
Title Ad-hoc distributed spatial joins on mobile devices

Author(s) Kalnis, P; Mamoulis, N; Bakiras, S; Li, X

Citation 20Th International Parallel And Distributed Processing
Symposium, Ipdps 2006, 2006, v. 2006

Issued Date 2006

URL http://hdl.handle.net/10722/45558

Rights Creative Commons: Attribution 3.0 Hong Kong License



Ad-hoc Distributed Spatial Joins on Mobile Devices

Panos Kalnis1, Nikos Mamoulis2, Spiridon Bakiras3 and Xiaochen Li1

1Department of Computer Science 2Department of Computer Science
National University of Singapore The University of Hong Kong

117543 Singapore Pokfulam Road, Hong Kong
{kalnis, g0202290}@comp.nus.edu.sg nikos@cs.hku.hk

3Department of Computer Science
Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong
sbakiras@cs.ust.hk

Abstract

PDAs, cellular phones and other mobile devices are
now capable of supporting complex data manipulation
operations. Here, we focus on ad-hoc spatial joins of
datasets residing in multiple non-cooperative servers.
Assuming that there is no mediator available, the spa-
tial joins must be evaluated on the mobile device. Con-
trary to common applications that consider the cost at
the server side, our main issue is the minimization of
the transferred data, while meeting the resource con-
straints of the device. We show that existing methods,
based on partitioning and pruning, are inadequate in
many realistic situations. Then, we present novel algo-
rithms that estimate the data distribution before decid-
ing the physical operator independently for each par-
tition. Our experiments with a prototype implemen-
tation on a WiFi-enabled PDA, suggest that the pro-
posed methods outperform the competitors in terms of
efficiency and applicability.

1. Introduction

Modern mobile devices, such as mobile phones and
Personal Digital Assistants (PDAs), provide many con-
nectivity options together with substantial memory
and CPU power. Novel applications that take advan-
tage of these features are emerging. For example, users
can download digital maps in their devices and navi-
gate in unknown territories with the aid of add-on GPS
receivers. General database queries are also possible.

Nevertheless, in most cases requests are simply trans-
mitted to the database server (or middleware) for eval-
uation, while the mobile device serves only as a dump
client for presenting the results.

In many practical situations, complex queries need
to combine information from multiple sources. Con-
sider, for instance, the Michelin guide which contains
classifications and reviews of top European restaurants.
Although it provides the address of each restaurant, the
accuracy of the accompanying maps varies considerably
among cities. In Paris, for example, the maps go down
to the street level (200 feet), while for Athens only a
regional map (5 miles) is available. A traveller visiting
Athens must combine the information from the Miche-
lin site with accurate data from a local server (i.e., a
map of the area together with hotels and tourist attrac-
tions), in order to answer the query “find the hotels in
the historical center which are within 500 meters from
a one-star restaurant”.

Since the two data sources in this scenario are un-
likely to cooperate, the query cannot be processed by
either of them. Typically, queries to multiple hetero-
geneous sources are handled by mediators, which com-
municate with the sources and integrate information
from them via wrappers. However, there are several
reasons why this architecture may not be appropriate
or even feasible. First, the services may not be col-
laborative; they may not be willing to share their data
with other services or mediators, allowing only simple
users to connect to them. Second, the user may not be
interested in using the mediator, since she will have to
pay for the service; retrieving the information directly

1-4244-0054-6/06/$20.00  ©2006 IEEE



from the sources may be less expensive. Finally, the
user requests may be ad-hoc and not supported by ex-
isting mediators, as in our example. Consequently, the
query must be evaluated on the mobile device.

Telecommunication companies typically charge the
wireless connections by the bulk of transferred data
(bytes or packets), rather than by the connection time.
We are, therefore, interested in minimizing the amount
of exchanged information, instead of the processing
cost at the servers. Indeed, the user is typically will-
ing to sacrifice a few seconds in response time, in order
to minimize the query cost in dollars. We also assume
that services allow only a limited set of queries through
a standard interface (e.g., window queries). Therefore,
the user does not have access to the internal statistics
or index structures of the servers.

Formally, the problem is defined as follows. Let
R and S be two spatial relations located at different
servers, and bR, bS be the cost per transferred unit
(i.e., byte) from the server of R and S, respectively.
We want to evaluate the spatial join R ��θ S in a mo-
bile device, while minimizing the cost with respect to
bR and bS . We deal with intersection [2] and distance
joins [6, 4, 15]; in the latter case, the qualifying object
pairs should be within distance ε. We also consider the
iceberg distance semi-join. This query differs from the
distance join in that it asks only for objects from R (i.e.,
semi-join), with an additional constraint: the qualify-
ing objects should ‘join’ with at least m objects from S.
As a representative example, consider the query “find
the hotels which are close to at least 10 restaurants”.

Previous work proposed the MobiJoin algorithm [9]
for evaluating spatial joins on mobile devices. Mobi-
Join partitions recursively the datasets and retrieves
statistics in order to prune the search space. While Mo-
biJoin exhibits substantial savings compared to näıve
methods, it does not consider the data distributions in-
side the partitions. In many practical situations this re-
sults to inefficient processing, especially when the car-
dinalities of the joined datasets differ significantly, or
when there is more memory available on the PDA.

