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Abstract 

Data Envelopment Analysis (DEA) is a nonparametric method for identifying sources and estimating the 

mount of inefficiencies contained in inputs and outputs produced by Decision Making Units (DMUs). DEA 

requires that the data for all inputs and outputs should be known exactly, but under many qualifications, 

exact data are inadequate to model real-life situations. So these data may have different structures such as 

bounded data, interval data, and fuzzy data. 

Moreover, the main assumption in all DEA is that input and output values are positive, but we confront many 

cases that discount this condition producing negative data. The purpose of this paper is to compute efficiency 

for DMUs, which permits the presence of intervals which can take both negative and positive values. 
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1 Introduction 

Data envelopment analysis (DEA) is used to identify best practices and efficient frontier decision making 

units (DMUs) in the presence of multiple inputs and outputs (Charnes et al., [1]). DEA provides not only 

efficiency scores for inefficient DMUs but also frontier projections for such units onto an full-efficient 

frontier. The old DEA models did not deal with imprecise data assuming that all input and output data are 

exactly known. In real world situations, this assumption may not always be true. If such imprecise data 

information is integrated into the standard linear CCR model, the resulting DEA model is a nonlinear and 

non convex program, called imprecise DEA (IDEA) (Cooper et al. [2, 3]). In addition to Lee et al. [4], Zhu 

[5], Thompson et al. [6] investigated IDEA. Recently, upper and lower bounds for the efficiency scores of 

the DMUs with imprecise data have been calculated by Despotits and Smirlis [7].  

In Jahanshahloo et al. [8] the radius of stability for the DMUs with interval data is calculated. Also, in 

Jahanshahloo et al. [9] Ranking DMUs with interval data using interval super efficiency index is extended. 

Moreover, the main assumption in all DEA is that input and output values are positive, but we encounter 

many cases that violate this term ultimately yielding negative inputs and outputs. Among the proposed 

methods of dealing with negative data, the following models could be provided. 
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Seiford and Zhu. [10] considered a positive and very small value of negative output. Another method was 

proposed by Halme et al. [11] and modified slack-based measure model, called MSBM was represented by 

Sharp et al [12]. 

However, the latest method of behavior with negative data was provided by Emrouznejad et al [13, 14], 

which is based on SORM model where some variables are considered which are both negative and positive 

for DMUs. Consequently, radial methods of DEA were modified for the evaluation of the efficiency of units 

by negative data. Data Envelopment Analysis (DEA) with integer and negative inputs and outputs was 

proposed by Jahnshahloo and Piri [15]. The main objective of this paper is to decide how to deal with 

decision making units that have negative and interval inputs and outputs. 

This paper is organized as follows. In section 2 we calculate efficiency of decision making units with interval 

input and output and also with negative and positive input and output. Section 3 discusses how we can 

calculate efficiency for decision making units using both negative and interval input and output. A numerical 

example is provided in section 4 and the paper concludes in section 5. 

 

2 Efficiency of Decision Making Units with Interval Input and Output. 

Now, suppose we have n DMUs which utilize m inputs  to produce s outputs 

. Also, assume that, input and output levels of each DMU are not precisely known. Let 

 where lower and upper bounds are 

precisely known, i.e., positive and finite. For the following model provides an upper limit of interval 

efficiency: 
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We denote by  the efficiency score attained by  in model (2.1). In this case,
 

has the best 

conditions and other DMUs are in the worst. Moreover, the following model provides a lower limit of 

interval efficiency score for : 
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The efficiency  attained by  in model (2.2) serves as a lower bound of its possible efficiency 

scores. In this case,
 

has the worst conditions and others DMUs are in the best conditions. Models 

(2.1) and (2.2) provide each DMU with a bounded interval  in which possible efficiency scores 

lie from the worst to the best case. Considering (2.1) and (2.2), it is evident that . On the basis of 

the above efficiency score intervals, DMUs can be classified in three subsets as follows: 
L
j

L U
j j
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j
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E { j J| 1}
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Definition 2.1. is strongly efficient if and is efficient if 

and if then is inefficient. 

 

Theorem 2.1. If
 

 are the optimal solutions for models (2.1) and (2.2), respectively, then we 

have .  

 

Proof. It is evident. 

 

2.1. Efficiency of Decision Making Units with Negative and Positive Input and Output 

In this section, we shall treat each variable that has positive values for some and negative for other DMUs 

as consisting of the sum of two variables as follows. Let us assume we have n DMUs (𝐷𝑀𝑈𝑗   𝑗 = 1, … , 𝑛) 

each associated with m inputs; and s outputs ; 
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That is, the set of index of inputs with nonnegative values is indicated by I while L denotes the set of index 

of inputs which have negative value in at least one DMU. Similarly, R is the set of index of the outputs with 

nonnegative values and K is the set of index of outputs which have a negative value in at least one 

observation. Let us take an output variable 𝑦𝑘 which is positive for some DMUs and negative for others. Let 

us define two variables 𝑦𝑘
1 and 𝑦𝑘
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Note that we have𝑦𝑘𝑗 =  𝑦𝑘𝑗
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We have 𝑥𝑙𝑗 =  𝑥𝑙𝑗
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1  ≥ 0 , (j = 1, … , n).  

