8.4.2 UML 2.0 Composite Structure Diagram Definition
Diagram courtesy of the Unified Modeling Language: Superstructure version 2.0. August 2003. p. 178.

Definition

Composite structure diagrams depict the internal structure of a classifier, including its interaction points to the other parts of the
system. It shows the configuration of parts that jointly perform the behavior of the containing classifier.

UML 2.0 Reference RAD Studio (Common) 3.5 Together Reference

1146

3

A collaboration describes a structure of collaborating parts (roles). A collaboration is attached to an operation or a classifier
through a Collaboration Use.

Classes and collaborations in the Composite Structure diagram can have internal structure and ports. Internal structure is
represented by a set of interconnected parts (roles) within the containing class or collaboration. Participants of a collaboration or
a class are linked by the connectors.

A port can appear either on a contained part, or on the boundary of the class.

The contained parts can be included by reference. Referenced parts are represented by the dotted rectangles.

Composite Structure diagram supports the ball-and-socket notation for the provided and required interfaces. Interfaces can be
shown or hidden in the diagram as needed.

Sample Diagram

3.5.8.4.3 UML 2.0 Composite Structure Diagram Elements
The table below lists the elements of UML 2.0 composite structure diagrams that are available using the Tool PaletteToolbox.

UML 2.0 composite structure diagram elements

Name Type

Class node

Interface node

Collaboration node

Collaboration Occurrence node

Part node

Referenced part node

Port node

Provided interface link

Required interface link

Connector link

Collaboration role link

Role binding link

3.5 Together Reference RAD Studio (Common) UML 2.0 Reference

1147

3

Node by Pattern opens Pattern Wizard (see page 1162)

Link by Pattern opens Pattern Wizard (see page 1162)

Note annotation

Note Link annotation link

3.5.8.5 UML 2.0 Deployment Diagrams
This section describes the elements of UML 2.0 Deployment diagrams.

Topics

Name Description

UML 2.0 Deployment Diagram Definition (see page 1148) This topic describes the UML 2.0 Deployment Diagram.

UML 2.0 Deployment Diagram Elements (see page 1148) The table below lists the elements of UML 2.0 deployment diagrams that are
available using the Tool PaletteToolbox.
UML 2.0 deployment diagram elements

3.5.8.5.1 UML 2.0 Deployment Diagram Definition
This topic describes the UML 2.0 Deployment Diagram.

Definition

The deployment diagram specifies a set of constructs that can be used to define the execution architecture of systems that
represent the assignment of software artifacts to nodes. Nodes are connected through communication paths to create network
systems of arbitrary complexity. Nodes are typically defined in a nested manner, and represent either hardware devices or
software execution environments. Artifacts represent concrete elements in the physical world that are the result of a
development process.

Diagram courtesy of the Unified Modeling Language: Superstructure version 2.0. August 2003. pp. 207, 212.

Sample Diagram

3.5.8.5.2 UML 2.0 Deployment Diagram Elements
The table below lists the elements of UML 2.0 deployment diagrams that are available using the Tool PaletteToolbox.

UML 2.0 Reference RAD Studio (Common) 3.5 Together Reference

1148

3

UML 2.0 deployment diagram elements

Name Type

Node node

Artifact node

Device node

Execution specification node

Deployment specification node

Instance specification node

Deployment link

Generalization link

Association link

Dependency link

Manifestation link

Communication path link

Node by Pattern opens Pattern Wizard (see page 1162)

Link by Pattern opens Pattern Wizard (see page 1162)

Note annotation

Note Link annotation link

An artifact represents a physical entity and is depicted in diagram as a rectangle with the <<artifact>> stereotype. An artifact
may have properties which define its features, and operations which can be performed on its instances. Physically the artifacts
can be model files, source files, scripts, binary executable files, a table in a database system, a development deliverable, a
word-processing document, or a mail message. A deployed artifact is one that has been deployed to a node used as a
deployment target. Deployed artifacts are connected with the target node by deployment links.

Artifacts can include operations.

You can create complex artifacts, by nesting artifact icons.

3.5.8.6 UML 2.0 Interaction Diagrams
This section describes the elements of UML 2.0 Communication and Sequence diagrams.

Topics

Name Description

Interaction (see page 1150) By using Together, you can create interactions for the detailed description and
analysis of inter-process communications.
Interactions can be visually represented in your Together projects by means of
the two most common interaction diagrams: Sequence and Communication. On
the other hand, interactions can exist in projects without visual representation.

Execution Specification and Invocation Specification (see page 1151) In sequence diagrams, Together automatically renders the execution
specification of a message that shows the period of time when the message is
active. When you draw a message link to the destination lifeline, the execution
specification bar is created automatically. You can extend or reduce the period of
time of a message by vertically dragging the top or bottom line of the execution
specification as required.
It is also possible to create an execution specification on a lifeline without
creating an incoming message link. In this case a found message is created, that
is a message that comes from an... more (see page 1151)

Operator and Operand for a Combined Fragment (see page 1151)

3.5 Together Reference RAD Studio (Common) UML 2.0 Reference

1149

3

UML 2.0 Communication Diagram Definition (see page 1152) Interactions can be visually represented in your Together projects by means of
the two most common interaction diagrams: Sequence and Communication.
Communication Diagrams focus on the interaction between lifelines where the
architecture of the internal structure and how this corresponds with the message
passing is central. The sequencing of messages is given through a sequence
numbering scheme.

UML 2.0 Communication Diagram Elements (see page 1152) The table below lists the elements of UML 2.0 communication diagrams that are
available using the Tool PaletteToolbox.
UML 2.0 communication diagram elements

UML 2.0 Message (see page 1153) Call messages are always visible in diagrams; reply messages normally are not
displayed. However, you can visualize the reply message.

UML 2.0 Sequence Diagram Definition (see page 1154) Interactions can be visually represented in your Together projects by means of
the two most common interaction diagrams: Sequence and Communication.
The most common kind of Interaction Diagram is the Sequence Diagram, which
focuses on the message interchange between a number of lifelines. A Sequence
Diagram describes an interaction by focusing on the sequence of messages that
are exchanged.

UML 2.0 Sequence Diagram Elements (see page 1154) The table below lists the elements of UML 2.0 sequence diagrams that are
available using the Tool PaletteToolbox.
UML 2.0 sequence diagram elements

3.5.8.6.1 Interaction
By using Together, you can create interactions for the detailed description and analysis of inter-process communications.

Interactions can be visually represented in your Together projects by means of the two most common interaction diagrams:
Sequence and Communication. On the other hand, interactions can exist in projects without visual representation.

Interaction use

Within an interaction, you can refer to the other interactions described in your project. So called “Interaction use” elements serve
this purpose. Note that referenced interaction can be explicitly defined from the model, or just specified as a text string.

Each interaction use is attached to its lifeline with a black dot. This dot is an individual diagram element. If an interaction use is
expanded over several lifelines, you can delete the attachment dots from all lifelines but one. An interaction use should be
connected with at least one lifeline.

Tie frame

Together makes it possible to spread combined fragments and interaction uses across several lifelines. This is done with the Tie
Frame button of the diagram Tool PaletteToolbox.

A frame can be attached to different points on the target lifeline. You choose the desired location on the target lifeline between
the other elements and frames that belong to it. The frame shifts accordingly along the source lifeline.

It is important to understand that only those lifelines marked with dots are attached to the referenced interaction or combined
fragment; lifelines that are only crossed by the frame are not attached. Attachment dots are separate diagram elements that can
be selected and deleted.

Lifeline

A lifeline defines an individual participant of the interaction. A lifeline is shown in a sequence diagram as a rectangle followed by
a vertical-dashed line.

Lifelines of an interaction can represent the parts defined in the class or composite structure diagrams. If the referenced element
is multivalued, then the lifeline should have a selector that specifies which particular part is represented by this lifeline.

If a lifeline represents a connectable element, has type specified, or refers to another interaction, the Select menu becomes
enabled on the context menu of this lifeline. Using this menu, you can navigate to the part, type or decomposition associated
with the lifeline. These properties are defined by using the Object InspectorProperties Window. If the represents property is set,
the type and part properties are disabled.

You can define these properties manually by typing the values in the corresponding fields of the Object InspectorProperties

UML 2.0 Reference RAD Studio (Common) 3.5 Together Reference

1150

3

Window. If the specified values are not found in the model, they are displayed in single quotes. Such references are not related
to any actual elements and the Select menu is not available for them. If the specified values can be resolved in the model, they
are shown without quotes, and the Select menu is available for them.

State invariant

A state invariant is a constraint placed on a lifeline. This constraint is evaluated at runtime prior to execution of the next
execution specification. State invariants are represented in the interaction diagrams in two ways: as OCL expressions or as
references to the state diagrams. You can use the state invariants to provide comments to your interaction diagrams and to
connect interactions with states.

It is important to note that Together provides validation of the state invariants represented as OCL expressions. If the syntax is
wrong, or there is no valid context, the constraint is displayed red. For example, a lifeline should have type and represents
properties defined to be a valid context.

See Also

OCL support overview (see page 95)

UML 2.0 interaction diagrams (see page 1149)

3.5.8.6.2 Execution Specification and Invocation Specification
In sequence diagrams, Together automatically renders the execution specification of a message that shows the period of time
when the message is active. When you draw a message link to the destination lifeline, the execution specification bar is created
automatically. You can extend or reduce the period of time of a message by vertically dragging the top or bottom line of the
execution specification as required.

It is also possible to create an execution specification on a lifeline without creating an incoming message link. In this case a
found message is created, that is a message that comes from an object that is not shown in diagram. Use the Object
InspectorProperties Window to hide or show the found messages.

Messages in sequence diagrams have their origin in an invocation specification. This is an area within an execution specification.
The notion of an invocation specification is introduced in Together's implementation of UML 2.0 sequence diagrams. Though this
element is not defined in the UML 2.0 specification, it is a useful tool for modeling synchronous invocations with the reply
messages. In particular, invocation specification marks a place where the reply messages (even if they are invisible) enter the
execution context of a lifeline, and where sub-messages may reenter the lifeline.

Active and passive areas of the execution specification are rendered in different colors. The white execution specification bars
denote active areas where you can create message links. The gray bars are passive and are not a valid source or target for the
message links.

See Also

UML 2.0 Message (see page 1153)

3.5.8.6.3 Operator and Operand for a Combined Fragment
About combined fragment

A combined fragment can consist of one or more interaction operators and one or more interaction operands. Number of
interaction operands (just one, or more than one) depends on the last interaction operator of this combined fragment.

Use the Tool PaletteToolbox, or context menus to create these elements. The operator type shows up in the descriptor in the
upper-left corner of the design element. Note that you can define multiple operators in a combined fragment. In this case, the
descriptor contains the list of all operators, which is a shorthand for nested operators.

When an operator is created, add the allowed operands, using the combined fragment's context menu.

3.5 Together Reference RAD Studio (Common) UML 2.0 Reference

1151

3

A combined fragment can be expanded over several lifelines, detached from and reattached to lifelines. In the Object
InspectorProperties Window, use the Operators field to manage operators within the combined fragment.

Each combined fragment is attached to its lifeline with a black dot. This dot is an individual diagram element, which can be
selected or deleted. Deleting a dot means detaching a combined fragment from the lifeline. Note that a combined fragment
cannot be detached from all lifelines and should have at least one attachment dot.

You can reattach a combined fragment later, using the Tie Frame tool.

Operator

When a combined fragment is created, the operator is shown in a descriptor pentagon in the upper left corner of the frame. You
can change the operator type, using the Operators field of the Object InspectorProperties Window, which is immediately
reflected in the descriptor.

The descriptor may contain several operators. UML 2.0 specification provides this notation for the nested combined fragments.
In Together you can use this notation, or create nested combined fragment nodes.

Operand

Operands are represented as rectangular areas within a combined fragment, separated by the dashed lines. When a combined
fragment is initially created, the number of operands is defined by the pattern defaults. Further, you can create additional
operands, or remove the existing ones.

Note that the uppermost area of the operator is empty and does not contain any operands. It is reserved for the descriptor.
Clicking on this area selects the entire operator; clicking on one of the dotted rectangles selects the corresponding operand. If a
combined fragment contains only one operand, the entire combined fragment and the single existing operand are still separately
selectable.

See Also

OCL support overview (see page 95)

UML 2.0 interaction diagrams (see page 1149)

3.5.8.6.4 UML 2.0 Communication Diagram Definition
Interactions can be visually represented in your Together projects by means of the two most common interaction diagrams:
Sequence and Communication.

Communication Diagrams focus on the interaction between lifelines where the architecture of the internal structure and how this
corresponds with the message passing is central. The sequencing of messages is given through a sequence numbering scheme.

See Also

UML 2.0 Interaction Diagram Reference (see page 1149)

Interaction (see page 1150)

3.5.8.6.5 UML 2.0 Communication Diagram Elements
The table below lists the elements of UML 2.0 communication diagrams that are available using the Tool PaletteToolbox.

UML 2.0 communication diagram elements

Name Type

Lifeline node

Message link

UML 2.0 Reference RAD Studio (Common) 3.5 Together Reference

1152

3

Node by Pattern opens Pattern Wizard (see page 1162)

Link by Pattern opens Pattern Wizard (see page 1162)

Note annotation

Note Link annotation link

Interaction diagrams, represented in the Model View, display a number of auxiliary elements that are not visible in the Diagram
View. These elements play supplementary role for representation of the diagram structure. Actually, these elements are editable,
but it is strongly advised to leave them untouched, to preserve integrity of the interaction diagrams.

3.5.8.6.6 UML 2.0 Message
Call messages are always visible in diagrams; reply messages normally are not displayed. However, you can visualize the reply
message.

Messages on different diagram types

Messages in communication diagrams: When you draw a message between lifelines, a generic link line displays between the
lifelines and a list of messages is created under it. The link line is present as long as there is at least one message between the
lifelines.

Messages in sequence diagrams: Messages in sequence diagrams have the same properties as those in communication
diagrams but allow you to perform more actions. The further discussion refers mainly to the sequence diagram messages.

Properties of the messages for both types of interaction diagrams can be edited in the Object InspectorProperties Window.

Properties of the message links

Call messages have the following properties:

Property Description

Sequence
number

Use this field to view and edit the sequential number of a message. When the message number changes, the
message call changes respectively.

Name Displays the link name. This field can be edited.

Qualified
name

A read-only field that displays the fully-qualified name of the message.

Stereotype Use this field to define the message stereotype. The stereotype name displays above the link.

Signature Use this field to specify the name of an operation or signal associated with the message. Note that changing the
signature of a message call results in changing the signature of the corresponding reply.

Arguments Displays actual arguments of an operation associated with a message call. This field can be edited.

Sort Use this field to select the type of synchronization from the drop-down list. The possible values are:asynchCall,
synchCall, asynchSignal. The message link changes its appearance accordingly.

There are certain limitations related to the asynchronous calls:

Sometimes it is impossible to create or paste an asynchronous call because of the frame limitations.

Execution specification for an asynchronous call must always be located on a lifeline.

Show reply
message

Use this Boolean option to define whether to draw a dashed return arrow.

Commentary Use this textual field to enter comments for a message link.

Reply messages have the following properties:

3.5 Together Reference RAD Studio (Common) UML 2.0 Reference

1153

3

Property Description

Stereotype Use this field to define the message stereotype.

Attribute Use this field to define an attribute to which the return value of the message will be assigned. This field can be
edited.

Signature Use this field to specify the name of an operation or signal associated with the message. Note that changing the
signature of a message reply results in changing the signature of the corresponding call.

Arguments Displays arguments of an operation associated with a message call. This field can be edited. Note that changing
the list of arguments of a reply message results in changing the corresponding call.

Return value Displays the return value of an operation associated with a message link. This field can be edited.

Sort Use this field to select the type of synchronization from the drop-down list. The possible values are:asynchCall,
synchCall, asynchSignal. The message link changes its appearance accordingly.

Commentary Use this text field to comment the link.

Note: Such properties of the call and reply messages as arguments, attribute, qualified name, return value, signature, and sort
pertain to the invocation specification. You can edit these properties in the invocation specification itself, in the call or in the reply
messages. As a result, the corresponding properties of the counterpart message and the invocation specification will change
accordingly. Stereotype and commentary properties are unique for the call and reply messages.

See Also

Working with UML 1.5 Messages (see page 215)

Execution Specification and Invocation Specification (see page 1151)

UML 2.0 Interaction Diagrams (see page 1149)

3.5.8.6.7 UML 2.0 Sequence Diagram Definition
Interactions can be visually represented in your Together projects by means of the two most common interaction diagrams:
Sequence and Communication.

The most common kind of Interaction Diagram is the Sequence Diagram, which focuses on the message interchange between a
number of lifelines. A Sequence Diagram describes an interaction by focusing on the sequence of messages that are exchanged.

See Also

UML 2.0 Interaction Diagram Reference (see page 1149)

Interaction (see page 1150)

3.5.8.6.8 UML 2.0 Sequence Diagram Elements
The table below lists the elements of UML 2.0 sequence diagrams that are available using the Tool PaletteToolbox.

