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ABSTRACT 

Diagnostic studies of ocean dynamics based on the analysis of oceanographic cruise data 

are usually quite sensitive to observation errors, to the station distribution and to the 

synopticity of the sampling. The first two sources have been evaluated in Part I of this 

work. Here we evaluate synopticity errors for different sampling strategies applied to 

simulated unstable baroclinic waves. As suggested in previous studies, downstream and 

upstream cross-front samplings produce larger errors than along-front samplings. In our 

particular case study, the along-front sampling results in fractional errors (rms error 

divided by the standard deviation of the field) of about 15% for dynamic height and more 

than 50% for relative vorticity and vertical velocity. These values are significantly higher 

than those obtained in Part I for typical observation errors and sampling limitations (about 

6% for dynamic height and between 15 and 30% for geostrophic vorticity and vertical 

velocity). 

We also propose and test two methods aimed at reducing the impact of the lack of 

synopticity. The first one corrects the observations using the quasi-geostrophic tendency 

equation. The second method combines the relocation of stations (based on a system 

velocity) and the correction of observations (through the estimation of a growth rate). For 

the fields simulated in this work, the second method gives better results than the first, 

being able to eliminate practically all synopticity errors in the case of the along-front 

sampling. In practice, the error reduction is likely to be less effective, since actual fields 

cannot be expected to have a system velocity as homogeneous as for the single-mode 

waves simulated in this work. 

 

Key words: synopticity errors; sampling; oceanographic surveys; vertical motion; 
dynamical oceanography. 
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1. INTRODUCTION 

Within the last 20 years, diagnostic studies of ocean dynamics have evolved along with 

observational and theoretical developments. Presently, studies are undertaken even at the 

mesoscale and are increasingly based on the analysis of dynamically relevant variables 

such as potential vorticity or the vertical velocity component. These dynamical fields are 

often inferred directly from spatial distributions of observed variables assuming some kind 

of balance condition (e.g., the quasi-geostrophic theory, hereafter QG; see Part I of this 

work for a more detailed introduction). This involves the computation of spatial derivatives 

of observed fields, which have often been recognized as sensitive to observation errors, to 

the distribution of stations and to the lack of synopticity of the sampling.  

The first two error sources have been examined in Part I of this work, focusing on 

the retrieval of mesoscale structures represented by a Gaussian correlation model with a 

characteristic scale of 15 km (which roughly corresponds to an anomaly field characterized 

by structures of about 45 km diameter). Results were that for a high density (SeaSoar) 

survey, rms errors relative to the standard deviation of the field (hereafter “fractional 

errors”) are of the order of 2% for dynamic height and about 5% for geostrophic vorticity 

and vertical velocity. These values refer to the inner domain, since errors increase up to 

20% near the boundaries. For less dense (e.g. 10 km spaced CTD) samplings, fractional 

errors are up to 6% for dynamic height and 15% for geostrophic vorticity and vertical 

velocity (30% near the boundaries). The applied formulation assumes that actual fields 

obey the correlation model used for the interpolation of observations, which is not exactly 

the case in practice. Consequently, the results of that analysis should be regarded as 

establishing realistic lower bounds on the accuracy of parameters diagnosed from synoptic 

survey data.  

The evaluation of the third error source, the lack of synopticity, has traditionally 

received less attention. This is perhaps because its impact is more case-to-case dependent 

and therefore it cannot be formulated in such a general way as for the other two error 

sources. However, the concerns about this problem increased significantly when diagnostic 

studies started to focus at the mesoscale. The reason is that even using fast sampling 

techniques such as towed CTD probes (e.g., Pollard, 1986; Allen et al, 1992) and ship-

mounted Acoustic Doppler Current Profilers (e.g., Joyce, 1989; Gomis et al, 2001), the 
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time scales associated with mesoscale features are usually not much longer than the 

sampling period. As a consequence, the retrieval of observed fields can be seriously 

handicapped by the presence of significant mesoscale variability, as already reported by 

Matthews (1997). 

A pioneering attempt to examine the impact of the lack of synopticity on the 

computation of derived magnitudes such as the vertical velocity was undertaken by Allen 

et al. (2001). More recently, Rixen et al. (2003) checked the errors derived from different 

sampling strategies such as cross-front and along-front samplings. In our work we proceed 

in a similar way to the experiments designed by Allen et al. (2001) and Rixen et al. (2003): 

we use a modelled time sequence of fields representing unstable baroclinic waves, from 

which we extract the observations that would result from different realistic sampling 

strategies. All data sets are processed as if they were actual observations in order to 

produce gridded fields of both observed variables (dynamic height) and derived variables 

(relative vorticity, vertical velocity and dynamic height tendency). The differences between 

the fields obtained from the simulated oceanographic cruises and the model fields (the 

‘truth’) will give a quantitative estimate of the impact of the lack of synopticity. An ideal 

synoptic cruise consisting of the same number of stations will be used as the control case, 

as it will involve errors derived from the discrete sampling but not synopticity errors. 

However, the aim of this work goes beyond the evaluation of synopticity errors: 

we also propose and test two methods aimed at mitigating the impact of the lack of 

synopticity. A first method is based on the QG tendency equation (see for instance Holton, 

1992) which, unlike its counterpart the omega equation, has not received much attention in 

the oceanographic literature. Namely, the local time evolution given by the tendency 

equation is used to project observation values onto a common time (e.g., the central time of 

the sampling period). The resulting ‘pseudo-synoptic’ observations are re-analyzed and the 

new gridded fields compared to model fields in order to evaluate the improvement. 

The second method combines the relocation of stations and the correction of 

observations. Station relocation methods are not new: Rixen et al. (2001) suggested a 

method based on the idea of relocating stations so as to represent a ‘pseudo-synoptic’ 

distribution of observation points. The difference is that Rixen’s method is based on the 

advection of water parcels by the geostrophic velocity, so that stations are relocated even 

in the case of dynamically stationary fields. This might be appropriate for some conserved 
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quantities such as biochemical parameters. For dynamical parameters, however, the 

increase of interpolation errors that derives from the strong spatial distortion of the data set 

(e.g., profiles are no longer vertical, as the geostrophic velocity varies with depth) may 

eventually be larger than the synopticity errors intended to be corrected.  