Model (2.7) represents the general case for an input oriented VRS DEA model which has both inputs and 

outputs which take positive values for some DMUs and negative for others. 
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Based on this optimal solution, we define a DMU as being SORM-Efficient as follows. 

Definition 2.2. (SORM - Efficient).  is SORM - Efficient,  if    

 

3 Efficiency for Decision Making Unit with Negative and Interval Data. 

In this section, we discuss how to calculate the efficiency for decision making units both negative and 

interval input and output. Now suppose we have n DMUs where input and output levels of each DMU are 
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At first, we divide the inputs and outputs into two groups, as follows: 
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That is, the set of index of inputs with nonnegative values is represented by I whereas L denotes the set of 

index of inputs which have negative values in at least one DMU. In the same way, R is the set of index of 

the outputs with nonnegative values and K is the set of index of outputs with a negative value in at least one 

observation. 

Thus, for the following model provides an upper limit of interval efficiency when we encounter 

negative and interval data. 
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In this case,
 

has the best conditions and other DMUs are in the worst conditions. Also, the following 

model provides a lower limit of interval efficiency score for  when we encounter negative and 
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Theorem 3.1. If
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So,
*U * U
p p( , )   is a feasible solution for model (3.10) and we know

* *
p p( , )   is an optimal solution 

for this model. Because the problem is minimizing, the proof is complete. For proving 
*L *

p p   the 

procedure is similar. 

 

4 A numerical example 

In this section, the model used in a numerical example attempts to measure the efficiency of 10 DMUs. 

Suppose that there are 10 DMUs with two interval inputs and outputs shown in Table (1). The second input 

and output have an interval value which does not have any sign. It means that there is a positive value for 

some of DMUs and a negative value for some others.  
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Table 1: DMUs with primary inputs and outputs. 

 In I1 In L1 Out R1 Out K1 

DMU(1) (3,8) (-1,5) (3,4) (-5,-2) 

DMU(2) (4,4) (3,7) (1,5) (-1,3) 

DMU(3) (5,9) (-6,-2) (6,8) (-2,1) 

DMU(4) (4,5) (-1,4) (4,4) (1,7) 

DMU(5) (3,6) (-5,-2) (3,7) (2,5) 

DMU(6) (6,8) (1,3) (2,6) (-2,4) 

DMU(7) (1,4) (6,8) (3,5) (5,8) 

DMU(8) (7,7) (-3,2) (1,2) (-5,-2) 

DMU(9) (5,8) (-2,3) (7,9) (-1,3) 

DMU(10) (2,5) (2,6) (5,7) (-3,5) 

 

Considering what was mentioned above, variables with no sign are converted to two variables shown in 

Table (2).Using the interval DEA models (3.9) and (3.10), we obtain an upper and lower limit of interval 

efficiency score for 
pDMU . 

 

Table 2: Unsigned variables for DMUs converted to two variables. 

 In I1 In L1 In L2 Out R1 Out K1 Out K2 

DMU(1) (3,8) (0,5) (0,1) (3,4) (0,0) (2,5) 

DMU(2) (4,4) (3,7) (0,0) (1,5) (0,3) (0,1) 

DMU(3) (5,9) (0,0) (2,6) (6,8) (0,1) (0,2) 

DMU(4) (4,5) (0,4) (0,1) (4,4) (1,7) (0,0) 

DMU(5) (3,6) (0,0) (2,5) (3,7) (2,5) (0,0) 

DMU(6) (6,8) (1,3) (0,0) (2,6) (0,4) (0,2) 

DMU(7) (1,4) (6,8) (0,0) (3,5) (5,8) (0,0) 

DMU(8) (7,7) (0,2) (0,3) (1,2) (0,0) (2,5) 

DMU(9) (5,8) (0,3) (0,2) (7,9) (0,3) (0,1) 

DMU(10) (2,5) (2,6) (0,0) (5,7) (0,5) (0,3) 

 

Table 3: Lower and Upper Efficiency for DMUs. 

 

 

 

 

 

 

 

 

 

 

 

 

So far, as we have showed that DMU1, DMU3, DMU10 are strongly efficient, that DMU2, DMU5, DMU6, 

DMU8 are efficient and that DMU2, DMU7, DMU9 are inefficient. 
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1 14.76091.8 DMU(4) 

1 140.760910 DMU(5) 

1 0.72321873 DMU(6) 

0.93465124 140 DMU(7) 

1 0.81120345 DMU(8) 

0.93332617 0.72352218 DMU(9) 

1 0 DMU(10) 
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5 Conclusion 

The standard DEA model cannot be used for efficiency assessment of decision making units with negative 

and interval data. In this paper we have developed a new pair of interval DEA models to deal with imprecise 

data such as interval and negative data. Then we calculated the efficiency of these decision making units. 
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