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Abstract—If we are to deploy sensor applications in a real-
istic business context, we must provide innovative middleware
services to control and enforce required system behavior; in
order to correctly interpret collected temperature data, for
example, sensor applications require guarantees about minimal
coverage and the number of available sensors. The extreme
dynamism, scale and unreliability of wireless sensor networks
represent major challenges in contemporary software manage-
ment. This paper presents QARI, a middleware service for
decentralized and quality aware software deployment, which
offers a simple yet flexible way to define, enforce, and maintain
software deployment specifications. We have evaluated QARI
on the LooCI component model and the SunSPOT platform;
results confirm that QARI enables quality aware software
deployment for a single as well as multiple applications, and
even in the presence of node failure and mobility.

Keywords: fault tolerance, large scale networks, manage-
ment, middleware, quality aware

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are inherently dy-
namic, unreliable and large in scale. In addition, WSNs
are evolving towards interconnected, multi-purpose sensing
infrastructure that is expected to host multiple applications.
These applications may be deployed by diverse actors, who
make use of sensor network infrastructure in return for direct
payment or reciprocal application hosting.

Middleware is traditionally used to facilitate software
management of such interconnected, multi-purpose network
infrastructure; the complexity of WSNs is orders of magni-
tude greater than traditional distributed systems and requires
sophisticated software management support. In previous
work, we have presented (1) a novel component and binding
model for resource-constrained sensor devices [1] and (2) a
hierarchical, adaptive, graph-based approach to supporting
reconfiguration in WSNs [2]. In this paper, we present
QARI (Quality Aware Reconfiguration Infrastructure), a
middleware service for decentralized, quality aware software
deployment.

The characteristics of interconnected, multi-purpose
WSNs make it difficult, if not impossible for a central
entity to perform reliable and efficient software deployment
throughout the whole (sensing) infrastructure. This is in part
because (1) no central entity can have perfect knowledge of

system state, and (2) traditional deployment semantics do
not consider WSN-specific characteristics.

The decentralized approach of QARI eliminates the need
for global knowledge of system state and allows QARI to
exploit WSN-specific characteristics in the deployment pro-
cess. In QARI, deployment is delegated to local management
entities near the deployment target. Developers specify the
required quality using a simple, yet flexible quality aware
deployment specification. The local management entities
use this specification to inform the efficient deployment of
software, based upon locally gathered context data and the
specific characteristics of the deployment target.

The current class of wireless SunSPOT (and alike) sen-
sor devices [3] forms an ideal prototyping environment to
evaluate the next-generation middleware services that are
needed to support critical business scenarios (e.g. monitoring
high-value pharmaceutical products throughout the supply
chain). We have realized a prototype implementation of
QARI for the LooCI component model and the SunSPOT
platform. This prototype uses a simple coverage metric for
specification of the required quality level. We evaluated
the QARI approach using the prototype on both a physical
testbed and a simulated sensor network.

In the remainder of this paper we first discuss related
work (Section II). We then present and evaluate QARI, our
decentralized, quality-aware deployment service (Section III
and Section IV). Finally, Section V concludes and discusses
directions for future work.

II. RELATED WORK

This section analyzes the state of the art in software
deployment support for WSNs and discusses quality aware-
ness in WSNs. Three categories of runtime support for
deployment and reconfiguration can be distinguished [4]:

• Monolithic: replace all functionality during the update
by re-flashing and re-starting the nodes.

• Script-based: change the behavior of previously de-
ployed functionality by injecting lightweight scripts.

• Modular: replace coarse-grained units of functionality
(modules) at run-time.

Deluge [5] is a reliable epidemic code dissemination
protocol that is used to support monolithic flashing of a
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network of TinyOS [6] motes. Deluge focuses upon achiev-
ing good network performance, providing high throughput
and imposing minimal additional overhead due to control
messages.

Replacing a complete code image using Deluge with
only small changes to the behavior implies a large energy
overhead for a small functionality change. Script-based
approaches such as Maté [7] address this by supporting the
injection of lightweight scripts that are interpreted on the
sensor nodes to drive the execution of pre-deployed TinyOS
functionality. DVM [8] combines this approach with the
dynamic modules of SOS [9] to remove the pre-deployed
limitation of Maté.