The station relocation proposed in this work is based on the computation of a 

‘system velocity’, i.e., the speed at which the sampled pattern is moving across the domain. 

This speed would be zero in the case of stationary fields and would be equal to the phase 

speed in the case of propagating waves. In other cases, however, the definition of a 

homogeneous system velocity may be more problematic, in which case the correction 

method proposed by Rixen et al. (2001) may be more convenient. A first method to 

compute such a system velocity has been proposed by Hoskins et al. (2003), though not for 

the purpose of station relocation. A second method has been suggested by Pascual et al. 

(2004), who also proposed to relocate the stations in order to mitigate the impact of the 

lack of synopticity. In our work, in addition to the station relocation we also propose to 

correct the observations basing on the estimation of a growth rate, an aspect that was not 

considered in the work by Pascual et al. (2004). 

The structure of the paper is as follows. Section 2 is devoted to describe the 

simulated fields and the different sampling strategies. Next (section 3), errors resulting 

from simulated non-synoptic cruises are evaluated. In section 4 we summarize the 

theoretical basis of the proposed correction methods and give the details of their practical 

implementation. Results from the application of the methods are presented in section 5 and 

discussed in section 6. Conclusions are also outlined at the end of section 6. 

 

 

2.  THE DATA SET  

The effects of the lack of synopticity are strongly case-to-case dependent, and therefore it 

is not possible to obtain a general rule for the errors involved in the recovery of observed 

fields. Our option in this work is to focus on a simple case from which the basis of the 

problem can be investigated. This was the aim of Allen et al. (2001) and Rixen et al. 

(2003), who used mesoscale numerical models to simulated a ‘true’ field consisting of 

eastwards-propagating unstable baroclinic waves. We operated in a similar way except that 

we wanted to exactly control the propagation speed and growth rate of the waves. With this 
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aim, a single mode was represented using the analytical model of baroclinic instability 

proposed by Tang (1975). The limitations of our approach with respect to the application 

of the method to a real data set will be discussed in the last section. In the following we 

give the details on the modelled fields and the simulated samplings. 

2.1  The ‘true’ dynamical fields  

Tang's model is quasi-geostrophic, and therefore it must be considered a simplified view of 

actual fields. However, diagnostic studies undertaken under the QG framework usually 

give realistic results, provided they focus on scales larger than the Rossby radius of 

deformation. Hence, QG is probably less limiting than the assumption of a single 

propagation mode, regarding the representation of actual fields. 

Tang’s model assumes an upper layer of depth H1 with Brunt-Väisälä frequency N1, 

maximum (surface) current speed U and constant shear U/H1 over a quiescent lower layer 

extending down to a depth H2 with Brunt-Väisälä frequency N2. Despite the simplicity of 

the model, it usually provides realistic values for the propagation speed and growth rates of 

the modes. In our particular case, the input parameters were those characterizing frontal 

structures observed in the Western Mediterranean, which are typical of shelf-edge fronts 

observed in many regions. Namely, we set H1=300 m, N1=5.103 s1, U=30 cm/s, H2=600 

m and N2=8.104 s1. We focused on a mode of 90 km wavelength developing in a jet about 

45 km wide in the cross-frontal direction. For the quoted input parameters, Tang’s 

analytical model predicts a downstream propagation speed of 8.0 km/day for this mode and 

a growth with an e-folding time of  4.6 days. 

The sequence of dynamic height fields was projected onto a 2 km x2 km grid 

covering a 56 km x136 km domain. Some snapshots of the dynamic height field at 100 m 

depth (a level that is representative of the upper layer dynamics) are shown in Figs. 1a-b 

and 2a. In particular, we centered our attention at day 13 of the sequence: the geostrophic 

relative vorticity, vertical velocity and tendency fields computed from model gridded data 

are also shown in Fig. 2. Relative vorticity (Fig. 2b) was directly computed from dynamic 

height (Fig. 2a), the obtained values being within the range ±1.6.105 s1 (e.g., ±0.16 f at 

middle latitudes). The computation of the vertical velocity and tendency fields deserves 

more attention.  
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Vertical velocities were obtained by integrating the QG omega equation on an f-

plane, as described in Part I of this work. The equation was integrated setting w=0 at the 

upper and lower boundaries and also at the along-front boundaries, since the modeled 

waves are confined to the model domain in the cross-frontal direction. At the upstream and 

downstream boundaries it was the normal derivative of w that was set to zero (for a 

detailed description of the method see Pinot et al. 1996). The obtained values are within 

the range ±18 m/day (Fig. 2c), which are typical values for frontal mesoscale structures. 

In the framework of QG dynamics, the equation complementary to the omega 

equation is the so called tendency equation (Holton, 1992). It is a linear partial differential 

equation formally very similar to the omega equation, but for the unknown , where  is 

the local time derivative (∂/∂t) of dynamic height As for the omega equation, the 

forcing term is related to the distributions of vorticity and thickness advection and 

therefore it can be computed from dynamic height alone (i.e., without explicitly 

determining the distribution of w; see Pascual et al. (2004) for more details). The most 

important formal difference with respect to the omega equation is that  cannot be set to 

zero at surface. From the QG density conservation equation it can be shown that a surface 

boundary condition consistent with setting w=0 is ∂/∂z│s = (g/)vgh. The other 

boundary conditions can be set in the same way as for the omega equation.  

The obtained values are within the range of ±0.9 dyn cm/day (Fig. 2d). Most 

important, the regions of positive/negative tendency are neither collocated with dynamic 

height ridges/troughs (which would be the case for standing growing waves) nor exactly 

located in between them (which would be the case for a propagating neutral mode). As 

such, the QG tendency field reflects the actual tendency of a propagating growing mode.  

