
Induction and Mackey Theory

I’m writing this short handout to try and explain what the idea of Mackey
theory is. The aim of this is not to replace proofs/definitions in the lecture
notes, but rather to give an explanation of what’s going on. Technical details
might be omitted. Throughout, G denotes a finite group, and all vector spaces
and representations are over C. When H is a (not necessarily normal) subgroup
of G, we will write G/H to denote the set of left cosets of H.

1 Motivation

Mackey theory is the most conceptually difficult subject tackled in the Cam-
bridge Part II course on Representation theory. The reason for this is that to
really understand it, one needs to understand how induction works, and to do
that properly one needs to work with tensor products over rings, which is not
covered until Part III. However it is still possible to talk about Mackey the-
ory and induction, it’s just that the bigger picture of what’s going on is a bit
obscure. Now, you should think of Mackey theory as the way to answer the
following:

Problem. Suppose that H is a subgroup of G, and that W is a representation
of H. When is IndG

HW irreducible as a G-module?

Let’s try to answer this using characters. If χ is the character afforded by
W , then we have

〈IndG
Hχ, IndG

Hχ〉G = 〈χ,ResGHIndG
Hχ〉H (1)

by Frobenius reciprocity. So the question becomes: how does ResGHIndG
HW

split into irreducibles? If we can determine this, we can compute the above
inner product and the irreducibility of IndG

HW can be determined completely
(assuming we know how χ decomposes). Moreover, we might as well be a bit
more general and study ResGKIndG

HW where K is another subgroup of G. As it
turns out, this doesn’t make the theory much more complicated.

2 What’s induction?

In order to understand Mackey theory, we will need to understand quite well
how induction works. As far as the Cambridge course goes, the only thing



that you need to know in order to get going most of the time is the formula to
compute the induced characters. However for Mackey theory to make sense, we
need to remind ourselves of how the induced module itself is constructed, rather
than working with characters.

What is the idea of induction? Its aim is to construct representations of
G from representations of a given subgroup H. Let W be a representation of
H, say we have ρ : H → GL(W ). The aim is to construct a representation
of G which extends W in some way. So, more precisely, we want to look at
representations σ : G → GL(V ), where V contains W as a vector subspace in
such a way that the two H-actions on W coming from ρ and σ are the same,
i.e σ(h)|W = ρ(h) for all h ∈ H. In other words we seek a representation V of
G so that ResGHV contains W as a subrepresentation. Moreover, we would like
to be able to make a canonical choice of such a representation.

To understand how this works, suppose we have a representation V of G
which contains W as a vector subspace, in such a way that the two H-actions
on W coincide. Denote the elements of W inside V by the formal symbols 1⊗w,
w ∈W . Since V is a G-representation, the group G acts on those and we denote
the element g · (1⊗w) ∈ V by the formal symbol g⊗w. Since the two H-actions
coincide, this must satisfy the rule that h⊗ w = 1⊗ (hw) for all h ∈ H. Also,
since V is a representation of G we must have g1 · (g2 ⊗ w) = (g1g2)⊗ w.

Now let 1 = t1, t2, . . . , tr be a left transversal of H, i.e a complete collection
of coset representatives. Then g = tjh for some 1 ≤ j ≤ r and some h ∈ H.
Since V is a representation of G, we must have gw = (tjh)w = tj(hw). In
other words, more formally, we have g ⊗ w = (tjh) ⊗ w = tj ⊗ hw. Moreover,
if we choose a basis w1, . . . , wn for W , every w ∈ W can be written as a linear
combination

∑n
i=1 λiwi, and as the G-action on V is linear, we must have

g · w = g ·

(
n∑

i=1

λiwi

)
=

n∑
i=1

λi(g · wi).

In other words, more formally,

g ⊗ w =
n∑

i=1

λi(g ⊗ wi) =
n∑

i=1

λi(tj ⊗ hwi).