In this paper, we first analyze the behavior of Mo-
biJoin, concluding that the source of inefficiency is the
implicit assumption of uniformity inside the data par-
titions which results to inaccurate estimation of the
repartitioning cost. Based on our findings, we present
two novel algorithms, namely Uniform Partition Join
(UpJoin) and Similarity Related Join (SrJoin), that
avoid the above pitfalls. Our algorithms examine every
partition of the data space and make a decision on the
physical operator that will be applied based on (i) the

We will use the term ‘PDA’ and ‘Mobile Device’ interchange-
ably in the rest of the paper.

cost of applying the physical join operator, and (ii)
the relative uniformity of each space. The aim is to
identify and prune areas which cannot possibly partic-
ipate in the result (e.g., do not download any hotels
if there is no one-star restaurant in the area), while
keeping the number of aggregate queries at acceptable
levels. Depending on the retrieved statistics, different
fragments can be processed by different physical oper-
ators (adaptivity). Our experiments with a prototype
implementation on a PDA equipped with WiFi, verify
that our methods avoid the drawbacks of the previous
approach and can be efficiently applied in practice.

The rest of the paper is organized as follows. Sec-
tion 2 overviews some previous work on spatial joins.
Section 3 introduces the problem formulation and dis-
cusses the existing approaches. In Section 4 we present
our improved algorithms, while Section 5 contains a
detailed experimental evaluation. Finally, Section 6
concludes our work.

2. Related Work

There are several spatial join algorithms that apply
on centralized spatial databases. Most of them focus on
the filter step of the spatial intersection join. Their aim
is to find all pairs of object MBRs (minimum bound-
ing rectangles) that intersect. The qualifying candidate
object pairs are then tested on their exact geometry at
the final refinement step. Typically, spatial join algo-
rithms presume that one [10] or both datasets [2] are
indexed by hierarchical access methods (i.e., R-trees).
This is not directly related to our problem, since the
remote client cannot access the internal server indexes.

On the other hand, spatial join algorithms for non-
indexed data are more relevant. The Partition Based
Spatial Merge (PBSM) join [13] uses a regular grid
to hash both datasets R and S into P partitions
R1, R2, . . . , RP and S1, S2, . . . , SP , respectively. Ob-
jects that fall into more than one cells are replicated
into multiple buckets. The second phase of the algo-
rithm loads pairs of buckets Rx with Sx that corre-
spond to the same cell(s) and joins them in memory.
The data declustering nature of PBSM makes it attrac-
tive for our problem. The Spatial Hash Join algorithm
proposed in Ref. [7] is similar to PBSM, in that it uses
hashing to reduce the size of the problem to smaller
ones that fit in memory. This algorithm, however, uses
irregular space partitioning to define the buckets. The
construction of the hash bucket extents is computation-
ally expensive; in addition, the whole R has to be read
before finalizing the bucket extents, thus this method
is not suitable for our settings.

Distributed processing of spatial joins has been stud-



ied in [16]. Datasets are indexed by R-Trees, and the
intermediate levels of the indexes are transferred from
one site to the other, prior to transferring the actual
data. Thus, the join is processed by applying semi-join
operations on the intermediate tree level MBRs in or-
der to prune objects, minimizing the total cost. Our
work is different, since we assume that the sites do not
collaborate with each other, and they do not publish
their index structures.

Many of the issues we are dealing with, also exist
in distributed data management with mediators. Me-
diators provide an integrated schema for multiple het-
erogeneous data sources. Queries are posed to the me-
diator, which constructs the execution plan and com-
municates with the sources via custom-made wrappers.
The HERMES [1], DISCO [17], and Garlic [14] media-
tor systems maintain statistics in order to optimize the
execution of queries. Our statistics retrieval method is
closer to Garlic. Nevertheless, Garlic acquires cost in-
formation during initialization and uses it to optimize
all subsequent queries, while we optimize the entire
process of statistics retrieval and query execution for
a single query. The Tuckila [5] system also combines
optimization with query execution. Our approach is
different, since we optimize the execution of the cur-
rent (and only) operator, while Tuckila uses statistics
from the current results to optimize the subsequent op-
erators.

3. Spatial Joins on Mobile Devices

As discussed previously, the join evaluation cannot
be assisted by internal index structures on the servers,
since they are unlikely to be published. Therefore,
communication with the servers is limited to a small
set of operations. We assume that the following queries
are available:

• WINDOW query: return all the objects intersect-
ing a window w.

• COUNT query: return the number of objects in-
tersecting a window w.

• ε-RANGE query: return all objects within dis-
tance ε from a point p.

It is safe to assume the existence of the COUNT
query, since it is typical for the servers to send an ac-
knowledgment containing the size of the query result,
prior to sending the actual data. Also, if the ε-RANGE
query is not available, we can simulate it by a WIN-
DOW query with the window’s sides equal to 2ε.

