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Bianchi type I cosmologies in arbitrary dimensional dilaton gravities

Chiang-Mei Chen*
Department of Physics, National Central University, Chungli 320, Taiwan

T. Harko†

Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong

M. K. Mak‡

Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
~Received 17 April 2000; published 22 November 2000!

We study the low energy string effective action with an exponential type dilaton potential and vanishing
torsion in a Bianchi type I space-time geometry. In the Einstein and string frames the general solution of the
gravitational field equations can be expressed in an exact parametric form. Depending on the values of the
dilaton coupling constant and of the coefficient in the exponential, the obtained cosmological models can be
generically divided into three classes, leading to both singular and non-singular behaviors. The effect of the
potential on the time evolution of the mean anisotropy parameter is also considered in detail, and it is shown
that a Bianchi type I universe isotropizes only in the presence of a dilaton field potential or a central deficit
charge.

PACS number~s!: 04.20.Jb, 04.65.1e, 98.80.2k
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I. INTRODUCTION

In an attempt to address the potential, inherited fr
string theory, to eliminate the initial cosmological singula
ity, from which time and our Universe are supposed to ha
begun about 153109 years ago, Gasperini and Venezia
initiated a program known as the pre-big-bang scenario@1#.
The field equations of the pre-big-bang cosmology are ba
on the low energy effective action resulting from strin
theory. InD dimensions, the massless bosonic fields from
Neveu-Schwarz–Neveu-Schwarz~NS-NS! sector are the di-
latonf, the antisymmetric tensorBmn , and the metric tenso
ĝmn , whose dynamics is described, in the ‘‘string frame,’’ b
the following action@2–4#:

Ŝ5E dDxA2ĝe22fH R̂1k̂~ ¹̂f!22
1

12
H [3]

2 2Û~f!J ,

~1!

whereH [3]5dB[2] and k̂ is a generalized dilaton couplin
constant (k̂54 for superstring theories!. Moreover, we also
allow for the existence of a potentialÛ(f) of the dilaton
field.

From a physical point of view the most important can
date for the potential is a cosmological constantL, which
appears in the massive extension of type IIA supergra
and is restricted to be positive,L.0 @4#. The field equations
derived from the string effective action admit inflationa
solutions that are driven by the kinetic energy associa
with the massless fields rather than any interaction poten
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There are many massless fields present in the pre-big-b
scenario, such as the dilaton, graviton and moduli fields.
an extensive recent review of string cosmology see@5#.

For simplicity in the following we assume thatH [3] is
vanishing. In this circumstance, via a conformal rescaling

gmn5e[ 24/(D22)]fĝmn , ~2!

the action~1! reduces to aD-dimensional dilaton gravity
whose action, in the ‘‘Einstein frame,’’ has the form

S5E dDxA2g$R2k~¹f!22U~f!%, ~3!

with U(f)5e4f/(D22)Û(f) andk54(D21)/(D22)2k̂.
Pre-big-bang inflationary cosmological models, based

the action~1! or ~3!, have been recently intensively invest
gated in the physical literature@6–16#. Gasperini and Ricci
@6# have obtained exact solutions to the four-dimensio
low energy string effective action adopting a spac
independent dilaton and vanishing Kalb-Ramond an
symmetric tensor field ansatz for the Bianchi type I, II, I
V, VI 0 and VIh geometries. They have shown that in such
context the initial curvature singularities cannot be avoid
Brandenberger, Easther and Maia@7# have found non-
singular spatially homogeneous and isotropic solutions
dilaton gravity in the presence of a special combination
higher derivative terms in the gravitational action. Some
these solutions correspond to a spatially flat, bouncing u
verse originating in a dilaton-dominated contracting pha
and emerging as an expanding Friedmann-Robertson-Wa
~FRW! universe.

A general framework for studying large classes of cosm
logical solutions of the low-energy limit of type II string
theory and of M theory, for space-time decomposable int
set of flat or maximally symmetric spatial subspaces, w
©2000 The American Physical Society16-1
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non-trivial Ramond form fields excited, has been develop
by Lukas, Ovrut and Waldram@14#. In their formalism the
low energy equations of motion are equivalent to those
scribing a particle moving in a moduli space consisting
the scale factors of the subspaces together with the dila
Two classes of exact solutions have been presented, c
sponding to exciting only a single form and with multip
forms excited. The resulting exact solutions begin and en
a curvature singularity.

