Polarization of Light

- Polarization states
- Stokes Vectors
- Mueller Matrices
- Jones Matrices
- Components
- Examples

Polarization states

Linear states of polarization

Linear x polarized

$$
\left|E_{x}\right| \neq 0,\left|E_{y}\right|=0
$$

Linear y polarized $\left|E_{x}\right|=0,\left|E_{y}\right| \neq 0$

Linear -45° polarized $\quad\left|E_{x}\right|=\left|E_{y}\right|, \phi_{y}-\phi_{x}=\pi$

Linear θ polarized

$$
\left|E_{x}\right| \neq\left|E_{y}\right|, \phi_{y}-\phi_{x}=0, \pi
$$

O’Shea 1.6, Saleh \& Teich 6

Polarization states

Elliptical states of polarization

Right-hand circular $\left|E_{x}\right|=\left|E_{y}\right|, \phi_{y}-\phi_{x}=\pi / 2$

Left-hand circular $\left|E_{x}\right|=\left|E_{y}\right|, \phi_{y}-\phi_{x}=-\pi / 2$

Elliptical

$$
\left|E_{x}\right| \neq\left|E_{y}\right|, \quad \text { and/or } x
$$

$$
\begin{gathered}
\text { and/or } \\
\phi_{y}-\phi_{x} \neq \pm \pi / 2
\end{gathered}
$$

Stokes vectors

Complete description of polarization state

Perform 6 irradiance measurements with ideal polarizers:
$\mathrm{E}_{\mathrm{x}} \quad$ Horizontal linear
$\mathrm{E}_{\mathrm{y}} \quad$ Vertical linear
$\mathrm{E}_{45} \quad 45^{\circ}$ linear
$\mathrm{E}_{135} \quad 135^{\circ}$ linear
$\mathrm{E}_{\mathrm{R}} \quad$ Right circular
$\mathrm{E}_{\mathrm{L}} \quad$ Left circular

$$
\vec{S}=\left[\begin{array}{c}
S_{0} \\
S_{1} \\
S_{2} \\
S_{3}
\end{array}\right]=\left[\begin{array}{c}
E_{H}+E_{V} \\
E_{H}-E_{V} \\
E_{45}-E_{135} \\
E_{R}-E_{L}
\end{array}\right]
$$

Stokes vectors

Complete description of polarization state
$H=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]$

$45=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right]$

$R=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right]$

$$
L=\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right]
$$

$$
\left[\begin{array}{c}
1 \\
0 \\
-.8 \\
-.6
\end{array}\right]
$$

Poincarè sphere

Useful visualization of Stokes parameters

$$
S_{i} \cdot S_{j}=S_{i 1} S_{j 1}+S_{i 2} S_{j 2}+S_{i 3} S_{j 3}
$$

- Surface is polarized, center is unpolarized
- Equator is linear polarized
- North hemisphere is right elliptical, south is left elliptical
- Orthogonal polarizations are on opposite points of sphere

Stokes vectors

Degree of polarization

$$
\begin{aligned}
D o C P & =\frac{S_{3}}{S_{0}} \\
D o L P & =\frac{\sqrt{S_{1}^{2}+S_{2}^{2}}}{S_{0}} \\
D o P & =\frac{\sqrt{S_{1}^{2}+S_{2}^{2}+S_{3}^{2}}}{S_{0}}
\end{aligned}
$$

Degree of circular polarization

Degree of linear polarization

Degree of polarization

Stokes vectors are polychromatic on addition:

Mueller Matrics
 Complete polarization modeling

4×4 matrix of real values describing transformation of polarizations.
Can describe de-polarizing elements.
Eigenvectors are eigenpolarization of system (unchanged).

\[

\]

Moral: We are going to use Jones vectors/matrices to do designs, but you should know their limitations. Jones vectors deal only with systems with perfect temporal and spatial coherence. Systems with finite coherence can be partially polarized and then you must use Mueller matrices and Stokes parameters.

