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HELEN DE CRUZ

TOWARDS A DARWINIAN APPROACH TO
MATHEMATICS

ABSTRACT. In the past decades, recent paradigm shifts in ethology, psychol-
ogy, and the social sciences have given rise to various new disciplines like cog-
nitive ethology and evolutionary psychology. These disciplines use concepts
and theories of evolutionary biology to understand and explain the design,
function and origin of the brain. I shall argue that there are several good
reasons why this approach could also apply to human mathematical abilities.
I will review evidence from various disciplines (cognitive ethology, cognitive
psychology, cognitive archaeology and neuropsychology) that suggests that
the human capacity for mathematics is a category-specific domain of knowl-
edge, hard-wired in the brain, which can be explained as the result of natural
selection.
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tion, cognitive archaeology, evolution

1. WHY A DARWINIAN APPROACH TO MATHEMATICS?

The philosophy of mathematics has not paid much attention
to the biological context of mathematics, although it stands to
reason that mathematicians are biological organisms, and that
they produce mathematical theory and practice with their brains.
Human mental faculties have been the object of scientific research
for centuries. Recently cognitive scientists (e.g. Barkow et al.,
1992; Cosmides and Tooby, 1994; Sperber, 1996) have placed
human mental faculties into an evolutionary perspective. The
ability to do mathematics has traditionally been considered as
a human faculty without any survival value, and thus not fit
for a Darwinian approach. For example, Wallace, with Dar-
win the co-founder of the theory of natural selection, was so
impressed by the power and scope of the human mind, that he
could not believe it could have arisen through natural selection
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(Cartwright, 2000, 17). At first sight mathematical abilities do not
seem vital to survive and reproduce. In this paper, I shall investi-
gate the epistemology, explanatory power, and methodology of
a Darwinian approach to mathematics.

1.1. Setting the Metaphysical Framework: Top-down Versus
Bottom-up Approaches

A Darwinian approach to human mental faculties is a typical
bottom-up type of explanation. To understand its full implica-
tion it is necessary to examine the metaphysical nature of this
type of explanation. When studying complexity (e.g. in physi-
cal or biological processes) a scientist may apply either one of
the following metaphysical frameworks, top-down or bottom-
up. A top-downer believes that every form of complexity arises
from a higher faculty, usually God or some Platonic world. The
traditional Neo-Platonist Christian worldview is typically top-
down. It conceives the world as a hierarchical system where every
higher step influences a lower one, but not vice versa (Wildiers,
1989). God is on the top of this ladder, and influences every lower
step. The angels are below God (they cannot influence him, while
he has control over them), and the celestial objects are below
the angels (which is why they were supposed to be controlled
by the angels, and were themselves thought to influence men).
Philosopher of science Radcliffe (2000) has persuasively argued
that our current worldview is still heavily biased by Neo-Platonist
metaphysics. Opposition of scientists and non-scientists alike to
a recent paradigm shift in the cognitive sciences, that our mind
is shaped by the evolutionary process of natural selection, is at
least partly founded on a top-down approach, even though they
themselves may not be aware of that. A bottom-up approach
consists of a metaphysical view where lower faculties shape and
influence higher faculties, and where complex forms arise from
simpler phenomena. A standard example is Darwin’s theory of
natural selection: life arose from simple physical processes, and
complexity in life arose gradually due to a blind process of nat-
ural selection (Darwin, 1859 [1985]). Living simple organisms
arose from lifeless matter, living complex organisms evolved out
of simpler organisms.
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Which metaphysical framework is best suited for an inquiry
into the foundations of human mathematical competence? There
are several good reasons why a bottom-up approach is episte-
mologically more valid: it is refutable, more parsimonious, and
has a greater explanatory power than the top-down approach.
A top-down approach is irrefutable, indeed impossible to test.
If we cannot exert any influence on the alleged higher facul-
ties that influence us, then we cannot hope to study them on a
scientific basis. On the contrary, a bottom-up approach usually
relies on simple things to explain complex things. These can be
measured scientifically, e.g. under the microscope, and processed
statistically; in other words, the data are quantifiable. The valid-
ity of a model also depends on its explanatory power. A model
that provides a coherent explanation for a range of phenomena
that were unexplained before, or explained by unrelated models,
deserves attention. Related to explanatory power is parsimony,
which means explaining complex phenomena with simple explan-
atory mechanisms. Parsimonious explanations are favoured over
rich explanations, which are usually unwarranted presupposi-
tions. Although Occam’s razor cannot be used indiscriminately
to decide between competing theories, it has in the past repeat-
edly proven to be a reliable tool. Thus, Copernicus’ model of the
planets orbiting around the Sun was a simpler explanation for
observed trajectories of the planets than the complex medieval
models of the Sun and planets revolving around the Earth. Top-
down approaches offer complex, rich explanations for complex
phenomena, while often relying on unwarranted presuppositions.
Bottom-up theories explain complex phenomena in terms of less
complex ones, and are therefore more elegant as well. Finally,
a scientific model is more likely if it provides a good fit to the
observed facts. Since top-down theories often rely on unobserv-
able or immeasurable higher faculties, they often fail to provide a
good fit to reality. Bottom-up theories can or cannot provide this
fit, but they can at least be tested using quantitative methods.

1.2. Top-down and Bottom-up Approaches in the Philosophy of
Mathematics

In the philosophy of mathematics, two schools stand out as mod-
els for our top-down/bottom-up categorization. So called Plat-
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onists believe that mathematical objects have their own existence,
outside the human mind. When new mathematical ideas arise,
these are not invented by mathematicians – since they were already
out there – but merely discovered. How the link between this
world of mathematical ideas and the brain of the mathematician
is established, remains vague and unexplained. This connection
is empirically unobservable. The Platonist view on mathematics
is a top-down approach. A complex phenomenon (mathemat-
ics) is explained by an even more complex one (an unobservable
Platonic world). We will never be able to study this world on a
scientific basis, which makes the Platonist idea irrefutable. The
notion of a world of mathematical ideas seems incredibly rich
and unwarranted. Its only advantage might be that it seems to
provide a good fit with the fact that some mathematical ideas have
unusual and surprising side effects (even to their discoverers), e.g.
game theory has become an indispensable tool in economics, evo-
lutionary biology, and anthropology.

On the other hand, constructivism provides an example of a
bottom-up approach to mathematics. In this approach, mathe-
matical objects do not exist outside culture or the human mind.
Humans construct mathematical ideas, which are part of a cul-
tural tradition (White, 1949, 282–302). Constructivism is testable,
refutable, and does not rely on rich explanations. It provides a
good fit to the history of mathematics, as exemplified in the evo-
lution of π . Egyptian, Babylonian, Chinese, and Indian mathe-
maticians expressed the relation of the radius of a circle to its
circumference by a numerical. Over time, the numerical expres-
sion became more and more accurate in describing this relation-
ship (Gheverghese Joseph, 1990, 190–191). Despite its epistemic
simplicity, there are several methodological drawbacks to the con-
structivist approach: it leaves unexplained the surprising applica-
bility of mathematics to empirically observed facts. We still lack
a scientific model for a bottom-up approach of mathematics that
meets the criteria of testability, explanatory power, and fit with
observed phenomena. In this paper, I will try to outline what this
model should look like, and what its epistemological framework
should be.
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1.3. A Brief History of Western Notions About the Human Mind

Humans have always had a desire to set themselves into con-
text, both as individuals and as a species. This desire undeniably
stems from the scope and properties of the human mind. One of
the greatest challenges to science is to investigate how this mind
came into being (Gowlett, 1984, 167). It is therefore not surpris-
ing that the mind itself has been the object of scientific research
and philosophical reflection for centuries.

