
Title Efficient reliable broadcast for commodity clusters

Author(s) Wong, R; Wang, CL

Citation
The 4th International Conference/Exhibition on High
Performance Computing in the Asia-Pacific Region Proceedings,
Beijing, China, 14-17 May 2000, v. 2, p. 929-934

Issued Date 2000

URL http://hdl.handle.net/10722/45625

Rights Creative Commons: Attribution 3.0 Hong Kong License



Efficient Reliable Broadcast for Commodity Clusters* 

Kwan-Po Wong and Cho-Li Wang 
Department of Computer Science and Information Systems 

The University of Hong Kong 
Pokfulam, Hong Kong 

kp.wong@graduate.hku.hk, clwang@csis.hku. hk 

Abstract 

High-speed collective communication is the key to 
achieve high-performance computing in parallel com- 
puting. In the past, collective operations are usually im- 
plemented using unicast operations. We proposed a new 
architecture EQA (Enhanced Queue Architecture) for 
implementing high-speed collective operations in a 
cluster. With the incorporation of EQA and the hard- 
ware broadcast facility in network switches, an efficient 
reliable broadcast operation is implemented in a DP- 
SMP communication subsystem. With EQA, the compu- 
tation, memory and network resources can be utilized 
efficiently. We evaluated the performance of the broad- 
cast operation in a commodity cluster with Fast Ethemet 
connection. We found that the hardware-based broad- 
cast from DP-SMP with EQA outperforms the soft- 
ware-based broadcast operation. The use of EQA in 
broadcast operation could reduce the memory con- 
sumption by almost 40%. DP-SMP with EQA has 
proven to be an efficient communication mechanism for  
coupling commodity clusters. 

Keywords: SMP Cluster, Collective Operation, Reliable 
Broadcast, Bandwidth, Low-Latency Communication. 

1. Introduction 
Commodity clusters had proven to be a viable solu- 

tion to provide high computing power. To achieve such 
high performance, the cluster communication played a 
critical role. High-performance communication for 
commodity clusters has been addressed recently. How- 
ever, most research studies are focused on the perform- 
ance of the point-to-point communication 
[ 1,3,4,5,8,11,13]. Although the current studies can make 
the communication performance between two cluster 
nodes almost comparable to the raw network perform- 
ance, the design of high-performance collective com- 
munication for commodity cluster has not been ad- 
dressed properly. 

Collective communication plays a very important role 
in many parallel applications. The most fundamental 

'The research was supported by Hong Kong Research Grants Coun- 
cil grant 10201701 and HKU CRGC grant 10200544. 

collective operation is the broadcast operation. This op- 
eration can be used to build other important collective 
operations like barrier synchronization, which synchro- 
nizes all cluster nodes. Indeed, high-speed broadcast is 
the key to achieve high-performance parallel comput- 
ing. 

Theoretical broadcast studies have focused on the de- 
livery strategy of packets [2,7,9,14]. These studies have 
all assumed that the underlying implementation of the 
algorithm uses point-to-point communication. In fact, 
the hardware broadcast feature, which is commonly 
available in network switches and hubs, can help im- 
prove the performance of collective communication. 
Using hardware broadcast facilities, if the size of a clus- 
ter is smaller than the size of a switch, injecting one sin- 
gle packet can broadcast to all cluster nodes. With the 
incorporation of hardware broadcast into the design of 
broadcast algorithm, computation, memory and network 
resources can possibly be utilized efficiently. However, 
broadcast packets, like ordinary packets, are subjected to 
lose in communication. This may because of insufficient 
buffer entries at the outgoing ports of the switch, at the 
network interface cards (NICs), or at the destination 
nodes. 

To avoid losing packets, a reliable protocol should be 
adopted. In point-to-point communication, each com- 
munication channel maintains its reliability independent 
of other channels. Each channel may keep a set of data 
structures, used as transmission and reception buffers, 
for the purpose of reliable transmission. While adopting 
this approach in the implementation of the broadcast op- 
eration, as the size of the cluster increases, the number 
of transmission and reception buffers in a node in- 
creases. The aggregated size of all data structures may 
consume a large portion of memory spaces. This be- 
comes a vital problem. 

