
Under consideration for publication in Math. Struct. in Comp. Science

Security Monitor Inlining and Certification
for Multithreaded Java

M A D S D A M1, B A R T J A C O B S2,

A N D R E A S L U N D B L A D1 and F R A N K P I E S S E N S2

1 Royal Institute of Technology (KTH), Sweden,
2 Katholieke Universiteit Leuven, Belgium

Received 7 July 2011; Revised 23 September 2011

Security monitor inlining is a technique for security policy enforcement whereby monitor

functionality is injected into application code in the style of aspect-oriented

programming. The intention is that the injected code enforces compliance with the

policy (security), and otherwise interferes with the application as little as possible

(conservativity and transparency). Such inliners are said to be correct. For sequential

Java-like languages, inlining is well understood, and several provably correct inliners

have been proposed. For multithreaded Java one difficulty is the need to maintain a

shared monitor state. We show that this problem introduces fundamental limitations in

the type of security policies that can be correctly enforced by inlining. A class of

race-free policies is identified that precisely characterizes the inlineable policies by

showing that inlining of a policy outside this class is either not secure or not transparent,

and by exhibiting a concrete inliner for policies inside the class which is secure,

conservative, and transparent. The inliner is implemented for Java and applied to a

number of practical application security policies. Finally, we discuss how certification in

the style of Proof-Carrying Code could be supported for inlined programs by using

annotations to reduce a potentially complex verification problem for multithreaded Java

bytecode to sequential verification of just the inlined code snippets.

1. Introduction

Security monitoring, cf. (Schneider, 2000; Ligatti, 2006), is a technique for security policy

enforcement, widely used for access control, authorization, and general security policy

enforcement in computers and networked systems. The conceptual model is simple: Secu-

rity relevant events by an application program such as requests to read a certain file, or

opening a connection to a given host, are intercepted and routed to a decision point where

the appropriate action can be taken, depending on policy state such as access control

lists, or on history or other contextual information. This basic setup can be implemented

in many different ways, at different levels of granularity. Two approaches of fundamen-

tal interest are known, respectively, as execution monitoring (EM) and inlined reference

monitoring (IRM) (cf. (Hamlen et al., 2006b)). In EM (Schneider, 2000; Viswanathan,

2000), monitors perform the event interception and control explicitly, typically by an

M. Dam, B. Jacobs, A. Lundblad and F. Piessens 2

agent external to the program being executed. Using IRM, cf. (Erlingsson and Schnei-

der, 2000b), the enforcement agent modifies the application program prior to execution

in order to guarantee policy compliance, for instance by weaving monitor functionality

into the application code in an aspect oriented style. Upon encountering a program event

which may be relevant to the security policy currently being enforced – such as an API

call – the inlined code will typically retrieve both the application program state and the

security state to determine if the program event should be allowed to go ahead, and if

not, terminate execution.

Under the assumption that the external monitor is only given capabilities available

to an IRM, execution monitoring and inlining enforce the same policies (Hamlen et al.,

2006b).† But if the external monitor has stronger capabilities – for instance the capability

to perform type-unsafe operations, external execution monitoring can be more powerful.

Our first contribution is to show that such an effect arises in a multithreaded setting. The

fact that an inlined monitor can only influence the scheduler indirectly – by means of the

synchronization primitives offered by the programming language – has the consequence

that certain policies cannot be enforced securely and transparently by an inlined reference

monitor. In support of this statement we give a simple example of a policy which an inliner

is either unable to enforce securely, or else the inliner will need to affect scheduling by

locking in a way that can result in loss of transparency, performance degradation and,

possibly, deadlocks. On the other hand, the policy is easily enforced by an execution

monitor which at each computation step can inspect the global execution state.

In spite of this, inlining remains an attractive implementation strategy in many appli-

cations. We identify a class of race-free policies, and show that this class characterizes the

policies which can be enforced correctly by inlining in multithreaded Java. We argue that

the set of race-free policies is in fact the largest class that is meaningful in a multithreaded

setting. Even if many inliners for multithreaded Java-like languages exist for non-race-

free policies (Erlingsson, 2004; Bauer et al., 2005; Hamlen et al., 2006a), these inliners

must necessarily sacrifice either security or transparency, and anyhow these policies are,

in a multithreaded setting, likely to not express what the policy writer intended.

The characterization result is proved in two steps: First we show that no inliner exists

which can enforce a non-race-free policy both securely and transparently without taking

implementation specific details of the API, scheduler or JVM into account. Then, we

exhibit a concrete inliner and prove that it correctly enforces all race-free policies.

A potential weakness of inlining is that there is a priori no way for a consumer of

an inlined piece of code to tell that inlining has been performed correctly. This makes

it hard to use IRM as a general software quality improvement tool. Also, it generally

forces inlining and execution to take place under the same jurisdiction. To address this

problem we turn to certification. For sequential code, certification can be done using

Proof-Carrying Code (PCC) (Necula, 1997). In this case a code producer essentially

ships along with the code a correctness proof, which can be efficiently validated at the

† In this paper security policies are viewed as sets of traces of observable, security relevant events. If we

consider broader classes of policies for e.g. information flow, program rewriting can enforce strictly

more policies (Hamlen et al., 2006b).

Security Monitor Inlining and Certification for Multithreaded Java 3

time the code is invoked by the code consumer. For multithreaded programs, however,

the construction of general purpose program logics and verification condition generators

is a significant research challenge. We bypass this problem by restricting attention to

multithreaded Java bytecode produced using the IRM presented earlier. This allows us to

produce security certificates for race-free ConSpec policies by combining existing program

verification techniques for sequential Java with a small number of syntactic checks on

the received code. Certificates are presented as bytecode augmented with a reference

(“ghost”) monitor. This allows the code consumer to validate certificates against a local,

trusted policy by checking the certificate with the monitor suitably replaced. The main

result is a soundness result, that if a certificate exists for a program with a given policy,

then the program is secure, i.e. the policy is guaranteed not to be violated.

1.1. Related Work

Our approach adopts the Security-by-Contract (SxC) paradigm (cf. (Bielova et al., 2009;

N. Dragoni and Siahaan, 2007; Desmet et al., 2008; Kim et al., 2001; Chen, 2005)) which

has been explored and developed mainly within the S3MS project (S3MS, 2008).

Monitor inlining has been considered by a large number of authors, for a wide range

of languages, mainly sequential ones, cf. (Deutsch and Grant, 1971; Erlingsson and

Schneider, 2000b; Erlingsson and Schneider, 2000a; Erlingsson, 2004; Aktug et al., 2009;

Vanoverberghe and Piessens, 2009; Hamlen et al., 2006b; Hamlen and Jones, 2008; Srid-

har and Hamlen, 2010a). Several authors (Hamlen and Jones, 2008; Chen, 2005; Bauer

et al., 2005) have exploited the similarities between inlining and AOP style aspect weav-

ing. Erlingsson and Schneider (Erlingsson and Schneider, 2000a) represents security au-

tomata directly as Java code snippets. This makes the resulting code difficult to reason

about. The ConSpec policy specification language used here (Aktug and Naliuka, 2008)

is for tractability restricted to API calls and (normal or exceptional) returns, and uses

an independent expression syntax. This corresponds roughly to the call/return fragment

of PSLang which includes all policies expressible using Java stack inspection (Erlingsson

and Schneider, 2000b).

Aktug et al. (Aktug et al., 2009) formalized the analysis of inlined reference monitors

and showed how to systematically generate correctness proofs for the ConSpec language,

but restricted to sequential Java. Chudnov and Naumann (Chudnov and Naumann, 2010)

propose a provably correct inliner for an information flow monitor. They prove security

and transparency, but again restricted to a sequential programming language.

Edit automata (Ligatti et al., 2005; Ligatti, 2006) are examples of security automata

that go beyond pure monitoring, as truncations of the event stream, to allow also event in-

sertions, for instance to recover gracefully from policy violations. This approach has been

fully implemented for Java by Bauer and Ligatti in the Polymer tool (Bauer et al., 2005)

which is closely related to Naccio (Evans and Twyman, 1999) and PoET/PSLang (Er-

lingsson and Schneider, 2000a).

Certified reference monitors has been explored by a number of authors, mainly through

type systems, e.g. in (Skalka and Smith, 2004; Bauer et al., 2003; Walker, 2000; Hamlen

M. Dam, B. Jacobs, A. Lundblad and F. Piessens 4

et al., 2006a; DeLine and Fähndrich, 2001), but more recently also through model check-

ing and abstract interpretation (Sridhar and Hamlen, 2010c; Sridhar and Hamlen, 2010a).

The type-based Mobile system (Hamlen et al., 2006a) uses a simple bytecode extension

to help managing updates to the security state. The use of linear types allows security-

relevant actions to be localized to objects that have been suitably unpacked, and the

type system can then use this property to check for policy compliance. Mobile enforces

per-object policies, whereas the policies enforced in our work (as in most work on IRM

enforcement) are per session. Since Mobile leaves security state tests and updates as

primitives, it is quite possible that Mobile could be adapted, at least to some forms

of per session policies. As we show in the present paper, however, the synchronization

needed to maintain a shared security state will have non-trivial effects. In particular the

locking regime suggested in (Hamlen et al., 2006a) forces mutually exclusive access to

security-relevant calls (it is blocking, in the terminology used below), potentially resulting

in deadlocks.

In (Sridhar and Hamlen, 2010c; Sridhar and Hamlen, 2010a) Sridhar and Hamlen

explore the idea of certifying inlined reference monitors for ActionScript using model-

checking and abstract interpretations. The approach can handle a limited range of inlining

strategies including non-trivial optimizations of inlined code. It is, however, restricted

to sequential code and to non-recursive programs. Although the certification process is

efficient, the analysis has to be carried out by the consumer.

The impact of multithreading has so far had limited systematic attention in the lit-

erature. There are essentially two different strategies, depending on whether or not the

inliner is meant to block access to the shared security state during security relevant events

such as API method calls. In the present paper we focus attention on the non-blocking

strategy, which is the most relevant case in practice. In an earlier paper (Dam et al.,

2010) we have examined the blocking strategy. In that case transparency is generally

lost, as the inliner may introduce synchronization constraints that rule out correct exe-

cutions that would otherwise have been possible. However, the blocking inlining strategy

is not acceptable in practice as it may cause uncontrollable performance degradation and

deadlock which motivates our attention to the non-blocking case in this paper.

The present paper is an extended and completely rewritten version of (Dam et al.,

2009). In that paper the main results concerning inlineability and race-free policies were

presented. This version contains a more thorough and self-contained presentation of the

policy framework, rewritten and restructured proofs, and a completely rewritten presen-

tation of the inliner. New material is the sections on case studies and evaluation, and on

certification.

1.2. Overview of the Paper

The rest of this paper is structured as follows: We start by describing the JVM model

that we adopt (Section 2) and the syntax and semantics of the security policies we

consider in the paper (Section 3). We then define the notion of correct (secure, transparent

and conservative) reference monitor inlining (Section 4) and show that these correctness

criteria cannot be met for the programs and policies previously presented (Section 5). An

Security Monitor Inlining and Certification for Multithreaded Java 5

alternative, weaker correctness criterion, is presented (Section 6) together with an inlining

algorithm that satisfies this criterion (Section 7). We then report on our experience with

our implementation in five case studies (Section 8). Finally we present an approach for

certifying an inlined reference monitor (Section 9) and present our conclusions and future

work (Section 10).

2. Program Model

Our study is set in the context of multithreaded Java bytecode. We assume that the

reader is familiar with Java bytecode syntax and the JVM. In this section we give an

overview of our program model and discuss the semantics of the monitorable API calls.

Table 1 provides an overview of the structure of bytecode programs and JVM config-

urations. Details and transition semantics for the relation, →, for key instructions and

configuration types are given in the appendix.

