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E Pluribus Unum

Marco LiCalzi

1 Introduction

E pluribus unum is Latin for “Out of many, one”. This sentence is best known as
one of three shown on the Seal of the United States, that was adopted by an Act of
Congress in 1782. It appears on the obverse side of the seal, as well as on official
documents and U.S. currency. Considered since long the unofficial motto of the
United States (whereas the official motto since 1956 is “In God we trust”), it was
originally conceived to represent the idea that a single nation would emerge out of
many states.

Fig. 1 The obverse side of the Seal of the United States

The symbolism in the seal is reinforced by a recurring motif that honors the orig-
inal thirteen States in the Union with thirteen stars in the “glory” above the eagle’s
head, thirteen stripes on the shield, and thirteen arrows in the eagle’s talon; more-
over, custom has added thirteen leaves and olives on the olive branch. Numerologists
will take pride in noting that the motto itself consists of thirteen letters, although this
seems coincidental.
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The main theme of this article is the exploration of situations where a myriad
of interactions between different people leads to the emergence of a (possibly unex-
pected) aggregate behavior. The best known example is the metaphor of the invisible
hand first coined by the economist Adam Smith (1723–1790) to describe the social
mechanism of the market, where the individual preferences are composed and the
needs of the society are met even if each single agent is only attending his own
business. However, as economists know well, such harmony is difficult to attain
in practice. When dealing with human affairs, we should perhaps focus on a more
neutral expression. The title of this article is my best contribution in this respect.

I would be remiss in failing to disclose that there is at least one contender that
trumps the outcome of my efforts. This favorite of mine is the brilliant title of a
book by Thomas C. Schelling (born 1921). He is a professor of foreign affairs who
was awarded the 2005 Nobel Memorial Prize in Economic Sciences (shared with
Robert Aumann) for “having enhanced our understanding of conflict and coopera-
tion through game-theory analysis.” His crowning achievement in this domain is the
monograph The Strategy of Conflict, published in 1960, where he introduced key
concepts in the analysis of conflict such as focal point and credible commitment;
see [Mye09]. But the title I envy is Micromotives and Macrobehavior, appeared in
1978, where by a stroke of genius he let many individual heterogenous motivations
adjoin the aggregate behavior of the system.

A simple example may help to illustrate how a multitude of local rules coalesce
into a single aggregate behavior, sometimes in unexpected ways [Bon02]. There is
a score of people in a closed space, such as a gymnasium. Consider two slightly
different variants of a simple game. The first game has each person threatened by
an attacker and protected by a defender: this agent moves around trying to keep
the defender between the attacker and himself. The second game has each defender
trying to interpose herself between the victim and the attacker. For clarity, we may
dub “seek protection” the first version and “provide protection” the second version.

If we let people interact, what kind of aggregate behavior shall we expect
to observe? As it turns out, “seek protection” tends to keep agents spread out
and running around quite a lot; while “provide protection” gather a pretty tight
crowd where people move very little. An elegant visualization is accessible at
http://www.icosystem.com/demos/thegame.htm. (If a picture is worth a thousand
words, a short movie must count as a million.) The point of the example is that, in
spite of the remarkable similarity among the rules of the two games, they generate
a completely different macrobehavior.

Examples of emergent macrobehavior abound. Closer to home (unless you live in
Venice) is the case of traffic behavior. Each of the single drivers is pursuing a private
objective relying on his own personal heuristics. At the macro level we observe a
variety of behaviors, ranging from a smooth flow to inextricable traffic jams. For
more examples, we can appropriate the blurb in the poster advertising Unraveling
Complex Systems as the theme of the 2011 Mathematics Awareness Month:

We are surrounded by complex systems. Familiar examples include power grids, trans-
portation systems, financial markets, the Internet, and structures underlying everything from
the environment to the cells in our bodies. Mathematics and statistics can guide us in un-
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derstanding these systems, enhancing their reliability, and improving their performance.
Mathematical models can help uncover common principles that underlie the spontaneous
organization, called emergent behavior, of flocks of birds, schools of fish, self-assembling
materials, social networks, and other systems made up of interacting agents.

The Mathematics Awareness Month is sponsored each year by the Joint Policy
Board for Mathematics, a collaborative effort of the American Mathematical Soci-
ety, the American Statistical Association, the Mathematical Association of America,
and the Society for Industrial and Applied Mathematics; see www.mathaware.org.

