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leaf has been decreasedhythis new tree is cheaper than the old one, A Quantum Analog of Huffman Coding
contradicting optimality.
In what follows refer to Figs. 9 and 10 for illustration as we do aSamuel L. Braunstein, Christopher A. Fuchs, Daniel Gottesman, and
case-by-case analysis. Hoi-Kwong Lo
(Case 1) Ifu had a right child but no left one we could simply add
its left c_hil_d to getaheyy tree with the same cost but fewer_ bad nodes, Abstract_We analyze a generalization of Huffman coding to the
Cont.radlctlrlg the definition of". Thusu must have a left chila but quantum case. In particular, we notice various difficulties in using
no right child. There are two cases. instantaneous codes for quantum communication. Nevertheless, for the
(Case Il) Ifv is the root of some tre®’ then we could mov&” tobe  storage of quantum information, we have succeeded in constructing a
rooted at the right child of and leaver a leaf. The new resulting tree Huffman-coding-inspired quantum scheme. The number of computational

has the same cost but fewer bad nodes, again leading to a contradicfifiifs In the encoding and decoding processes ¥ quantum signals
. R can be made to be of polylogarithmic depth by a massively parallel
Otherwise 'Sj itself a Iegf. Let: be the pa_lrent ok ) implementation of a quantum gate array. This is to be compared with the
(Case Ill) Ifu is a left child ofx then we simply remove, leaving  O(IN?) computational steps required in the sequential implementation by
u as a left leaf. The cost of the resulting tree is the same as before 6leve and DiVincenzo of the well-known quantum noiseless block-coding
it has one fewer bad node. Again a contradiction. scheme of Schumacher. We also show th&®(IN?(log IN)%) sequential

. . - j ) - computational steps are needed for thecommunication of gquantum
(Case IV) Otherwisey is the right child of and removing: could information using another Huffman-coding-inspired scheme where the

add a new right child to the tree, possibly even raising its cost. Thei@nder must disentangle her encoding device before the receiver can
fore, in this case we remowmthu andv. Sincex was not bad before perform any measurements on his signals.

(because itis higher thar) remo"'“g" does not a‘?'d anew right Iegf Index Terms—Data compression, Huffman coding, instantaneous codes,
to the tree so the cost of the resulting tree remains the same. BinGg,antum coding, quantum information, variable-length codes.
has now become bad the new tree still Bakad nodes but it has fewer
total nodes thafi’, again causing a contradiction.
We have just seen that there exists some optimal fullfre&e now I. INTRODUCTION

prove thatl is feasible. See Fig. 11 for illustration. There has been much recent interest in the subject of quantum infor-
Supposéd is not feasible. Then there exists some right internal noggation processing. Quantum information is a natural generalization of
v €T and leftleafu € T such thatlepth (v) = depth (u). LetS be  cjassical information. It is based on guantum mechanics, a well-tested

the subtree rooted ai y the deepest right node€ 5, andz the left  scientific theory in real experiments. This correspondence concerns
sibling of y (= andy must exist becausE is full). Also suppose that guantum information.

probability p; is assigned tg. Now detachS from v and attach itto  The goal of this correspondence is to find a quantum source coding

u, erasey and assigp; to nodev. Denote the new tree thus created bcheme analogous to Huffman coding in the classical source coding
T". Since the only probability whose assigned right leaf has changeqigory [3]. Let us recapitulate the result of classical theory. Consider

pi we find that the simple example of a memoryless source that emits a sequence of
independent and identically distributed signals each of which is chosen
Cost (T") = Cost (T) + (depth (v) — depth (y))p;. from a listw;, ws, - - -, w, with probabilitiesp, p2, ---, p.. The