Traditionally, the western notion of the human mind has been a
top-down approach. This is largely because Christianity has dom-
inated western thought since late Antiquity. In Christian meta-
physics, following Plato, a human being consists of a body and
a soul. Furthermore, Descartes’ view on human cognition has
had a great influence on our way of thinking about human cog-
nitive abilities. The Cartesian distinction between body and soul
made every biological approach to the human mind impossible,
because the biology of our body is perceived as completely sepa-
rate from the workings of the mind. Locke’s doctrine of the mind
as a blank slate states that it is infinitely plastic, with all its struc-
tures coming from impressions, learning, experience and sociali-
zation. Although the empiricist approach was not the only view
on the human mind, it has dominated Western scientific notions
on the mind until the second half of the twentieth century. Some
nineteenth century scientists questioned the blank slate view (e.g.
Freud), but by the first half of the twentieth century it was the
prevailing view. In the social sciences, anthropologist Franz Boas
showed that cultural change did not depend upon any evolution-
ary or biological basis. By the 1920s and the 1930s, the evolution-
ary approach to human mind and culture was eradicated (Foley,
1995 [1997], 4). Anthropologists in the field (e.g. Malinowski,
Mead) found support for this idea in non-western cultures, which,
according to them, exhibited an unlimited variability of human
behaviour and social patterns. Recent re-examination of their
results indicates that they often ‘nudged’, or in the infamous
case of Margaret Mead, even forged their data to make them
more in keeping with the blank slate theory (Freeman, 1996).
This paradigm is also apparent in other disciplines, e.g. in devel-
opmental psychology, where Piaget’s theory of staged cognitive
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development was generally accepted as an accurate account of
the way in which the child’s mind developed. According to him,
children are born without knowledge and gradually learn to deal
with the world as they are confronted with its properties. In the
field of research on animal cognition, a similar pattern can be
observed. In the late nineteenth century, it was generally believed
that animals had thoughts and emotions not unlike our own.
Darwin’s Expression of the Emotions in Man and Animals (1872
[1998]) exemplifies this. This idea was later challenged by behavi-
ourists, who explained every action an animal performs as the
reflex (response) to a stimulus. Every response thus depended
on previous experiences. Take Pavlov’s dogs: they were taught
that food always comes after an auditory signal. After a while,
the dogs started salivating at the signal, even without any food
(Cziko, 1995, 88–89). In the behaviourist model, like in the blank
slate model for human cognition, the animal mind is a blank slate,
shaped by experience alone.

In the second half of the twentieth century, scientists of vari-
ous disciplines started to doubt the blank slate model of human
cognition.Chomsky (1972) noted that children learn language
much faster than they are supposed to, considering the poverty of
the stimulus. They infer language rules (verb conjugation, word
order) that are never explicated by their parents from a relatively
limited sample of spoken language. They can make new sentences
they have never heard before according to those rules. The only
solution to this riddle is that the human mind has information to
add to the stimuli from the outside world. In other words, it has
a device to decode rules from the language the child hears when
it learns to speak. Evolutionary epistemology provided a philo-
sophical background for these nativist ideas. Campbell (1974)
proposed that the brain, like other organs, is the result of natural
selection, and that this process shapes both our perception and
cognition. Imagine an animal whose perception corresponds to
its environment. If it sees a predator approaching, it correctly
judges it a predator, and flees. Imagine another animal with an
unreliable set of perceptual abilities: it might fail to interpret the
predator as such, and will be eaten. Undoubtedly, the animal
with a reliable perception can reproduce better than the one with
an unreliable perception. Our cognition and perception do not
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deceive us, because it is vitally important that they correspond to
the world we live in. We would never have survived in a hostile
world if our view of the world did not have some correspon-
dence with the world. Since the 1970s, cognitive scientists from
various disciplines like developmental psychology and cognitive
ethology started to challenge the blank slate view on the human
mind (see e.g. Barkow et al., 1992; Hirschfeld and Gelman, 1994;
Shettleworth, 1998). Space precludes an exhaustive description
of these paradigm-shifts; instead, I will focus on their impact on
the research on human mathematical abilities.

2. A STARTING POINT TO A DARWINIAN APPROACH TO
MATHEMATICS: MATHEMATICAL ABILITIES OF ANIMALS

All biological inquiries into the nature of human cognitive abil-
ities have to account for the apparent gap between human cog-
nitive abilities and those of other animals (Gowlett, 1984, 167).
Humans possess a range of unique faculties, e.g. complex lan-
guage, art, mathematical abilities, which are absent in other spe-
cies – even in our closest living relatives the African apes. How can
this be explained? A good starting point to a biological approach
to human cognitive abilities is to try to establish how animal
minds work in general. In order to do this, we must turn to cog-
nitive ethology, the science of animal cognition. Cognition refers
to the mechanisms by which animals acquire, process, store and
act on information from the environment. These include percep-
tion, learning, memory and decision-making. Cognitive ethol-
ogy is concerned with how animals process information, starting
with how this is acquired by the senses (Shettleworth, 1998, 5–6).
Research into the cognitive abilities of animals mainly has been
conducted for two reasons: first, to gain a better understanding
of the mental capacities of humans by testing other animals for
these capacities, and second, as an end in itself, an inquiry into the
cognitive abilities of different species, rather than an attempt to
understand our own species better. We can attain a better under-
standing of cognitive abilities of our own species, when we com-
pare them with those of other animals (Davis and Pérusse, 1988,
561).
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2.1. Clever Hans and Morgan’s Canon

The story of Wilhelm von Osten and his horse Hans is infamous
in cognitive ethological research. He claimed he had taught his
horse to perform arithmetic. When presented with a simple addi-
tion or subtraction exercise written out on a chalkboard, Hans
would tap the correct result with its hoof. Hans always managed
to do this, and his master firmly believed in the horse’s mathemat-
ical skills. In 1904, a committee of university experts investigated
the matter. It turned that Hans was very clever indeed, though
he was more of a psychologist than a mathematician. He relied
on clues his master and attending audiences unconsciously gave
him: the tension in his master and the audience peeked as he was
close to the correct answer. When this clue was not available – if
no one in his proximity looked at the blackboard, or knew the
answer – he failed to give the correct answer. This story infa-
mously illustrates the methodological difficulties researchers of
animal cognition face (Devlin, 2000, 24).

There are two solutions to the Clever Hans problem. The first
is an epistemological tool, Morgan’s Canon. According to this
canon, one must explain an animal’s behaviour in the simplest
possible terms of cognitive capabilities (Cartwright, 2000, 5). It is
a special case of Occam’s razor. For instance, if bees make hexago-
nal honeycombs, we could suppose that bees possess innate capa-
bilities for geometry. The honeycomb conjecture, which holds
that a hexagonal grid represents the best way to divide a sur-
face into regions of equal area with the least total perimeter, was
recently proved by Hales (2002). Does the bee consciously con-
struct hexagons? It seems more parsimonious to suppose that it
instinctively uses several short cognitive circuits to construct a
honeycomb, e.g. the angles (120◦) can be constructed, with grav-
ity as a point of reference, because a bee has a special organ
in its neck, which tells it the direction of the gravitational pull.
When a honeycomb is damaged, bees fix it using irregular polyhe-
dral shapes instead of neat hexagons (Ball, 1999, 25–27, 48–49).
The second solution to the problem posed by Clever Hans is rig-
orous experimenting, in which all possible interfering variables
are eliminated. The evolutionary approach (e.g. Shettleworth,
1998; Shettleworth, 2001; Hauser, 2001) is also very useful in
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predicting which cognitive skills will arise, and why. According
to this approach, the question “Can animals do geometry?” is
unjustified, since it rests on an anthropocentric view on the world,
which puts humans forward as the point of reference. Instead, we
should ask ourselves: given the specific ecological conditions, how
can this animal find its way? By using this approach, researchers
have been able to narrow down the choice of their subjects (e.g.
seed-storing birds are supposed to have better spatial cognition
than non-seed-storing birds).
2.2. Evidence of Animal Mathematical Cognition

Cognitive ethologists differ from behaviourists in their claim that
animals have intentions and beliefs, and that they consciously
reflect about their plans and course of action. Cognitive etholo-
gists do not deny the possibility that animals can have complex
thought processes (Shettleworth, 1998, 7). Despite this episte-
mological framework, current testing of animal’s mathematical
cognition is conducted in a rigorous way, to minimize the risk of
the Clever Hans phenomenon. Morgan’s Canon is always applied
to test if a simpler explanation could account for the results. It
often proves difficult to set up an experiment in which an intu-
itively appealing idea (e.g. animals have at least a rudimentary
sense of number) can be tested, and in which all possible more
parsimonious explanations (e.g. animals are influenced by the
behaviour of the researcher) can be excluded. Nevertheless, cog-
nitive ethological research has provided us with a wide variety of
evidence that animals can perform mathematical tasks, among
them an understanding of number (numerosity), geometry, and
algorithmic behaviour.