Because it will be crucial for the correction methods tested later on, we will further 

check the accuracy of the tendency field. The errors associated with the computation 

method itself (e.g., those derived from the numerical integration of the tendency equation, 

in particular from the boundary conditions, but without the handicaps of the discrete 

sampling or the lack of synopticity) can be evaluated by comparing the result of applying 

the tendency equation to model grid data (Fig. 2d) with the actual model tendency (Fig. 

1c). The latter was computed at day 13 simply as the difference between dynamic height at 

days 13.5 and 12.5 divided by a 1 day time lag.  
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As expected, the QG tendency gives an overall good representation of the actual 

tendency, though with some distortion in the field pattern. In Part I of this work we stated that 

when sampled structures are smaller than the size of the domain, the ellipticity of the omega 

and tendency equations makes the interior solution relatively insensitive to the imposed 

conditions except at the few grid points closer to the boundaries. However the structures 

simulated in this work are not much smaller than the domain, and therefore the observed 

distortion is likely related to boundary conditions (a similar distortion is actually observed for 

the vertical velocity field, Fig. 2c). The mean difference between the two fields is 0.057 

dyn.cm/day, roughly a 10% of the tendency field standard deviation (0.562 dyn.cm/day). As it 

will be shown later on, these errors are significantly smaller than those derived from the lack of 

synopticity, so that in the framework of this work the computation method can be considered 

as reasonably accurate. 

2.2  The simulated samplings 

Four different samplings of the ‘true’ field were considered. They all consisted of 8x18 

stations separated 8 km in both horizontal directions (so that they cover the whole model 

domain), which can be considered representative of oceanographic cruises focusing on 

mesoscale dynamics. Simulated profiles spanned the whole vertical domain and no 

instrumental error was considered. This is justified by the results obtained in Part I of this 

work, which showed that for derived variables inferred from typical CTD surveys, the 

impact of observation errors is smaller than the impact of the discrete sampling. 

The differences between the samplings were that: 

i) For the first one (hereafter referred to as the ‘synoptic sampling’) no time lag between 

stations was considered. That is, all values taken as observations correspond to day 13 

00 h model fields sampled at station points. 

ii) For the second sampling, a 1 hour time lag was assumed in between stations. This value 

was determined assuming a navigation speed of about 8.5 knots (i.e., about half an hour 

navigation between stations) and that the operations to sonde a 600 m water column can 

take another half an hour. Under these conditions it would take 6 days to sample the 

whole domain, a period that was centred at 00h of day 13 of the model sequence (i.e., 

the first station value corresponds to 01h of day 10 and the last one to 00 h of day 16). 

The first station was located at the lower-left (upstream) corner of the domain and the 
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sampling strategy was the typical cross-frontal saw-tooth track sweeping the domain 

downstream. Following the described sampling strategy the domain is covered at a rate 

of about 23 km/day (i.e., about three times the wave speed) in the direction of the wave 

propagation. This sampling will be hereafter referred to as the ‘downstream sampling’. 

iii)  The third sampling was exactly the same as the second one except in that the first 

station was located at the lower-right (downstream) corner of the domain and the cross-

frontal saw-tooth track was taken sweeping the domain upstream. Hence, this sampling 

will hereafter be referred to as the ‘upstream sampling’.  

iv)  Finally, the fourth sampling strategy was an along-front saw-tooth track consisting of 

alternate upstream-downstream legs starting at the lower-left corner of the domain. This 

sampling will hereafter be referred to as the ‘along-front sampling’. 

 

 

3.  EVALUATION OF ERRORS DERIVED FROM NON-SYNOPTIC SAMPLINGS 

3.1  Observed variables 

The four sets of synthetic dynamic height observations were subjected to the same data 

processing. Firstly, they were interpolated onto the model grid using the Optimal Statistical 

Interpolation (hereafter OI) scheme described in Part I. The parameters were also the same, 

as the waves modeled here roughly correspond to a gaussian correlation scale with a 

characteristic scale of 15 km. Since the simulated fields do not contain small-scale 

structures, no additional filtering would be required. However, we wanted the analysis to 

include also a negative aspect of the filtering applied when dealing with actual data, 

namely the larger penetration of boundary effects inside the domain (see Part I). Therefore 

we convoluted the OI analysis with a normal-error filter, setting the cut-off wavelength to 

32 km (four times the separation between stations). 

Results for the four surveys are shown in Figs. 3a, 4a, 5a and 6a respectively, and 

the rms differences with respect to the model fields are listed in Table 1 (all them 

correspond to 100 m depth). As expected, the synoptic cruise reproduces the original field 

rather accurately. Rms differences are about 0.07 dyn cm, which represents a fractional 

error of about 4% with respect to the field standard deviation (1.86 dyn cm). This value is 

in between the errors predicted in Part I of this work for a SeaSoar sampling (2%) and a 10 
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km spaced CTD sampling (6%). [When comparing the values obtained in the two parts, it 

is worth reminding that in Part I they were predicted by the OI formulation, which 

implicitly assumes that the fields exactly obey the correlation statistics (something which is 

not exactly true in practice). On the other hand, errors derived in Part I include the (small) 

contribution of observation errors, which have not considered in the simulations of Part II.] 

Worse results are obtained for the downstream and upstream samplings. The wave 

structure of the true field is significantly stretched in the first (Fig. 4a) and compressed in 

the second (Fig. 5a). Additionally, the growing of the waves reflects in smaller/larger wave 

amplitudes in those sectors of the domain sampled in the early/latter stages of the cruises. 

Rms differences are about 0.67-0.68 dyn cm (36% fractional error), which already suggests 

that the impact of the lack of synopticity can be much more important than the impact of 

observation errors or that derived from a reasonable discrete sampling. 