Jones vectors

Simplified for fully polarized systems

$$
\begin{aligned}
& \vec{J} \equiv\left[\begin{array}{c}
A_{x} \\
A_{y}
\end{array}\right] \quad \text { where } \mathrm{A}_{\mathrm{x}} \text { and } \mathrm{A}_{\mathrm{y}} \text { are the complex amplitudes of the } \mathrm{x} \text { and } \mathrm{y} \\
& J_{1} \cdot J_{2} \equiv A_{1 x} A_{2 x}^{*}+A_{1 y} A_{2}^{*} \\
& H \equiv\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \uparrow \quad V \equiv\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
& 45 \equiv \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& R \equiv \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
j
\end{array}\right] \\
& 5 \\
& \pi \\
& \Sigma \\
& 135 \equiv \frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
& D \\
& L \equiv \frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-j
\end{array}\right]
\end{aligned}
$$

Table of Jones and Mueller matrices

Linear optical element	Jones matrix	Mueller matrix
Horizontal linear polarizer	$\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$	$\frac{1}{2}\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
Vertical linear polarizer	$\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$	$\frac{1}{2}\left[\begin{array}{cccc}1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
Linear polarizer at $+45^{\circ}$	$\frac{1}{2}\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$	$\frac{1}{2}\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
Linear polarizer at -45°	$\frac{1}{2}\left[\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right]$	$\frac{1}{2}\left[\begin{array}{cccc}1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0\end{array}\right]$
Quarter-wave plate. fast axis vertical	$e^{i \pi / 4}\left[\begin{array}{cc}1 & 0 \\ 0 & -i\end{array}\right]$	$\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0\end{array}\right]$
Quarter-wave plate. fast axis horizontal	$e^{i \pi / 4}\left[\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right]$	$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0\end{array}\right]$
Homogeneous circular polarizer right	$\frac{1}{2}\left[\begin{array}{cc}1 & i \\ -i & 1\end{array}\right]$	$\frac{1}{2}\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1\end{array}\right]$
Homogeneous circular polarizer left	$\frac{1}{2}\left[\begin{array}{cc}1 & -i \\ i & 1\end{array}\right]$	$\frac{1}{2}\left[\begin{array}{cccc}1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1\end{array}\right]$

Rotation matrices

Components not aligned with x or y

$$
\begin{array}{lll}
\vec{J}^{\prime} & =R(\theta) \vec{J} & \text { Transform for Jones Vectors } \\
R(\theta) & =\left[\begin{array}{cccc}
\cos & \theta & -\sin & \theta \\
\sin & \theta & \cos & \theta
\end{array}\right] \quad \text { Coordinate Transform Matrix } \\
T^{\prime}=R(\theta) T \quad R(-\theta)
\end{array}
$$

Transform for Jones Matrices

Three types of physics

1. Diattenuation (polarization dependent loss)

- Transmission is polarization dependent
- "Polarizers"
- A.k.a.: polarization dependent loss (PDL), dichroism

2. Retardance

- Optical path length is polarization dependent.
- "Wave plates", optical activity, electro-optic
- A.k.a.: polarization mode dispersion (PMD)
- Poincarè sphere geometry

3. Depolarization

- The degree of polarization may decrease depending on input polarization
- A.k.a.: polarization scrambling

Polarizers

$$
P_{x} \equiv\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

Jones matrix of linear polarizer passing H
Power transmission of analyzer and arbitrary linear polarization:

$$
\begin{aligned}
& J_{\text {out }}=P_{x} L(\theta)=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
\cos & \theta \\
\sin & \theta
\end{array}\right]=\left[\begin{array}{cc}
\cos & \theta \\
0
\end{array}\right] \\
& T=J_{\text {Out }} \cdot J_{\text {out }}=\cos ^{2} \theta \\
& \text { Malus' Law }
\end{aligned}
$$