Java Bytecode Programs

Prg : c→ Class (programs)

c ∈ String (class identifiers)
Class ::= (m→ M , f∗) (class definitions)

m ∈ String (method identifiers)

M ::= (ι+, H∗) (method definitions)
ι ∈ Insn (instructions)

f ∈ String (field identifiers)

H ::= (`b, `e, `t, c) (exception handler)
` ∈ N (program labels)

JVM Configurations

C ::= (h,Λ,Θ) (configurations)

h : ((o× f) ∪ (c× f))→ Val (heap)
o ∈ N ∪ {null} (references)

Val ::= o | v (values)

v ∈ byte ∪ short ∪ int ∪ long ∪ (primitive values)
float ∪ double ∪ boolean ∪ char

Λ : o→ tid (lock map)

tid ∈ N (thread identifiers)
Θ : tid → θ (thread config. map)
θ ∈ R∗ (thread configuration)

R ::= (c.m, pc, s, l) | (o) (activation record)
pc ∈ N (program counter)

s ∈ Val∗ (operand stack)

l : N→ Val (local variable store)

Table 1. JVM Programs and configurations.

M. Dam, B. Jacobs, A. Lundblad and F. Piessens 6

2.1. API Method Calls

We are interested in security policies as constraints on the usage of external (API) meth-

ods. To this end we assume a fixed API, as a set of classes disjoint from that of the client

program, for which we have access only to the signature, but not the implementation, of

its methods. We therefore represent API method activation records specially. When an

API method is called in some thread a special API method stack frame is pushed onto

the call stack, as detailed in the appendix. The thread can then proceed by returning

or throwing an exception. When the call returns, an arbitrary return value of appro-

priate type is pushed onto the caller’s operand stack; alternatively, when it throws an

exception, an arbitrary, but correctly typed exceptional activation record is placed on the

call stack. Since this model makes no assumptions about the behavior of API methods,

our results hold for all (correctly typed) API implementations. This semantics does not

make any provisions for call-backs. How to extend inlining to call-backs is discussed in

the conclusion.

It is essential that we perform API calls in two steps, to correctly model the fact that

API calls are non-atomic in a multithreaded setting.

To support thread creation there is a distinguished API method that has, besides the

standard effect of an API call discussed above, an additional side effect of creating a new

thread in the configuration.

To refer to API calls and returns we use labelled transitions. Transition labels, or ac-

tions, α come in four variants to reflect the act of invoking an external method (referred

to as a pre-action), returning from an external method normally or exceptionally (re-

ferred to as a normal or exceptional post-action), or performing an internal, not directly

observable computation step. Actions have one of the following shapes:

— (tid , c.m, o, v)↑ represents the invocation of API method c.m on object o with argu-

ments v by thread tid .

— (tid , c.m, o, v, r)↓ similarly represents the normal return of c.m with return value r.

— (tid , c.m, o, v, t)⇓ represents the exceptional return of c.m with exception object (of

class Throwable) t.

— τ represents an internal computation step.

We write C
α−→ C ′ if either α = τ and C → C ′, or α 6= τ and C ′ results from C by the

action α according to the above non-deterministic semantics. Refer to the appendix for

details.

2.2. Executions, Traces

An execution of a program Prg is a finite or infinite sequence of configurations E =

C0C1 . . . where C0 is an initial configuration, and for each pair of consecutive configura-

tions we have Ci
αi−→ Ci+1, such that E is compatible with the happens-before relation

as defined by JLS3 (Gosling et al., 2005). The initial configuration consists of a single

thread with a single, normal activation record with an empty stack, no values for local

variables, with the main method of Prg as its current method and with pc = 1.

Since we are interested in inliners that are independent of implementation details

Security Monitor Inlining and Certification for Multithreaded Java 7

concerning e.g. scheduling, memory management and error handling we do not make

any distinctions between executions that are allowed by the JLS3 memory model and

executions that are possible for an actual implementation. The trace of E, ω(E), is the

sequence α0α1 . . . with τ actions removed, and T (Prg) = {ω(E) | E is an execution of

Prg}. In this paper we restrict attention to traces T that are realizable, in the sense that

T = ω(E) for some execution E.

3. Security Policies

We study security policies in terms of allowed sequences of API method invocations

and returns, as in a number of previous works, cf. (Erlingsson and Schneider, 2000a;

Bauer et al., 2005; Aktug and Naliuka, 2008; Vanoverberghe and Piessens, 2009; Aktug

et al., 2009; Dam et al., 2010). Our work is based on a slight extension of the ConSpec

policy specification language (Aktug and Naliuka, 2008). We briefly present our dialect

of ConSpec here for completeness.

ConSpec is similar to Erlingsson’s PSlang (Erlingsson and Schneider, 2000a), but for

tractability it describes conditionals and state updates in a small purpose-built expres-

sion language instead of the object language (Java, for PSLang) itself. ConSpec policies

represent security automata by providing a representation of a security state together

with a set of clauses describing how the security state is affected by the occurrence of

a control transfer action between the client code and the API. A control transfer can

be either an API method invocation, or a return action, either normal or exceptional.

ConSpec proper allows for both per-object, per-session, and per-multisession policies. In

this paper we work exclusively with per-session policies which is the case most interesting

in practice.

3.1. ConSpec Policy Syntax

A ConSpec policy P consists of a security state declaration of the shape

SECURITY STATE Type1 s1, . . . ,Typen sn; (1)

together with a list of rules. For simplicity, we require that the initial values for the

security state variables are the default initial values for their corresponding Java types.

A rule defines how the security automaton reacts to an API method call of a given

signature. Rules have the following general shape:

modifier [Type y =] c.m(Type1 x1, . . . ,Typen xn) [ON z]

PERFORM G1 -> { F1 } . . . Gm -> { Fm } [ELSE { F }] (2)

where modifier is either BEFORE, AFTER or EXCEPTIONAL, Type, Type1, . . . ,Typen are the

return and argument types of c.m and Gi and Fi are guards and update statements

respectively. BEFORE rules refer to pre-actions, and AFTER and EXCEPTIONAL rules to

normal and exceptional post-actions respectively. The method signature following the

event modifier specifies the method that the rule applies to. If the policy has a rule

defined for a method (of a given signature, of a given modifier type), the method is said

M. Dam, B. Jacobs, A. Lundblad and F. Piessens 8

SECURITY STATE String requestorURL, String requestedFile;

BEFORE BluetoothToolkit.sendFile(String destURL, String file)

PERFORM

requestorURL.equals(destURL) &&

requestedFile.equals(file) -> { }

AFTER int reply = JOptionPane.showConfirmDialog(String query)

PERFORM

reply != 0 && goodFileQuery(query) -> {

requestedFile = queryFile(query);

requestorURL = queryRequestor(query)

} ELSE { }

Fig. 1. A security specification example written in ConSpec.

to be security relevant and we refer to invocations and returns of this method as security

relevant actions. For instance, if a BEFORE rule for method c.m of a given signature is

present then invocations of c.m of that signature are security relevant, but if no AFTER rule

is present, normal returns are not regarded as security relevant. There is at most one rule

per method defined for each of the three event modifiers. The return value specification is

absent for BEFORE rules. Each clause of the shape Gi -> { Fi }, or the clause ELSE { F }

expresses a (conditional) update of the security state in the obvious way. The ELSE clause

is syntactic sugar for a clause with a constantly true guard. The callee qualifier ON z and

the ELSE clause are both optional except for AFTER and EXCEPTIONAL rules for which the

ELSE clause is required. Hence a policy can never forbid a return from an API method.

The syntax of the guards Gi and update expressions, Fj and F are only described by

example in this paper. Additional examples are given in Section 5. The syntax details are

not critical. The only requirements are that expressions are side-effect free and that the

expressions allow verification conditions to be efficiently generated. Currently this is an

unchecked obligation of the policy-writer but can of course be enforced by restricting the

use of methods to an allowed subset of API methods. Guards and update expressions may

refer to the state variables, argument and return value variables and the callee variable.

Guards are evaluated top to bottom, in order to obtain a deterministic semantics. For

the first guard that evaluates to true, the corresponding update expression is executed.

If no guard evaluates to true (and no ELSE clause is present) the rule is not allowed to

fire. This indicates a security violation and program execution must be terminated.

Example 1. The policy in Figure 1 states that the program has to ask the user for per-

mission each time it intends to send a file over Bluetooth. The specification has two secu-

rity relevant methods, JOptionPane.showConfirmDialog and BluetoothToolkit.send-

File. The specification uses the following three helper functions which we leave unde-

fined:

— goodFileQuery(query) returns true iff query is a well formulated file send query, for

instance because it matches a predefined pattern.

Security Monitor Inlining and Certification for Multithreaded Java 9

SECURITY STATE Set<Thread> initialized = new HashSet<Thread>();

BEFORE C.initialize() PERFORM

!initialized.contains(Thread.currentThread()) -> {

initialized.add(Thread.currentThread());

}

Fig. 2. Accessing the current thread identifier in ConSpec.

— queryRequestor(query) and queryFile(query) returns the requestor and file sub-

strings of query respectively.

Example 2. The policy in Figure 2 expresses that C.initialize can only be invoked

once for each thread.

3.2. ConSpec Semantics

A ConSpec policy P specifies a deterministic automaton (Q,Σ, δ, q0), explained below,

which observes an execution of some client program and changes state, and potentially

aborts, according to the policy specification. The details are straightforward. Assume an

execution E = C0
α0−→ · · · αn−1−−−→ Cn. The initial state q0 is obtained by initializing the

security state of P to its default, using, if necessary, a local heap. The alphabet Σ is the

set of observable actions. The state space Q is the set of all type safe assignments to

the security state variables. Having reached the i’th configuration of E with automaton

state qi, if αi = τ or if the action is not security relevant (of the given modifier type) the

i+ 1:th state is qi as well. Otherwise the relevant rule is extracted, variables are bound

as indicated above, a matching guard clause is identified, and the first matching update

is enacted to compute qi+1, and if no matching guard is found, ω(E) is rejected. If ω(E)

is not rejected it is accepted, and if the traces of all executions of a program Prg are

accepted by (the automaton determined by) P, Prg is said to adhere to P.

4. Reference Monitor Inlining

A reference monitor inliner (for short just inliner) is a function I that for each pol-

icy P and program Prg produces a program I(P,Prg) with embedded policy checking

functionality.

Our program model makes a clear distinction between the (untrusted) program, and

the (trusted) API that it interacts with, and inliners are limited to rewriting the program.

This may seem to limit the applicability of our model, as some existing inliners do rewrite

the Java Platform API implementation. However, the reader should keep in mind that

what we call the API in our model does not necessarily have to map on the Java Platform

API. Any inliner has to make a choice as to what part of the system can be rewritten

and what remains unchanged. In our model, this is what defines the boundary between

program and API. Existing inliners make different choices as to where they draw this

boundary: some can rewrite all Java bytecode (including Java Platform API methods that

M. Dam, B. Jacobs, A. Lundblad and F. Piessens 10

are themselves implemented in Java). For such inliners the API of our model covers only

the natively implemented methods. Other inliners will only rewrite application classes

and leave the entire Java Platform API untouched. For such inliners the API of our

model covers the entire Java Platform API. If an inliner were also to rewrite the native

method implementations, then our model is not directly applicable, since we only model

Java bytecode. But a similar model where the program consists of assembly code and

the API consists of system calls could be built and would reveal the same limitations as

the one we discuss in this paper: the limitations are fundamental.

One assumption that does limit the applicability of the model is the fact that we assume

that API method invocations and returns are good abstractions of the security relevant

actions that policies want to talk about. In other words, the limitations on enforceable

policies that we identify in this paper are only applicable to policies that talk about API

method invocations and returns, where the API is defined as above: the boundary of

the part of the system that can be rewritten. The implementation of an API method is

trusted to achieve exactly the effect that the policy writer wants to talk about. Hence

we do not consider calls from within the implementation of an API method to other API

methods.

Another consequence of the model is that an inliner can never prevent an API method

from returning: inlined code can only be executed after the call has returned. This is why

post-actions are required to always be enabled in ConSpec.

4.1. Inlining Correctness Properties

There are three correctness properties of fundamental interest (cf. (Ligatti, 2006; Hamlen

et al., 2006b)), namely security, conservativity and transparency.