For the along-front sampling, the most evident feature is the cross-frontal tilting of 

structures (Fig. 6a). This is an expected consequence of the time lag between the sampling 

of the lower and upper sectors of the domain, as the wave propagates downstream during 

the sampling period. Rms differences with respect to the model field are however 

significantly smaller than for the upstream and downstream cruises: about 0.28 dyn cm 

(15% fractional error). The benefits of an along-front sampling were already reported by 

Rixen et al (2003), who carried out a similar experiment.  

3.2  Derived variables 

The relative vorticity, vertical velocity and tendency fields were computed from gridded 

dynamic height fields in the same way as the model fields (see section 2.1). Results for the 

four surveys are shown in Figs. 3b-d, to 6b-d; they are qualitatively similar to those 

obtained by Rixen et al. (2003) and therefore we will focus the description on the rms 

differences with respect to model fields (listed in Table 1). The synoptic cruise (Figs. 3b-d) 

reproduces rather faithfully the original patterns (Figs. 2b-d), though maxima and minima 

appear slightly smoothed in all fields. The fractional errors are of the order of 7% for 

relative vorticity, and about 7.5% for the vertical velocity and tendency fields. These error 

values are again in between the inner-domain errors predicted in Part I for a SeaSoar 

sampling (5%) and a 10 km spaced CTD sampling (15%). 
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The downstream and upstream samplings (Figs. 4b-d, 5b-d) show the typical 

stretched/compressed patterns, with the maximum and minimum values significantly 

reduced/enhanced as a consequence of the stretching/compression of the dynamic height 

field. For relative vorticity, fractional errors are about 65% and 91% for the downstream 

and upstream samplings respectively; for the vertical velocity they are 82% and 115%; and 

for the tendency field they are 82% and 96%. It seems, therefore, that the tendency field is 

not more handicapped than the vertical velocity, despite the surface boundary condition of 

the first (the horizontal advection of density) is surely distorted, while it is not for the 

second (for which w=0 is always assumed).  

For the along-front sampling (Figs. 6b-d), the cross-frontal tilting of structures is 

more apparent in the derived variables than in the dynamic height field. Maxima and 

minima appear shifted upwards or downwards across the front, but their values are more 

accurate than for the downstream and upstream samplings. Fractional errors computed for 

this sampling were about 73% for the relative vorticity, 58% for the vertical velocity and 

56% for the tendency field.  

 

 

4. METHODS AIMED AT THE MITIGATION OF SYNOPTICITY ERRORS  

At least part of the striking impact of the lack of synopticity can possibly be reduced 

through some kind of correction applied either to the station position or to the observation 

values. Two methods are proposed in the following. 

4.1  Observation correction based on the QG tendency equation 

The simplest method would be using the tendency field to substitute the original dynamic 

height values ‘observed’ at station ‘i’ and time ti [i(ti)] by those that would be measured at 

the same location but at a reference time to common to all stations [*
i(to)]. This implies 

estimating the tendency at station points [i] (e.g. via bilinear interpolation from the 

gridded tendency values) and, most importantly, assuming that the tendency remains 

constant during the time lag between ti and to. It is also implicitly assumed that the 

distortion of the tendency field due to the non-synoptic sampling is not so severe that it 

worsens the synopticity of observations rather than improves it. Both assumptions are 
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rather strong and must be kept in mind when discussing results. Following this approach, 

the set of ‘pseudo-synoptic’ observations [*
i(to)] can be simply obtained as 

*
i(to) ≈ i(ti) + (i).(toti)                                                      (1) 

The advantages of the method are its simplicity and that it is independent of the 

sampled pattern. That is, it can be applied to any dynamical situation, as no assumption is 

made apart from the validity of QG. A disadvantage is that only dynamic height and 

subsequently derived variables can be corrected. The density field can be inferred from the 

corrected dynamic height field, but the temperature and salinity fields cannot. 

4.2  Station relocation and observation correction based on a system velocity 

The first step of this method (the station relocation) has recently been proposed by Pascual 

et al. (2004). It is based on the assumption that the sampled pattern propagates at a constant 

speed c=(cx,cy) across the domain. As stated above, this will be reasonably true in the 

presence of waves embedded in a front, as the ones modelled here, or in the case of a 

single moving eddy. However, it will clearly not be appropriate for large domains where 

different structures can evolve in rather different ways. On the other hand, the method 

allows the correction of any variable, as it works on the station position and not on 

observed values.  

The method operates as follows: the original station locations (xi,yi) are changed to 

the positions (x*
i,y*

i) that they would occupy at a common reference time to if they were 

moving with speed c. It is worth recalling here that c is a unique ‘system velocity’ and not 

water parcel local velocities (approximated by geostrophic velocities in Rixen et al., 2001). 

This is easily achieved doing 

x*
i(to) ≈ xi + cx

.(toti)                                                          . 
y*

i(to) ≈ yi + cy
.(toti)                                                      (2) 

The system velocity can be computed from the tendency field as proposed by Pascual et al. 

(2004). The method is summarized in the Appendix for the sake of completeness. For the 

single-mode waves simulated in this work, the system velocity should fit the real part of 

the wave phase speed. In the case of more realistic, multi-modal instabilities, the system 

velocity is expected to reflect the mean propagation speed of the perturbations. 
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The station relocation is intended to correct the lack of synopticity derived from the 

propagation of structures. However, the eventual growing or decaying of structures is not 

accounted for by this method. We therefore propose to go beyond the relocation and also 

correct the station values based on the estimation of a growth rate. It can be demonstrated 

that for exponentially growing or decaying waves (with amplitudes denoted by Aoexp[t]), 

the e-folding time  can be obtained from the covariance < . > between the dynamic 

height and tendency fields, 

 = 
< >       (3)� 

where 
 is the dynamic height anomaly variance. Thus, in the case of propagating 

neutral modes, the maxima and minima of the tendency field are located in between ridges 

and troughs of dynamic height, so that <>=0�� and = . The opposite case would be 

a standing wave, for which maxima and minima of the tendency field exactly coincide with 

ridges and troughs of dynamic height, so that <>= and therefore   =  

(where 
 is the tendency field variance).  