There are two types of information interchanged be-
tween the client and the servers: (i) the queries sent

A B C D

1

2

3

4

A B C D

1

2

3

4

Dataset R Dataset S

Figure 1. Two datasets to be joined

to the servers, and (ii) the results sent back by the
servers. The main issue is to minimize the total amount
of transferred data for a given operation. The sim-
plest way to execute the spatial join is to download
both datasets to the PDA and perform the join there.
In general, this is an infeasible solution, since mobile
devices have limited storage capability. A divide-and-
conquer alternative is to perform the join in one spatial
region at a time. Thus, the space is divided into rec-
tangular areas (e.g., using a regular grid), a window
query is sent for each cell to both sites, and the results
are joined on the device using a main memory join al-
gorithm. In the example of Figure 1, the hotels that
intersect A1 are downloaded from R, the restaurants
that intersect A1 are downloaded from S, and the re-
sults are joined on the PDA. Duplicate avoidance tech-
niques [3, 8] can be employed to avoid reporting a pair
more than once. In the case of a distance join, the cells
are extended by ε/2 at each side before they are sent as
window queries. If the data do not fit in memory, the
cell can be recursively partitioned (e.g., PBSM [13]).

A drawback of the partition-based technique is that
it downloads all objects from both datasets. However,
we can achieve sublinear transfer cost by pruning ar-
eas that do not contain any results. For example (see
Figure 1), if we know that cells C1 and D1 are empty
in R, we can avoid downloading their contents from
S. The intuition is to apply some cheap queries first,
which will provide information about the distribution
of objects in both datasets. Since the cost at the server
side is not a concern, we first apply a COUNT query
for the current partition on each server. Therefore, we
retrieve the number of objects in each cell and avoid
downloading data in areas where at least one of the
relations is empty.

In some cases we must repartition the space recur-
sively, in order to identify the empty areas. For exam-
ple, if we partition the space of Figure 1 in quadrants,
CD12 cannot be pruned since it is not empty. How-
ever, if we recursively divide CD12, we can identify the
empty cells C1 and D1. On the other hand, observe

COUNT queries can be answered fast by data structures
such as the aR-tree [11] or the aHRB-tree [12].



that refining such partitions may have a counter-effect
in the overall cost due to the overhead of the addi-
tional aggregate queries. In this case, it might be more
beneficial to stop drawing statistics for this area and
perform the join as a series of selection queries. Thus,
the join processing for quadrant CD12 proceeds as fol-
lows: (i) download all hotels from R intersecting CD12,
and (ii) for each hotel apply a window query on S to
find the matching restaurants. This method resembles
the Nested Loop join algorithm and can be efficient if
|R| � |S|.

3.1. The Cost Model

Let |Rw| and |Sw| be the number of objects from R
and S, respectively, intersected by a window w. Below
we define four execution strategies and their corespond-
ing cost functions c1...4(w):

• c1(w) is the cost of performing a Hash-Based Spa-
tial Join (HBSJ), by downloading |Rw| objects
from R and |Sw| objects from S and joining them
on the PDA. If the PDA’s buffer cannot accom-
modate |Rw| + |Sw| objects, c1(w) = ∞.

• c2(w) is the cost of performing a Nested Loop
Spatial Join (NLSJ) by downloading |Rw| objects
from R, sending them as window queries to server
that hosts S and receiving the results.

• c3(w) is the cost of performing NLSJ by download-
ing |Sw| objects from S, sending them as window
queries to server that hosts R and receiving the
results. Notice that c2(w) and c3(w) may differ
depending on (i) which of the |Rw| and |Sw| is the
smallest, and (ii) the communication costs with
each of the sites.

• c4(w) is the cost of applying recursive counting
in |Rw| and |Sw|, retrieve more detailed statistics,
and apply the join algorithms recursively.

The largest amount of data that can be transferred
in one packet on the network is referred to as MTU
(Maximum Transmission Unit). Each network packet
consists of the TCP/IP headers (with a typical size
of BH = 40 bytes) and the actual data. Let D be a
dataset. The size of D in bytes is BD = |D| · Bobj ,
where Bobj is the size of each object in bytes. Thus,
when the whole D is transmitted through the network,
the number of transferred bytes is:

TB(BD) = BD + BH ·
⌈

BD

MTU − BH

⌉
(1)

The MTU depends on the physical network layer; Ethernet,
for instance, has MTU = 1500 bytes, while dial-up connections
usually support MTU = 576 bytes.

where the second component of the equation is the
overhead of the TCP/IP headers.

The cost of sending a query to a server is BH +
BQ, where BQ is the size of the query string in bytes.
Let bR and bS be the per byte transfer cost (e.g., in
dollars) for sites R and S, respectively. The total cost
of downloading the objects from R and S and joining
them on the PDA is:

c1(w) =(bR + bS)(BH + BQ) + bRTB(|Rw| · Bobj)
+ bSTB(|Sw| · Bobj) (2)

Now let us consider the cost c2 of downloading all
|Rw| objects from R and sending them as ε-RANGE
queries to S. The expected number of points in Sw

within distance ε from a point p is π·ε2

wx·wy
· |Sw|, as-

suming uniform distribution in w, where wx and wy

are the lengths of the window’s sides. The total num-
ber of bytes for transmitting the ε-RANGE query and
receiving the results is:

Tdq(w, ε) = (BH +BQ)+TB

(
π · ε2

wx · wy
|Sw| · Bobj

)
(3)

Therefore, the total cost of downloading the objects
from R intersecting w, sending them one by one as
distance queries to S and receiving the results is:

c2(w) =bR(BH + BQ) + bRTB(|Rw| · Bobj)
+ bS |Rw| · Tdq(w, ε) (4)

