
1

CSE 373

Sorting 1: Bogo Sort, Stooge Sort, Bubble Sort

reading: Weiss Ch. 7

slides created by Marty Stepp

http://www.cs.washington.edu/373/

© University of Washington, all rights reserved.

2

Sorting

• sorting: Rearranging the values in an array or collection into a

specific order (usually into their "natural ordering").

� one of the fundamental problems in computer science

� can be solved in many ways:

• there are many sorting algorithms

• some are faster/slower than others

• some use more/less memory than others

• some work better with specific kinds of data

• some can utilize multiple computers / processors, ...

� comparison-based sorting : determining order by

comparing pairs of elements:

•<, >, compareTo, …

3

Sorting methods in Java

• The Arrays and Collections classes in java.util have a

static method sort that sorts the elements of an array/list

String[] words = {"foo", "bar", "baz", "ball"};

Arrays.sort(words);

System.out.println(Arrays.toString(words));

// [ball, bar, baz, foo]

List<String> words2 = new ArrayList<String>();

for (String word : words) {

words2.add(word);

}

Collections.sort(words2);

System.out.println(words2);

// [ball, bar, baz, foo]

4

Collections class
Method name Description

binarySearch(list, value) returns the index of the given value in a

sorted list (< 0 if not found)

copy(listTo, listFrom) copies listFrom's elements to listTo

emptyList(), emptyMap(),

emptySet()

returns a read-only collection of the

given type that has no elements

fill(list, value) sets every element in the list to have the

given value

max(collection), min(collection) returns largest/smallest element

replaceAll(list, old, new) replaces an element value with another

reverse(list) reverses the order of a list's elements

shuffle(list) arranges elements into a random order

sort(list) arranges elements into ascending order

5

Sorting algorithms

• bogo sort: shuffle and pray

• bubble sort: swap adjacent pairs that are out of order

• selection sort: look for the smallest element, move to front

• insertion sort: build an increasingly large sorted front portion

• merge sort: recursively divide the array in half and sort it

• heap sort: place the values into a sorted tree structure

• quick sort: recursively partition array based on a middle value

other specialized sorting algorithms:

• bucket sort: cluster elements into smaller groups, sort them

• radix sort: sort integers by last digit, then 2nd to last, then ...

• ...

6

Bogo sort

• bogo sort: Orders a list of values by repetitively shuffling them and

checking if they are sorted.

� name comes from the word "bogus"; a.k.a. "bogus sort"

The algorithm:

� Scan the list, seeing if it is sorted. If so, stop.

� Else, shuffle the values in the list and repeat.

• This sorting algorithm (obviously) has terrible performance!

� What is its runtime?

7

Bogo sort code
// Places the elements of a into sorted order.

public static void bogoSort(int[] a) {

while (!isSorted(a)) {

shuffle(a);

}

}

// Returns true if a's elements are in sorted order.

public static boolean isSorted(int[] a) {

for (int i = 0; i < a.length - 1; i++) {

if (a[i] > a[i + 1]) {

return false;

}

}

return true;

}

8

Bogo sort code 2
// Shuffles an array of ints by randomly swapping each

// element with an element ahead of it in the array.

public static void shuffle(int[] a) {

for (int i = 0; i < a.length - 1; i++) {

// pick a random index in [i+1, a.length-1]

int range = a.length - 1 - (i + 1) + 1;

int j = (int) (Math.random() * range + (i + 1));

swap(a, i, j);

}

}

// Swaps a[i] with a[j].

public static final void swap(int[] a, int i, int j) {

if (i != j) {

int temp = a[i];

a[i] = a[j];

a[j] = temp;

}

}

9

Bogo sort runtime

• How long should we expect bogo sort to take?

� related to probability of shuffling into sorted order

� assuming shuffling code is fair, probability equals

1 / (number of permutations of N elements)

� average case performance: O(N * N!)

� worst case performance: O(∞)

� What is the best case performance?

