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Uniform polyhedra have regular faces meeting in the same manner at every vertex. Besides the 
five Platonic solids, the thirteen Archimedean solids, the four regular star-polyhedra of Kepler 
(1619) and Poinsot (1810), and the infinite families of prisms and antiprisms, there are at least 
fifty-three others, forty-one of which were discovered by Badoureau (1881) and Pitsch (1881). 
The remaining twelve were discovered by two of the present authors (H .S.M .C . and J . C. P.M .) 
between 1930 and 1932, but publication was postponed in the hope of obtaining a proof that 
there are no more. Independently, between 1942 and 1944, the third author (M .S.L.-H.) in 
collaboration with H. C. Longuet-Higgins, rediscovered eleven of the twelve.

We now believe that further delay is pointless; we have temporarily abandoned our hope of 
obtaining a proof that our enumeration is complete, but we shall be much surprised if any new 
uniform polyhedron is found in the future. We have classified the known figures with the aid of 
a systematic notation and we publish drawings (by J .C .P .M .) and photographs of models (by 
M .S.L.-H.) which include all those not previously constructed.

One remarkable new polyhedron is contained in the present list, having eight edges at a vertex. 
This is the only one which cannot be derived immediately from a spherical triangle by WythofFs 
construction.

1. Introduction

A polyhedron is a finite set of polygons such that every side of each belongs to just one other, 
with the restriction that no subset has the same property. The polygons and their sides are 
called faces and edges. The faces are not restricted to be convex, and may surround their 
centres more than once (as, for example, the pentagram, or five-sided star polygon, which

V ol. 246. A. 916. (Price 25s.) 51 [Published IZ May 1954
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surrounds its centre twice). Similarly, the faces at a vertex of the polyhedron may surround 
the vertex more than once.

A polyhedron is said to be uniform if its faces are regular while its vertices are all alike. By 
this we mean that one vertex can be transformed into any other by a symmetry operation.

A uniform polyhedron whose faces are all alike is said to be Four of the five convex
regular polyhedra were known to the ancient Egyptians: the tetrahedron, octahedron and 
cube occur in their architecture, and they seem to have played with icosahedral dice 
(according to an exhibit in the British Museum). The Etruscans made a dodecahedron 
before 500 e.g. (Heath 1921, p. 160). These five figures are generally known as the Platonic 
solids, although they were all studied by the early Pythagoreans, if not by Pythagoras 
himself.

Plato is said to have known one of the uniform polyhedra with faces of two kinds. the 
cuboctahedron. This and twelve others are more usually ascribed to Archimedes, though his 
book on them is lost. Five of these thirteen solids were rediscovered by Piero della Francesca 
(1416-1492), whose manuscript Libellus de quinque corporibus regularibus is in the Vatican. 
This treatise was translated into Italian by Fra Luca Pacioli (1509, pp. 259-266), who added 
an icosihexahedron (now known as the rhombicuboctahedron). A glass model of this last 
solid was exquisitely painted by Jacopo de’ Barbari in his portrait of Pacioli, which can 
be seen in the Museo Nazionale in Naples.

The earliest complete enumeration of convex uniform polyhedra was made by Kepler 
(1619, pp. 116-128), who observed that the definition includes also the prisms with square 
side-faces and the antiprisms with equilateral triangular side-faces. For a simple account of 
all these uniform solids see Ball (1939, pp. 129, 135—140) or Thompson (1925).

Two new uniform polyhedra were discovered by Hess (1878), and many more were 
enumerated by Badoureau (1881) and Pitsch (1881) working independently in France and 
Austria. (Badoureau found thirty-seven and Pitsch eighteen.)

Between 1930 and 1932 two of the present authors (H. S. M. C. and J. C. P. M.), by a 
fairly systematic enumeration, discovered twelve other uniform polyhedra. Publication 
was, however, postponed, in the hope of obtaining a proof that there are no more. In­
dependently, between 1942 and 1944, the third author (M. S.L.-H.) became interested 
in the subject through H. C. Longuet-Higgins, who had rediscovered many of the uniform 
polyhedra, including two not previously published. By essentially the same methods as 
the other two authors, the third author enumerated all but one of the remaining twelve*; 
the twelfth, an exceptional case, is that described in § 11 of the present paper. Publication 
was likewise postponed, and the authors did not learn of one another’s work until 1952. 
In the meantime, five of the twelve were rediscovered by Lesavre & Mercier (1947), who 
computed their circum-radii but did not publish any drawings.

The authors’ enumeration of uniform polyhedra is based on a systematic application of 
Wythoff’s construction to all possible Schwarz triangles (see §§ 3 and 4). All but one of the 
polyhedra, namely, the one just mentioned, can be so derived, and it is the authors’ belief 
that the enumeration is complete, although a rigorous proof has still to be given.

The vertices of a uniform polyhedron all lie on a sphere whose centre is their centroid 
(Coxeter 1948, p. 44). Those vertices which are joined to any one vertex lie also on a sphere 

* Models of these polyhedra are to be found in the Winchester College Museum.

402  H. S. M. COXETER AND OTHERS ON

 on November 30, 2017http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


around this vertex, and therefore lie in a plane. The faces that come together at this vertex 
form a solid angle whose section by the plane is a polygon called the vertex figure, which is 
regular whenever the polyhedron is regular.

We shall find it convenient to use the symbol for the regular p-gon, and lor t e
regular polyhedron, whose face and vertex figure are and e.g. the cube is {4, 3}. 
This notation is due to Schlafli (1852, p. 213). Strictly, the numbersp and q should satisfy

^  inequalities ^ > 2 , q > 2,(p -2 )  (<7-2) < 4

(Coxeter 1948, p. 5); but for some purposes it is desirable to admit the dihedron 2}, 
whose faces are two coincident {p}\and the polar polyhedron {2, whose faces are 
coincident digons {2} corresponding to spherical limes of angle 27r/q.

Table 1 contains a list of the Platonic and Archimedean solids, with Schlafli symbols 
for the former and a convenient extension for the latter (Coxeter 1940, p. 394). The names 
are the customary anglicized version of those used by Kepler (1619, pp. 123-126). Some

authors have preferred to call t{̂ } the ‘great rhombicuboctahedron’ because the actual

truncation of A  has some rectangular faces which need to be distorted into squares. The

symbol t{2, q) for the prism is appropriate since t q] has, at each vertex, one {q} and two

{2/?}’s. The symbol sPj for the antiprism is a little more questionable, as strict analogy

with JjP) would require the recognition of q digonal faces; but we naturally regard these

as collapsing to form single edges.

UNIFORM POLYHEDRA 403

T able 1. C onvex uniform polyhedra

tetrahedron {3,3}
octahedron {3,4}
cube {4,3}
icosahedron {3,5}
dodecahedron {5,3}

(3}
cuboctahedron U

(3)
icosidodecahedron I5j

rhombicuboctahedron
* 0

rhombicosidodecahedron
* 0

q-gonal prism t{2,

truncated tetrahedron 
truncated octahedron 
truncated cube 
truncated icosahedron 
truncated dodecahedron

truncated cuboctahedron 

truncated icosidodecahedron 

snub cube 

snub dodecahedron 

<jr-gonal antiprism

t{3, 3} 
t{3, 4} 
t{4, 3} 
t{3, 5} 
t{5, 3}

The regular {p,qj has Nqvertices, iVj edges and N2 faces, where

Ar 4 pAT____ %pq_____  _______ ^2---------
~  4 — ( — 2) (q -2 y  Nl4 —(/> —2) ( 2 4 -( /> -2 )  (? -2 ) ■

(Coxeter 1948, p. 13). In terms of these, the numerical properties of the Archimedean solids 
may be summarized as in table 2 (see also the beginning of table 7).

5 1 -2
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T able 2. N umerical properties

polyhedron vertices edges faces

{A ?} No Nx u p )
t{A q) 2 N 3 N x N0{q) + N 2{2p)

(() 2 N x U l)  + UP)

4Nt 6N X N„{2q) + N x{i} + N2{2p}

* 0
2 N x 4 N x W  + ̂ iM + Ay P)

s{£} (A? >2) 2N X 5 N x U p)+ 2^,(3}+ n2{p)

SC) 2 N x 4 N x 2{?} +  2JV,{3}

It is sometimes desirable to modify the definition of the figure so as to give it a definite
size, independent of the size of the polyhedron. The simplest way to do this is to regard the 
vertices of the vertex figure as lying at unit distance from one vertex of the polyhedron along 
all the edges meeting at this vertex. Then every uniform polyhedron is characterized by its 
vertex figure, which is a cyclic polygon having a side 2 cos for each at a vertex of the 
polyhedron. Thus the vertex figure of {p,q} is a of side 2 cos rr/p; that of t q} is an isos­

celes triangle having one side 2 cos and two sides 
triangle of sides

2 cos 71/2/?; that of t p\
?)

is a scalene

2 cos 2q’ 2 cos J 2 , 2 cos 7T
2fi;

that of P\ I is a rectangle of sides 2 cos and 2 cos that of r 

parallel sides are 2 cos njpand 2 cos while the others are both J 2 ;

zoid of sides 2 cos n/q, 1, 1, 1; and that of sj^j is a pentagon of sides

is a trapezoid whose 

that of sj j is a trape-

1, 2 cos
P'-

1, 2 cos-,
q

It is therefore reasonable to regard sLj as an alternative symbol for the octahedron, and 

s y  for the icosahedron. Similarly, P j is another symbol for the octahedron, t{2,4} or

tj^j for the cube and sPj for the tetrahedron.