We have developed DP-SMP [17] which supports 
Pentium-based SMP clusters. It used Push-Pull Mes- 
saging as the messaging mechanism for point-to-point 
communication between SMP nodes. This mechanism 
focused on the scheduling of the data transfer between 
cluster nodes. To incorporate the facility in DP-SMP 
while maintaining the reliable delivery feature for effi- 
cient collective operation, a novel reliable mechanism, 
Enhanced Queue Architecture (EQA) is introduced. This 

929 
0-7695-0589-2/00 $10.00 0 2000 IEEE 



mechanism has been implemented along with Push-Pull 
Messaging in our DP-SMP system. The mechanism lev- 
erages the memory consumption problem in communi- 
cation buffers as the size of the cluster increases. It also 
enables the incorporation of hardware broadcast facility 
in the DP broadcast operation to improve the perform- 
ance of broadcast communication. With the high-speed 
broadcast operation, SMP nodes can be tightly-coupled 
together to form a high-performance cluster. 

For the rest of the paper, we discuss Push-Pull Mes- 
saging in section 2. We then introduce the efficient reli- 
able broadcast algorithm using hardware broadcast ca- 
pability in section 3. In section 4, we study the perform- 
ance of the broadcast algorithm. Conclusion is given in 
section 5 .  

2. Push-pull messaging 
Directed Point [lo], as known as DP, is a high-speed 

communication subsystem originally developed by the 
Systems Research Group at the University of Hong 
Kong. It aimed at providing a low-latency and high- 
bandwidth communication system for cluster network- 
ing. It supports network driver modules for Digital DEC 
21 140A Fast Ethemet, Hamachi Gigabit Ethemet, and 
FORE PCA-200E ATM, for connecting commodity 
nodes [18]. Push-pull Messaging [17] is a messaging 
mechanism to enable high-speed communication in 
SMP clusters based on the DP concept. The mechanism 
exploited several latency hiding techniques to lower la- 
tency and increase bandwidth. 

Figure 1 illustrates the communication architecture of 
DP-SMP. In DP-SMP, each DP contains a set of queues 
and buffers, which are used for data transmission and re- 
ception. For transmission, a queue called send queue 
stores pending send requests. Packets are stored in a 
buffer called send buffer. Similarly for reception, a 
queue called receive queue stores pending receive re- 
quests. Packets received from the NIC are stored in a 
buffer called receive buffer. The buffer queue and 
pushed buffer store pending incoming packets where 
their destinations in memory are not determined yet. 
Three queues can be accessed by both user and kemel 
threads. 

Push-pull Messaging consists of two distinct push 
and pull phases in data communication. With dynami- 

cally changing phases during communication, messages 
can be transmitted efficiently. As shown in Figure 1, 
each send or receive process has its own application-al- 
located buffer, source buffer and destination buffer re- 
sided in the user space. 

In Push-pull Messaging, the send process first pushes 
a part of a message to the receive party as shown in ar- 
row la. The size of the first pushed message is deter- 
mined by the parameter BTP (Bytes-To-Push). This 
important parameter BTP defines the number of bytes to 
be pushed by the sender at the beginning of the messag- 
ing process. This number is chosen based on the speed 
balance of the network and the memory system [16J 
BTP is further divided into two values BTPl and BTPz 
where BTP=BTP,+BTP,  . These two values can fur- 
ther finely tune the performance of the cluster. 

The pushed message is then handled by a reception 
handler at the receive party. The rest is registered in the 
send queue through arrow 1 b. 1. Depending on the timing 
of the receive operation performed by the receive proc- 
ess, the pushed message will be stored in the pushed 
buffer if the receive operation is not yet started as shown 
in arrow 2b. 1. Otherwise, the message will be copied di- 
rectly to the destination as shown in arrow 2a by the 
registered information in the receive queue. 