Very recently, the string cosmology equations with a
laton potential have been examined, in the string frame,
Ellis et al. @15#, who also give a generic algorithm for ob
taining solutions with desired evolutionary properties. T
presence of a dilaton potential leads to the violation of
pre-big-bang symmetrya(t)→1/a(t). Moreover, Garcia de
Andrade @16# obtained several classes of solutions of t
Einstein-Cartan dilatonic inflationary cosmology. In th
cases where the dilatons are constrained by the presen
spin-torsion effects a repulsive gravity is found. The te
perature fluctuation has also been computed from the ne
flat spectrum of the gravitational waves produced during
flation, with results agreeing with the Cosmic Backgrou
Explorer ~COBE! data.

Pre-big-bang cosmological models, in which there is
need to introduce the inflation or to fine-tune potentials, h
many attractive features@17#. Inflation is natural, thanks to
the duality symmetries of string cosmology, and the init
condition problem is decoupled from the singularity pro
lem. Finally, quantum instability~pair creation! is able to
heat up an initially cold universe and generate a standard
big bang with the additional features of homogeneity, fl
ness and isotropy.

The cosmological behavior of universes filled with a sc
lar field, f, as well as a Liouville type exponential potentia
has been extensively investigated in the physical litera
for both homogeneous and inhomogeneous scalar fields@18–
33# ~for a summary see@33#!. Scalar fields are considered
play a central role in current models of the early Univer
The self-interaction potential energy density of such a field
undiluted by the expansion of the Universe and hence can
like an effective cosmological constant driving a period
inflation. The evolution of the Universe is strongly depe
dent upon the specific form of the scalar field potentialU. A
common form for the self-interaction potential is the exp
nential type potential. An exponential potential arises
four-dimensional effective Kaluza-Klein type theories fro
compactification of the higher-dimensional supergravity
superstring theories@2#. In string or Kaluza-Klein theories
the moduli fields associated with the geometry of the ex
dimensions may have effective exponential potentials du
the curvature of the internal spaces or to the interaction
the moduli with form fields on the internal spaces. Expon
tial potentials can also arise due to non-perturbative effe
such as gaugino condensation@34#. In the Einstein frame the
exponential potential is also generated by means of the
formal transformation~2! for Û(f)5L, with L the central
charge deficit.

A solution in the case of a flat space-time filled with
scalar field with an exponential potential but describi
12401
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power-law inflationary behavior has been obtained by B
row @18#. Homogeneous and inhomogeneous fo
dimensional Bianchi type I space-time in the presence
scalar fields with exponential potential have been studied
@21,22#. Higher dimensional (D>4) anisotropic cosmologi-
cal models with a massless scalar field self-interact
through an exponential potential have been investigated
@26#. A non-inflationary solution for an open FRW univers
exponential-potential pure scalar field filled space-time a
with scalar field energy density decaying asrf;t22 has
been recently found by Mubarak and Oezer@29#.

It is the purpose of the present paper to study Bianchi t
I cosmological models in the dilaton gravity~1! and ~3!.
More specifically, we consider the effects of a Liouville typ
exponential potential,U(f)5U0elf, with arbitrary values
of the constantsU0 ,l, on the dynamics and evolution of a
anisotropic space-time, in both the Einstein and str
frames.

In the case of the dilaton field self-interacting through
exponential potential the general solution of the gravitatio
field equations in a flat Bianchi type I geometry can be e
pressed in an exact parametric form in both Einstein a
string frames. The effects of the potential on the evolution
the basic physical parameters~mean anisotropy, shear an
deceleration! of the anisotropic space-time are also cons
ered in detail.

The present paper is organized as follows. The ba
equations describing the dilatonic Bianchi type I cosmolo
cal model are obtained in Sec. II. The general solution of
field equations for an exponential type dilaton potential
obtained in Sec. III~Einstein frame! and in Sec. IV~string
frame!. In Sec. V we discuss our results and conclusions

II. GEOMETRY, EINSTEIN FRAME FIELD EQUATIONS
AND CONSEQUENCES

In this paper, we shall consider theD-dimensional aniso-
tropic generalization of the flat FRW geometry—the Bianc
type I space-time—described by the line element

ds252dt21 (
i 51

D21

ai
2~ t !~dxi !2. ~4!

For this metric, it is convenient to introduce the followin
variables:volume scale factor V, directional Hubble factors
Hi andmean Hubble factor Has

Vª )
i 51

D21

ai , ~5!

Hiª
ȧi

ai
, i 51, . . . ,D21, ~6!

Hª

1

D21 (
i 51

D21

Hi , ~7!

DHiªHi2H, i 51, . . . ,D21. ~8!
6-2
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Then one can immediately check out the relation

H5
1

D21

V̇

V
. ~9!

In terms of variables~5!–~8! the Ricci tensor of the Bianch
type I geometry can be expressed as

R0052
d

dt (
i 51

D21 S ȧi

ai
D 2 (

i 51

D21 S ȧi

ai
D 2

52~D21!Ḣ2 (
i 51

D21

Hi
2 , ~10!