The Sun SPOT [3] and Sentilla Perk [10] WSN platforms
are Java based and allow for modular reconfiguration via the
dynamic deployment of MIDP 1.0 compliant Java applica-
tions. SOS [9] and Contiki [11] provide similar support for
the deployment of binary application modules that are dy-
namically loaded into the operating system. While this is an
improvement over monolithic approaches, the relationships
between modules are opaque and may not be reconfigured.

On top of these runtime systems, reconfigurable com-
ponent systems (such as OpenCOM [12] and LooCI [1])
provide additional support to change the composition of re-
configurable functional blocks (components). A combination
of these runtime types might be used to achieve this: for
example, DAViM [13] uses a modular runtime to update
coarse grained units of functionality (components) and a
script based approach to change the interaction between
these components.

We aim to provide quality aware management of deployed
functionality regardless of the deployment approach used.

The quality-of-service (surveillance) that can be provided
by a particular WSN is commonly expressed in terms of k–
coverage or related coverage metrics. Most approaches [14],
[15] calculate coverage after deployment, propose node
deployment heuristics or otherwise use coverage informa-
tion in single application WSNs. We propose to exploit
the knowledge of coverage requirements to optimize the
software deployment process in shared WSN scenarios.

MiLAN [16] also addresses the topic of determining the
optimal subset of sensors that is required to reach a desired
quality-of-service level. MiLAN confirms that there are usu-
ally multiple subsets of sensors that can provide the required
data, but with different quality-of-service properties. We
believe that this knowledge can be exploited to improve and
optimize the software deployment process in shared sensor
network scenarios.

III. QUALITY AWARE SOFTWARE DEPLOYMENT FOR
WSN

Figure 1 shows an overview of QARI, with Applica-
tion Managers and Network Managers as key abstractions.
Application Managers are the entities responsible for the

Figure 1: An overview of QARI, our approach for
quality aware software deployment (right) and a high-
level architecture of the Network Manager component
(left).

management of one or more sensor network applications.
Application Managers split their centralized deployment
plans into smaller deployment specifications for decentral-
ized processing by Network Managers [2]. These specifica-
tions include a description of the component to deploy as
well as details of the desired quality level (expressed as an
interval from the minimally required level to the preferred
level). We therefore call them quality aware deployment
specifications.

The Network Manager, which is close to the WSN, is
responsible for merging specifications into a single target
specification for the software deployment of the WSN. It
deploys and updates the software on the WSN to reach and
maintain this target state.

This approach provides a clean separation of concerns.
The definition of the quality requirements, which requires
application specific knowledge, is handled by the Applica-
tion Managers. The responsibility for achieving and main-
taining these quality requirements, a task which requires lo-
cal, network specific knowledge, is handled by the Network
Manager.

A. Enacting and monitoring deployment

This section describes how network monitoring and soft-
ware deployment functionality is realized by the Network
Monitor and Deployment components. The Planning com-
ponent is responsible for deployment planning and main-
tenance (see Section III-B). It uses the feedback from the
Network Monitor and Deployment components to keep its
Network Model up to date (see Figure 1).

The Network Monitor and Deployment components are
the interface to the WSN and apart from their deployment
and monitoring functionality, they perform two additional
tasks: (1) they provide a point of virtual synchrony (i.e.
they expose monitoring of and deployment to the WSN as
operations on a synchronous system, although the WSN is
asynchronous in nature) [17] and (2) they abstract WSN
platform specific details. To perform their tasks they use
platform specific knowledge, e.g. to select appropriate time-
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outs for node failure detection, to select the appropriate
deployment mechanism for a given deployment request, etc.

The Network Monitor uses platform specific knowledge
and mechanisms for gathering information about the WSN.
It implements a publish-subscribe interface over which this
network information is disseminated to interested software
entities (such as the Planning component). Remote entities
that wish to be notified of changes in the WSN environment,
should implement the IMonitoringListener interface and
subscribe themselves at the Network Monitor which then
pushes notifications of node failures, notifications of node
arrivals and notifications of status changes of a deployed
component.