Security, arguably the most important property of an inliner, states that all possible

traces of the inlined program should be compliant with the policy provided to the inliner.

Definition 1 (Security). An inliner I is secure if, for every program Prg and policy

P, every trace of the inlined program I(P,Prg) adheres to P, i.e.

T (I(P,Prg)) ⊆ P.

Transparency states that the policy adherent behavior of the client program should be

preserved by the inliner.

Definition 2 (Transparency). An inliner I is transparent, if for every policy P and

program Prg , each trace of Prg that adheres to P is also a trace of the inlined program,

i.e.

T (Prg) ∩ P ⊆ T (I(P,Prg)).

Conservativity states that no behavior should be added to the original program.

Definition 3 (Conservativity). An inliner I is conservative if, for every program Prg

and policy P, every trace of the inlined program I(P,Prg) is a trace of Prg , i.e.

T (I(P,Prg)) ⊆ T (Prg).

Security Monitor Inlining and Certification for Multithreaded Java 11

Other correctness properties have been proposed, such as the concept of strong conser-

vativity, which was used in (Dam et al., 2010). This correctness criteria refines the notion

of conservativity and forbids arbitrary truncation of the traces. Since this is mostly useful

for the case of a blocking inliner to account for the necessary loss of transparency, cf.

(Dam et al., 2010), we do not discuss it further in this paper.

5. Limitations of Inlining in a Multithreaded Setting

In this section, we show that the traditional correctness criteria for inlined monitors are

too strong in a multithreaded setting. While it is possible to securely and transparently

enforce any policy specified as explained in Section 3 by an external monitor implemented

as part of the JVM, it is impossible to do this with an inlined monitor without taking

specificities of the API implementation and/or virtual machine into account.

One of the key differences between an external monitor and a monitor inlined in the

client program is the ability to affect the behavior of a thread executing within an API-

method. As opposed to an external reference monitor, an inlined reference monitor cannot

in general control the scheduling of such a thread, and this affects the enforceability of

certain policies.

Consider the policy in Figure 3. This policy states that c.n may only be called when

ok has been set to true, that is, after c.m has been called (but not necessarily returned).

So the trace T1 = (tid , c.m, o, v)↑, (tid ′, c.n, o′, v′)↑ is allowed by the policy, but the

trace T2 = (tid ′, c.n, o′, v′)↑, (tid , c.m, o, v)↑ is not. Now consider a program whose traces

include both T1 and T2, for instance the one shown in Figure 5. For an inliner to ex-

clude trace T2 from this program (but keep the trace T1), it could either exploit some

implementation-dependent knowledge of the virtual machine, or else it would have to

introduce a happens-before relation between (tid , c.m, o, v)↑ and (tid ′, c.n, o′, v′)↑. In the

latter case we note that there is no way such a happens-before relation can be enforced

by the inliner since, by convention, after the call has been made, the control lies within

the API method which is not to be altered. In terms of the formal semantics of API

calls given in Section 2.1 the former case is also ruled out. To lift this to practical vir-

tual machines let us say that a correctness property is uniform if it holds for all API

implementations, including the fully nondeterministic one of Section 2.1. Using the API

semantics of Section 2.1, the inlined program will either have both traces T1 and T2 (in

which case the inliner is not secure) or it will have neither of the two traces (in which

case the inliner is not transparent). We have thus shown:

Theorem 1. No inliner can be both uniformly transparent and uniformly secure for the

policy P in Figure 3. �

Evidently, an inliner could “over-approximate” and guard the entire call to c.m by a lock

and let the monitor release the lock after c.m has returned, but in that case the monitor

would be enforcing the stronger policy shown in Figure 4 and prevent some traces that

are allowable by the policy in Figure 3.

M. Dam, B. Jacobs, A. Lundblad and F. Piessens 12

SECURITY STATE

boolean ok = false;

BEFORE c.m() PERFORM

true -> { ok = true; }

BEFORE c.n() PERFORM

ok == true -> {}

Fig. 3. Example of policy which is not enforceable by inlining.

SECURITY STATE

boolean ok = false;

AFTER c.m() PERFORM

true -> { ok = true; }

BEFORE c.n() PERFORM

ok == true -> {}

Fig. 4. Example of policy enforceable by inlining.

class SomeClass {

public static void main(String[] args) {

new Thread() {

public void run() { c.m(); }

}.start();

c.n();

}

}

Fig. 5. A program invoking c.m and c.n in a non-deterministic order.

6. Race-free Policies

Generalizing from the example in Figure 3, the key issue is that no client program (not

even after inlining) can arbitrarily constrain the set of observable traces. Given a certain

trace of observable actions, in general there will be permutations of that trace that are

also possible traces of the client program no matter what synchronization efforts the

client performs. These permutations that are always possible are captured by the notion

of client-order preserving permutations.

Definition 4 (Client-order Preserving Permutation). A permutation π(T) of a

trace T of observable actions is client-order preserving if, for all i and j such that i < j

and (a) Ti and Tj take place on the same thread, or (b) Ti and Tj correspond to a post-

resp. pre-action, then π(i) < π(j).

Security Monitor Inlining and Certification for Multithreaded Java 13

The intuition is the following: the client can control pre-actions, and can only observe

post-actions. If a pre-action takes place somewhere after a post-action, the client could

have synchronized to ensure this ordering. The client cannot perform such synchroniza-

tion for concurrent pre-actions or concurrent post-actions.

If a policy accepts a given trace, but rejects a client-order preserving permutation of

the trace, then that policy is not securely and transparently enforceable by inlining a

monitor in the client code. This is captured by the following definition:

Definition 5. A policy is race-free iff, for any trace T and any client-order preserving

permutation T ′ of T , if T is allowed, then T ′ is allowed.

As an example, the policy in Figure 1 is race-free. As a broader class of examples

consider the class of policies where the security state is a set of permissions, pre-actions

require a permission to be present in this set and cause the permission to be removed,

and post-actions restore the permission. Such policies are race-free. This can be checked

for instance by using Proposition 2 below.

We show further that the class of race-free policies is a lower bound on the class of

policies enforceable by inlining by constructing an inliner that is secure, transparent and

conservative for this class of policies.

The following theorem shows that the bound is tight.

Theorem 2. No inliner can be uniformly secure and uniformly transparent for a non-

race-free policy.

Proof. Let P be a non-race-free policy. It suffices to show that P is not enforceable for

the fully non-deterministic semantics of Section 2.1. By definition there is a trace T of

some program Prg which P accepts and a client-order preserving permutation T ′ of T

which P rejects. Now for an inliner, I, to be transparent, I(P,Prg) has to admit the trace

T . But, since a client-order preserving permutation respects the happens-before relations

stipulated by any program, I(P,Prg) must also admit the trace T ′, which means that I
is not secure.

A policy for which there exists a (uniformly) secure, transparent and conservative inliner

is said to be (uniformly) inlineable. The corollary below follows immediately.

Corollary 1. The set of uniformly inlineable policies is a subset of the set of race-free

policies.

Proof. Let P be an arbitrary uniformly inlineable policy. By definition there exists a

uniformly secure and transparent inliner for P, thus by Theorem 2, P must be race-free.

An interesting question is how to decide if a policy is race-free. Using Lipton’s moverness

terminology (Lipton, 1975) we obtain the following:

Proposition 1. It is a necessary and sufficient condition for race-freedom that all pre-

and post-actions occurring in different threads are right- resp. left-movers, in the set of

allowed observable traces. (I.e., if a trace T is allowed, then swapping a pair of consecutive

M. Dam, B. Jacobs, A. Lundblad and F. Piessens 14

actions α1,α2 in different threads where α1 is a pre-action or α2 is a post-action yields

an allowed trace.)

Proof. Such swappings generate the client-order preserving permutations.

In particular, if such swappings always have the same effect on the policy state, we

know the policy is race-free:

Proposition 2. The following is a sufficient condition for race-freedom. For any state

q1 of the security automaton corresponding to a given policy, and for any pre-action

α1 and post-action α2 with different thread identifiers, if δ(δ(q1, α1), α2) = q2 then

δ(δ(q1, α2), α1) = q2.

Proof. These conditions imply the conditions from Proposition 1.

Sufficient syntactical criteria for the conditions of Proposition 2 are easily identified.

For example, for the common case where the security state is a set of permissions, a

sufficient requirement is that pre-actions only consume permissions from the set, and

post-actions only add permissions.

6.1. Discussion

Are there interesting or practically relevant policies that are not race-free? A policy that

is not race-free imposes constraints not only on the client program, but also on the API

implementation and/or the scheduler. Hence, we argue that such policies do not make

sense. Even if an enforcement mechanism (such as an external execution monitor) could

enforce the policy, the result of the enforcement is most likely not in line with what the

policy writer intended to express. Policies impose constraints on API method invocations

because of the effects (such as writing a file, reading from the network, activating a device,

. . .) that these API implementations have. A policy such as the one in Figure 3 intends

to specify that initiation of one effect should come after the initiation of another effect.

But without further information about the API implementations and the operation of

the scheduler, there is no guarantee that enforcing this ordering on the API invocations

will also enforce this ordering on the actual effects.

In other words, the race in the policy that makes it impossible for an inliner to enforce

the policy, also makes it impossible to interpret method invocations soundly as initiations

of effects.

Hence, a policy that is not race-free either indicates a bug in the policy (for instance,

the policy writer intended to specify the policy in Figure 4 instead of the policy in

Figure 3 – an easy mistake to make as in the single-threaded setting both policies are

equivalent), or it is an indication of a misunderstanding of the policy writer (for instance

the policy writer considers the start of the API method invocation as a synonym of the

start of the effect the API method implements). Jones and Hamlen (Jones and Hamlen,

2010) make a similar observation for a different class of policies that is hard to enforce

with inlining.

Security Monitor Inlining and Certification for Multithreaded Java 15

As a consequence, the practicality of inlining as an enforcement mechanism is not at

stake, and detection of races in policies is useful as a technique to detect bugs in policies.

7. Race-free Policies Are Inlineable

In this section we show that race-free policies can be enforced by IRM, by giving an

inlining scheme that is secure, conservative and transparent for race-free policies. (From

this point onward we restrict attention to the API semantics of Section 2.1 in or-

der to eliminate from consideration pathological virtual machines that may introduce

implementation-dependent errors or, e.g., manipulate the scheduler in non-standard ways).

For sequential Java a correct inlining scheme is already known to exist. In this section we

show that the race-free policies is the maximal set of policies for which correct inlining

is possible.

The state of the IRM might possibly be updated by several threads concurrently. The

updates to this state must therefore be protected by a global lock. A key design choice

is whether to keep holding this lock during the API call, or to temporarily release the

lock during the call and reacquire it after the call has returned. In the former case we

say that the inliner is blocking, and in the latter we say it is non-blocking.

The first choice (locking across calls) is easier to prove secure, as there is a strong

guarantee that the updates to the security state happen in the correct order. The impli-

cations of this design choice was examined in (Dam et al., 2010). The problem is that a

blocking inliner can introduce deadlocks in the inlined program and it is thus not trans-

parent. Consider for instance an API with a barrier method B that allows two threads to

synchronize as follows: When one thread calls B, the thread blocks until the other thread

calls B as well. Suppose this method is considered to be security-relevant, and the inliner,

to protect its state, acquires a global lock while performing each security-relevant call.

For a client program that consists of two threads, each calling B and then terminating,

the inliner will introduce a deadlock, as one thread blocks in B while the other thread

blocks on the global lock introduced by the inliner.

Even if it does not lead to deadlock, acquiring a global lock across a potentially blocking

method call can cause serious performance penalties. For this reason, our algorithm

releases the lock before calling an API method. In fact, our algorithm ensures that the

global lock is only held for very short periods of time.

It is worth emphasizing that the novelty in this section is not the inlining algorithm

itself: The algorithm is similar to existing algorithms developed in the sequential setting

and the locking strategy is relatively straightforward. The contribution, rather, is the

proof that the notion of race-free policies gives an exact characterization of the class

of policies enforceable on multithreaded Java-like programs by a non-blocking inlining

scheme.