Rii 5ai
2@Ḣ i1~D21!HHi #, i 51, . . . ,D21. ~11!

On the other hand, the field equations of the action~3! can be
achieved by variation with respect to the fieldsgmn and f,
giving

Rmn2k¹mf¹nf2
U

D22
gmn50, ~12!

¹2f2
1

2k

]U

]f
50, ~13!

where ¹ is the covariant derivative ofgmn . Thus, for the
Bianchi type I space-time, the gravitational field equations
the Einstein frame reduce to

~D21!Ḣ1 (
i 51

D21

Hi
21kḟ22

1

D22
U50, ~14!

1

V

d

dt
~VHi !2

1

D22
U50, i 51, . . . ,D21, ~15!

1

V

d

dt
~Vḟ !1

1

2k

]U

]f
50. ~16!

By summing Eqs.~15! we obtain

1

V

d

dt
~VH!5

1

D22
U, ~17!

which, together with Eq.~15!, leads to

Hi5H1
Ki

V
, i 51, . . . ,D21. ~18!

In Eqs. ~18!, Ki ,i 51, . . . ,D21, are constants of integra
tion, which satisfy the relation:

(
i 51

D21

Ki50. ~19!

Substituting Eqs.~18! into Eq. ~14! and then combining
with Eq. ~17! we obtain
12401
n

kḟ21~D22!Ḣ1
K2

V2
50, ~20!

whereK2
ª( i 51

D21Ki
2 . Consequently, the remaining task is

solve Eqs.~16!, ~17! and ~20!.
The physical quantities of interest in cosmology are

expansion scalaru, the mean anisotropy parameter A, the
shear scalarS2 and thedeceleration parameter qand are
defined according to@35#

uª~D21!H5
V̇

V
, ~21!

Aª
1

D21 (
i 51

D21 S DHi

H D 2

5
1

D21

K2

V2H2
, ~22!

S2
ª

1

D22 S (
i 51

D21

Hi
22~D21!H2D 5

D21

D22
AH2,

~23!

qª
d

dt
H2121. ~24!

The sign of the deceleration parameter indicates whether
cosmological model inflates. The positive sign correspo
to standard decelerating models whereas the negative
indicates inflationary behavior.

III. EXPONENTIAL POTENTIAL IN THE EINSTEIN
FRAME

The cosmological dynamics and evolution of the dilat
field filled Bianchi type I universe essentially depends on
functional form of the potentialU(f). In the present pape
we restrict our study to the exponential type potential,

U~f!5U0elf, ~25!

with U0 andl arbitrary constants. For this type of potentia
the combination of Eqs.~16! and ~17! leads to

d

dt S 1

D22
Vḟ1

l

2k
VHD50 ~26!

or, equivalently, to

ḟ5
~D22!C

V
2

~D22!l

2k
H, ~27!

with C a constant of integration.
Substitution of Eq.~27! into Eq. ~20! gives the ‘‘final’’

field equation

V̈

V
1a

V̇2

V2
2b

V̇

V2
1g

1

V2
50, ~28!

where
6-3
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a5
~D22!l2

4~D21!k
21, ~29!

b5~D22!Cl, ~30!

g5~D21!~D22!C2k1
~D21!K2

D22
. ~31!

By introducing a new variableuªV̇, Eq. ~28! takes the form

udu

2au21bu2g
5

dV

V
. ~32!

Equation~32! has the general solution~with V0 a constant of
integration!

V5V0 expS E udu

2au21bu2g
D . ~33!

In the following we denote

D5b224ag, ~34!

u05
b

2a
, ~35!

u65
b6AD

2a
, ~36!

m652
1

2a S 16
b

AD
D . ~37!

Hence, takingu as a parameter, we obtain three classes
solutions of the gravitational field equations describing a
laton field filled Bianchi type I pre-big-bang universe. Th
explicit form of the solutions depends on the values of
parametersa, b andg. All the solutions are expressed in
closed parametric form and are given by the following:

~A! D.0:

t5t02
V0

a E ~u2u1!m121~u2u2!m221du, ~38!

V5V0~u2u1!m1~u2u2!m2, ~39!

ai5ai0 )
e56

u2Kime /ue~u2ue!
[1/(D21)1Ki /ue]me,

i 51, . . . ,D21, ~40!

q5~D22!1
~D21!a

u2 )
e56

~u2ue!, ~41!

U52
~D22!a

~D21!V0
2 )e56

~u2ue!
122me. ~42!
12401
f
i-

e

~B! D50:

t5t02
V0

a E expS u0

a~u2u0! D
~u2u0!1/a12

du, ~43!