In the atmosphere, the tendency field is usually dominated by the propagation of 

structures (Carlson, 1991) to the point that it can be difficult to identify the contribution 

due to their growing/decaying. Although it is not clear that the same applies to the ocean, 

in practice we found that the values of the e-folding obtained from (3) were not accurate. 

To overcome this problem, the contribution due to propagation p can be subtracted from 

the total tendency, so that the remaining contribution g = p will better reflect the 

growing (as well as to other effects, see the Appendix for details). Since in principle <p> 

≈ 0, the growth rate can be obtained by using  g in place of  in (3).  

 

 

5. RESULTS 

The results of applying the two proposed methods to the downstream, upstream and along-

front samplings are shown in Figs. 7-9 and 10-12 respectively, and the error statistics are 

given in Table 1. In the following we comment the results of each method in two separate 

sections. 
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5.1 Correction method based on the QG tendency equation 

For the downstream and upstream cruises, this method only yields a small reduction of the 

errors derived from the lack of synopticity (see Table 1). The main problem is that the 

tendency fields inferred from the non-synoptic observations are too distorted to provide an 

accurate correction. For the downstream cruise, for instance, dynamic height (Fig. 7a) is 

clearly less stretched than it was before the correction (Fig. 4a), but it is still far from 

approaching the true shape (Fig. 2a). In the same way, the gradients of the corrected 

upstream cruise (Fig. 8a) are still sharper than true gradients. The consequences on the 

relative vorticity (Figs. 7b and 8b) and vertical velocity (Figs. 7c and 8c) are obvious: in 

addition to the remaining stretching/compression of structures, maximum and minimum 

values are still significantly smoothed/enhanced. It is perhaps more important to note that 

the corrected tendency fields (Figs.7d and 8d) are still clearly distorted. This prevents from 

applying the method in an iterative way, i.e., using the corrected tendency fields (instead of 

those initially retrieved) for a further correction attempt. 

The method works significantly better for the along-front sampling. The cross-

frontal tilting of structures has been reduced, though it is still apparent in the corrected 

fields (Fig. 9). Rms differences, which for non corrected samplings were already lower for 

the along-front cruise than for the downstream and upstream cruises, are significantly 

reduced by the correction method: from 15% to 7% for dynamic height, from 73% to 32% 

for relative vorticity and from 58% to 30% for the vertical velocity. The better performance 

for the along-front sampling must be associated with the better accuracy of the retrieved 

tendency field: tendency fractional errors were about 56% for the along-front sampling, 

while they were 82% and 96% for the downstream and upstream samplings.   

5.2 Correction method based on a system velocity 

Prior to the application of this method, we computed the system velocity and the growth 

rate (expressed as an e-folding time) from the model fields and from the synoptic cruise. In 

both cases the estimations based on the tendency equation (see the Appendix) yielded 

rather accurate values: 7.7 km/day and 4.4-5.4 days, compared to the actual values 8.0 

km/day and 4.6 days (see Table 2).  

Instead, the values obtained for the three realistic sampling strategies were rather 

different. As expected, a too low system velocity (4.9 km/day) and a too large e-folding 
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time (> 8 days) were obtained from the downstream cruise as a consequence of the 

stretched pattern. Conversely, a larger system velocity (8.8 km/day) and a smaller e-

folding time (< 4 days) were obtained for the upstream cruise, though in this case the 

values were more accurate than for the downstream cruise. The along-front cruise was the 

one yielding the best results: 7.4 km/day and 4.6-5.8 days. 

The correction method, was implemented in two steps, in order to distinguish 

between the benefits of the station relocation and of the observation correction. In a first 

step, only the station relocation was applied; in a second one, relocated observations were 

corrected basing on the estimated growth rate. Rms differences between the results 

produced by each of the two steps and the model fields are listed in Table 1. 

Except for a single field (the dynamic height of the downstream sampling), the 

station relocation by itself results in a larger error reduction than the correction method 

tested in the previous section. This is particularly true for the upstream sampling, for which 

errors reduce to about 1/3 of initial errors. However, initial errors were particular large for 

that sampling, so that in absolute terms, the cruise resulting in the smallest errors after 

applying the correction is again the along-front one (fractional errors of 7%, 31%, 25% and 

22% for dynamic height, relative vorticity, vertical velocity and tendency, respectively), 

closely followed by the upstream cruise (9%, 22%, 28% and 34% fractional errors). The 

downstream cruise is by far the one with largest errors (32%, 49%, 58% and 48%).   

When applying the correction of observations, results for the along-front and 

upstream samplings are further improved (also for the downstream sampling, but to a 

lesser extent). The best case is definitely the along-front sampling, for which errors reduce 

to 5%, 8.5%, 7% and 7.5% for dynamic height, relative vorticity, vertical velocity and 

tendency, respectively. It is worth recalling here that fractional errors for the synoptic 

cruise were 4%, 7%, 7.5% and 7.5%, so that synopticity errors are almost completely 

eliminated by the method. This is also evident when looking at the corrected fields (Fig. 

12): they just show a very slight cross-frontal tilting, and the maxima and minima show the 

same slight smoothing with respect to the model fields as the synoptic sampling (Fig. 3). 

For the upstream sampling the method also eliminates most synopticity errors (see 

Table 1). However, Fig. 11 shows that because of the station relocation, the sampled 

domain has considerably enlarged: the 18 station legs originally separated 8 km (spanning 
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a 136 km domain in the along-front direction) are now separated about 11 km and 

therefore span a 187 km domain (only the inner part of it is shown in Fig. 11). For the 

downstream sampling the remaining errors are between 1/3 and 1/2 of the original 

synopticity errors, and are mostly associated with smoothing in the upstream sector of the 

domain (Fig. 10). This Figure also shows the reduction of the sampled domain after 

relocation (the legs are now separated 6.5 km in the along-front direction, spanning a 

domain of about 110 km). 