7.1. Inlining Algorithm

In order to enforce a policy through inlining, it is convenient to be able to statically

decide whether a given policy clause applies to a given call instruction. Therefore we

M. Dam, B. Jacobs, A. Lundblad and F. Piessens 16

impose the restriction on programs that they should have simple call matching, namely

that for all security-relevant methods c.m, an invokevirtual d.m call is bound at run

time to method c.m if and only if d = c. Essentially, this means that we ignore all issues

concerning inheritance and dynamic binding. These concerns are orthogonal to the results

of this paper, and it has been described elsewhere how to deal with them (Vanoverberghe

and Piessens, 2009; Aktug et al., 2009).

The inliner, IEx , takes a policy with security state definition and event rules of the

shapes (1) and (2) (see Section 3) and applies it to a Java bytecode program. The inliner

uses static fields si of type Typei of an auxiliary class SecState to store the shared

security state, as in the ConSpec security state declaration (1). (In general a unique

name needs to be chosen for the security class itself, to allow the inliner to be iteratively

applied). We assume for simplicity that rules are present for each of the three rule types

BEFORE, AFTER and EXCEPTIONAL, and we use Gi,t, Ft, Fi,t, t ∈ {b, a, e} to indicate

the corresponding guard and update blocks in (2). The compilation of guard clauses

and update blocks into bytecode is well understood and we simply assume that they

are compiled into basic blocks eval(Gi,t), eval(Ft), eval(Fi,t) that behave as required.

In particular, the callee is extracted from the top of the stack, arguments from stack

elements 1, . . . , n, security state variables from corresponding fields of the SecState

class, and the calling thread identifier is extracted using Thread.currentThread. The

inliner then replaces each instruction L : invokevirtual c.m of arity n where c.m is

security-relevant by bytecode implementing the pseudo-code in Figure 6. The inliner

locks the security state by acquiring the lock associated with the SecState class, and

stores callee and arguments to the method call for use in event handler code using fresh

local variables. The security state lock is taken by executing first ldc SecState and

then entering the monitor. The use of a static class for the security state makes it easy to

determine statically that locks taken or released outside the inlined code snippets do not

affect the security state lock. The lock is released just prior to invocation of the inlined

call, and retaken after return. Each piece of event code evaluates guards by reference

to the security state and the stored arguments, and updates the state according to the

matching clause, or exits, if no matching clause is found. Thus, if Fb (i.e. the ELSE-clause)

is absent the block at beforeEnd is replaced by a jump to exit.

If no BEFORE rule is present, evaluation of the BEFORE guards and update clauses

is evidently not performed. Arguments and callee are still stored in local variables and

restored before the method is called, as arguments and callee may be needed for evaluating

an AFTER or EXCEPTIONAL rule.

The exception handler array is modified by adding the entries in Figure 7 and adding

done − L − 1 to all offsets above L in the original handler. Exceptions emanating from

the call to c.m are routed to the the inlined handler at excG1. After processing of

EXCEPTIONAL events the security state is unlocked and the exception rethrown. Excep-

tions caused by inlined instructions are routed to exit .

One complication is the possibility of internal exceptions. The Java Virtual Machine

Specification (Lindholm and Yellin, 1999) allows a JVM to throw an InternalError or

UnknownError exception at any time whatsoever. This means that, e.g. when the JVM

attempts to compile a piece of bytecode about to be executed by a thread to machine

Security Monitor Inlining and Certification for Multithreaded Java 17

Inlined label Instruction Inlined label Instruction

L: lock SecState ifeq afterElse

store arguments [eval(Fm,a)]

store callee goto afterEnd

beforeG1 : [eval(G1,b)] afterElse: [eval(Fa)]

ifeq beforeG2 afterEnd : restore return value

[eval(F1,b)] unlock SecState

goto beforeEnd goto done
... excG1 : lock SecState

beforeGm : [eval(Gm,b)] store exception

ifeq beforeElse [eval(G1,e)]

[eval(Fm,b)] ifeq excG2 ,e

goto beforeEnd [eval(F1,e)]

beforeElse: [eval(Fb)] goto excEnd

beforeEnd : restore callee
...

restore arguments excGm : [eval(Gm,e)]

unlock SecState ifeq excElse

invoke: invokevirtual c.m [eval(Fm,e)]

invokeDone: lock SecState goto excEnd

store return value excElse: [eval(Fe)]

afterG1 : [eval(G1,a)] excEnd : restore exception

ifeq afterG2 unlock SecState

[eval(F1,a)] excReleased : athrow

goto afterEnd exit : iconst −1
... invokestatic System.exit

afterGm : [eval(Gm,a)] done:

Fig. 6. The inlining replacement of L: invokevirtual c.m.

From To Target Type

invoke invokeDone excG1 any

L excReleased exit any

exit done exit any

Fig. 7. Exception handler array modifications

M. Dam, B. Jacobs, A. Lundblad and F. Piessens 18

code but it does not have enough memory to store the machine code, it can throw an

internal exception instead of having to terminate the entire program. Whereas internal

exceptions are useful for JVM implementers, they cause complications for the design

of our inliner. Specifically, for security, we must maintain the property that whenever

no block of inlined code is being executed, the current security state matches the trace

of security-relevant actions performed previously during the execution. If an internal

exception were to cause control to exit a block of inlined code prematurely, this property

would be violated. Therefore, we catch all exceptions that occur anywhere in the inlined

code and, when any exception is thrown by any instruction other than the security-

relevant call, we exit the program. Notice that this is secure and conservative, since we

exit at a place where the original program does not exit. But in pathological cases (such

as a JVM which chooses to randomly abort execution whenever a static class SecState

is defined) transparency may fail. For this reason we assume below that the JVM is

error-free, i.e. it never throws an internal exception.

7.2. Correctness

We first prove security, i.e. that for each program Prg and race-free policy P, T (IEx (P,
Prg)) ⊆ P. The basic insight is that race-freedom ensures that actions and monitor

updates are sufficiently synchronized so that security is not violated. To see this we need

to compare the observable actions of IEx (P,Prg) with the corresponding monitor actions,

i.e. actions of the inlined code manipulating the inlined security state. We use the notation

mon(α) for the monitor action corresponding to the observable action α. The monitor

action mon(α) occurs at step i ∈ [0, n−1] of the execution E = C0
α0−→ · · · αn−1−−−→ Cn, if the

instruction scheduled for execution at configuration Ci is monitorexit, corresponding

to one of the unlocking events in Figure 6 for the action α. We refer to the points in E

at which the monitor actions occur, as monitor commit points.

Depending on which case applies we talk of the monitor action mon(α) as a monitor

pre-, normal monitor post-, or exception monitor post-action. Then the extended trace

of E, τe(E), lists all extended actions—that is, non-τ actions and monitor actions—of E

in sequence, and the monitor trace of E, τm(E), projects from τe(E) the monitor actions

only. Let β range over extended actions.

Pick now an execution E of an inlined program IEx (P,Prg), and let τe(E) = β0, . . . ,

βn−1. Say that E is serial if in τe(E) there is a bijective correspondence between actions

and monitor actions, and if each pre-action α is immediately preceded by the corre-

sponding monitor action mon(α), and each post-action α′ is immediately succeeded by

its corresponding monitor action mon(α′).

We first observe that monitor traces are just traces of the corresponding security

automaton:

Proposition 3. Let E be an execution of IEx (P,Prg). Then τm(E) ∈ P.

Proof. The locking regime ensures that all monitor actions, hence automaton state

updates, are happens-before related. Since each thread updates the automaton state

according to the transition relation, the result follows.

Security Monitor Inlining and Certification for Multithreaded Java 19

Lemma 1. Assume that P is race-free. For any execution E of IEx (P,Prg) there exists

a serial execution E′ such that τ(E) = τ(E′).

Proof. Let E of length n be given as above. Note first that, by the happens-before

constraints, the bijective correspondence must be such that pre-actions are preceded by

their corresponding monitor actions, and vice versa for post-actions. We construct the

execution E′ by induction on the length m of the longest serial prefix of τe(E). If n = m

we are done so assume m < n. Say that βm−1 is produced by thread t. Note first that

βm−1 can be either a pre-action or a monitor post-action as E′ is serial, and that βm
can be either a post-action or a monitor pre-action. For the latter point assume for a

contradiction that βm is a pre-action. Then βm must be produced by a thread t′ 6= t,

by the control structure of the inlining algorithm, Figure 6. The last action in τe(E
′) by

thread t′ must be a monitor pre-action βl = mon(βm) for 0 ≤ l < m − 1 and, as each

action records the tid, βk 6= βm for any l < k < m − 1. But then the extended trace

β0, . . . , βm−1 is not serial, a contradiction. The case where βm is a monitor post-action

is similar.

Now, if βm is a post-action, say, then thread t is at one of the control points invokeDone

or excG1 . Either mon(βm) = βm′ for some m′ > m or else thread t does not produce any

extended actions in τe(E
′) after m. In the latter case it is possible to schedule mon(βm)

directly, as the guards for post-actions are exhaustive. In the former case we need to also

argue that all extended actions βk for m ≤ k and k 6= m′ remain schedulable, even after

scheduling mon(βm) right after βm. But this follows from the left-moverness of monitor

post-actions with respect to both monitor actions, Proposition 1, and non-monitor actions

on different threads.

If on the other hand βm is a monitor pre-action mon(α). If βm+1 = α we are done.

Otherwise βm+1 is a monitor action or non-monitor action of another thread, and re-

gardless which, by rescheduling, βm can be moved right until it is left adjacent to α. But

this case can only apply a finite number of times at the end of which E′ can be extended.

This completes the proof.

Inliner security is now an easy consequence.

Theorem 3 (Inliner Security). If P is race-free then IEx is secure, i.e. T (IEx (P,Prg)) ⊆
P.

Proof. Pick any execution E of IEx (P,Prg). Use Lemma 1 to convert E to an execution

E′ with the property that τ(E) = τ(E′) = τm(E′) ∈ P by Proposition 3 and since E′ is

serial.

For conservativity, our proof is based on the observation that there is a strong corre-

spondence between executions of an inlined program, and executions of the underlying

program before inlining. From an execution of the inlined program, one can erase all the

inlined instructions and the security state, and arrive at an execution of the underlying

program. This is so since control entering one of the inlined blocks in Figure 6 at one

of the labels L, invokeDone, or excG1 can only exit that block either through the corre-

sponding labels invoke, done, or by rethrowing the original exception, or else by invoking

M. Dam, B. Jacobs, A. Lundblad and F. Piessens 20

System.exit. Moreover, up to variables accessible only to the inlined code fragments,

and provided System.exit is not invoked, the machine state at entry and at exit of each

inlined block is the same. In this manner we can from an execution E of IEx (P,Prg)

obtain an execution erase(E) of Prg such that τ(E) is a prefix of τ(erase(E)), and hence

τ(E) ∈ T (Prg). We refrain from elaborating the details and merely state:

Theorem 4. The inliner IEx is conservative. �

Transparency is slightly delicate as the JVM standard (Gosling et al., 2005) does not

predicate the exact conditions under which a JVM is allowed to abort. Hence we need

to assume that all executions allowed by JVM standard are indeed possible, and that

no constraints are imposed on heap size etc., as in the abstract semantics of Section 2,

which might otherwise affect execution in a way that could interfere with transparency.

With this proviso, however, transparency is easily seen, by—so to speak—putting the

argument for conservativity in reverse.

Theorem 5. The inliner IEx is transparent.

Proof. Consider an execution E of Prg such that τ(E) ∈ P. From E construct another

execution E′ of IEx (P,Prg) by inserting inlined block executions similar to the way such

block executions are erased in the proof of Theorem 4. This is possible for the same

reasons erasure of these block executions is possible in the proof of Theorem 4, and since

τ(E) ∈ P. Trivially, τ(E′) = τ(E) which suffices to conclude.

Corollary 2. The race-free policies is the maximal set of inlineable policies.