V5V0~u2u0!21/aexpS u0

a~u2u0! D , ~44!

ai5ai0~u2u0!21/(D21)aexpS u01Ki~D21!

a~D21!~u2u0! D ,

i 51, . . . ,D21, ~45!

q5~D22!1
~D21!a~u2u0!2

u2
, ~46!

U52
~D22!a

~D21!V0
2 ~u2u0!2/a12 expS 22u0

a~u2u0! D .

~47!

~C! D,0:

t5t01V0E ~2au21bu2g!21/2a21

3expS 2
b

aA2D
arctan

2au2b

A2D
D du, ~48!

V5V0~2au21bu2g!21/2a

3expS 2
b

aA2D
arctan

2au2b

A2D
D , ~49!

ai5ai0~2au21bu2g!21/2a(D21)

3expS 2
b12aKi~D21!

a~D21!A2D
arctan

2au2b

A2D
D ,

i 51, . . . ,D21, ~50!

q5~D22!2~D21!
2au21bu2g

u2
, ~51!

U5
D22

~D21!V0
2 ~2au21bu2g!1/a11

3expS 2b

aA2D
arctan

2au2b

A2D
D . ~52!

For all three cases and with the use of definitions given
Eqs. ~21!–~23! the quantitiesu, A and S2 can be found
from
6-4
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u5
u

V
, A5

~D21!K2

u2
, S25

K2

~D22!V2
. ~53!

The general solution of the gravitational field equatio
for a dilatonic Bianchi type I universe with exponential p
tential given by Eqs.~38!–~53! is valid only for a particular
range of the parametersu anda. These ranges follow from
the conditions of the positivity of the potentialU(f) and of
the reality of basic physical quantities such as, for exam
the scale factors. The positivity of the potentialU(f)
.0,;t>t0 implies a,0 in all three cases~A!, ~B! and~C!.
The expressions for the physical parameters make sense
for values of the parameteru so thatu.u1 ,u2 in case~A!
andu.u0 in case~B! @in case~C! one requires againa,0#.

The value of the constantU0 in the potential~25! is not
arbitrary, but it is determined in terms of the parameters
the solution.

IV. EXPONENTIAL POTENTIAL IN THE STRING FRAME

In the string frame the gravitational field equations a
the dilaton equations are obtained by varying the action~1!
and, under the assumption of vanishingH [3] , are given by

R̂mn2
1

2
ĝmnR̂12¹̂m¹̂nf1~ k̂24!¹̂mf¹̂nf

2
1

2
ĝmn$4¹̂2f1~ k̂28!~¹̂f!22Û%50, ~54!

R̂1k̂¹̂2f2k̂~ ¹̂f!22Û~f!1
1

2

]Û

]f
50. ~55!

By eliminating R̂ between Eqs.~54! and ~55!, the gravita-
tional field and dilaton equations take the form

R̂mn12¹̂m¹̂nf1~ k̂24!¹̂mf¹̂nf2
ĝmn

2 H ~42k̂ !¹̂2f

12~ k̂24!~¹̂f!22
1

2

]Û

]f J 50, ~56!

¹̂2f22~¹̂f!21

4Û1~D22!
]Û

]f

2@~D22!k̂24~D21!#
50. ~57!

In the present section we consider the general solutio
Eqs. ~54! and ~55! for an exponential type potential,Û(f)
5Û0 exp(l̂f), with l̂ an arbitrary constant. Since the metr
tensors are connected via the conformal transformation~2!,
in the string frame the general solutions of the gravitatio
field equations can be obtained by applying the conform
transformation~2! to the solution obtained in the Einste
frame. In the string frame we also assume an anisotro
Bianchi type I geometry with line element
12401
s

e,

nly
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dŝ252d t̂21 (
i 51

D21

âi
2~ t̂ !~dxi !2, ~58!

with the metric tensor components in the two frames c
nected by the conformal transformation~2! and with the time
coordinatet̂ defined according to

t̂5E expF 2

D22
f~ t !Gdt. ~59!

In the two frames the volume scale factor, the directio
Hubble factors and the mean Hubble factor are related
means of the general relations

V̂5Ve[2(D21)/D22]f, ~60!

Ĥ i5S Hi1
2

D22
ḟ De2[2/(D22)]f, i 51, . . . ,D21,

~61!

Ĥ5S H1
2

D22
ḟ De2[2/(D22)]f. ~62!

To apply the conformal transformation, we need first
find the conformal transformation factoref. With the use of
Eq. ~21! we find

1

V

d

dt
~VH!5

1

D21

1

V

dV̇

dt

5
1

D21

1

V

du

dt

5
1

D21

1

V

du

dV

dV

dt

5
u

~D21!V2

du

d ln V
.