Dichroism: polarization dependent absorption
$P_{x} \equiv\left[\begin{array}{cc}e^{-\alpha z} & 0 \\ 0 & e^{-\beta z}\end{array}\right] \quad$ E.g.: Sheet polarizer, polarizing sunglasses, \quad Polarcor ${ }^{\mathrm{TM}}$, wire-grid
Reflective polarizers: Brewster’s angle, thin-film coatings
Crystal polarizers

E.g.: Wollaston, Rochon, Sénarmont

E.g.: Glan-Focault

Jones matrix example

Cascaded polarizers

Crossed polarizers:

$$
E_{1}=\mathbf{A}_{y} \mathbf{A}_{x} E_{0}
$$

$$
E_{0} E_{y}^{\text {x-pol }}
$$

$\mathbf{A}_{\mathrm{y}} \mathbf{A}_{\mathrm{x}}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
so no light leaks through.
rotated
Rotation tolerance

$$
\begin{aligned}
& \mathbf{A}_{\mathrm{y}} \mathbf{A}_{\mathrm{x}}(\varepsilon)=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & \varepsilon \\
\varepsilon & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
\varepsilon & 0
\end{array}\right] \\
& \mathbf{A}_{\mathrm{y}} \mathbf{A}_{\mathrm{x}}(\varepsilon)\left[\begin{array}{l}
E_{x} \\
E_{y}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
\varepsilon & 0
\end{array}\right]\left[\begin{array}{l}
E_{x} \\
E_{y}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\varepsilon E_{x}
\end{array}\right] \quad \text { So } I_{\text {out }} \approx \varepsilon^{2} I_{\text {in, } x}
\end{aligned}
$$

Retarders

$$
R \equiv\left[\begin{array}{cc}
1 & 0 \\
0 & e^{-j \Gamma}
\end{array}\right]
$$

$$
\Gamma=\frac{2 \pi}{4}=\frac{\pi}{2}
$$

$$
\Gamma=\frac{2 \pi}{2}=\pi
$$

$$
\frac{1}{n^{2}(\theta)}=\left\{\frac{1}{n_{o}^{2}}, \frac{\operatorname{Cos}^{2} \theta}{n_{o}^{2}}+\frac{\operatorname{Sin}^{2} \theta}{n_{e}^{2}}\right\}
$$

E.g. Half-wave plate.

$$
\Gamma=\frac{2 \pi}{\lambda_{o}}\left(n_{e}-n_{o}\right) L=\pi
$$

$$
L=\frac{\lambda_{o}}{2 \Delta n}
$$

Quartz QWP is only 48 microns thick at 1550 nm .
Crossing plates of differing dispersion can reduce λ, θ dependence

Power walk-off

Consider a Fourier propagation problem in which the k-surface is a tilted line:

$$
\begin{aligned}
& E(x, z)=F_{x}^{-1}\left\{F_{x}^{1}\{E(x, 0)\} e^{-j \frac{d k_{x}}{d k_{x}} k_{x} z}\right\} \\
& =E\left(x-\frac{d k_{z}}{d k_{x}} z, 0\right)
\end{aligned}
$$

Fourier propagator

Shift theorem

Beam displacing polarizer

Separates polarizations with very high isolation (limited only by crystal scatter). Emerging polarizations are parallel to a very high degree since the crystal can be flat to an arc-second.

Beam displacing polarizer

$$
\left.\begin{array}{l}
\alpha=\arctan \left[\frac{n_{o}^{2}}{n_{e}^{2}} \tan \right. \\
\alpha
\end{array}\right]-\theta \quad \text { Walk-off angle vs. crystal cut angle }
$$

$$
\Delta n=\left(\sqrt{\frac{n_{o}^{2}+n_{e}^{2}}{2}}-n_{0}\right)
$$

Differential optical path length

$$
=\left(\sqrt{\frac{1.9447 \mathrm{z}^{2}+2.1486 \mathrm{z}^{2}}{2}}-1.9447\right)=0.1045
$$

$$
\mathrm{YVO}_{4} \text { at } 1.55 \mu \mathrm{~m}
$$

Poincarè and retarders

- Retarders rotate the polarization state on the Poincarè sphere.
- Axis of rotation connects eigenpolarizations of the retarder.