We assumed that the ε-RANGE query processes
one point at a time. However, if the database server
supports bucket queries we can send many ε-RANGE
queries simultaneusly, thus redusing the overhead of
the TCP/IP headers. In this case, the cost of down-
loading all |Rw| objects from R and sending them as
bucket ε-RANGE queries to S is:

Tbr(w, ε) = (bR + bS)TB(|Rw| · Bobj)

The cost of retrieving all the results from S is:

T ′
dq(w, ε) = TB

(
(

π · ε2

wx · wy
|Sw|Bobj + Bobj)|Rw|

)
(5)

Therefore, the total cost of downloading the objects
from R intersecting w, sending them as bucket queries
to S, and receiving the results is:

c′2(w) = (bR + bS)(BH + BQ)
+ (bR + bS)TB(|Rw| · Bobj) + bS · T ′

dq(w, ε) (6)

The cost c3 is also given by Equation (4) (respec-
tively, (6)), by exchanging the roles of R and S. If



the objects are polygons instead of points, we can use
the same derivation, but we need statistics about the
average area of the object MBRs intersecting w for R
and S. These can be obtained from the server when we
retrieve |Rw| and |Sw| (i.e., we can post an additional
aggregate query together with the COUNT query).

The cost of sending an aggregate query and receiving
the results is:

Taq = (BH + BQ) + (BH + BA) (7)

where BA is the size of the answer string (usually it
consists of one long integer). In order to repartition w
in k × k partitions, we must send k2 aggregate queries
to each site. Next, each partition w′ will be processed
by the cheapest method c1...4(w′). Therefore,

c4(w) = 2k2 · Taq

+
∑
∀w′

min{c1(w′), c2(w′), c3(w′), c4(w′)} (8)

3.2. The MobiJoin Algorithm

The MobiJoin algorithm [9] is the basis of our im-
proved methods. MobiJoin works as follows: First it
sends COUNT queries to both R and S to retrieve sta-
tistics for a window w. If Rw or Sw is empty, the algo-
rithm returns. Otherwise, the algorithm estimates the
cost of c1...4(w) and follows the action with the lowest
cost. Each recursive step (action c4) divides the space
into a regular k × k grid, where k is fixed to 2.

Notice that Equation (8) is recursive and is, there-
fore, difficult to estimate prior to repartitioning, since
we do not know which partitions will be pruned and
which will need further refinement. MobiJoin, assumes
that w is uniform and small enough so that every
subwindow w′ will be processed by HBSJ after only
one partitioning. Nevertheless, this heuristic may not
be appropriate in many practical cases. Figure 2(a)
presents such an example: here, |R| � |S|, therefore, c3

is the minimum cost and MobiJoin will perform NLSJ
by downloading all objects from S and sending them as
individual queries to R. However, if one more recursive
step is allowed, the entire space can be pruned. Notice
that this problem can arise at any level of recursion,
so in the general case it will not be solved by simply
allowing one additional step.

Figure 2(b) presents a different case: assume that
each cluster contains 500 points and the PDA’s mem-
ory can accommodate 1900 points. c1 is inapplicable,
since HBSJ requires a buffer size of at least 4 · 500 =
2000 points. Therefore, the space is partitioned in

MobiJoin would not choose c2 or c3, since the cost of down-
loading 1000 points, sending them one by one as queries and
retrieving the results, is larger than c1.

A B C D

1

2

3

4

A B C D

1

2

3

4

Dataset R Dataset S

(a) Inefficient Nested Loop join

A B C D

1

2

3

4

A B C D

1

2

3

4

Dataset R Dataset S

(b) Inefficient Hash-based join

Figure 2. Drawbacks of MobiJoin

four quadrants and in the next step the empty areas
AB12, CD12 and AB34 are pruned. Assume now that
we increase the PDA’s memory to 2000 points. Since
there is enough memory for HBSJ, all points from both
datasets are downloaded. Thus by increasing the avail-
able resources, the transfer cost is doubled! This prob-
lem is amplified by the recursive nature of the algo-
rithm. For instance, if the PDA’s buffer is less than
1000 points, quadrant CD34 will be further partitioned
and all areas will be pruned.

Pruning all areas after one step is the best scenario
for c4. In this case, c4(w) = 2k2 ·Taq, i.e., only the cost
of the aggregate queries. This approximation forces
more recursive steps, so it could be a potential solu-
tion to the previous problems. Unfortunately, there is
the counter-effect of increasing the total cost due to
the excessive number of aggregate queries, especially
for datasets with relatively uniform areas. Another
possible solution is to increase the number k of parti-
tions at each step. However, our experiments revealed
two drawbacks: (i) for large buffers the problem per-
sists, and (ii) for larger k the overhead due to aggregate
queries increases significantly.

4. Distribution-aware Methods

It is apparent from the above analysis that we need a
robust criterion to decide when to stop retrieving more
statistics. Next, we present two algorithms, namely the
Uniform Partition Join (UpJoin) and the Similarity
Related Join (SrJoin) that solve the previous problems,



by considering the data distribution inside w.

4.1. The Uniform Partition Join Algorithm

The motivation behind UpJoin is simple: we at-
tempt to identify regions where the object distribution
is relatively uniform. In such regions, the cost esti-
mations of our model are accurate; therefore, we can
decide safely which action to perform, without requir-
ing knowledge of the future recursive steps.