UML 2.0 sequence diagram elements

Name Type

Lifeline node

Execution specification node

Combined fragment node

State invariant node

UML 2.0 Reference RAD Studio (Common) 3.5 Together Reference

1154

3

Message link

Interaction use node

Node by Pattern opens Pattern Wizard (see page 1162)

Link by Pattern opens Pattern Wizard (see page 1162)

Note annotation

Note Link annotation link

Sequence diagram can contain shortcuts to the other diagram elements. However, shortcuts to the elements that reside in the
other interaction diagrams are not supported.

Interaction diagrams, represented in the Model View, display a number of auxiliary elements that are not visible in the Diagram
View. These elements play supplementary role for representation of the diagram structure. Actually, these elements are editable,
but it is strongly advised to leave them untouched, to preserve integrity of the interaction diagrams.

3.5.8.7 UML 2.0 State Machine Diagrams
This section describes the elements of UML 2.0 State Machine Diagrams.

Topics

Name Description

History Element (State Machine Diagrams) (see page 1155) The Shallow History and Deep History elements are placed on regions of the
states.
There may be none or one Deep History, and none or one Shallow History
elements in each region. If there is only one history element in a region, it may be
switched from the Deep to Shallow type by changing its kind property.
Please refer to UML 2.0 Specification for more information about these elements.

UML 2.0 State Machine Diagram Definition (see page 1155) States are the basic units of the state machines. In UML 2.0 states can have
substates.
Execution of the diagram begins with the Initial node and finishes with Final or
Terminate node or nodes. Please refer to UML 2.0 Specification for more
information about these elements.

UML 2.0 State Machine Diagram Elements (see page 1156) The table below lists the elements of UML 2.0 State Machine diagrams that are
available using the Tool PaletteToolbox.
UML 2.0 State Machine diagram elements

3.5.8.7.1 History Element (State Machine Diagrams)
The Shallow History and Deep History elements are placed on regions of the states.

There may be none or one Deep History, and none or one Shallow History elements in each region. If there is only one history
element in a region, it may be switched from the Deep to Shallow type by changing its kind property.

Please refer to UML 2.0 Specification for more information about these elements.

See Also

Creating a history (see page 230)

State machine diagram (see page 1155)

3.5.8.7.2 UML 2.0 State Machine Diagram Definition
States are the basic units of the state machines. In UML 2.0 states can have substates.

Execution of the diagram begins with the Initial node and finishes with Final or Terminate node or nodes. Please refer to UML 2.0

3.5 Together Reference RAD Studio (Common) UML 2.0 Reference

1155

3

Specification for more information about these elements.

Definition

State Machine diagrams describe the logic behavior of the system, a part of the system, or the usage protocol of it.

On these diagrams you show the possible states of the objects and the transitions that cause a change in state.

State Machine diagrams in UML 2.0 are different in many aspects compared to Statechart diagrams in UML 1.5.

Sample Diagram

3.5.8.7.3 UML 2.0 State Machine Diagram Elements
The table below lists the elements of UML 2.0 State Machine diagrams that are available using the Tool PaletteToolbox.

UML 2.0 State Machine diagram elements

Name Type Description

State node

Entry point node Execution of the state starts at this point. It is possible to create several entry points
for one state, that makes sense if there are substates.

Exit point node Execution of the state finishes at this point. It is possible to create several exit points
for one state, that makes sense if there are substates.

Initial node

Final node

Terminate node

Shallow history node

Deep history node

UML 2.0 Reference RAD Studio (Common) 3.5 Together Reference

1156

3

Region node Use regions inside the states to group the substates. The regions may have different
visibility settings and history elements. Each state has one region immediately after
creation (though it can be deleted.)

In the regions, you can create all the elements that are available for the State
Machine diagram.

only available on the state context menu

Fork node

Join node

Choice node

Junction node

Transition link Draw a link from the exit point of source state (or the state without exit points) to the
entry point of the destination (or the state without points).

Internal transition link Internal transition elements are only available on the state context menu.

Node by Pattern opens Pattern
Wizard (see
page 1162)

Link by Pattern opens Pattern
Wizard (see
page 1162)

Note annotation

Note Link annotation link

3.5.8.8 UML 2.0 Use Case Diagrams
This section describes the elements of UML 2.0 Use Case Diagrams.

Topics

Name Description

UML 2.0 Use Case Diagram Definition (see page 1157) Diagram courtesy of the Unified Modeling Language: Superstructure version 2.0.
August 2003. p. 536.

UML 2.0 Use Case Diagram Elements (see page 1158) The table below lists the elements of UML 2.0 Use Case diagrams that are
available using the Tool PaletteToolbox.
UML 2.0 Use Case diagram elements

3.5.8.8.1 UML 2.0 Use Case Diagram Definition
Diagram courtesy of the Unified Modeling Language: Superstructure version 2.0. August 2003. p. 536.

Definition

Use case diagrams describe required usages of a system, or what a system is supposed to do. The key concepts that take part
in a use case diagram are actors, use cases, and subjects. A subject represents a system under consideration with which the
actors and other subjects interact. The required behavior of the subject is described by the use cases.

Sample Diagram

The following diagram shows an example of actors and use cases for an ATM system.

3.5 Together Reference RAD Studio (Common) UML 2.0 Reference

1157

3

3.5.8.8.2 UML 2.0 Use Case Diagram Elements
The table below lists the elements of UML 2.0 Use Case diagrams that are available using the Tool PaletteToolbox.

UML 2.0 Use Case diagram elements

Name Type Description

Actor node

Subject node

Use Case node

Extension point node Create extension points in the use cases in order to
specify a point in the behavior of a use case, where
this behavior can be extended by the behaviot of
some other use case. This element is available on
the context menu of a use case.

Extends link

Includes link

Generalization link

Association link

Node by Pattern opens Pattern Wizard (see page
1162)

Link by Pattern opens Pattern Wizard (see page
1162)

Note annotation

Note Link annotation link

3.5.9 Together Wizards

This section describes wizards used for UML modeling.

Together Wizards RAD Studio (Common) 3.5 Together Reference

1158

3

Topics

Name Description

Create Pattern Wizard (see page 1159) The Create Pattern Wizard enables you to save an existing fragment of your
model as a pattern for future use. You can open the Create Pattern Wizard by
selecting one or more nodes and links on a Class diagram and choosing the
Save as Pattern command on a context menu.

New Together Project Wizards (see page 1159) This section describes Wizards used to create new Together modeling projects.

Pattern Wizard (see page 1162) The Pattern Wizard enables you to explicitly apply a pattern. You can open the
Pattern Wizard by:

• Using the Node by Pattern or Link by Pattern button in
the Tool PaletteToolbox

• Using the Create by Pattern command from the Diagram
View or class context menus

3.5.9.1 Create Pattern Wizard
The Create Pattern Wizard enables you to save an existing fragment of your model as a pattern for future use. You can open
the Create Pattern Wizard by selecting one or more nodes and links on a Class diagram and choosing the Save as Pattern
command on a context menu.

Item Description

File This field specifies the target XML file name.

Name This field specifies the name of the new pattern.

Create Pattern Object Check this check box to use your pattern as a First Class Citizen. This means that an oval pattern
element will display on your diagrams when applying the pattern.

See Also

Patterns overview (see page 96)

Creating a pattern (see page 253)

3.5.9.2 New Together Project Wizards
This section describes Wizards used to create new Together modeling projects.

Topics

Name Description

Convert MDL Wizard (see page 1160) Use this wizard to create a design project around an existing IBM Rational Rose
(MDL) model. The wizard is invoked by the Design Projects Convert from
MDL template of the New Project dialog box.
IMPORTANT: For the MDL Import function to work, the Java Runtime
Environment and the Java Development Kit must be installed, and the paths in
the jdk.config file must correctly point to your JDK/JRE directory. For
example,

Supported C# Project Wizards (see page 1161) Together supports all C# project types available in RAD Studio.
Such projects can be supplied with a UML 1.5 model.
Please consult the general documentation for RAD Studio for further information
about creating C# projects.

Supported Delphi Project Wizards (see page 1161) Together supports all Delphi project types available in RAD Studio.
Such projects can be supplied with a UML 1.5 model.
Please consult the general documentation for RAD Studio for further information
about creating Delphi projects.

3.5 Together Reference RAD Studio (Common) Together Wizards

1159

3

UML 1.5 Together Design Project Wizard (see page 1161) File New Other Design Projects UML 1.5 Design Project
This project is provided by Together for creation of a UML 1.5 design project.
To start this wizard, choose File New Other on the main menu. The New
Items dialog box opens. Choose the Design Projects UML 1.5 Design
Project category. Click OK.
The New Application dialog box opens. Specify the name and location of your
model project. Click OK.
The new UML 1.5 design project is created. Use the Model View to see its
structure.

UML 2.0 Together Design Project Wizard (see page 1161) File New Other Design Projects UML 2.0 Design Project
This project is provided by Together for creation of a UML 2.0 design project.
To start this wizard, choose File New Other on the main menu. The New
Items dialog box opens. Choose the Design Projects UML 2.0 Design
Project category. Click OK.
The New Application dialog box opens. Specify the name and location of your
model project. Click OK.
The new UML 2.0 design project is created. Use the Model View to see its
structure.

3.5.9.2.1 Convert MDL Wizard
Use this wizard to create a design project around an existing IBM Rational Rose (MDL) model. The wizard is invoked by the
Design Projects Convert from MDL template of the New Project dialog box.

IMPORTANT: For the MDL Import function to work, the Java Runtime Environment and the Java Development Kit must be
installed, and the paths in the jdk.config file must correctly point to your JDK/JRE directory. For example,

javahome ../../../../../../../jdk1.4.2/jre
addpath ../../../../../../../jdk1.4.2/lib/tools.jar

Note that the path to the JDK/JRE should be without quotation marks.

Paths section

Button Description

Add Adds one model file to the Paths section. Press this button to open Select Model File dialog box,
navigate to the desired model file and click Open.

Add Folder Adds all model files in the selected folder. Press this button to open Browse for Folder dialog box,
navigate to the desired folder that contains the model files, and click OK.

Remove Press this button to delete the selected entry from the Paths section.

Remove all Press this button to delete all model files from the Paths section.

Options section

Option Description

Scale factor Specify the element dimensions coefficient. By default, the scale factor is 0.3.

Convert Rose default
colors

If this option is checked, the default Rational Rose will be replaced with the default Together colors.

Preserve diagram
nodes bounds

if this option is checked, user-defined bounds are preserved in the resulting diagrams. Otherwise the
default values are applied.

Convert Rose actors This options enables you to choose mapping for the Rose classes with actor-like stereotypes (Actor,
Business Actor, Business Worker, Physical Worker.) If the option is checked, the Rose actors are
mapped to Together actors. If the option is not checked, the Rose actors are mapped to the classes
with the Actor stereotype.

Together Wizards RAD Studio (Common) 3.5 Together Reference

1160

3

See Also

Importing a Project in IBM Rational Rose (MDL) Format (see page 265)

Project Types and Formats with Support for Modeling (see page 1116)

3.5.9.2.2 Supported C# Project Wizards
Together supports all C# project types available in RAD Studio.

Such projects can be supplied with a UML 1.5 model.

Please consult the general documentation for RAD Studio for further information about creating C# projects.

See Also

Creating a Project (see page 264)

Supported Project Formats (see page 1116)

3.5.9.2.3 Supported Delphi Project Wizards
Together supports all Delphi project types available in RAD Studio.

Such projects can be supplied with a UML 1.5 model.

Please consult the general documentation for RAD Studio for further information about creating Delphi projects.

See Also

Creating a Project (see page 264)

Supported Project Formats (see page 1116)

3.5.9.2.4 UML 1.5 Together Design Project Wizard
File New Other Design Projects UML 1.5 Design Project

This project is provided by Together for creation of a UML 1.5 design project.

To start this wizard, choose File New Other on the main menu. The New Items dialog box opens. Choose the Design
Projects UML 1.5 Design Project category. Click OK.

The New Application dialog box opens. Specify the name and location of your model project. Click OK.

The new UML 1.5 design project is created. Use the Model View to see its structure.

See Also

Creating a project (see page 264)

Supported project formats (see page 1116)

3.5.9.2.5 UML 2.0 Together Design Project Wizard
File New Other Design Projects UML 2.0 Design Project

This project is provided by Together for creation of a UML 2.0 design project.

To start this wizard, choose File New Other on the main menu. The New Items dialog box opens. Choose the Design

3.5 Together Reference RAD Studio (Common) Together Wizards

1161

3

Projects UML 2.0 Design Project category. Click OK.

The New Application dialog box opens. Specify the name and location of your model project. Click OK.

The new UML 2.0 design project is created. Use the Model View to see its structure.

See Also

Creating a project (see page 264)

Supported project formats (see page 1116)

3.5.9.3 Pattern Wizard
The Pattern Wizard enables you to explicitly apply a pattern. You can open the Pattern Wizard by:

• Using the Node by Pattern or Link by Pattern button in the Tool PaletteToolbox

• Using the Create by Pattern command from the Diagram View or class context menus

The Node by Pattern element opens the Pattern Wizard. You can also open the Pattern Wizard using the Create by Pattern
command on the diagram context menu.

Item Description

Pattern tree: This field determines the content displayed in the Patterns pane. Use the drop-down arrow to select a
pattern tree. Pattern trees are defined in the Pattern Organizer.

Panes The following Selector/Editor panes occupy the top portion of the dialog:

Patterns: The Patterns pane presents a tree view of the available patterns. Use the Pattern tree field to
determine the available content shown in the Patterns pane.

Pattern properties: Edit the generated class names for pattern elements, or use the information button to open the Select
Element dialog for choosing elements.

Description The Description pane lies at the bottom of the Pattern Wizard and displays context-sensitive help
text. Help descriptions for the more complex patterns appear directly in the Pattern Wizard rather
than in Together online help. To view a description of a pattern, click on the individual pattern in the
Patterns pane.

Error If an error occurs while applying a pattern, the Pattern Wizard remains open, and the error text
displays here.

Buttons

OK Applies the specified pattern.

Cancel Closes the Pattern Wizard without applying a pattern.

See Also

Creating model elements by pattern (see page 255)

Together Wizards RAD Studio (Common) 3.5 Together Reference

1162

3

Index

"
"gettingStarted"

"File Browser" 166

$
$ALIGN

compiler directives, Delphi 283

$APPTYPE

compiler directives, Delphi 283

$ASSERTIONS

compiler directives, Delphi 284

$AUTOBOX

compiler directives, Delphi 284

$BOOLEVAL

compiler directives (Delphi) 285

$DEBUGINFO

compiler directives, Delphi 287

$DEFINE

compiler directives, Delphi 287

$DENYPACKAGEUNIT

compiler directives, Delphi 287

$DESCRIPTION

compiler directives, Delphi 288

$DESIGNONLY

compiler directives, Delphi 288

$ELSE

compiler directives, Delphi 288

$ELSEIF

compiler directives, Delphi 289

$ENDIF

compiler directives, Delphi 289

$EXTENDEDSYNTAX

compiler directives, Delphi 290

$EXTENSION

compiler directives, Delphi 289

$EXTERNALSYM

compiler directives, Delphi 290

$FINITEFLOAT

compiler directives, Delphi 291

$HINTS

compiler directives, Delphi 291

$HPPEMIT

compiler directives, Delphi 292

$IF

compiler directives, Delphi 292

$IFDEF

compiler directives, Delphi 292

$IFEND

compiler directives, Delphi 293

$IFNDEF

compiler directives, Delphi 294

$IFOPT

compiler directives, Delphi 294

$IMAGEBASE

compiler directives, Delphi 294

$IMPLICITBUILD

compiler directives, Delphi 295

$IMPORTEDDATA

compiler directives, Delphi 295

$INCLUDE

compiler directives, Delphi 295

$IOCHECKS

compiler directives, Delphi 296

$LIB

compiler directives, Delphi 296

$LINK

compiler directives, Delphi 297

$LOCALSYMBOLS

compiler directives, Delphi 297

$LONGSTRINGS

compiler directives, Delphi 298

$MESSAGE

compiler directives, Delphi 299

$METHODINFO

compiler directives, Delphi 299

4 RAD Studio (Common)

a

$MINENUMSIZE

compiler directives, Delphi 299

$MINSTACKSIZE; $MAXSTACKSIZE

compiler directives, Delphi 298

$NODEFINE

compiler directives, Delphi 302

$NOINCLUDE

compiler directives, Delphi 302

$ObjExportAll

compiler directives, Delphi 290

$OPENSTRINGS

compiler directives, Delphi 300

$OPTIMIZATION

compiler directives, Delphi 300

$OVERFLOWCHECKS

compiler directives, Delphi 301

$RANGECHECKS

compiler directives, Delphi 302

$REALCOMPATIBILITY

compiler directives, Delphi 302

$REFERENCEINFO; $DEFINITIONINFO

compiler directives, Delphi 305

$REGION; $ENDREGION

compiler directives, Delphi 303

$RESOURCE

compiler directives, Delphi 303

$RESOURCERESERVE

compiler directives, Delphi 310

$RUNONLY

compiler directives, Delphi 304

$SAFEDIVIDE

compiler directives, Delphi 301

$SetPEFlags

compiler directives, Delphi 310

$STACKFRAMES

compiler directives, Delphi 309

$TYPEDADDRESS

compiler directives, Delphi 305

$TYPEINFO

compiler directives, Delphi 304

$UNDEF

compiler directives, Delphi 306

$UNSAFECODE

compiler directives, Delphi 306

$VARSTRINGCHECKS

compiler directives, Delphi 306

$WARN

compiler directives, Delphi 307

$WARNINGS

compiler directives, Delphi 308

$WEAKPACKAGEUNIT

compiler directives, Delphi 308

$WRITEABLECONST

compiler directives, Delphi 309

.