task of source coding is to store such signals with a minimal amount
But depth (v) < depth (y) soCost (T') < Cost (T) contradicting ©f resources. In classical information theory, resources are measured
optimality of 7. ThusT must be feasible. ] in bits. A standard coding scheme to use is the optimally efficient
Huffman coding algorithm, which is a well-known lossless coding
scheme for data compression.
Apart from being highly efficient, it has the advantage of being in-
stantaneous, i.e., unlike block coding schemes, the encoding and de-
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below, these two features—instantaneousness and variable length-setfeme of quantum computation. It is also highly analogous to the
Huffman coding are difficult to generalize to the quantum case.  synchronization problem in the execution of subroutines in a quantum
Now let us consider quantum information. In tgeantumcase, computer: A quantum computer program runs various computational
we are given a quantum source which emits a time sequencepgths simultaneously. Different computational paths may take different
independent and identically distributed pure-state quantum signglsmbers of computational steps. A quantum computer is, therefore,
each of which is chosen frofa.), [us), - -- |u..) with probabilities generally unsure whether a subroutine has been completed or not. We
Q15 g2+, qm, respectively. Notice thatu;)’s are normalized (i.e., o not have a satisfactory resolution to those subtle issues in the general
unit vectors) but not necessarily orthogonal to each other. Classieghe of course, the sender can always avoid this problem by adding re-
coding theory can be regarded as a special case when the ignals 4 \ngancies (i.e., adding enough zeros to the codewords to make them

tahre orth%gona]!.dThe gqal of ?utﬁntan.}bsoturce coding és éofm'n'lm'ﬁe{ixed length). However, such a prescription is highly inefficient and
Io:slr:ai? :r:cgdinlm?)rf]smunasntc:;m zi nIaI:r vir?ﬁlgemna?r?ta?ninoraa ?:i? self-defeating for our purpose of efficient quantum coding. For this
fidelity between i%put gnd output gFor é pure input stbte)gthe geason, we reject such a prescription in our current discussion.
fidelity of the output density matriy; is defined as the probability In the hope of saving resources, the natural next step to try is to

for it to pass a yes/no test of being the state). Mathematically, it stack the signals in line in a single tape during the transmission. To
is given by (u:|p:|«:) [4]. In particular, we will be concerned with greatly simplify our discussion we shall suppose that the read/write

the average fidelity? = 3", ¢;(ui|pi|u;) It is convenient to measure hegd of the machine is quantL_lm-me.chanicaI with_ its location given by
the dimensionality of a Hilbert space in terms of the number of qubigd! internal state of the machine (this head location could be thought
(i.e., quantum bits) composing it; that is, the basegarithm of the ©Of as being specified on a separate tape). But then the second problem
dimension. arises. Assuming a fixed speed of transmission, the receiver can never
Though there has been some preliminary work on quantum HuffmB@ sure when a particular signal, say the seventh signal, arrives. This
coding [9], the most well-known quantum source coding scheme idssbecause thiotal length of the signals up to that point (from the first
block coding scheme [10], [5]. The converse of this coding theoretd seventh signals) is a quantum-mechanical variable (i.e., it is in a
was proven rigorously in [1]. In block coding, if the signals are drawsuperposition of many possible values). Therefore, Bob generally has
from an ensemble with density matyix= > ¢; |u;)(u;|, Schumacher a hard time in deciding when would be the correct instant to decode the
coding, which is almost lossless, compres3esignals intoN.S(p)  seventh signal in an instantaneous quantum code.
qubits, whereS(p) = —trp log p is the von Neumann entropy. To  Let us suppose that the above problem can be solved. For example,
encodeV signalssequentiallyit requiresO(V*) computational steps Bob may wait “long enough” before performing any measurements.
[2]. The encoding and decoding processes are far from instantaneqyg.argue that there remains a third difficulty which is fatalifestan-

Moreover, the lengths of all the codewords are the same. taneousquantum codes—that the head location of the encoden-is
tangledwith the total length of the signals. If the decoder consumes the
[l. DIFFICULTIES IN A QUANTUM GENERALIZATION quantum signal (i.e., performs measurements on the signals) before the