The algorithm (Figure 3) is called with the query
window w and the number of objects from datasets R
and S intersecting w. Similar to the previous method,
UpJoin prunes the areas where at least one of the
datasets is empty. However, before deciding which
physical operator to apply, UpJoin decomposes w into
a regular 2 × 2 grid and retrieves the number of ob-
jects for each cell. Based on this information, it checks
whether each dataset D,D ∈ {R,S} is uniform, by us-
ing the following formula:∣∣∣∣ |Dw|

4
− |Dw′i|

∣∣∣∣ < α · |Dw| (9)

where w′
i is a quadrant of w and α ∈ (0, 1] is a system-

wide parameter. If all quadrants satisfy the inequality,
Dw is considered uniform. Notice that Equation (9)
implies that all quadrants should have approximately
the same number of objects. For some distributions,
this requirement creates problems. For instance, a 2D
Gaussian distribution whose mean is located at the cen-
ter of w, would be mistaken as uniform. In practice,
this is an extreme case, assuming that α � 0. How-
ever, such a small value of α tends to over-partition
the space, generating significant overhead due to ag-
gregate queries, especially when the entire dataset is
uniform. Therefore, we must set α to a larger value,
which increases the probability of characterizing Dw

incorrectly. In order to minimize this problem, we sub-
mit an additional COUNT query (line 6) if the statis-
tics suggest that Dw is uniform. The window size of
the extra query is equal to a quadrant of Dw, but its
location is chosen randomly inside Dw. If the new re-
sult satisfies Equation (9), the algorithm decides that
the distribution of Dw is indeed uniform.

In the best case, UpJoin can identify a skewed
dataset by issuing only three aggregate queries, since
|Dw′4| = |Dw| −

∑3
i=1 |Dw′i|. However, if the number

of objects inside Dw is small, the cost of the aggregate
queries is higher than downloading the objects. There-
fore, the algorithm will ask for more statistics only if
Dw is large enough (line 3). Formally, the following
inequality must be satisfied:

TB(|Dw| · Bobj) > 3 · Taq (10)

// |Rw|, |Sw| are the number of objects from R, S
// which intersect window w
UpJoin(w,|Rw|,|Sw|)
1. if |Rw| = 0 or |Sw| = 0 then return;
2. for each dataset D, D ∈ {R, S}
3. if |Dw| is large and Dw is not uniform then
4. impose a regular 2 × 2 grid over Dw;
5. for each cell w′ ∈ Dw retrieve |Dw′ |;
6. if Dw is uniform then sent a random count query;
7. else assume that Dw is uniform;

// Assume c3(w) < c2(w) (the other case is symmetric)
8. calculate c1(w), c2(w), c3(w);
9. if c1 < c3 then
10. if both datasets are uniform

and there is enough memory then HBSJ(w);
11. else for each cell w′ ∈ w do UpJoin(w′,|Rw′ |,|Sw′ |);
12. else if c3 < c1 then
13. if the largest dataset is uniform then NLSJ(w);
14. else for each cell w′ ∈ w do UpJoin(w′,|Rw′ |,|Sw′ |);

Figure 3. The uniform partition join algorithm

Here, Taq represents the cost of sending a single aggre-
gate query.

Also notice that one of the datasets may have al-
ready been characterized as uniform at a previous step.
In this case, UpJoin does not request additional statis-
tics (line 3); instead, it estimates the number of objects
in the quadrants Dw′i, based on |Dw| and the unifor-
mity assumption. The algorithm will issue additional
aggregate queries for D only when accuracy is crucial,
i.e., when applying the physical operators.

In line 8, UpJoin calculates the costs c1...3. It is not
necessary to compute c4, since the criterion for reparti-
tioning is the data distribution. In Figure 3 we assume
that c3 < c2 and, therefore, S will be the outer relation
if NLSJ is executed; the other case is symmetric.

If c1 < c3 and there is enough memory on the PDA
to accommodate |Rw|+|Sw| objects, the algorithm will
join the windows by employing HBSJ. If there is not
enough memory on the PDA, the algorithm will de-
compose the window into several subparts which can
be accommodated in the PDA’s memory and join them
accordingly. However, if at least one dataset is skewed,
it is possible that HBSJ will be inefficient (similar to
Figure 2(b)). In this case, UpJoin decides to further
partition the space.

On the other hand, if c3 < c1 there is no mem-
ory constraint and NLSJ can be applied. Neverthe-
less, there is also a possibility of inefficient processing,
similar to the example of Figure 2(a). To avoid this
problem, UpJoin repartitions the window if the larger
dataset (i.e., the inner relation R) is skewed. Notice
that if the outer relation S is skewed but R is uni-
form, there is no need to repartition. This is due to
the fact that the cost of NLSJ is mainly determined
by the number of objects in S. Since R is uniform, it



A B C D

1

2

3

4

A B C D

1

2

3

4

Dataset R Dataset S

Figure 4. Inefficient UpJoin

is unlikely to contain large empty areas, so it cannot
prune any objects from S. Therefore, even if S causes
part of R to be pruned, the cost will remain roughly the
same. Of course it is possible that in the next step the
relationship between c3 and c1 changes, in which case
repartitioning may be beneficial. However, we found
that this rarely happens in practice while our method
saves many aggregate queries in most cases.