A final word of caution is in order. Philosophers talk about explanandum and
explanans. The first is the phenomenon that needs to be explained, and the second is
the explanation of that phenomenon. The study of complex systems is particularly
good at generating emergent behaviors (explanandum), but somewhat less effective
in providing the explanans. You may spot similar limitations in this article.

2 Traffic management

How do we get traffic queues? An obvious answer is that sometimes there are simply
too many vehicles with respect to the capacity of the existing road network. Another
recurring suspect are traffic lights, that may engender queues when their timing is
not attuned to the traffic flow. Accidents, or other catastrophic events, are a third
likely cause.

Some queues, however, originate in highways in the absence of any of the factors
above. Imagine a smooth flow of cars moving at constant average speed over a
highway. Each car travels just a few meters away from the preceding one. When,
by some accidental event, the vehicle in the n-th position suddenly slows down,
it forces the subsequent car n+ 1 to do the same. The deceleration is quite more
rapid than the acceleration, so it takes some time for each vehicle to get back to the
average speed.

Looking from an imaginary helicopter hovering above the traffic, we see the gap
between n � 1 and n growing wider, because car n � 1 keeps its speed while car n
is braking up. Meanwhile, car n+ 1 is forced to slow down to avoid collision with
n so the gap between these two vehicles closes, and we see n+1 queuing behind n.
By induction, this generates a traffic wave moving upstream. The car in front of the
wave can accelerate and move forward, while the subsequent vehicles must await
until the space in front is cleared. The queue starts traveling backwards. Depending
on the parameters, this may generate surprisingly long queues. Assume that car n has
braked because a butterfly disturbed its driver, and the “butterfly effect” takes a new
meaning. For a visual animation, we recommend http://www.traffic-simulation.de,
where one can also explore similar queueing phenomena due to incoming traffic
from a ramp, or to a uphill road that slows down trucks, or to closing one lane in a
two-lane highway.

A rather different phenomenon is known as Braess’ Paradox. We illustrate it
with a simple example borrowed from [EK10]. Consider the road network in Fig. 2,
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Figure 8.1. A highway network, with each edge labeled by its travel time (in minutes) when
there are x cars using it. When 4,000 cars need to get from A to B, they divide evenly over the
two routes at equilibrium, and the travel time is 65 minutes.

A-C and D-B edges are highly sensitive to congestion: for each one, it takes x/100
minutes to traverse when there are x cars using the edge.1

Now, suppose that 4,000 cars want to get from A to B as part of the morning commute.
There are two possible routes that each car can choose: the upper route through C or
the lower route through D. For example, if each car takes the upper route (through C),
then the total travel time for everyone is 85 minutes, since 4,000/100 + 45 = 85. The
same is true if everyone takes the lower route. However, if the cars divide up evenly
between the two routes, so that each carries 2,000 cars, then the total travel time for
people on both routes is 2,000/100 + 45 = 65.

Equilibrium Traffic. So what do we expect will happen? The traffic model we’ve
described is really a game in which the players correspond to the drivers, and each
player’s possible strategies consist of the possible routes from A to B. In our example,
each player only has two strategies; however, larger networks could contain many
strategies for each player. The payoff for a player is the negative of his or her travel
time (we use the negative since large travel times are bad).

This all fits very naturally into the framework we’ve been using. One thing to notice,
of course, is that in the two previous chapters we have focused primarily on games with
two players, whereas the current traffic game will generally have an enormous number
of players (4,000 in our example). But this poses no direct problem for applying any
of the ideas we’ve developed. A game can have any number of players, each of whom
can have any number of available strategies, and the payoff to each player depends on
the strategies chosen by all. A Nash equilibrium is still a list of strategies, one for each
player, so that each player’s strategy is a best response to all the others. The notions of
dominant strategies, mixed strategies, and Nash equilibrium with mixed strategies all
have direct parallels with their definitions for two-player games.

In this traffic game, there is generally not a dominant strategy; for example, in
Figure 8.1 either route has the potential to be the best choice for a player if all the other
players are using the other route. The game does have Nash equilibria, however; as we

1 The travel times here are simplified to make the reasoning clearer: in any real application, each road would have
both some minimum travel time and also some sensitivity to the number of cars, x, that are using it. However,
the analysis here adapts directly to more intricate functions specifying the travel times on edges.

Fig. 2 A simple road network

where each arc is labeled with the travel time (in minutes) that it takes to go from
one end to the other when there are x cars using it. There are 4000 cars that start at A
and must reach B. Each driver simultaneously chooses whether to drive through C
or D, in a conscious attempt to minimize his traveling time. We say that the traffic is
at an equilibrium when, given the distribution of vehicles over the available routes,
no driver can unilaterally switch to a different path and save time.