A notable feature of quantum information is that measurement of§ficoding is completed, the record of the total length of the signals in
generally leads to disturbance. While measurement is a passive pf§ encoder head will destroy quantum coherence. This decoherence
cedure in classical information theory, it is an integral part of the fogffect is physically the same as a “which path” measurement that de-
malism of quantum mechanics and is an active process. Therefore,stigys the interference pattern in a double-slit experiment. One can also
big challenge in quantum coding is: How to encode and decode withautderstand this effect simply by considering an exampl& afopies
disturbing the signals too much by the measurements involved? Todf-a state:|0) + b|1). It is easy to show that if the encoder couples an
lustrate the difficulties involved, we shall first attempt a naive generaéncoder head to the system and keeps a record of the total number of
ization of Huffman coding to the quantum case. Consider the densitgros, the state of each signal will become impure. Consequently, the
matrix for each signgh = > ¢; |u;)(u;| and diagonalize it into fidelity between the input and the output is rather poor.

EDINACCH (1) [ll. STORAGE OFQUANTUM SIGNALS

Nevertheless, we will show here that Huffman-coding-inspired
. . . ) . quantum schemes do exist for both storage and communication of
where|¢;) is an eigenstate and the eigenvalpe's are arranged in - . . . .

; . . : uantum information. In this section we consider the problem of
decreasing order. Huffman coding of a corresponding classical sou?fe . e .
with the same probability distributiop;’s allows one to construct a S o_rage. Notice that the a_bove dlffl_cultles are due to the reqwre.ment
one-to-one correspondence between Huffman codewardmd the of |nstantaneousne§s. This .Ieads in a naturgl way to the qyestlon of
eigenstates;). Any input quantum state:;) may now be written as storageof quz.intu.m |nf0r.mat|on, where .there is no need fgr instanta-
a sum over the complete get). Remarkably, this means that, for suci'€0US decoding in the first place. In this case, the decoding does not
a naive generalization of Huffman coding, the length of each signal§&rt until the whole encoding process is done. This immediately gets
a quantum-mechanical variable with its value in a superposition of tfifl of the second (namely, when to decode) and third (namely, the
length eigenstates. It is not clear what this really means nor howr@cord in the encoder head) problems mentioned in the last section.
deal with such an object. If one performs a measurement on the lenij@wever, the first problem reappears in a new incarnation: tote
variable, the statement that measurements lead to disturbance mégmgth of sayV signals is unknown and the encoder is not sure about
that irreversible changes to th€ signals will be introduced which the number of qubits that he should use. A solution to this problem
disastrously reduce the fidelity. is to use essentially the law of large numbersMfis large, then

Therefore, to encode the signals faithfully, the sender and the esymptotically the length variable of th€ signals has a probability
ceiver are forbidden to measure the length of each signal. We emphmyplitudeconcentrated in the subspace of values betwgéh — 6)
size that this difficulty—that the sender is ignorant of the length of thend N (L + ) for anyé > 0 [10], [5], [1]. Here L is the weighted
signals to be sent—is, in fact, very general. It appears in any distributeerage length of a Huffman codeword. One can, therefore, truncate
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the signal tape into one withfixedlength sayN (L + 6) (“0’s” can be The first step is the merging of two signals into a single message.
padded to the end of the tape to make up the number if necessary.)L&ff us introduce a message tape. For simplicity, we simply denote
course, the whole tape is not of variable length anymore. Nonetheld§s,- - 0%i, ) by |h1), etc.,

we will now demonstrate that this tape can be a useful component IR 1) R2)|l2)  [0)eape
of a new coding scheme—which we shall call quantum Huffman swap IO) ) |Ra)|l2) |0+ Ok heape
coding—that shares some of the advantages of Huffman coding over shift
. . . —  [0)|1)|h2)|12) |10+ O)tape 2)
block coding. In particular, assuming that quantum gates can be 200} 1) [0)[f2) 110+ - 0hs)
applied inparallel, the encoding and decoding of quantum Huffman e R ! 2/tape