4.2. The Similarity Related Join Algorithm

The advantage of UpJoin compared to MobiJoin is
that it considers the distribution of each dataset before
applying the physical operation on each partition. But
in some cases, just considering the distribution of sep-
arate datasets can not provide adequate information
to make the correct choice for the next step. Figure 4
presents such a case: UpJoin will label both datasets as
skewed, and then recursively repartition them. How-
ever, the distributions of these two datasets are very
similar, and we cannot prune any points after reparti-
tioning. Since the objects are clustered in the centers
of areas AB12, CD12, and AB34, UpJoin will also la-
bel these areas as skewed after repartitioning (line 6 of
Figure 3). Therefore, the recursion will continue but
the cost of sending the aggregate queries will not be
compensated.

Here we present SrJoin, which addresses the above
drawbacks. SrJoin attempts to compare the distri-
bution of both datasets and decides the next action
based on their relationship. If the distribution of these
datasets is similar, applying HBSJ or NLSJ on these
subparts (according to the cost model) without requir-
ing knowledge of the future recursive steps is more ben-
eficial. Otherwise, we expect that the data distribution
at the next level is also skewed, and pruning can be per-
formed. SrJoin uses the four cells of the current win-
dow w to estimate the data distribution for the whole
window w. Let |Dwi| be the number of objects inside a
cell wi of each dataset D,D ∈ {R,S}. Let |Awi| be the
area of wi. Cell wi is dense if the following equation is
satisfied:

|Dwi| > ρ
|Dw|
|Aw| · |Awi| (11)

// w1,. . . , w4 are the four quadrants of window w
// |Rwi |, |Swi | are the number of objects from R, S
// which intersect window wi

SrJoin(w,|Rw|,|Sw|)
1. for each dataset D, D ∈ {R, S}
2. impose a regular 2 × 2 grid over Dw;
3. for i=1 to 4

4. if |Rwi | > ρ
|Rw|
|Aw| |Awi | then bitR[i]=1 else bitS [i]=0;

5. if |Swi | > ρ
|Sw|
|Aw| |Awi | then bitR[i]=1 else bitS [i]=0;

6. if bitmaps bitR and bitS are equal then
7. for i=1 to 4
8. if |Rwi |=0 or |Swi |=0 then continue; // next i
9. compute cost of c1(wi) and c2(wi);

// c3(wi) is a symmetric case
10. if c1(wi) < c2(wi) then apply HBSJ on wi;
11. else apply NLSJ on wi;
12. else
13. for i=1 to 4
14. if |Rwi |=0 or |Swi |=0 then continue; // next i
15. compute cost of c1(wi) and c2(wi);

// c3(wi) is a symmetric case
16. if c1(wi) < 3 · Taq or c2(wi) < 3 · Taq then

// the dataset must be large
17. if c1(wi) < c2(wi) then apply HBSJ on wi;
18. else apply NLSJ on wi;
19. else apply SrJoin on window wi;

Figure 5. The similarity related join algorithm

where ρ is a system-wide parameter and |Dw|
|Aw| is the

average density of window w.
For the current w, two 4-bitmaps are created; one

for R and one for S. If a quadrant wi is dense, the
corresponding bit is set. Then, we determine the next
action for each quadrant wi. If one of the windows
is empty for at least one of R and S, we prune the
window as before (no results). If both 4-bitmaps are
the same, we assume that the distribution of the two
datasets is the same and there is no need for reparti-
tioning. For each quadrant, we choose to apply HBSJ
or NLSJ, based on their cost estimation. Notice that
if all the points can not fit into the memory, HBSJ is
recursively executed and pruning can also be applied
at each recursion level.

If the two 4-bitmaps are different, we compute the
cost of HBSJ and NLSJ. If repartitioning is more ex-
pensive than HBSJ or NLSJ, we choose to apply the
cheapest action, as specified by the cost model. Oth-
erwise, we apply repartitioning hoping to prune the
search space. Here, we assume that if the data dis-
tribution for window w of R and S is different, the
distribution of the four quadrants of w of R and S
will also be different, and several of the points can
be pruned. Therefore, we make an aggressive estima-
tion for the cost of repartitioning, which only includes
the cost of the aggregate queries (no points need to
be transferred). The complete algorithm is shown in
Figure 5.



 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

128168421

T
ot

al
 b

yt
es

Clusters

0.15
0.2

0.25
0.3

(a) Parameter α for UpJoin

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

128168421

T
ot

al
 b

yt
es

Clusters

30%
50%

100%
200%
350%

(b) Parameter ρ for SrJoin

Figure 6. Setting the parameters

5. Experimental Evaluation

In this section, we present a detailed experimental
study of our methods. All the algorithms were imple-
mented in Visual C++ for Windows Pocket PC. Our
prototype run on an HP-IPAQ PDA with a 400MHz
RISC processor and 64MB RAM. The PDA was con-
nected to the network through an IEEE 802.11b WiFi
interface. The servers for the spatial datasets resided
on UNIX machines. In all the experiments, we set
bR = bS , i.e., the transfer cost was the same for both
servers. We used synthetic datasets consisting of 1000
points, in order to simulate typical windows of users’
requests. The points were clustered around k randomly
selected centers, and for each cluster the distribution
of objects was Gaussian. In order to achieve different
skew levels, we varied k from 1 to 128. We also em-
ployed a real dataset (with around 35K objects) repre-
senting the railway segments of Germany. Unless spec-
ified otherwise, the PDA’s buffer size was set to 800
points (i.e., 40% of the total data size for the synthetic
datasets).

