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ABSTRACT 

This paper studies the theory and design of a class of perfect 
reconstruction (PR) causal-stable nonuniform recombination 
cosine modulated filter banks (RN CMFBs) with IIR filters. It is 
based on the RN CMFB previously proposed by one of the author.  
A PR FIR RN CMFB of similar specification is first designed.  
The prototype filters of the CMFBs are then model reduced to 
obtain a nearly PR (NPR) IIR RN CMFB by modifying a model 
reduction technique proposed by Brandenstein and Unbehauen. 
With these NPR IIR RN CMFBs as initial guess, PR IIR RN 
CMFB with very good frequency characteristics can be obtained 
readily by solving a constrained nonlinear optimisation problem 
using for example the function fmincom from MATLAB.  Design 
results show that the proposed method is very effective in 
designing PR RN IIR CMFBs with good frequency characteristics 
and different system delays.   

1. INTRODUCTION 

Perfect reconstruction filter banks (PR FBs) have important 
applications in speech, audio, image and array processing. The 
theory and design of uniform PR FBs has been widely studied [1].  
In applications such as signal analysis and coding, PR FBs with 
nonuniform frequency spacing have the potential to offer more 
flexibility in time-frequency partitioning. This has attracted 
considerable interests in designing nonuniform FBs [5-7,9]. One 
useful approach is the indirect method proposed in [9], where 
certain channels of a uniform FB are merged using the synthesis 
FB of a recombination FB or TMUX. It was shown recently in [2] 
that it is possible to achieve PR in recombination FB. Moreover, if 
the number of channels of the uniform and recombination TMUX 
are coprime, than the analysis filters of the resulting recombination 
nonuniform FB (RNFB) admit an equivalent linear time invariant 
representation (LTI). In other words, the frequency responses of 
the analysis filters can be optimized directly, which considerably 
simplifies the design procedure. A class of RNFB based on the 
cosine modulation filter banks (CMFB) was also proposed. By 
imposing a simple matching condition on the filter length, RN FIR 
CMFB with low design and implementation complexities and 
good frequency characteristics can be obtained. One advantage of 
the RNFB is that the PR property is structurally imposed as long as 
the original uniform and recombination filter banks are PR.  
Furthermore, dynamic recombination of consecutive channels in 
the original uniform FB by pre-designed TMUXs is possible [9].   

In this paper, the theory and design of a class of RN CMFB 
with IIR filters are studied. Compared to FIR filters, IIR filters 
have the potential to offer lower system delay, sharper cutoff and 
high stopband attenuation than their IIR counterparts. However, 
the design of PR IIR nonuniform CMFBs is complicated by the 
highly nonlinear objective function and PR constraints. In [3], a 
method for designing PR uniform IIR CMFB was proposed.  The 
polyphase components of the prototype filter are assumed to have 
the same denominator so that the PR constraints can be simplified 
considerably. PR IIR CMFBs with very good frequency 
characteristics and lower system delay were obtained. The 
proposed PR IIR RN CMFB is based on the RN CMFB in [2], 
except that PR IIR CMFBs are now employed for the original 
uniform FB and the recombination TMUXs.  Following [3], we 

assume that the denominators of the polyphase components of 
the prototype filter in each CMFB are identical. The main 
problem lies in the designing such IIR RN CMFBs is that when 
the number of variables and constraints increases, the 
optimization procedure is rather sensitive to the initial guess of 
the prototype filter. To overcome this problem, a PR FIR RN 
CMFB with similar specification is first designed by the method 
in [2]. The PR FIR prototype filters are then model reduced to 
NPR IIR CMFBs by modifying a model reduction technique 
proposed by Brandenstein and Unbehauen [4]. The resulting 
NPR IIR RN CMFB has a similar frequency characteristic and 
reasonably good reconstruction error and it is employed as the 
initial guess to constrained nonlinear optimisation software such 
as fmincon from MATLAB for designing the PR IIR RN 
CMFB. Design results show that both NPR and PR IIR MDFT-
FBs with good frequency characteristics and different system 
delays can be obtained readily by the proposed method. It should 
be note that although the design of PR FIR CMFBs also involves 
nonlinear constrained optimisation, it is considerably simpler 
due to the absence of the poles and satisfactory results are 
usually obtained without much difficulty, unless the filter length 
is very long. The reason behind modifying the model reduction 
method in [8] is that the denominator of the polyphase 
components of the final IIR prototype filter will have identical 
denominator and it considerably simplifies the PR constraints.  
Other advantages of the method are that the stability of the 
model-reduced filter is guaranteed and the IIR filters so obtained 
closely approximate the properties of the original FIR filter. By 
using these NPR IIR prototype filters as initial guess to the 
constrained nonlinear optimiser, significantly better converging 
speed and reliability over the direct nonlinear optimization is 
achieved because the pole locations can be approximately 
located.  