A main reason for the success of the along-front sampling must be attributed to the 

fairly accurate representation of the dynamic height and tendency fields already in the first 

step, since the phase speed and growth rate critically depend on these two fields. The upper 

limit of the benefits provided by the method can be evaluated by using the true values of 

the phase speed and the growth rate (which are unknown in practice) instead of those 

computed from the recovered fields. Results indicate that errors might be further reduced 

only for the downstream case (though there is no warranty for the converge of results). 

Instead, the errors of the upstream and along-front cruises were only slightly reduced, 

which indicates that for both sampling strategies a single iteration of the correction method 

might be enough to get close to the expected maximum error reduction. 

 

 

6. DISCUSSION AND CONCLUSIONS  

Three realistic sampling strategies have been tested to evaluate the impact of the lack of 

synopticity on dynamical fields. In the best case (the along-front sampling), fractional 

errors are of the order of 15% for dynamic height, and more than 50% for relative vorticity, 

vertical velocity and the tendency field. These values are much larger than those obtained 

in Part I of this work for observation and sampling errors (about 2-6% for dynamic height 

and 5-15% for relative vorticity and vertical velocity, all them referred to an inner domain). 

Hence, a first conclusion is that the lack of synopticity of observations can be, by far, the 

most important error source in the presence of structures like those examined in this work. 

Of the two correction methods aimed at mitigating synopticity errors, the first one 

(based on the use of the tendency field to correct observations) has the advantage of being 

independent of the sampled pattern, and the disadvantage that only dynamic height and 

subsequently derived variables can be corrected (i.e., the temperature and salinity fields 
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cannot). An additional handicap inferred from the test is that the method is quite sensitive 

to the initial recovery of the tendency field. This is why the correction applied to the 

downstream and upstream samplings has not been very effective. For the along-front 

cruise, however, errors have been reduced down to 7% for dynamic height and between 

32-34% for relative vorticity, vertical velocity and the tendency field. 

The second method (based on the relocation of stations to compensate for the 

propagation and on the correction of observations to compensate for the growing) assumes 

that the whole sampled pattern propagates at a constant speed across the domain. Results 

have shown that also this method is sensitive to the initially recovered fields. However, 

since the along-front sampling is able to recover the fields without too much distortion, 

synopticity errors have been almost completely eliminated for that sampling strategy. 

A second conclusion, therefore, is that the along-front sampling is definitely the 

most appropriate one for this type of ocean disturbances. The fields are not only better 

recovered than for the other samplings (as already demonstrated by Rixen et al., 2003), but 

also (and actually as a consequence of this) the proposed correction methods are much 

more effective for this sampling strategies. It is also worth noting that when the proposed 

station relocation is applied to the along-front sampling, the effectively sampled domain is 

similar to the original domain. This does not happen for the upstream/downstream 

samplings, for which the domain is significantly stretched/compressed after relocation. 

For the case analyzed in this work, the second correction method gives better 

results than the first. A likely reason is that for the first method to be successful, it requires 

the tendency field to be accurate at any point. On the other hand, the second method is 

based on the estimation of ‘mean’ properties (namely, the system phase speed and the 

growth rate), and it is therefore more robust in the presence of local errors in the tendency 

field. As far as these mean properties are representative of the whole domain, the second 

method will likely produce better results. Regarding the two steps of the second method, 

the station relocation by itself is effective in reducing the deformation of the fields derived 

from the propagation of structures. However, a significant further error reduction can be 

achieved when observations are corrected on the basis of a growth rate. Because the 

estimation of this growth parameter has a larger amount of uncertainty than the system 

velocity, it might be advisable to apply this second step only when the growing/decaying 
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of structures is well apparent. This can be checked comparing the shapes of (or computing 

the correlation between) the dynamic height and tendency fields. 

Finally, some comments are to be made on the practical significance of the 

proposed correction methods; in particular on their application to more realistic fields and 

also on the extent to which other authors can be convinced about using them. Regarding 

the first item, we can firstly state that the simulated single-mode instabilities have been 

useful to investigate the basis of the problem. Actual oceanographic fields are obviously 

more complex than those simulated here, but it is also true that examining particular, more 

complex cases will not necessarily produce more general hints on the performance of the 

methods. On the other hand, we must recognize some limitations in the practical 

application of the proposed methods. The relocation of stations, for instance, should only 

be applied when there are evidences of the existence of a more or less homogeneous 

system velocity (e.g., propagation of waves embedded on a front or the propagation of 

isolated structures). In such cases, the method is expected to yield a remarkable benefit, 

though it cannot be pretended to completely eliminate synopticity errors as in this work. 

An example of the application of the method to a real case is given in Pascual et al. (2004), 

though in that case the results were not compared with the (unknown) true fields.  

A limitation shared by both methods is that the tendency field must be at least fairly 

recovered by the initial interpolation. However, it has been shown that even for fields as 

distorted as those recovered by the upstream or downstream sampling, the correction 

methods improve the first estimate. And when the initial fields are fairly recovered, as for 

along-front cruise, the methods yield a quite accurate representation. More precisely, they 

turn a case in which synopticity errors are several times larger than the contribution of 

observation and sampling errors (evaluated in Part I of this work) into a case in which 

synopticity errors are smaller than the other error sources. 