In our drawings of the vertex figures we shall find it convenient to mark their sides 
(the ‘vertex figures’ of the faces) with the values of p instead of the actual lengths 2 cos Tjjp. 
These numbers pcan be translated into lengths by means of table 3 (which includes some 
fractional values for use later on). Here, and elsewhere, we use the abbreviation

T =  i ( x / 5  +  l ) .
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UNIFORM POLYHEDRA 405

T able 3. V ertex  figures of polygons

p 2 cos n P 2 cos nip
2 0 3 1
4
5

V2
T

6
t

V3
T—1

8 (2 + V2)1 1 (2-V 2)i
10 517-i 103 5I7-1
12 (V3+l)A/2 125 (V 3-l)/V 2

2. Spherical tessellations

By projecting the edges of a uniform polyhedron from its centre on to the concentric 
unit sphere, we obtain a network of arcs of great circles decomposing the surface into 
spherical polygons, one for each face of the polyhedron. We shall use the same symbols 
for such spherical tessellations as for the polyhedra themselves. Thus now means an 
arrangement of spherical jb-gons, q coming together at each vertex. The tessellations

{p,q\ and j^j were described by Abu’l Wafa, a tenth-century Arab (see Woepcke 1855?

pp. 352-357).
One advantage of shifting our attention from solids to spherical tessellations is that the 

symbol {p, q)is just as significant when por qtakes the value 2 as when both are greater 
than 2. In fact, {2} is a spherical digon or lune, and {2, is an arrangement of q limes formed 
by q great semicircles (meridians). Moreover, the faces of 2} are the northern and 
southern hemispheres, regarded as spherical /?-gons whose vertices coincide with p points 
evenly distributed along the equator. The symbol t{2, for the ^-gonal prism is now fully 
justified; this figure has two vertices on each edge of {2, just as the truncated cube has 
two vertices on each edge of the cube.

Let (pq r) denote a spherical triangle whose angles are

n/p, jr/q, ir/r.

We know that every finite group generated by more than two reflexions is generated by 
reflexions in the sides of such a triangle where/?, <7, r are integers (Coxeter 1948, pp. 81-82). 
Since the area

must be positive, the only possibilities are
(p~x + q~l Jrr~l — 1) 77

(2 2 r), (2 3 3), (2 3 4), (2 3 5).

We name these Mobius triangles because it was Mobius (1849, pp. 360, 661; see also Coxeter 
1948, p. 66) who observed that the planes of symmetry of q] decompose the sphere into 
such a network of triangles (2 pq). Since the network contains four triangles for each edge 
of {p,q}, the total number of triangles (i.e. the order of the group) is

g =  4 # !  =  8pq/{4: — (p — 2 ) } .

Another way to find this number is to divide 4tt by the area of (2 p q).
The whole network is derived from any one of the triangles (the fundamental region) 

by the various operations of the group. Mobius illustrated this fact by means of his poly­
hedral kaleidoscope, consisting of three mirrors forming a trihedron whose dihedral angles
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406
are tt/ 2 ,  ir/p, ir/q. It is most convenient in practice to use mirrors cut into the shape of circular 
sectors of appropriate angles fa%> f  (Coxeter 1948, pp. 24, 293). A small object, repre­
senting a point, placed within the trihedron, yields images (strictly, the object itself 
and g —1 images). When the object is placed on one of the mirrors, the images coincide 
in pairs, leaving only \gpoints. The number is further reduced when the object is on an 
edge where two mirrors meet. In fact, as we shall soon see, the images are then the vertices of

{p, q] or {q,p} or |^J

according as the angle at the edge is 7 i/qor 7rjp or tt/2.
This kaleidoscopic construction for polyhedra is appropriately ascribed to Wythoff 

(1918) because it was he who first successfully exploited it (in four dimensions).

3. W ythoff’s construction

In terms of the spherical triangle (which the three mirrors of the polyhedral kaleidoscope 
cut out from a sphere drawn round their common point), we are considering the images 
of one vertex, say the vertex P of the triangle PQR =  {p where the angles at P, Q,, R 
are Trjp, n/q,njr. The polyhedron whose vertices are the images of Pis conveniently denoted
by p\ qr ,
which is, of course, the same as p \ r q.The vertex P is joined by an edge to its image by 
reflexion in the opposite side QR, and the other edges meeting at P are derived from this 
one by the mirrors PQ^and PR.

H. S. M. COXETER AND OTHERS ON

Figure 1 Figure 2

If q and r are greater than 2, as in figure 1, we find a face with centre Q,, and a face 
{r} with centre R; thus ^ |

2 I q r

But if r =  2, as in figure 2, the 6 face' with centre R is a mere digon, which collapses to form 
an edge, and the polyhedron is regular:

P\q 2  =

Since an isosceles triangle (pq q) is dissected by its symmetrical median into two right- 
angled triangles (2p q 2), the polyhedron is again regular when —

p \ q q  = 2p\q2 = {q,2p}.
Thus p i  is 2 I p q; and {p, q}is q \ p 2(or alternatively if q is even, .
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UNIFORM POLYHEDRA 407

Instead of the images of a vertex of the triangle PQR or r),we may take the images 
of a point C on one of the sides, say on the side PQ  ̂opposite to the angle 7r/r. This vertex C 
of the new polyhedron is joined by edges to its images by reflexion in the sides PR and QR- 
(Any other edges meeting at C are images of these by reflexion in PQ,.)

In order that these two edges may have the same length, the initial point C must be 
chosen on the bisector of the angle n/rat R. Then the mirrors PR and QR will yield a face 
(2r} with centre R. There is also a face {p} with centre P if/>>2, and a face with centre 
Q if  <7>2. The polyhedron so constructed is denoted by

p q | r
or q p| r; thus

pq  | 2 =  r Q , t{r,q}

(see figures 3 and 4, respectively). Changing the notation again, we see that t is

Figure 3 Figure 4

Figure 6Figure 5

Another polyhedron is obtained by taking the images of an interior point of the triangle 
(p q r). This point is joined by edges of the polyhedron to its images by reflexion in the 
three sides of the triangle. In order that these three edges may all have the same length, the 
initial point must be precisely the in-centre of the triangles (see figure 5). A suitable symbol is

pqr\>
with the understanding that the numbers p, q, r may be freely permuted. There are only

three faces at each vertex: a {2 p)with centre P, a (2 with centre Q , and a (2 with centre
R. Thus J

AP\
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408 H. S. M. COXETER AND OTHERS ON

The remaining Archimedean solids are obtained by taking, instead of the whole group 
generated by reflexions, the subgroup of index 2 consisting of rotations. In other words, 
we regard the spherical triangles (pq r) as being alternately white and black, selecting as 
vertices of the polyhedron points in all the white triangles, so situated that the points in 
the three white triangles surrounding any black one form an equilaterial triangle (see 
figure 6). Thus the faces are {/>}’s, {̂ }’s and {r}’s, each entirely surrounded by triangles; but 
if one of p, q, r is equal to 2, the consequent digon can be ignored and two of the triangles 
have a common side.

Making use of the one remaining position for the vertical stroke, we denote this ‘snub’ 
polyhedron by | ^ r
(with free permutation again). Thus

I 2 ^  =  s0 -

In particular, the g-gonal antiprism sj

Such results are most easily visualized by referring to a drawing or model of the partition 
of a sphere into Mobius triangles. Suitable drawings are either stereographic projections 
(Klein 1884, p. 26; Coxeter 1938) or orthogonal projections (Ball 1939, p. 157; Coxeter 
1948, p. 66). The ideal model would be a globe with great circles inscribed on it; but an 
easily made approximation is the polyhedron whose faces are plane triangles having the 
same vertices as the spherical triangles. If the sides of a spherical triangle are x, those 
of the corresponding plane triangle are proportional to

sin \p : sin : sin

Thus a model for the icosahedral family (to which all the most interesting figures belong) 
is the hexakisicosahedron formed by 120 congruent triangles whose sides are

sin 15° 52': sin 18° 41': sin 10° 27' =  2733 : 3204 :1814 = 6 : 7 : 4
very nearly.

4. T he Schwarz triangles

A very interesting extension of this theory is obtained by considering triangles 
where />, q, r are rational but not necessarily integral. The area

+  +  —1) 7r

must still be positive, but this condition is no longer sufficient to ensure that repeated 
reflexions in the sides will yield a finite network, i.e. a network covering the sphere a finite 
number of times, say dtimes. Those triangles which do yield a finite network we shall call 
Schwarz triangles because it was Schwarz (1873, p. 243) who first listed them. It may be 
shown that the group generated by reflexions in the sides of a Schwarz triangle is equally well 
generated by reflexions in the sides of a certain Mobius triangle

(2 2 r), (2 3 3), (2 3 4), or (2 3 5).

Accordingly, the Schwarz triangle may be classified as , , , or
icosahedral.

 on November 30, 2017http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


Since the goperations of the group transform the Schwarz triangle into g replicas filling 
the surface of the sphere d times, and transform the Mobius triangle into the same number 
filling the surface once, it follows that the Schwarz triangle is covered by just replicas of 
the Mobius triangle; e.g. (2 f  5) is covered by three (2 3 5)’s, and (2 3 f) by seven (Coxeter 
1948, p. 111). A corner of the Schwarz triangle where the angle is must be filled with 
m replicas of a Mobius triangle having an angle Thus a given Schwarz triangle r) 
can be recognized as dihedral if two of />, q, r are equal to 2, and otherwise

tetrahedral (g =  24), octahedral (g --- 48) or icosahedral (g =  120),

according as the largest numerator occurring is
3, 4 or 5.

To compute d, we merely have to divide p~l by the corresponding expres­
sion for the appropriate Mobius triangle, i.e. to multiply by

\g  = n or 6 or 12 or 30.

For instance, n and d for (2 2 r)are the numerator and denominator of the fraction (or, 
if r is an integer, they are r and 1).