Then from Eq.~17! it is easy to obtain that the potentia
U(f) can be expressed as

U~f!5
D22

D21

u

V2 S d ln V

du D 21

, ~63!

leading to

ef5F D22

~D21!U0
G1/lS V2

u

d ln V

du D 21/l

. ~64!

Therefore in the string frame the general solution of t
gravitational field equation for a dilaton field filled Bianch
type I with an exponential potential of the form

Û~f!5U0 expF S l2
4

D22DfG , ~65!
6-5
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with l an arbitrary constant, can be expressed again in
exact closed parametric form, withu taken as parameter, an
is given by

t̂2 t̂05F D22

~D21!U0
G2/(D22)lE S V2

u

d ln V

du D 122/(D22)l du

V
,

~66!

V̂5VF D22

~D21!U0
G2(D21)/(D22)l

3S V2

u

d ln V

du D 22(D21)/(D22)l

, ~67!

Ĥ5F D22

~D21!U0
G22/(D22)lS V2

u

d ln V

du D 2/(D22)l

3F2C

V
1

k2l

~D21!k

u

VG , ~68!

âi5ai0F D22

~D21!U0
G2/(D22)lS V2

u

d ln V

du D 22/(D22)l

3V1/(D21) expS KiE 1

u

d ln V

du
duD ,

i 51, . . . ,D21, ~69!

Â5~D21! (
i 51

D21 F kKi

~k2l!u12kC~D21!G
2

, ~70!

q̂5~D22!2
u

D21 S d ln V

du D 21F2C1
k2l

~D21!k
uG22

,

~71!

Û5U0F D22

~D21!U0
G124/(D22)lS V2

u

d ln V

du D 4/(D22)l21

.

~72!

In the string frame there are also three distinct classe
solutions, corresponding toD.0, D50 andD,0 respec-
tively. Substituting the values ofV obtained in the previous
section in the formulas given above, we can find,
straightforward calculations, the explicit parametric rep
sentations, for each class of solutions, of the general solu
of the gravitational field equations for a dilaton field fille
Bianchi type I space-time, with an arbitrary exponential p
tential.

If in the solution given above we takel54/(D22), we
obtain the general solution of the gravitational field equ
tions in the string frame corresponding to a constant poten
or, equivalently, to a cosmological constant. In this case a
there are three distinct classes of solutions, with all phys
quantities represented as exact functions of time. ForÛ(f)
[L5const, Eq.~66! becomes

t̂2 t̂05A D22

~D21!L
E du

A2au21bu2g
. ~73!
12401
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In order to obtain solutions defined for all values of the p
rameters we shall assume in the following thata,0. Then
Eq. ~73! has the solutions

u52
b

2uau
1d1 cosh

t̂2 t̂0

t̂0

, for D.0, ~74!

u52
b

2uau
1expS t̂2 t̂0

t̂0
D , for D50, ~75!

u52
b

2uau
1d2 sinh

t̂2 t̂0

t̂0

, for D,0, ~76!

where we denoted d6ªA6D/2uau and t̂0

ªAD22/(D21)Luau.
In this way we can obtain the exact~non-parametric! so-

lution for the anisotropic Bianchi type I geometry in th
presence of a central charge deficit. We shall not present
the resulting formulas, due to their complicated~but elemen-
tary! mathematical form. As compared to the Einstein fram
the evolution in the string frame of the Universe in the pre
ence of the cosmological constant can be quite complica

V. DISCUSSIONS AND FINAL REMARKS

In order to consider the general effects of a dilaton fie
potential in the Einstein frame on the dynamics and evo
tion of an arbitrary dimensional Bianchi type I space-tim
we also give the general solution of the gravitational fie
equations~14!–~16! corresponding toU(f)[0. The corre-
sponding Kasner-type solutions are not new~for an extensive
review of this type of string cosmological models see@5#!.
For the case of the zero potential we immediately obtain

V5V0t, ~77!

H5
1

~D21!t
, ~78!

ai5ai0tpi, i 51, . . . ,D21, ~79!

A5
~D21!K2

V0
2

5const, ~80!

q5D225const, ~81!

f5f0 ln t, ~82!

where

f05A1

k S D22

D21
2

K2

V0
2D ,

and an arbitrary constant of integration that can be adde
Eq. ~82! has been taken to be 1. The coefficientspiª1/(D
6-6
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21)1Ki /V0 satisfy the relations( i 51
D21pi51 and ( i 51

D21pi
2

51/(D21)1K2/V0
2 . Hence in the Einstein frame the geom

etry of the potential free dilaton field is of Kasner type, b
with ( i 51

D21pi
2Þ1 ~if we adopt the normalization( i 51

D21pi
2

51, then we obtain the empty Bianchi type I universe w
f[0). The anisotropic Bianchi type I dilaton field fille
universe does not isotropize~the mean anisotropy paramet
is a constant for all times! and its evolution is non-
inflationary withq.0 for all t.