The paper is organized as follows:  The theory of PR IIR 
RN CMFBs is introduced in section 2. The design of the PR IIR 
CMFBs and the modified model reduction technique are given 
in Sections 3 to 4. This is followed by a design example and 
comparison in Section 5 and finally conclusions are drawn in 
Section 6. 

2. PR IIR RN CMFBs  

Figure 1 shows the recombination nonuniform FB 
considered in this paper. Consecutive channels of a uniform M -
channel analysis FB are combined using the synthesis filters of 
filter bank having smaller number of channels, say 0m  as shown 
in the figure. The sampling rate after recombination is reduced 
by a factor of M

m0 . For simplicity, only the merging of the first 

0m  channels of an M -channel analysis bank are shown. Further 
merging of consecutive channels can be performed. Let the 
merged outputs be indexed by an integer k, k=0,…,K-1, and km  
the number of channels merged at the k-th output.  For critical 
sampling, we have 1)/(1

0 =Σ −
= Mmk

K
k . In the synthesis banks, 

each merged output will pass through the analysis filters of the 
recombination FBs and they will be fed to the synthesis bank of 
the uniform FB for reconstruction. Each synthesis-analysis 
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structure, involving km  channel FB, is called a transmultiplexer 
(TMUX). It was observed in [2] that if the TMUXs are PR, then 
they only introduce a signal delays of the subband signal of the 
uniform FB. If these delays are properly compensated in other 
subbands, then the system is PR if the original uniform FB is PR.  
Further, if km  and M are coprime to each, then the equivalent 
analysis filter of the k-th output can be written as [2] 

∑ −

= += 1

0
)()()(ˆ k k

k

m

i
M

i
m

ilk zGzHzH , (1) 

where kl  is position of the first sub-channel to be merged for the 
k-th output. If kl  is odd, it is necessary to multiply the sequence 

n)1(−  to the merged output to avoid the problem of spectral 
inversion. It was also shown in [2] that if a matching condition for 
the PR CMFBs is satisfied, then the problem of spurious response 
can be suppressed to yield FBs with good frequency 
characteristics. For FIR CMFBs, this condition can be imposed by 
choosing the lengths and cutoff-frequencies of the prototype filters 
and the of the M -channel FB and the km -channel TMUX, 
respectively, as: 

)/()/( MmLL kMmk
= , (2) 

)/()/()/( ____ kMsmsMpmp mM
kk

== ωωωω , (3) 

where the subscripts p and s stand for passband and stopband 
cutoff frequencies of the prototype filters. These conditions help to 
match the magnitude and phase responses in the transition bands 
of the prototype filters so that the spurious response can be 
suppressed. By using the model reduction approach, this 
requirement on the frequency response of the prototype filters is 
approximately satisfied. When optimising the IIR RN CMFBs, 
requirement (2) is unnecessary. It should be noted that RN CMFBs 
without imposing the coprime condition can also be designed 
[2,9].  In this case, the analysis filters will be linearly periodic time 
varying (LPTV) and it cannot be described as in (1).  Fortunately, 
a matching condition, like (2) and (3), also applies. Due to page 
limitation, the details are omitted here.     