coding can be done efficiently. While a sequential implementation — [0)[1)10)]12) 71720 - 0)tape.
of quantum sourcélock coding [10], [5], [1] for N signals requires  We remark that the swap operation between any two qubits can be
O(N?) computational steps [2], a parallel implementation of quantugtone efficiently by using an array of three XOR’s with the two qubits
Huffman coding has only)((log N)*) depth for some positive in- alternately used as the control and the tafgetie shift operation is just
tegera, and a sequential implementation still uses U6V (log N)¢) @ permutation and therefore can be done in constant depth [7]. How-
gates. ever, we actually need something slightly stronger: a controlled shift,
We will now describe our coding scheme for the storage of quafontrolled by functions of the lengtis ) and|l), which are quantum
tum signals. As before, we consider a quantum source emitting a ¥@tiables. To do a shift controlled by the regigtgr we expand in bi-
quence of independent and identically distributed quantum signals witi"y: and perform a shift i/ positions conditioned on the appropriate

a density matrix for each signal shown in (1) wherss are the eigen- pit of s. When|s) is a quantum register in a sup_erposiFion, this opera-
B(_)n performed coherently will entangle the register with the tape, just

values. Considering Huffman coding for a classical source with prob-". N . )
L X as in the third difficulty described above. Itis no longer a problem here,
abilitiesp;’s allows one to construct a one-to-one correspondence be

tween Huffman codewords, and the eigenstatés; ). For parallel im- since we will disentangle the reglgtgr and the tape durlng_decodlng.
. o . Now the encoder keeps the original length tapedachsignal as
plementation, we find it useful to represdnt) by two pieces, the

. . - well as the message tape for two messages, i.e.,
first being the Huffman codeword, padded by the appropriate number

of zeros to make it into constant length( - - - 07;), the second being [11}12)|h1 720 - - O)tape.

the length of the Huffman codeworfl;), wherel; = length(h.). We \oico thatit is relatively fast to compute the length+ I» of the two
also pad zeros to the second piece so that it becomes of fixed Ienlgl%ssages fronh, andl.—O(log 1) steps for the obvious sequential

[log Imax | Whereln.x is the length of the longest Huffman COdewordmethod (wherd is the larger off; and!), andO(log log {) depth

Therefore|¢;) is mapped intq0 - - - O;)|I;). Notice that the length of it 5 good parallel algorithm. Therefore, the merging procedure can
the second tape log /.| which is generally small comparedto  pe performed in polylogarithmic depth.

The usage of the second tape is a small price to pay for efficient parallefjore concretely, at the end the encoder obtains
implementation.
In this section, we use the model of a quantum gate array for quantum 1)) === [In) ke - N0 -+ 0)tape. ®3)

computation. The complexity cla@\lc is the c_Iass_ofquantum COM- He has performedlog N merges. Merging two messages of max-
putations that can be performed in polylogarithmic parallel depth [Aum lengthi requiresflog 7] shifts (each of constant depth) plus
We prove the following theorem. swaps (of constant depth) and one addition (of depttog log 1)).

Theorem 1: Encoding or decoding of a quantum Huffman code fo-ll—he maximum length = Nimax, S0 the full merging procedure re-

o : . . quires depthO((log N)? + log N log lmax. In addition, there is a
storage is in the complexity cla@NC. Solving the classical Huffman .constant depth cost for performing the initial encoding, which we ne-

coding proplemforthe eigenvalues of the density rr_watnx glvesacodlaﬁect in the larged limit. We will also neglect thdog N 1og lmas
scheme with average codeword lengthand maximum codeword erm

lengthl.... Foranys > 0, for large enouglV, the quantum Huffman g0y the encoder truncates the message tape: He keeps only say
code s_tores data using less th&iL j|-26 + [log lmax|) qubits. The o firstN (L + &) qubits in the message tafig s - - - oy 0 - - - 0)cape
encoding network has depth((log N)*). for somes > 0 and throws away the other qubits. This truncation min-
imizes the number of qubits needed. The only overhead cost compared
to the classical case is the storage of the length tapes of the individual
signals. This takes onl¥ [ log Irax ] qubits4

The proof follows in the next two subsections.