Schwarz triangles may also be classified into sets of four (or sometimes fewer) colunav

triansles (pqr), ipq 'r 'y ,( '). ( S  4 ') ,

where P~lJrp'~l =  q~l ~Pq ' 1 -- r l+ r 1 =  1
(Coxeter 1948, p. 112). The sides of such a set of triangles are various arcs of the same three 
great circles.

There is evidently a Schwarz triangle (2 2 for every rational greater than 1. Other 
Schwarz triangles are found by systematically dissecting the particular triangles

(2 I §)> (2 I  f)> (2 f  4)5

which are colunar to (2 3 3), (2 3 4), (2 3 5) (cf. Coxeter 1948, p. 113, where these were 
mistakenly called ‘the largest triangles of each family’). The results are listed in table 5 
on p. 430. (In the second row, d may be any positive integer and n any greater, relatively 
prime, integer.)

This list agrees with Schwarz’s; but he was content to give the smallest of each set of 
colunars. A simple way to verify its completeness is to consider first all possible triangles 

[pqr), where p,q, r take the values
O Q 3 . 4 4  k 5 . 5 5"5 °) 2) 5̂ 35 °y 3> 4>

with the restriction that numerators 4 and 5 cannot occur together (for, if they did, they 
would have to occur together in some Mobius triangle). Taking only the smallest triangle 
in each set of colunars, and remembering that any spherical triangles must satisfy

p~1 + q~1 + r~1> 1,

we obtain all the triangles in Schwarz’s own list and also

(3 3 ■§•), (2 ■§■•§■), ( 3 f f ) ,  (5 §•§•), ( f f f ) j  (!"! 5),
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which can all be ruled out by the following considerations. The first five are isosceles 
triangles whose symmetrical medians dissect them into right-angled triangles

(2 3 V ), (2 4 f), (2 1 6), (2*10), (2 * V ).

If repetitions of one of the isosceles triangles could cover the sphere a finite number of times, 
then repetitions of the corresponding right-angled triangle would do likewise. But these 
right-angled triangles are inadmissible (having numerators 4 and 5 together, or else one 
greater than 5); therefore the isosceles triangles are inadmissible too. Finally, (f f  5) is 
colunar to (•§ f  -f), and this splits into two triangles (2 f- ■§•) which we have already seen to 
be inadmissible.

It has been assumed that p , q  and r are all greater than 1, so that spherical triangles with 
reflex angles are excluded from the foregoing enumeration. This is because, for any reflex­
angled triangle, there is a set of colunar triangles whose sides lie in the same great circles 
and all of whose angles are less than tt;thus it can be seen that the admission of reflex-angled 
triangles will not give rise to any essentially new uniform polyhedra. However, it is some­
times suggestive, as in § 10, to associate a few of the polyhedra with certain reflex-angled 
triangles rather than with Schwarz triangles colunar to them.

5. W ythoff’s construction generalized

The symbols p\qr ,  pq\r ,  pqr\  and \p qr, defined in § 3, extend in a natural manner to 
the situation where (p q r) is a Schwarz triangle instead of a Mobius triangle. The analogy 
is closest when one ofp} q, r is equal to 2. In particular,

5 | 2 * == 5} and 3 | 2 ■§■ =  (H, 3}

are the star-faced polyhedra of Kepler (1619, p. 122), which Cayley named the small 
stellated dodecahedron and the great stellated dodecahedr; and their reciprocals

2 I 2 5 =  {5, f} and f  | 2 3 =  {3, f}

are the star-cornered polyhedra of Poinsot (1810, pp. 39—42), namely, the great dodecahedron 
and the great icosahedron. The Schlafli symbol {pq] remains appropriate when is the face 
and {q}the vertex figure, {*} being the star pentagon or pentagram.

The analogues of the cuboctahedron j^j and the icosidodecahedron PJ are the dodeca-

dodecahedron and the great icosidodecahedron:

2 11 5 =  {5} and 2 [ 3 f  =  | | |

(Hess 1878, p. 267; Pitsch 1881, p. 87 and Plate I).

As before, the faces of j^j at one vertex are

{P)> to ,  ( A  to ,
so that the vertex figure is a rectangle of sides 2 cos rjp, 2 cos njq.

There are also prisms such as

2 f  I 2 =  t{2,f} and 2 f  | 2 =  t{2, f}
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(Badoureau 1881, Figs. 79 and 80); antiprisms such as

2 2 f | 2 2 J sP
II

2 2 I s' I 2 2 | 2 )r I 2 2 f

(Badoureau i88i, Figs. 81, 85, 82, 83, 84); truncations

2 ■§ | 5 =  t{5, f}, and 2 f | 3  =  t{3,f}

(nos. VI and XIX of Pitsch 1881, p. 86 and Plate II).
In § 3, t{r, q] was shown to be the polyhedron 2 J whose vertex was the intersection of 

one side PQ^of the spherical triangle (2 q r) with the internal bisector of the opposite angle 
at R. The quasi-truncation t '{r,q} may be defined as the polyhedron whose vertex is the inter­
section ofPQwith the external bisector at R, i.e. the internal bisector for the triangle (2 q r' ) ; 
thus t'{r, q îs 2 q| r' .If rhas an even denominator, a quasi-truncation may exist even when 
the corresponding truncation does not; if rhas an even numerator, both kinds may exist 
together. Our list includes the following:

2 3 11 -  t'{4, 3}, 2 i  | f  =  t'{f, 5}, 2 3 | f  =  t'{f, 3}

(nos. XIV, XVII, XX of Pitsch 1881, p. 86). Similarly t'P j may be defined as a non­

degenerate polyhedron whose vertex is at an excentre of [2 qr), i.e. t |j j  =  2  ̂ | or 
2 q r' | . We find in particular

2 3 t | = t ' { * j ,  2 3 f  | =  t'( |)

(nos. X, XII, X III of Pitsch 1881, p. 86). Lastly, just as the

r Jm  can be defined (see § 3) with reference to the internal bisector of the angle at R in the 

triangle (p q2), so r y  J can be defined with reference to the external bisector; thus 

r'j'^j =  p' qj 2 or p q' \2. In particular we have

|  4 | 2 =  r ' |4| ,  f  5 12 =  r j ! j , 3 f | 2  =  rj^J

(Badoureau 1881, Figs. 93, 139, 144). Finally, we have the ‘snubs’
I o  5 k  I 9  5 k I O 9  5 I 9  9  5 I O 3 5
j &  f  I ^  ^  3? I *  2 3

(Lesavre & Mercier 1947), concerning which we shall have more to say in § 10.
The reader may wonder why the list of truncations does not include t{f, =  5 or 3). 

In general, the faces of t {p,q} are {2 p)and {̂ }; but when = f  the truncated face {2 =  (W  
is a repeated pentagon. In fact, t{|-, 5} consists of three coincident dodecahedra, while 
t{f, 3} consists of two coincident great dodecahedra along with the icosahedron that has 
the same vertices and edges (Coxeter 1931, pp. 209-210).

52-2
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6. D ensity

These star polyhedra do not all satisfy Euler’s formula

No-N̂Nz'd2,

which connects the numbers of vertices, edges and faces of a convex polyhedron (Coxeter 
1948, p. 9). But they do all satisfy a suitably modified version. This involves the density 
of the polyhedron, which is the number of intersections that the faces make with a ray drawn 
from the centre in a general direction, counting two intersections for each penetration of 
the core of a pentagram (Coxeter 1948, pp. 102-105), and counting certain retrograde 
faces negatively.

Cayley (1859, p. 127) observed that every regular polyhedron q} satisfies

aN0 —Nl + cN2 =  2

where a is the density of the vertex figure {q}(namely, 1 or 2 according as q is an integer 
or -§•), cis the density of the face {/>}, and d is the density of the whole polyhedron.

A further extension was discovered by Hess (1876, p. 15), who allowed for faces of several 
kinds and for the possibility of an 6 overhanging ’ edge, where the dihedral angle does not 
enclose the centre of the polyhedron. Of the two faces meeting at an overhanging edge, it 
is natural to regard the outer one as being ‘retrograde’, so that its penetration counts for 
— 1 in the computation of d. In fact, the appropriate generalization is

L a -L b + L c  -  2d,(6-1)

where a is the density of the vertex figure (which can be zero if it does not enclose the 
circumcentre), b (for each edge) is 1 or 0 according as the edge is ordinary or overhanging, 
c is the density of a face (with a minus sign if the face is retrograde), and d is the total density 
(counting as many as three intersections for penetration of the innermost core of an 
octagram {§} or a decagram {•3̂ }) (Bruckner 1900, p. 165). Since we are dealing only with 
polyhedra whose vertices are all alike, the first term can always be replaced by

The foregoing conventions ensure that the total density d is the same as the ‘ area ’ d of the 
basic Schwarz triangle, in nearly every case (but see the remarks in § 9 and the end of § 10).

For instance, the ‘ quasi-rhombicuboctahedron ’ r'ĵ j, derived from the Schwarz triangle

(2 § 4), has 24 vertices, 24 ordinary edges, 24 overhanging edges, 18 squares, 8 retrograde 
triangles, and satisfies the formula as follows:

2 4 -2 4  +  18 — 8 --- 2.5.