3. PR IIR Uniform CMFBs 

The analysis and synthesis filters of a type-IV CMFB can be 
written as: 
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where 10 −≤≤ Mk , 10 −≤≤ Nn , h(n), N, and D are 
respectively the impulse response, filter length, and delay of the 
prototype filter.  

The analysis and the synthesis filters of an IIR uniform 
CMFB also can be expressed as (4) except the prototype filter is: 
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zP , where nN  and dN  are respectively the 

lengths of the numerator and the denominator polynomials of the 
prototype filter. Let )(zEk be the type-I polyphase component of 

the prototype filter such that ∑ −

=
−= 12

0
2

0 )()( M

k
kM

k zzEzP .  

Following [3], if )(zEk ’s have the same denominator, that 
is )()()( zDzNzE kk =  for 12,...,1,0 −= Mk , then the PR 
condition for the IIR CMFB simplifies to: 

)()()()()( 2
112 zDzzNzNzNzN kn

kMkMkMk
−

−−+−− ⋅=+ β , 
     where 1)2/(,...,1,0 −= Mk .                                        (5) 

In addition, all the roots of )(zD  shall remain inside the unit 
circle to ensure the stability of the analysis filters and the 
synthesis filters. The objective function is: 
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where 1ω  is the passband cutoff frequency of the first analysis 

filters and λ  is a positive weighting factor. 2=d  corresponds 
to the least square design criterion. If approximate equip-ripple 
passband and stopband errors are desired, larger value of d , 
such as 4, can be selected. The design problem can be 
formulated as a constrained optimisation problem where (6) is 
minimized subject to the PR and stability constraints in (5).  For 
FIR CMFBs, )(zD =1 and the design problem is considerably 
simplified.  

4. MODIFIED MODEL REDUCTION  
Since it is much simpler to design a PR FIR CMFB, we 

propose to obtain an initial guess to the IIR CMFB design 
problem mentioned above by a model reduction approach.  More 
precisely, the model reduction method proposed in [8] is 
modified so that the model-reduced prototype filter has identical 
denominator in its polyphase components. It was found in [4] 
that the optimal denominator )(zD  for approximating a FIR 
filter )(0 zP  can be determined using the following iterative 
procedure:    
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Also, defining that: 
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Then, )()( nq k  can be calculated by minimizing the following 
objective function: 
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The )(kq  such that )( )()( kkF q  is the smallest among all the 
iterations for a sufficiently large value of k is the desired 
solution. More importantly, the model reduced IIR filter is 
always stable. The numerator can be determined separately 
using the least squares criterion. As mentioned earlier, the 
denominator of the IIR prototype filter should have the form 

)( 2MzD . If direct model reduction is used, the numerator and 
denominators have to be multiplied by certain factors and the 
filter length is thus unnecessarily increased. Another method is 
to modify the above procedure by assuming the following form 
for the model-reduced filter: 
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where dML p 2≥ , d  corresponds to the non-zero coefficients 

of )( 2MzD , excluding )0(q . The vector )(kq  in (9) is then 
modified as follows: 

Tkkkk MqMdqdMq )]2(),...,)1(2(),2([ )()()()( −=q  (11) 

which can be solved by modifying the corresponding rows of 
)(kB  and )(kd . According to [4], this modification does not 
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violate the stability theorem, which holds for arbitrarily given 
)()( zX k . Hence, the model-reduced filter in the form of (10) is 

still stable, provided that )( )()( kkF q  is the smallest. More detail of 
this algorithm can be found in [8].   

5. DESIGN PROCEDURE and EXAMPLE 

Design Procedure: 

Given the decimation ratios { } 1,...,1,0  ,/ −= KkMmk , where 

1)/(1
0 =Σ −

= Mmk
K
k . 

1. Design the M -channel and km -channel PR low-delay FIR 
uniform CMFBs using (5) and (6). The lengths of the 
prototype filters and the passband and stopband cutoff 
frequencies should meet the matching conditions (2) and (3) 
See [2] for more detail.   