Regarding the practical implementation of the correction methods, we are aware 

that both (but mainly the second one) involve a significant degree of analysis. This is 

clearly a handicap in front of more simple methods like the one by Rixen et al. (2001). Our 

opinion is that Rixen’s method and those proposed here are somehow complementary. The 

first is simpler, but, it can hardly be applied to a situation like the one represented in this 

work: with geostrophic velocities of the order of 40 cm/s (i.e., about 35 km/day) and a 6 

day long cruise, the station relocation would surely have a negative impact on the recovery 
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of the fields. Therefore, Rixen’s method will be appropriate for short cruises (e.g., SeaSoar 

cruises in small domains). The methods proposed here are more complex, but regarding the 

duration of the cruises, they have a larger range of applicability. As stated above, the main 

limitation, affecting only the second method, is the existence of a more or less homogenous 

system velocity, but this is fairly true for a variety of situations. 
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APPENDIX: ESTIMATION OF THE ‘SYSTEM’ PROPAGATION VELOCITY 

Following Pascual et al. (2004), the computation of the system velocity is based on the 

relationship between a local time derivative observed from a fixed reference (∂∂t = ) 

and one observed from a frame of reference moving with speed c (∂∂tc): 

∂∂tc =  + c h      ����(A1) 

Expression (A1) is obviously valid for any variable  but here it will be applied to 

dynamic height, so that (∂∂t =) will be the dynamic height tendency. 

Assuming that local variations are mainly due to the structure propagation (rather 

than the structure growing/decaying), the term (∂∂tc) will be minimized when the speed 

c approaches the propagation speed of the sampled structure (for an ideal pattern 

propagating exactly with c without growing or decaying, term ∂∂tc would be exactly 

equal to zero). Hence, the problem of finding c reduces to the minimization of a cost 

function J(c)=i( + ch)2, which can be solved imposing ∂J(c)/∂cx =0 and ∂J(c)/∂cy =0. 

It then results: 
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  i x
2           i x y    cx           i x   

  i x y
      i y

2 
      cy           i y             (A2) 

where i extends to all grid point values of the selected domain and xy denote ∂∂x, 

∂∂y, respectively. Obtaining (cx,cy) from the gridded fields of dynamic height and 

tendency is then straightforward from (A2). 

Once c is obtained, the term ∂∂tc can be readily evaluated by means of (A1). 

Comparing the variance of this term relative to the tendency variance will give an estimate 

of which fraction of the later cannot be associated with the propagation of the structures. 

This remaining variance can in principle be associated with growing/decaying effects 

(though in practice it could also be due to the presence of structures moving with different 

speeds). Therefore, we can assume that ∂∂tc accounts for the growing/decaying 

contribution of the tendency field referred in section 4.2 as [g]. 

In a different context, Hoskins et al. (2003) proposed to compute a system velocity 

c based on the density conservation equation. When this is written in a frame of reference 

moving with speed c, it becomes: 

∂∂tc =   (Vg-c) h w ∂∂z =  [ Vgh w ∂∂z+ c h       

�������������(A3) 

Expression (A3) is formally equivalent to (A1), which was the starting point of the method 

based on the tendency equation. The problem of finding c can therefore be solved in the 

same way. The difference with respect to the previous method is that (A3) requires 

knowledge of the vertical velocity field, instead of the tendency field. 
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FIGURE CAPTIONS 

 
Figure 1: sequence of dynamic height fields (dyn cm) representing an unstable baroclinic 

mode of 90 km wavelength embedded in a 45 km wide jet, as given by the Tang 
model. They correspond to days 10 (a) and day 16 (b) of the sequence (day 13 is 
shown in Fig. 2). (c) Dynamic height tendency (in dyn cm/day) at day 13. All 
the fields of this and the following figures correspond to 100 m depth (a level 
that is representative of the upper layer dynamics); only the inner part of the 
136x56 km2 model domain is shown. 

 
Figure 2:  (a) Model dynamic height (dyn cm) at day 13. (b) Relative vorticity (105 s1), 

(c) QG vertical velocity (m/day) and (d) QG tendency (dyn cm/day) computed 
from the 3D model dynamic height at day 13.  

 
Figure 3:  Results for the synoptic sampling: (a) dynamic height (dyn cm), (b) relative 

vorticity (105 s1), (c) QG vertical velocity (m/day) and (d) QG tendency (dyn 
cm/day). The position of 96 stations has been overlapped in (a) (other 48 stations 
are located beyond the boundaries of the represented inner domain). 

 
Figure 4:  As in Fig. 3, but for the downstream cruise. 
 
Figure 5:  As in Fig. 3, but for the upstream cruise. 
 
Figure 6:  As in Fig. 3, but for the along-front cruise. 
 
Figure 7:  Results for the downstream cruise: (a) dynamic height (dyn cm), (b) relative 

vorticity (105 s1), (c) QG vertical velocity (m/day) and (d) QG tendency (dyn 
cm/day) obtained from the ‘pseudo-synoptic’ observations corrected following 
the tendency method.  

 
Figure 8:  As in Fig. 7, but for the upstream cruise. Note that in panels b-d the spacing 

between isolines has changed with respect to the other figures. 
 
Figure 9:  As in Fig. 7, but for the along-front cruise. 
 
Figure 10: Results for the downstream cruise: (a) dynamic height (dyn cm), (b) relative 

vorticity (105 s1), (c) QG vertical velocity (m/day) and (d) QG tendency (dyn 
cm/day) obtained from the ‘pseudo-synoptic’ relocated stations with 
observations corrected on the basis of the estimated growth rate. The position of 
the relocated stations has been overlapped in (a).  

 
Figure 11: As in Fig. 10, but for the upstream cruise. 
 
Figure 12: As in Fig. 10, but for the along-front cruise. 
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TABLES 
 
 
 

 Dynamic Height 
(dyn cm) 

Geostr. Relative 
vorticity (105s1)

QG vertical 
velocity (m/day) 

QG Tendency 
(dyn cm/day) 

Incr. field standard deviation 1.862 1.003 10.37 0.562 
Synoptic cruise rms error 0.073   (3.9) 0.069   (6.9)   0.78   (7.6) 0.041  (7.3) 

Downstream cruise rms error 0.671 (36.0) 0.648 (64.6)   8.54 (82.4) 0.461 (82.0) 
Error after tendency correction 0.555 (29.8) 0.493 (49.2)   6.49 (62.6) 0.392 (69.8) 

Error after relocation 0.586 (31.5) 0.490 (48.9)   5.96 (57.5) 0.272 (48.4) 
Error after relocation/growing 0.360 (19.3) 0.380 (37.9)   4.62 (44.5) 0.209 (37.2) 

Upstream cruise rms error 0.681 (36.6) 0.909 (90.6)     11.88 (115.) 0.541 (96.3) 
Error after tendency correction 0.457 (24.7) 0.671 (66.9)     11.70 (113.) 0.994 (176.) 