7. T he regular  and  quasi-regular  po l y h e d r ap \ q r
Let us define a quasi-regular polyhedron as consisting of regular polygons of two kinds, say 

{<?}’s and {r}’s, each entirely surrounded by specimens of the other kind (Goxeter & Whitrow 
1950, p. 422). The centres of two adjacent faces form, with either of their common vertices, 
a triangle whose sides lie in planes of symmetry. By central projection on to a concentric 
sphere, this yields a Schwarz triangle, say {p Hence any quasi-regular polyhedron 
whose faces have distinct centres can be derived from such a spherical triangle by taking as
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vertices the images of one vertex of the triangle, namely, the one where the angle occurs.
Since the construction is not essentially altered when we replace [p q r) by a colunar 
triangle, we shall assume {pq r) to be the smallest triangle in its set of colunars. We let

p \ q r

denote the polyhedron formed by the images of the vertex P of a triangle PQR whose sides 
PQand PR are both <  | tt, so that P is a vertex of faces U  and whose centres are Q, and R
(rather than the antipodes of those points). If in addition the angles at P and Q, are 
supplementary, so that two colunar triangles are congruent, we seem to be confronted with 
a choice between (say) q'| q rand q \ q' r,where

q~lJrq'~l — 1.
In this case the appropriate symbol is q' \ q rwith < 2  <<7; for, if the triangle q is
PQR with the obtuse angle ir/q'at P, we have PR<^7r<QR.

UNIFORM POLYHEDRA 413

Figure 7. The vertex figures of 3 1 3 f , § | 3 5, 3 1 5.

If r = 2 or r = q,the polyhedron p| q ris not only quasi-regular but regular (as we saw

m §3) : p \ 2 q  = {q,p}, p \q q  = {q,2p}-

In other cases, each vertex of p| q ris surrounded by {̂ }’s and {r}’s, arranged alternately, 
the number of each being the numerator of the rational number If </<2, the symbol {</} 
is to be interpreted as a retrograde {q'}.This is natural, since a positive rotation through 
27 ilqhas the same effect as a negative rotation through 2ujq'.

Since every vertex of a Schwarz triangle is a vertex of a Mobius triangle, every quasi­
regular polyhedron has the same vertices as a convex regular or quasi-regular solid; e.g.

jgj and jg j are both inscribed in the icosidodecahedron

Inscribed in the dodecahedron (5, 3}, we find the two ditrigonal icosidodecahedra

3 | 3 f  and | 3 5

(Badoureau’s Figs. 74 and 75; for the latter, see also Coxeter 1932, p. 517) and the 
ditrigonal dodecadodecahedron 3 | -̂ 5

(Coxeter 1939, p. 141). These three quasi-regular polyhedra have not only the same twenty 
vertices but also the same sixty edges; therefore their vertex figures (figure 7) all have the 
same six vertices. The long, medium and short sides of these irregular hexagons are vertex 
figures of pentagons, triangles and pentagrams, respectively.

! (Badoureau 1881, p. 133).
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The denominator 2 in the symbol § | 3 5 indicates that in this case the vertex figure is 
a polygon of density a — 2. In the symbol 3 | 5, the occurrence of j  rather than \  indicates 
that the pentagrams are retrograde, and consequently all the edges are overhanging: 0.
Thus (6T) (the generalization of Euler’s formula) has the following appearance in these 
three cases:

3 1 3 £1 ° 25 2 0 --60 + 20 +  2..12 =  2.2;

III 3 5, 2 .2 0 - 60 + 20 + 12 =  2.6;
3 | 5. K 1 3 20 - 2 , .12 + 12 =  2.4.

To illustrate the significance of d, consider the last case. Here the density can be observed 
directly by coming out from the centre along a pentagonal axis of symmetry. We penetrate 
one pentagon, then five more, and finally the core of a retrograde pentagram; thus the 
total number of penetrations is , „ __ Q _JL i" O jLd ---- ~r.

Our d is not always equal to the E of Badoureau (1881, pp. 101-108), which is 8 for 3 | f  5. 
In fact, d and E are different in all but the very simplest cases, such as those considered also 
by kitsch (1881, pp. 72-87), whose A agrees with both d and E.

On looking through Schwarz’s list of triangles, we see that we have not considered the 
apparently valid symbols

4 | 1 4, 5 | I 5, 5 3 5, 413 4.
However, if we try to carry out the construction in these cases we merely obtain compounds 
of familar polyhedra superposed in such a way as to have the same vertices and the same 
edges, like the three coincident dodecahedra formed by ‘t{f, 5}’ (see the end of § 5). These 
compounds are listed in the first five lines of table 6 (on p. 431), with negative signs for com­
ponents having retrograde faces. We give also the corresponding analysis of density, and 
diagrams to show how the vertex figures collapse.

In the identity 4 | § 4 =  — {3,4}+3(4,2} (at the beginning of table 6) the italic 3 indicates 
three distinct dihedra (corresponding to the three equatorial squares of the octahedron). 
Later in the table we see 2 4 11 =  3{4,2}+2{3,4},

where the ordinary 2 indicates two coincident octahedra.

8. T he semi-regular  polyhedra  |

The bisector of the angle n/rof a Schwarz triangle {p r) meets the opposite side in a point 
whose images are the vertices of a polyhedron which we denote by | as in § 3. Since 
the construction is not essentially altered when we replace (p q r) by its colunar triangle 
( /  r), we shall assume (p q r) to be the smaller of these two triangles.

If P 5s &TQgreater than 2, the faces surrounding any one vertex are, in general,
(A  (A  {2r}.

Ifp =  2 while 2, we have a truncation (or, for 2, a prism):
2 q| r — t{r, q).

If r =  2, 3,4 or 5, this is a single polyhedron of density d, the faces at a vertex being

{2r}> to , {2
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but if r — f , it splits, as we saw at the end of § 5. In the case of

2 3 | f  =  {3,5} +  2{5,f},

analogy with the other cases would make us expect the vertex figure to be an isosceles 
triangle with sides 1, r, r (which we would mark 3, 5, 5 according to the convention at 
the end of § 1). This would indicate that each pentagonal face is surrounded by pentagons 
and triangles alternately, which is absurd. Actually the sixty vertices coincide in twelve 
sets of five, and the five isosceles triangles in different positions combine to form a pentagon 
with an inscribed pentagram (repeated). This is indicated in table 6 by emphasizing one 
of the five isosceles triangles.

If r< 2  (with p — 2), we have a quasi-truncation

2 q| r =  t'{r', 1)

which is a single polyhedron if r — f  or |̂ , the faces at a vertex being again

{2r}, {q}, r}.
But if r — f  or f  (having an even denominator), we find further cases of splitting:

2qIf  (9 =  3 ,4 ,5 ,|)  and = 3  or |) .
Two of these deserve special mention, because the isosceles triangles in their vertex figures 
are obtuse-angled, indicating retrograde faces:

2 5 | f  =  -{5,f} +  2{3,5}, i i  =  —3 +  2 +12;
2 3 | f  =  -{3,f} +  2{|,5}, 19 = - 7  +  2.3 +  20.

Here the total density d is obtained by adding the number of retrograde faces to the sum of 
the component densities. In fact, the retrograde faces, being on the ‘far5 side of the centre, 
are regarded as having passed beyond it.

If p = q,the bisector of the angle 7r/r decomposes the isosceles triangle p r) into two 
right-angled triangles {2p2r), so we get nothing fresh:

If r =  2, we have 

The faces at a vertex are

p p \ r  — 2\p 2r = j ^ j .

p q \ 2  = r ^ >  /  ? | 2 =  r'J^j

(A (A ( A( A

(p> 2> p\

with the squares crossing each other in the case of/?' (because the {/>}’s are then retro­
grade). Thus the vertex figure is a trapezoid or a crossed trapezoid.

In particular, |  3 | 2 or r'{ ) may be identified with the famous one-sided heptahedron

or tetratrihedron (Badoureau 1881, Fig. 70) whose faces consist of alternate triangles of the 
octahedron and three squares lying in planes through the centre, so that the vertex figure 
is a ‘ crossed rectangle ’ consisting of two opposite sides of a square along with the two

diagonals. Since, in general, rĴJ and r'ĴJ each have a face for every face and vertex of
P , it would be more strictly correct to use the symbol r 'r  J for the two-sided * covering
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surface’ of the one-sided tetratrihedron. Topologically, this covering surface, formed by
(3

eight triangles and six squares, is homeomorphic to the cuboctahedron rj

However, we find it more convenient to let r 'O  denote the simple tetratrihedron itself.

Since some of the faces lie in planes through the centre, it is not much use trying to define 
a 6 density ’ for such a polyhedron.

Figure 8

P

Figure 9 Figure 10

Figure 8 (cf. Coxeter 19485 P- 111, Fig. 6-7b) shows the partition of a trirectangular 
spherical triangle (2 2 2) into fifteen (2 3 5)’s. The centre of the (2 2 2), being on an axis 
of trigonal symmetry, is a vertex of the dodecahedron 3 | 2 5 (that is, a point of type 2 in 
the notation of Coxeter 1948, p. 66, Fig. 4-5a). It follows that the bisectors of the right 
angles in the triangles (2 3 f), (2 f  5) and (2 f  5) meet the opposite sides in points of this 
type. Hence the sixty vertices that we should expect to find for each of

actually coincide by threes at the twenty vertices of a dodecahedron, and the thirty squares 
are the faces of the compound of five cubes, {5, 3} 3}] (Coxeter 1948, pp. 49, 100).
For further details, see table 6.

Turning now to the cases where p, q, r all differ from 2, and p<q,  we make a further 
classification according asp>2  or q ' < p < 2  orp =  q' .

When p and q are both greater than 2, p q \ rhas, at each vertex, the polygons

( A  { M ,  {q}, { 2  r},

and the vertex figure is an ordinary symmetrical trapezoid (figure 9). The four actual
cases are „ , , „ _ „ , , ,  „, „

8 4 J ■§-, 3 2I 3, 3 5 J -3, 3 g-1 -3.

When q' <p <2,  p q\rhas at each vertex

{P'}> {2r}, {q}, {2
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with the {2r}’s crossing each other (because the { /} ’s are retrograde), and the vertex figure 
is a crossed trapezoid (figure 10). The five actual cases are

§ 4 | 4, ‘ |  5 | 5, 3 j  |j j  |  5 | 3, f  |  f 3.