Once the receive operation is started, either the re- 
ception handler at the receive party or the receive proc- 
ess itself will start the pull phase to pull the rest of the 
message from the send process. The pull phase will be 
started by sending an acknowledgment (or "Ack" in the 
figure), which implicitly contains request information, 
through arrow 3a or arrow 3b. The reception handler in 
the send party processes the acknowledgment. If the re- 
quest is granted, the send handler will send the request 
part of the message in the send queue through arrow lb.2 
to the receive party. The reception handler in the receive 
party handles the message and directly copies the mes- 
sage from NIC to the destination buffer without buffer- 
ing in the pushed buffer through arrow 2a using the reg- 
istered information in the receive queue. 

With the mechanism, Push-pull Messaging guaran- 
tees buffers to be properly managed. It can also reduce 
the handshaking delay for short messages. In addition, 
the sequence of communication events makes it possible 
to apply various optimizing techniques to remove those 
unexpected overheads in the critical path in communica- 

930 



tion. Optimization techniques include Address Transla- 
tion Overhead Masking, Cross-Space Zero Buffer and 
Push-and-Acknowledge Overlapping [ 161. 

DP-SMP has been implemented to connect two ALR 
Quad Pentium Pro SMP servers using Fast Ethemet. For 
point-to-point intranode communication, DP-SMP can 
achieve a very low single-trip latency of 7.5 ps for 
sending a 8-byte message. The peak bandwidth is 350.9 
Mbytes/s when sending 4000 bytes. For point-to-point 
intemode communication, the system can achieve a sin- 
gle-trip latency of 30.1 ps for sending a 8-byte message 
and the peak bandwidth 12.1 Mbytes/s. 

3. Broadcast with EQA 
Conceptually, a reliable broadcast operation is estab- 

lished by multiple pairs of reliable send and receive op- 
erations, which is originated from the same source end- 
point to a set of destination endpoints. Each endpoint 
maintains its own communication channel independ- 
ently. When a broadcast operation is issued, the broad- 
cast message is transmitted across a number of the chan- 
nels. With the traditional high-level implementation, a 
sequence of point-to-point communication will be used 
to broadcast a message. This approach simplifies the 
implementation of the broadcast operation but it cannot 
fully optimize for the performance. 

Since the reliable channels are maintained independ- 
ently, each channel may keep a set of data structures, 
used as transmission and reception buffers, for the pur- 
pose of reliable transmission. However, as the size of the 
cluster increases, the number of transmission and recep- 
tion buffers in a node increases. The aggregated size of 
all data structures may consume a large portion of mem- 
ory spaces. 

To  optimize the use of resources, we consider the 
broadcast operation as a single "fat" operation. In this 
low-level approach, broadcasting a packet can be done 
through one packet with an encoded hardware broadcast 
operation. This would minimize the use of memory and 
network resources. We further introduce a reliable de- 
livery mechanism to guarantee that all packets are deliv- 
ered from the source node to all other participating 
nodes. All these novel mechanisms are relied on En- 
hanced Queue Architecture (EQA). 

Two different implementations of the broadcast op- 
eration in DP-SMP are discussed in this section. One is 
called Simple Broadcast. Another one is called Push- 
Pull Broadcast. 

3.1. Enhanced queue architecture (EQA) 
EQA is a queue architecture for DP-SMP to utilize 

memory and network resources efficiently. EQA allows 
multiple senders to share one single queue and buffer 
properly. An entry produced in a queue and buffer could 
be retrieved by many senders which linked to the queue 
and buffer. Memory resources can be efficiently utilized. 

EQA provides a reference count feature to keep track 
on the use of the queue and buffer. It  further provides 
medium-grained locking mechanism so that multiple DP 
processes could share resources safely. 

In EQA, there are three basic data structures as shown 
in Figure 2, including Buffer (BUF), Home Management 
Structure (HMS), and Local Management Structure 
(LMS). BUF is a fundamental data structure, which 
stores all buffer entries. HMS is a data structure for pro- 
ducers to maintain the integrity of BUF. This structure is 
very similar to the producer in the ordinary SPSC (Sin- 
gle-Produced-Single-Consumer) queue except it also 
contains a pointer which points to the head of the list of 
consumers. LMS is a data structure for consumers to 
keep track of BUF. This structure is also very similar to 
the data structure of the consumer in the ordinary SPSC 
queue. The structure also contains a pointer which points 
to the next consumer structure. This pointer is used for 
the EQA update algorithm. 