2.2.1. Numerosity
The story of Clever Hans may have cast a pall over research on
animal counting, but did not end it. Research on animal numer-
ical abilities is important for issues in animal cognition research,
and in current debates about animals’ cognitive abilities, e.g.
behaviourism vs. cognitivism, skepticism vs. credulity. Whereas
earlier research was restricted to evidence of explicit counting
(which animals rarely, if ever do), current research focuses on a
wider variety of internal mathematical operations involving num-
ber (Shettleworth, 1998, 364–365), like the sensitivity to ratios of



166 HELEN DE CRUZ

time intervals, estimation, subitizing (to quantify small numbers
of items (n < 4) without conscious counting), relative numeri-
cal judgments (which quantity is bigger), and estimation. These
numerical skills are generally described as numerical competence
(Davis and Pérusse, 1988). Tests on animal numerical competence
have been conducted in the wild and in laboratories. Observations
of a wide variety of animals in the wild suggest that they engage
in forms of calculation to maximize energetic intake on foraging
trips. They calculate average rates of return in one patch of food so
that they can either stay or switch to another patch (Emlen, 1966).
Chimpanzees in the wild sometimes attack and kill a member of
another group. They only attack the individual if he is alone, and
if the attackers are at least three in number (Hauser, 2001, 55).

The earliest laboratory experiments on animal numerical com-
petence were conducted by Köhler in the 1950s and 1960s (Devlin,
2000, 22). Jackdaws were trained to select from a number of
covered boxes the one having a certain number of spots on the
lid (ranging from 2 to 7). Other experiments in the 1980s (cf.
Shettleworth, 1998) have shown that rats and pigeons can be
taught to respond selectively to different numbers of objects.
However, this is an unnatural sort of behaviour that can only be
elicited by relatively stressful experimental conditions (Griffin,
2001, 132). To overcome this problem, the following experiment
(McComb et al., 1994) was conducted with free-ranging lions
in the Serengeti Plain (Tanzania). The experimenters taped roars
that were unfamiliar to the pride they were studying (lions can dis-
tinguish roars from familiar and unfamiliar individuals). When
the tape with only one unfamiliar roaring lion was played, the
lions of the pride were more likely to approach than when three
unfamiliar roaring lions were heard. This experiment implies that
animals can also count non-visual stimuli. However, this does not
rule out that lions can make a rough estimate of the number of
lions according to the intensity and sound-pattern of the roaring,
instead of actually counting them.

Another experiment in natural conditions shows that pea-
cocks can perform number estimation. A peacock displays its
tail to seduce females into mating with him. Peahens tend to
choose males with tails displaying more eye-shaped spots over
those with less eye-shaped spots. The result is that peacocks
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have great differences in reproductive success, which is why
(according to sexual selection theory) peacocks evolved spectac-
ular tails with a great number of eyespots. To test whether this
observation actually means that females make relative numer-
ical judgments, or whether the males with more eye-spots are
more desirable for other reasons (e.g. better health), an exper-
iment was conducted in which some males were captured by
researches and had 20 eye-spots removed at the end of a mat-
ing season. Control males were captured and handled in a sim-
ilar fashion, but did not have any spots removed. Peacocks
with removed eye-spots had less mating opportunities during
the next mating season, whereas the control males that had
been similarly handled (though without having any eye-spots
removed) did not. This implies that peahens use number esti-
mation to choose between potential mates (Petrie et al., 1991).

Chimpanzees are our closest living relatives. Numerical com-
petence in chimpanzees might therefore be important to our
understanding of human numerical competence. The female
chimpanzee Ai was trained in the Primate Research Institute
at Kyoto University to use symbolic language (on a computer
panel) to test her numerical skills. This research focused on the
cardinal and ordinal meanings of number. She was extensively
trained to label objects according to colour (red, green, yel-
low, blue or black), to object recognition, and to number (1–9).
Ai typed the answers on a keyboard. Gradually her accuracy
in number labelling of novel samples improved as her train-
ing progressed to include ever larger numbers and more objects
and colours. In a typical test, Ai sees five red toothbrushes. She
presses on the appropriate keys ‘red’, ‘toothbrush’ and ‘5’. Ai
could freely choose in which order she assigned the attributes,
but she consistently chose number as the last attribute. In addi-
tion, her accuracy was lower in number-attribution than in col-
our-attribution or object-recognition. This test does not show
whether Ai experiences difficulties in counting, or whether she
has difficulties assigning a number (symbol) to a number of
objects. In an additional study on cardinality, Ai was trained
to count the number of dots on a screen – that is, to assign
them to a numerical symbol on the keyboard. Her performance
was highly accurate, but not perfect (83.6 % for randomly
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positioned dots, 79.2% for dots arranged in a single line). The
time required to complete this task was compared to that of
human subjects. Chimpanzees, like humans, take remarkably
less time to count dots where n<4 than those where n>4. This
unconscious swift counting mechanism is called subitizing. The
results show that chimpanzees do not seem to count the dots
consciously (sequential tagging, as humans do), but instead use
a form of estimation when the number is larger than 4 (Biro and
Matsuzawa, 2001). Rumbaugh et al. (1987) tested chimpanzees’
ability to do mathematical operations (summation). Chimpan-
zees were presented with two trays, each containing a pair of
food wells with chocolate bits. Each tray held a different total
number of chocolate bits. E.g. the left hand tray contained a
well with one bit and one with three bits, whereas the right
hand tray contained a well with two and one with four bits.
Chimpanzees gradually learned to pick the greater sum, espe-
cially if the ratio of larger to smaller amounts was relatively
high. Control tests showed that chimpanzees do not base their
choice on the contents of just one well, but on the sum of the
bits in both wells.

2.2.2. Geometry
Many animals regularly return to particular locations (e.g. hives,
nests, caches), which implies that they possess so called cognitive
maps, information to guide them from their current location to
their goal. Do these cognitive maps contain information about the
geometric relationship among objects? A wide variety of animals
with a relatively primitive brain can find their way, e.g. bees forage
routinely between their hive and feeding sites hundreds of meters
away. Both tests in laboratories and field observations show that
bees gradually get familiar with the hive and its surroundings
(Shettleworth, 1998, 311). Does this imply that social insects pos-
sess cognitive maps? Judd and Collett (1998, 710) have proposed a
more parsimonious explanation. They have shown that ants store
multiple views of the position of landmarks retinotopically to find
their way from a newly found food source back to their nest, and
all the way back again. They do not make an abstract represen-
tation of the geometric relationships between landmarks. Simi-
larly, rats do not seem to consider geometric relationships when
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they navigate inside a maze (Shettleworth, 1998, 313). However,
recent experiments have shown that some species, under some
conditions, use geometry to determine their orientation, to iden-
tify landmarks, or to find a place. This implies that the animal
identifies a landmark not by its appearance, but by its spatial rela-
tionship to other landmarks (Bielger et al., 1999). In one exper-
iment (Kamil and Jones, 1997), Clark’s nutcrackers (a species of
corvid) were encouraged to find the halfway point between two
landmarks. The learning process involved a seed which was par-
tially (but still visibly) buried halfway between two plastic pipes.
On the test trial, the seed was entirely buried. After a while, the
birds were presented with new distances between the pipes to test
their ability to generalize the geometric relationship between the
seed and the two landmarks. The birds readily learned to bisect the
interlandmark distance. They correctly found the halfway point
when the landmarks were presented with new distances between
them. The geometric sense of the birds was quite abstract, since
alteration of the height of one of the landmarks did not affect
their success at finding the seed. Simpler explanations were ruled
out, e.g. finding the seeds by smell or by cues other than geome-
try. It might be argued that the birds, during the training session,
learned the specific vectors for each interlandmark distance dur-
ing training. In this view, during a test, they would average the
vectors of the interlandmark in the training session closest to the
novel test (Bielger et al., 1999). This seems unlikely, since the birds
are more accurate in finding the line connecting the landmarks
than in locating the correct position on the line. This suggests
that they are making two separate decisions (Kamil and Jones,
1999): finding the line connecting the landmarks, and determin-
ing the halfway point on it. Clark’s nutcrackers store up to 33,000
pine seeds in literally thousands of cache sites during the autumn
months. The seeds constitute the bulk of their winter diet, and are
subsequently fed to their nestlings in spring (Gould-Beierle and
Kamil, 1999). It is therefore not surprising that these birds use
visual cues and geometric algorithms to find the stored seeds back.
Research on marsh tits (a seed-storing bird, not closely related to
Clark’s nutcracker) yielded similar results. They were allowed to
store seeds, which they had to take from a central place to different
cache sites of their own choice. The order in which they eventually
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retrieved the seeds was different from the one in which they had
originally stored them. Moreover, they did not retrace the same
paths they had taken while storing them (Shettleworth, 1998, 315).
Preliminary field observations and laboratory-tests on primates
(especially chimpanzees and vervet monkeys) indicate that pri-
mates also use geometric relationships in making a cognitive map
(Shettleworth, 1998, 317).