Proof. Since IEx is secure, transparent and conservative for all race-free policies, we

know that any race-free policies is by definition inlineable. The result then follows from

Corollary 1.

8. Case Studies

We have implemented an inliner that parses policies written in ConSpec and performs

inlining according to the algorithm described in Section 7.1. This inliner has been eval-

uated in five case studies of varying characteristics. Case study descriptions and results

are provided below. For detailed descriptions and case study applications and policies,

we refer to the web page (Lundblad, 2010).

8.1. Case Study 1: Session Management

It is common for web applications to allow users to login from one network and then access

the web page using the same session ID but with a different IP address from another

network. Provided that the session ID is kept secret this poses no security problems.

However, the session can be hijacked due to for instance predictable session IDs, session

sniffing or cross-site scripting attacks (OWASP, 2010).

In this case study we examine a simple online banking application implemented using

the Winstone Servlet Container and the HyperSQL DBMS. Users may login though an

Security Monitor Inlining and Certification for Multithreaded Java 21

HTML form, transfer money and logout. The session management is handled by the

classes provided by the standard Servlet API (Apache Software Foundation, 2002).

To eliminate one source of session hijacking attacks the policy in this case study forbids

a session ID from being used from multiple IP addresses. It does this by a) associating

every fresh session ID with the IP address performing the request, and b) rejecting

requests referring a known session ID performed from IP addresses not equal to the

associated one.

The policy is implemented using a HashMap for storing the IP to session ID association,

and monitors (and restricts) all invocations of the HttpServlet.service method.

8.2. Case Study 2: HTTP Authentication

In this case study we look at the HTTP authentication mechanism (Franks et al., 1999).

This allows a user to provide credentials as part of an HTTP request. On top of this the

Servlet API provides a security framework based on user roles. The access control of this

setup is on the level of HTTP-commands, such as GET and POST. This is however too

coarse-grained for some applications.

The application in this case study is the same as in case study 1, but here we focus

on the administrative part of the web application. This part is protected by HTTP

authentication and supports two roles: Secretaries and administrators. The intention

is that secretaries should be allowed to query the database whereas administrators are

allowed to also update the database.

The policy enforces this by making sure the application calls HttpServletRequest.is-

UserInRole and that only users in the secretary role may invoke java.sql.Statement.

executeQuery and only users in the administrator role may invoke java.sql.Statement.

executeUpdate. Since these rules only apply for the administrative part of the web ap-

plication the policy is implemented to check requests only if request.getRequestURI()

.startsWith("/admin") returns true. Furthermore, to prevent interference of multiple

simultaneous requests, the policy state is stored in ThreadLocal variables.

8.3. Case Study 3: Browser Redirection

Following the example of Sridhar and Hamlen (Sridhar and Hamlen, 2010b) we examined

an ad applet that, when being clicked on, redirects the browser to a new URL. The policy

in this case states that the applet is only allowed to redirect the browser to URLs within

the same domain as which the applet was loaded from.

The policy enforces this by asserting that URLs passed to AppletContext.show-

Document have the same host as the host returned by Applet.getDocumentBase().

8.4. Case Study 4: Cash Desk System

In this case study we monitor the behavior of a concurrent model of a cash desk system.

The application stems from an ABS model that was developed for the HATS project

(HATS, 2010). The policy keeps track of the number of sales in progress (by monitoring

M. Dam, B. Jacobs, A. Lundblad and F. Piessens 22

invocations of newSaleStarted() and saleFinished()) and asserts that the number of

ongoing sales is positive.

8.5. Case Study 5: Swing API Usage

The classes in the Java Swing API are not thread safe and once the user interface has

been realized (Window.show(), Window.pack() or Window.setVisible(true) has been

called) the classes may be accessed only through the event dispatch thread (EDT). This

constraint is sometimes tricky to adhere to as it is hard to foresee all flows of a program

and whether or not some code will be executed on the EDT or not.

In this case study we monitor the usage of the Swing API in a large (68 kloc), off-

the-shelf, drawing program called JPicEdt (version 1.4.1 03) (Reynal, 2010). The inlined

monitor has two states: realized and not realized and the policy states that once realized,

a Swing method may only be called if EventQueue.isDispatchThread() return true.

This case study demonstrates how the inliner can be useful, not only in a security

critical setting, but also during testing. The inlined reference monitor revealed three

violations of the policy and by letting the monitor print the stack trace upon a violation

we managed to locate and patch the errors.

8.6. Results

A summary of the case studies is given in Table 2. Benchmarks were performed on a

computer with a 1.8 GHz dual core CPU and 2 GB memory. The runtime overhead due

to inlining was measured for the web application case studies (CS1 and CS2) and for

the Swing case study (CS 5). The runtime overhead for the web application was based

on a roughly one minute long stress test and for the Swing application we measured the

startup time (the time required to construct the user interface).

Case Study Con
Spec

cla
uses

Size
befo

re
inlin

ing (k
B)

Size
aft

er
inlin

ing (k
B)

Size
incre

as
e (%

)

Sec
urit

y
rel

ev
an

t ca
lls

In
lin

ing tim
e (s)

Runtim
e Ove

rh
ea

d
(%

)

CS1 (Sessions) 1 532.7 533.1 0.08 1 2.47 0.44

CS2 (HTTP Auth.) 4 532.7 535.6 0.54 12 2.66 0.87

CS3 (Redirection) 2 27.5 28.2 2.41 1 0.18 n/a

CS4 (Cash Desk) 2 652.9 654.0 0.17 2 2.52 n/a

CS5 (Swing) 249 1888.6 2140.7 13.35 1038 26.68 11.27

Table 2. Quantative results of the case studies.

Security Monitor Inlining and Certification for Multithreaded Java 23

9. Certification

Monitoring is essentially a tool for quality assurance: By monitoring program execution

we are able to observe actions taken by a program and intervene if a state of affairs is

discovered which we for some reason are unhappy with. By inlining we can make this tool

available for developers as well, for instance to enforce richer, history-dependent access

control than what is allowed in the current, static sandboxing regime.

However, the code consumer may not necessarily trust the developer (code producer)

to enforce the consumer’s security policy. Moreover, different consumers may want to

enforce different security policies. In this section we turn to the issue of certification,

that is, we ask for an algorithm, a checker, by which the recipient of a piece of code can

convince herself that the application is secure. To support efficient verification, the code

producer can ship additional metadata with the code, for instance (elements of) a proof,

following the idea of Proof-Carrying Code (PCC) (Necula, 1997). This metadata will be

called a certificate, not to be confused with the concept with the same name used in

public-key cryptography.

The scenario we want to support is the following (a classic PCC scenario):

1 A code producer develops an application, and ensures that it complies with the pro-

ducer policy by inlining a corresponding monitor. This producer policy is developed

with the intention that it will cover all the security concerns of potential consumers of

the application, but of course these consumers do not necessarily trust the producer

for this.

2 Various code consumers want to run the application. Before doing so, each consumer

will check that the code complies with his or her consumer policy. (Each consumer

may have a different policy.)

3 In order to help a consumer with this check, the producer ships a certificate together

with the code. The certificate will contain a proof of the fact that the code complies

with the consumer policy.

4 The code consumer uses a checking algorithm which checks if the application complies

with his consumer policy. This checking algorithm takes as (untrusted) input the

application code and the certificate.

We outline an approach for building a checker that can verify the security property of

IRMs inlined using techniques similar to the algorithm we discussed in this paper. The

contribution of this section is that we show that, for this inlining approach, a checker

for multithreaded Java programs can be built using established program verification

techniques based on sequential Java.

9.1. Assumptions about the inlined code

The checking algorithm in this section is designed for a class of inliners that (1) are

non-blocking, i.e. they do not lock the security state across security relevant API calls,

and (2) use one global lock to protect the inlined security state.

More concretely, let us assume that the security state is kept in static fields of a

M. Dam, B. Jacobs, A. Lundblad and F. Piessens 24

designated SecState class, and that the SecState class object is used to lock the security

state. The actual inlined code then operates in phases:

1 A neutral phase (N), where the SecState lock is not held. If all threads are in this

N state, then the inlined security state is in sync with the history of security relevant

actions encountered so far.
2 A locked before phase (LB), where the inliner is updating its state in anticipation of

an upcoming security relevant call.
3 An unlocked before phase (UB), where things might be happening between the inlined

check and the actual call. The inlined security state has been updated already, but

the actual security relevant action has not yet happened.
4 A calling phase (C) where the actual security relevant call is executing.
5 An unlocked after phase (UA), where things might be happening between the (normal)

return of the call, and the inlined security state update.
6 A locked after phase (LA), where the inliner is updating its state in response to a

successfully returned security relevant call.
7 Similar unlocked exceptional and locked exceptional phases, to deal with exceptional

returns of the security relevant method invocation. These are similar to the UA and

LA phases, and we do not discuss them further in this section. Extending the results

in this section to deal with exceptional returns of security relevant calls is straight-

forward.

Notice that, with the inliner of Figure 6, it appears that no instructions are actually

executed during the UB and UA phases. This is, however, not entirely accurate: When

the inliner is applied iteratively, say twice in succession, the instructions executed in the

locked phases of the second inlining will appear as instructions in the unlocked phases

for the first inlining. In fact, we can allow arbitrary code to be present in the unlocked

phases, as long as it does not interfere with the inlined state. This allows a wider class

of inliners to be supported than the one introduced above. One such example is briefly

discussed in the conclusions.

A key part of the checking algorithm is to recognize these phases. Once the phases are

recognized, an approach similar to the one taken in (Aktug et al., 2009) for sequential

Java can be enacted.

To assist the checker in identifying the phases, the certificate contains the following

information: For each bytecode instruction in the program that performs a security rel-

evant method invocation, the code producer should include in the certificate a tuple

(c′.m′, Llb, Lub, Lcall, Lla, Ln), where c′.m′ is the name of the method containing the call,

and the other elements of the tuple are labels in the method body of c′.m′:

— Llb indicates where the LB phase starts,
— Lub indicates where the LB phase ends and the UB phase starts,
— Lcall indicates where the calling phase C starts and ends. Recall that in our semantics,

API calls happen in two steps. The first step initiates the calling phase, and the second

step ends it, and starts the UA phase.
— Lla indicates where the UA phase ends and the LA phase starts.
— Finally, Ln indicates where the LA phase ends and the inliner returns to the neutral

phase.

Security Monitor Inlining and Certification for Multithreaded Java 25

A first part of the checking algorithm verifies, based on the above information, whether

the code complies with the assumptions we make about the inlining process. The example

inliner IEx that we proposed in Section 7 will pass this check.

Check 1. For each tuple, (c′.m′, Llb, Lub, Lcall, Lla, Ln), in the certificate, perform the

following checks:

— The Llb and Lla labels point to a ldc SecState instruction, followed by a monitor-

enter.

— The Lub and Ln labels point to a monitorexit instruction preceded by a ldc Sec-

State.

— The labels Llb, Lub, Lcall, Lla, Ln occur in this order in the method body of c′.m′.

— Construct the control-flow-graph (CFG) for the method body of c′.m′, and check

that:

– The only way to enter the block between Llb and Ln is by entering through Llb.

(No jumps over blocks of inlined code or into the middle of inlined code)

– Each path in the CFG that passes through Llb also passes through Lub, Lcall, Lla,

and Ln, or leads to System.exit().

In addition, to make sure that the global security state (stored in static fields of the

SecState class) is only accessed under the SecState lock, perform the following checks:

— No other ldc SecState instructions occur anywhere in the program. This makes sure

the SecState class object is only used for acquiring or releasing a lock, and no other

aliases to the object are created.

— putstatic and getstatic for fields of the SecState class only occur between Llb and

Lub, and between Lla and Ln labels.

These checks allow us to reason about the actual inlined security state sequentially

(because all accesses to that state happen under a single lock). Moreover, any invariant

on the security state that is true in the initial state and maintained by each block of code

that holds the SecState lock will be true at each program point where the SecState lock

is not held.

These two observations will be crucial in designing the second step of the checker.