In EQA, a lightweight directed point (LDP) is a data 
structure, which is aimed to minimize the size of a DP. 
The data structure of a LDP is the same as the structure 
of a DP except LDPs have no buffer entries. LDPs only 
store the buffer management structure. Buffer entries are 
stored in the form of pointers which point to appropriate 
destinations. 

To create a queue, a DP-SMP process needs to take a 
2-step procedure. The first step is to create a LDP. The 
second step is to create a link from the LDP to a DP. 
Once the link is created, EQA features will be enabled. 
The linked LDPs can retrieve packets created in the DPs. 
With this organization, broadcast packets generated at 
the DPs can be transmitted to a set of destination DPs 
through a set of LDPs. The way to access the LDP will 
be exactly the same as the way to access DPs. 

To set up a broadcast environment, a set of send-only 
LDPs is created. Correspondingly. a set of DPs is created 
at each destination node. For example in Figure 2, all 
LDPs at NIDl share buffers with DPl .  

To perform a broadcast operation, root and leaf nodes 
start different procedures. At the root node, the broadcast 

FIGURE 2. The organization of DPs and 
LDPs. 

93 1 



DP is created by defining a set of LDPs which point to a 
set of destination DPs. Thus, one single memory space is 
used as the retransmission buffer. Whenever a send op- 
eration is issued to the DP, a sequence of send operations 
will be issued at the same time virtually. Physically, this 
sequence of operations are implemented by one hard- 
ware broadcast operation. When the DP issues the send 
operation, the operation is wrapped and the hardware 
broadcast operation is triggered instead. 

At leaf nodes, each node creates a receive-only DP. 
This DP is the same as the ordinary DP. The only differ- 
ence is that each point needs to know the communication 
channel used at the source node. Since each hardware- 
type broadcast packet only contains shared information, 
it does not contain any private information associated to 
every single destination DP. Therefore, each receive- 
only DP should have the information about the source 
node whenever it receives a broadcast packet. After set- 
ting up the broadcast environment, the broadcast opera- 
tion can be carried out. 

3.2. Simple broadcast 
Simple Broadcast does not utilize the Push-Pull 

Messaging feature. Packets are broadcasted one by one 
immediately. Packets may be lost if the destination buff- 
ers are not allocated due to the late receive operation. 

When Simple Broadcast is started, the message is 
copied to the shared retransmission buffer. At the same 
time, packets generated from the message are broad- 
casted onto the network. Depending on the availability 
of the destination DPs, some packets may not be able to 
reach the destination endpoints. Lost packets can be de- 
tected by examining sequence numbers embedded in 
each packet at the destination DPs. In our implementa- 
tion, we adopted the go-back-n protocol with a window 
size of 16. When the source DP receives no acknowl- 
edgment packet, the DP sends the lost packets based on 
the LMS. So, each channel can maintain its reliability 
individually. 

Simple Broadcast favors short message broadcast 
since the probability of getting not enough buffer spaces 
at destination nodes is low. The broadcast operation can 
be executed efficiently without retransmission. 
3.3. Push-pull broadcast 

Push-pull Broadcast uses Push-Pull Messaging as the 
packet delivery mechanism. Because of this, the behav- 
ior of the broadcast operation changes as the size of 
message increases. Like Push-Pull Messaging, a portion 
of message is pushed to the destination DPs at the be- 
ginning. The rest of the message is pulled depending on 
the decision of the destination DPs. 

Since LDP possessed all the DP features, Push-Pull 
Messaging can be employed in each LDP. Therefore, 
during broadcast communication, each LDP can main- 
tain its own communication using Push-Pull Messaging. 
When broadcasting a long message, buffers at the desti- 
nation nodes can be managed properly. 

Like Push-Pull Messaging, Push-Pull Broadcast di- 
vides the broadcast operation into two phases - push and 
pull. In the push phase, a portion of the broadcast mes- 

sage is pushed to all the destination nodes, similar to 
Simple Broadcast. 