2.2.3. Algorithmic behaviour
Animals often give evidence of algorithmic behaviour while
systematically searching for food, since food is often patchily dis-
tributed among locations that vary spatially and temporally in
profitability. In one experiment, two species of intertidal fish (the
15-spined stickleback, and the corkwing wrasse) were tested on
their use of learned patterns of movement (algorithmic behav-
iour) in foraging strategies (Huges and Blight, 1999). An eight-
arm radial maze was designed, with a central compartment,
which gives access to the arms, with one food cup placed at the
end of each arm. Each fish was transferred to the central chamber
and allowed to forage freely inside the maze, where it could eat
the food-items it encountered. Each food cup contained a single
shrimp. To forage efficiently, subjects had to avoid arms that were
already depleted within the trial session. In absence of any spa-
tial cues (all the arms looked identical), the fish improved their
foraging efficiency by spontaneously developing the algorithm of
visiting every third arm. Algorithmic behaviour is especially effi-
cient when no sensory cues provide information to the location
of food-items. Thus, when coloured tiles were put in arms of the
maze, their previous algorithmic behaviour was largely subsumed
by the use of spatial memory, i.e. the coloured tiles were used as
landmarks.

3. HUMAN MATHEMATICAL CAPABILITIES SITUATED IN
HUMAN BIOLOGY: THE BRAIN AND MATHEMATICAL

COGNITION

3.1. Mathematics as Innate Behaviour?

Behaviourist psychologists and anthropologists thought of the
human brain as a general purpose computing device, processing
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information from the outside world. In this view, the responses
a brain produces are shaped by experience alone. The work of
Piaget (1952) provides a good example for this view on the brain
in relation to mathematics. According to him, children gradually
learn how to deal with both physical objects and mathematical
reasoning as they get older. The ability to count, he thought, arises
gradually at the age of five. It requires the prior development of
logic skills such as transitive reasoning and putting two sets of
objects (words for numbers and the objects to be counted) in a
one-to-one (ordinal) correspondence, and an understanding that
the number assigned to the last object represents the total num-
ber of objects counted (cardinality). In this intuitively appealing
conception of the mind mathematics represents a ‘higher’, ‘more
abstract’ form of reasoning, which young children do not possess
(Gelman and Brenneman, 1994, 372–373).

Piaget has been challenged by developmental psychologists,
who have investigated the numerical reasoning principles of
young infants. Starkey and Cooper (1980) presented infants (6–
12 months old) with slides with differently arranged sets of dots,
ranging from one to four. They proved that infants could tell the
difference between sets of one, two or three dots. They accus-
tomed them to watch slides with the same number of dots, but in
different arrangements. When they showed a slide with a different
number of dots, the infants stared longer at that slide – which indi-
cates that they show more attention to the number of dots than to
their arrangements. The infants could also discriminate among
small arrays that were identical in length, but not in number (e.g.
2 widely spaced dots vs. 3 more densely spaced dots). When the
number of dots exceeded 4, the infants could not tell the differ-
ence between, for instance, 4 and 6, and alteration in the number
of dots in this case did not affect the time they looked at the slide.
This use of larger numbers of dots ruled out the possibility that
they used other cues than number (such as overall brightness of
the image) in discriminating between the slides. The spontaneous
and automatic counting of small collections of objects (n< 4) is
called subitization.

In an experiment by Starkey et al. (1983) seven-month-old
infants were shown pairs of slides with either a number of dots
or a number of objects (ranging from 1 to 4), varying in colour,
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shape, size and arrangement. At the same time, they heard a num-
ber of drumbeats (ranging from 1 to 4). The infants preferred –
i.e. looked significantly longer at – slides with the number of dots
or objects which matched the number of drumbeats they heard.
This indicates that infants have an innate sense of number, which
is unrelated to the modality (visual or auditory) and type (object
or event) presented.

Wynn (1992) tested five-month-old infants’ ability to add and
subtract small numbers (n < 4). A typical experiment runs like
this: the infant is shown a stage with one puppet (its mother
holds the infant, but the position of the mother is such that she
cannot observe the stage). The curtain drops. The experimenter
visible puts another puppet behind the curtain, which is then
lifted. Some infants get to see two puppets, a number they should
expect. Others however, only see one puppet (the other being
secretly removed while the curtain was down). The experiment
shows that infants who see the impossible result (1+1=1) stare
at the screen for a significantly longer period of time than those
who see the expected result (1+1=2). According to Wynn (1992,
749), this test indicates that subitizing is not a holistic recognition
of non-numerical patterns, but that it encodes ordinal relation-
ships between numbers.

These tests provide sufficient proof to falsify Piaget’s view
on human mathematical skills. Apparently, simple mathemati-
cal exercises (counting, addition, subtraction) are not the result
of abstract, complex reasoning, but are innate – since parents
could not have taught these young infants how to perform these
skills. We have seen that other animals have the same biologi-
cally determined ability to attend to small numbers of objects or
events in their environment (Dehaene, 2000, 987). It is necessary
to understand how these abilities are situated in the human brain.

3.2. Mass Modularity

The cognitive psychologists realized that human perception is
not a ‘dumb’system that is triggered by outside stimuli like a sim-
ple reflex, but a ‘smart’ one: it filters out irrelevant information,
and conversely, it can produce a lot of inferences on the basis of
very poor stimuli (e.g. even the most rudimentary drawing of a
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face produces a rich set of inferences, like emotional state, gen-
der, or age). Fodor (1983, 1985) tried to reconcile the paradoxical
facts that our perceptual system is apparently ‘smart’ and ‘fast’,
behaving both like a reflex and like a sophisticated processor. He
concluded that our brain contains specialized systems to process
specific kinds of input from the outside world. He called these
modules. Modules are separate from each other and from other
cognitive processes. They work in isolation, only dealing with
input and knowledge in which they are specialized, e.g. a lan-
guage module will not deal with colors or shapes. Good support
for the modularity hypothesis comes from patients with brain
damage exhibiting domain-specific pathologies: they are bad in
one specific domain, while their other mental faculties remain
unaffected, e.g. cases of aphasia, the inability to recognize faces,
and numerous cases of acalculia (the inability to count or perform
arithmetic). Modules are fast, because they are specialized. This
makes evolutionary sense: an animal that could recognize a pred-
ator or prey quickly greatly increases its chances to survive and
reproduce. Modules are also ‘smart’, because the environment in
which they act is complex and variable.

Unfortunately, Fodor does not provide a good theoretical
framework to explain innate human mathematical abilities. The
title of his book, ‘The Modularity of Mind’, is misleading:
perception according to him is modular, whereas cognition is non-
modular. According to him the cognitive processes are ‘deeply
mysterious’ and will never be explained by scientific research.
Sperber (1996) proposed a more radical modular approach: every
single thought process, perceptual thinking as well as conceptual
thinking, and even meta-conception (thinking about thinking,
e.g. he thinks that I think about ...) is modular. His approach
envisages a mass of modules. Hirschfeld and Gelman (1994)
provide a wealth of experimental evidence that people have spe-
cialized conceptual modules to deal with specific kinds of infor-
mation, e.g. information about people, about living kinds, and
about physical laws. The conceptual modules work with infor-
mation provided by perceptual modules, or by other conceptual
modules. Innate physics provides a good example. People have
specialized cognitive circuitry to deal with the physical proper-
ties of inert objects. Even very small infants show surprise when
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they are confronted with physical events that violate the laws of
physics, e.g. when two solid objects do not collide but gently float
through one another. Information for this module is provided by
diverse visual modules (e.g. a module dealing with movement,
one with shape, etc.). A possible flaw in this line of reasoning is,
that some human activities are very recent in human history, e.g.
chess, mathematical theory, formal logic, and it seems unlikely
that specialized cognitive circuitry should have arisen for them in
such a short span of time. However, according to Sperber (1996,
134–143), a module does not only work on the domain for which
it has evolved (its proper domain). It can also be triggered by stim-
uli that resemble the proper domain (its actual domain). The only
thing it can do is respond to stimuli with certain properties for
which it has been selected by natural selection. This makes sense,
because a module does not ‘know’ for which domain it has been
evolved. Imaginary beings like unicorns, dragons, angels provide
an example. We entertain ideas about these creatures and store
information about them in a module for living beings. We might
for instance use modules for navigation in space (which we nor-
mally use in our day-to-day locomotion) when we play chess. We
may now ask ourselves: is mathematics a domain for which a
specialized module exists, or is it part of the actual domain of a
module which has arisen for a different proper domain, e.g. like
language?