Most of these polyhedra were discovered by Badoureau (see table 7). Pitsch (1881, 
no. XVIII, p. 87 and Plate II) described 3 f  | 3; but 3 f  | 5 or f  3 | 5 (which has the same 
vertices, the same edges, and some of the same faces) appears to be new.

Finally, when p =  q' <2, the faces at a vertex are

{?}> i 2r}>

with the {2r}’s lying in planes through the centre; and the vertex figure is a 6 crossed rect­
angle ' consisting of two opposite sides of an ordinary rectangle along with the two diagonals. 
If the remaining sides of the ordinary rectangle are vertex figures of {/>}’s, so that
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cos2 -  +  cos2 -
P <1

cos22 r’

we may describe q' q \ ras consisting of the {̂ }’s and equatorial {2r}’s of j^j (Coxeter 1948, 

pp. 19, 102). In this manner the octahedron jjjj yields the tetratrihedron f  3 | 2, and the 

quasi-regular polyhedra of §§ 1 and 5 yield further quasi-regular polyhedra as follows:

!!}■ $3i3 and f  4 | 3;

!-)> ®3'5 and f  5 |5 ;

It}’ h i3 and f  5 | 3;

{I}- |3if and 5 5 15 3 2 13

(Badoureau 1881, Figs. 97, 96, 116, 115, 119, 118, 121, 122).
A polyhedron is said to be orientable if a rotatory sense can be assigned to each face in such 

a way that every two adjacent faces induce opposite senses along their common edge. In

the polyhedron q' q| r, formed by the {̂ }’s and equatorial {2r}’s of p i ,  the {̂ }5s adjacent

to a given ‘ horizontal5 {2 r]are alternately ‘ above ’ and 6 below ’ its plane, as we go round the 
{2r}. Thus the senses of two consecutive {</}’s are opposite. It follows that q' is orientable

if and only if the {̂ }’s of j ̂ j, or of {q,p}, can be given positive and negative orientations

alternately. By considering all the {<?}’s that surround a vertex of p}, we see that this can 
be done if and only if the numerator of pis even (Coxeter 1948, p. 50, with and q inter­
changed), which means that j b — 4. Hence, as P. du Val once remarked (in a letter dated 
30 December 1932):

The only orientable polyhedron q' q\ris the octatetrahedron f  3 | 3.
Since N0 — Nl -\-N2= 12 — 24 +  8 + 4 =  0, this orientable surface is topologically a torus 

on which is drawn a map of eight triangles and four hexagons (Coxeter 1939, p. 132, Fig. 13).

V ol. 246. A. 53
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For surfaces in ordinary space, the distinction between orientable and unorientable is the 
same as the distinction between two-sided and one-sided. Thus all the other polyhedra 
q' q | r are one-sided.

When r has an even denominator, the angle of the triangle is bisected by a
plane of symmetry of the spherical tessellation. The consequent dissection of the triangle is

{p x 2r) +  q ,

where 77 77 1 /  77 77\ /  77COS -  — — COS — =  i  I cos —  COS -  I / COS — x J \

(Coxeter 1948, p. 113, with rx =  r2). In this case | r splits into

x J 2r-\-x' I q
(see table 6).

( 8-1)

9. T he even-faced polyhedra  | and

Generalizing figure 5, we see that the in-centres of a network of Schwarz triangles 
[p qr) are the vertices of , p q r \ ,

which is a single polyhedron whenever p, q, r are either integers or fractions whose denomin­
ators are odd, the faces at a vertex being

{2 Pi {2 q}, {2r}.
In particular, 2 3 4 |, 2 3 5 |, 2 3 | | ,  2 3 f  |, 2 | 5 |

are the truncated cuboctahedron and its analogues:

as we remarked in §5.
In two cases, 2 3 f  | and 2 f- 5 the densities of the polyhedra differ from those of the

corresponding Schwarz triangles: 2 3 | |  has density 1 and 2 f  5 | has density 3, compared 
with densities 7 and 9 respectively for the triangles (2 3 f) and (2 f  5). This discrepancy 
can be traced to the fact that the vertex-figures are obtuse-angled, and that in 2 3 f  |, for 
example, all except the hexagonal faces are retrograde. It is possible to imagine a distorted 
form of 2 3 1 1 whose vertex figure is acute-angled and whose density is 7. As this is deformed 
into 2 3 f  I the hexagonal faces pass through the centre of the polyhedron and the density 
becomes | 7 — 8 J =  1. Similarly, 2 f  5 | has all faces except twelve decagons retrograde, 
giving the density | 9 -1 2  | =  3. We note that 2 3 f  | has the same density as the colunar 
triangle (2 3 4), and that 2 f  5 | has the same density as the colunar triangle (2 f  5).

I fp =  q = r, so that the triangle (pq r) is equilateral, we have the regular polyhedron

PPP \ — {2/>, 3} =  2, f, f, J).

^ P  80 that (pq r) is isosceles, we have

p p r 2 2 rU  =  | t{A2r} ( ^ 2 ) ,
\t'{p',2r} (p c  2); (9-1)
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e.g. 2 2 r| is the prism on a {2r}, and 3 3 2 j or 2 3 3 | is the truncated octahedron. The 
remaining polyhedra p q  r | (with odd denominators), namely,

3 f  4 | and 3 f- 5 |,

are among those discovered simultaneously by Badoureau (1881, Figs. 137 and 148) and 
kitsch (1881, nos. IX  and XI).

If just one of p, q, r, say r, has an even denominator, the face {2r} has an odd number of 
sides. These sides belong to {2/>}’s and {2?}’s alternately, which seems at first sight to be 
possible only if P = q-The identity (9T) still holds; but to achieve the proper density we 
must regard the t{^, 2rj or t '{p'>as being described twice over. This duplication is the 
clue to the proper interpretation o£p q r \ when p<^q- For, if the odd face {2r} is described 
twice over, the sequence of {2/>}’s and (2y}’s surrounding it alternately will close up. But 
then each edge belongs to both a {2 p}and a {2̂ }, as well as to the duplicated {2r}. We can 
obtain a single polyhedron, formed by {2/>}’s and {2^}’s alone, by the simple device of 
discarding all the (2r}’j.

The arrangement of (2/?}’s and (2^}’s at a vertex is easily seen by superposing the right- 
handed and left-handed vertex figures and then discarding the common side (marked 2r). 
Thus
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and the final result is a crossed parallelogram having two sides 2 cos and two sides 
2 cos 77/2 q.The four vertices of this crossed parallelogram belong also to a convex trapezoid

of sides 2 cos tt/2/?, 2 cos ?r/2r, 2 cos and 2 cos

where, by Ptolemy’s theorem,
77 77 0 77 0 77cos — cos— — cos^-— cosz—-,2r 2s 2

^  77 77 77 772 cos — cos — — cos----COS2r 2s q pthat is,

Thus the same crossed parallelogram could have been derived from

y / \ p + -  ‘zpl^P^k“F 2s

(9-2)

and the same polyhedron could have been derived from | by discarding the {2j'}’s. 
We obtain an appropriate symbol for the polyhedron (whose faces are {2/>}’s and (2^}’s) 
by telescoping the two symbols p q r \and p q s \to make

P <1
r
s

ror q p s
By considering the convex trapezoid and crossed trapezoid that have the same vertices 

as the crossed parallelogram, we see that this polyhedron has the same vertices and edges as
2r 2s \pand (2r)' 2s| qor 2r{2s)'\q.

53-2
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420 H. 8. M. COXETER AND OTHERS ON

This result may alternatively be deduced from the decomposition of the spherical triangle 
(p q r) by the bisector of its angle 7r/r. Comparing (9-2) with (8-1), we see that x —

The advantage of the first method is that it treats r and j symmetrically. The advantage 
of the second method is that it explains why the § of (9-2) is always rational.

The actual cases are 3
2 3 |

2

23 s 1 
2

1 3 3 I
, 24  f, > 2 5 | 0 5 2 

' d 3 52 2 1 2 I

1 3 3 3
o 4 2  

h  z  3 4 
2

s l 5 ?  
5 "  3 5

4
, 35

4

The first of these is the same as f  4 | 3, whose four hexagons lie in planes through the centre. 
The rest are listed in table 7, where we see that all save the last were discovered by Badoureau.

In two cases, 2 4 j; and 2 f  , the symbol f, although not in its lowest terms, has been 
2 2

used instead of 2, since the corresponding squares have fourfold and not twofold rotational 
symmetry. The symbol 2 4 2 | or 2 ^ 2 | would denote a single octagonal or octogrammatic 
prism. The present polyhedra are derived from an arrangement of three such prisms having 
some square faces in common. The corresponding Schwarz triangles may similarly be 
written (2 4 •§) and (2 f f ) ,  since they are to be considered as occurring in the cubic 
spherical tessellation and not the fourfold prismatic tessellation.

There are other cases in which the same spherical triangle occurs in two or more different 
spherical tessellations, for example, (2 2 2) occurs in both the cubic and the icosahedral 
tessellation as well as the diagonal tessellation. But in all other cases the present construction 
can be shown to lead only to 6 compound' polyhedra.

Referring to table 5, we see that the only remaining symbols
a 5 k 
2 2 0

are
q 5. 5 |  
6  4  2 | ,

0  3 51  " 2 2 ) 2 5 5 1 
^ 4 2 h

0  3 5 1 
^ 2 4 !>

3 5. 5. I 
2 4  3 ,

where two of p,q, r have even denominators. The splitting in these cases is shown in table 6.