!NP
N

N =

10

Stooge sort

• stooge sort: A silly sorting algorithm with the following algorithm:

stoogeSort(a, min, max):

• if a[min] and a[max] are out of order: swap them.

• stooge sort the first 2/3 of a.

• stooge sort the last 2/3 of a.

• stooge sort the first 2/3 of a, again.

� Surprisingly, it works!

� It is very inefficient. O(N2.71) on average, slower than other sorts.

� Named for the Three Stooges, where Moe would repeatedly slap the

other two stooges, much like stooge sort repeatedly sorts 2/3 of the

array multiple times.

11

Stooge sort example

62#4

... calls 38-40 omitted (no swaps made)421#37-40

... calls 34-36 omitted (no swaps made)542#33-36
21#32

42#31
41#30

241#29
5142#28

... calls 25-27 omitted (no swaps made)651#24-27

... calls 21-23 omitted (no swaps made)965#20-23
51#19

65#18
61#17

564#7
64#8

65#9
54#10

561#16
9165#15

... calls 12-14 omitted (no swaps made)542#11-14

42#6
64#5

462#3
5264#2

914265call #1

index 0 1 2 3 4 5 A total of 40 recursive calls are made! Ouch.

value 9 6 2 4 1 5

12

Stooge sort code
public static void stoogeSort(int[] a) {

stoogeSort(a, 0, a.length - 1);

}

private static void stoogeSort(int[] a, int min, int max) {

if (min < max) {

if (a[min] > a[max]) {

swap(a, min, max);

}

int oneThird = (max - min + 1) / 3;

if (oneThird >= 1) {

stoogeSort(a, min, max - oneThird);

stoogeSort(a, min + oneThird, max);

stoogeSort(a, min, max - oneThird);

}

}

}

13

Bubble sort

• bubble sort: orders a list of values by repetitively comparing

neighboring elements and swapping their positions if necessary

• more specifically:

� scan the entire list, exchanging adjacent elements if they are not in

relative order; this bubbles the highest value to the top

� scan the entire list again, bubbling up the second highest value

� ...

� repeat until all elements have been placed in their proper order

14

"Bubbling" largest element

• Traverse a collection of elements

� Move from the front to the end

� "Bubble" largest value to end using pair comparisons and swapping

� What can you assume about the array's state afterward?

91877123542value

918

9177

7712

7735

7742

index 0 1 2 3 4 5

value 42 77 35 12 91 8

91778421235value

9177

778

7742

4212

4235

index 0 1 2 3 4 5

value 42 35 12 77 8 91

15

Bubble sort code
// Places the elements of a into sorted order.

public static void bubbleSort(int[] a) {

for (int i = 0; i < a.length; i++) {

for (int j = 1; j < a.length - i; j++) {

// swap adjacent out-of-order elements

if (a[j - 1] > a[j]) {

swap(a, j-1, j);

}

}

}

}

16

An optimization
// Places the elements of a into sorted order.

public static void bubbleSort(int[] a) {

for (int i = 0; i < a.length; i++) {

boolean changed = false;

for (int j = 1; j < a.length - i; j++) {

// swap adjacent out-of-order elements

if (a[j - 1] > a[j]) {

swap(a, j-1, j);

changed = true;

}

}

// if j-loop does not make any swaps,

// the array is now sorted, so stop looping

if (!changed) {

break;

}

}

}

17

Bubble sort runtime

• Running time (# comparisons) for input size N:

� number of actual swaps performed depends on the data;

out-of-order data performs many swaps

� runs slower the more elements are out-of-order; slowest on

descending input, fastest on ascending (already-sorted) input

• (the optimized version on previous slide is O(N) for ascending input)

()

()

)(

2

1

1

1

2

2

1

0

1

0

1

0

1

0 1

NO

NN
N

iN

iN

N

i

N

i

N

i

N

i

iN

j

=

−
−=

−=

−=

∑∑

∑∑ ∑

−

=

−

=

−

=

−

=

−

=