For instance, if all drivers choose to go through C, there are x =4000 cars on the
arcs A-C and C-B. Each car needs 40 minutes to go from A to C and a further 45’
from C to B, so the total driving time for a vehicle is 95’. Facing this situation, any
single driver would rather switch to the other (empty) route where the total traveling
time for one car is 45+(1/100) = 45.01 minutes. Hence, everybody on the same
route is not an equilibrium. As symmetry suggests, it turns out the only equilibrium
for this network is that cars distribute equally over the two routes. When there are
2000 vehicles on the A-C-B route and another 2000 on A-D-B, the driving time for
each car is 45+ 2000/100 = 65 ; a unilateral switch to the other route would give
a higher traveling time of 45+100/101 = 45.01. Thus, given the traffic network in
Fig. 2, we expect people to learn to split over the two routes so that each driver takes
65’ to complete his route.

Suppose that some well-meaning politician, bent on improving the miserable
commuting times of the local community, decides to build a new highway between
C and D. To keep things simple (without loss of generality), we assume that the new
highway is one-way from C to D and that it is so large and capacious that the time
to cover it is zero regardless of the number of vehicles using it. We can represent the
new situation by drawing a new edge from C to D and label it zero in Fig. 2. The
new network now offers three ways to go from A to B: the two old routes (A-C-B
and A-D-B) and the new one (A-C-D-B).

Table 1 compares a few possible configurations. For instance, the second line
looks at the situation where 500 cars take the old route through C, another 500 go
through the old route through D, and the remaining 3000 drive through the new
highway. The last two columns report that the driving time over the old routes is
3500/100+45 = 80 , while the new route takes only 3500/100+3500/100 = 70 .
As it turns out, in each of the examples shown (and, indeed, in any possible configu-
ration), going through the highway is always faster than using any of the old routes.



BOZZA
NON

DEFIN
IT

IV
A

E Pluribus Unum 133

This is not surprising: the whole purpose of opening the new road is to lower the
driving times.

Table 1 Driving times over different traffic configurations

Traffic on route Driving time
through C through D through CD through C or D through CD

0 0 4000 85 80
500 500 3000 80 70
1000 1000 2000 75 60
1500 1500 1000 70 50
2000 2000 0 65 40

The paradox shows up when we consider the consequences of this uniform supe-
riority. Regardless of the traffic configuration, taking the highway is always better
than trying any of the old routes. Hence, any driver ends up using the highway and
all 4000 cars will be traveling on the same route. As shown in the first line of Ta-
ble 1, this implies that in equilibrium the driving time is 80’ for everybody. Yet,
in the good old times (without the highway), the unique equilibrium had a travel-
ing time of 65’ — a whole 15’ less! Paradoxically, opening up the highway makes
everybody worse off. The emergence of this paradox in a general network is reason-
ably likely [SZ83]; see also Wikipedia for a few real-life examples. A recent result
is that, if the driving time over any arc is a linear function of the number of cars
using it, the worst-case scenario for a network upgrade is to have the equilibrium
driving time going up by at most 33% [RT02].

The morale is that some actions may have unintended consequences if we ig-
nore the collateral effects on individual behavior. Building the highway upgrades
the infrastructure. Considered in isolation, this is an improvement. However, when
the rest of the network is left unchanged, this local upgrade attracts so many drivers
that it ends up clogging the old routes A-C and D-B. These routes easily suffer from
congestion and thus the performance of the system degrades. Such collateral effects
are called externalities by economists. They are wonderfully illustrated by a cartoon
(ubiquitous on blogs lamenting traffic jams) where each of the drivers stuck in a
huge traffic jam is thinking aloud: If these idiots would just take the bus, I could be
home by now.

Our last foray in traffic management is borrowed from Micromotives and Mac-
robehavior:

Standing in line at a ski lift — a long line — I overheard somebody complain that the chairs
ought to go faster. It would take a bigger engine, but at those fees the management could
afford one. The complaint deserves sympathy but the proposal doesn’t work: speeding the
lift makes the lines longer. (p. 67)

How so? Let us work out an example. There are 20 skiers in the field. It takes one
minute to get in and out of the lift, ten minutes to go up, and five to get down.