The push phase at the source DP is started after re- 
ceiving Push-Pull acknowledge packets. At all the des- 
tination DPs, we only assign one DP to send the ac- 
knowledge packet after the DP finishes the push phase, 
since normally the length of the pushed message is short 
and packets received at the destination DPs are either 
saved in the pushed buffer or copied to the destination 
buffers directly. Instead of requesting all DPs to send 
acknowledge packets after finishing the push phase, ask- 
ing one DP would help reduce network traffic. 

In case of packets lost in the push phase which rarely 
happens, the broadcast operation will be suspended tem- 
porarily since some DPs were not able to receive all the 
packets. The operation will be resumed as soon as these 
DPs receive all the packets through retransmission. 

In the pull phase, the source DP broadcasts the re- 
maining packets to all DPs one by one. When broadcast- 
ing a long message, buffers at some destination DPs will 
be drained quickly. This is because buffers may become 
full or some of the linked LDPs have not consumed 
buffer entries as fast as possible. Therefore, the broad- 
cast operation may be stopped. 

To efficiently handle retransmission, we allow re- 
transmission to be triggered at each DP conditionally to 
maintain the reliability of their channels. Only those DPs 
which lose packets will request for retransmission using 
the go-back-n protocol. That is, we use point-to-point 
communication to resend the lost packets. Until all 
nodes get packets, the source DP will resume the broad- 
cast operation. 

4. Performance evaluation 
The proposed system, DP-SMP with EQA, was im- 

plemented and evaluated on eight Intel MP1.4-com- 
plaint SMP machines. Each computer consisted of two 
Intel Celeron 450 MHz processors with 128 Mbytes of 
main memory. Each Intel processor had 8-Kbyte LI in- 
struction cache and 8-Kbyte data cache. The size of the 
unified L2 cache is 128 Kbytes. The computers were 
connected by Fast Ethernet with the peak theoretical 
bandwidth of 100 Mbits/s. Each computer attached one 
D-Link Fast Ethernet 500TX card with Digital 21140 
controller. Linux 2.2.1 was installed on each machine 
with symmetric interrupt enabled. 

The benchmark routines used hardware time-stamp 
counters in the Intel processor, with the resolution within 
100 ns, to time the operations. Each test performed 500 
iterations. Among all timing results, the first and last 
10% (in terms of execution time) were neglected. Only 
the middle 80% of the timings was used to calculate the 
average. 

We first evaluated the performance of these commu- 
nication systems. We then compared the memory con- 
sumption of DP-SMP without EQA and DP-SMP with 
EQA. 
4.1. Broadcast latency test 

Broadcast latency tests have been carried out for three 

932 



P 

I ya ,ow ,- zoo0 2% -sw, w rxa -0 

ak.lm.4 

FIGURE 3. Broadcast latency comparison for 
4-node configuration. 

0 4  P== 
clu.*rsm 

pa 

FIGURE 4.256-byte message broadcast la- 
tency comparison. 
Long Measage Broadcad Campadson 

IDPPBCAST 8MPICWJ 

p2 w e== 
Uu(a sue 

FIGURE 5.4096-byte message broadcast la- 
tency comparison. 

different communication systems. The first target system 
(denoted by PPBCAST) uses the implemented Push-pull 
Broadcast in DP-SMP with EQA. DP-SMP uses 80 and 
780 bytes as the value of BTPl and BTP? respectively. 
The second system (denoted by SBCAST) uses Simple 
Broadcast in our MPI library ported for DP-SMP with 
EQA. The last system (denoted by MPICH) uses the MPI 
broadcast operation of MPICH, which adopts a tree- 
based algorithm. In all tests, we further vaned the num- 
ber of nodes in the cluster. We used "In" to denote the 
performance of broadcast operation using n nodes in the 
testing environment. For example, "PPBCAST/4" de- 
notes Push-pull Broadcast on a cluster size of 4 nodes. 