.NET Assemblies 900

.NET Topics 593

.NET VCL Components 735

@
@ operator 720

<
<generic_ordered_list> Dialog Box 997

<IDname> is not a valid identifier 765

<Library Name>is already loaded, probably as a result of an
incorrect program termination. Your system may be unstable
and you should exit and restart Windows now. 765

A
A (Anchor) HTML Element 801

A component class named <name> already exists 763

A field or method named <name> already exists 763

About Together 83

Action List editor 921

Action Manager editor 919

Activate support 263

RAD Studio (Common) 4

b

Activating Together Support for Projects 263

Activation Bar 1132

Active Form Wizard 771

Active Server Object wizard 772

activity diagram

sample 85

activity parameter

adding 218

Add 773

Add Address Breakpoint or Add Data Breakpoint 938

Add Comment to Event Log 1026

Add Design Packages 825

Add Exception Range 985

Add Fields 739

Add Language Exception 985

Add Languages 903

Add Namespace 57

Add New Diagram dialog box 960

Add New Project 909

Add New WebService 787, 793

Add or Edit Parameter 60

Add or Edit To-Do Item 1049

Add Page dialog box 922

Add Runtime Packages 825

Add Source Breakpoint 940

Add Symbol Table Search Path 826

Add to Project 908

Add to Repository 901, 1017, 1037

Add Watch Group 1019

Add/Edit Module Load Breakpoint 1019

Add/Remove Parameters for Operation dialog box 961

Add/Remove User Properties dialog box 961

Adding a Conditional Block 213

Adding a Member to a Container 241

Adding a Watch 116

Adding and Removing Files 153

Adding Components to a Form 152

Adding Languages to a Project 169

Adding Participants to the Patterns as First Class Citizens 253

adding references 153

Adding References 153

Adding Templates to the Object Repository 153

Advanced Data Binding 818

AJAX 24

Align fields (Delphi) 283

Align to Grid 757

Aligning Model Elements 199

Alignment 756

Annotating a Diagram 195

Another file named <FileName> is already on the search path
763

Application 826, 827

Application Module Page Options/New WebSnap Page Module
794

Application type (Delphi) 283

Apply Option Set 828

Apply Updates 985

Applying the Active Build Configuration for a Project 104

arithmetic operators 720

array parameters

parameters 672

array properties

properties 530

arrays 566

dynamic arrays 566

dynamically allocated multidimensional arrays 566

multidimensional dynamic arrays 566

static arrays 566

artifact

deploying 223

ASP .NET 825

ASP.NET 984

ASP.NET Deployment Manager 821

assembler syntax

inline assembler 610

assembly expression

inline assembler 616

Assembly Expressions (Win32 Only) 616

Assembly metadata explorer 158, 1063

4 RAD Studio (Common)

c

Assembly Metadata Explorer 159

Assembly Metadata Explorer (Reflection viewer) 1063

assembly procedures and functions

inline assembler 623

Assembly Procedures and Functions (Win32 Only) 623

Assembly Search Paths 734

Assert directives (Delphi) 284

Assign Local Data 739

Assigning an Element Stereotype 205

Assigning Patterns to Shortcuts 258

assignment statements 705

Associating a Lifeline with a Classifier 224

Associating a Message Link with a Method 244

Associating a Transition or a State with an Activity 230

Associating an Object with a Classifier 214

association class

delete 239

Association Class and N-ary Association 1122

ATL 847

Attach to Process 941

Attaching to a Running Process 117

audit 98

Audit Results Pane 1111

audits

grouping 274

navigate to source code 274

sorting 274

Autoboxing (Delphi for .NET) 284

AutoFormat 818

Automation Object Wizard 773

automation objects

interfaces 633

Automation Objects (Win32 Only) 633

B
BarChart

bar chart 98

binding

methods 521

Block completion 42

blocks 705

blocks and scope 705

Bookmarks

in the Code Editor 42

bookmarks, using 145

boolean operators 720

Boolean short-circuit evaluation (Delphi compiler directive) 285

boolean types

data types 554

Branching Message Links 215

Breakpoint is set on line that contains no code or debug
information. Run anyway? 765

Breakpoint List Window 1019

Breakpoints

associating actions 118

changing the color 118

conditional 118

creating a breakpoint group 118

enabling/disabling 118

modifying breakponts 118

setting address breakpoint 118

setting data breakpoints 118

Setting module load breakpoint 118

BRIEF Keyboard Shortcuts 1069

Bring to Front 757

Browse dialog box 915

browse through sequence 92

Browse With Dialog box 774, 775

Browsing a Diagram with Overview Pane 232

Build All Projects 907

build configuations (Delphi) 5

Build configuration manager 107, 108

Configuration manager 109, 113

Build Configuration Manager 828

Build configurations 4, 5, 6, 104

build configurations (C++) 6

Build Configurations Overview (C++) 6

Build Configurations Overview (Delphi) 5

Build configurations, active 5, 6

RAD Studio (Common) 4

d

Build Events 829

Build output 4

Build Project 908

Building a Project Using an MSBuild Command 108

Building Packages 105

C
C++ Compiler 848, 861

C++ Compiler Advanced Compilation 849

C++ Compiler C++ Compatibility 851

C++ Compiler C++ Compilation 853

C++ Compiler Debugging 856

C++ Compiler General Compatibility 857

C++ Compiler General Compilation 858

C++ Compiler Optimizations 862

C++ Compiler Output 863

C++ Compiler Paths And Defines 864

C++ Compiler Precompiled Headers 865

C++ Compiler Warnings 866

C++ Project Options 847

Caliber

Requirements 14

Call Stack Window 1021

calling conventions

procedures and functions 662

calling procedures and functions

procedures and functions 669

Calling Procedures and Functions 669

Cannot find <FileName.PAS> or <FileName.DCU> on the
current search path 767

Cannot find implementation of method <MethodName> 766

case statements 705

Change 941

Change bars

in the Code Editor 42

Change Destination File Name 777

Change Icon dialog box 916

Change Package 902

change parameters

refactoring 66

Change Parameters 58

Change Parameters dialog box 961

Change Parameters Overview (Delphi) 66

Changes in Standard Functions and Grammar 606

Changing Appearance of Compartments 242

Changing Appearance of Interfaces 242

Changing Diagram Notation 197

Changing Type of a Link 199

character set (Delphi)

Delphi character set 701

reserved words 701

character types

data types 554

chart

creating 275

exporting to image 275

moving to project 275

charts

saving 275

Choose Destination (or: Source) dialog box 962

circular unit references

uses clause 683

class

filtering 233

Class Completion 42

class constructor

methods 521

class diagram

sample 86

Class Diagram Relationships 1123

Class Diagram Types 1124

class fields

fields 519

class helpers

classes and objects 550

Class Helpers 550

class methods 521

methods 521

4 RAD Studio (Common)

e

class operators 720

class properties

properties 530

class references

classes and objects 539

Class References 539

class static methods

methods 521

class types

classes and objects 514

Class Variable in Generics 605

classes and objects 514

Classes and Objects 513, 514

classifier

instantiating 237

Clean Package 909

clear results

refactor delete 141

Close 799

Close function

device drivers 692

Closing a Diagram 200

Code Browsing 42

Code Completion 42, 53

overview 53

Code Editor 42

customizing 141

Code Explorer 1033

code folding 137

Code Hints 42

code insight 146

Code Insight 988

in the Code Editor 42

Code navigation 42

Code Template 96

Code visualization

UML static diagrams 87

Code Visualization 87, 730

Code Visualization Diagram 730

Code Visualization Overview 87

CodeGear Debuggers 986

CodeGuard Configuration 980

CodeGuard Log 1059

Collection Editor 818, 922

Color 989, 1004

Color editor 917

Color Selector 815

Colors 989, 1002

Columns Collection Editor 740

COM Imports 846

COM Object Wizard 775

COM+ Event Interface Selection dialog box 776

COM+ Event Object Wizard 776

COM+ Subscription Object Wizard 776

combined fragment 1151

command line MSBuild 108

Command Line Switches and File Extensions 1082

Command Text Editor 742

CommandText Editor 741

comment 195

comment blocks 42

comments (Delphi)