3.3. Domain-specific Pathologies Related to Mathematical
Abilities

If you want to know what a particular part of a machine is for,
the best way to find out is to remove the part and see how (and if)
the machine works without it. Conversely, if a part of a machine
doesn’t work, and there is a flaw in the working of the machine,
it can tell you what that part is for. Butterworth (1999a) has
done extensive research on domain-specific pathologies related
to mathematical abilities. The patients he examined all had suf-
fered some kind of brain damage (e.g. a stroke), affecting some
of their cognitive skills while leaving others unaffected. A stroke
is an interesting pathology, since it damages only the area of the
brain fed by the affected blood vessel, thus inducing only domain
specific damage. Most of the patients exhibiting acalculia (the
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inability to count or do arithmetic) were affected in the left pari-
etal lobe (the area roughly above and behind one’s left ear). One
patient recovered fully from a stroke – she could still talk, reason
abstractly (if x is taller than y, and y is taller than z, is x taller
than z?), had good memory, but could neither count, add, nor
subtract. She could not subitize (tell at a glance) how many dots
were presented to her on a card, even if there were less than four, as
we have seen, something even infants can manage. Even the sim-
ples arithmetic is more than just fact retrieval. For example, two
patients could perform multiplication-tests quite well (probably
because the tables of multiplication were verbally stored in their
memory), but were unable to solve 12 × 4 given that 4 × 12 = 48
(Butterworth, 1999b). However, to prove that a certain cognitive
skill can really be assigned to one or more modules, we need two
kinds of evidence: a patient in whom this particular skill is miss-
ing, while other skills are still intact, but also one who still exhibits
this skill, but has lost some other cognitive abilities. Finding this
evidence is important, since many cognitive scientists (e.g. Chom-
sky) believe mathematics is just a special case of language, and
thus processed by the language module. If no subjects could be
found, the hypothesis that mathematical reasoning differs from
linguistic skills would be untestable. Compare this situation to
someone who has an injured knee, who can no longer run, but
still manages to walk. If we would assume from these data that
a knee is used in running, but not in walking, this would be an
erroneous conclusion. Unfortunately, since language is also sit-
uated in the left part of the neocortex (the great bulky mass of
grey matter that constitutes the largest part of the human brain),
most patients who lose this skill also lose mathematical skills.
One patient, affected by Pick’s disease (a disease causing demen-
tia, similar to Alzheimer) lost almost all his linguistic skills, but
was still good at addition, subtraction and multiplication exer-
cises presented to him on paper (Butterworth, 1999a, 163–169).
The data suggests that humans possess a mental device which
deals with recognizing small collections of objects (n < 4) at a
glance, deals with calculation and with comparison of quantities
(which is the bigger collection of a given set of objects).

Normal subjects can equally provide evidence for quick,
domain-specific handling of mathematical problems. Adults can
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quickly and without uncertainty tell which of two digits is larger.
How is this accomplished? It might be that the judgment is
based on a less perceptual, cognitive level, like memory access
in which the subject retrieves the numerals from memory and
compares them. Moyer and Landauer (1967) have examined the
time required for relative numerous judgments. Subjects were
presented with pairs of numerals between 1 and 9. Each digit
appeared 24 times to the right, and 24 times to the left in a ran-
dom order. Subjects were instructed to press either the left-hand
or right-hand of two switches according to whether the left or
the right digit was the larger. Surprisingly, the more the stimuli
differed, the quicker the reaction was – the distance effect. There
was no correlation between the difference in reaction time and the
shape of the numerals, e.g. 7 and 8 differ much in shape, but took
a longer time than 3 and 8, which are much more similar in shape.
The cognitive mechanism for this task could not be purely attrib-
uted to memory access, since these relations are hard to explain by
direct memory look-up. Later tests confirm this early experiment,
regardless of whether the stimuli were presented as Arabic numer-
als or as random dot-patterns. The test has also been conducted
with monkeys. The distance effect turned out to be strikingly sim-
ilar in monkeys and humans (Brannon, 2003, 279). When Moyer
and Landauer (1967) conducted this experiment, there was no
epistemological framework to explain the results. Now we have
the modular approach. If number is indeed processed by a spe-
cialized number-module, it is not surprising that this module is
more easily activated when the difference between two stimuli is
large. Similar experiments with pairs of pitches or pairs of col-
ours yielded similar results: the greater the difference between
two stimuli, the smaller reaction time tends to be (Moyer and
Landauer, 1967). If adults represent number non-verbally with
similar abstraction i.e. if mental magnitudes are indeed modal-
ity-independent, we can safely assume that number is processed
by a specialized conceptual module. Barth et al. (2003) asked
subjects to indicate whether two series of events (flashing circles
or a series of tones) carried the same number of events. Results
indicate that there was no cost in accuracy whether the test was
crossmodal (e.g. a series of flashes plus one of tones) or intra-
modal (e.g. two series of tones). This test provides evidence for
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the idea that mathematics is a cognitive domain that is processed
differently by our brain than for instance, physics or psychol-
ogy. This number module can rapidly perceive and count small
collections of objects (subitizing), and it can make rough estima-
tions of larger quantities. Some might even argue that these tasks
are handled by two different modules (Carey and Spelke, 1994,
176).

3.4. Direct Evidence for Domain-specificity in Mathematical
Skills

The most direct evidence we can obtain for any claim for domain-
specificity of a certain skill is to examine the brain itself, and
to look which parts of the brain are active during a specific
task. If all subjects use the same part(s) of their brain to per-
form the same task, we can infer domain-specificity for that task.
Fortunately, the brain can be studied directly using functional
magnetic resonance imaging (fMRI) or Positron Emission Tomog-
raphy (PET). Both methods rely on the fact that regions of the
brain that are more active during a task require more energy in
the form of glucose and oxygen (Greenfield, 1998, 35–36). Both
can provide highly detailed maps of brain activity. The evidence
for domain-specificity is increasing as the number of PET-scan
and fMRI studies in which subjects perform a wide variety of
tasks increase, like recognition of animals or tools (Martin et al.,
1996), and recently, mathematical tasks (Dehaene et al., 1999;
Dehaene, 2000). Using fMRI, Dehaene et al. (1999) have iden-
tified increased activities in the intraparietal sulci of both hemi-
spheres when subjects performed exact and approximate number
tasks. They showed more activation in the approximate number
tasks than in the exact ones, maybe because rote-learning (mem-
ory) plays a larger part in exact number tasks. In the close vicinity
of these areas are neural circuits that control finger movements
and eye-movements. This could explain why finger counting and
finger calculation is universally practised, and why it is an almost
universal stage in the learning of exact arithmetic in children
(Butterworth, 1999b). Areas for mental rotation and attention
orienting are also close by (Dehaene et al., 1999, 970–971), which
might account for the fact that visuo-spatial representation (e.g.
in the case of geometry) and number tasks are closely linked in
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mathematics. Dehaene (2000, 994) made a PET-scan study of
subjects performing multiplication and comparison of number
pairs. He found bilateral parietal activation, i.e. in the left and
the right hemisphere parietal lobes, confined to the intraparietal
region. Interestingly, the strength and duration of these activities
increased as the tasks got more difficult, but did not depend on the
modality or notation in which the numbers were presented. E.g. in
a comparison task for number pairs similar to that of Moyer and
Landauer (1967), close distance between the numbers activated
the mathematical modules more than greater distances. Again,
notation did not matter in this task, since ‘7’ does not resemble
‘8’ any more than ‘2’ resembles ‘8’ (Dehaene, 2000, 995).