As shown in Figure 3, PPBCAST and SBCAST can 
achieve shorter latency than MPICH. We further evalu- 
ated the broadcast performance for 256-byte and 4096- 
byte messages in Figure 4 and 5. We found that for 256- 
byte messages, the degradation of PPBCAST is much 
less than the degradation of MPICH when the number of 
nodes increases. Broadcasting a short message for 8- 
node cluster only uses 142 ps, which is faster than 
MPICH by 60%. The increase percentage of the latency 
of broadcasting from 2-node to 8-node is only 16% for 
PPBCAST while the percentage for MPICH is 45%. The 
performance results of PPBCAST under different cluster 
sizes are very similar. But for MPICH, it requires more 
computation and memory resources to deliver broadcast 
messages, thus increases the latency time. 

For 4096-byte messages, PPBCAST broadcast mes- 
sages faster than MPICH by 30%. The increase percent- 
age of the latency of broadcasting from 2-node to 8- 
node is only 12.3% for PPBCAST while the percentage 
for MPICH is almost 54%. 

4.2. Memory consumption measurement 
We first calculated the size of each data structure 

used by each DP. Then we calculated the size of the 
memory that each DP used. We further compared the 
memory consumption of two broadcast mechanisms - 
Point-to-point (P2P) and Hardware Broadcast (HB). 
Broadcast operation in P2P was implemented based on 
the point-to-point messaging. Therefore, the size of all 
DP pairs is, 

( ~ , + s ~ ~ , , ) ~ n  where ssDp is the size of a send- 

only DP, sRDp is the size of a receive-only DP and n 
is the size of the cluster. 

Broadcast operation in HB was implemented using 
hardware broadcast facility. Since EQA was utilized for 
reliability, LDPs were created to minimize the amount of 
memory consumption. Therefore, the size of all DPs and 
LDPs is, 

s,,,+(n-l)s,, ,+n~sR,, where suIp is the size of a 

LDP. 
In DP-SMP, each send-only DP uses 4 Kbytes as the 

send queue and 4 Kbytes as the pushed buffer. Each re- 
ceive-only DP uses 4 Kbytes as the receive queue and 
12 Kbytes as the pushed buffer. In addition, each DP 
uses 24 Kbytes as the retransmission buffer queue. LDP 
uses 4 Kbytes only as the send queue. Thus, 
S,=33.8Kbytes1 SRDp=41.4Kbytes and 
S,,,=4.4 Kbytes . 

Figure 6 shows the memory consumption comparison 
of two broadcast mechanisms. We compared the fraction 
of memory space saved. 

Thus, M,r,ye(n)=0.386(  1 - 1 In )  
When the cluster contains 128 nodes, we can reduce 

38.3% of memory usage by EQA. 

933 



1 $28 I 2% 

FIGURE 6. Memory usage consumption 
comparison. 

5. Conclusion 
The performance of collective communications de- 

termines the performance of medium to fine-grained 
parallel applications. However, collective communica- 
tions use many computation and communication re- 
sources to distribute messages to all nodes in the cluster. 
As the size of the cluster increases, inadequate manage- 
ment of resources will reduce the scalability of the clus- 
ter. We introduced EQA, a queue architecture, which 
can minimize the use of computation and memory re- 
sources. Simple and Push-pull Broadcast are two differ- 
ent variations of the broadcast operation in DP-SMP 
with EQA. Push-Pull Broadcast for DP-SMP with EQA 
showed the most promising result in most of the cases. 

Currently, the bandwidth of Fast Ethemet is still low 
compared with the peripheral bus bandwidth. We  believe 
the next important step is to port DP-SMP for Gigabit 
Ethernet. 

6. References 
[ I ]  T. E. Anderson, D. E. Culler, D. A. Patterson, and the 

NOW team. "A Case for NOW (Networks of Worksta- 
tions)", IEEE Micro, 15(1), February, 1995. 

[2] A. Bar-Noy and S .  Kipnis. "Designing Broadcasting Al- 
gorithms in the Postal Model for Message-Passing Sys- 
tems", Proc. of the ACM Symposium on Parallel Algo- 
rithms and Architectures, pp. 11-22, June, 1992. 

[3] G. Ciaccio. "Optimal Communication Performance on 
Fast Ethernet with GAMMA", Proc. of International 
Workshop on Personal Computers based Networks Of 
Workstations 1998, Orlando, March 30/April 3, 1998. 

