
Computer Science Journal of Moldova, vol.3, no.1(7), 1995

Meta–generation of syntax–oriented editors

N.Shvets K.Chebotar

Abstract

A method for automatic generation of syntax-oriented editors
(SOE) for high level programming languages is presented. It is
based on a special template definition metalanguage. The SOE
functional environment including the operations with source files
and internal representation of the programs in form of abstract
syntax tree was implemented as an independent modular struc-
ture. As a result of target language metadescription processing
the SOE for this language is generated by a special preprocessor.
Depending on user’s experience level (novice, advanced, etc.),
generation of various SOE for the same language by changing a
level of descriptions of phrases and templates is also possible.

Introduction

Syntax–oriented editor (SOE) is a tool for program development based
on hierarchical structure of the high–level programming languages
(HLPL) [1–3]. Its design pursues a few goals. Primarily, its purpose is
to increase the users labour productivity and to guarantee a minimal
level of errors when typing the text of a program. Secondly, it may be
used for tutoring if designed properly. There are some related aspects,
too.

Both main goals are achieved by automatic expansion the HLPL
metaconcepts marked by the user and due to the presence of operations
on structured texts and operations delivering an additional information
about the language to the users who are not familiar with it.

The most important thing is that all these operations do not de-
pend on the language factually and that the minimal level of errors

c©1995 by N.Shvets, K.Chebotar

3

N.Shvets, K.Chebotar

can be regulated.By the appropriate organization of the editor even
graphical languages can be treated, too [3]. All this is achieved eas-
ily if the information necessary for SOE functioning may be extracted
immediately (and automatically) from the common syntax description
(metasyntax) of the language. Under these conditions we get the SOE
generator which gives possibility to work uniformly with any HLPL in
the editor environment when it is provided with an algorithm process-
ing the metadescriptions mentioned.

1 The HLPL preprocessing

The aim of preprocessing is to build informational tables controlling
the SOE, from the target language definition in terms of a special met-
alanguage. The latter is based on BNF (Backus normal forms) and
is called the template definition language (TDL). Besides information
which is characteristic for BNF, the metalanguage includes some addi-
tional data, namely:

• quantitative data for quick and convenient generation and use of
the tables

• metaconcepts characteristics

• data used to visualize the program being generated.

Metaconcepts characteristics are:

• type (template is an intermediate concept, phrase is a terminal
one)

• kind (simple template, template–option, templates–lists of two
sorts).

The terminal metaconcepts possessing simple structure are being
typed, as a rule, by the user on the display. Their level may be con-
trolled by means of metalanguage. After processing it we can have
different tables for the same programming language, controlling the

4

Meta–generation of syntax–oriented editors

speed of the program generation and minimal level of errors, simulta-
neously. So, if a concrete language and a level of phrases are fixed, the
tables obtained may be considered as parameters and then the simple
SOE becomes a parameterized one.

The syntactic tables being a result of preprocessing, are represented
by files. One of them is a set of records containing full information
about the structure of each template and relations between the tem-
plates (for quick search). The other is a set of strings representing
metaconcepts names and separators. One more file formed as part of
preprocessing contains texts specifying the structure of the standard
functions calls and standard identifiers. These files, besides providing
the correct functioning of SOE, are used to supply a user–novice with
additional information about the language structure (help–services).

The structure of TDL is the following:

〈language metadescription〉 ::= 〈number of metaconcepts〉
〈metaconcept description〉

〈number of metaconcepts〉 ::= 〈integer〉
〈metaconcept description〉 ::= 〈numeric information〉

〈metaconcept name〉
〈metaconcept structure〉

〈numeric information〉 ::= 〈template numeric description〉
〈screen layout descriptions〉

〈numeric template description〉 ::= 〈number of alternatives〉
〈number of components〉
〈number of sons〉
〈number of screen layout descriptions〉

〈number of alternatives〉 ::= 〈integer〉
〈number of components〉 ::= 〈integer〉

〈number of sons〉 ::= 〈integer〉
〈number of screen layout descriptions〉 ::= 〈integer〉

〈screen layout descriptions〉 ::= 〈template layout〉. . . 〈template layout〉
〈template layout〉 ::= 〈component layout〉. . . 〈component layout〉

〈component layout〉 ::= 〈line shift〉〈column shift〉
〈line shift〉 ::= 0 | 1

〈column shift〉 ::= 0 | 〈integer〉

5

N.Shvets, K.Chebotar

〈metaconcept structure〉 ::= 〈component description〉. . .
. . . 〈component description〉

〈component description〉 ::= 〈component type〉〈component kind〉
〈component type〉 ::= 〈simple component〉| 〈option〉| 〈list〉

〈simple component〉 ::= (
〈option〉 ::= [

〈list〉 ::= #
〈component kind〉 ::= 〈keyword〉| 〈phrase〉| 〈template〉

〈keyword〉 ::= K 〈string of keywords and separators〉
〈phrase〉 ::= F 〈metaconcept name〉

〈template ::= T 〈metaconcept name〉
〈metaconcept name〉 ::= 〈〈identifier〉〉

2 SOE functioning

The work done by the SOE is the following:

1. operations on files such as

• viewing text file

• reducing it to the abstract syntax tree

• creating a new file for program generation

• calling an old file containing the result of the previous editing
session

• formatting the texts represented in free format

2. setting the mode of SOE functioning:

• autosave period selection

• saving history of the session

• setting the depth of the stack of operations

3. structured program generation/editing

4. unstructured program editing

5. quitting the editor under the following requests:

• to save the intermediate result generation

• to generate the program in terms of target language

6

Meta–generation of syntax–oriented editors

• to confirm the exit or to return to the editor environment.