The Deployment component provides an abstraction on
top of one or more platform specific deployment mech-
anisms. The Planning component interacts with the De-
ployment component through the IDeployment interface that
allows the Planning component to deploy, start, stop and
undeploy a component—in the remainder of the paper, we
use the term component for a piece of software that is
independently deployable— on a given list of addresses.
Each of the methods indicates in its return value for which
addresses the action succeeded. The interface is called in
synchronous fashion by the Planning component, thus it is
up to the Deployment component to decide when an action
must be considered unsuccessful (and thus provide virtual
synchrony over the asynchronous WSN).

B. Deployment planning and maintenance

The Planning component of the Network Manager assigns
components to sensor nodes based on the specifications it
receives from the Application Managers. The calculation of
these assignments uses local knowledge about the WSN.
The Planning component also updates the assignments in
reaction to significant changes in the WSN, which it is
notified of through the Network Monitor component.

The specifications contain a description of the component
that is requested—called component type in the remainder
of this paper—and two quality levels: a minimal and a
preferred level. These quality levels are expressed as a
coverage metric. Future extensions might incorporate other
quality metrics, such as communication delay or sensor data
accuracy.

Initial deployment: When a component type is to be
deployed for the first time, the Planning component first
calculates an assignment that achieves the minimal coverage
needed for the component type. After the component type
has been deployed to this initial assignment, the assignment
is updated to achieve the preferred coverage for the compo-
nent type.

Combining specifications: The Planning component cal-
culates only one assignment per component type. If there are
multiple specifications for the same component type coming
from different sources, the Planning component calculates

an assignment for the component type that satisfies at
least the minimal coverage of all specifications. If possible,
the Planning component will try to satisfy all preferred
coverages.

The possibility of sharing component deployments across
multiple applications is a clear benefit of delegating de-
ployment to the WSN edge. The individual Application
Managers have no means to optimize deployments based
on the requirements of other applications. However, since
the Network Manager is responsible for enacting all de-
ployments, it has the knowledge required to perform such
optimization.

Failures: The Planning component reacts to node and
component failures by calculating a new assignment. The
new assignment is updated locally—i.e. only in the vicinity
of the failed node—to repair the coverage while making
as little changes as possible to the original assignment.
This minimizes the disturbance to the network and the time
needed to reach the targeted coverage again.

Node mobility: Node mobility is handled in a similar
manner to node failure: the component assignment is up-
dated locally around the area where the node left. If the
node is not needed to ensure coverage in the area it moved
to, the corresponding component will be removed from the
node.

Network sharing: The Planning component uses local
knowledge about the state of the WSN (gathered through
the Network Monitor) to minimize the interference between
applications. As discussed above, the Planning component
combines multiple specifications for the same component
type.

For different component types, two measures are taken to
minimize the interference. First, the Planning component
takes the state of a sensor node into account during the
calculation of an assignment. One of the parameters which is
accounted for is the number of components already deployed
on a sensor node. This way, different components are spread
as evenly as possible across the WSN.

Second, the Planning component schedules deployment
actions so that at least the minimal coverage of other com-
ponent types is maintained during the deployment. To realize
this, the Planning component splits a deployment in multiple
smaller deployments that have less effect on the network.
That way, the minimal coverage of other component types
is only broken if it is absolutely necessary.

IV. EVALUATION

This section evaluates a prototype implementation of
QARI. We evaluated the Planning component in two ways.
First, we implemented a prototype of the Network Monitor
and Deployment components for a WSN using the LooCI
component model [1] and the Sun SPOT [3] WSN platform.
We tested our approach using a test-bed of 9 standard
Sun SPOT motes (180MHz ARM9 CPU, 512KB RAM,
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Figure 2: Coverage for Node A

SQUAWK VM ’BLUE’ version).
The implementation of this prototype relies on the primi-

tives offered by the LooCI component model. The Network
Monitor component uses the LooCI introspection function-
ality. The Deployment component depends upon the LooCI
deployment primitives, which themselves build upon the
standard Sun SPOT deployment approach [3]. Currently
this provides only unicast deployment, thus deployments
to a group must be sequenced and executed in a one-by-
one fashion. However, since the IDeployment interface is
defined in terms of lists of nodes, the Deployment component
could also be implemented for other platforms that support
deployment to a group.