BOZZA
NON

DEFIN
IT

IV
A

134 M. LiCalzi

Ignoring for simplicity other activities such as sipping coffee in the adjacent hut,
skiers must be engaged in one of these three activities, or otherwise waiting in line.
Since each of the 20 skiers needs one minute to get in and out of the lift, a full cycle
that brings all skiers up lasts 20 minutes. During this time, a skier spends 1’ to get
in and out, 10’ to go up, 5’ to get down, and the remaining 20 � 16 = 4 minutes
standing in line. The queue itself has on average 4 people.

Let us see what happens if the management brings in new engines and the time to
go up is halved. It still takes 20 minutes to complete a full cycle and get all skiers on
board. But now a skier spends 1’ to get in and out, 5’ to go up, 5’ to get down, and
the remaining 20�11 = 9 minutes standing in line. The new engines roar aloud and
do their job, but there are now nine people standing in line and grumbling. Where do
the extra five skiers waiting in line come from? Before the engines were installed,
they used to be on the lift moving at a slower speed and enjoying the view (instead
of suffering the ignominy of queueing). The reader may check that the paradox of
faster lifts leading to longer queues arises when the number of skiers in the field is
n ⌃ 11.

3 Family issues

Wedding customs vary greatly, but a piece of the western tradition seems to me a
little odd. While two people are joined in marriage at the front, families and friends
usually stand (or sit) behind them in two separate groups. This form of segregation
during the ceremony is often imposed by seating arrangements. It may be explained
in many ways, often amenable to the symbolism of wedding as an alliance between
two families.

However, somewhat mysteriously, a similar segregation takes place sponta-
neously when the wedding reception is organized as a standing event where people
can flow freely. Dreaded by many brides, this segregation occurs in spite of their
best efforts to have people from the groom’s and bride’s families mix. People gather
together in small groups and recombine, but it is often the case that most groups see
a prevalence of one side. Why?

An important piece of the explanation is that even a tiny preference for one’s
neighbors to be from one’s own family may lead to segregation. It is agents’ prefer-
ence to congregate with their relatives that tends to keep the two groups apart. This
simple argument was suggested in 1969 by Schelling [Sch69] in a context inspired
by racial dynamics. His argument was developed using a physical model with coins
placed on graph paper, where dimes and pennies were moved around simulating
people’s inclinations. This approach brilliantly predates the rich computer simu-
lations nowadays abundant in the social sciences, usually known as agent-based
models. Let us illustrate Schelling’s argument.

There are two kinds of agents, labelled X and O, who represent the bride’s and
the groom’s relatives. They can move around in the reception hall, that we visualize
as a grid. Each agent takes place in a cell of the grid and interacts with his immediate
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neighbors. For instance, the left-hand side of Table 2 depicts a grid with 6 ⇤ 6 = 36
cells and 11 agents for each family.

Table 2 A configuration of agents in a grid

X X
X O1 O
X X O O O
X O X X

O O X2 X X
O O O3

X X O O X X
X X O O X X
O O X X O O
O O X X O O
X X O O X X
X X O O X X

The immediate neighbors of an agent are those in the eight cells around him (or
less, if he is adjacent to the walls). We assume that an agent feels comfortable when
his immediate neighborhood contains at least 30% people from his family. Anyone
who has experienced the discomfort of being the “odd man out” in a small group
entertaining a conversation should be able to relate to this assumption.

If the current arrangement makes him uncomfortable, an agent moves to another
cell in the grid. For instance, starting from the situation depicted on the left of Ta-
ble 2, only three agents (O1, X2, O3) are uncomfortable and will move to a different
position. Doing so, they create a new configuration where perhaps other agents feel
uncomfortable and in turn decide to move. The dynamics may takes time to unfold,
but in the end agents’ choices lead to a stable configuration. This represents the
underlying macrobehavior emerging from agents’ micromotives.

Note that agents are not prejudiced against the other group: they need not be part
of a majority to feel comfortable. With eight neighbors, having three of one’s own
relatives around is enough to stay on. Such individual preferences are compatible
with perfect integration, as shown on the right-hand side of Table 2. However, when
guests are randomly distributed, a different macrobehavior emerges.

This is illustrated in Fig. 3, where agents smile if they feel comfortable and frown
otherwise. The initial configuration on the left is mixed up. The dynamics even-
tually leads to a stable configuration such as that one on the right, where a clear
amount of segregation has taken place. The figures are created using the simulation
tool available at http://www.rensecorten.dds.nl. This is in turn based on NetLogo, a
multi-agent programmable modeling environment widely used by students, teachers
and researchers worldwide. Freely accessible at http://ccl.northwestern.edu/netlogo,
it offers a library with a large variety of simulative examples, ranging from biology
to social sciences.