For this second step, the checker will inline a reference automaton used for verification

purposes, henceforth referred to as a ”ghost reference monitor”, or ghost IRM for short.

We first describe this ghost IRM and how it is inlined by the checker.

9.2. The Ghost Reference Monitor

The ghost IRM is implemented by inserting special purpose assignments called ghost in-

structions into the program. The ghost instructions are essentially ConSpec rules, lightly

compiled to evaluate guards and updates using the JVM stack and heap, together with a

set of auxiliary ghost variables used to represent the state of the ghost IRM, and to store

intermediate values, e.g. across method calls. Programs containing ghost instructions are

called augmented programs.

M. Dam, B. Jacobs, A. Lundblad and F. Piessens 26

A ghost instruction has the shape

〈x g := a1 → e1 | . . . | an → en〉

where x g is a vector of ghost variables, ai are guard assertions and ei are expression

vectors of the same type and dimension as x g. The instruction assigns the first expression

whose guard holds, to the left hand side variable, similar to the way ConSpec rules are

evaluated. If no guards hold, the instruction fails and the execution is said to be incorrect.

The guards ai and expressions ei may refer to ghost variables, actual variables, the stack,

and they may extract callee and thread id as described above.

Example 3. The ghost instruction below could be used to express that an execution is

incorrect if the invoke instruction is executed with true as argument more than 10 times.

. . .

〈x g := s0 ∧ x g < 10→ x g + 1 | ¬s0 → x g〉
invoke c.m

. . .

Ghost variables can be global or local. This scope will be notationally clarified by the

superscripts x g and x gl , respectively.

An execution of an augmented program is a sequence of augmented configurations

which in turn are regular configurations augmented with a ghost variable valuation. An

augmented program is said to be correct if all of its executions are correct.

9.3. Ghost Inlining

The ghost inliner augments clients with ghost instructions to maintain various types of

state information. This includes the ghost IRM state, intermediate data used only by the

ghost IRM, and information to assist the checker in relating the ghost IRM state and

the actual IRM state.

The code consumer will perform the ghost inlining algorithm, using the following in-

puts:

— The consumer policy, from which the ghost IRM state, and the implementation of

the ghost IRM state transitions can be computed.

— The code and the certificate.

The ghost inliner introduces the variables listed in Table 3, and it implements the ghost

IRM by inserting blocks of ghost instructions according to the following scheme. For

each (c′.m′, Llb, Lub, Lcall, Lla, Ln) tuple in the certificate for a call to security relevant

method c.m, do the following:

Security Monitor Inlining and Certification for Multithreaded Java 27

Identifier Purpose

msg A global vector representing the ghost security state, i.e. a type correct assign-
ment to the security state variables as in Section 3.

statusgl A local variable ranging over ready, meaning that the action trace is in sync

with the ghost IRM, or before c.m, return c.m, indicating that the ghost IRM
is one pre- or post-action out of sync.

arggl , tidgl ,
ogl , rgl

Local variables to hold the arguments of security relevant calls during the call

(they may be referenced in an after-clause), resp. calling thread, callee, and
return value.

Table 3. Variables introduced by ghost inliner.

1 Insert in c′.m′ before label Lub − 1:

〈tidgl := Thread.currentThread()〉
〈ogl := s0〉
〈arggl := (s1, . . . , sn)〉

〈msg := statusg = ready→ δ((tidgl , c.m, ogl , arggl)↑)〉
〈statusgl := before c.m〉

If c.m is security relevant but not BEFORE security relevant the ghost security state

msg is not updated, but the other assignments are still performed.

2 Insert in c′.m′ before label Lcall:

〈statusgl := statusgl = before c.m

∧ ogl = s0 ∧ arggl = (s1, . . . , sn)→ ready〉

3 Insert in c′.m′ after label Lcall:

〈rgl := s0〉
〈statusgl := statusgl = ready→ return c.m〉

4 Insert in c′.m′ before label Ln − 1:

〈msg := statusgl = return c.m→ δ((tidgl , c.m, ogl , arggl , rgl)↓)〉
〈statusgl := ready〉

We refer to ghost instruction blocks inserted according to condition i above as a block of

type i.

A schematic summary of the treatment of a security relevant invoke is illustrated

in Figure 8. Correctness is proved by an extension of the inliner security argument of

Section 7. In analogy with Proposition 3 we first show that the ghost inliner is sound in

the sense that traces of the ghost monitor are allowed by the policy, and we then show

security through a serialization property similar to Lemma 1.

Let Ig(P,Prg) be the result of ghost inlining Prg with respect to policy P and Prg ’s

M. Dam, B. Jacobs, A. Lundblad and F. Piessens 28

Arbitrary non-inlined code

Llb: ldc SecState

monitorenter

Actual IRM BEFORE code

〈arggl := (s1, . . . , sn)〉
〈msg := statusgl = ready→ δ((tidgl , c.m, ogl , arggl)↑)〉
〈statusgl := before c.m〉
ldc SecState

Lub: monitorexit

Possible arbitrary code

〈statusgl := statusgl = before c.m ∧ arggl = (s1, . . . , sn)→ ready〉
Lcall: invokevirtual c.m

〈rgl := s0〉
〈statusgl := statusgl = ready→ return c.m〉
Possible arbitrary code

Lla: ldc SecState

monitorenter

Actual IRM AFTER code

〈msg := statusgl = return c.m→ δ((tidgl , c.m, ogl , arggl , rgl)↓)〉
〈statusgl := ready〉
ldc SecState

Ln: monitorexit

Arbitrary non-inlined code

Fig. 8. Schematic summary of ghost inlining for invokevirtual c.m. Current thread tid

and callee s0 has been omitted for brevity.

certificate. Similar to Section 7 we compare the observable actions of Prg with ghost

actions αg of Ig(P,Prg). The ghost extended trace of an execution E, τge(E) is the

sequence of observable actions and ghost actions of E, and the ghost trace of E, τg(E),

projects from τge(E) the ghost actions only.

Proposition 4. Let E be a legal execution of Ig(P,Prg). Then τg(E) ∈ P.

Proof. Let τg(E) = α0
g · · ·αn

g be the ghost trace of E. In the context of E, say that

a block of type 1 justifies a block of type 2 or 4, if the values assigned to ghost variables

ogl , arggl in the type 1 block are the values used in the block of type 2 or 4. For the

case of a type 2 block the value of statusgl also needs to match the value assigned in the

type 1 block. Similarly say that a block of type 4 confirms a block of type 3, if the values

assigned to rgl , statusgl in the type 3 block are those used in the type 4 block.

If αn is a pre-action then a block of type 1 justifying αn
g happens before αn

g and

after αn−1
g. Since the prefix of τg(E) not including αn

g is in P, so is τg(E). For this

argument to work out we need to observe that, if αn−1
g is a block of type 3 then that

block is confirmed by a block of type 4 before control is transferred to the block of type

1 justifying αn
g. The case of αn a post-action is virtually identical and left to the reader.

Security Monitor Inlining and Certification for Multithreaded Java 29

With Proposition 4 in place the security proof is essentially complete, as the proof of

serialization can follow that of Lemma 1 line for line.

As a result we obtain the correlate of the Inliner Security Theorem, now transferred

to the ghost inliner:

Theorem 6 (Ghost Security). If P is race-free, and Prg is a correct program, then

T (Ig(P,Prg)) ⊆ P �

9.4. The checker

The checker algorithm should check that a given program (with certificate) satisfies a code

consumer policy. To achieve this, the checker first performs Check 1 from Section 9.1.

Then the checker augments a ghost IRM based on the consumer policy. Building on

Theorem 6, the only remaining thing the checker needs to do is verify that the resulting

program is correct, i.e. that none of the inlined ghost instructions fail.

Checking that an arbitrary program with inlined ghost instructions is correct is a hard

problem, as hard as verifying full functional correctness of multithreaded Java code.

However, with the assumptions we made about the actual inlining process, and given the

concrete ghost inlining algorithm, checking correctness can be substantially simplified.

In particular, we show in this section that verification of correctness can be done using

sequential reasoning only. We assume that we are given as an oracle a proof checker

for a standard sequential bytecode program logic (for instance the logic proposed by

Bannwart and Müller (Bannwart and Müller, 2005)). In order to ensure that sequential

verification is sound in our multithreaded setting, we rewrite the bytecode before send-

ing it to the sequential verifier. In a multithreaded setting, reads from the heap are not

necessarily stable. The only two parts of the state that we can reason about sequen-

tially are local variables and the global security state (while the SecState lock is being

held). We encode this by replacing all other reads from the heap by method calls to a

method randomValue() of appropriate return type. This ensures that the verifier knows

nothing about values read from the heap. Whenever we send blocks of bytecode (and

corresponding proofs) to the verification oracle, we preprocess these blocks of bytecode

to (1) remove all the locking/unlocking instructions, and (2) to replace reads from the

heap (except reads of the fields of SecState in the LB or LA phase) with calls to such a

randomValue() method of the appropriate type.

To support this second part of the checking algorithm, the code producer should include

additional information in the certificate.

First, the code producer should provide an invariant I(ms,msg) that relates the actual

inlined security state ms to the ghost inlined security state msg. This invariant can be

through of as a simulation relation between the states of the actual security automaton

and the ghost automaton. Obviously, I(ms,msg) is only allowed to refer to ghost security

state variables and to static fields of the SecState class.

Second, the certificate provided by the code producer should contain some proofs

checkable by the sequential program verification oracle, as detailed below.

M. Dam, B. Jacobs, A. Lundblad and F. Piessens 30

Check 2. For each tuple (c′.m′, Llb, Lub, Lcall, Lla, Ln) in the certificate for a security

relevant call to c.m, the checker performs the following verifications:

— For the locked before block B (the code between the acquiring of the SecState lock

at Llb and releasing of that lock at Lub), check that the certificate contains a valid

proof that the following code:

〈msg := δ((tidgl , c.m, s0, (s1, . . . , sn))↑)〉;B

maintains the invariant I(ms,msg), and does not fail when started from a state where

this invariant is true.

— For the full inlined block F (the code between the acquiring of the SecState lock at

Lla and releasing of that lock at Ln), check that the certificate contains a valid proof

that F maintains the invariant I(ms,msg), and does not fail when started from a

state where this invariant is true.

Finally, check that I(ms,msg) holds for the default initial values for all ghost and actual

security state variables.

Lemma 2. If a program passes the checker, then, in any execution of the program, the

invariant I(ms,msg) holds whenever the SecState lock is not being held by any thread.

Proof. By contradiction. Assume there is an execution that violates this property.

Identify the first step in the execution where the property fails. This cannot be the first

step of the execution, as Check 2 checks that I(ms,msg) holds in the initial state. Since

changes to the variables mentioned in the invariant can only be done under the SecState

lock (Check 1), the first step where the property fails must be a step where the SecState

lock is being released. Because of Check 1, the lock can only be released by an instruction

that is labeled Lub or Ln. Let us consider the case Ln (the other case is similar), and let

us call the thread that performs this monitorexit t. Select from the execution all steps

from the thread t. Since t reaches Ln, and because of the control flow checks in Check

1, one of these execution steps must execute the instruction at Llb. Consider the last

step of thread t that executes the instruction at Llb, and remove from the execution all

steps before that one. The resulting execution is a single-threaded execution of the full

inlined block F verified in Check 2 to maintain the invariant. Moreover, the execution

starts in a state where the invariant holds (because we have selected the first step in the

execution where the property fails). If our sequential verification oracle is sound, this can

not happen.

We can now show that the checker is secure: if all the checks succeed, the program being

checked is secure.

Theorem 7. A program that passes the checker is secure.

Proof. By Theorem 6 it suffices to prove that the ghost inlined program can never fail.

We prove this by contradiction. Assume there is an execution of the program that fails,

i.e. that leads to one of the guards in the ghost statements evaluating to false. We show

that from this execution, we can construct a failing single-threaded execution of one of

the blocks of code that have been verified not to fail by the sequential verification oracle.