- Example1: QWP with horizontal axis converts 45° linear into RHC
- Example2: Optically active (or Faraday) rotator converts H to 45°

Optical activity

Retarders with circular eigenstates

$$
O A \equiv\left[\begin{array}{cc}
\cos \delta / 2 & \sin \delta / 2 \\
-\sin \delta / 2 & \cos \delta / 2
\end{array}\right]
$$

Wollaston

- Wollaston polarizer is made of two birefringent material prisms that are cemented together. The deviations of the ordinary and extraordinary beams are nearly symmetrical about the input beam axis. The separation angle exhibits chromatic dispersion, as shown in the blow. Any separation angle can be designed upon the requirement. Typical separation angle vs wavelength is shown in the plot below for Calcite.

Extinsion Ratio: 5×10-6
Beam Separation Angle:16.7-22.5 at 980nm

Faraday Rotator

- A Faraday rotator is an optical device that rotates the polarization of light due to the Faraday effect, which in turn is based on a magneto-optic effect.
- The Faraday rotator works because one polarization of the input light is in ferromagnetic resonance with the material which causes its phase velocity to be higher than the other.
- The plane of linearly polarized light is rotated when a magnetic field is applied parallel to the propagation direction (permanent magnets). The empirical angle of rotation is given by:

$$
\beta=V B d
$$

- Where β is the angle of rotation (in radians). B is the magnetic flux density in the direction of propagation (in teslas). d is the length of the path (in metres) where the light and magnetic field interact. Then V is the Verdet constant for the material. This empirical proportionality constant (in units of radians per tesla per metre, $\mathrm{rad} /(\mathrm{T} \cdot \mathrm{m}))$ varies with wavelength and temperature and is tabulated for various materials.
- Note that direction of rotation given by sign of B Rotation is independent of propagation direction (NOT like waveplate)
- Faraday rotators are used in optical isolators to prevent undesired back propagation of light from disrupting or damaging an optical system.

Polarization Dependent Isolator

- The polarization dependent isolator, or Faraday isolator, is made of three parts, an input polarizer (polarized vertically), a Faraday rotator, and an output polarizer, called an analyzer (polarized at 45 degrees)
- Light traveling in the forward direction becomes polarized vertically by the input polarizer. The Faraday rotator will rotate the polarization by 45 degrees. The analyser then enables the light to be transmitted through the isolator.
- Light traveling in the backward direction becomes polarized at 45 degrees by the analyzer. The Faraday rotator will again rotate the polarization by 45 degrees. This means the light is polarized horizontally (the rotation is insensitive to direction of propagation). Since the polarizer is vertically aligned, the light will be extinguished

Nonreciprocal optics aka Faraday rotators

Similar optics can form a pseudo-circulator:

Design notation for polarization manipulation

View of polarization as if looking into laser. This is the EE convention and yields RHC with thumb pointing into viewers eyes, along with laser. To use the Physics convention, consider view as with laser.

Collimator
Wollaston

Angle of propagation

$45^{\circ} \mathrm{FR}$

Wollaston

Collimator

FORWARD

HWP @ 22.5ํ

Position in system

Polarization Independent Isolator

Another example

Spatial phase-shifting interferometer

PBS Example

NOTE: To avoid damage, beam must enter prism on the side marked with a dot.