In order to analyze the general effects of the dilaton fi
potential on the dilaton field filled Bianchi type I space-tim
in the Einstein frame, we obtain first the following aniso
ropy equation:

dA

dt
52

2A

H
@Ḣ1~D21!H2#, ~83!

which can also be written in the equivalent form

dA

dt
52

2AU~f!

~D22!H
~84!

and integrated to give

A~ t !5A0 expS 2
2

D22Et0

t U~f!

H
dtD . ~85!

In Eq. ~85! we denoted byA0 an arbitrary constant of inte
gration. For U(f)[0 we always haveA[A05const. If
* t0

t @U(f)/H#dt is a monotonically increasing positive func

tion of time, then the presence of the dilaton field poten
will lead to the fast isotropization of the Bianchi type
space-time.

In the presence of a potential the deceleration param
q52(Ḣ1H2)/H2 can be expressed as

q5~D22!2
U~f!

~D22!H2
. ~86!

If U(f)[0 in the Einstein frame, the evolution of the Un
verse is non-inflationary, but once the conditionU(f).(D
22)2H2 is satisfied, the dynamics of the Bianchi type
space-time becomes inflationary.

In the present paper we have obtained the general solu
of the gravitational field equations for a Bianchi type I spa
time filled with a dilaton field with an exponential potenti
in both the Einstein and string frame. In the Einstein fra
they describe generically an expanding universe, withu5V̇
>0 and with properties strongly dependent on the numer
values of the physical parameters describing the dilaton fi
and its potential. A contracting universe withu5V̇,0 gen-
erally does not satisfy the condition of reality of the sca
factors. The solutions of the field equations can be classi
into three classes, according to the sign of the quantityD. In
the limit of largeu, u→`, all three solutions have a simila
behavior. The mean anisotropyA tends in all cases to zero
indicating that an exponential type potential leads to
isotropization of the Universe.
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In four space-time dimensions, as shown in@21#, the
physical properties of the solutions of the gravitational fie
equations for a Bianchi type I space-time filled with an e
ponential potential scalar field are determined by the coe
cient l in the exponential. Forl2,6 ~and withk51) one
has flat, isotropic power law solutions which are attract
for all expanding solutions@21#. The D-dimensional gener-
alization of this conditions follows from the restrictiona
,0 imposed to assure the positivity of the potential and
given by

l2,
4~D21!k

D22
. ~87!

In the largeu limit the deceleration parameter behaves
q5(D22)1a(D21). If the condition a,2(D22)/(D
21) or, equivalently,

l2,
4k

D22
~88!

is fulfilled, the Universe will enter in an inflationary phas
In four dimensions and withk51 the solutions inflate for
l2,2 @21#. For values ofa which do not satisfy this condi-
tion the evolution of the space-time will be generally no
inflationary. In the same limit of largeu the scalar field is
given byf;@(a11)/a# ln u.

Multi-dimensional (D.4) Kasner type~non-isotropizing!
solutions in string and M-theory cosmology, with either
initial or a final curvature singularity were considered r
cently in @14#. In the case of compactifications on maximal
symmetric subspaces the moduli-space potential, wh
arises when non-trivial form fields are excited, significan
affects the structure of the solution. The potential in@14# is
written in a more systematic way as U
5 1

2 ( r 51
m ur

2 exp(qrIaI), where the sums run over all eleme
tary and solitonic configurations as well as a possible cos
logical term.ur represents integration constants. The type
each term is specified by vectorsqr , r 51, . . . ,m. In the
language of Lukas, Ovrut and Waldram@14# the condition
a,0 is the condition that the vectorq be timelike. In the
paper@14# the authors always consideredq spacelike, thus
leading toa.0 and, consequently, with solutions alwa
asymptoting to a Kasner-like anisotropic geometry. But
must also note that typical string models actually give
regimea.0 @14#.

For class~A! solutions, the Bianchi type I dilaton field
filled universe starts in the Einstein frame from a singu
state, corresponding to the valuesu5u1 or u5u2 of the
parameter. Hence for this model a singular state with z
values of the scale factors is unavoidable. But for class~B! of
solutions the evolution of the Universe is non-singular
u0,0. In this case the scale factors are finite for all fin
values of the parameteru. Alternatively, class~C! models are
non-singular for values of the constantsa and g such that
a,0 andg,0.