[4] T. von Eicken, A. Basu, V. Buch and W. Vogels. "U-Net: 
A User-Level Network Interface for Parallel and Distrib- 
uted Computing", Roc. of the 15* ACM Symposium on 
Operating Systems Principles, December, 1995. 

[5] T. von Eicken, D. E. Culler, S. C. Goldstein, K. E. 
Schauser. "Active Messages: A Mechanism for Integrated 
Communication and Computation", Report No. 
UCB/CSD 92/#675, Computer Science Division, Univer- 
sity of California, Berkeley, CA 94720, March, 1992. 

[6] W. Gropp, E. Lusk, N. Doss and A. Skjellum. "A High- 
Performance, Portable Implementation of the MPI Mes- 
sage Passing Interface Standard", Journal of Parallel 
Computing, Vol. 22, No. 6, pp. 789-828, September, 
1996. 

[7] M. Golin and A. Schuster. "Optimal Point-to-Point 
Broadcast Algorithms via Lopsided Trees", Roc. of the 
Fifth Israeli Symposium on Theory of Computing and 
Systems, pp. 63-73, June, 1997. 

[8] S .  S. Lumetta, A. M. Mainwaring and D. E. Culler. 
"Multi-Protocol Active Messages on a Cluster of 
SMPs", Proc. of Supercomputing '97 High Performance 
Networking and Computing, November, 1997. 

191 R. M. Karp, A. Sahay, E. E. Santos and K. E. Schauser. 
"Optimal Broadcast and Summation in the LogP Model", 
Roc. of the 5" Symposium on Parallel Algorithms and 
Architectures, June, 1993. 

[ 101 C.-M. Lee, A. Tam and C.-L. Wang. "Directed Point: An 
Efficient Communication Subsystem for Cluster Comput- 
ing", Proc. of the 10"' International Conference on Parallel 
and Distributed Computing and Systems, pp. 662-665, 
Las Vegas, October, 1998. 

[ 1 I ]  J. Shen, J. Wang and W. Zheng. "A New Fast Message 
Passing Communication System for Multiprocessor 
Workstation Clusters", Technical Report, Department of 
Computer Science and Technology, Tsinghua University, 
China, 1998. 

[I21 A. S. Tanenbaum. "Computer Networks", 3'd Edition, 
Prentice-Hall International, Inc., 1996. 

[ 131 Y .  Tanaka, M. Matsua, M. Ando, K. Kubota and M. Sato. 
"COMPaS: A Pentium Pro PC-based SMP Cluster and its 
Experience", Proc. of International Workshop on Personal 
Computers based Networks Of Workstations 1998, Or- 
lando, March 30/April 3, 1998. 

[I41 Y . 4 .  Tseng and J.-P. Sheu. "Toward Optimal Broadcast 
in a Star Graph using Multiple Spanning Trees", IEEE 
Transactions on Computers, Vol. 46, Issue 5, pp. 593- 
599, May, 1997. 

(151 A. Tam and C.-L. Wang. "Realistic Communication 
Model for Parallel Computing on Cluster", Proc. of Inter- 
national Workshop on Cluster Computing, pp. 92-101,2- 
3 December, 1999. 

[ 161 K.-P. Wong. "High-speed Network Interface for Com- 
modity SMP Clusters", Master Thesis, Department of 
Computer Science and Information Systems, The Univer- 
sity of Hong Kong, 2000. 

[I71 K.-P. Wong and C.-L. Wang. "Push-Pull Messaging: A 
High-Performance Communication Mechanism for 
Commodity SMP Clusters", Proc. of International Con- 
ference on Parallel Processing, Fukushima, Japan, 21-24 
September, 1999. 

[I81 W. Zhu, D. Lee and C.-L. Wang. "High Performance 
Communication Subsystem for Clustering Standard 
High-Volume Servers using Gigabit Ethernet", Proc. of 
the 4"' International Conference on High Performance 
Computing in Asia-Pacific Region, Beijing, China, 14- 
17 May, 2000. 

934 