2. Obtain the corresponding NPR IIR RN CMFB by model-
reducing the prototype filters using the modified model 
reduction method in Section 4.   

3. Determine the PR IIR RN CFMB by using the NPR IIR RN 
CMFB obtained in step 2 as initial guess to the constrained 
nonlinear optimization problem having (6) as the objective 
function and the PR and stability constraints in (5) as the 
constraints. The M-channel uniform CMFB is first designed 
separately. The recombination TMUX is then designed by 
minimizing the error between )(ˆ zHk  in (1) and the desired 
response.  The objective functions are: 

             
( )∫∫ −⋅+=Φ 1

2 0 0 1)()(ˆ ω ωπ

ω

ω ωλω deGdeH
dj

d
j

k
s

 
 
(12) 

where 1ω  is the passband cutoff frequency of the first 
synthesis filter of the km -channel IIR uniform CMFB, 2sω  is 
the stopband cutoff frequencies of the recombined analysis 
filter, and λ  is a positive weighting factor. The second term 
helps to maintain the flatness of the first analysis filters of the 
TMUX in its passband, which is necessary for biorthogonal 
CMFBs.  

In this paper, the constrained nonlinear optimisation in steps 1 and 
3 are solved using the function Fmincon in MATLAB. Following 
[2,9], the system delays of the uniform FB and the recombination 
TMUXs should preferably be 12 −= sMD  and 12 −= kk smD , 
respectively, where the orders of the FIR prototype filters are 

12 −mM or 12 −kmm  with ms ≤  both integers.  

Design Example:  

A PR IIR RN CMFB with the following parameters is 
designed: 5=M , 20 =m , 31 =m . The decimation factors are 
thus ( 5/3,5/2 ).  m and s are chosen as 6 and 5, respectively. The 
prototype filters of the 5-, 2-, and 3-channel FIR uniform CMFBs 
are of length 59, 23, and 35, respectively and the system delay of 
the whole system is 78 samples. The passband cutoff frequencies 
of the prototype filters of the 5-, 2-, and 3-channel uniform 
CMFBs are π02.0 , π05.0  and π03333.0 , respectively, while 
the stopband cutoff frequencies are π18.0 , π45.0  and π3.0 .  
Fig.2 (a) shows the frequency response of PR RN FIR CMFB so 
obtained. After model reduction, the orders of the prototype filters 
of the 5-, 2-, and 3-channel IIR uniform CMFBs are 49, 19, and 29, 
respectively. Note that the orders of the numerator and 
denominator of the prototype filter after model reduction are the 
same and it has the form of (10). Fig. 2(b) is the frequency 
response of the NPR RN IIR CMFB after model reduction. Its 
reconstruction error is of the order 310− . Fig. 2(c) shows the PR 
RN IIR CMFB obtained after the nonlinear optimisation. To obtain 
an equi-ripple response, d in (12) is chosen as 4. As mentioned 

earlier, the 5-channel PR IIR uniform CMFB is designed 
separately as mentioned earlier in Section 3 and step 3 of the 
design procedure. The 2- and 3- channel IIR recombination 
CMFB TMUX are then designed using (12) as the objective 
function subject to the stability and PR constraints in (5). Table 
1 and Table 2 give out the coefficients of the PR IIR prototypes.  
It can be seen that from Fig. 2 that the IIR CMFBs has a better 
stopband attenuation than its FIR counterpart while the system 
delays are the same. The orders of the IIR filters are also lower 
than that of the original FIR FB. All the PR FIR and IIR CMFBs 
have a PR violation of 1510− . It is also observed that as the 
system delay and transition bandwidth are reduced, the 
performance improvement of the IIR CMFB over its FIR 
counterparts becomes more apparent.  