The first experiment examines the effect of parame-

ter α in the UpJoin algorithm. Recall that α is used
in Equation (9) in order to identify whether a window
is uniform. In Figure 6 we plot the total amount of
transferred bytes for different values of α. Each value
in the diagrams represents the average of 10 executions
with different datasets. Observe that setting α = 0.15
tends to over-partition the space, and the overhead of
retrieving the statistics increases significantly. On the
other, a large value of α is also not desirable, since it
can not identify empty areas efficiently. For the rest of
the experiments we set α = 0.25.

In the next experiment we investigate the effect of
parameter ρ in the SrJoin algorithm. We express ρ as
a percentage of the average density |Dw|

|Aw| of window w.
The results for various values of ρ are summarized in
Figure 6(b). Setting ρ = |Dw|

|Aw| tends to over-partition
the datasets when they are uniform (i.e., k = 128),
resulting in a much higher cost due to unnecessary
COUNT queries. The performance of using ρ = 30%
and 200% is quite similar and both of them fit the uni-
form datasets very well. Considering the overall per-
formance for all cluster settings, we use the value of
ρ = 30% for the rest of the paper.

5.1. Comparison against MobiJoin

Here, we compare UpJoin and SrJoin against Mobi-
Join. In the first experiment we set the PDA’s buffer
to 100 points. Figure 7(a) shows that all three algo-
rithms have similar performance for skewed datasets
(i.e., small number of clusters), with SrJoin being
slightly worse for moderate skew levels. However, when
k = 128 (i.e., uniform dataset) the performance of Up-
Join deteriorates, due to the fact that UpJoin tends to
create unnecessary partitions for uniform datasets. On
the other hand, for uniform datasets, SrJoin performs
better that both MobiJoin and UpJoin.

Figure 7(b) shows the results of the same experi-
ment, but for a buffer size of 800 points. The first
thing worth noticing is the performance degradation
of MobiJoin for skewed datasets. The reason for that
is thoroughly explained in the example of Figure 2.
Notice, however, that for uniform datasets MobiJoin
works well. In this case, many regions are joined with
HBSJ, and since the buffer size is large, HBSJ does
not need to partition the region and introduce over-
head. Observe that the performance of SrJoin exhibits
a balanced tradeoff between the good results of Up-
Join for skewed dataset and the results of MobiJoin for
uniform datasets.



 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

128168421

T
ot

al
 b

yt
es

Clusters

srJoin
upJoin

mobiJoin

(a) Buffer = 100 points

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

128168421

T
ot

al
 b

yt
es

Clusters

srJoin
upJoin

mobiJoin

(b) Buffer = 800 points

Figure 7. Comparing the three algorithms

5.2. Experiments with Real Data

The next experiment models the situation where a
large dataset (e.g., the map of a city) is joined with
a much smaller dataset (e.g., the hotels of the city).
We use a real dataset of the German railway segments
which contains around 35K objects, and a 1000-point
synthetic dataset. The PDA’s buffer is set to 800
points and we vary the skew of the small dataset. In
Figure 8(a) we present the results for the bucket ver-
sions of the algorithms (see Section 3.1). Observe that
the heuristic of MobiJoin performs poorly for real-life
datasets, since it chooses to execute NLSJ most of the
time. Both UpJoin and SrJoin easily outperform Mo-
biJoin, especially for skewed datasets.

5.3. Comparison against Indexed Join

SemiJoin [16] is a distributed spatial join algorithm,
which requires that at least one of the datasets is in-
dexed by an R-tree. A revised version of SemiJoin was

Without using the bucket query submission the trend of the
results was similar but the absolute values were higher.

implemented in our PDA/server prototype. SemiJoin
assumes that the servers collaborate with each other.
Therefore, the MBRs and the qualifying objects can be
directly transferred from one server to the other. In our
environment, however, we assume that the servers are
non-cooperative. Consequently, the PDA will act as
the mediator between the two servers. If both datasets
are indexed by R-trees, the algorithm identifies the
smaller dataset, based on the information provided by
the two R-trees. Without loss of generality, we assume
that R is the small dataset. The algorithm chooses one
level of MBRs from S and transfers them to server R,
using the PDA as a mediator. Then, all the objects
of R inside these MBRs will be transferred back to S,
through the PDA. The final join step is performed at
server S, and the results are returned to the PDA.

Here, we compare the performance of the bucket ver-
sion of UpJoin and SrJoin against SemiJoin. Again,
the use the German railway segments dataset and a
1000-point synthetic dataset. The results are shown in
Figure 8(b). Both UpJoin and SrJoin have lower cost
for skewed datasets while, for uniform datasets, Semi-
Join is better. The cost of SemiJoin comprises of two
parts — the cost of transferring the MBRs, and the
cost of transferring the objects. For all cluster sizes,
the cost of transferring the MBRs is identical, since we
use the MBRs of the second to last level of the R-trees
of the real dataset. However, the cost of transferring
the objects varies, according to the distribution of the
synthetic dataset. Therefore, SemiJoin is not ideal for
skewed datasets, but for uniform datasets it is more
efficient in pruning the empty space.