As all systems of the kind, the SOE–program is menu–driven. The
main menu and its submenues used in SOE correspond to the opera-
tions mentioned. After setting the mode of functioning and the initial
file choice all the work is done in the editor environment (item 3). This
work has a visible part (the SOE–user interface: screen, cursor) and
an internal one. Invisible for the user, the second part is based on
the program representation known as abstract syntax tree (AST). It
is used to implement the screen interface, relating cursor movements
with the program text and allowing in this way the basic operations
application. A linear representation of the AST is designed for saving
an intermediate (not finished)program in a file.

The initial visible object being the object for processing when a
program is being generated/edited, is the virtual screen created as a
result of a file choice. Relations with the syntax tree vertices corre-
sponding to the current state of the screen are set through two types
of a cursor: the normal cursor and the structural one. The normal
cursor may be replaced by the mouse to accelerate access to a node.
The structural cursor goes through empty (not yet generated) nodes
and inserted ones (to make the latter visible if they are not hidden)
by the users request. Empty nodes are highlighted and nonempty ones
are marked by the normal cursor.

Two basic actions applied to the program text in the editor envi-
ronment are node generation and editing.

Node generation (or insertion) occurs for simple templates imme-
diately, and for alternatives it is preceded by the corresponding menu
displaying. Every insertion causes the related window setting and cur-
sors movements correspond further to the coordinates of the window.
The final insertion returns the resulting screen state. Exit from the
window with some nongenerated nodes may return the screen to the
initial state. For the case the special operation is introduced to renew
the screen by the user’s desire.

Phrase generation is done by typing the appropriate text, as it was
mentioned above. There is an operation for phrases selection from those

7

N.Shvets, K.Chebotar

introduced before. Analysis of the phrase syntax is done immediately
after phrase generation.

The number of sons for the templates–lists is unknown in advance
and is determined during the process of generating/editing the pro-
gram. To create new node as list element there exist a special opera-
tion requesting if it is subsequent or previous to the current one. The
same is done for the templates–options: they are present on the screen,
but may be generated or suppressed by desire of the user. A special
operation is introduced to restore them.

Node editing is made by means of operations mark, copy, delete,
move. A stack of nodes is used to restore the structure of a program in
the case of erroneous deleting or moving the subtree during the current
session. Its depth may be regulated by the user.

The other kind of editing implemented as independent work and
called after the program has been generated, is based on two simple
operations on strings characteristic for the text editors, namely, cut
and paste. It serves for the purposes of displaying the text of the final
program in the manner preferable by the user.

To minimize the size of the final program text on the screen, the
operation of packing / unpacking is introduced (the hidden nonempty
nodes appear and disappear).

Comments are generated as phrases–options.
A few words are to be said about controlling the speed of program

generation. There is a correlation between the level of the user and the
degree of detail of metaconcepts. For experienced programmers the lat-
ter may be diminished so that the maximal speed could be achieved. A
special item in the main menu is present to edit the metadescription of
a language and to generate the tables controlling the SOE functioning
which are appropriate for this user.

Conclusion

The SOE structure described above isn’t complete or closed. At the
present time it is under implementation on the principles of object–
oriented programming more adequate for the description of the SOE

8

Meta–generation of syntax–oriented editors

structure. It is supplemented by a number of other useful and con-
venient features (for example, context analysis of templates/phrases,
parallel hierarchies of procedures and data declarations, more conve-
nient screen interface etc.).

It means that the similar SOE may be used as a base for integrated
environments creation which allow passing from the program correct
generation to the full syntax structure check–up and to run intermedi-
ate programs (prototypes) in the process of the program development.

References

[1] M.V.Zelkowitz. A small contribution to editing with a syntax di-
rected editor, ACM SIGSOFT SIGPLAN Symposium for Practi-
cal Software Development Environments, Pittsburgh, PA, April,
1984, p.1–6.

[2] T.W.Reps, T.Teitelbaum. The synthesizer generator: a system for
constructing language–based editors. N.Y.: Springer–Verlag, 1988.

[3] V.Lextrait, X.Ceugniet. NEXUS: The meta–generation of versatile
graphical multi–user structure editors using generalized attribute
grammars. CHI9 Workshop on structure editors, Seattle, April
1990.

N.Shvets,
K.Chebotar, Received 13 April, 1995
Institute of Mathematics,
Academy of Sciences of Moldova,
5 Academiei str., Kishinev,
277028, Moldova
e–mail: {22nata,chebotar}@math.moldova.su

9