4. ADAPTATIONISM AND HUMAN MATHEMATICAL ABILITIES

How did our mental faculties come about? Why do we share
some mathematical skills (e.g. numerosity, geometry, algorith-
mic behaviour) with other animals, and why are others uniquely
human? Behavioural and cognitive traits in animals (and humans)
can be explained in several ways (e.g. behaviourism, cognitive
psychology, behavioural ecology). Evolutionary theory provides
a strong deductive framework for explaining human and other
animals’ cognitive capacities. One of the central achievements of
modern evolutionary biology has been the recognition that selec-
tion operates on the level of the gene (Williams, 1966; Tooby and
DeVore, 1987). Genes govern the development of organisms. The
morphology, development and behaviour of an organism are an
expression of its genes. These genes are copied from one genera-
tion to the next when the organism reproduces itself. This copying
process is not flawless: small mistakes occur, resulting in variation
in the gene pool of a species. Every organism has the ability to
reproduce itself in very large numbers, but we observe relatively
stable populations. This is because most resources (food, water,
space) are limited. Some variations of a gene give rise to traits
which give its bearer a reproductive advantage over other mem-
bers of the same ecological community, e.g. it can be beneficial in
feeding strategies (increasing the likelihood that the bearer will
survive), or it can make its bearer attractive to members of the
other sex (increasing likelihood that its bearer will reproduce).
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These genes have a greater chance of being passed on to the next
generation. In other words, natural selection favours genes that
increase the chance of reproduction of an organism or increase
its inclusive fitness. Thus, a beneficial gene will be passed on to
the next generation and will spread in the population over time,
while a deleterious one will die out, because organisms bearing
them cannot reproduce as well. Thus, any complex heritable trait
can be expected to be adaptive, i.e. to be beneficial for its bearer’s
reproductive success. The adaptationist approach holds that nat-
ural selection is the only important force driving evolutionary
change (see e.g. Orzack and Sober, 2001). Of course, random
genetic drift can also account for many genetically coded fea-
tures. This explanation, however, is less applicable for traits that
exhibit complexity and apparent design. This is because the accu-
mulated probability that a large number of genes cooperate to
make a complex and ordered trait is extremely low (Tooby and
DeVore, 1987, 194–195). As we have seen, the cognitive circuits
governing mathematical abilities in humans and other animals
are extremely complex, fine-tuned and accurate. The most likely
explanation therefore, is that these are the result of natural selec-
tion, not of the stochastic effects of genetic drift.

The brain is an organ that takes decisions that ensure
survival and reproduction, e.g. about mate choice, food acquisi-
tion, predator avoidance. Because animals live in different nat-
ural and social environments, these organs will differ in their
internal organizations according to these environments. As the
brain is a costly organ (requiring a vast amount of energy com-
pared to other organs), every mental ability an animal exhib-
its, has to serve some evolutionary purpose. These simple facts
of evolutionary theory predict that every animal will possess
a brain that is adapted to its environment, i.e. the animals it
must compete with (conspecific and non-conspecific), organ-
isms it eats or by which it gets eaten, and climatological and
other physical factors. A brain can be compared to a tool-
kit: every animal has a toolkit appropriate to its survival and
reproduction. Specific problems give rise to specialized cogni-
tive solutions, e.g. animals living in complex social groups will
have cognitive mechanisms to govern social interactions which
solitary animals will lack (Hauser, 2001). From an evolutionary
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perspective, everything a brain can do has contributed to the
fitness of the ancestors of the bearer of the brain. From an
anthropomorphic Platonist point of view cognitive thought-
processes are more ‘advanced’ than perceptual processes. This
distinction is ungrounded. There is no clear boundary between
perception and cognition, since even the most simple perceptual
task requires computation (e.g. a frog cannot perceive anything,
unless it moves). Moreover, from an evolutionary point of view,
perception is no less vital than pure cognition (whatever that
may be). Not many animals have invested as much as humans
in cognitive modules; on the contrary, most animals possess
a fairly simple brain with fewer neural connections. A brain is
not only an interpreter of sensory input, it is also vitally impor-
tant in decision making about feeding, finding a mate, avoiding
risks, care for offspring, forging social alliances, and so forth.
Divergence from the universal toolkit occurs when species con-
front unique ecological or social problems (Hauser, 2001, xvi).

4.1. Mathematical Abilities We Share With Other Animals

The research on animal and human mathematical abilities I have
discussed indicates that mathematical abilities are widespread
among the mental toolkits of different species. This can be the
result of two scenarios: either mathematical abilities arose once,
in a common ancestor to all the animals currently possessing
the trait, or it could have arisen several times independently. The
wing of a sparrow has the same phylogenetic origin as that of the
parrot. Such a trait is homologous. This would imply that our
mathematical abilities and those of other animals are the result
of an adaptation in a common ancestor. Maybe the ability to
count is an ancient feature of vertebrate animals, which arose in
an ancestor to birds and mammals, and gave such an advantage
that the trait still persists in all descendants (see e.g. Dehaene,
2000, 996). On the other hand, analogous traits are traits that are
similar in function, but that do not share the same phylogenetic
origin. The wing of the bat and the wing of the sparrow have
evolved independently, despite their apparent similarity in func-
tion. Mathematical skills, according to this scenario, arose several
times independently. This seems to be the more likely scenario,
since similar mathematical skills have been found in a wide variety
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of species from widely diverging families (e.g. fish, reptiles, birds,
and mammals). Mathematical abilities like numerosity, algorith-
mic behaviour and geometry are common in the mental toolkits
of various animals. Number, for instance, is a natural attribute
of the environment that can be discriminated by non-human ani-
mals (Davis and Pérusse, 1988, 561).

Natural selection can only operate on short term advanta-
ges, not on possible benefits in the long run. Yet, because of its
accumulative effect, it can generate complex design. The classic
example of the evolution of the eye is a good illustration. Clearly,
an eye cannot arise at once. It can evolve in small steps, each one
being slightly better than the previous, across thousands of gen-
erations, e.g. first a light-sensitive membrane (which is better than
being totally blind), then gradual adjustment of the membrane
to project shapes into the brain, etc. Because the eye offers its
bearers an adaptive benefit, it arose several times independently
(Dawkins, 1986 [1991], 77–92). A logical result is that the evolu-
tion of a brain is also a gradual process, in which each change is
slight, and offers a slight adaptive benefit of its bearer. To pro-
duce a scenario for mental evolution, we must think of a small
organism, very primitive, without any mental abilities. One of its
descendants develops a primitive eye. To interpret the stimulus,
together with the eye, a perceptual module has to arise to deal with
visual stimuli. Over time, this organism develops several percep-
tual modules (e.g. hearing, scent) together with organs for sensory
input (ears, nose). Imagine a mutation in which the organism has
a shortcut in its brain with the following simple algorithm: ‘if
you see an animal larger than yourself, run away’. This shortcut
depends for its information on input from the perceptual mod-
ules. It offers its bearer a huge adaptive benefit, and will spread
quickly. A conceptual module has arisen. Over time, an animal
can develop several conceptual modules to help it cope with cog-
nitive problems in its environment (Sperber, 1996). Modules will
arise in the gene pool of a population as a response on statistically
recurring problems. Similarities in design can arise when the set
of possible solutions to recurrent problems is limited (Hauser,
2001, 18). It is therefore not surprising that some modules are
universal, since all mobile organisms have to deal with problems
of a similar nature: the laws of physics, counting and navigation
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(algorithmic behaviour) are three sets of cognitive skills that have
been selected for in many species. The number module discussed
previously provides animals with a quick mechanism to distin-
guish quantities in their environment, and offers them a great
advantage in making sense of the world. It enables the mind to
reduce complicated forms of input (objects in time and space)
to simple numerical relationships (Newberg et al., 2001, 50–51;
188–189). Both the ability to make rough estimations and exact
counting of small collections of objects could help an animal to
make decisions more quickly and accurately (e.g. yonder patch
seems to contain more food items than the current one, so I will
move to that one). Other examples include keeping track of pre-
dators or prey, the care for eggs or young, and even mate selection,
e.g. in polygamous bird species, females seem to count how many
females each male can attract, to choose the one which gets the
most attention (Ridley, 1993 [2000]).

4.2. The Evolution of Uniquely Human Mathematical Abilities:
The Evolving Mind

From an evolutionary perspective, every trait shared by living peo-
ple (e.g. the human brain and its properties) must have arisen
at some point in our evolutionary history (Tooby and DeVore,
1987). E.g. if we all walk on our hind legs, this must have arisen at
some point in one of the extinct species that were ancestral to mod-
ern humans. In the case of bipedalism, the fossil record can prove
this. Behavioural traits are much more difficult to attest in the fos-
sil record: we cannot observe them directly; instead, we must infer
them from the archaeological and fossil record. Uniquely human
traits must have evolved in the course of hominid evolution, as
a response to recurrent problems our ancestors faced (Cosmides
and Tooby, 1994). To understand when and why these arose, we
have to study extinct hominids and the environments in which
they evolved. To examine which mathematical skills they had, we
must turn to cognitive archaeology. Cognitive archaeology infers
cognitive abilities and thought processes or belief systems from
the past by looking at the archaeological record. The validity of
the results depends of the reliability of the archaeological record,
while rigorous testing – like in cognitive ethology – is not possi-
ble (Lake, 1998). If we understand which problems recurred in
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the course of human evolution, we can get a better understand-
ing of how our mind is designed, and why we evolved the specific
mental mechanisms it possesses today. The design or functional
organization of the mechanisms present in our current cognitive
architecture reflects the workings of natural selection in the past
(Barkow et al., 1992; Cosmides and Tooby, 1994).