In Figs. 1–4 we have represented the variations in
Einstein frame of the volume scale factor, mean anisotro
deceleration parameter and dilaton field for a fou
6-7
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dimensional (D54) Bianchi type I space-time. The aniso
tropic universe will always end in an isotropic state, but
dynamics can be either inflationary or non-inflationary. Ge
erally the dilaton fieldf is a decreasing function of time.

We shall consider now the effects of the dilaton field a
potential on the dynamics and evolution of a Bianchi typ
space-time in the string frame. In the case in which ther
no dilaton field potential,Û(f)[0, the general solution o
the gravitational field equations and of the dilaton equat
can be obtained again by the conformal transformation~2!
from Eqs.~77!–~82!. Hence in this case we obtain first th
relation connecting the time coordinate in the string and E
stein frames in the form

t5S t̂

n̂
D n̂

, ~89!

where

n̂5
D22

D2212f0
. ~90!

FIG. 2. Einstein frame time evolution of the four-dimension
mean anisotropy parametera(t)ªA(t)/3K2 of the dilaton field
filled Bianchi type I universe with exponential potential for diffe
ent values of the parametersa, b andg: ~i! Class~A! model~solid
curve!, a52

1
3 , b51, g51. ~ii ! Class~B! model ~dotted curve!,

u051. ~iii ! Class~C! model ~dashed curve!, a52
1
3 , b51, g5

21. An expanding Bianchi type I universe always isotropizes in
presence of an exponential dilaton potential.

FIG. 1. Time evolution in the Einstein frame of the fou
dimensional (D54) volume scale factorV(t) of the dilaton field
filled Bianchi type I universe with exponential potential for diffe
ent values of the parametersa, b andg: ~i! Class~A! model~solid
curve!, a52

1
3 , b51, g51. ~ii ! Class~B! model ~dotted curve!,

u051. ~iii ! Class ~C! model ~dashed curve!, a52
1
3 , b51, g

521.
12401
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In the string frame the general solution of the potential fr
dilaton field filled anisotropic universe is given by

V̂5V̂0 t̂ ĥ, ~91!

Ĥ5
ĥ

~D21! t̂
, ~92!

âi5âi0 t̂ p̂i, i 51, . . . ,D21, ~93!

and

Âª
1

D21 (
i 51

D21 S DĤ i

Ĥ
D 2

5
1

D21 (
i 51

D21 F12
~D21! p̂i

ĥ
G 2

,

~94!

q̂5
D21

ĥ
21, ~95!

whereV̂0 andâi0 are arbitrary constants of integration. He
we also denoted

l

e

FIG. 3. Dynamics of the four-dimensional (D54) deceleration
parameterq(t) of the dilaton field filled Bianchi type I universe
with exponential potential, in the Einstein frame, for different va
ues of the parametersa, b and g: ~i!. Class ~A! model ~solid
curve!, a52

1
3 , b51, g51. ~ii ! Class~B! model ~dotted curve!,

u051. ~iii ! Class~C! model ~dashed curve!, a52
1
3 , b51, g5

21. Depending on the values of the parameters the Bianchi t
universe has both inflationary and non-inflationary evolutions.

FIG. 4. Variation in the Einstein frame of the four-dimension
(D54) dilaton field f(t) for different values of the parameter
a, b andg. ~i! Class~A! model ~solid curve!, a52

1
3 , b51, g

51. ~ii ! Class ~B! model ~dotted curve!, u051. ~iii ! Class ~C!
model ~dashed curve!, a52

1
3 , b51, g521.
6-8
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ĥ5
D2212~D21!f0

D2212f0
, ~96!

p̂i5n̂S pi1
2f0

D22D , i 51, . . . ,D21, ~97!

and the coefficientsp̂i satisfy the relations

(
i 51

D21

p̂i5n̂F11
2~D21!

D22
f0G ,

(
i 51

D21

p̂i
25n̂2F 1

D21
1

K2

V0
2

1
4f0

D22 S 11
D21

D22
f0D G .

~98!

In the string frame the general physical behavior of
potential free dilatonic Bianchi type I universe is quite sim
lar to that in the Einstein frame. The geometry is of t
Kasner type, with a power-law type time dependence of
scale factors. The mean anisotropy of the space-time is
stant and the Universe will never isotropize. On the ot
hand, if the conditionĥ.D21 is fulfilled, the Universe ex-

FIG. 5. String frame evolution of the volume scale factorV̂ of
the dilatonic Bianchi type I universe in the presence of an expon

tial potentialÛ5U0 exp$@l24/(D22)#f% as a function of timet̂
for a521/3, b51, g51 and for different values ofl: l53
~solid curve!, l52 ~this case corresponds to the presence of a c
tral charge deficit or cosmological constant! ~dotted curve! and l
51 ~dashed curve!. We have used the normalization (D22)/(D
21)U051.