1 0 .  T h e  s n u b  p o l y h e d r a  | q r
We construct | p q rby regarding the spherical triangles (p q r) as being alternately white 

and black (see § 3, especially figure 6). The three white triangles that surround a black one 
contain corresponding points forming an equilateral triangle which we may called a 
‘snub face' of | pqr. One of these three white triangles is derived from another, sharing 
with it the vertex P (say), by a rotation through 2tt//> about P. If this rotation takes the chosen 
point C in the first triangle to C" in the second, we have an isosceles triangle C'"PC"
whose base C"C'" (opposite to the angle 2rr/p at P) is one side of the snub face. Solving this 
isosceles triangle, we find

sin PC" sin j  — sin KT'C'".
P

If C is the corresponding point in the black triangle, then PC =  PC". Hence, by considering 
in turn the other sides of the snub face we deduce

sin PC sin -  =  sin QC sin -  =  sin RC sin - .
P q r (10-1)
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Thus the sines of the distances of the points C, G , etc., from the vertices of the corresponding 
triangles are inversely proportional to the sines of the angles at those vertices (Coxeter 
1940, p. 393). (Of course C, being in a black triangle, is not a vertex of the | r.)

The points in the three white triangles are the images of the point C in the black triangle 
by reflexion in the sides of the black triangle, or in the planes containing these sides. The 
plane triangle formed by the three images (i.e. the snub face) is clearly similar to the triangle 
(of half the linear size) formed by the orthogonal projections of C on these three planes. 
Accordingly, we can describe C as the point whose orthogonal projections form an equi- 
laterial triangle. We obtain a natural co-ordinate system by letting x,y, z  denote the straight 
distances of C from the three planes. These, then, are the lengths of three lines CX, CY, CZ,
such that _ 7T

zYCZ =  j7 - - ,  z ZCX = jt- - ,  z XCY =  ir— .
P q r

The condition for the plane triangle XYZ to be equilateral is clearly

UNIFORM POLYHEDRA 421

z/2+ z 2 +  2yzcos

that is,
P

x2 —

z2-{-x2 + 2zxcos~ — cos^-,

r bzx 7" 2 . ■cxy,
js j[ 7T

where a — 2 cos—, b — 2cos—, cos —
P <1 r

(not to be confused with the a, b, cof § 6). Eliminating z, we obtain for xjy the quartic 

equation ^  —b2) x4-\-(a — bc) bx^y-\-2{abc— 1) (b — ac) axy3jr (1 — — 0. (102)

These two methods for locating a vertex of | p have been mentioned for their intrinsic 
interest. But the actual enumeration of snub polyhedra is more easily accomplished by 
means of the vertex figure. In general, the faces of | consist of

{/>}’s or {//}’s, {q}’s or {<7'}’s, (r}’s or {r'}’s,

each entirely surrounded by triangles; but if one of r is equal to 2, the consequent 
digons can be ignored, and two of the snub faces have a common side. Thus the vertex 
figure is a cyclic hexagon (or pentagon, or quadrangle, or triangle) of sides

a, 1, b, 1, 1.

When any of p, q, r are less than 2, the corresponding £ negative ’ sides proceed round the 
circle in the reverse sense, indicating retrograde faces.

Let the sides a, b, c, 1 of the vertex figure subtend angles 2a, 2/?, 2y, 28 at its centre, and let 
p denote the radius of the circle in which the vertex figure is inscribed. Then

2psin oc — a, 2psm.fi =  b, 2psin y =  r, 2psin8 = I, a+ / ?+y+ 3J =

Eliminating a, fi,y, 8,we obtain for pthe equation

[(9- j)2- 24*-4zz] yo8 + 0 ( 4  +  *) +  *(35 +  *) +  9 {u-12)] p6
+ [6(18 —m) — (27-t-j) (2 +  *)]/>4+(9*+ m-12 ) />2+ ( l - * )  =  0,

s = a2jj-b2-\-c2, t = abc, — +  +  .where
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Writing p2 ----- 1/(2—A), so that

X  — 2 = 2  — 4 sin2 F ----- 2 cos

we obtain the more elegant equation

(1 —t)X4+(4: — t—u)X3 +  (3—.y) (2 +  *)X2+ [ ( l - * )  ( 4 - J + 0 - 3
+  [(3—j1) (1 —s — 2t) —2(1—j + m —if2)] 0. (10-3)

The antiprisms s 2' and s'^2
-Pi

and (10-3) reduces to

| j are given by setting b = 

[ ( X + l )2- < ] 2 =  0,

O, so that s — a2, — 0, 0,

whence X  =  — 1 ±  a, and p2 =  1/(3 Tsl).
This is easily seen to be the squared circum-radius of a trapezoid, or a crossed trapezoid, 
of sides 1, 1, 1, a.The crossed trapezoid is possible only if a < l  (so that p > \) . Hence, 
although the ‘first’ antiprism

\ 2 2 P =  s[p

occurs for every 2, the ‘second’ antiprism

| 2 2 / = s ' g )

occurs only for 2 <p<3 (that is, 2 > / > | ) .

Since §, t, u are unchanged when two of a,b, c are reversed in sign, we have one equation 
(10-3) for each set of four colunar triangles (p q e.g. the triangles

(2 f5 ) ,  ( 2 4  Z), (2 s i ) ,  (2 I f ) ,

for which §----- 3, t ----- 0, rr ----- 1, yield

X4 +  3X3 — 5X+2 =  0.

This equation has just two real roots:

0-81807 55760 and 0-47398 76869.

The corresponding values of p = (2—X)~i are

0-91982 48671 and 0-80950 76943.

Drawing circles of these radii, we find the two possible vertex figures shown in figure 11
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Since the latter has retrograde pentagrams, the appropriate symbols for the two polyhedra

are | 2 f- 5 and | 2 f 5

(Lesavre & Mercier 1947, nos. 4 and 5; see also Coxeter 1947).
When p = q — r,equation (103) becomes

[(l+tz +  O  Z + ( l —2ct—2st2)] [ Z + ( l  +  a)]3 =  0.

The simple root X  = ( — l + 2a-\-2a2)l(l+ a  + a2),implying =  (l+<z +  a2)/3, yields
\p pp; tor instance, I 2 2 2 =  {3, 3}.

The triple root Z  =  — (1 +  a) yields | p'p' p. The splitting of these (with f- or f, r -1 
or — r) is indicated in table 6.

In all the remaining cases, at least one of is ±1, so that 1, and the
equation for Z  reduces to

(1 —£) Z4+  (5—s—t—t2) X3 +  (3—s) (2 +  t)X2+ ( l - t ) (  =  0,

which factorizes thus:

[(I-* ) Z +  (3 -s)] [Z3+  (2 +t) Z2 +  (l =  0. (10-4)

The linear factor is most easily explained by taking a — — 1 (that is, f), so that three 
sides of the vertex figure coincide, leaving a trapezoid of sides l,c, l ,or (if£ — 0) a triangle 
of sides 1, c, 1. Then

( l - t ) X + ( 3 - s )  -- (1+

in agreement with the value

p2 — (l-\-bc)/(2-\-b—c)(2

for the squared circum-radius of such a trapezoid. The actual cases (| 2 2 § ,etc.) are 
indicated in table 6.

When a — 1, the cubic factor of (10-4) yields the equation

Z 3 +  (2 + b c ) X 2- { b + c ) 2 =  0, (10-5)

which has only one real root if 
exhibited in table 4.

I 2 3 4 and | 2 3 5 are the snub cube and the snub dodecahedron, as we saw in § 3.
I 2 3 -§-, j 2 3 j 2 are the analogous figures described by Lesavre & Mercier (1947, 

nos. 2, 3, 1).
j 2 2 f, j 2 § 3, I f  3 f, 11 f  f, I f  f  f, j § 3 5 all split as indicated in table 6.
In the case q =  f , r = 5, the root Z  — O must be discarded, since a circle of diameter

2 p — J  2cannot contain a chord of length c — r.
The remaining polyhedra

! 3 3 L 13 3 5 1345 13-5.5
| i o  2) 1 2 2  2) I 0 3 I 0 3 2

are new. The first two of these, being of the form \ p p r, are the only non-trivial snub 
polyhedra possessing a plane of symmetry. Besides the usual twelve pentagrams and sixty
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"3 ^  ^  • The actual cases (with 3)1  51 2 )
are
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6 snub ’ triangles, they have each forty more triangles, lying by pairs in twenty planes (the 
face-planes of an icosahedron).

Similarly, | 3 f  f  has twenty-four pentagrams, lying by pairs in twelve planes (the face- 
planes of a dodecahedron). The same sixty vertices may be regarded as belonging to 
another | 3 -§-§, enantiomorphous to the given one. The roles of the two types of pentagram 
are interchanged (see figure 12).

In two cases, | 2 f  f  and | 2 f  f , the vertex figure is a pentagram (regular or irregular) 
and the snub faces are retrograde. The density is now given by subtracting the of table 5 
from the number of snub faces (cf. p. 418). Thus the density of the quasi-snub tetrahedron

I 2 f  f  =  {3, D
is not 5 but 7 =  12 — 5, while that of

I O 3 5.
I ^ 2 3

(Lesavre & H erder’s no. 1) is not 23 but 37 =  60-23, agreeing with (6-1) in the form
2 .6 0 -  150 +  80 +  2.12 =  2.37.

Similarly, the density of the new polyhedron
13 3 5.
I 2 ¥  2

is not 22 but 38 =  60 — 22, agreeing with (6-1) in the form
2 .6 0 -  120+100-2.12 =  2.38.

The density of each of these polyhedra is the same as that of one of the reflex colunar 
triangles. Thus | 2 f  f  has the same density, 7, as (§3 3). Indeed, we might consider the 
polyhedron as being derived from this triangle in the first place. In the vertex figure the 
snub faces would then be considered to have the same sense as the other triangles, instead 
of being retrograde, but the symbol § would represent a complete negative revolution about 
the centre, so that the vertex would be surrounded altogether just once. The polyhedron 
might equally well be derived from the triangle (2 3 f), whose density is also 7. In the 
vertex figure the symbol f  would denote a revolution through — about the centre. 
Similarly, | 2 f  f  could be derived from any of the reflex-angled triangles (§ 3 fj, (2 § f) 
and (2 3 fj, each of which has density 37; and | § f  f  could be derived from either (3 3 fj 
or (3 f f ) ,  each of which has the density 38.