4.3. What Mathematical Skills are Uniquely Human?

Even though we share many mathematical abilities with other
animals, humans exhibit mathematical skills that are more com-
plex than those found in other species. Humans can count like
other animals, but they can count greater quantities, and they
can perform arithmetic much more accurately than other ani-
mals. Humans can do geometry, like some birds, but they can
perform sophisticated geometric skills, like mental rotation and
mental imaging of geometric shapes. Only humans have come up
with mathematical theory. It could be argued that mathematical
theory is a product of large-scale societies (China, India, Phara-
onic Egypt), which have developed very recently in human evolu-
tionary history. However, small-scale societies, hunter-gatherers,
and small farming or pastoralist societies, also have mathematical
theory (Ascher, 1991 [1998]). Anthropologists have documented
kinship-systems in Australia and Melanesia that resemble western
formal mathematical theories, with their use of axioms, proposi-
tions and a strict set of rules to make valid propositions (Ascher,
1991 [1998], 69–81).

4.4. Complex Geometric Skills

Human complex geometric skills are best explained as a set of
mental adaptations to the unique niche Homo occupied since
the late Pliocene: that of stone tool technology and scavenging.
In the late Pliocene, a global cooling and drying event occurred
around 2.7–2.6 myrs ago (deMenocal, 1995). At the same time,
in East Africa, the formation of the Rift Valley blocked Atlan-
tic moist winds to East Africa (Pickford, 1990). Because of this
decline in precipitation, East Africa’s dense tropical forest was
gradually replaced by a more xeric environment with patchier
vegetation. The Australopithecines, ancestors to all later homi-
nid lineages, relied on high-energy plant foods, like fruits. When
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these were no longer abundant, selective pressure favoured new
feeding strategies in hominids, like meat-eating (early Homo) or
the consumption of large quantities of low-energy plant foods
(Paranthropus). The genus Homo was the first hominid lineage to
exploit animal food systematically. The oldest stone tools, found
in Gona, Ethiopia, dated at 2.6–2.5 myrs ago can be linked to
this change in diet (Semaw et al., 1997). Experimental archae-
ology shows that these tools can be made by striking one stone
at a certain angle to a platform of another stone. This produces
flakes (which have sharp edges) and cores. To knap stones suc-
cessfully, one must position the flaking stone at a correct angle to
the striking platform. If knapped successfully, a shell-like (con-
choidal) flake with razor sharp edges will be flaked off. Even the
oldest stone tools reveal that Homo had a sophisticated knowl-
edge of fracture mechanics and deliberately turned the core while
knapping (Roche et al., 1999). Micro-wear analysis on the stones
and on animal bones reveal that these tools were used by scav-
enging hominids to obtain meat and within-bone tissue (mar-
row). Sharp flakes were used to scrape off meat from bones that
were left by the predator that killed the animal. Hammer stones
(what is left of the core when flakes have been removed) were used
to break open long bones containing nutritious marrow, and to
break open the skull to obtain brain tissue (Blumenschine, 1995;
Capaldo, 1997). Stone tool-making abilities shaped our math-
ematical abilities fundamentally, because they exerted selective
pressure on modules for assessing two- and three-dimensional
shapes. Evidence for this comes from an experiment in which
a skilled contemporary stone knapper, Nicholas Toth, had to
flake simple stone tools, referred to as Oldowan technology, while
his brain was being PET-scanned. The right upper parietal lobe
showed a marked increase in activity while Toth was knapping.
This area of the brain is commonly used to make a coherent
model of external objects in space (the proper domain of this mod-
ule). It uses information from perceptual modules for interpreting
visual and tactile stimuli. Patients with brain damage in the right
upper parietal lobe can no longer make a coherent image of the
space that surrounds them (Stout et al., 2000, 1220). Although
the mind not the modern knapper is not identical to that of hom-
inids of 2.5 myrs ago, it seems reasonable to suggest that stone
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tool-knapping exerted selective pressures on conceptual modules
that we still use in geometry nowadays (geometry has become a
part of the actual domain of this module). For instance, knapping
to produce a scar on the opposite face requires both actual experi-
ence of apparent motion and the ability to simulate this movement
in the mind. Non-human primates have a variable and limited
capacity in this field but none of them can actually perform men-
tal rotation (Brown, 1993, 236, 241). Though some primates have
exhibited variable and simple tool-use in the wild, e.g. chimpan-
zees use hammer stones to crack nuts (Boesch and Boesch, 1993),
they have no specialized modules to deal with tool-use. They do
not understand the dynamics of stone tool knapping, as is shown
in an experiment in which the bonobo Kanzi was encouraged to
make stone tools to cut off a rope around a box containing a food
reward. Kanzi repeatedly failed to produce sharp flakes, because
he did not understand the knapping process (Toth et al., 1993).

Hand axes, stone tools that appear in the archaeological record
at about 1.4 myrs ago, and dwindle away at about 250, 000 years
ago, show an even better understanding of geometry and fracture
mechanics compared to the earlier stone tools because of their
constancy in design: they are always shaped like a teardrop, and
are bilaterally symmetrical. Hand axes exert even more from the
geometric imaging device in the upper right parietal lobe, since
its shape is fixed. Some archaeologists (e.g. Noble and Davidson,
1993; McPherron, 2000) have argued that the constant shape of
the hand axe is the result of the knapping process, and that the
hominids who made it did not intend to make a symmetrical
shape. The evolution of the hand axe makes this unlikely, since
its shape becomes progressively symmetrical and ever more pre-
cise. After 500, 000 BP the trimming (accurate removal of small
flakes to produce symmetry) is very extensive, and some of the
removed flakes are not useful as tools. Also, the bilateral sym-
metry extended in three dimensions: it extends to all the cross-
sections of the artefacts, including cross-sections oblique to the
major axes (Wynn, 2000).

4.5. Complex and Accurate Numerical Competence

To understand why humans are very good at dealing with
numbers and calculations, we have to examine numerical skills
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cross-culturally. There are languages with very few words for
numbers; they have for instance only numerical words for one,
two, many. Most of these cultures do not trade extensively, so
an easy to handle vocabulary for numbers is not necessary. In
every culture, people use external means to represent numeros-
ities. In some cultures, e.g. the Aranda (Australian aborigines),
lines drawn in the sand, sticks or pebbles are used to indicate
numerosities. In other cultures, parts of the body (sometimes just
the fingers and toes, sometimes all parts of the body) correspond
to numerosities (Ifrah, 1985). Thus, an indigenous Papua New
Guinean may not have a specialized word for 16, but he can say
‘right little toe’ to represent 16 (Butterworth, 1999a, 54–58). What
is important for counting is that a fixed order of words or items is
used in a one-to-one correspondence with the items to be counted
(ordinality) Thus, we cannot count a collection of, say 5 objects,
if we do not keep the order of Arabic numerals fixed (e.g. 2, 10, 8,
6, 4 => the result of the counting (4) is wrong). If the words are
parts of the body, used in a fixed order, they can be used to count
as well as Arabic numerals. This externalization (body parts, tal-
lies, or pebbles) is the key to explain why humans are so good
at counting and performing other cognitive tasks. Humans can
externalize processes of their brain into the outside world, e.g. on
their bodies. Externalization expands the capacity of the individ-
ual human brain, because it can be used to remember, calculate
and reason better than an individual brain can. The first solid evi-
dence for the externalization of thought-processes occurs at about
40, 000 BP in the archaeological record. These are objects in bone
or antler, incised with regular patterns of notches. Undoubtedly,
they have been used to count, or to keep track of cyclical patterns
in the environment. Marshack (1972) thinks they represent lunar
calendars. d’Errico (1995) devised the more general term Artifi-
cial Memory System. The notched objects in bone or antler are
devices to remember numerical patterns, e.g. counting of group
size, or timing of animal migratory events. It is no coincidence
that evidence for more efficient fishing and hunting occurred at
the same time as the first Artificial Memory Systems appeared
in the archaeological record in Africa and Europe, at about 40,
000 BP. Coastal sites of South Africa (Blombos Cave, Klasies
River Mouth and Die Kelders Cave 1) show an abrupt change
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in hunting and fishing techniques at this time (the Middle Stone
Age to late Stone Age transition, being the ascent of the cultur-
ally modern Homo sapiens). From the ages of the fur seals they
ate, we can infer that LSA people timed their coastal visits to the
August-to-October interval, when nine to ten month-old seals
could be easily captured on the shore and when resources inland
were at their poorest (Klein and Edgar, 2002, 239). This implies
an understanding of recurrent patterns (cyclicity) which is not
found in earlier hominids, and which could only be facilitated
with Artificial Memory Systems. The evolutionary advantage of
AMS is that humans were able to exploit their environment more
efficiently, as soon as they could externalize and store cyclical
patterns outside their brains.