Error after relocation 0.171   (9.2) 0.220 (21.9)   2.94 (28.4) 0.192 (34.2) 
Error after relocation/growing 0.106   (5.7) 0.104 (10.4)   1.28 (12.4) 0.064 (11.4) 
Along-front cruise rms error 0.279 (15.1) 0.727 (72.5)   5.99 (57.8) 0.315 (56.0) 

Error after tendency correction 0.137   (7.4) 0.325 (32.4)   3.13 (30.2) 0.189 (33.6) 
Error after relocation 0.125   (6.7) 0.310 (30.9)   2.63 (25.3) 0.123 (21.9) 

Error after relocation/growing 0.090   (4.9) 0.085   (8.5)   0.68   (6.6) 0.042   (7.5) 

Table 1: summary of rms differences between model fields and those obtained after simulated cruise sampling 
followed by interpolation of synthetic observations. The standard deviations of the anomaly fields and the 
percentages accounted for by rms errors (in brackets) are also listed. All values correspond to 100 m depth (a 
level that is representative of the upper layer dynamics) and have been averaged over the horizontal domain 
shown in Figs. 1-12. Details on the different cruise strategies and correction methods are given in the text.  
 
 
 
 

 

 
( cx , cy )     
(km/day) 

e-folding time 
(days) 

True values (8.0 , 0.0) 4.6 
Model fields (7.7 , 0.1) 4.5 – 5.4 

Synoptic cruise (7.7 , 0.1) 4.4 – 5.3 
Downstream cruise (4.9 ,0.2) 8.3 – 30. 

Downstream cruise after relocation (6.1 , 0.3) 5.5 – 11. 
Downstream cruise after relocation/growing (6.2 , 0.1) 4.5 – 6.5 

Upstream cruise (8.8 , 0.2) 3.4 – 4.0 
Upstream cruise after relocation (8.2 , 0.1) 4.0 – 4.2 

Upstream cruise after relocation/growing (7.6 , 0.1) 4.7 – 5.6 
Along-front cruise (7.4 , 0.3) 4.6 – 5.8 

Along-front cruise after relocation (8.2 , 0.1) 4.1 – 4.6 
Along-front cruise after relocation/growing (8.2 , 0.1) 4.3 – 4.7 

Table 2: system velocity (cx,cy) and e-folding time () inferred from the tendency 
method presented in the Appendix. The method was applied to the upper layer (20-
200 m); the range quoted for the growing rate corresponds to the minimum–maximum 
values obtained for individual levels (the system velocity did not show significant 
dispersion within the quoted vertical domain). True values are also listed, for an easy 
comparison with the results obtained for the different sampling strategies.  

 



a)             b) 

  

 
          c) 

Figure 1:  sequence of dynamic height fields (dyn.cm) representing a unstable baroclinic mode of 90 km wavelength embedded in a 45 km wide jet, as given by the Tang 
model. They correspond to days 10 (a) and day 16 (b) of the sequence (day 13 is shown in Fig. 2). (c) Dynamic height tendency (in dyn.cm/day) at day 13. All the fields of this 
and the following figures correspond to 100 m depth (a level that is representative of the upper layer dynamics); only the inner part of the 136x56 km2 model domain is 
shown. 
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a)                    b) 

          c)              d) 

Figure 2:  (a) Model dynamic height (dyn.cm) at day 13. (b) Relative vorticity (105 s1), (c) QG vertical velocity (m/day) and (d) QG tendency (dyn.cm/day) computed from 
the 3D model dynamic height at day 13.  
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a)                    b) 

 

 
          c)              d)  

Figure 3: Results for the synoptic sampling: (a) dynamic height (dyn.cm), (b) relative vorticity (105 s1), (c) QG vertical velocity (m/day) and (d) QG tendency (dyn.cm/day). 
The position of 96 stations has been overlapped in (a) (other 48 stations are located beyond the boundaries of the represented inner domain). 
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a)                    b)  

          c)              d)  

 

Figure 4:  As in Fig. 3, but for the downstream cruise. 
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a)                    b)  

          c)              d)  

 

Figure 5:  As in Fig. 3, but for the upstream cruise. 
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a)                    b)  

          c)              d)  

 

Figure 6:  As in Fig. 3, but for the along-front cruise. 
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a)                    b)  

          c)              d)  

Figure 7:  Results for the downstream cruise: (a) dynamic height (dyn.cm), (b) relative vorticity (105 s1), (c) QG vertical velocity (m/day) and (d) QG tendency 
(dyn.cm/day) obtained from the ‘pseudo-synoptic’ observations corrected following the tendency method.  
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a)                    b)  

          c)              d)  

 

Figure 8:  As in Fig. 7, but for the upstream cruise. Note that in panels b-d the spacing of isolines has changed with respect to the other figures. 
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a)                    b)  

 

 
          c)              d)  

 

Figure 9:  As in Fig. 7, but for the along-front cruise. 
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a)                    b)  

          c)              d)  

Figure 10:  Results for the downstream cruise: (a) dynamic height (dyn.cm), (b) relative vorticity (105 s1), (c) QG vertical velocity (m/day) and (d) QG tendency 
(dyn.cm/day) obtained from the ‘pseudo-synoptic’ relocated stations with observations corrected on the basis on the estimated growing rate. The position of the relocated 
stations has been overlapped in (a).  
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a)                    b)  

          c)              d)  

 

Figure 11: As in Fig. 10, but for the upstream cruise. 
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a)                    b)  

          c)              d)  

 

Figure 12: As in Fig. 10, but for the along-front cruise. 
 