As may be seen from figure 91 and figure 120, plate 5, | f  f  f  contains groups of ten edges 
which appear to intersect in a point. That they really are concurrent may be proved as 
follows. Each group of ten consists of five left-handed and five right-handed edges. Each 
left-handed edge is the reflexion of each right-handed edge in a plane of symmetry and so 
must intersect it. The two groups must therefore belong to the two systems of generators 
of a quadric surface. But it can be seen that two adjacent left-handed edges, for example, 
belong to the same vertex figure, and must therefore intersect. Thus the quadric surface 
degenerates to a cone, through whose vertex all the edges pass.

1 1 . A POLYHEDRON HAVING EIGHT FACES AT EACH VERTEX

As we saw in § 10, the pentagrams of a given | 3 f  f  belong also to another, derived by 
reflexion in a certain plane (represented by the vertical line in figure 12). Three sides of 
the vertex figure are three sides of a square, whose fourth side belongs to the reflected vertex
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figure. Hence the 160 triangles of the two enantiomorphous | 3 f  f-’s are the faces of twenty 
concentric octahedra, and those faces of one octahedron which belong to one | 3 f  f  consist 
of one ‘ special' face and its three neighbours. Each of the twenty octahedra has one pair 
of opposite faces each belonging to the same | 3 f  f- as all its three neighbours. In other 
words, the octahedron has two opposite 6 special' faces, and its eight faces fall into two con­
nected sets of four, each set belonging to one | 3 f  f . The forty ‘ special' triangles, along

with the sixty equatorial squares of the twenty octahedra and the twenty-four common 
pentagrams of the two | 3 f  f ’s, form a single polyhedron whose vertex figure is shown in 
figure 13.

This is the only known polyhedron that has more than six faces at every vertex. It is 
also interesting to note that the faces of all three kinds occur in coplanar pairs: twelve pairs 
of pentagrams, twenty pairs of triangles and thirty pairs of diametral squares. If the faces 
at a vertex are taken in succession, the four squares occur alternately with the other faces. 
Moreover, the squares have no rotational symmetry; the only transformation (besides the 
identical transformation) which transforms any square into itself is the reflexion in the 
centre of the polyhedron. Analogy suggests that the squares be regarded as ‘snub’ faces, 
so that an appropriate symbol for this strange figure is

F ig ure  12 . The vertex figures of the laevo and dextro varieties of | 3 ■§■ f .

F ig u r e  13. The vertex figure of | § f  3 s-.
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1 2 . C o n c l u s i o n

Using a moderately systematic procedure, we have obtained the five Platonic solids, the 
thirteen Archimedean solids, the four Kepler-Poinsot star-polyhedra, the prisms and anti­
prisms, and fifty-three other uniform polyhedra. These, with their faces and vertex figures, 
are shown in our plates (figures 15 to 128) and described in table 7. (Figures 15 to 92 
follow approximately the order of table 7.)

The number of vertices, say Nq, is obvious from Wythoff s construction. The number of 
edges, say iVj, is given by gJV, =  N0Nm,

where N0lis the number of edges at each vertex, or the number of vertices of the vertex 
figure. Similarly, the number of faces having sides is given by

nN2 — NqNq2,

where N02is the number of such faces at each vertex, or the number of sides of the vertex 
figure having the appropriate length (table 3). The density d is given by (6T), and agrees 
with table 5 except in the cases explained at the end of §§ 9 and 10. We do not attempt to 
assign a density in those cases where some faces pass through the centre, nor in those where 
the vertex figure is a crossed parallelogram.

In the next column of table 7 (after the density we give the circum-radius for edge 2, 
which is cosec 0, where 20 is the angle subtended by an edge at the centre. Since the 
circum-radius of the vertex figure is

p — cos 0
(Coxeter 1948, p. 22) we have

cosec 0 — (1 —z?2)-*.

It is interesting to observe that, whenever the squared circum-radius cosec2 0 is a quad­
ratic surd m + nj2or m + nj5(where m and n are rational), there is a conjugate polyhedron 
in which n is replaced by —n.This corresponds to an interchange of octagons and octa- 
grams, or pentagons and pentagrams, or decagons and decagrams. Conjugate polyhedra

are isomorphic (Coxeter 1948, p. 106). Some polyhedra, such as {*j, are self-conjugate,

so that cosec20 is rational (usually an integer). However, this kind of correspondence is 
not universal; it breaks down for the snub polyhedra.

It is remarkable that we have obtained all but one of the known uniform polyhedra by 
applying Wythoff’s construction to the various Schwarz triangles. The existence of | § -§- 3 -§ 
indicates that there is no general reason for the restriction to triangles. We can only say that 
higher spherical polygons would have to satisfy various conditions which are almost always 
incompatible. In support of our contention that our list (table 7) is probably complete, 
we may mention that it includes all the uniform polyhedra previously obtained by other 
authors, using different methods.

The most systematic of these earlier constructions is that of Badoureau (1881, pp. 104- 
158), who considered each of the Platonic and Archimedean solids in turn with a view to 
seeing whether any star-polyhedra can have the same vertices. We may summarize his 
results (and some similar cases where one star-polyhedron is inscribed in another) by

54-2
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remarking that the polyhedra listed in each of the following lines all have the same vertices; 
those in each of the subgroups (separated by semi-colons) have also the same edges:

4 | 2 3, |  3 | 2.
2 | 3 4, f  3 | 3, f  4! 3.

2 3 | 4; f  4 |2, 3 4 I*,
31O 4. 2 " 3 4si

2 3 If; 3 4 | 2, I  4 | 4,
si

2T|
5 | 2 3, f | 2 5 ; f  1 2 3, 5 | 2 f .
3 j 2 5; 3 | 2 f ; 3 | 3 f , f  I 3 5,
2 | 3 5, f  3 | 5, f  5 |5 ; 2 | f  5,

2 3 | 5; 3 5 If, f  5 |3 ,
L

3 f  5 • 
2

2 3 If; 3 f  | 6, Q 5.1 q ° 2 1 3 5 f  .
i

2 f  | 5; 3 f  | 2, 3 2"| f)
si2 4 2 .

3 fl

2 5 | f;  3 5 | 2, | 5 | 5 ,
si

2 5 \ .

f  5 |2 ,  f  5 I 3,
41

2 3 * .A

2 1

The polyhedra described by kitsch (1881, pp. 86,87) are, in his order of Roman numerals,

2 ? l 2, I2 2 ?. 3 4 If, 3 6 If, —, 2 11 5, 3 f | f ,
| 5 | 2 ,  3 |  4 |, 2 3 f  |, 3 f  5 |, 2 f 5 | ,  2 3 f | ,  2 3 | f ,
2 11 5, 2 | 3 f, 2 5 If, 3 f  | 3, 2 f | 3 ,  2 3 | f ,  3 | 3 f .

(One is tempted to identify his V with r 'L j  =  3 f  | 2; but actually he described instead 
(3) . . '2̂

 ̂ 2 I 2> which splits!) Many of these polyhedra were known to Bruckner (1900,

pp. 122 202). His illustrations, and those of Badoureau, are listed in table 7. The poly­
hedra of Lesavre & Mercier (1947) are, in their order,

I 2 f  I2 I 2 3 | ,  I 2 | 5 ,  j 245.

Thus there remain seven polyhedra which are announced here for the first time:

3 3 4, 3 4 j 5, I 3 4 5, 3 5 Q 5 5 
o  3 2 ,

3 3 5 
2" 2 11 i  3 f.

Some of these polyhedra are ‘ edge-stellationsthat is to say, their edges may be obtained 
by producing the edges of other polyhedra. Thus, as is well known, the regular polyhedra 
5 I 2 f  and 3 I 2 f  are edge-stellations of 3 | 2 5 and f  | 2 5 respectively. It is less obvious that 
s 2 I j  is an edge-stellation of |  5 j 5 and that 3 f  | f  is an edge-stellation of § 6 | 5. These 
last two relations follow from the property that, when the edges of the decagons are pro-
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duced to become edges of decagrams, the edges of the pentagons become edges of penta­
grams (the edges of the stellated polygons being in the same ratio to the edges of the original 
polygons). It is clear, also, that any truncation containing two octagons or two decagons 
at a vertex can be stellated to give another truncation with two octagrams or two decagrams 
at a vertex. Thus 2 3 | •§■, 2 5 | -§ and 2 3 | ■§ are edge-stellations, respectively, of 2 3 | 4, 
2 3 | 5 and 2 f  | 5. (These relations can readily be appreciated from the wire models shown 
in plate 2.)