4.6. Mathematical Theory

Some mathematicians might argue: this Darwinian approach
might tell us something about some basic human and animal
mathematical abilities, but it can never explain the scope and
power of mathematical theory. How could we explain, for exam-
ple, counter-intuitive concepts, like infinity or

√
2? How to explain

the fit and surprising user-friendliness of mathematical theories,
which can be frequently used for purposes for which they were
originally not intended? This feeling of awe is the main reason why
so many mathematicians are Platonists: they feel as if mathemat-
ical ideas lay dormant, waiting to be discovered. Such feelings are
not unique to mathematics: musicians, painters and writers also
experience that their work is an existence in its own right and that,
in some ways, it transcends them. Instead of assuming Platonic
worlds for painting, mathematics, or music, it might be wiser to
ask whether creative thought processes give rise to these feelings.
Creativity is essentially a neurological process in which humans
connect old ideas to form new ideas, or in which they transform
an existing set of ideas (a conceptual framework) so radically, that
a completely new set of ideas can arise. Creative people, mainly
scientists and artists regularly experience that this arises naturally
and unconsciously, in such unlikely places as their bed, bath or
bus (Boden, 1990). On a neurological level, creativity might be
the result of random firing of neurons, resulting in the connection



188 HELEN DE CRUZ

of two or more sets of previously stored domain-specific knowl-
edge areas, thus giving rise to a new idea. This random firing also
occurs in other animals, where it generates unpredictable behav-
iour. Sometimes this unpredictability offers a huge evolutionary
advantage, e.g. a rabbit makes random jumps if pursued by a
predator, and can escape because its course cannot be predicted
(Miller, 2000, 392). Hominids, in the course of their evolutionary
history, have heavily relied on their cognitive capacities.

How can mathematical theory be reconciled with modular
thinking? If every thought we generate can be described as the
output of a specialized cognitive circuit, how can we explain
mathematical theory? Some human behaviours, like playing ten-
nis, chess, science, religion, and mathematical theories have arisen
too recently in human cultures to be the direct product of nat-
ural selection. As we have seen, natural selection can only work
slowly over many generations in response to statistically recur-
rent problems. Of course, one could always concoct a story in
which a novel-looking trait (such as music) seems a biological
adaptation. A typical just-so story would run like this: music
was favoured by natural selection, because mothers who could
sing their babies to sleep attracted less predators. However, such
application of the evolutionary approach is ill founded, because
it merely assumes the adaptive character of a trait without a plau-
sible demonstration. To resolve this problem, I turn to Sperber’s
distinction between proper domains, actual domains and cultural
domains for modules. Modules respond to each kind of stimulus
to which they have evolved to respond to, e.g. numerical tasks
activate a number module. Since modules do not know whether
this stimulus is actually one for which they are evolved, they will
respond to any stimulus that resembles their proper domain. It
can be inferred from Martin et al. (1996) that PET-scans of sub-
jects looking at drawings of animals are not unlike those of sub-
jects looking at real animals. The set of all possible stimuli to
which a module will respond constitutes the actual domain of
the module. Most animals depend on information they acquired
by themselves. In test-situations where animals were forced to
choose between acquiring information from conspecifics or by
themselves, they always choose to acquire information by them-
selves (Giraldeau et al., 2002). Humans, on the other hand, rely
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very heavily on information they get from others. (Consider, for
instance, that almost everything you know about this planet stems
from information provided by others and not from first-hand
experience). This is partly because we have a complex communi-
cation system, which enables us to express an unlimited variety
of thoughts, and partly because we have ways to store informa-
tion externally (in the form of AMS). Thus, a module can be
triggered by information that is provided by other people, this is
its cultural domain. In memetics, bits of cultural information are
replicators (like genes) who compete for space inside our heads,
and which (like genes) have differential reproductive success (see
e.g. Dawkins, 1989; Blackmore, 1999). Memetics can explain why
some ideas are very widespread, while others remain virtually
unknown. E.g. horoscopes are extremely successful: they are well
known and practiced enthusiastically in great parts of Europe,
America, India and China, and many people firmly believe that
celestial bodies influence their lives. Conversely, mathematical
theory is poorly transmitted. Many children find mathematics
difficult and unrewarding, and are discouraged to practice math-
ematics later in life. Why is mathematical theory so unsuccessful
in transmission (in memetical terms: why is it unfit?). Sperber
(1996) proposes that the success of any cultural trait depends
on its fit with the innate information of a module. As we have
seen, modules are not empty but provide additional informa-
tion to specific kinds of stimuli. If a cultural trait matches this
innate information very well, it has a greater chance of success.
For instance, in Western culture, laypeople can easily acquire
information about dinosaurs. Even though we will never see a
living dinosaur, we can easily grasp inferred information about
these animals, because they match our ideas about animals, e.g.
dinosaurs are reptiles (body-plan), lay eggs (mode of reproduc-
tion), and can be carnivorous or herbivorous (diet). On the other
hand, some information provides a severe violation to innate
modular information. Because ideas that violate this informa-
tion are extremely arresting, they also have a great tendency to
be transmitted. Boyer (2001) has argued that religious ideas are
so widespread, because they violate some types of innate mod-
ular information, while being in strong concordance with oth-
ers. Ghosts, for instance, are people, and they behave as other



190 HELEN DE CRUZ

people do (they have motives, desires, they can get angry or be
pleased). This is in accordance with modules we have developed
to interact with other people, called Theory of Mind Modules.
However, ghosts also violate innate physics, because they can go
through walls, and appear and disappear at will. This mind grab-
bing mixture of intuitive and counterintuitive ideas appears to be
so irresistible, that concepts about ghosts will readily spread in any
cultural group. This explains why religious beliefs are universal,
and why novel religious ideas can become successful in any soci-
ety, e.g. reincarnation has become popular in current Western folk
beliefs. Other cultural ideas provide a less easy fit or a less obvi-
ous violation to a specific module. The module will not respond
very well, or will only do so after years of intense tutoring and
training. Mathematical theory is such a cultural trait. Though we
have innate mechanisms to deal with number, geometry, and algo-
rithms, it is hard to combine these abilities in a formal framework.
Apparently, we do not usually need to combine and formalize our
mathematical skills, and evolution has not provided us with any
shortcuts to do so. It does not follow that mathematical theory
is non-modular (since all thinking is modular according to the
Mass Modularity hypothesis) – it does mean that humans are not
genetically disposed to deal with mathematical theory, as they
are with interpersonal interaction, counting or tool use. The fact
that a trait is not the result of evolved properties does not make it
less valuable or less universally applicable. The scientific method
is also a very rare and recent cultural trait that has only arisen
once, in Western culture, in the course of the seventeenth century.
No one would deny its universality and applicability. In the same
way, mathematical theories are very useful as models to describe
patterns in this world.

A final question might be why mathematical theory is so apt
to describe the world. Mathematical theories have successfully
been applied in physics, biology, economics and psychology. This
is because the world is not chaotic, but has recurring patterns.
Like other animals, humans can recognize these patterns. Math-
ematical theory is a tool for describing patterns accurately – it
is about relationships between abstract entities. It follows that
these abstract descriptions of patterns can be applied to patterned
phenomena in the world. Human mathematical theory is much
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more complex and far ranging than animal mathematical abili-
ties, because human brains are much more specialized and com-
plex. Furthermore, humans can accumulate knowledge in AMS
(e.g. books), for instance about actual patterns in the world, or
models abstracting these patterns (e.g. mathematical theory). The
creativity humans show in making connections between these
abstract models, and the patterns they perceive in reality, is caused
by the (sometimes random) neural shooting between domain-
specific sources of information.

5. CONCLUSIONS

I have reviewed extensive empirical research indicating that sev-
eral mathematical abilities are present in infants and other ani-
mals. There is abundant convergent evidence from cognitive
ethology, developmental psychology and neuropsychology that
these abilities are the result of category-specific neural circuits
(modules). I have also shown that a Darwinian (adaptationist)
approach is theoretically the most plausible way to explain these
modules. The evolution of human mathematical abilities is still
little understood. In this paper, I have suggested some possible
ways in which conceptual frameworks from evolutionary biology,
cognitive archaeology and cultural evolution studies can contrib-
ute to a reconstruction of the evolution of human mathematical
abilities.
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