Notice that in practice, SemiJoin cannot be ap-
plied in our problemn, because the servers are un-
likely to publish the internal structures of their indexes.
The results, however, demonstrate that our algorithms
achieve very good performance despite the absence of
indexes.

6. Conclusions

In this paper, we deal with the problem of execut-
ing spatial joins on mobile devices, where the datasets
recite on separate remote servers. We assume that the
servers are primitive, thus they support only three sim-
ple queries: (i) a window query, (ii) an aggregate query,
and (iii) a distance-selection query. We also assume
that the servers do not collaborate with each other,
do not wish to share their internal indexes, and there
is no mediator to perform the join of these two sites.
These assumptions are valid for many practical situa-
tions. For instance, there are web sites providing maps,
others with hotel locations, but a user may request an



 0

 5000

 10000

 15000

 20000

128168421

T
ot

al
 b

yt
es

Clusters

srJoin
upJoin

mobiJoin

(a) SrJoin and UpJoin vs. MobiJoin

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

128168421

T
ot

al
 b

yt
es

Clusters

upJoin
srJoin

semiJoin

(b) UpJoin and SrJoin vs. SemiJoin

Figure 8. Performance for the real datasets

unusual combination, such as “find all hotels which are
at most 200km away from a rain forest”. Executing
this query on a mobile device must address two issues:
(i) the limited resources of the device, and (ii) the fact
that the user is charged by the amount of transferred
information and wants to minimize this metric instead
of the processing cost at the servers.

We showed that the existing partitioning and prun-
ing method is inadequate in many practical situations.
Motivated by this fact, we developed the UpJoin and
SrJoin algorithms; UpJoin and SrJoin retrieve statis-
tics in the form of simple aggregate queries and exam
the data distribution before deciding to (i) repartition
the space or (ii) join its contents by a nested loop or a
hash-based method. While UpJoin evaluates the dis-
tribution of each dataset, SrJoin uses the relationship
of the distribution of the two datasets to decide the
next step action. Our experiments with a prototype
implementation on a PDA equipped with a WiFi in-
terface, verify that our methods avoid the drawbacks
of the previous approach and can be efficiently applied
in practice. In the future we plan to support complex
spatial queries, involving more than two datasets.

References

[1] S. Adali, K. S. Candan, Y. Papakonstantinou, and
V. S. Subrahmanian. Query caching and optimization
in distributed mediator systems. In Proc. of ACM
SIGMOD, pages 137–148, 1996.

[2] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient
processing of spatial joins using r-trees. In Proc. of
ACM SIGMOD, pages 237–246, 1993.

[3] J.-P. Dittrich and B. Seeger. Data redundancy and
duplicate detection in spatial join processing. In Proc.
of ICDE, pages 535–546, 2000.

[4] G. R. Hjaltason and H. Samet. Incremental distance
join algorithms for spatial databases. In Proc. of ACM
SIGMOD, pages 237–248, 1998.

[5] Z. G. Ives, D. Florescu, M. Friedman, A. Y. Levy, and
D. S. Weld. An adaptive query execution system for
data integration. In Proc. of ACM SIGMOD, pages
299–310, 1999.

[6] N. Koudas and K. C. Sevcik. High dimensional sim-
ilarity joins: Algorithms and performance evaluation.
In Proc. of ICDE, pages 466–475, 1998.

[7] M.-L. Lo and C. V. Ravishankar. Spatial hash-joins.
In Proc. of ACM SIGMOD, pages 247–258, 1996.

[8] G. Luo, J. F. Naughton, and C. Ellmann. A non-
blocking parallel spatial join algorithm. In Proc. of
ICDE, pages 697–705, 2002.

[9] N. Mamoulis, P. Kalnis, S. Bakiras, and X. Li. Opti-
mization of spatial joins on mobile devices. In Proc.
of SSTD, pages 233–251, 2003.

[10] N. Mamoulis and D. Papadias. Integration of spatial
join algorithms for processing multiple inputs. In Proc.
of ACM SIGMOD, pages 1–12, 1999.

[11] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient
olap operations in spatial data warehouses. In Proc.
of SSTD, pages 443–459, 2001.

[12] D. Papadias, Y. Tao, P. Kalnis, and J. Zhang. In-
dexing spatio-temporal data warehouses. In Proc. of
ICDE, pages 166–175, 2002.

[13] J. M. Patel and D. J. DeWitt. Partition based spatial-
merge join. In Proc. of ACM SIGMOD, pages 259–270,
1996.

[14] M. T. Roth, F. Ozcan, and L. M. Haas. Cost models
do matter: Providing cost information for diverse data
sources in a federated system. In Proc. of VLDB, pages
599–610, 1999.

[15] H. Shin, B. Moon, and S. Lee. Adaptive multi-stage
distance join processing. In Proc. of ACM SIGMOD,
pages 343–354, 2000.

[16] K.-L. Tan, B.-C. Ooi, and D. J. Abel. Exploiting spa-
tial indexes for semijoin-based join processing in dis-
tributed spatial databases. IEEE TKDE, 12(2):920–
937, 2000.

[17] A. Tomasic, L. Raschid, and P. Valduriez. Scaling
access to heterogeneous data sources with disco. IEEE
TKDE, 10(5):808–823, 1998.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