Second, we implemented a dummy version of the Network
Monitor and Deployment components that simulate a grid
of 10x10 sensor nodes. This allowed us to move beyond
simple feasibility tests and conduct the analysis provided in
the Sections IV-B to IV-D.

A. Case Study and Coverage Heuristic

We evaluated our approach in the context of a warehouse
monitoring scenario. In this scenario, a storage company,
STORAGE-CO, uses a WSN infrastructure to monitor the
conditions in a temperature controlled warehouse. Nodes
participating in the STORAGE-CO WSN are evenly dis-
tributed throughout the warehouse which is divided into
100 unique zones (9 zones for the physical testbed). Each
node hosting a TEMP-SENSOR component has an effective
radius for which it can provide temperature reading. For the
purposes of our case study, we simplify the effective radius
to the unique areas adjacent to the location of the node.
Figure 2 illustrates our notion of coverage for Node A, which
is deployed in unique area 6 and may be used to monitor
the surrounding areas (2,5,7,10). Our simple coverage metric
allows developers to specify a minimal and preferred number
of nodes that should cover each unique area. For example,
STORAGE-CO may wish to deploy TEMP-SENSOR com-
ponents in such a way that every unique area is covered by
at least one node and preferably two nodes.

The Network Manager Planning component uses a heuris-
tic algorithm to calculate an assignment that satisfies the
coverage requirements. The algorithm orders the areas based
on the number of nodes that are able to cover the area. It
then considers each of the areas in this order. For each area,
the algorithm adds the best nodes to the assignment until
the area is sufficiently covered. The best nodes are defined
as the nodes that are not already in the assignment and have

Figure 3: Calculated deployment patterns for a single
component type.

the best score associated. The score is calculated based on
the number of currently uncovered areas the node covers,
the number of components already running on the node and
the reputation of the node. The reputation of a node is used
to penalize nodes that have failed in the recent past.

If there is an assignment that satisfies the coverage re-
quirements, the algorithm is always able to find it, since it
keeps adding nodes until all areas are sufficiently covered.
The algorithm doesn’t always find the best assignment, but
our experiments show that it always finds a good assignment
with respect to the current state of the WSN.

B. Single application coverage

To demonstrate the feasibility and correctness of the
coverage heuristic, we evaluated our approach by applying
different coverage requirements for a single component
type to our 10x10 simulated testbed. The experiments de-
fined quality requirements by setting the following mini-
mal/preferred coverage parameters: 0/1, 1/2 and 2/3. We
executed each experiment 10 times, each of which yielded
the same deployment pattern.

The realized coverage patterns for each experiment are
shown in Figure 3. In the case of 3/4-coverage, there is
no assignment that provides 4-coverage since the corner
areas have only three neighboring nodes. In such cases, our
system generates an “as good as possible” assignment: all
other areas still maintain sufficient coverage to meet the
requirements.

Once the areas in the grid are sorted, the prototype cal-
culates the optimal deployment pattern in O(n), where n is
the number of areas. The calculation requires on average 8.3
ms for a 10x10 grid (Sun Java 1.6.0 16, Pentium D 3.2GHz,
1GB RAM). Transferring the TEMP-SENSOR component
requires 1692 bytes to be sent to a selected node, installing
and starting it takes 9 seconds, which considerably improves
the throughput of manually updating each sensor node in the
field (even in the case of this relatively small test case).

C. Multiple application coverage

QARI enables not only to deploy components for a single
application (i.e. the same component type on every selected
node), it also allows for sharing the WSN infrastructure by
multiple applications. We have verified this by deploying
both a TEMP-SENSOR and a HUMIDITY-SENSOR com-
ponent.
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Figure 4: Calculated deployment patterns for a shared
network: TEMP-SENSOR (light gray) and HUMIDITY-
SENSOR (dark gray). The preferred coverage for each
deployment is also indicated in the figure.

Figure 4 shows the deployment patterns of this test case;
again, three experiments were defined with different min-
imal/preferred coverage requirements: (1) single coverage
for both the TEMP-SENSOR and the HUMIDITY-SENSOR
component, (2) double coverage for the TEMP-SENSOR
component, and single for the HUMIDITY-SENSOR com-
ponent, and (3) double coverage for both applications.