Material	SF 2, NSSK grade, precision annealed optical glass
Wavefront Distortion	$\leq \lambda / 4$ at 632.8 nm over the clear aperture
Clear Aperture	Central diameter, $>80 \%$ of dimension
Surface Quality	20-10 scratch-dig
Efficiency	$\mathrm{T}_{\mathrm{p}}>80 \%,>90 \%$ average, $\mathrm{R}_{\mathrm{s}}>99.5 \%$ average
Extinction Ratio	$\mathrm{T}_{\mathrm{p}} / \mathrm{T}_{\mathrm{s}}>500: 1,1000: 1$ average
Transmitted Beam Deviation	$\leq 5 \operatorname{arc} \mathrm{~min}$
Reflected Beam Deviation	$90^{\circ} \pm 5$ arc min
Angle of Incidence	$0^{\circ} \pm 5^{\circ}$
Dimensions Tolerance	$\pm 0.25 \mathrm{~mm}$
Antireflection Coating	Broadband, multilayer coating, $\mathrm{R}_{\text {avg }}<1.0 \%$ per surface
Temperature Range	$-50{ }^{\circ} \mathrm{C}-90^{\circ} \mathrm{C}$
Durability	MIL-C-675C
Cleaning	Non-abrasive method, acetone or isopropyl alcohol on lens tissue recommended (see Care and Cleaning of Optics) Cemented optic, do not immerse in a solvent
Damage Threshold	$2 \mathrm{~kW} / \mathrm{cm}^{2} \mathrm{CW}, 1 \mathrm{~J} / \mathrm{cm}^{2}$ with 10 nsec pulses, typical

Newport Catalogue

Polarizers

Zero Order Waveplates

For . $\Gamma=\lambda / 2$ the plate is called a ${ }^{n} 0^{n}$ order halfwave plate. Thickness of the plate is:
$d=\frac{\lambda}{2\left(n_{e}-n_{0}\right)}$

ECE 5616
Curtis

Retarder Material	Birefringent polymer film stack
Substrate Material	BK 7, grade A, fine annealed optical glass
Retardation	$\lambda / 4$ or $\lambda / 2$
Retardation Accuracy	$\pm \lambda / 100$
Wavefront Distortion	$\leq \lambda / 4$ at 632.8 nm over the full aperture
Clear Aperture	10.2 mm
Surface Quality	40-20 scratch-dig
Transmitted Beam Deviation	≤ 1 arc min
Acceptance Angle	$\pm 7^{\circ}$
Thickness	3.56 mm
Housing Diameter	$25.4 \pm 0.13 \mathrm{~mm}$
Housing Thickness	6.2 mm
Temperature Range	$-20^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Antireflection Coating	Broadband, multilayer coating, $\mathrm{Ravg}<0.5 \%$
Cleaning	Non-abrasive method, acetone or isopropyl alcohol
Damage Threshold	$500 \mathrm{~W} / \mathrm{cm}^{2} \mathrm{CW}, 0.3 \mathrm{~J} / \mathrm{cm}^{2}$ with 10 nsec pulses, visible
Housing	Black anodized aluminum
	Newport Catalogue

Multiple order Waveplates

Must order for laser line
Incident angles must be close to normal Multiple nulls with polarizer

Material	Quartz, schlieren grade
Construction	Single plate
Retardation	$\lambda / 4$ or $\lambda / 2$
Retardation Accuracy	$\pm \lambda / 300$ at $20^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$
Wavefront Distortion	$\leq \lambda / 10$ at 632.8 nm over the full aperture
Clear Aperture	\geq central 90% of diameter
Surface Quality	10-5 scratch-dig
Wedge	<0.5 arc sec
Diameter Tolerance	+0/-0.25 mm
Reflectivity per Surface	Single wavelength: $\mathrm{R}<0.5 \%$ total, or 0.25% per surface Dual wavelength: $\mathrm{R}_{\text {avg }}<1.5 \%$
Thickness	Single wavelength: 1 mm , nominal Dual wavelength: 0.5-4 mm, nominal
Cleaning	Non-abrasive method, acetone or isopropyl alcohol on lens tissue recommended, caution: fragile, thin optic
Damage Threshold	$2 \mathrm{MW} / \mathrm{cm}^{2} \mathrm{CW}, 2 \mathrm{~J} / \mathrm{cm}^{2}$ with 10 nsec pulses

ECE 5616
Newport Catalogue
Curtis