Security Monitor Inlining and Certification for Multithreaded Java 31

Let the thread identifier of the thread where the failure happens be t.

Consider all steps of thread t leading to the failure of a ghost statement. Because of the

CFG check in Check 1, and since thread t reaches one of the ghost inlined instructions,

thread t must have executed the instruction at label Llb. Select the latest execution

by thread t of that instruction, and remove all steps before that step. The remaining

execution is a single threaded execution of the full inlined block verified not to fail

during Check 2. Contradiction.

9.5. Creating certificates for the example inliner

Finally, we show that a code producer that uses the concrete inliner IEx that we proposed

in Section 7 can easily produce a certificate that the resulting program complies with the

inlined policy. Certificates contain three parts:

— For each security relevant invokevirtual bytecode instruction at a label Lcall in

method c′.m′, a certificate contains the tuple (c′.m′, Llb, Lub, Lcall, Lla, Ln) marking

the beginning and ending of the different phases of the inliner. Computing these for

IEx is trivial.

— An invariant I(ms,msg) that relates ghost security state to actual security state. To

certify that an inlined program complies with the inlined policy, this invariant is just

the identity.

— For each security relevant invokevirtual bytecode instruction, the certificate con-

tains two sequential correctness proofs, one for the locked before block B, and one for

the full inlined block F . It is an easy exercise to verify that the code blocks produced

by our inliner are valid. Given an oracle for constructing proofs of valid programs in

sequential Java, we can complete the certificate with this third part.

Theorem 8. A program inlined with our inliner and with a certificate constructed as

above will pass the checker. �

To summarize, we have shown that our inliner is able to inline a reference monitor in a

way such that it is statically decidable whether or not the resulting program adheres to

the given (race-free) policy. This is what Hamlen et al refers to as P-verifiability (Sridhar

and Hamlen, 2011). Thus, put another way, we have shown that the the set of race free

policies are P-verifiable.

9.6. Discussion

The checker developed in this section is, to the best of our knowledge, the first one

that can certify compliance with security automata for multithreaded Java bytecode.

The certification approaches proposed by other authors (and discussed in Section 1.1)

focus on sequential programs only, or on blocking inliners for multithreaded programs.

While our checker can only handle programs that have been generated by an inliner that

complies with the assumptions we outlined in Section 9.1 (it will reject any other program

as possibly insecure), this is a significant step forward. However, further improvements

are possible.

M. Dam, B. Jacobs, A. Lundblad and F. Piessens 32

Most importantly, one of the key motivations for Proof-Carrying Code is that it can

reduce the Trusted Computing Base (TCB). Security only relies on correctness of the

verifier, not on the (possibly complicated) techniques used by the code producer to con-

struct the code and the proof. In many PCC approaches, the verifier is just a proof

checker for proofs in a simple program logic. The checker we proposed in this paper is

significantly more complicated than that. The main reason for this is that there is no

existing program logic for multithreaded Java bytecode. Designing such program logics

(and proving them sound) is an important avenue for future work.

What we did show in this section is how, for the class of inliners that we support,

the issues related to multithreading can be handled separately using a relatively simple

syntactic check (Check 1). Given a suitable program logic, it is likely that the insight

reported in this section could be used to construct security proofs in that logic for pro-

grams that are inlined with such an inliner. Then, security could be verified using just a

proof checker for a program logic.

Even though we have not yet reached that stage, our checker is still significantly simpler

than the inliner: ghost inlining is done at a higher level of abstraction, and avoids many

of the intricate bytecode rewriting tasks that the real inliner has to deal with, including

things such as updating jumps, recomputing switch tables, updating exception handling

tables, and so forth.

10. Conclusions and Future Work

Inlining is a powerful and practical technique to enforce security policies. Several inlining

implementations exist, also for multithreaded programs. The study of correctness and

security of inlining algorithms is important, and has received a substantial amount of

attention the past few years. But, these efforts have focused on inlining in a sequential

setting. This paper shows that inlining in a multithreaded setting brings a number of

additional challenges. Not all policies can be enforced by inlining in a manner which is

both secure and transparent. Fortunately, these non-enforceable policies do not appear

very important in practice: They are policies that constrain not just the program, but

also the API or the scheduler. We have identified a class of so-called race-free policies

which characterizes exactly those policies that can be enforced by inlining in a secure

and transparent fashion on multithreaded Java bytecode. This result is quite general: It

relies mainly on the ability of policies to distinguish between entries to and exits from

some set of API procedures, and very little on the specificities of the Java threading

model. We have shown that the approach is useful in practice by applying it in several

realistic application scenarios, and we have shown how certification of inlining in the

multithreaded setting can be reduced to standard verification condition checking for

sequential Java.

A number of extensions of this work merit attention. We discuss three issues: Inheri-

tance, iterated inlining, and callbacks.

Inheritance, first, is relatively straightforward: In order to evaluate the correct event

clause, runtime checks on the type of the callee object would be interleaved with the

checks of the guards. This is spelled out for the sequential setting in (Vanoverberghe

Security Monitor Inlining and Certification for Multithreaded Java 33

and Piessens, 2009) for C#. We do not expect any issues to carry this over to the

multithreaded setting.

For iterated inlining there are two options:

1 The ConSpec policies are merged before inlining. This can be done using a straight-

forward, syntactic cross product construction for policies, I(
∏
i Pi,Prg).

2 Alternatively, the monitors can be nested by inlining one policy at a time: I(Pn, . . . ,
I(P2, I(P1,Prg)) . . .).

If the example inliner, IEx , is used, the certification approach described above is general

enough to easily certify the fully inlined program from certificates for each policy Pi
by itself. If a different inliner is used however, the second approach needs a different

treatment in general. One common strategy, for instance, is to create a wrapper method

for each security relevant method, place the policy code in the wrapper method and

replace the security relevant calls, with calls to the wrapper methods. The reason for this

is that, except for the last inlining step, the inlined policy code will no longer reside in

the same method as the security relevant call. To handle this one can either:

— Do the analysis from the first inlined BEFORE-instruction, to the last inlined AFTER /

EXCEPTIONAL instruction globally. (This is obviously not tractable in general, but for

simple wrapper methods it would not pose any problems.)

— Perform a simple renaming of security relevant methods, so that the inner policies

consider the new wrapper methods to be security relevant instead.

Callbacks can be accommodated as well, but with more significant changes. First, the

notion of event must be changed, to include not only calls from the client program to

the API and return, but also from the API to the client program. This affects not only

the program model but also the policy language. The negative results will remain valid,

but the inlining algorithm must be amended to inline pre- and post checks in each public

client method.

Finally, we believe that our study of the impact of multithreading on program rewriting

in the context of monitor inlining is a first step towards a formal treatment of more general

aspect implementation techniques in a multithreaded setting. Indeed, our policy language

is a domain-specific aspect language, and our inliner is a simple aspect weaver.

Acknowledgements

Thanks to Irem Aktug, Dilian Gurov and Dries Vanoverberghe for useful discussions

on many topics related to monitor inlining. This research is partially funded by the

Interuniversity Attraction Poles Programme Belgian State, Belgian Science Policy, the

Research Fund K.U.Leuven, the IWT, and by the European Commission under the FP6

and FP7 programs.

References

Aktug, I., Dam, M., and Gurov, D. (2009). Provably correct runtime monitoring. J. Log. Algebr.

Program., 78(5):304–339.

M. Dam, B. Jacobs, A. Lundblad and F. Piessens 34

Aktug, I. and Naliuka, K. (2008). Conspec – a formal language for policy specification. Science

of Computer Programming, 74(1-2):2 – 12. Special Issue on Security and Trust.

Apache Software Foundation (2002). Servlet api documentation. http://download.

oracle.com/docs/cd/E17802_01/products/products/servlet/2.5/docs/servlet-2_

5-mr2/index.html.

Bannwart, F. Y. and Müller, P. (2005). A logic for bytecode. In Bytecode Semantics, Verification,

Analysis and Transformation (BYTECODE), volume 141-1 of Electronic Notes in Theoretical

Computer Science, pages 255–273. Elsevier.

Bauer, L., Ligatti, J., and Walker, D. (2003). Types and effects for non-interfering program

monitors. In Okada, M., Pierce, B., Scedrov, A., Tokuda, H., and Yonezawa, A., editors,

Software Security—Theories and Systems. Mext-NSF-JSPS International Symposium, volume

2609 of Lecture Notes in Computer Science, pages 154–171. Springer.

Bauer, L., Ligatti, J., and Walker, D. (2005). Composing security policies with Polymer. In

Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Im-

plementation (PLDI).

Bielova, N., Dragoni, N., Massacci, F., Naliuka, K., and Siahaan, I. (2009). Matching in security-

by-contract for mobile code. Journal of Logic and Algebraic Programming, 78(5):340 – 358.

Chen, F. (2005). Java-MOP: A monitoring oriented programming environment for Java. In

In Proceedings of the Eleventh International Conference on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS, pages 546–550. Springer.

Chudnov, A. and Naumann, D. A. (2010). Information flow monitor inlining. In CSF, pages

200–214.

Dam, M., Jacobs, B., Lundblad, A., and Piessens, F. (2009). Security monitor inlining for multi-

threaded Java. In ECOOP 2009 - Object-Oriented Programming, 23rd European Conference,

Genova, Italy, July 6-10, 2009, Proceedings,, pages 546–569. Springer-Verlag.

Dam, M., Jacobs, B., Lundblad, A., and Piessens, F. (2010). Provably correct inline monitoring

for multithreaded Java-like programs. Journal of Computer Security, 18:37 – 59.

DeLine, R. and Fähndrich, M. (2001). Enforcing high-level protocols in low-level software. In

PLDI ’01: Proceedings of the ACM SIGPLAN 2001 conference on Programming language

design and implementation, pages 59–69. ACM.

Desmet, L., Joosen, W., Massacci, F., Philippaerts, P., Piessens, F., Siahaan, I., and Vanover-

berghe, D. (2008). Security-by-Contract on the .NET platform. Information Security Tech-

nical Report, 13(1):25–32.

Deutsch, P. and Grant, C. A. (1971). A flexible measurement tool for software systems. Infor-

mation Processing 71, Proc. IFIP Congress, 1:320–326.

Erlingsson, U. (2004). The inlined reference monitor approach to security policy enforcement.

PhD thesis, Dep. of Computer Science, Cornell University.

Erlingsson, U. and Schneider, F. B. (2000a). IRM enforcement of Java stack inspection. In

IEEE Symposium on Security and Privacy, page 0246. IEEE Computer Society.

Erlingsson, U. and Schneider, F. B. (2000b). SASI enforcement of security policies: a retro-

spective. In Proc. Workshop on New Security Paradigms (NSPW ’99), pages 87–95. ACM

Press.

Evans, D. and Twyman, A. (1999). Flexible policy-directed code safety. In IEEE Symposium

on Security and Privacy, pages 32–45.

Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P., Luotonen, A., and Stewart,

L. (1999). HTTP Authentication: Basic and Digest Access Authentication. RFC 2617 (Draft

Standard).

Security Monitor Inlining and Certification for Multithreaded Java 35

Gosling, J., Joy, B., Steele, G., and Bracha, G. (2005). Java(TM) Language Specification, The

(3rd Edition) (Java (Addison-Wesley)). Addison-Wesley Professional.

Hamlen, K. W. and Jones, M. (2008). Aspect-oriented in-lined reference monitors. In PLAS ’08:

Proceedings of the third ACM SIGPLAN workshop on Programming languages and analysis

for security, pages 11–20, New York, NY, USA. ACM.

Hamlen, K. W., Morrisett, G., and Schneider, F. B. (2006a). Certified in-lined reference moni-

toring on .NET. In Proc. of the ACM SIGPLAN Workshop on Programming Languages and

Analysis for Security (PLAS’06).

Hamlen, K. W., Morrisett, G., and Schneider, F. B. (2006b). Computability classes for enforce-

ment mechanisms. ACM Trans. Program. Lang. Syst., 28(1):175–205.