compiler directives (Delphi) 701

compartment controls

viewing 242

Compile and Make All Projects 908

Compiler 829, 831

Compiler (Visual Basic) 836

compiler directives (Delphi) 282

Compiler directives for libraries or shared objects (Delphi) 296

Compiler Messages 835

compiling 2

Compiling and Building Procedures 104

Compiling C++ Design-Time Packages That Contain Delphi
Source 106

Compiling, Building, and Running Applications 2

Component

Import Component 733, 735

component templates 154

RAD Studio (Common) 4

f

Components 732, 836

compound statements 705

Concepts 1

conditional block

adding 213

setting type 213

Conditional Block 1132

conditional compilation

compiler directives, Delphi 285

Conditional compilation (Delphi) 285

Configuration Levels 1088

Configuration manager 107, 108

Configure Cassini 824

Configure Data Adapter 742

Configure Tools 1008

Configure Virtual Directory 824

Configuring the Documentation Generation Facility 247

Configuring the Memory Manager 175

Configuring Together 183

Connection Editor 743

Connection String Editor (ADO) 744

constants

data types 589

Constraints Collection Editor 740

Constraints in Generics 603

constructors

Delphi for .NET 653

methods 521

Convert MDL Wizard 1160

Converting Between UML 1.5 Sequence and Collaboration
Diagrams 215

Copy 758

Copying and Pasting an Execution or Invocation Specification
224

Copying and Pasting Model Elements 200

Copying and Pasting Shortcuts, Folders or Pattern Trees 258

Copying References to a Local Path 154

Could not stop due to hard mode 763

CPU Window 1022

Create Component Template 732

Create Pattern Wizard 1159

Creating a Browse-Through Sequence of Diagrams 246

Creating a Component Template 154

Creating a Deferred Event 235

Creating a Delegation Connector 221

Creating a Diagram 196

Creating a Folder in the Pattern Organizer 259

Creating a Guard Condition for a Transition 230

Creating a History Element 230

Creating a Link by Pattern 255

Creating a Link with Bending Points 207

Creating a Member for a State 231

Creating a Metrics Chart 275

Creating a Model Element by Pattern 255

Creating a Multiple Transition 235

Creating a Pattern 253

Creating a Pin 217

Creating a Port 222

Creating a Project 155, 264

Creating a Referenced Part 221

Creating a Self-Transition 236

Creating a Sequence or Communication Diagram from an
Interaction 225

Creating a Shortcut 208

Creating a Shortcut to a Pattern 259

Creating a Simple Link 209

Creating a Single Model Element 209

Creating a State 231

Creating a State Invariant 225

Creating a Virtual Pattern Tree 259

Creating an Activity for a State 211

Creating an Association Class 239

Creating an Extension Point 246

Creating an Inner Classifier 239

Creating an Internal Structure for a Node 221

Creating an Internal Transition 235

Creating an OCL Constraint 249

Creating Build Events 107

Creating Live Templates 138

Creating Multiple Elements 207

4 RAD Studio (Common)

g

Creating Named Build Configurations for C++ 107

Creating Named Build Configurations for Delphi 108

Creating Template Libraries 138

creating templates

live templates 138

Creation Order 756

custom attributes 593

Customize New Menu 777

Customize Toolbars 1033

Customizing Code Editor 141

Customizing the Form 155

Customizing the Tool Palette 156

Customizing Toolbars 156

Cut 758

D
Data Adapter Dataset 744

Data Breakpoint is set on a stack location 762

Data Explorer 1034

data types, variables, and constants 553

Data Types, Variables, and Constants 552, 553

DataAdapter Preview 744

database

adding a new connection 165

Database 737

Database Editor 745

Database Form Wizard 745

Databindings 818

Dataset Properties 746

DCC32 869

DDE Info dialog box 918

Debug information (Delphi) 287

Debug Inspector 942

Debug session in progress. Terminate? 767, 948

Debug Windows 1018

Debugger 836

Debugger Environment Block 839

Debugger Exception Notification 943

Debugger Options 990

Debugger Symbol Tables 845

debugging

adding a watch 116

attaching to a process 117

breakpoints 118

inspecting data elements 122

modifying expressions 124

overview 10

preparation 121, 124

remote applications 125

Debugging Applications 10

Debugging Procedures 114

Debugging VCL for .NET Source Code 121

Declaration of class <ClassName> is missing or incorrect 764

declarations 705

declarations and statements 705

Declarations and Statements 705

declare field 62

refactoring 143

Declare Field 61

declare variable

initial type 62

refactoring 143

Declare Variable 64

Declare Variable and Declare Field Overview (Delphi) 62

declare variable and field 62

declare variable and field samples 62

declare variable rules 62

Declared Constants 589

declaring exception types

exceptions 541

Declaring Generics 598

declaring types

data types 586

Declaring Types 586

decomposition

defining 226

Default Keyboard Shortcuts 1073

Default Options 909

RAD Studio (Common) 4

h

default parameters

parameters 672

Deferred Event 1117

DEFINE directive (Delphi) 287

Delegation Connector 1146

delegation, implementing interfaces by

interfaces 627

Delete 758

Delete Saved Desktop 1036

Delete Templates 914

deleting

references 141

Deleting a Diagram 200

Deleting Patterns as First Class Citizens from the Model 254

Deleting shortcuts, folders or pattern trees 260

Delphi Compiler 874

Delphi Compiler Compiling 870

Delphi compiler directives 282

Delphi Compiler Directives (List) 280

Delphi Compiler Errors 311

Delphi Compiler Other Options 875

Delphi Compiler Paths and Defines 876

Delphi Compiler Warnings 877

Delphi Language Guide 512

Delphi language overview 657

Delphi Overview 656

Delphi packages (C++) 106

Delphi Reference 280

Delphi Runtime Errors 509

DENYPACKAGEUNIT directive (Delphi) 287

Deploying Applications 19, 133

Deploying ASP.NET applications 133

Deploying the AdoDbx Client 134

deployment

overview 19

deployment diagram

sample 85, 86

Deployment manager

ASP.NET 821

Description 837

Description (Delphi) 288

Design Pattern 96

Designing a UML 1.5 Activity Diagram 211

Designing a UML 1.5 Component Diagram 212

Designing a UML 1.5 Deployment Diagram 212

Designing a UML 1.5 Statechart Diagram 217

Designing a UML 2.0 Activity Diagram 218

Designing a UML 2.0 Component Diagram 220

Designing a UML 2.0 Deployment Diagram 223

Designing a UML 2.0 Sequence or Communication Diagram 226

Designing a UML 2.0 State Machine Diagram 232

Designing Use Case Hierarchy 246

Designing User Interfaces 15

DESIGNONLY directive (Delphi) 288

Desktop layouts 161

Desktop Toolbar 1036

Desktops 1059

destructors

methods 521

Detach From Program 949

Developing Tests 180

development lifecycle

tool overview 14

device drivers 692

diagram

renaming 204

Diagram Layout Algorithms 963

Diagram Layout Overview 92

Diagram View 1106

opening 267

Directives (Delphi) 701

Directories/Conditionals 838

Disabling Themes in the IDE and in Your Application 157

Disassembly 1032

dispatch interface methods

automation objects 633

Display 992

Displaying Expanded Watch Information 117

4 RAD Studio (Common)

i

Dispose

Delphi for .NET 653

DisposeCount cannot be declared in classes with destructors
336

DIV HTML Element 803

DLLs, calling 635

doc comment 93

Dock Edit Window 1060

docking

tools 157

Docking Tool Windows 157

documentation generation 100

Documentation Generation Facility Overview 100

Driver Settings 746

DUnit Overview 72

dynamic properties 161

Dynamic Properties 818

dynamically loaded libraries

libraries 637

E
E1038: Unit identifier '%s' does not match file name 495

E2001: Ordinal type required 466

E2002: File type not allowed here 394

E2003: Undeclared identifier: '%s' 407

E2004: Identifier redeclared: '%s' 407

E2005: '%s' is not a type identifier 491

E2006: PACKED not allowed here 471

E2007: Constant or type identifier expected 368

E2008: Incompatible types 363

E2009: Incompatible types: '%s' 364

E2010: Incompatible types: '%s' and '%s' 365

E2011: Low bound exceeds high bound 434

E2012: Type of expression must be BOOLEAN 441

E2013: Type of expression must be INTEGER 444

E2014: Statement expected, but expression of type '%s' found
452

E2015: Operator not applicable to this operand type 507

E2016: Array type required 440

E2017: Pointer type required 447

E2018: Record, object or class type required 449

E2019: Object type required 446

E2020: Object or class type required 446

E2021: Class type required 441

E2022: Class helper type required 443

E2023: Function needs result type 450

E2024: Invalid function result type 484

E2025: Procedure cannot have a result type 455

E2026: Constant expression expected 367

E2027: Duplicate tag value 381

E2028: Sets may have at most 256 elements 486

E2029: %s expected but %s found 390

E2030: Duplicate case label 381

E2031: Label expected 445

E2032: For loop control variable must have ordinal type 398

E2033: Types of actual and formal var parameters must be
identical 505

E2034: Too many actual parameters 490

E2035: Not enough actual parameters 439

E2036: Variable required 451

E2037: Declaration of '%s' differs from previous declaration 399

E2038: Illegal character in input file: '%s' (%s) 408

E2045: Bad object file format: '%s' 346

E2049: Label declaration not allowed in interface part 430

E2050: Statements not allowed in interface part 350

E2052: Unterminated string 498

E2053: Syntax error in real number 348

E2054: Illegal type in Write/Writeln statement 350

E2055: Illegal type in Read/Readln statement 348

E2056: String literals may have at most 255 elements 488

E2057: Unexpected end of file in comment started on line %ld
498

E2058: Class, interface and object types only allowed in type
section 464

E2059: Local class, interface or object types not allowed 465

E2060: Class and interface types only allowed in type section
360

E2061: Local class or interface types not allowed 360

E2062: Virtual constructors are not allowed 465

E2064: Left side cannot be assigned to 462

E2065: Unsatisfied forward or external declaration: '%s' 400

RAD Studio (Common) 4

j

E2066: Missing operator or semicolon 438

E2067: Missing parameter type 439

E2068: Illegal reference to symbol '%s' in object file '%s' 412

E2070: Unknown directive: '%s' 495

E2071: This type cannot be initialized 354

E2072: Number of elements (%d) differs from declaration (%d)
420

E2073: Label already defined: '%s' 431

E2074: Label declared and referenced, but not set: '%s' 431

E2075: This form of method call only allowed in methods of
derived types 445

E2076: This form of method call only allowed for class methods
441

E2078: Procedure FAIL only allowed in constructor 391

E2079: Procedure NEW needs constructor 452

E2080: Procedure DISPOSE needs destructor 380

E2081: Assignment to FOR-Loop variable '%s' 340

E2082: TYPEOF can only be applied to object types with a VMT
451

E2083: Order of fields in record constant differs from
declaration 482

E2085: Unit name mismatch: '%s' '%s' 440

E2086: Type '%s' is not yet completely defined 418

E2088: Variable name expected 504

E2089: Invalid typecast 425

E2090: User break - compilation aborted 502

E2091: Segment/Offset pairs not supported in CodeGear 32-bit
Pascal 485

E2093: Label '%s' is not declared in current procedure 458

E2094: Local procedure/function '%s' assigned to procedure
variable 433

E2095: Missing ENDIF directive 437

E2096: Method identifier expected 436

E2097: BREAK or CONTINUE outside of loop 351

E2098: Division by zero 381

E2099: Overflow in conversion or arithmetic operation 339

E2100: Data type too large: exceeds 2 GB 492

E2101: Size of data type is zero 492

E2102: Integer constant too large 422

E2103: 16-Bit fixup encountered in object file '%s' 396

E2104: Bad relocation encountered in object file '%s' 348

E2105: Inline assembler syntax error 345

E2106: Inline assembler stack overflow 345

E2107: Operand size mismatch 343

E2108: Memory reference expected 342

E2109: Constant expected 341

E2110: Type expected 346

E2111: Cannot add or subtract relocatable symbols 344

E2112: Invalid register combination 344

E2113: Numeric overflow 343

E2114: String constant too long 345

E2115: Error in numeric constant 342

E2116: Invalid combination of opcode and operands 340

E2117: 486/487 instructions not enabled 340

E2118: Division by zero 341

E2119: Structure field identifier expected 341

E2120: LOOP/JCXZ distance out of range 430

E2121: Procedure or function name expected 448

E2122: PROCEDURE or FUNCTION expected 473

E2123: PROCEDURE, FUNCTION, PROPERTY, or VAR
expected 360

E2124: Instance member '%s' inaccessible here 392

E2125: EXCEPT or FINALLY expected 389

E2126: Cannot BREAK, CONTINUE or EXIT out of a FINALLY
clause 356

E2127: 'GOTO %s' leads into or out of TRY statement 401

E2128: %s clause expected, but %s found 361

E2129: Cannot assign to a read-only property 478

E2130: Cannot read a write-only property 479

E2131: Class already has a default property 374

E2132: Default property must be an array property 373

E2133: TYPEINFO standard function expects a type identifier
493

E2134: Type '%s' has no type info 457

E2136: No definition for abstract method '%s' allowed 337

E2137: Method '%s' not found in base class 468

E2138: Invalid message parameter list 427

E2139: Illegal message method index 412

E2140: Duplicate message method index 385

E2142: Inaccessible value 502

E2143: Expression has no value 390

E2144: Destination is inaccessible 376

4 RAD Studio (Common)

k

E2145: Re-raising an exception only allowed in exception
handler 483

E2146: Default values must be of ordinal, pointer or small set
type 375

E2147: Property '%s' does not exist in base class 493

E2148: Dynamic method or message handler not allowed here
476

E2149: Class does not have a default property 442

E2150: Bad argument type in variable type array constructor 349

E2151: Could not load RLINK32.DLL 440

E2152: Wrong or corrupted version of RLINK32.DLL 507

E2153: ';' not allowed before 'ELSE' 485

E2154: Type '%s' needs finalization - not allowed in variant
record 395

E2155: Type '%s' needs finalization - not allowed in file type 395

E2156: Expression too complicated 489

E2157: Element 0 inaccessible - use 'Length' or 'SetLength' 501

E2158: %s unit out of date or corrupted: missing '%s' 349

E2159: %s unit out of date or corrupted: missing '%s.%s' 349

E2160: Type not allowed in OLE Automation call 346

E2163: Too many conditional symbols 490

E2165: Compile terminated by user 502

E2166: Unnamed arguments must precede named arguments
in OLE Automation call 496

E2167: Abstract methods must be virtual or dynamic 337

E2168: Field or method identifier expected 443

E2169: Field definition not allowed after methods or properties
391

E2170: Cannot override a non-virtual method 469

E2171: Variable '%s' inaccessible here due to optimization 504

E2172: Necessary library helper function was eliminated by
linker (%s) 402

E2173: Missing or invalid conditional symbol in '$%s' directive
426

E2174: '%s' not previously declared as a PROPERTY 429

E2175: Field definition not allowed in OLE automation section
391

E2176: Illegal type in OLE automation section: '%s' 410

E2177: Constructors and destructors not allowed in OLE
automation section 368

E2178: Dynamic methods and message handlers not allowed in
OLE automation section 388

E2179: Only register calling convention allowed in OLE
automation section 461

E2180: Dispid '%d' already used by '%s' 383

E2181: Redeclaration of property not allowed in OLE
automation section 474

E2182: '%s' clause not allowed in OLE automation section 408

E2183: Dispid clause only allowed in OLE automation section
378

E2184: %s section valid only in class types 412

E2185: Overriding automated virtual method '%s' cannot specify
a dispid 411

E2186: Published Real property '%s' must be Single, Real,
Double or Extended 480

E2187: Size of published set '%s' is >4 bytes 481

E2188: Published property '%s' cannot be of type %s 347

E2189: Thread local variables cannot be local to a function 434

E2190: Thread local variables cannot be ABSOLUTE 336

E2191: EXPORTS allowed only at global scope 390

E2192: Constants cannot be used as open array arguments 367

E2193: Slice standard function only allowed as open array
argument 487

E2194: Cannot initialize thread local variables 419

E2195: Cannot initialize local variables 418

E2196: Cannot initialize multiple variables 419

E2197: Constant object cannot be passed as var parameter 368

E2198: %s cannot be applied to a long string 404

E2199: Packages '%s' and '%s' both contain unit '%s' 470

E2200: Package '%s' already contains unit '%s' 470

E2201: Need imported data reference ($G) to access '%s' from
unit '%s' 470

E2202: Required package '%s' not found 439

E2203: $WEAKPACKAGEUNIT '%s' contains global data 507

E2204: Improper GUID syntax 435

E2205: Interface type required 444

E2206: Property overrides not allowed in interface type 475

E2207: '%s' clause not allowed in interface type 409

E2208: Interface '%s' already implemented by '%s' 425

E2209: Field declarations not allowed in interface type 392

E2210: '%s' directive not allowed in in interface type 376

E2211: Declaration of '%s' differs from declaration in interface
'%s' 423

E2212: Package unit '%s' cannot appear in contains or uses
clauses 502

E2213: Bad packaged unit format: %s.%s 471

RAD Studio (Common) 4

l

E2214: Package '%s' is recursively required 483

E2215: 16-Bit segment encountered in object file '%s' 485

E2216: Can't handle section '%s' in object file '%s' 496

E2217: Published field '%s' not a class or interface type 354

E2218: Published method '%s' contains an unpublishable type
355

E2220: Never-build package '%s' requires always-build
package '%s' 458

E2221: $WEAKPACKAGEUNIT '%s' cannot have initialization
or finalization code 506

E2222: $WEAKPACKAGEUNIT & $DENYPACKAGEUNIT both
specified 354

E2223: $DENYPACKAGEUNIT '%s' cannot be put into a
package 354

E2224: $DESIGNONLY and $RUNONLY only allowed in
package unit 412

E2225: Never-build package '%s' must be recompiled 470

E2226: Compilation terminated; too many errors 490

E2227: Imagebase is too high - program exceeds 2 GB limit 413

E2228: A dispinterface type cannot have an ancestor interface
377

E2229: A dispinterface type requires an interface identification
378

E2230: Methods of dispinterface types cannot specify directives
377

E2231: '%s' directive not allowed in dispinterface type 409

E2232: Interface '%s' has no interface identification 423

E2233: Property '%s' inaccessible here 477

E2234: Getter or setter for property '%s' cannot be found 437

E2236: Constructors and destructors must have %s calling
convention 460

E2237: Parameter '%s' not allowed here due to default value
372

E2238: Default value required for '%s' 371

E2239: Default parameter '%s' must be by-value or const 374

E2240: $EXTERNALSYM and $NODEFINE not allowed for
'%s'; only global symbols 487

E2241: C++ obj files must be generated (-jp) 370

E2242: '%s' is not the name of a unit 462

E2245: Recursive include file %s 482

E2246: Need to specify at least one dimension for SetLength of
dynamic array 339

E2247: Cannot take the address when compiling to byte code
338

E2248: Cannot use old style object types when compiling to
byte code 464

E2249: Cannot use absolute variables when compiling to byte
code 336

E2250: There is no overloaded version of '%s' that can be
called with these arguments 454

E2251: Ambiguous overloaded call to '%s' 338

E2252: Method '%s' with identical parameters already exists 386

E2253: Ancestor type '%s' does not have an accessible default
constructor 438

E2254: Overloaded procedure '%s' must be marked with the
'overload' directive 447

E2255: New not supported for dynamic arrays - use SetLength
502

E2256: Dispose not supported (nor necessary) for dynamic
arrays 453

E2257: Duplicate implements clause for interface '%s' 384

E2258: Implements clause only allowed within class types 415

E2259: Implements clause only allowed for properties of class
or interface type 415

E2260: Implements clause not allowed together with index
clause 413

E2261: Implements clause only allowed for readable property
416

E2262: Implements getter must be %s calling convention 415

E2263: Implements getter cannot be dynamic or message
method 413

E2264: Cannot have method resolutions for interface '%s' 414

E2265: Interface '%s' not mentioned in interface list 416

E2266: Only one of a set of overloaded methods can be
published 386

E2267: Previous declaration of '%s' was not marked with the
'overload' directive 448

E2268: Parameters of this type cannot have default values 373

E2270: Published property getters and setters must have %s
calling convention 462

E2271: Property getters and setters cannot be overloaded 467

E2272: Cannot use reserved unit name '%s' 489

E2273: No overloaded version of '%s' with this parameter list
exists 455

E2274: property attribute 'label' cannot be used in dispinterface
379

E2275: property attribute 'label' cannot be an empty string 477

E2276: Identifier '%s' cannot be exported 354

E2277: Only external cdecl functions may use varargs 505

4 RAD Studio (Common)

m

E2278: Cannot take address of local symbol %s 355

E2279: Too many nested conditional directives 452

E2280: Unterminated conditional directive 498

E2281: Type not allowed in Variant Dispatch call 350

E2282: Property setters cannot take var parameters 486

E2283: Too many local constants. Use shorter procedures 489

E2284: Duplicate resource name: type %d '%s' 388

E2285: Duplicate resource id: type %d id %d 388

E2286: Coverage library name is too long: %s 371

E2287: Cannot export '%s' multiple times 440

E2288: File name too long (exceeds %d characters) 393

E2289: Unresolved custom attribute: %s 497

E2290: Cannot mix destructors with IDisposable 376

E2291: Missing implementation of interface method %s.%s 423

E2292: '%s' must reference a property or field of class '%s' 478

E2293: Cannot have both a DLLImport attribute and an external
or calling convention directive 381

E2294: A class helper that descends from '%s' can only help
classes that are descendents '%s' 428

E2295: A class helper cannot introduce a destructor 402

E2296: A constructor introduced in a class helper must call the
parameterless constructor of the helped class as the first
statement 428

E2297: Procedure definition must be ILCODE calling
convention 350

E2298: read/write not allowed for CLR events. Use
Include/Exclude procedure 427

E2299: Property required 449

E2300: Cannot generate property accessor '%s' because '%s'
already exists 474

E2301: Method '%s' with identical parameters and result type
already exists 384

E2302: 'Self' is uninitialized. An inherited constructor must be
called before accessing ancestor field '%s' 371

E2303: 'Self' is uninitialized. An inherited constructor must be
called before calling ancestor method '%s' 371

E2304: 'Self' is uninitialized. An inherited constructor must be
called 370

E2305: 'Self' might not have been initialized 371

E2306: 'Self' is initialized more than once 370

E2307: NEW standard function expects a dynamic array type
identifier 339

E2308: Need to specify at least one dimension for NEW of
dynamic array 339

E2309: Attribute - Known attribute named argument cannot be
an array 352

E2310: Attribute - A custom marshaler requires the custom
marshaler type 352

E2311: Attribute - MarshalAs fixed string requires a size 352

E2312: Attribute - Invalid argument to a known attribute 352

E2313: Attribute - Known attribute cannot specify properties 352

E2314: Attribute - The MarshalAs attribute has fields set that
are not valid for the specified unmanaged type 352

E2315: Attribute - Known custom attribute on invalid target 352

E2316: Attribute - The format of the GUID was invalid 353

E2317: Attribute - Known custom attribute had invalid value 353

E2318: Attribute - The MarshalAs constant size cannot be
negative 353

E2319: Attribute - The MarshalAs parameter index cannot be
negative 353

E2320: Attribute - The specified unmanaged type is only valid
on fields 353

E2321: Attribute - Known custom attribute has repeated named
argument 353

E2322: Attribute - Unexpected type in known attribute 353

E2323: Attribute - Unrecognized argument to a known custom
attribute 353

E2324: Attribute - Known attribute named argument doesn't
support variant 353

E2325: Attribute '%s' is not valid on this target 357

E2326: Attribute '%s' can only be used once per target 357

E2327: Linker error while emitting attribute '%s' for '%s' 352

E2328: Linker error while emitting metadata 496

E2329: Metadata - Error occured during a read 358

E2330: Metadata - Error occured during a write 358

E2331: Metadata - File is read only 358

E2332: Metadata - An ill-formed name was given 358

E2333: Metadata - Data value was truncated 359

E2334: Metadata - Old version error 358

E2335: Metadata - A shared mem open failed to open at the
originally 359

E2336: Metadata - Create of shared memory failed. A memory
mapping of the same name already exists 359

E2337: Metadata - There isn't .CLB data in the memory or
stream 359

E2338: Metadata - Database is read only 359

E2339: Metadata - The importing scope is not compatible with
the emitting scope 358

RAD Studio (Common) 4

n

E2340: Metadata - Data too large 358

E2341: Metadata - Column cannot be changed 358

E2342: Metadata - Too many RID or primary key columns, 1 is
max 358

E2343: Metadata - Primary key column may not allow the null
value 358

E2344: Metadata - Data too large 359

E2345: Metadata - Attempt to define an object that already
exists 436

E2346: Metadata - A guid was not provided where one was
required 436

E2347: Metadata - Bad binary signature 436

E2348: Metadata - Bad input parameters 435

E2349: Metadata - Cannot resolve typeref 436

E2350: Metadata - No logical space left to create more user
strings 436

E2351: Final methods must be virtual or dynamic 395

E2352: Cannot override a final method 469

E2353: Cannot extend sealed class '%s' 391

E2354: String element cannot be passed to var parameter 488

E2355: Class property accessor must be a class field or class
static method 361

E2356: Property accessor must be an instance field or method
476

E2357: PROCEDURE, FUNCTION, or CONSTRUCTOR
expected 473

E2358: Class constructors not allowed in class helpers 357

E2359: Multiple class constructors in class %s: %s and %s 440

E2360: Class constructors cannot have parameters 358

E2361: Cannot access private symbol %s.%s 481

E2362: Cannot access protected symbol %s.%s 480

E2363: Only methods of descendent types may access
protected symbol [%s]%s.%s across assembly boundaries 472