We may say that one polyhedron is vertex-inscribed in another if it has the same vertices 
but longer edges, and that it is edge-inscribed in another polyhedron if the latter is one of its 
edge-stellations. Then combining our results with those of Badoureau mentioned above 
we have the following < chains':

5 | 2 t  
2 5

2 |  
2 5

is vertex-inscribed in 

is edge-inscribed in 

is vertex-inscribed in 

is edge-inscribed in

2 5 

2 f  

2 5

2 2
etc.

and 5. 5. I 5.
3 2 13

4 5 I 5
etc.

is vertex-inscribed in 

is edge-inscribed in
*5
5. 5. 
3 2

Both these chains are cyclic and so infinite. We have also a short chain in the octahedral 
group:

3 4 
2 3 
2 3

is vertex-inscribed in 2 3 | 4 

is edge-inscribed in 
is vertex-inscribed in

2 3 | f
3 4  2 *

and the following remarkable chain in the icosahedral group:

3 5 
2 3 |
2 5
L k 
2 °

3 f |
2 |
2 3

is vertex-inscribed in 
is edge-inscribed in 

is vertex-inscribed in 
is edge-inscribed in 
is vertex-inscribed in 
is edge-inscribed in 
is vertex-inscribed in

2 3 
2 5

| 5 | 5

3 2
2 | | 5

2 3 14

3 f

This last chain includes all the truncations of the icosahedral group which contain decagons 
or decagrams among their faces. One may imagine the eight polyhedra inscribed each 
inside the next, all the decagons and decagrams lying in the same set of twelve planes. The 
arrangement of the polygons in one of these planes is shown in figure 14.
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Our notation extends readily to tessellations filling the Euclidean plane. Eleven simple 
tessellations having finite, non-overlapping faces (analogous to the Platonic and Archi­
medean solids) were described by Kepler (1619, pp. 116-120). Many other ‘assemblages’ 
were discovered by Badoureau (1881, pp. 163—170). To these we have added four (‘con­
jugate’ to Badoureau’s Figs. 61, 65, 66, 67, which are Kepler’s S, V, N, M) and one other : 
the snub tessellation | f- 4 00. Our list, which we believe to be complete, is given in table 8.

Figure 14

In most cases there are infinitely many faces of each kind; but 2 00 | 2 and | 2 2 00 have 
each just two apeirogons {00}, bounding a strip of squares in the former and of triangles 
in the latter. Alternate strips of these two kinds are used to form the two nameless 
tessellations at the end of the table.

T a b l e  5 . T h e  S c h w a r z  t r ia n g l e s

density
1 (2 3 3), (2 3 4),
d (2 2 n/d)
2 (1 3 3), ( H  4),
3 ( 2 |3 ) , (2 |  5)
4 (3 f  4), (3 * 6 )
5 (2 1 1), (2 |  4)
6 (1 1 1), (& 5 5.x 

H  2 2 )}
7 (8 S t) , (2 3 | )
8 (I I  5)
9 (21  5)

10 (3 1 1 ), (3 4 5)
11 (2 I f ) , (2 1 5)
13 (2 3 f )
14 (3 4 4\

X2 3 3 y , (1 1 1 ),

density
(2 3 5) 16

17
( |  5 5), (f 3 3) 18

19
21
22

(I 3 5), (4 5 5) 23
26
27
29
32
34

(3 3 i)  42

(3 i f )
<2 I t )
(I 3 3)1 ( i f f )  
(2 3 4)
(2 41)
( I f f )
(2 ID 
(III)
(2 4 1 )

(214)(3. 5 5\
\ 2 4  3 /

3 5 \
X 2 2 4 /(& 5 5\U4 4j 
(5  6 5 \
X4 4  4 -
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T a b l e  6 .

compound

4 j f  4 =  —(3, 4} +3{4, 2} 

5 | f  5 =  -{ 3 ,5 } + { 5 ,|}

5 13 1 =  (3, f} —(f, 5} 

- 13 5 =  {3, 5}+{5,f}

D e g e n e r a t e  c a s e s  o f  W y t h o f f ’s c o n s t r u c t i o n

density vertex figure

2 =  —1 + 3

2 = - 1 + 3

4 = 7 - 3

4 =  1 +  3

f (3  f  =.{3, f}+{f> 5} 10 =  7 +  3

2 P P
2

2 3 |f

2 4 | f  

2 5 | f

HP, 3} 3,5 ,

{3, 5}+  2{5,|}

3{4,2} +  2{3,4} 

: - { 5 , |}  +  2{3,5}

I)

2 f  11 =  {f j 5} +  2(3, f}

2 3 1 f  =  — {3, f} +  2{§, 5}

3 f  12 =  (3 13 f ) +  5(4, 3}

f  5 12 =  (31 ■§ 5) +5{4, 3}

|  5 12 = — ( |  13 5) +5{4, 3}

3, 3, 21

7 =  1 + 2 .3

5 =  3 +  2

11 =  —3 +  2 +  12

17 =  3 +  2.7 

19 =  - 7  +  2.3 +  20

7 = 2  +  5

9 =  4 +  5

11 =  - 6  + 5 +  12

3
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T a bl e  6 (cont.)

3 51 f = 3{3, 5} + {5, f} 

f  5 1 f = —{3, 5} +  3(5, f} 

3 f | f  = {3,f} + 3& 5}

3 f 11 = 3{3, f} —{f, 5} 

f  5 | f  =  ( 3 |3 f )  +  ( f |3 5 )  

3 f  | f  =  (f  13 5) +  (3 1 f  5) 

3 5 1 f  =  (3 13 f ) — (3 1 f  5)

2 | | |  =  5{4, 3}+  2 ( | 13 5)

2 f  f  | — 5(4, 3} —2(3 | f  5)

2 f 11 = —5{4, 3}+ 2(313 f) 

I  i  i  | =  (f  3 1 ■§) +  (§ f  I ■§)

6 =  3 +  3

8 =  — 1 + 3 -3

16 =  7 +  3 .3

18 =  3 .7 - 3

8 =  2 +  6

10 =  6 +  4

10 =  2 - 4  +  12

H 6 | = ( | 3 | S ) + ( i 5 | S )

=  2{®}+ 6(10, 2} 8 =  2 + 6

17 =  5 +  2 .6

21 = 5 - 2 . 4  +  2.12

29 =  - 5  +  2 .2  +  30

32 =  2 .7  +  6 .3

3 2 !« (T \4  </|0/
5|g|+J<?(6, 2} 16 =  2 .3  +  10

+ / B
/  5  \  l  

? 4 > < V 1  / ’

E3}
3
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compound

T a bl e  6

density

| f t t = 3 ( 3 | 3 t )  6 =  3.2

| I H = - 3 ( | | 3 5 )  42 =  - 3 . 6  +  60

| | ? ? = 2 { 3J (? =  3 ,4 ,5 , f )  2 ,2 ,2 ,1 4

vertex figure

12 2 1 =  2{3, 2} 2 3

12 1 3 =  3(3, 3>

12 1 4 =  2(3, 4}+3{4, 2}

l | 3  6 = 6 s { g )

=  8{3,5}+{6,|}

I l | 5 = ( 3 | 3 f )  +  ( | |3 5 )

|2 f5 = 2 { 3 ,6 } -{ 5 ,£ }

|2 |§ = 2 { 3 ,i} + { £ ,6 }

| | 3 | = « s ' ( |

— 3{3, i} —{f, 5}

I f l a — — 4{3, 1} — 2{|, 5}

I § 4 ^ =  ~  4(3, 5} +  2{5, 2}

3

5 =  2 +  3

6 =  3 +  3

8 =  2 +  6

17 = 2 . 7  + 3

V ol. 246. A. 55
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F i g u r e s  15 to  32. T h e  P la to n ic  a n d  A r c h im e d e a n  so lid s .
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F i g u r e s  33 to 44. 2 j 2, | 2 2 | 2 2 J ;  f- 3 j 2, f- 3 [ 3, f- 4 | 4: 3 | 3 f ,  3 -| | 3, j 3 3 1-;

f  5 1 5, 5 | 2 f  | 2 5.
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V ol. 246. A. 56
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Figures 61 to 68. f  | 3 5, f  5 | 3; f  3 | 5, 3 5

56-2
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Figures 69 to 74. £ | 2 3, 2 | 3 £; 2 £ | 3, 2 3
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Figures 91, 92. j f f f ;  | | | 3 | .
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N o t e s  o n  t h e  p l a t e s

Plates 1 to 6 illustrate models of all the non-convex uniform polyhedra/ apart from the 
Kepler-Poinsot polyhedra. Only the sides of the faces are shown, the faces themselves 
and their subsidiary intersections being omitted. Some of the models, therefore, represent 
more than one polyhedron; for example, figure 107, plate 3, represents either 3 5 | 2, 

L
|  5 I 5 or 2 5 \ .

2" I - I
The models are constructed of galvanized iron wire (‘garden wire’), with the exception 

of two, figures 120 and 128, which are of cotton thread strung in a wire frame (the frame is 
just visible in the photographs). No solder has been used in the wire models; for the most 
part the wires are simply sprung together, although in some cases they have been secured 
by twisting at the vertices. Where two edges theoretically intersect the corresponding 
wires are kinked. The two polyhedra | f  f  f  and 1§ J  3 f, of which the models are of cotton, 
are the only cases in which more than six edges may intersect in a point.
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Coxeter et Phil. Trans. A,volume 246, plate 1

F igures 93 to 98. Quasi-regular and semi-regular polyhedra.

93. 4 | 2 3, |  3] 2. 94. 2 | 3 4, f  3 | 3, f  4 | 3. 95. 2 | 3 5, § 3 | 5, £ 5 | 5.

96 . 2 } 3 f ,  f i l s ,  f  3 | f .  97. 2 | f  5, f  5 | 3, f  f  j 3. 98. 3 | 3 f ,  3 | f  5, f  | 3 5.
{Facing p . 450)

 on November 30, 2017http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


 on November 30, 2017http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


F igures 

§ 4 | 4 ,  2 4 j
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Coxeter et al. Phil. Trans. A,volume 246, pla te  5

Figures 117 to 122. Snub polyhedra.
117. | 2 2 | .  118. | 2 2 f .  119. | 3 3 f .

120. I f l f .  121. | 2 f  5. 122. |
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Figures 123 to 128. Snub polyhedra. 
123. | 3 f  5. 124. | 2 3 s'.

126. | 2 1 1. 127. | 3 f  f .

124

126

128

125. | 2 3 f .  

128. | f  f  3 | .
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