A. Encoding
Without much loss of generality, we suppose that the total numb@r Decoding

of messages "_‘N = 27 for some pc_)smve |nte_g_ef. We propose to . Decoding can be done by adding an appropriate number of qubits in
encode by divide and conquer. First, we divide the messages i@ ;erq stat) behind the truncated message tape and simply running
pairs and apply a merging procedure to be discussed in (2) to e@ﬁg encoding process backward (again with only déptHog N)*)).

pair. The merging effectively reduces the total number of messagesy/hat about fidelity? The key observation is the following:

to 27!, We can repeat this process. Therefore, aftapplications

of the merging procedure below, we obtain a single tape containingDefinition 2: The typical subspacss is the subspace where the first
all the messages (in addition to the various length tapes containiNgL + ¢) qubits are arbitrary, and any qubits beyond that are in the
the length information). fixed state|0 - - - 0).

3In (2), we do notinclude the position of the head, since itis simply dependent
IThe second piece contains no new information. However, it is useful forom the sum of the message lengths and can be re$egfter the process is
massively parallel implementation of the shifting operations, which is an inecempleted.
portant component in our construction. 4Further optimization may be possible. For instanckygf ... is large, one
2The encoding process to be discussed below will allow us to reduce the tatah save storage space by repeating the procedure, i.e., one can now use quantum
length needed folV signals. Huffman coding for the problem of storing the quantum sigialss.
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Proposition 3: Ve, 6 > 0,3Ny > 0 such thatYy N > Np, shift [0)|11)[0)|12) - - - [y YT |1 20 - - - 0)sape
F > 1 — e whereF is the fidelity between the true stateof the N )
guantum signals and the projection0bn the typical subspacgs in Ol )total tength
our quantum Huffman coding scheme. 299 10)|1)|0)|12) - -+ [ha ) In ) R1 20 - -+ O)iape
Proof: The proof is identical to the case of Schumacher’s noiseless
guantum coding theorem [10], [5], [1]. @l + 12 }total length

Therefore, the truncation and subsequent replacement of the dis- _,;;,
carded portion by - - - 0) still lead to a high fidelity in the decoding. — [0)[[1}|0)[12) - - [O}In)[ahz - - BNO - -+ O)tape

In conclusion, we have constructed an explicit parallel encoding and O+ -+ In—1)total tength
decoding scheme for the storagedfindependent and identically dis- add
tributed quantum signals that asymptotically has ofillog N)®) — [O)11)]0)|T2) - - - [O)MIn) i Toa - Ben O <<+ O)gape
depth and use¥ (L+ 6+ [log Imax]) qubits for storage whet is the Ol 4 - 4 InViotal length-
average length of the Huffman coding for the classical coding problem 4

for the set of probabilities given by the eigenvalues of the density ma-
trix of each signal. Heré can be any positive number ahg., is the We have included an ancillary space storing the total length of the code-
length of the longest Huffman codeword. words generated so farThis space requirdsg(N/max) qubits.
o _ _ Even though the encoding of signals themselves are done one by one,
Corollary 4: A sequential implementation of the encoding algoge shifting operation can be sped up by parallel computation. Indeed,
rithm requires onlyO(N (log IV)*) gates. as before, the required controlled-shifting operation can be performed
Proof: This follows immediately from the fact that the encoding igy, O(log N +log L.y ) depth. As before, if a sequential implementa-
in QNC and use®)(N') qubits: At each time step of a parallel imple-tion, s used instead, the complete encoding of one signal still requires
mentation, onlyO(V) steps are implemented. Since the network hasyly O( ¥ (log N)*) gates.
depthO((log N)”), there can be at mogl(N (log V)*) gatesinthe  Now the encoding of theV signals in quantum communication is
network. done sequentially, implying (V) applications of the shifting opera-
tion. Therefore, with a parallel implementation of the shifting opera-
tion, the whole process has degii N (log N)*). With a sequential
IV. COMMUNICATION implementation, it take®(N?(log N)*) steps.