E2364: Cross-assembly protected reference to [%s]%s.%s in
%s.%s 432

E2366: Global procedure or class static method expected 450

E2370: Cannot use inherited methods for interface property
accessors 474

E2371: ABSTRACT and FINAL cannot be used together 337

E2372: Identifier expected 406

E2373: Call to abstract method %s.%s 336

E2374: Cannot make unique type from %s 354

E2375: PRIVATE or PROTECTED expected 472

E2376: STATIC can only be used on non-virtual class methods
430

E2377: Unable to locate Borland.Delphi.Compiler.ResCvt.dll 484

E2378: Error while converting resource %s 389

E2379: Virtual methods not allowed in record types 506

E2380: Instance or class static method expected 444

E2381: Resource string length exceeds Windows limit of 4096
characters 484

E2382: Cannot call constructors using instance variables 422

E2383: ABSTRACT and SEALED cannot be used together 338

E2385: Error while signing assembly 389

E2386: Invalid version string '%s' specified in %s 430

E2387: The key container name '%s' does not exist 428

E2388: Unrecognized strong name key file '%s' 428

E2389: Protected member '%s' is inaccessible here 480

E2390: Class must be sealed to call a private constructor
without a type qualifier 481

E2391: Potentially polymorphic constructor calls must be virtual
462

E2392: Can't generate required accessor method(s) for
property %s.%s due to name conflict with existing symbol %s in
the same scope 355

E2393: Invalid operator declaration 429

E2394: Parameterless constructors not allowed on record types
472

E2395: Unsafe procedure only allowed if compiling with
{$UNSAFECODE ON} 498

E2396: Unsafe code only allowed in unsafe procedure 497

E2397: Unsafe pointer only allowed if compiling with
{$UNSAFECODE ON} 498

E2398: Class methods in record types must be static 482

E2399: Namespace conflicts with unit name '%s' 381

E2400: Unknown Resource Format '%s' 496

E2401: Failure loading .NET Framework %s: %08X 361

E2402: Constructing instance of abstract class '%s' 370

E2403: Add or remove accessor for event '%s' cannot be found
438

E2404: Cannot mix READ/WRITE property accessors with
ADD/REMOVE accessors 440

E2405: Unknown element type found importing signature of
%s.%s 496

E2406: EXPORTS section allowed only if compiling with
{$UNSAFECODE ON} 497

E2407: Duplicate resource identifier %s found in unit %s(%s)

4 RAD Studio (Common)

o

and %s(%s) 388

E2408: Can't extract strong name key from assembly %s 489

E2409: Fully qualified nested type name %s exceeds 1024 byte
limit 452

E2410: Unsafe pointer variables, parameters or consts only
allowed in unsafe procedure 498

E2411: Unit %s in package %s refers to unit %s which is not
found in any package. Packaged units must refer only to
packaged units 460

E2412: CREATE expected 370

E2413: Dynamic array type needed 388

E2414: Disposed_ cannot be declared in classes with
destructors 381

E2415: Could not import assembly '%s' because it contains
namespace '%s' 430

E2416: Could not import package '%s' because it contains
system unit '%s' 430

E2417: Field offset cannot be determined for variant record
because previous field type is unknown size record type 496

E2418: Type '%s' needs initialization - not allowed in variant
record 420

E2419: Record type too large: exceeds 1 MB 482

E2420: Interface '%s' used in '%s' is not yet completely defined
417

E2422: Imported identifier '%s' conflicts with '%s' in namespace
'%s' 361

E2423: Void type not usable in this context 506

E2424: Codepage '%s' is not installed on this machine 426

E2425: Inline methods must not be virtual nor dynamic 421

E2426: Inline function must not have asm block 421

E2427: Only one of IID or GuidAttribute can be specified 407

E2428: Field '%s' needs initialization - not allowed in CLS
compliant value types 420

E2429: Duplicate implementation for 'set of %s' in this scope
388

E2430: for-in statement cannot operate on collection type '%s'
463

E2431: for-in statement cannot operate on collection type '%s'
because '%s' does not contain a member for '%s', or it is
inaccessible 362

E2432: %s cannot be applied to a rectangular dynamic array
429

E2433: Method declarations not allowed in anonymous record
or local record type 437

E2434: Property declarations not allowed in anonymous record
or local record type 476

E2435: Class member declarations not allowed in anonymous
record or local record type 360

E2436: Type declarations not allowed in anonymous record or
local record type 491

E2437: Constant declarations not allowed in anonymous record
or local record type 370

E2439: Inline function must not have open array argument 466

E2441: Inline function declared in interface section must not use
local symbol '%s' 422

E2442: Inline directive not allowed in constructor or destructor
421

E2447: Duplicate symbol '%s' defined in namespace '%s' by
'%s' and '%s' 385

E2448: An attribute argument must be a constant expression,
typeof expression or array constructor 346

E2449: Inlined nested routine '%s' cannot access outer scope
variable '%s' 421

E2450: There is no overloaded version of array property '%s'
that can be used with these arguments 454

E2452: Unicode characters not allowed in published symbols
494

E2453: Destination cannot be assigned to 376

E2454: Slice standard function not allowed for VAR nor OUT
argument 487

Edit 754

Edit Hyperlinks for Diagram dialog box 963

Edit Object Info 1008

Edit Page dialog box 923

Edit Tab Order 756

Edit Tools 1008

Editing an OCL Expression 249

editing code

class completion 145

code insight 146

code snippets 148

collapsing code 137

Editing Code Procedures 136

Editing Properties 260

Editing Resource Files in the Translation Manager 170

Editor Options 993

ELSE (Delphi) 288

ELSEIF (Delphi) 289

ENDIF directive 289

RAD Studio (Common) 4

p

Enter Address to Position 954

Enter New Value 1025

Enter Search Bytes 1025

entry and exit action

creating 217

enumerated types

data types 554

Environment Options 994

Environment Variables 995

Epsilon Keyboard Shortcuts 1076

Error address not found 762

Error creating process: <Process> (<ErrorCode>) 763

Error Messages 311, 760

Establishing a Connection for Remote Debugging 127

Evaluate

Modify/debugging 10

Evaluate/Modify 944

Event Log Options 995

Event Log Window 1025

event properties and event handlers

events 536

events

classes and objects 536

Events 536

exceptions

classes and objects 541

Exceptions 541

Executable extension (Delphi) 289

Execution Specification and Invocation Specification 1151

Exit 799

expandable tooltips 122

Explorer 996

Exploring .NET Assembly Metadata Using the Reflection Viewer
158

Exploring Windows Type Libraries 159

export clauses

libraries 637

Export Diagram to Image 731

Export Diagram to Image dialog box 964

Export symbols (Delphi) 290

Export Visual Studio Project 1009

Exporting a Diagram to an Image 197

Exporting a Pattern 257

Exporting a Project to XMI Format 264

Exporting Audit Results 271

expressions 720

Expressions 720

Extended syntax (Delphi) 290

Extension Point 1137

external declarations

procedures and functions 662

External Symbols (Delphi) 290

Extract Interface or Superclass dialog box 964

extract method

refactoring 60

Extract Method 64

Extract Method dialog box 965

Extract Method Overview (Delphi) 60

extract resource string

converting strings 143

Extract Resource String 66

Extract Resource String (Delphi) 62

F
F1027: Unit not found: '%s' or binary equivalents (%s) 394

F2039: Could not create output file '%s' 393

F2040: Seek error on '%s' 394

F2046: Out of memory 436

F2047: Circular unit reference to '%s' 359

F2048: Bad unit format: '%s' 495

F2051: Unit %s was compiled with a different version of %s.%s
505

F2063: Could not compile used unit '%s' 502

F2069: Line too long (more than 1023 characters) 432

F2084: Internal Error: %s%d 422

F2087: System unit incompatible with trial version 376

F2092: Program or unit '%s' recursively uses itself 482

F2220: Could not compile package '%s' 470

F2438: UCS-4 text encoding not supported. Convert to UCS-2
or UTF-8 430

4 RAD Studio (Common)

q

F2446: Unit '%s' is compiled with unit '%s' in '%s' but different
version '%s' found 376

fatal errors 511

Fatal errors 511

Field <Field Name> does not have a corresponding component.
Remove the declaration? 764

Field <Field Name> should be of type <Type1> but is declared
as <Type2>. Correct the declaration? 764

Field Link Designer 746

fields

classes and objects 519

Fields 519

Fields Editor 746

File 768

File Browser 1036

File Extensions of Files Generated by RAD Studio 1084

file input and output

standard routines 692

file types (Win32) 566

Filter editor 918

Filter To-Do List 1050

finalization section 683

Finalize

Delphi for .NET 653

Find 952

Find Class 955

Find in Files 953

Find Local References 956

Find Option 878

Find Original Symbol 956

Find Package Import 944

Find Reference Results 1060

find references

find declaration symbol 65

find local references 141

Find References 954, 956

Find References Overview (Delphi, C#, C++) 65

find references sample 65

Find Unit 66

Finding Items on the Tool Palette 158

Finding References 141

Finding Units and Using Namespaces (Delphi, C#) 142

Flip Children 758

Floating Point Exception Checking (Delphi) 291

Flush function

device drivers 692

Folder or Directory View 867

Font 1004

Font editor 919

for loops 705

for...in statements 705

Foreign Key Constraint 747

Form Designer 46, 1004

Forms 840

forward and interface declarations

procedures and functions 662

foward declarations

classes and objects 514

FPU 1026

FTP Connection Options 778

function calls

expressions 720

function declarations

procedures and functions 662

Fundamental Syntactic Elements 700, 701

G
General Concepts 14

Generate Dataset 748

Generate Documentation dialog box 966

Generate Sequence Diagram dialog box 966

Generating an Incremental Sequence Diagram 245

Generating Project Documentation 248

Generics

constraints 603

overview 596

parameterized methods 598

Parameterized types 596

platform requirements 596

RAD Studio (Common) 4

r

procedural types 598

scope of type params 598

terminology 597

Generics (Parameterized Types) 595

getting started

adding components to forms 152

adding files to a project 153

adding templates to repository 153

arranging toolbars 156

copying references 154

creating projects 155

customizing forms 155

customizing tool palette 156

docking tool windows 157

filtering searched components 158

installing custom components 160

renaming files 160

saving desktop layouts 161

setting component properties 161

setting project options 162, 163

setting properties and events 164

setting tool preferences 165

Vista themes 157

writing event handlers 168

Getting Started 22

Getting Started Procedures 151

Getting Started with Together 83

Go to Line Number 954

goto statements 705

Grouping Actions into an Activity 219

guard expression 1118

GUI Components for Modeling 1105

H
H2077: Value assigned to '%s' never used 503

H2135: FOR or WHILE loop executes zero times - deleted 463

H2164: Variable '%s' is declared but never used in '%s' 499

H2219: Private symbol '%s' declared but never used 472

H2235: Package '%s' does not use or export '%s.%s' 470

H2244: Pointer expression needs no Initialize/Finalize - need ^
operator? 480

H2365: Override method %s.%s should match case of ancestor
%s.%s 468

H2368: Visibility of property accessor method %s should match
property %s.%s 474

H2369: Property accessor %s should be %s 474

H2384: CLS: overriding virtual method '%s.%s' visibility (%s)
must match base class '%s' (%s) 362

H2440: Inline method visibility is not lower or same visibility of
accessing member '%s.%s' 435

H2443: Inline function '%s' has not been expanded because
unit '%s' is not specified in USES list 421

H2444: Inline function '%s' has not been expanded because
accessing member '%s' is inaccessible 421

H2445: Inline function '%s' has not been expanded because its
unit '%s' is specified in USES statement of IMPLEMENTATION
section and current function is inline function or being inline
function 421

H2451: Narrowing given WideChar constant (#$%04X) to
AnsiChar lost information 371

H2455: Narrowing given wide string constant lost information
371

help

.NET Framework 51

borland site 51

Delphi for .NET 51

quick start guide 51

typographic 51

Help Insight 42, 1060

Help on Help 51

Hiding and Showing Model Elements 232

hinting directives

compiler directives,, delphi 705

Hints (Delphi) 291

History Element (State Machine Diagrams) 1155

History Manager 149, 1009

HPP emit (Delphi) 292

HR HTML Element 804

HTML Elements 801

HTML Formatting 998

HTML Tidy Options 999

HTML/ASP.NET Options 998

Hyperlinking Diagrams 201

4 RAD Studio (Common)

s

I
I

O errors 510

I/O Errors 510

IBDatabase Editor dialog box 752

IBTransaction Editor dialog box 753

IBUpdateSQL and IBDataSet Editor dialog box 753

IconView Items editor 924

ide

Code Editor 34

component tray 46

design guidelines 46

design surface 34

form preview 46

forms 34

HTML designer 46

MS Active Accessibility 34

Object Inspector 34

object repository 34

Project Manager 34

tool palette 34

visual components 46

welcome page 34

IDE Classic Keyboard Shortcuts 1070

IDE Command Line Switches and Options 1082

IDE on Windows Vista 40

identifiers (Delphi)

character set (Delphi) 701

IF directive (Delphi) 292

if statements 705

with statements 705

IFDEF directive (Delphi) 292

IFEND directive (Delphi) 293

IFNDEF directive (Delphi) 294

IFOPT directive (Delphi) 294

IInterface 625

iLink 32 878

Image base address 294

Image List Editor 925

IMG HTML Element 805

IMPLEMENTATION part is missing or incorrect 765

implementation section 683

implementing interfaces

interfaces 627

Implementing Interfaces 627

Implib 886

Implicit Build (Delphi) 295

import

namespaces 143

Import Component 733

Imported data 295

Importing a Legacy Pattern 257

Importing a Project Created in TVS, TEC, TJB, or TPT 265

Importing a Project in IBM Rational Rose (MDL) Format 265

Importing a Project in XMI Format 266

importing functions

procedures and functions 662

Include file (Delphi) 295

Incorrect field declaration in class <ClassName> 763

Incorrect method declaration in class <ClassName> 765

Increasing the Memory Address Space 176

Incremental Search 956

index specifiers

properties 530

indexes

expressions 720

Information 904

inheritance and scope

classes and objects 514

inherited methods

methods 521

initial value

defining 243

initialization section 683

inline assembler 610

Inline Assembly Code (Win32 Only) 609

inline directive 669

RAD Studio (Common) 4

t

Inline Variable dialog box 967

inner classifier

creating 239

Inner Classifiers 1124

InOut function

device drivers 692

INPUT HTML Element 806

Input Mask editor 929

Input output checking (Delphi) 296

Insert 813

Insert Image 813

Insert Input 814

Insert Object dialog box 930

Insert Table 814

Insert Template 915

Insert User Control 813

Inspect 945

Inspecting and Changing the Value of Data Elements 122

Installed .NET Components 734

Installing a Debugger on a Remote Machine 126

Installing Custom Components 160

Installing More Computer Languages 110

Installing, Starting, and Stopping the Remote Debug Server 125

instance specification

defining features 237

instantiating 237

Instantiating a Classifier 211

Insufficient memory to run 765

integer types

data types 554

interaction

navigating 226

Interaction 1150

interaction diagram

return link 215

interaction diagrams

navigation 267

interaction use 1150

creating 226

interface 1143

changing notation 242

hiding 240

interface references

interfaces 631

Interface References 631

interface section 683

Interface Selection Wizard 778

Interfaces

GUID 625

Internal Data Formats 645

internal errors 130

Introduce Field dialog box 968

Introduce Variable dialog box 968

Invalid event profile <Name> 768

K
Key Mappings 1068

Keyboard Mappings 1068

keystroke macros 142

KiviatChart

kiviat chart 98

L
labels (Delphi) 701

Language Exceptions 999

Language Overview 657

Laying Out a Diagram Automatically 202

layout

setting up 202

Librarian 886

libraries

initialization code 637

libraries and packages 635

Libraries and Packages 634, 635

Library 991

lifeline

associating 226

lifeline type

4 RAD Studio (Common)

u

associating 226

Link object file (Delphi) 297

Linker 840, 880

Linker error: %s 484

Linker error: %s: %s 485

Linker Linking 878

Linker Output Options 881

Linker Warnings 884

Linking Another Interaction from an Interaction Diagram 227

Linking Delphi Units Into an Application 111

linking to object files

procedures and functions 662

List Editor 885

ListView Items Editor 926

Live Templates 42

LiveSource Overview 93

LiveSource Rules 1125

Load Picture dialog box 931

Load Process 949

Load Process Environment Block 945

Load Process Local 946

Load Process Remote 946

Load Process Symbol Tables 947

Load String List dialog box 932

Loading an image at design time 931

local declarations

procedures and functions 662

Local symbol information (Delphi) 297

Local Variables Window 1028

Localization Procedures 169

Localizing Applications 18

Lock Controls 758

logical (bitwise) operators 720

long strings

string types 561

Long strings (Delphi) 298

loops 705

M
macro

recording 142

Managing Memory 175

Managing the Development Cycle Overview 14

Masked Text editor 932

MDA 93

Members 1125

Memory 1032

Memory allocation sizes (Delphi) 298

memory management

Delphi for .NET 653

Delphi for Win32 644

Memory Management 644

Memory Management Issues on the .NET Platform 653

Memory Management on the Win32 Platform 644

Menus 1110

message

operation call 227

self 227

MESSAGE directive (Delphi) 299

message methods

methods 521

message pane

refactoring 111

Message View 1038

method extract

code fragments 143

method rename 59

METHODINFO directive (Delphi) 299

methods

classes and objects 521

Methods 521

metric 98

viewing description 276

Metric Results Pane 1112

metrics

filtering results 276

RAD Studio (Common) 4

v

navigating 276

sorting results 276

updating results 276

Minimum enumeration size (Delphi) 299

Misaligned Data Breakpoint 762

model

reloading 269

Model Annotation Overview 91

model element

hiding and showing 232

navigating 267

opening 267

Model Element Overview 91

Model Hyperlinking Overview 92

Model Import and Export Overview 100

Model Shortcut Overview 92

Model Support 969

Model View 1112

Model View Window 1058

Modeling Applications with Together 81

Modeling Overview 89

Modifying Variable Expressions 124

Module header is missing or incorrect 764

Modules Window 1028

Monitoring Memory Usage 177

Move dialog box 969

Moving Model Elements 203

MSBuild 4

MSBuild command 108

MSBuild Overview 4

multicast events

events 536

Multi-line Editor 1054

N
name mapping 94

Named Option Sets Overview 7

namespace

deleting 250

opening 250

renaming 250

viewing 250

Namespace and Package Overview 89

namespaces 689

programs and units 689

namespaces, declaring 689

namespaces, multi-unit 689

namespaces, searching 689

Native OS Exceptions 999

Nested Constants

Nested Types 546

nested exceptions

exceptions 541

Nested Message 1133

Nested Type Declarations 546

nested types

classes and objects 546

NET_VS 817

New 800

New Application 782

New ASP.NET Application 779

New ASP.NET Content Page 779

New ASP.NET Generic Handler 779

New ASP.NET Master Page 780

New ASP.NET User Control 780

New ASP.NET Web Service 780

New Category Name 904

New Component 735

New Connection 748

New Console Application 780

New DBWeb Control Wizard 781

New Dynamic-link Library 781

New Edit Window 1057

New Expression 948

New Field 748

New Items 781

New Remote Data Module Object 782

New SOAP Server Application 788

4 RAD Studio (Common)

w

New Standard Action Classes dialog box 927

New Tags 1000

New Thread Object 783

New Together Project Wizards 1159

New VCL Component Wizard 736

New Web Server Application 793

New WebSnap Application 795

New WebSnap Data Module 796

No code was generated for the current line 766

node

optimizing size 204

optimizing size (global) 204

NODEFINE 302

NOINCLUDE (Delphi) 302

Notebook editor 933

null-terminated string functions

strings 692

null-terminated strings

strings 692

numerals (Delphi)