Our next example is drawn from [ML75] and takes place after marriage has been
consummated. It illustrates the effect of introducing a bit of variability in individual
behaviors. Suppose that all parental couples have an innate preference for males,
and that they keep bearing children until their progeny has more boys than girls.
The baseline case assumes that each couple has the same probability p = 1/2 of
giving birth to a male or a female. Since each family stops growing when boys are
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Fig. 3 Initial (left) and final (right) configurations

a majority, it is not surprising that this leads to a situation where males are more
numerous than females.

Consider now the more plausible assumption that each couple k has a different
probability pk of giving birth to a boy, although on average the value of pk is still
1/2. For instance, if a couple has probability (1/2 � ⇧), there is another one for
whom the probability is (1/2+ ⇧). Anything else is unchanged: each couple keeps
procreating until the majority of its progeny is male. The following paradoxical
effect emerges: while each family is actively seeking a majority of boys, the society
as a whole end up with a majority of girls!

How is it possible? The exact argument requires some familiarity with random
walks, but here is an intuitive explanation. Families with a propensity to gener-
ate boys (pk > 1/2) tend to reach their target of a male majority quickly, and
thus stop procreating soon. They generate more boys than girls, but the abso-
lute numbers are small. On the other hand, families with a propensity to gener-
ate females keep chasing their target of a male majority and thus end up procre-
ating a lot more girls. The tiny majority of boys generated by the male-biased
families is rapidly overwhelmed by the large numbers of girls born in female-
biased families. (My favorite simulation of this model using NetLogo is available at
http://www.agsm.edu.au/bobm/teaching.)

4 Odds and ends

Our last section parades a few vignettes describing a wide range of applications
amenable to the study of emergent behavior in the social sciences; see [Eps07] for
more examples.

The Culture Model [Axe97] is a seminal study on how beliefs (or attitudes) in a
population shift over time, getting closer or diverging. It has been used to explain
how opinions get spatially clustered, the emergence of bandwagon effects (fashion
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fads), and the spontaneous division of a culture into sub-cultures. A recent applica-
tion discusses how knowledgeable people can use individuals with wide social net-
works to disseminate information quickly and effectively, in a conscious attempt to
induce “social epidemics” such as new political aggregations or outbursts of moral
outrage on the internet. A curious spinoff of this line of research has looked into
modeling standing ovations, when people from an audience spontaneously stand to
acknowledge an outstanding performance [MP04].

A well-known, albeit controversial, foray into archeology looks at the rise and
fall of the Anasazi civilization in the southwestern United States. Until its disap-
pearance around AD 1350, the Anasazi society widely fluctuated in population and
settlement size. The study combines quantitative information on environmental fluc-
tuations with plausible behavior rules for Anasazi households and computes a de-
tailed historical “trajectory” that matches the known facts.

Other models purport to enucleate a few key driving elements in political action.
An elegant example is a study of civil violence [Eps07] considering two models.
The first one illustrates how a subjugated population seemingly coordinates its re-
bellion against a central authority; see Rebellion in the NetLogo library for a visual
animation. The reason why a repressive regime stays in place is not that his police
is stronger than the people, but that the former can coordinate much better than the
latter. Fiddling with its parameters, one is reminded of Tocqueville’s dictum: “It is
not always when things are going from bad to worse that revolutions break out. On
the contrary, it oftener happens that when a people which has put up with an oppres-
sive rule over a long period, it takes up arms against it.” (The Ancien Régime and
the French Revolution.) The second model describes the dynamics of inter-group
violence: the analogies with recent historical examples (Hutu vs. Tutsi, or Serbs vs.
Bosniaks) where local ethnic cleansing led to genocide are impressive.

A promising application for the study of emergent behavior is panic control,
where one attempts to design solutions that reduce the risk associated with or-
derly crowds suddenly switching behavior due to panic [H00]. (For a recent ex-
ample of poor design, recall the Love Parade stampede in July 2010, where 21
people lost their lives and more than 500 were injured.) Space prevents us from
a longer discussion, but more information including visual animations is available
at http://angel.elte.hu/ panic/.

We close with a puzzle lifted from Schelling’s Micromotives and Macrobehav-
iors. At a conference, it is often the case that seats in the first few rows are empty.
Can you figure out why?
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