We now attempt to use the quantum Huffman coding for comm&- Transmission

nication rather than for the storage of quantum signals. By commu-Notice that the message is written on the message tape from left to
nication, we assume that Alice receives the sigioale by ondrom  right. Moreover, starting from left to right, the state of each qubit once
a source and is compelled to encode them one by one. As we Wilitten remains unchanged throughout the encoding process. This de-
show below, the number of qubits required is slightly more, namelypupling effect suggests that rather than waiting for the completion of
N(L + 6 + [log lmax]) + [log (Nlmax)]. The code that we will con- the whole encoding process, the sender, Alice, can start the transmis-
struct is not instantaneous, but Alice and Bob can pay a small penaiiyn immediately after the encoding. For instance, after encoding the
in stopping the transmission any time. In fact, we have the followingst » signals, Alice is absolutely sure that at least the fitst,, (where
theorem. lmin 1S the minimal length of each codeword) qubits on the tape have
I%Iready been written. She is free to send those qubits to Bob immedi-
ately. There is no penalty for such a transmission because it is easy to
see that the remaining encoding process requires no help from Bob at
all. (Note that in the asymptotic limit of large after encoding- sig-

Theorem 5: Sequential encoding and decoding of a quantu
Huffman code for communication requird¥ L + 6 + [10g lmax]) +
[log ( Nlmax )] qubits and onyO(N?(log N)“) computational gates.

The proof follows in the next three subsections. nals, Alice can even sendL — ¢) qubits for any > 0 to Bob without
worrying about fidelity.)
A. Encoding In addition, Alice can send the first length variableg,, ---, 1.,

but she must retain the total-length variable for continued encoding.
The encoding algorithm is similar to that of Section Ill except thaBince the total-length variable is entangled with each branch of the
the signals are encoded one by one. More concretely, it is done throegltoded state, decoding cannot be completed by Bob without use of
alternating applications of the swap-and-shift operations. this information. In other words, Alice must disentangle her system
from the encoded message before decoding may be completed.
||t} ha)ll2) - - [ MIN)|O)iape

@ |()>total length

C. Decoding

swap With the length information of each signal and the received qubits,
— 01 [R2)ll2) -+ [ANYIN)]0 -+ - OF 1 )ape Bob canstart the decoding process before the whole transmission is
completeprovided thathe does not perform any measurement at this
moment. For instance, having receivég;, qubits in the message tape

& |0>total length

5 (oM ho)lia) -+ )N B0 -+ O)iape from Alice, Bob is sure that at least= |rlmin/Imax| Signals have
|0 total length already arrived. He can separate thesggnals immediately using the
dd length information of each signal. This part of the decoding process is
— [0)|I)h2)|l2) - [hn ) In) A1 0 - -+ O}tape rather straightforward and we will skip its description here.
11 Yeotal length The important observation |s however, the foIIowing:'If Bob were to
R0V [1)[0Y i)« -+ [ha M) |B10 - - OFa ) eape perform a measurement on his signals now, he would find that they are

@11 ) total length 5As in (2), we do not include the position of the head.
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of poor fidelity. The reason behind this has already been noted in Secth one, but not the others. There exists a more efficient scheme for
tion 1. Even though the subsequent encoding process does not invadaing it. We shall skip the discussion here.

Bob'’s system, there is still entanglement between Alice and Bob's sys-
tems. More specifically, the shifting operations in the remaining en-
coding process by Alice require explicitly the information on the total
length of decoded signals. Before Bob performs any measurement odve have successfully constructed a Huffman-coding-inspired
his signals, it is, therefore, crucial for Alice to disentangle her systesgheme for the storage of quantum information. Our scheme is highly
first, as mentioned above. efficient. The encoding and decoding processe¥ afuantum signals
san be donen parallel with depth polynomial ifog V. (If parallel

already received{L qubits from Alice, Bob suddenly would like to machines are _unavailable, ai ,Sh‘?W';‘ ln Section ly'A our encoding
perform a measurement on his signals. He shall first inform Alice §Fheme will still take onlyO(N(log V')*) computational steps for

his intention. Afterwards, one way to proceed is the following: Theg sequential implementation. In contrast, a naive implementation of
choose some convenient point, saythth signal, to stop and consider Schumacher’s scheme will requitg N'*) computational steps.) This

quantum Huffman coding for only the first signals and complete the Massive parallelism is possible because we explicitly use another tape
encoding and decoding processes. to store th?j Izngth |nforTe;F|Zr&$()fftTgngl\?aduza; S|g]n)als.hThefs.torage