character set (Delphi) 701

NUnit Overview 76

O
Object Inspector 1000, 1038, 1113

object interfaces

interfaces 625

Object Interfaces 624, 625

Object Repository 1010

OCL 95

constraint 95

expression 95

supported diagram types 95

OCL object constraint

creating 249

OCL Support Overview 95

online help

using 248

Open 784

open array parameters

parameters 672

open arrays 669

Open dialog box 933

Open function

device drivers 692

Open String Parameters (Delphi) 300

Opening an Existing Project for Modeling 267

Opening the Pattern Organizer 260

Opening the UML 2.0 Sample Project 190

operand 1151

operating system errors 512

Operating system errors 512

operation

defining parameters 223

operator 1151

Operator and Operand for a Combined Fragment 1151

operator overloading

classes and objects 548

Operator Overloading 548

operator precedence 720

operators

classes and objects 539

expressions 720

Optimization (Delphi) 300

option sets (C++) 7

Option Value Editors 1101

options

disabling changes 183

Options 905, 909

ordinal types

data types 554

Overflow checking (Delphi) 301

overloading methods

methods 521

Overloads and Type Compatibility in Generics 602

Override System Variable/New User Variable/Edit User Variable
1000

Overview of Debugging 10

Overview of Generics 596

RAD Studio (Common) 4

x

Overview of Remote Debugging 12

Overview of Virtual Folders 50

P
Package 784

packages 640

compiling 105, 640

units 105

Packages 640, 734, 843, 1005

parameters

procedures and functions 669, 672

Parameters 672, 950

parameters, passing 679

Paste 758

Paste Special dialog box 934

Paths and Defines 887

Paths and Directories (C++) 987

pattern

stub implementation 255

Pattern GUI Components 1107

Pattern Organizer 96, 1107

Pattern Registry 96, 1109

Pattern Wizard 1162

Patterns as First Class Citizens 96

adding participants 253

Patterns Overview 96

PE (portable executable) header flags (Delphi) 310

Pentium-safe FDIV operations (Delphi) 301

Picture editor 934

pin

creating 217

Pin 1141

pointer operators 720

pointer types

data types 575

Pointers and Pointer Types 575

Pre-Build, Pre-Link, or Post-Build Events 844

Preparing a Project for Debugging 124

Preparing Files for Remote Debugging 128

Previewing and Applying Refactoring Operations 111

Print Audit dialog box 970

Print Diagram dialog box 971

Print Selection 785

Printing a Diagram 197

Printing Audit Results 272

procedural types

data types 578

Procedural Types 578

procedure declarations

procedures and functions 662

Procedures 103

procedures and functions 662

overloading 662

Procedures and Functions 662

program control 679

Program Control 678, 679

program heading 683

program organization

programs and units 683

Program Reset 950

program structure 683

Programs and Units 682, 683

project

importing 265

Project 819

Clean 1038

Project Dependencies 903

Project Manager 1038

Project Options 822, 842

Project Page Options 904

Project Properties 888

Project References 901

Project Types and Formats with Support for Modeling 1116

Project Updated 785

Project Upgrade 785

projects 155

additional projects 47

types of 47

4 RAD Studio (Common)

y

Propeditors 910

properties

classes and objects 530

Properties 530, 819

property access 530

Property and method <MethodName> are not compatible 767

property overrides

properties 530

Pull Members Up and Push Members Down dialog boxes 972

Q
QA Audits dialog window 972

QA Metrics dialog window 974

Quality Assurance Facilities Overview 98

Quality Assurance GUI Components 1110

R
RAD Studio Dialogs and Commands 730

raising and handling

exceptions 541

Range checking 302

real types

data types 554

Real48 compatibility (Delphi) 302

Recording a Keystroke Macro 142

records

advanced 566

traditional 566

Redo 759

refactoring 57

applying 111

extract resource string 62

preview 111

procedures 143

symbol rename 143

Refactoring

change parameters 184

extract interface 185

extract method 185

extract superclass 186

in the Code Editor 42

inline variable 186

introduce variable 187

introdule field 187

move members 188

Pull Up/Push Down 188

rename 189

safe delete 189

Refactoring Applications 55

Refactoring Code 143

Refactoring Overview 57, 98

Refactoring: "Safe Delete" 189

Refactoring: “Pull Members Up" and “Push Members Down” 188

Refactoring: Changing Parameters 184

Refactoring: Creating Inline Variables 186

Refactoring: Extracting Interfaces 185

Refactoring: Extracting Method 185

Refactoring: Extracting Superclass 186

Refactoring: Introducing Fields 187

Refactoring: Introducing Variables 187

Refactoring: Moving Members 188

Refactoring: Renaming Elements 189

Refactorings 67

Reference 279

referenced project 270

references

projects 153

Reflection viewer 158

Regions (Delphi and C#) 303

Register ActiveX Server 950

Registering Memory Leaks 178

Registers 1032

Relation 749

relational operators 720

Relations Collection Editor 740

Remote Data Module Wizard 786

Remote Debugging: Metaprocedure 125

Remove from Project 904

RAD Studio (Common) 4

z

Remove Language 903

Rename 975

Rename <symbol name> (C#) 68

Rename <symbol name> (Delphi) 69

Rename Connection 749

rename symbol 112

preview 111

refactoring 112

Rename Symbol (C++) 68

Renaming a Diagram 204

Renaming a Symbol 112

Renaming Files Using the Project Manager 160

repeat loops 705

Replace Text 955

Repository 1006

required interface

creating 238

re-raising exceptions

exceptions 541

Rerouting a Link 204

Reserved address space for resources (Delphi) 310

reserved words (Delphi) 701

Resizing Model Elements 204

Resolving Internal Errors 130

Resource Compiler 867

Resource Compiler Options 868

Resource Compiler Paths And Defines 869

Resource file (Delphi) 303

Revert to Previous Revision 787

role

binding to different classifiers 222

Run 936, 950

Run To Cursor and Run Until Return 950

Running Audits 273

Running Metrics 276

RUNONLY directive (Delphi) 304

runtime errors 509

Runtime type information (Delphi) 304

S
Safe Delete dialog box 975

Satellite Assembly Wizard 787

Save As 788

Save Audit and Metric Results dialog box 976

Save Desktop 1047

Save Picture As dialog box 935

Save String List dialog box 936

Saving Changes in the Pattern Registry 261

Saving Desktop Layouts 161

Scale 757

scope 705

Search 952, 1066

Search Again 955

Search for Usages dialog box 977

Searching Diagrams 209

Searching Source Code for Usages 210

Select All 759

Select All Controls 759

Select Debug Desktop 1047

Select Directory 789

Select element dialog box 977

SELECT HTML Element 808

Select Icon 906

Select Menu 915

Selecting Model Elements 205

Selection Manager 978

Self identifier

methods 521

Send to Back 759

Set Active Language 903

set constructors

expressions 720

set operators 720

sets 98, 566

using 274, 277

Setting and Modifying Breakpoints 118

Setting C++ Project Options 163

4 RAD Studio (Common)

aa

Setting Component Properties 161

Setting Dynamic Properties 161

Setting Project Options 162

Setting Properties and Events 164

Setting the Active Language for a Project 171

Setting The IDE To Mimic Delphi 7 164

Setting the Search Order for Debug Symbol Tables 129

Setting Tool Preferences 165

Setting Up the External Translation Manager 172

Sharing Memory 178

Sharing Patterns 258

short strings

string types 561

shortcut

create 208

shortcut to classifier

creating 214

shortcuts

other 1104

Show Borders 1060

Show Execution Point 951

Show Grid 1061

Show Tag Glyphs 1061

Showing and Hiding an OCL Constraint 250

Signing 844

simple types

data types 554

Simple Types 554

Size 757

slot

adding 237

associating 237

slot stereotype

defining 237

slot value

setting 237

Snap To Grid 1061

SOAP Data Module Wizard 788

Sort Fields Editor 750

Sorting Patterns 261

source breakpoint 118

source control

basics 16

files 16

projects 16

repository basics 16

Source Control Options 1001

Source File Not Found 1030

Source has been modified. Rebuild? 767

Source Options 1001

SPAN HTML Element 809

Specifying Entry and Exit Actions 236

SQL Monitor 749

Stack 1032

Stack frames (Delphi) 309

standard exception classes and routines

exceptions 541

standard routines

System unit 692

Standard Routines and I/O 692

Starting a Project 47

state

nested 234

State 1117

state invariant 1150

connecting 225

State Machine diagram

sample 85

statements 705

simple statements 705

static methods

methods 521

Step Over 951

stereotype

assigning 205

defining 205

storage specifiers

properties 530

RAD Studio (Common) 4

bb

Stored Procedures Dialog 751

strict visibility

classes and objects 514

String List editor 927

string operators 720

string parameters

parameters 672

string types

data types 561

String Types 561

strings 701

Structure View 1047

structured types

data types 566

Structured Types 566

stub implementation 96

Node by Pattern 255

using 255

subrange types

data types 554

Supported C# Project Wizards 1161

Supported Delphi Project Wizards 1161

Supported UML Specifications 90

Symbol <BrowseSymbol> not found. 767

Symbol declaration and cross-reference information (Delphi) 305

symbol rename

refactoring 59

Symbol Rename Overview (Delphi, C#, C++) 59

symbols (Delphi)

character set (Delphi) 701

Sync Edit 150

editing code 67

Sync Edit Mode (Delphi, C#, C++) 67

SyncEdit 42

Synchronizing the Model View, Diagram View, and Source
Code 267

syntax (Delphi)

character set (Delphi) 701

Syntax Check for Project 910

System macros 1103

T
TABLE HTML Element 810

Table Properties 1050

TableMappings Collection Editor 751

Tables Collection Editor 741

targets files 8

Targets files 8

tasm32 889

template libraries 42

Template Libraries 50, 138, 1010

project 138

projects 50

templates 138, 148

Templates Window 1048

Terminology for Generics 597

test case

writing tests 180

test project

Adding source to a test project 180

Testing Applications 70

Testing Wizards 815

Text file type

file types 692

TEXTAREA HTML Element 811

The <Method Name> method referenced by <Form Name>
does not exist. Remove the reference? 766

The <Method Name> method referenced by <Form
Name>.<Event Name> has an incompatible parameter list.
Remove the reference? 766