Writing each hwi in terms of the basis, we can break down further to get an
expression of the form

g ⊗ w =
n∑

i=1

µi(tj ⊗ wi)

for some µi ∈ C, by using the rule tj ⊗ (
∑n

i=1 αiwi) =
∑n

i=1 αi(tj ⊗ wi).
Hence we see that every element of the form g⊗w is a linear combination of

the elements tj ⊗wi. Moreover, clearly g · (tj ⊗wi) = (gtj)⊗wi is of that form
for all g ∈ G and all i, j. Therefore, if we denote by U the span of the elements
tj ⊗ wi (1 ≤ j ≤ r, 1 ≤ i ≤ n), then we see that U is a subrepresentation of V .

At this point, we do not yet know that such a representation V exists, as
we haven’t constructed one. But if there is one, the above gives us an idea of
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what it should look like, and this U we’ve constructed looks promising on our
quest of a canonical choice of such representations. This should motivate the
following

Definition. The induced representation IndG
HW is defined to be the vector

space with basis given by the formal symbols tj ⊗ wi (1 ≤ j ≤ r, 1 ≤ i ≤ n),
and G-action given by

g · (tj ⊗ wi) =
n∑

k=1

λikts ⊗ wk

where gtj = tsh with h ∈ H, and hwi =
∑n

k=1 λikwk. It can be easily checked
that this gives a well-defined representation. The proof is the same as the
one given in the notes: note that h = t−1s gtj and write the above action as
g · (tjwi) = ts(hwi) = ts((t

−1
s gtj)wi) where ts is the unique coset representative

such that gtj ∈ tsH. You can then work with that to check that g1 ·(g2 ·(tjwi)) =
(g1g2) · (tjwi).

Hence, the idea in constructing IndG
HW is to take a formal element g ⊗ w,

not necessarily in W , for every g ∈ G and w ∈W , and to let the induced module
be the span of those under some set of relations which make the G-action well-
defined and extend the H-action on W . Clearly we can identify W with the
vector subspace of IndG

HW consisting of elements of the form 1 ⊗ w (it is the
span of {t1 ⊗ wi : 1 ≤ i ≤ n}). Moreover we see that W is a subrepresentation
of ResGHIndG

HW , because h · (1⊗w) = h⊗w = 1⊗hw. So we have indeed found
a representation of G with the required properties.

Remark. Note that if V is a representation of G such that W is a subrepresen-
tation of ResGHV , then the above argument shows that V contains a quotient of
IndG

HW as a subrepresentation (the thing we called U). It turns out that this
property characterises IndG

HW uniquely up to isomorphism. Hence, in some
sense, the induced representation is the “universal” representation with that
property.

Example. Let G = D6 = {a, b : a3 = b2 = 1, bab = a2}, H = 〈a〉 ∼= C3

and W = trivial representation = 〈v〉 say. Then V = IndG
HW is the vector

space with basis {v, bv}, where a acts trivally on it and b swaps the two basis
vectors. We can decompose explicitly V = V1 ⊕ V2, where V1 = 〈v + bv〉 and
V2 = 〈v − bv〉. Clearly V1 is just the trivial representation while V2 is the non-
trivial representation lifted from G/H ∼= C2. Both of these are representations
whose restriction to H is (isomorphic to) W , and they are indeed both quotients
of V .

Now, going back to equation (1), we see that χ is a summand of ResGHIndG
Hχ,

and so the only way that we could have

1 = 〈IndG
Hχ, IndG

Hχ〉G = 〈χ,ResGHIndG
Hχ〉H

is if W is irreducible and has multiplicity one inside ResGHIndG
HW . We now

move on to determine when exactly that happens.
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3 Mackey’s restriction formula

Ok, we are now better equipped to try and understand what Mackey theory
says. From the above description of induction, we see that every element of
IndG

HW is a linear combination of terms of the form g ⊗ w, i.e IndG
HW is the

C-span of G ⊗W = {g ⊗ w : g ∈ G,w ∈ W}. As we saw, we can break this
further into left coset representatives for H, i.e terms of the form tj⊗w, because
of the rule that gh⊗ w = g ⊗ hw for any h ∈ H. In other words we have that

IndG
HW =

r⊕
i=1

ti ⊗W

where ti ⊗W = {ti ⊗ w : w ∈W}.
Now we want to restrict IndG

HW to some subgroup K ≤ G (e.g can take
K = H for the purpose of irreducibility). That means breaking this up into
subspaces which are fixed uner the action of K. What do we mean by that?
Well, first, if we let K act on G by left multiplication, then the orbits of that
action are the right cosets Kg. Similarly, if H acts on G by right multiplication
(this is a right action), then the orbits are the left cosets gH. So if we consider
both actions simultaneously, the “double orbits” are the double cosets KgH.
Another way to think about this is to consider the orbits under the action of
K by left multiplication on G/H. These can be naturally identified with the
double cosets KgH. Write K\G/H for the set of all double cosets, and we write
g ∈ K\G/H to mean ‘g is a representative of KgH’.