HATS (2010). Evaluation of the core framework, deliverable 5.2 of project fp7-231620 (hats).

http://www.cse.chalmers.se/research/hats/sites/default/files/Deliverable52.pdf.

Jones, M. and Hamlen, K. W. (2010). Disambiguating aspect-oriented security policies. In

AOSD, pages 193–204.

Kim, M., Kannan, S., Lee, I., Sokolsky, O., and Viswanathan, M. (2001). Java-MaC: A run-

time assurance tool for Java programs. Electronic Notes in Theoretical Computer Science,

55(2):218 – 235. RV’2001, Runtime Verification (in connection with CAV ’01).

Leroy, X. (2003). Java bytecode verification: algorithms and formalizations. Journal of Auto-

mated Reasoning, 30(3–4):235–269.

Ligatti, J., Bauer, L., and Walker, D. (2005). Edit automata: Enforcement mechanisms for

run-time security policies. International Journal of Information Security, 4(1–2):2–16.

Ligatti, J. A. (2006). Policy Enforcement via Program Monitoring. PhD thesis, Princeton

University.

Lindholm, T. and Yellin, F. (1999). Java Virtual Machine Specification. Addison-Wesley Long-

man Publishing Co., Inc.

Lipton, R. J. (1975). Reduction: a method of proving properties of parallel programs. Commun.

ACM, 18:717–721.

Lundblad, A. (2010). Inlined reference monitors for multithreaded java: Case-studies. http:

//www.csc.kth.se/~landreas/mt_inlining/.

N. Dragoni, F. Massacci, K. N. and Siahaan, I. (2007). Security-by-contract: Toward a semantics

for digital signatures on mobile code. In Proc. 4th European PKI Workshop, volume 4582 of

Lecture Notes in Computer Science, pages 297–312. Springer.

Necula, G. C. (1997). Proof-carrying code. In POPL ’97: Proceedings of the 24th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages, pages 106–119.

ACM Press.

OWASP (2010). Owasp top 10 - 2010. http://owasptop10.googlecode.com/files/OWASP\

%20Top\%2010\%20-\%202010.pdf.

Reynal, S. (2010). Jpicedt website. http://jpicedt.sourceforge.net/.

S3MS (2008). Project web page. http://www.s3ms.org.

Schneider, F. B. (2000). Enforceable security policies. ACM Trans. Information and Systems

Security (TISSEC), 3(1):30–50.

Skalka, C. and Smith, S. (2004). History effects and verification. In Asian Programming Lan-

guages Symposium.

Sridhar, M. and Hamlen, K. W. (2010a). Actionscript in-lined reference monitoring in prolog.

In PADL, pages 149–151.

Sridhar, M. and Hamlen, K. W. (2010b). Actionscript in-lined reference monitoring in prolog.

In PADL, pages 149–151.

M. Dam, B. Jacobs, A. Lundblad and F. Piessens 36

Sridhar, M. and Hamlen, K. W. (2010c). Model checking in-lined reference monitors. In Verifi-

cation, Model Checking, and Abstract Interpretation, pages 312–327.

Sridhar, M. and Hamlen, K. W. (2011). Flexible in-lined reference monitor certification: chal-

lenges and future directions. In Proceedings of the 5th ACM workshop on Programming

languages meets program verification, PLPV ’11, pages 55–60, New York, NY, USA. ACM.

Vanoverberghe, D. and Piessens, F. (2009). Security enforcement aware software development.

Inf. Softw. Technol., 51(7):1172–1185.

Viswanathan, M. (2000). Foundations for the run-time analysis of software systems. PhD thesis,

University of Pennsylvania.

Walker, D. (2000). A type system for expressive security policies. In POPL ’00: Proceedings

of the 27th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,

pages 254–267. ACM.

Security Monitor Inlining and Certification for Multithreaded Java 37

Appendix A. Program Model and JVM Instruction Semantics

A few inessential simplifications have been made to ease presentation. In particular we

ignore all issues concerning inheritance and dynamic binding as this has been addressed

elsewhere (Vanoverberghe and Piessens, 2009; Aktug et al., 2009).

A.1. Basic Conventions

We use c for class names, m for method names, and f for field names. Class names

are fully qualified. A type Type is either a class name or a primitive type. A method

definition is a pair of an instruction array and an exception handler array. Exception

handlers (b, e, t, c) catch exceptions of type c (and its subtypes) raised by instructions in

the range [b, e) and transfers control to address t, if the handler is the topmost handler in

the exception handler array that handles the instruction for the given type. Values (Java

primitives and object references) are ranged over by v. An object reference is a (typed)

location o, or the value null . Locations are mapped to objects, or arrays, by a heap h.

Objects are finite maps of non-static fields to values. Static fields are identified with field

references of the form c.f . To handle those, heaps are extended to assignments of values

to static fields.

A.2. Configurations, Transitions, and Programs

A configuration C = (h,Λ,Θ) consists of a heap h, a lock map Λ which maps an object

reference o to a thread id tid iff tid holds the lock of o, and a thread configuration map

Θ which maps a thread identifier tid to a thread configuration, often denoted by θ. A

thread configuration is a stack R of activation records. For normal thread configurations,

the activation record at the top of an execution stack has the shape (M, pc, s, l), where

M is the currently executing method, pc is the program counter, s is the operand stack

(of values), and l is the local variables. For exceptional configurations, the top frame of

an execution stack has the form (o) where o is the location of an exceptional object, i.e.

of class Throwable. A transition semantics determining the transition relation C → C ′

is given for key instructions and configuration types (see Section A.4). A program Prg

consists of a set of class declarations determining types of fields and methods belonging to

classes in Prg , and a method environment assigning method definitions to each method

in Prg .

We restrict attention to configurations that are type safe, in the sense that heap con-

tents match the types of corresponding locations, and that arguments and return /

exceptional values for primitive operations as well as method invocations match their

prescribed types. The Java bytecode verifier serves, among other things, to ensure that

type safety is preserved under machine transitions (cf. (Leroy, 2003)).

A.3. Field Accesses and Legal Executions

In this paper, we wish to reason about the behavior of arbitrary multithreaded programs.

Therefore, we cannot assume that the programs we consider are correctly synchronized.

M. Dam, B. Jacobs, A. Lundblad and F. Piessens 38

This complicates our execution semantics, because non-correctly-synchronized programs

may exhibit non-sequentially-consistent executions (Chapter 17 of the Java Language

Specification (JLS3) (Gosling et al., 2005)). An execution is sequentially consistent if

there is a total order on the field accesses in the execution such that each read of a field

yields the value written by the most recent preceding write of that field in this total order.

In order to ensure that our semantics captures all possible executions of a program, the

transition relation → does not constrain the value yielded by a field read; specifically,

it does not imply that this value is the value in the heap for that field. However, JLS3

does provide some guarantees, even for non-correctly-synchronized programs. Therefore,

below we will consider only legal executions. A legal execution is an execution which

satisfies both the transition relation→ and the memory consistency constraints of JLS3.

The happens-before order (Gosling et al., 2005) is a partial order on the transitions

in an execution. It consists of the program order (ordering of two actions performed

by the same thread) and the synchronizes-with order (order induced by synchronization

constructs), and the transitive closure of the union of these.

An important guarantee provided by JLS3 that we rely on in this paper, is that if in

some legal execution a given field is protected by a given lock, then each read of that

field yields the value written by the most recent preceding write of that field. We say

that a given field is protected by a given lock in a given execution, if whenever a thread

accesses the field, it holds the lock.

A.4. Transition Semantics

We present a transition semantics of JVM instructions used in proofs. The semantics

applies to type-safe configurations and bytecode verified programs only, cf. (Leroy, 2003).

We only present the rules for the bytecode instructions mentioned in the paper. The rules

for the other bytecode instructions are similar and straightforward.

Notation

Besides self-evident notation for function updates, array lookups etc. the transition rules

uses the following auxiliary operations and predicates:

— v :: s pushes v on top of stack s

— handler(M,h, o, pc) returns the proper target label given M ’s exception handler H,

heap h, throwable o and pc pc in the standard way:

handler(M,h, o, pc) = handler ′(H,h, o, pc)

handler ′(ε, h, o, pc) = ⊥

handler ′((b, e, t, c) ·H ′, h, o, pc) =

{
t if b ≤ pc < e and h ` o : c

handler ′(H ′, h, o, pc) otherwise

— v is an argument vector

— Stack frames have one of three shapes (M, pc, s, l), (o) where o is throwable in the

current heap, and (�) used for API calls (see Section 2).

Security Monitor Inlining and Certification for Multithreaded Java 39

Local Variables and Stack Transitions

Θ(tid)→ θ

(h,Λ,Θ)→ (h,Λ,Θ[tid 7→ θ])

M [pc] = aload n

(M, pc, s, l) :: R→ (M, pc + 1, l(n) :: s, l) :: R

M [pc] = astore n

(M, pc, v :: s, l) :: R→ (M, pc + 1, s, l[n 7→ v]) :: R

M [pc] = athrow

(M, pc, o :: s, l) :: R→ (o) :: (M, pc + 1, o :: s, l) :: R

M [pc] = goto L

(M, pc, s, l) :: R→ (M,L, s, l) :: R

M [pc] = iconst n

(M, pc, s, l) :: R→ (M, pc + 1, n :: s, l) :: R

M [pc] = ldc c

(M, pc, s, l) :: R→ (M, pc + 1, c :: s, l) :: R

M [pc] = ifeq L n = 0

(M, pc, n :: s, l) :: R→ (M,L, s, l) :: R

M [pc] = ifeq L n 6= 0

(M, pc, n :: s, l) :: R→ (M, pc + 1, s, l) :: R

Heap transitions

As discussed in Section 2, field reads return an arbitrary value, and these rules should

be complemented with the Java memory model constraints.

Θ(tid) = (M, pc, v :: s, l) :: R M [pc] = putstatic c.f

(h,Λ,Θ)→ (h[c.f 7→ v],Λ,Θ[tid 7→ (M, pc + 1, s, l) :: R])

Θ(tid) = (M, pc, s, l) :: R M [pc] = getstatic c.f

(h,Λ,Θ)→ (h,Λ,Θ[tid 7→ (M, pc + 1, v :: s, l) :: R])

Locking instructions

Θ(tid) = (M, pc, v :: s, l) :: R

M [pc] = monitorenter Λ(v) = ⊥

(h,Λ,Θ)→ (h,Λ[v 7→ tid],Θ[tid 7→ (M, pc + 1, s, l) :: R])

M. Dam, B. Jacobs, A. Lundblad and F. Piessens 40

Θ(tid) = (M, pc, v :: s, l) :: R

M [pc] = monitorexit Λ(v) = tid

(h,Λ,Θ)→ (h,Λ[v 7→ ⊥],Θ[tid 7→ (M, pc + 1, s, l) :: R])

Exceptional Transitions

Θ(tid) = (o) :: (M, pc, s, l) :: R

pc′ = handler(M,h, o, pc) pc′ 6= ⊥

(h,Λ,Θ)→ (h,Λ,Θ[tid 7→ (M, pc′, s, l) :: R])

Θ(tid) = (o) :: (M, pc, s, l) :: R

handler(M,h, o, pc) = ⊥

(h,Λ,Θ)→ (h,Λ,Θ[tid 7→ (o) :: R])

API calls

API calls are treated specially, as discussed in Section 2. The rules below only deal

with invocation of API methods. Other invocations (client code calling client code) are

standard, and we don’t spell out the rule here.

Θ(tid) = (M, pc, o :: v :: s, l) :: R

M [pc] = invokevirtual c.m c ∈ API

(h,Λ,Θ)→ (h,Λ,Θ[tid 7→ (�) :: (M, pc + 1, s, l) :: R])

Exceptional return from an API method:

Θ(tid) = (�) :: R

(h,Λ,Θ)→ (h,Λ,Θ[tid 7→ (o) :: R])

Normal return from an API method:

Θ(tid) = (�) :: (M, pc, s, l) :: R

(h,Λ,Θ)→ (h,Λ,Θ[tid 7→ (M, pc, v :: s, l) :: R])