The project already contains a form or module named <Name>
763

themes 157

Threads 1030

tie frame 1150

TObject and TClass

classes and objects 514

To-Do List 1049

to-do lists

overview 42

4 RAD Studio (Common)

cc

planning 166

Together 957

Together Configuration Options 1086

Together Diagram Appearance Options 1089

Together Diagram Layout Options 1091

Together Diagram Overview 90

Together Diagram Print Options 1094

Together Diagram Procedures 190

Together Diagram View Filters Options 1096

Together Documentation Generation Procedures 247

Together General Options 1098

Together Generate Documentation Options 1099

Together Glossary 1139

Together Keyboard Shortcuts 1104

Together Model View Options 1101

Together Object Constraint Language (OCL) Procedures 248

Together Option Categories 1088

Together Options dialog window 969

Together Pattern Procedures 251

Together Procedures 183

Together Project Overview 89

Together Project Procedures 262

Together Quality Assurance Procedures 271

Together Refactoring Operations 1115

Together Refactoring Procedures 184

Together Reference 1086

Together Sequence Diagram Roundtrip Options 1102

Together Source Code Options 1103

Together Wizards 1158

Toggle Form/Unit 1058

Tool Palette 1003, 1051, 1114

components 152

toolbars

customizing 156

Toolbars 1061

Tools 979

Tools Options 982

Tools Overview 41

Tools Properties 1011

Tour of the IDE 34

Trace Into 951

Trace to Next Source Line 951

Transactional Object Wizard 789

transform to source code 94

Transformation to Source Code Overview 94

Transforming a Design Project to Source Code 269

transition

multiple 1118

self 236

Transition 1118

Translation Editor 1062

Translation Manager 1052

Translation Repository 1006

translation tools

adding languages to a project 169

editing with Translation Manager 170

External Translation Manager 173

overview 18

setting the active language 171

setting up the External Translation Manager 172

updating resource modules 173

Translation Tools Options 1005

TreeView Items Editor 927

Troubleshooting a Model 269

try... finally statements

exceptions 541

try...except statements

exceptions 541

Turbo Assembler 889

Turbo Assembler Options 889

Turbo Assembler Paths and Defines 891

Turbo Assembler Warnings 892

Type Cast 948

type compatibility

data types 583

Type Compatibility and Identity 583

Type Library (C++) 988

Type Library (Delphi) 1007

RAD Studio (Common) 4

dd

Type Library Editor 1054

Type Library Explorer 1065

typecasts

expressions 720

Type-checked pointers (Delphi) 305

U
UDDI Browser 902

UML 90

UML 1.5 Activity Diagram Definition 1119

UML 1.5 Activity Diagram Elements 1120

UML 1.5 Activity Diagrams 1117

UML 1.5 Class Diagram Definition 1126

UML 1.5 Class Diagram Elements 1127

UML 1.5 Class Diagrams 1121

UML 1.5 Collaboration Diagram Definition 1133

UML 1.5 Component Diagram Definition 1128

UML 1.5 Component Diagram Elements 1129

UML 1.5 Component Diagrams 1128

UML 1.5 Deployment Diagram Definition 1130

UML 1.5 Deployment Diagram Elements 1131

UML 1.5 Deployment Diagrams 1129

UML 1.5 Interaction Diagram Elements 1134

UML 1.5 Interaction Diagrams 1131

UML 1.5 Message 1133

UML 1.5 Reference 1116

UML 1.5 Sequence Diagram Definition 1134

UML 1.5 Statechart Diagram Definition 1135

UML 1.5 Statechart Diagram Elements 1136

UML 1.5 Statechart Diagrams 1135

UML 1.5 Together Design Project Wizard 1161

UML 1.5 Use Case Diagram Definition 1137

UML 1.5 Use Case Diagram Elements 1138

UML 1.5 Use Case Diagrams 1137

UML 2.0 Activity Diagram Definition 1141

UML 2.0 Activity Diagram Elements 1142

UML 2.0 Activity Diagrams 1140

UML 2.0 Class Diagram Definition 1143

UML 2.0 Class Diagram Elements 1144

UML 2.0 Class Diagrams 1143

UML 2.0 Communication Diagram Definition 1152

UML 2.0 Communication Diagram Elements 1152

UML 2.0 Component Diagram Definition 1145

UML 2.0 Component Diagram Elements 1145

UML 2.0 Component Diagrams 1145

UML 2.0 Composite Structure Diagram Definition 1146

UML 2.0 Composite Structure Diagram Elements 1147

UML 2.0 Composite Structure Diagrams 1146

UML 2.0 Deployment Diagram Definition 1148

UML 2.0 Deployment Diagram Elements 1148

UML 2.0 Deployment Diagrams 1148

UML 2.0 Interaction Diagrams 1149

UML 2.0 Message 1153

UML 2.0 Reference 1140

UML 2.0 Sample Project 84

UML 2.0 Sample Project, Behavior Package 85

UML 2.0 Sample Project, Structure Package 86

UML 2.0 Sequence Diagram Definition 1154

UML 2.0 Sequence Diagram Elements 1154

UML 2.0 State Machine Diagram Definition 1155

UML 2.0 State Machine Diagram Elements 1156

UML 2.0 State Machine Diagrams 1155

UML 2.0 Together Design Project Wizard 1161

UML 2.0 Use Case Diagram Definition 1157

UML 2.0 Use Case Diagram Elements 1158

UML 2.0 Use Case Diagrams 1157

UML in color

using 198

UML In Color 90

Unavailable Options 893

UNDEF directive (Delphi) 306

Understanding Assembler Syntax (Win32 Only) 610

undo

refactoring 67

Undo 759

Undoing a Refactoring (Delphi, C#) 67

Unique Constraint 752

Unit 803

4 RAD Studio (Common)

ee

unit names 689

unit structure 683

Unit Test Case Wizard 816

Unit Test Procedures 180

Unit Test Project Wizard 816, 817

unit testing 70

Unit Testing Overview 70

unit tests 180

units

Delphi for .NET 653

linking 111

namespaces 142

unmanaged code 47

Unregister ActiveX Server 951

Unsafe Code (Delphi for .NET) 306

untyped files

file types 692

Update Localized Projects 910

Updating Resource Modules 173

Use Unit 790

uses clause 683

unit references 683

Uses clause is missing or incorrect 767

Using .NET Custom Attributes 593

Using a Class Diagram as a View 240

Using Bookmarks 145

Using Class Completion 145

Using Code Folding 137

Using Code Insight 146

Using Design Guidelines with VCL Components 165

Using Drag-and-Drop 206

Using Grid and Other Appearance Options 198

Using Inline Assembly Code (Win32 Only) 610

Using Live Templates 148

Using Namespaces with Delphi 689

Using Online Help 248

Using Source Control 16

Using Sync Edit 150

Using Targets Files 109

Using the CPU View 116

Using the External Translation Manager 173

Using the File Browser 166

Using the History Manager 149

Using the Pattern Organizer 261

Using the Pattern Registry 254

Using the Stub Implementation Pattern 255

Using the UML in Color Profile 198

Using To-Do Lists 166

Using Tooltips During Debugging 122

Using View Filters 233

Using Virtual Folders 167

V
Value List editor 928

Value typecasts

expressions 720

variables

data types 587

Variables 587

variant parts in 566

variant types

data types 580

Variant Types 580

Var-string checking (Delphi) 306

VCL Designer 990

Version Info 845

View 1014

View Form 1057

View Source 910

View Units 1057

Viewing Audit Results 274

Viewing Metric Results 276

virtual and dynamic methods

methods 521

Virtual folders 167

visibility

classes and objects 514

visibility modifier

RAD Studio (Common) 4

ff

defining 243

Vista themes 34

Visual Basic Keyboard Shortcuts 1078

Visual Studio Keyboard Shortcuts 1079

W
W1000: Symbol '%s' is deprecated 406

W1001: Symbol '%s' is specific to a library 406

W1002: Symbol '%s' is specific to a platform 407

W1003: Symbol '%s' is experimental 406

W1004: Unit '%s' is specific to a library 495

W1005: Unit '%s' is specific to a platform 495

W1006: Unit '%s' is deprecated 494

W1007: Unit '%s' is experimental 494

W1009: Redeclaration of '%s' hides a member in the base class
404

W1010: Method '%s' hides virtual method of base type '%s' 403

W1011: Text after final 'END.' - ignored by compiler 401

W1013: Constant 0 converted to NIL 509

W1014: String constant truncated to fit STRING[%ld] 487

W1015: FOR-Loop variable '%s' cannot be passed as var
parameter 397

W1016: Typed constant '%s' passed as var parameter 492

W1017: Assignment to typed constant '%s' 340

W1018: Case label outside of range of case expression 356

W1021: Comparison always evaluates to False 366

W1022: Comparison always evaluates to True 366

W1023: Comparing signed and unsigned types - widened both
operands 365

W1024: Combining signed and unsigned types - widened both
operands 362

W1029: Duplicate %s '%s' with identical parameters will be
inacessible from C++ 382

W1031: Package '%s' will not be written to disk because -J
option is enabled 470

W1032: Exported package threadvar '%s.%s' cannot be used
outside of this package 471

W1034: $HPPEMIT '%s' ignored 405

W1035: Return value of function '%s' might be undefined 456

W1036: Variable '%s' might not have been initialized 499

W1037: FOR-Loop variable '%s' may be undefined after loop
396

W1039: No configuration files found 453

W1040: Implicit use of Variants unit 417

W1041: Error converting Unicode char to locale charset. String
truncated. Is your LANG environment variable set correctly? 494

W1042: Error converting locale string '%s' to Unicode. String
truncated. Is your LANG environment variable set correctly? 434

W1043: Imagebase $%X is not a multiple of 64k. Rounding
down to $%X 413

W1044: Suspicious typecast of %s to %s 489

W1045: Property declaration references ancestor private
'%s.%s' 472

W1046: Unsafe type '%s%s%s' 497

W1047: Unsafe code '%s' 497

W1048: Unsafe typecast of '%s' to '%s' 497

W1049: value '%s' for option %s was truncated 466

W1050: WideChar reduced to byte char in set expressions 507

W1051: Duplicate symbol names in namespace. Using '%s.%s'
found in %s. Ignoring duplicate in %s 388

W1052: Can't find
System.Runtime.CompilerServices.RunClassConstructor. Unit
initialization order will not follow uses clause order 495

W1053: Local PInvoke code has not been made because
external routine '%s' in package '%s' is defined using package
local types in its custom attributes 432

W1055: Published caused RTTI ($M+) to be added to type '%s'
492

W1201: XML comment on '%s' has badly formed
XML--'Whitespace is not allowed at this location.' 509

W1202: XML comment on '%s' has badly formed
XML--'Reference to undefined entity '%s'' 509

W1203: XML comment on '%s' has badly formed XML--'A name
was started with an invalid character.' 508

W1204: XML comment on '%s' has badly formed XML--'A name
contained an invalid character.' 508

W1205: XML comment on '%s' has badly formed XML--'The
character '%c' was expected.' 508

W1206: XML comment on '%s' has cref attribute '%s' that could
not be resolved 508

W1207: XML comment on '%s' has a param tag for '%s', but
there is no parameter by that name 508

W1208: Parameter '%s' has no matching param tag in the XML
comment for '%s' (but other parameters do) 508

Warning messages (Delphi) 307

Warnings (Delphi) 308

Watch List Window 1031

Watch Properties 948

4 RAD Studio (Common)

gg

Weak packaging 308

Web App Components 796

Web App Debugger 1013

Web Deploy Options 906

WebSnap 1007

Welcome Page 1062

What is RAD Studio? 23

What's New in RAD Studio (C++Builder) 28

What's New in RAD Studio (Delphi for Microsoft .NET) 24

What's New in RAD Studio (Delphi) 32

What's New in Together 88

when to use exceptions

exceptions 541

while loops 705

wide-character strings 692

WideString

string types 561

Win View 1062

Window List 1057

with statements 705

Working with a Collaboration Use 222

Working with a Combined Fragment 228

Working with a Complex State 234

Working with a Constructor 243

Working with a Field 243

Working with a Namespace or a Package 250

Working with a Provided or Required Interface 238

Working with a Referenced Project 270

Working with a Relationship 241

Working with a Set of Audits 274

Working with a Set of Metrics 277

Working with a Tie Frame 229

Working with a UML 1.5 Message 215

Working with a UML 2.0 Message 227

Working with an Instance Specification 237

Working with an Interface 240

Working with an Object Flow or a Control Flow 219

Working with Named Option Sets 113

Working with User Properties 206

Writeable typed constants (Delphi) 309

Writing Dynamically Loaded Libraries 637

Writing Event Handlers 168

WSDL Import Options 791

WSDL Import Wizard 792

X
x1008: Integer and HRESULT interchanged 405

x1012: Constant expression violates subrange bounds 351

x1019: For loop control variable must be simple local variable
398

x1020: Constructing instance of '%s' containing abstract method
'%s.%s' 369

x1025: Unsupported language feature: '%s' 498

x1026: File not found: '%s' 393

x1028: Bad global symbol definition: '%s' in object file '%s' 346

x1030: Invalid compiler directive: '%s' 426

x1033: Unit '%s' implicitly imported into package '%s' 417

x1054: Linker error: %s 436

x2041: Read error on '%s' 394

x2042: Write error on '%s' 395

x2043: Close error on '%s' 393

x2044: Chmod error on '%s' 393

x2141: Bad file format: '%s' 393

x2243: Expression needs no Initialize/Finalize 491

x2269: Overriding virtual method '%s.%s' has lower visibility
(%s) than base class '%s' (%s) 459

x2367: Case of property accessor method %s.%s should be
%s.%s 474

x2421: Imported identifier '%s' conflicts with '%s' in '%s' 361

XMI Export dialog box 978

XMI Import dialog box 979

XML Data Binding Wizard Options 797

XML Data Binding Wizard, page 1 797

XML Data Binding Wizard, page 2 798

XML Data Binding Wizard, page 3 799

XML Mapper 1011

Z
Zooming a Diagram 234

RAD Studio (Common) 4

hh

	RAD Studio (Common)
	Table of Contents
	Concepts
	Compiling, Building, and Running Applications
	Compiling, Building, and Running Applications
	MSBuild Overview
	Build Configurations Overview (Delphi)
	Build Configurations Overview (C++)
	Named Option Sets Overview
	Targets files

	Debugging Applications
	Overview of Debugging
	Overview of Remote Debugging

	General Concepts
	Managing the Development Cycle Overview
	Designing User Interfaces
	Using Source Control
	Localizing Applications
	Deploying Applications

	Getting Started
	What is RAD Studio?
	What's New in RAD Studio (Delphi for Microsoft .NET)
	What's New in RAD Studio (C++Builder)
	What's New in RAD Studio (Delphi)
	Tour of the IDE
	IDE on Windows Vista
	Tools Overview
	Code Editor
	Form Designer
	Starting a Project
	Template Libraries
	Overview of Virtual Folders
	Help on Help
	Code Completion

	Refactoring Applications
	Add Namespace
	Refactoring Overview
	Change Parameters
	Symbol Rename Overview (Delphi, C#, C++)
	Add or Edit Parameter
	Extract Method Overview (Delphi)
	Declare Field
	Extract Resource String (Delphi)
	Declare Variable and Declare Field Overview (Delphi)
	Declare Variable
	Extract Method
	Find References Overview (Delphi, C#, C++)
	Change Parameters Overview (Delphi)
	Extract Resource String
	Find Unit
	Sync Edit Mode (Delphi, C#, C++)
	Refactorings
	Undoing a Refactoring (Delphi, C#)
	Rename Symbol (C++)
	Rename <symbol name> (C#)
	Rename <symbol name> (Delphi)

	Testing Applications
	Unit Testing Overview
	DUnit Overview
	NUnit Overview

	Modeling Applications with Together
	Getting Started with Together
	About Together
	UML 2.0 Sample Project
	Code Visualization Overview
	What's New in Together

	Modeling Overview
	Together Project Overview
	Namespace and Package Overview
	Together Diagram Overview
	Supported UML Specifications
	Model Element Overview
	Model Annotation Overview
	Model Shortcut Overview
	Diagram Layout Overview
	Model Hyperlinking Overview
	LiveSource Overview
	Transformation to Source Code Overview
	OCL Support Overview
	Patterns Overview
	Refactoring Overview
	Quality Assurance Facilities Overview
	Documentation Generation Facility Overview
	Model Import and Export Overview

	Procedures
	Compiling and Building Procedures
	Applying the Active Build Configuration for a Project
	Building Packages
	Compiling C++ Design-Time Packages That Contain Delphi Source
	Creating Build Events
	Creating Named Build Configurations for C++
	Creating Named Build Configurations for Delphi
	Building a Project Using an MSBuild Command
	Using Targets Files
	Installing More Computer Languages
	Linking Delphi Units Into an Application
	Previewing and Applying Refactoring Operations
	Renaming a Symbol
	Working with Named Option Sets

	Debugging Procedures
	Adding a Watch
	Using the CPU View
	Displaying Expanded Watch Information
	Attaching to a Running Process
	Setting and Modifying Breakpoints
	Debugging VCL for .NET Source Code
	Using Tooltips During Debugging
	Inspecting and Changing the Value of Data Elements
	Modifying Variable Expressions
	Preparing a Project for Debugging
	Remote Debugging: Metaprocedure
	Installing, Starting, and Stopping the Remote Debug Server
	Installing a Debugger on a Remote Machine
	Establishing a Connection for Remote Debugging
	Preparing Files for Remote Debugging
	Setting the Search Order for Debug Symbol Tables
	Resolving Internal Errors

	Deploying Applications
	Deploying ASP.NET applications
	Deploying the AdoDbx Client

	Editing Code Procedures
	Using Code Folding
	Creating Live Templates
	Creating Template Libraries
	Customizing Code Editor
	Finding References
	Finding Units and Using Namespaces (Delphi, C#)
	Recording a Keystroke Macro
	Refactoring Code
	Using Bookmarks
	Using Class Completion
	Using Code Insight
	Using Live Templates
	Using the History Manager
	Using Sync Edit

	Getting Started Procedures
	Adding Components to a Form
	Adding References
	Adding and Removing Files
	Adding Templates to the Object Repository
	Copying References to a Local Path
	Creating a Component Template
	Creating a Project
	Customizing the Form
	Customizing the Tool Palette
	Customizing Toolbars
	Disabling Themes in the IDE and in Your Application
	Docking Tool Windows
	Finding Items on the Tool Palette
	Exploring .NET Assembly Metadata Using the Reflection Viewer
	Exploring Windows Type Libraries
	Installing Custom Components
	Renaming Files Using the Project Manager
	Saving Desktop Layouts
	Setting Component Properties
	Setting Dynamic Properties
	Setting Project Options
	Setting C++ Project Options
	Setting Properties and Events
	Setting The IDE To Mimic Delphi 7
	Setting Tool Preferences
	Using Design Guidelines with VCL Components
	Using the File Browser
	Using To-Do Lists
	Using Virtual Folders
	Writing Event Handlers

	Localization Procedures
	Adding Languages to a Project
	Editing Resource Files in the Translation Manager
	Setting the Active Language for a Project
	Setting Up the External Translation Manager
	Updating Resource Modules
	Using the External Translation Manager

	Managing Memory
	Configuring the Memory Manager
	Increasing the Memory Address Space
	Monitoring Memory Usage
	Registering Memory Leaks
	Sharing Memory

	Unit Test Procedures
	Developing Tests

	Together Procedures
	Configuring Together
	Together Refactoring Procedures
	Refactoring: Changing Parameters
	Refactoring: Extracting Interfaces
	Refactoring: Extracting Method
	Refactoring: Extracting Superclass
	Refactoring: Creating Inline Variables
	Refactoring: Introducing Fields
	Refactoring: Introducing Variables
	Refactoring: Moving Members
	Refactoring: “Pull Members Up" and “Push Members Down”
	Refactoring: Renaming Elements
	Refactoring: "Safe Delete"

	Opening the UML 2.0 Sample Project
	Together Diagram Procedures
	Annotating a Diagram
	Creating a Diagram
	Exporting a Diagram to an Image
	Printing a Diagram
	Changing Diagram Notation
	Using Grid and Other Appearance Options
	Using the UML in Color Profile
	Aligning Model Elements
	Changing Type of a Link
	Closing a Diagram
	Copying and Pasting Model Elements
	Deleting a Diagram
	Hyperlinking Diagrams
	Laying Out a Diagram Automatically
	Moving Model Elements
	Renaming a Diagram
	Rerouting a Link
	Resizing Model Elements
	Selecting Model Elements
	Assigning an Element Stereotype
	Using Drag-and-Drop
	Working with User Properties
	Creating a Link with Bending Points
	Creating Multiple Elements
	Creating a Shortcut
	Creating a Simple Link
	Creating a Single Model Element
	Searching Diagrams
	Searching Source Code for Usages
	Creating an Activity for a State
	Designing a UML 1.5 Activity Diagram
	Instantiating a Classifier
	Designing a UML 1.5 Component Diagram
	Designing a UML 1.5 Deployment Diagram
	Adding a Conditional Block
	Associating an Object with a Classifier
	Branching Message Links
	Converting Between UML 1.5 Sequence and Collaboration Diagrams
	Working with a UML 1.5 Message
	Designing a UML 1.5 Statechart Diagram
	Creating a Pin
	Designing a UML 2.0 Activity Diagram
	Grouping Actions into an Activity
	Working with an Object Flow or a Control Flow
	Designing a UML 2.0 Component Diagram
	Creating a Delegation Connector
	Creating an Internal Structure for a Node
	Creating a Referenced Part
	Creating a Port
	Working with a Collaboration Use
	Designing a UML 2.0 Deployment Diagram
	Associating a Lifeline with a Classifier
	Copying and Pasting an Execution or Invocation Specification
	Creating a Sequence or Communication Diagram from an Interaction
	Creating a State Invariant
	Designing a UML 2.0 Sequence or Communication Diagram
	Linking Another Interaction from an Interaction Diagram
	Working with a UML 2.0 Message
	Working with a Combined Fragment
	Working with a Tie Frame
	Associating a Transition or a State with an Activity
	Creating a Guard Condition for a Transition
	Creating a History Element
	Creating a Member for a State
	Creating a State
	Designing a UML 2.0 State Machine Diagram
	Browsing a Diagram with Overview Pane
	Hiding and Showing Model Elements
	Using View Filters
	Zooming a Diagram
	Working with a Complex State
	Creating a Deferred Event
	Creating an Internal Transition
	Creating a Multiple Transition
	Creating a Self-Transition
	Specifying Entry and Exit Actions
	Working with an Instance Specification
	Working with a Provided or Required Interface
	Creating an Association Class
	Creating an Inner Classifier
	Using a Class Diagram as a View
	Working with an Interface
	Working with a Relationship
	Adding a Member to a Container
	Changing Appearance of Compartments
	Changing Appearance of Interfaces
	Working with a Constructor
	Working with a Field
	Associating a Message Link with a Method
	Generating an Incremental Sequence Diagram
	Creating a Browse-Through Sequence of Diagrams
	Creating an Extension Point
	Designing Use Case Hierarchy