FIG. 6. Time variation of the anisotropy parameterÂ in the
string frame fora521/3, b51, g51 and for different values of
l: l53 ~solid curve!, l52 ~this case corresponds to the pre
ence of a central charge deficit or cosmological constant! ~dotted
curve! and l51 ~dashed curve!. We have used the normalizatio
(D22)/(D21)U051.
12401
e

e
n-
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periences an eternal power law type inflationary anisotro
phase. Hence in the string frame a dilaton field filled Bian
type I universe provides an example of an inflating but ne
isotropizing cosmological type evolution.

In the string frame and in the presence of an exponen
potential Û(f)5Û0 exp(l̂f), with l̂5l24/(D22) andl
an arbitrary constant, the Bianchi type I universe show
very large variety of behaviors. In Figs. 5–8 we represen
the dynamics of the volume scale factor, anisotropy para
eter, deceleration parameter and potential for different val
of l ~different exponential potential functions! but for fixed
a, b and g. These solutions generically begin from a si
gular state, followed by an expansionary phase, with the v
ume scale factor and scale factors reaching a local maxim
Then the Universe re-collapses into a new singular pha
This type of evolution is associated with an initial rap
isotropization of the space-time, with the mean anisotro
parameterÂ rapidly decreasing. Near the second singu
state the evolution of the Universe is generally inflationa
with the string frame deceleration parameterq̂ smaller than
zero,q̂,0. After this phase the effect of the dilaton becom
irrelevant to the dynamics of space-time.

In the limit of large values of the parameteru, the term
2au2 dominates,2au2@bu2g. Hence in the limit of

n-

n-

FIG. 7. Dynamics of the deceleration parameterq̂ in the string

frame in the presence of the exponential potentialÛ5U0 exp$@l
24/(D22)#f%, a521/3, b51, g51 and l53 ~solid curve!,
l52 ~this case corresponds to the presence of a central ch
deficit or cosmological constant! ~dotted curve! and l51 ~dashed
curve!. We have used the normalization (D22)/(D21)U051.

FIG. 8. Time evolution in the string frame of the exponent

potential Û5U0 exp$@l24/(D22)#f% for a521/3, b51, g
51 andl53 ~solid curve!, l52 ~this case corresponds to a co

stant potentialÛ5const) ~dotted curve! andl51 ~dashed curve!.
We have used the normalization (D22)/(D21)U051.
6-9
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largeu ~and large time,t̂→`, too!, from Eq.~33! we obtain
V.V0u21/a. Therefore from Eq.~66! it follows that t̂

.u(111/a)[4/(D22)l21].u1/l̂ and, consequently,

V̂. t̂ (D21) l̂ 8, ~99!

Ĥ. t̂21, ~100!

âi. t̂ l̂ 8expS V0Ki

a
t̂2 l̂ D , i 51, . . . ,D21, ~101!

Â. t̂22 l̂ , ~102!

q̂.~D22!1
~D21!ak2

V0~k2l!2
, ~103!

Û. t̂22, ~104!

where we denoted

l̂ 5
1

S 11
1

a D F 4

~D22!l
21G , ~105!

l̂ 8511 l̂ F11
D22

~D21!a G . ~106!

In the long-time limit the behavior of the exponential p
tential dilaton field filled universe is quite different from th
behavior of the potential free dilatonic anisotropic univer
The dependence of the coefficientsl̂ , l̂ 8 on the two constants
a andl leads to a larger spectrum of admissible final sta
c

os

rg

f

s-
’’

12401
.

s,

with isotropic inflationary or non-inflationary evolution o
re-collapse into a singular state. Foruau,1 generallyl̂ ,0,
and, if l̂ ,2@11(D22)/(D21)a#21, then in the string
frame the volume scale factor tends to zero,V̂→0.

The requirement that in the string frame the Universe
flate, q̂,0, leads, with the use of Eq.~103!, to the following
inequality relating the coupling constantk to l:

kS l

k D 2

14V0S 12
l

k D 2

,4
D21

D22
. ~107!

This condition represents the generalization to the str
frame of the Einstein frame condition~88!. In the string
frame the inflationary behavior sensitively depends not o
on l andk but also on the integration constantV0.

It is well known that the action~1! with vanishing anti-
symmetric field strengthH [3] is invariant with respect to
scale factor duality transformations of the formG→Ḡ

5G21 and f→f̄2 ln(detG), where G is a matrix build
from the metric tensor components of the FRW, anisotro
or inhomogeneous metric@10#. The inclusion of the potentia
breaks this duality, but leads, on the other hand, to the p
sibility of obtaining more general models allowing a bett
physical description of the very early evolution of our Un
verse.
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