. ) space needed is asymptotic 0g lmax|) WhereL is

. We shall consider two subf:ases'. In the f|rst sub(_:age, the numbeEhe average length of the corresponding classical Huffman coding
1S gh0§en such that theth $!gnal IS meSF likely still in thg sfer?der problem for the density matrix in the diagonal forfis an arbitrary
(Alice)'s hands (e.g.qn > K + O(y/K) in the asymptotic limit). ¢ bositive number, anida is the length of the longest Huffman
The sender Alice now disentangles the remaining signal from the f'rc%deword.

m quantum signals by ap.plying a quantum shifting operation. She €@Ne also considered the problem of using quantum Huffman coding
now complete the encoding process for quantum Huffman coding f%i communication in which case Alice encodes the signals one

them signals and send Bob any untransmitted qubits on the tape.blg;l one. N(L + 6 + [log luae]) + O(log N) qubits are needed
. .. . . . oL t max g4 .
the asymptotic limit of largeX', O(,/m) qubits of forward transmis- ith a parallel implementation of the shifting operation, depth of

sion (from Alice to Bob) are needed. (The required depth of the netwof N(log N)*) is needed. On the other hand, with a sequential

is polynomial inlog m if a parallel implementation of a quantum gatg plementation,0(N*(log N)*) computational steps are needed.
array is used.) In addition, Alice must send her record of the total lenqw]either case, the code is not instantaneous, but, by paying a small

of the signals. However, this requires only an additidia (11/umax)] Eenalty in terms of communication and computational costs, Alice

qubits_, so'the total number which must be transmitted for disentang £.d Bob have the option of stopping the transmission and Bob may
ment is stillO(y/m). then start measuring his signals.

In the second subcase, the numbeiis chosen such that theth  More specifically, while the receiver Bob is free to separate the
signal is most likely already in the receiver (Bob)'s hands (&wgs.  signals from one another, he is not allowed to measure them until the
K - O(y/K) in the asymptotic limit). The receiver Bob now attemptsender Alice has completed the encoding process. This is because
to disentangle the remaining signals from the firsstquantum sig- Alice’s encoder head generally contains the information of the total
nals by applying a quantum shifting operation. Of course, he neggfgth of the signals. In other words, its state is entangled with Bob'’s
to shift some of his qubits back to Alice. This asymptotically amount§ignals. Therefore, whenever Bob would like to perform a measure-
to O(/m) qubits ofbackwardcommunication. This is a penalty thatment, he should first inform Alice and the two should proceed with
one must pay for this method. After this is done, Alice must again sefifbentanglement. We present two alternative methods of achieving
her length register to Bob (after subtracting the lengths of the signalsch disentanglement one of which involves forward communication
returned to her). This requires an additiotéllog ) qubits. and the other of which involves both forward and backward.

If m is chosen betweeR — O(/K) and K + O(/K), neither Since real communication channels are always noisy, in actual im-
sending signals forward or backward will suffice to properly diserplementation source coding is always followed by encoding into an
tangle the varying lengths of the signals. One possible solution is&tror-correcting code. Following the pioneering work by Shor [11] and
choosen’ > K + O(y/K) and perform the above procedure, sendingidependently by Steane [12], various quantum error-correcting codes
m/' total signals to Bob. Then Bob decodes and returnsthem extra have been constructed. We remark that quantum Huffman coding algo-
signals to Alice. This method requir€X ,/K') qubits transmitted for- rithm (even the version for communication) can be immediately com-
ward andO(,/K’) qubits transmitted backward to disentangle. bined with the encoding process of a quantum error-correcting code for