	Together Documentation Generation Procedures
	Configuring the Documentation Generation Facility
	Generating Project Documentation

	Using Online Help
	Together Object Constraint Language (OCL) Procedures
	Creating an OCL Constraint
	Editing an OCL Expression
	Showing and Hiding an OCL Constraint

	Working with a Namespace or a Package
	Together Pattern Procedures
	Adding Participants to the Patterns as First Class Citizens
	Creating a Pattern
	Deleting Patterns as First Class Citizens from the Model
	Using the Pattern Registry
	Creating a Link by Pattern
	Creating a Model Element by Pattern
	Using the Stub Implementation Pattern
	Exporting a Pattern
	Importing a Legacy Pattern
	Sharing Patterns
	Assigning Patterns to Shortcuts
	Copying and Pasting Shortcuts, Folders or Pattern Trees
	Creating a Folder in the Pattern Organizer
	Creating a Shortcut to a Pattern
	Creating a Virtual Pattern Tree
	Deleting shortcuts, folders or pattern trees
	Editing Properties
	Opening the Pattern Organizer
	Saving Changes in the Pattern Registry
	Sorting Patterns
	Using the Pattern Organizer

	Together Project Procedures
	Activating Together Support for Projects
	Creating a Project
	Exporting a Project to XMI Format
	Importing a Project in IBM Rational Rose (MDL) Format
	Importing a Project Created in TVS, TEC, TJB, or TPT
	Importing a Project in XMI Format
	Opening an Existing Project for Modeling
	Synchronizing the Model View, Diagram View, and Source Code
	Transforming a Design Project to Source Code
	Troubleshooting a Model
	Working with a Referenced Project

	Together Quality Assurance Procedures
	Exporting Audit Results
	Printing Audit Results
	Running Audits
	Viewing Audit Results
	Working with a Set of Audits
	Creating a Metrics Chart
	Running Metrics
	Viewing Metric Results
	Working with a Set of Metrics

	Reference
	Delphi Reference
	Delphi Compiler Directives (List)
	Delphi compiler directives
	Align fields (Delphi)
	Application type (Delphi)
	Assert directives (Delphi)
	Autoboxing (Delphi for .NET)
	Boolean short-circuit evaluation (Delphi compiler directive)
	Conditional compilation (Delphi)
	Debug information (Delphi)
	DEFINE directive (Delphi)
	DENYPACKAGEUNIT directive (Delphi)
	Description (Delphi)
	DESIGNONLY directive (Delphi)
	ELSE (Delphi)
	ELSEIF (Delphi)
	ENDIF directive
	Executable extension (Delphi)
	Export symbols (Delphi)
	Extended syntax (Delphi)
	External Symbols (Delphi)
	Floating Point Exception Checking (Delphi)
	Hints (Delphi)
	HPP emit (Delphi)
	IFDEF directive (Delphi)
	IF directive (Delphi)
	IFEND directive (Delphi)
	IFNDEF directive (Delphi)
	IFOPT directive (Delphi)
	Image base address
	Implicit Build (Delphi)
	Imported data
	Include file (Delphi)
	Input output checking (Delphi)
	Compiler directives for libraries or shared objects (Delphi)
	Link object file (Delphi)
	Local symbol information (Delphi)
	Long strings (Delphi)
	Memory allocation sizes (Delphi)
	MESSAGE directive (Delphi)
	METHODINFO directive (Delphi)
	Minimum enumeration size (Delphi)
	Open String Parameters (Delphi)
	Optimization (Delphi)
	Overflow checking (Delphi)
	Pentium-safe FDIV operations (Delphi)
	NODEFINE
	NOINCLUDE (Delphi)
	Range checking
	Real48 compatibility (Delphi)
	Regions (Delphi and C#)
	Resource file (Delphi)
	RUNONLY directive (Delphi)
	Runtime type information (Delphi)
	Symbol declaration and cross-reference information (Delphi)
	Type-checked pointers (Delphi)
	UNDEF directive (Delphi)
	Unsafe Code (Delphi for .NET)
	Var-string checking (Delphi)
	Warning messages (Delphi)
	Warnings (Delphi)
	Weak packaging
	Stack frames (Delphi)
	Writeable typed constants (Delphi)
	PE (portable executable) header flags (Delphi)
	Reserved address space for resources (Delphi)

	Delphi Compiler Errors
	Error Messages
	Delphi Runtime Errors
	I/O Errors
	Fatal errors
	Operating system errors

	Delphi Language Guide
	Classes and Objects
	Data Types, Variables, and Constants
	.NET Topics
	Generics (Parameterized Types)
	Inline Assembly Code (Win32 Only)
	Object Interfaces
	Libraries and Packages
	Memory Management
	Delphi Overview
	Procedures and Functions
	Program Control
	Programs and Units
	Standard Routines and I/O
	Fundamental Syntactic Elements

	RAD Studio Dialogs and Commands
	Code Visualization
	Code Visualization Diagram
	Export Diagram to Image

	Components
	Create Component Template
	Import Component
	Packages
	Assembly Search Paths
	Installed .NET Components
	.NET VCL Components
	New Component
	New VCL Component Wizard

	Database
	Add Fields
	Assign Local Data
	Columns Collection Editor
	Constraints Collection Editor
	Relations Collection Editor
	Tables Collection Editor
	CommandText Editor
	Command Text Editor
	Configure Data Adapter
	Connection Editor
	Connection Editor
	Connection String Editor (ADO)
	Data Adapter Dataset
	DataAdapter Preview
	Database Editor
	Database Form Wizard
	Dataset Properties
	Driver Settings
	Field Link Designer
	Fields Editor
	Foreign Key Constraint
	Generate Dataset
	New Connection
	New Field
	Relation
	Rename Connection
	SQL Monitor
	Sort Fields Editor
	Stored Procedures Dialog
	TableMappings Collection Editor
	Unique Constraint
	IBDatabase Editor dialog box
	IBTransaction Editor dialog box
	IBUpdateSQL and IBDataSet Editor dialog box

	Edit
	Alignment
	Creation Order
	Edit Tab Order
	Scale
	Size
	Align to Grid
	Bring to Front
	Copy
	Cut
	Delete
	Flip Children
	Lock Controls
	Paste
	Select All
	Send to Back
	Undo
	Redo
	Select All Controls

	Error Messages
	Data Breakpoint is set on a stack location
	Misaligned Data Breakpoint
	Error address not found
	Another file named <FileName> is already on the search path
	Could not stop due to hard mode
	Error creating process: <Process> (<ErrorCode>)
	A component class named <name> already exists
	A field or method named <name> already exists
	The project already contains a form or module named <Name>
	Incorrect field declaration in class <ClassName>
	Field <Field Name> does not have a corresponding component. Remove the declaration?
	Field <Field Name> should be of type <Type1> but is declared as <Type2>. Correct the declaration?
	Declaration of class <ClassName> is missing or incorrect
	Module header is missing or incorrect
	IMPLEMENTATION part is missing or incorrect
	Insufficient memory to run
	Breakpoint is set on line that contains no code or debug information. Run anyway?
	<IDname> is not a valid identifier
	<Library Name>is already loaded, probably as a result of an incorrect program termination. Your system may be unstable and you should exit and restart Windows now.
	Incorrect method declaration in class <ClassName>
	Cannot find implementation of method <MethodName>
	The <Method Name> method referenced by <Form Name>.<Event Name> has an incompatible parameter list. Remove the reference?
	The <Method Name> method referenced by <Form Name> does not exist. Remove the reference?
	No code was generated for the current line
	Property and method <MethodName> are not compatible
	Cannot find <FileName.PAS> or <FileName.DCU> on the current search path
	Source has been modified. Rebuild?
	Symbol <BrowseSymbol> not found.
	Debug session in progress. Terminate?
	Uses clause is missing or incorrect
	Invalid event profile <Name>

	File
	Active Form Wizard
	Active Server Object wizard
	Add
	Automation Object Wizard
	Browse With Dialog box
	Browse With Dialog box
	COM Object Wizard
	COM+ Event Interface Selection dialog box
	COM+ Event Object Wizard
	COM+ Subscription Object Wizard
	Customize New Menu
	Change Destination File Name
	FTP Connection Options
	Interface Selection Wizard
	New ASP.NET Application
	New ASP.NET Content Page
	New ASP.NET Generic Handler
	New ASP.NET Master Page
	New ASP.NET Master Page
	New ASP.NET User Control
	New ASP.NET Web Service
	New Console Application
	New DBWeb Control Wizard
	New Dynamic-link Library
	New Items
	New Application
	New Remote Data Module Object
	New Thread Object
	Open
	Package
	Print Selection
	Project Upgrade
	Project Updated
	Remote Data Module Wizard
	Satellite Assembly Wizard
	Revert to Previous Revision
	Add New WebService
	SOAP Data Module Wizard
	New SOAP Server Application
	Save As
	Select Directory
	Transactional Object Wizard
	Use Unit
	WSDL Import Options
	WSDL Import Wizard
	New Web Server Application
	Add New WebService
	Application Module Page Options/New WebSnap Page Module
	New WebSnap Application
	New WebSnap Data Module
	Web App Components
	XML Data Binding Wizard Options
	XML Data Binding Wizard, page 1
	XML Data Binding Wizard, page 2
	XML Data Binding Wizard, page 3
	Close
	Exit
	New

	HTML Elements
	A (Anchor) HTML Element
	Unit
	DIV HTML Element
	HR HTML Element
	IMG HTML Element
	INPUT HTML Element
	SELECT HTML Element
	SPAN HTML Element
	TABLE HTML Element
	TEXTAREA HTML Element

	Insert
	Insert User Control
	Insert Image
	Insert Input
	Insert Table
	Color Selector

	Testing Wizards
	Unit Test Case Wizard
	Unit Test Case Wizard
	Unit Test Project Wizard
	Unit Test Project Wizard

	NET_VS
	Advanced Data Binding
	AutoFormat
	Collection Editor
	Databindings
	Dynamic Properties
	Properties

	Project
	ASP.NET Deployment Manager
	Project Options
	COM Imports
	C++ Project Options
	.NET Assemblies
	Project References
	Add to Repository
	UDDI Browser
	Change Package
	Project Dependencies
	Add Languages
	Remove Language
	Set Active Language
	New Category Name
	Information
	Project Page Options
	Remove from Project
	Options
	Select Icon
	Web Deploy Options
	Build All Projects
	Build Project
	Compile and Make All Projects
	Add to Project
	Add New Project
	Clean Package
	Default Options
	Options
	Syntax Check for Project
	Update Localized Projects
	View Source

	Propeditors
	Delete Templates
	Insert Template
	Select Menu
	Browse dialog box
	Change Icon dialog box
	Color editor
	DDE Info dialog box
	Filter editor
	Font editor
	Action Manager editor
	Action List editor
	Add Page dialog box
	Collection Editor
	Edit Page dialog box
	IconView Items editor
	Image List Editor
	ListView Items Editor
	New Standard Action Classes dialog box
	String List editor
	TreeView Items Editor
	Value List editor
	Input Mask editor
	Insert Object dialog box
	Loading an image at design time
	Load Picture dialog box
	Load String List dialog box
	Masked Text editor
	Notebook editor
	Open dialog box
	Paste Special dialog box
	Picture editor
	Save Picture As dialog box
	Save String List dialog box

	Run
	Add Address Breakpoint or Add Data Breakpoint
	Add Source Breakpoint
	Attach to Process
	Change
	Debug Inspector
	Debugger Exception Notification
	Evaluate/Modify
	Find Package Import
	Inspect
	Load Process Environment Block
	Load Process Local
	Load Process Remote
	Load Process Symbol Tables
	New Expression
	Debug session in progress. Terminate?
	Type Cast
	Watch Properties
	Detach From Program
	Load Process
	Parameters
	Program Reset
	Register ActiveX Server
	Run
	Run To Cursor and Run Until Return
	Show Execution Point
	Step Over
	Trace Into
	Trace to Next Source Line
	Unregister ActiveX Server

	Search
	Find
	Find in Files
	Find References
	Enter Address to Position
	Go to Line Number
	Replace Text
	Search Again
	Find Class
	Find Local References
	Find Original Symbol
	Find References
	Incremental Search

	Together
	Add New Diagram dialog box
	Add/Remove Parameters for Operation dialog box
	Add/Remove User Properties dialog box
	Change Parameters dialog box
	Choose Destination (or: Source) dialog box
	Diagram Layout Algorithms
	Edit Hyperlinks for Diagram dialog box
	Export Diagram to Image dialog box
	Extract Interface or Superclass dialog box
	Extract Method dialog box
	Generate Documentation dialog box
	Generate Sequence Diagram dialog box
	Inline Variable dialog box
	Introduce Field dialog box
	Introduce Variable dialog box
	Model Support
	Move dialog box
	Together Options dialog window
	Print Audit dialog box
	Print Diagram dialog box
	Pull Members Up and Push Members Down dialog boxes
	QA Audits dialog window
	QA Metrics dialog window
	Rename
	Safe Delete dialog box
	Save Audit and Metric Results dialog box
	Search for Usages dialog box
	Select element dialog box
	Selection Manager
	XMI Export dialog box
	XMI Import dialog box

	Tools
	CodeGuard Configuration
	Tools Options
	Configure Tools
	Edit Object Info
	Edit Tools
	Export Visual Studio Project
	History Manager
	Object Repository
	Template Libraries
	Tools Properties
	XML Mapper
	Web App Debugger

	View
	Add to Repository
	Debug Windows
	Code Explorer
	Customize Toolbars
	Data Explorer
	Delete Saved Desktop
	Desktop Toolbar
	File Browser
	Add to Repository
	Message View
	Object Inspector
	Project Manager
	Save Desktop
	Select Debug Desktop
	Structure View
	Templates Window
	To-Do List
	Add or Edit To-Do Item
	Filter To-Do List
	Table Properties
	Tool Palette
	Translation Manager
	Multi-line Editor
	Type Library Editor
	View Form
	View Units
	Window List
	New Edit Window
	Toggle Form/Unit
	Model View Window
	CodeGuard Log
	Desktops
	Dock Edit Window
	Find Reference Results
	Help Insight
	Show Borders
	Show Grid
	Show Tag Glyphs
	Snap To Grid
	Toolbars
	Translation Editor
	Welcome Page

	Win View
	Assembly Metadata Explorer (Reflection viewer)
	Type Library Explorer
	Search

	Keyboard Mappings
	Key Mappings
	BRIEF Keyboard Shortcuts
	IDE Classic Keyboard Shortcuts
	Default Keyboard Shortcuts
	Epsilon Keyboard Shortcuts
	Visual Basic Keyboard Shortcuts
	Visual Studio Keyboard Shortcuts

	Command Line Switches and File Extensions
	IDE Command Line Switches and Options
	File Extensions of Files Generated by RAD Studio

	Together Reference
	Together Configuration Options
	Configuration Levels
	Together Option Categories
	Option Value Editors
	Together Sequence Diagram Roundtrip Options
	Together Source Code Options
	System macros

	Together Keyboard Shortcuts
	GUI Components for Modeling
	Diagram View
	Pattern GUI Components
	Menus
	Quality Assurance GUI Components
	Model View
	Object Inspector
	Tool Palette

	Together Refactoring Operations
	Project Types and Formats with Support for Modeling
	UML 1.5 Reference
	UML 1.5 Activity Diagrams
	UML 1.5 Class Diagrams
	UML 1.5 Component Diagrams
	UML 1.5 Deployment Diagrams
	UML 1.5 Interaction Diagrams
	UML 1.5 Statechart Diagrams
	UML 1.5 Use Case Diagrams

	Together Glossary
	UML 2.0 Reference
	UML 2.0 Activity Diagrams
	UML 2.0 Class Diagrams
	UML 2.0 Component Diagrams
	UML 2.0 Composite Structure Diagrams
	UML 2.0 Deployment Diagrams
	UML 2.0 Interaction Diagrams
	UML 2.0 State Machine Diagrams
	UML 2.0 Use Case Diagrams

	Together Wizards
	Create Pattern Wizard
	New Together Project Wizards
	Pattern Wizard

	Index