The idea is that we saw above that IndG
HW breaks up into ‘left cosets’ ti⊗W ,

and we now further break down under the left action of K. So we obtain that

ResGKIndG
HW =

⊕
K\G/H

CKgH ⊗W.

We need to write CKgH here to make the summands into vector spaces and so
representations of K (e.g we didn’t have that IndG

HW was equal to G⊗W but
instead the C-span of it).

Now, each CKgH ⊗W is just CK · (gH ⊗W ). Note that gH ⊗W = g⊗W
is a vector space since gh1 ⊗ w1 + gh2 ⊗ w2 = g ⊗ (h1w1 + h2w2). We can
identify it with W by mapping gh⊗w 7→ hw. Moreover, both CK and gH⊗W
are representations of Hg := K ∩ gHg−1. We denote by Wg the representation
of Hg which is W as a vector space, but with action x · w = (g−1xg)w where
now g−1xg ∈ H by definition of Hg. Clearly we have gH ⊗ W ∼= Wg as
representations of Hg: if we think about how x = gh1g

−1 ∈ Hg acts on gh2⊗w,
we see that it sends it to gh1h2⊗w, which gives the action on Wg if you translate
everything to W by the above isomorphism gH ⊗W ∼= W of vector spaces.

Now by the above we can identify each CKgH⊗W with CK⊗Wg, by which
we mean the C-span of formal symbols k⊗w with k ∈ K and w ∈Wg, with the

rule that kx⊗w = k⊗xw for all x ∈ Hg. This looks suspiciously like IndK
Hg
Wg.

And it is! Hence, in summary, we have:
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Theorem. (Mackey’s restriction formula)

ResGKIndG
HW

∼=
⊕

K\G/H

IndK
Hg
Wg

.

You’ll have to trust me that everything described above works. This result
is not necessarily very pretty at first sight, however I think that once you start
thinking about it for a bit, you realise that a lot of its aspects are sort of what we
should expect to get. For example, induction splits naturally as a vector space
into summands corresponding to the left cosets of H in G, and so if we restrict
the action from G to K, it makes sense that it should split into summands that
correspond to double cosets.

4 Mackey’s irreducibility criterion

We can now finally determine when the induced representation is irreducible.
As we said already, we need W to be irreducible and have multiplicity one inside
ResGHW . So take K = H in Mackey’s restriction formula:

ResGHIndG
HW

∼=
⊕

H\G/H

IndH
Hg
Wg

where Hg = H ∩gHg−1. Write χg for the character of Hg afforded by Wg. Now
clearly H1 = H and χ1 = χ. So we have

〈IndG
Hχ, IndG

Hχ〉G = 〈χ,ResGHIndG
Hχ〉H

= 〈χ, χ〉H +
∑

16=g∈H\G/H

〈χ, IndH
Hg
χg〉H

≥ 1 +
∑

16=g∈H\G/H

〈ResHHg
χ, χg〉Hg

by Frobenius reciprocity. Thus we see that 〈IndG
Hχ, IndG

Hχ〉G = 1 if and only if
〈χ, χ〉H = 1 and 〈ResHHg

χ, χg〉Hg
= 0 for all 1 6= g ∈ H\G/H. This gives the

following

Theorem. (Mackey’s irreducibility criterion) Let G be a finite group and H
a subgroup of G. Given a representation W of H, the induced representation
IndG

HW is irreducible if and only if

(i) W is irreducible, and

(ii) for each g ∈ G \ H, the representations ResHHg
W and Wg have no irre-

ducible factors in common.
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