We remark that the shifting operation can be done rather easily§fficient communication through a noisy channel. _
distributed quantum computation between Alice and Bob. This is a*S duantum information is fragile against noises in the environ-
nontrivial observation because the number of qubits to be shifted frdRENL: it may be useful to work out a fault-tolerant procedure for
Alice to Bob is itself a quantum-mechanical variable. This, howevefuantum source coding. The generalizations of other classical coding
does not create much problem. Bob can always communicate W§ﬁ.[1eme_s to the quantum case are also |'nterest|ng [6]. Mqreover, there
Alice using a bus of fixed length. For example, he applies local oper&XiSt universal quantum data compression schemes motivated by the
tions to swap the desired quantum superposition of various numberd-8fPe-Ziv compression algorithm for classical information [8].
qubits from his tape to the bus, sends such a bus to Alice, etc.

The result is the following theorem. ACKNOWLEDGMENT

V. CONCLUDING REMARKS

Suppose in the middle of their communication in which Bob h
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the cost ofO(/m) additional qubits transmitted.
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Optimization of Distributed Detection Systems Under the II. SYSTEM MODEL AND PROBLEM STATEMENT

Minimum Average Misclassification Risk Criterion For the sake of simplicity, consider two scalar observations and

Maurizio Magarini and Arnaldo Spalvieri binary detection. Extensions are straightforward. ket x> denote
the observations, and assume that they are drawn from the continuous
spacests, X-. In the classical formulation of the detection problem,
Abstract—A common model for distributed detection systems is that of a hidden discrete random variable (tbiass or the hypothesis is
several separated sensors each of which measures some observable, quartirawn together with the observation vector according to some known
tizes it, and communicates to a fusion center the quantized observation. jnint probability distribution. We call such a discrete random variable

The fusion center collects the quantized observations and takes the deci- c— Th | of the detecti tem is t th
sion. The present correspondence deals with the design of the quantizers© € € = {c1, e2}. The goal of the detection system is to guess the

and of the fusion center under a rate constraint. The system of interest al- hidden class given the observation vector.
lows soft nonbreakpoint quantizers and nonindependent observations. Our
finding is that locally optimal design of the distributed detection systemis A, System Description
feasible via alternate minimization of the average misclassification risk.
The decentralized detection system we are concerned with is mod-

eled as a decision rule made by two scalar quantizers and a fusion
center. Each scalar quantizer is allowed here to be a nonbreakpoint one.
Quantizer?,, (z,),n = 1, 2, is modeled as a mapping froi, toZ,,,
|. INTRODUCTION whereZ,, ={0, 1, ---, I,,—1}. Of course, the rat&,, of thenth quan-

. . . tizerisR,, =log, I, . Inversion of@, (z) is hereafter intended as
Distributed detection systems have received a lot of attention 082 @n (@)

in the past two decades, as documented in the special issue of the Q;l(i) = {an € Xo: Qu(,) =i}

PROCEEDINGS OF THEIEEE [1]. A common model for these systems

involves several separated sensors, each of which measures sbhRfe decision function performed by the fusion center, denoted
observable, quantizes it, and communicates to a fusion center 1. iz), is @ mapping fron¥, x 7 to C. The decision rule of the
guantized observation. The fusion center collects the quantizégcentralized detection system, denote?:(x1), Qz(x2)), is a
observations and takes the decision. Since the rate of transmisdieaPping from¥; x x> toC. Asin [5], we assume that the processing
between the sensors and the fusion center is a cost, fine quantizatfbfe performed at the fusion center is unlimited in complexity. In
of data may be not allowed. A crucial problem is therefore the desigf@ctice, this means that the fusion center is a lookup table with
of coarse quantizers that satisfy a rate constraint and that introddce ™" entries. A pictorial example of the decision rule for a specific
low degradation in the detection capability of the system. Tsitsik|f¥/o-dimensional decentralized detection system is later illustrated in
and Athans have shown in [2] that, when conditional independencefdg. 6.

Index Terms—Alternate optimization, average misclassification risk, dis-
tributed detection.

B. Statement of the Problem
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