As illustrated, QARI is able to maximally spread different
applications over the WSN, while not breaking the coverage
requirements of other applications. Only when no alternative
deployment patterns exist (Figure 4 right side), QARI will
deploy multiple applications on a single node.

D. Resilience to node failure and mobility

Having sketched the feasibility of QARI to achieve cover-
age requirements in an automated and correct way, we finally
show that QARI is able to maintain quality requirements in
the context of unreliable network conditions, i.e. deployment
failures, node failures and node mobility.

We have reevaluated the single application test case
(cfr. Section IV-B), and randomly injected failures during
component deployment. QARI succeeded in establishing a
usable deployment pattern; obviously, in case of failures, the
generated deployment patterns deviate from the patterns in
Figure 3 (worse in terms of the number of nodes involved).

In addition, we evaluated the capability of QARI to
maintain coverage requirements in case of node failures.
We evaluated this by randomly removing nodes from and
reinserting nodes into the testbed and verifying the system’s
reaction. As expected, QARI was able to (1) detect that
coverage was no longer optimal and (2) reapply the heuristic
to start a new deployment cycle. As long as enough nodes
were alive, QARI was able to re-establish a coverage pattern
that satisfies the requirements.

QARI minimizes the impact of a node failure by locally—
in the vicinity of the failed node—repairing an assignment
instead of globally re-assigning component types to nodes.
For each of the 10 experiment runs, recovering from a failure
that affected an existing assignment took at most 3 repair
actions; on average only 1.69 repair actions were needed.

Figure 5 shows the minimal and average coverage over
time for one of these runs. The coverage requirements for
this experiment were 1 and 2 (minimal and preferred).

Figure 5: Minimal and average coverage over time in
the presence of node failures.

QARI is able to keep the minimal coverage that is actually
achieved between these bounds. It can be seen from the
figure that at around 3s, the minimal coverage achieved
is lower than the preferred coverage for about 1.5s. This
is because not enough nodes were available to realize the
preferred coverage for some areas. QARI recovers from this
situation when enough nodes reappear. Even if it is not
possible to meet the requirements—preferred coverage or
in the worst case minimal coverage—, QARI tries to do
“as good as possible”, resulting in a good level of average
coverage despite the fact that the coverage of some areas is
lower than preferred.

Node mobility is handled in a similar way to node failure:
a mobile node disappears in one area (cfr. node failure) and
appears in another (cfr. node reappearing).

E. Discussion

In the previous sections we illustrated the feasibility of
our approach and presented a quantitative evaluation of
our prototype implementation. Given the limited simulation
environment, we were not able to perform quantitative
scalability tests. However, since the Network Manager runs
on a less resource constrained device at the edge of the WSN
and our measurements in Section IV-B indicate a reasonable
performance, the scalability of QARI is expected to be
bounded by the scalability of the underlying deployment
mechanism.

The number of node failures that QARI can tolerate
without breaking the coverage requirements will of course
depend on the level of node redundancy in the network.
Also the failure pattern will influence the failure rate that
can be tolerated. If the failed nodes are concentrated in a
certain area of the network, less failures can be tolerated than
when the failed nodes are spread over the whole network.
If the number of component types on the network is larger,
the number of possible assignments will also be limited by
the capabilities of the nodes to run multiple components
simultaneously. This will also have an effect on the number
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of failed nodes that can be tolerated.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented QARI, a decentralized, quality
aware deployment service for inclusion in management
middleware for interconnected, multi-purpose sensing in-
frastructure. QARI offers developers a simple, yet flexible
specification of the desired quality. The realization of these
specifications is delegated to an entity close to the sensor
network. This entity uses locally gathered contextual data to
achieve and maintain the required quality.

We have realized a prototype implementation of QARI for
the LooCI component model and the SunSPOT platform. We
evaluated QARI using this prototype and a simple simulation
environment.

We see several opportunities for future work. First, we
intend to extend the deployment specifications to include a
more rich specification of the desired quality to allow QARI
to optimize deployment in even more cases. Second, we
consider it useful to further research the influence of the
scoring used to select the best nodes in our heuristic. Finally,
we plan to extend the simulation environment to facilitate
more quantitative analysis and scalability testing.
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