6. CONCLUSION 
The theory and design of a class of PR causal-stable RN 

CMFBs with IIR filters are presented. A PR FIR RN CMFB of 
similar specification is first designed. The prototype filters of the 
CMFBs are then model reduced to obtain a NPR IIR RN CMFB 
by modifying a model reduction technique proposed by in [4]. 
With these NPR IIR RN CMFBs as initial guess, PR IIR RN 
CMFBs with very good frequency characteristics can be 
obtained by solving a constrained nonlinear optimisation 
problem. A design example is given to demonstrate the 
usefulness of the proposed approach. 
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Table 1. Denominators of the polyphase components of 
the prototype filters of the CMFBs in Fig.2(c) 
1                                1−z                     2−z  

5-channel: 
1.00000000000000   0.12662052000618   -0.01567588619220 

2-channel: 
 1.0000000000000   -0.00696355012436   -0.00053421612050 

3-channel: 
1.00000000000000   0.00478127887675    0.00025244822111 
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Table 2. Numerators of the polyphase components of the 
prototype filters of the CMFBs in Fig.2(c) . 

5-channel: (in increasing order of n) 2-channel: 

   0.00014550134457 
   0.00043134381679 
  -0.00115107784206 
   0.00341241045756 
  -0.01143242546587 
  -0.02916869660806 
  -0.01094069851417 
   0.06979928984501 
   0.19263749233792 
   0.28662807992343 
   0.28639451102147 
   0.19166695685494 
   0.06902808201290 
  -0.01290596474615 
  -0.03229598148102 
  -0.01067482173789 
   0.00054120691690 
   0.00038780994871 
  -0.00023538940612 
   0.00023460507628 

 

 -0.00009866020574 
   0.00005351533257 
  -0.00057454523678 
   0.00013623380622 
  -0.00065308946633 
  -0.00031065134882 
  -0.00081708038261 
   0.00300779073180 
   0.00208003884410 
   0.00205638253153 
  -0.00282310409918 
  -0.00516053313131 
  -0.00882259065851 
  -0.01192249181506 
  -0.01130923650487 
  -0.00982198990611 
  -0.00207004849846 
   0.00899307016706 
   0.02381533890376 
   0.04178468649129 
   0.06174633006847 
   0.08123689031043 
   0.09816444366701 
   0.11074795397610 
   0.11777873660448 
   0.11764929729081 
   0.11174725195446 
   0.10033076598449 
   0.08427582658762 
   0.06757660192270 
   0.05003607194602 
   0.03367868387720 
   0.02219664453481 
   0.01095169889182 
   0.00627017916756 
   0.00368296870705 
   0.00180107728188 
   0.00310207974575 
   0.00810111168415 
   0.00476513134474 
   0.00362937103625 
   0.00292357014054 
   0.00186005310933 
  -0.00235430115576 
  -0.00292563915567 
  -0.00329954426961 
  -0.00407340107579 
  -0.00528980401050 
  -0.00160376525972 
  -0.00130468664716 

 

 
3-Channel: 
 
  -0.00006301827426 
   0.00057193259283 
  -0.00019698674482 
  -0.00087369878161 
   0.00102183823842 
   0.00273106620204 
  -0.00578739612600 
   0.00057151739853 
  -0.01951366628539 
  -0.01255351571153 
   0.01442854548079 
   0.05896988993295 
   0.11468521171846 
   0.16693721317074 
   0.19585620587024 
   0.19563189248784 
   0.16527207060715 
   0.11488241013936 
   0.05993980753401 
   0.00121137077298 
  -0.01193143245583 
  -0.01925791183589 
  -0.01406364955600 
  -0.00249946410723 
   0.00048789575317 
  -0.00090109427094 
  -0.00013622502292 
  -0.00035485827487 
   0.00005959804410 
  -0.00009182139847 

 
(a) 

 
(b) 

 
(c) 

Fig.2. Frequency responses of the recombination 
nonuniform CMFBs with decimation ratios )5/3,5/2( .  

(a) PR nonuniform PR CMFB with m=6, s=5;  
(b) NPR IIR nonuniform CMFB after model reduction; 
(c) PR IIR nonuniform CMFB after nonlinear 
optimization with (b) as initial guess.    
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Fig.1. Structure of PR recombination nonuniform CMFB (only the first 0m  subbands are plotted).  
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