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leaf has been decreased by1, this new tree is cheaper than the old one,
contradicting optimality.

In what follows refer to Figs. 9 and 10 for illustration as we do a
case-by-case analysis.

(Case I) Ifu had a right child but no left one we could simply add
its left child to get a new tree with the same cost but fewer bad nodes,
contradicting the definition ofT . Thusu must have a left childv but
no right child. There are two cases.

(Case II) Ifv is the root of some treeT 0 then we could moveT 0 to be
rooted at the right child ofu and leavev a leaf. The new resulting tree
has the same cost but fewer bad nodes, again leading to a contradiction.

Otherwise,v is itself a leaf. Letx be the parent ofu.
(Case III) Ifu is a left child ofx then we simply removev, leaving

u as a left leaf. The cost of the resulting tree is the same as before but
it has one fewer bad node. Again a contradiction.

(Case IV) Otherwise,u is the right child ofx and removingu could
add a new right child to the tree, possibly even raising its cost. There-
fore, in this case we removebothu andv. Sincex was not bad before
(because it is higher thanu) removingu does not add a new right leaf
to the tree so the cost of the resulting tree remains the same. Sincex

has now become bad the new tree still hasB bad nodes but it has fewer
total nodes thanT , again causing a contradiction.

We have just seen that there exists some optimal full treeT . We now
prove thatT is feasible. See Fig. 11 for illustration.

SupposeT is not feasible. Then there exists some right internal node
v 2 T and left leafu 2 T such thatdepth (v) = depth (u). LetS be
the subtree rooted atv, y the deepest right nodey 2 S, andx the left
sibling of y (x andy must exist becauseT is full). Also suppose that
probabilitypi is assigned toy. Now detachS from v and attach it to
u, erasey and assignpi to nodev. Denote the new tree thus created by
T 0. Since the only probability whose assigned right leaf has changed is
pi we find that

Cost (T 0) = Cost (T ) + (depth (v)� depth (y))pi:

But depth (v) < depth (y) soCost (T 0) < Cost (T ) contradicting
optimality ofT . ThusT must be feasible.
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A Quantum Analog of Huffman Coding
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Abstract—We analyze a generalization of Huffman coding to the
quantum case. In particular, we notice various difficulties in using
instantaneous codes for quantum communication. Nevertheless, for the
storage of quantum information, we have succeeded in constructing a
Huffman-coding-inspired quantum scheme. The number of computational
steps in the encoding and decoding processes of quantum signals
can be made to be of polylogarithmic depth by a massively parallel
implementation of a quantum gate array. This is to be compared with the
( ) computational steps required in the sequential implementation by

Cleve and DiVincenzo of the well-known quantum noiseless block-coding
scheme of Schumacher. We also show that ( (log ) ) sequential
computational steps are needed for thecommunication of quantum
information using another Huffman-coding-inspired scheme where the
sender must disentangle her encoding device before the receiver can
perform any measurements on his signals.

Index Terms—Data compression, Huffman coding, instantaneous codes,
quantum coding, quantum information, variable-length codes.

I. INTRODUCTION

There has been much recent interest in the subject of quantum infor-
mation processing. Quantum information is a natural generalization of
classical information. It is based on quantum mechanics, a well-tested
scientific theory in real experiments. This correspondence concerns
quantum information.

The goal of this correspondence is to find a quantum source coding
scheme analogous to Huffman coding in the classical source coding
theory [3]. Let us recapitulate the result of classical theory. Consider
the simple example of a memoryless source that emits a sequence of
independent and identically distributed signals each of which is chosen
from a listw1; w2; � � � ; wn with probabilitiesp1; p2; � � � ; pn. The
task of source coding is to store such signals with a minimal amount
of resources. In classical information theory, resources are measured
in bits. A standard coding scheme to use is the optimally efficient
Huffman coding algorithm, which is a well-known lossless coding
scheme for data compression.

Apart from being highly efficient, it has the advantage of being in-
stantaneous, i.e., unlike block coding schemes, the encoding and de-
coding of each signal can be done immediately. Note also that code-
words of variable lengths are used to achieve efficiency. As we will see
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below, these two features—instantaneousness and variable length—of
Huffman coding are difficult to generalize to the quantum case.

Now let us consider quantum information. In thequantumcase,
we are given a quantum source which emits a time sequence of
independent and identically distributed pure-state quantum signals
each of which is chosen fromju1i; ju2i; � � � jumi with probabilities
q1; q2 � � � ; qm, respectively. Notice thatjuii’s are normalized (i.e.,
unit vectors) but not necessarily orthogonal to each other. Classical
coding theory can be regarded as a special case when the signalsjuii
are orthogonal. The goal of quantum source coding is to minimize
the number of dimensions of the Hilbert space needed for almost
lossless encoding of quantum signals, while maintaining a high
fidelity between input and output. For a pure input statejuii, the
fidelity of the output density matrix�i is defined as the probability
for it to pass a yes/no test of being the statejuii. Mathematically, it
is given byhuij�ijuii [4]. In particular, we will be concerned with
the average fidelityF =

i
qihuij�ijuii It is convenient to measure

the dimensionality of a Hilbert space in terms of the number of qubits
(i.e., quantum bits) composing it; that is, the base-2 logarithm of the
dimension.

Though there has been some preliminary work on quantum Huffman
coding [9], the most well-known quantum source coding scheme is a
block coding scheme [10], [5]. The converse of this coding theorem
was proven rigorously in [1]. In block coding, if the signals are drawn
from an ensemble with density matrix� = qj jujihujj, Schumacher
coding, which is almost lossless, compressesN signals intoNS(�)
qubits, whereS(�) = �tr � log � is the von Neumann entropy. To
encodeN signalssequentially, it requiresO(N3) computational steps
[2]. The encoding and decoding processes are far from instantaneous.
Moreover, the lengths of all the codewords are the same.

II. DIFFICULTIES IN A QUANTUM GENERALIZATION

A notable feature of quantum information is that measurement of it
generally leads to disturbance. While measurement is a passive pro-
cedure in classical information theory, it is an integral part of the for-
malism of quantum mechanics and is an active process. Therefore, the
big challenge in quantum coding is: How to encode and decode without
disturbing the signals too much by the measurements involved? To il-
lustrate the difficulties involved, we shall first attempt a naive general-
ization of Huffman coding to the quantum case. Consider the density
matrix for each signal� = qj jujihujj and diagonalize it into

� =
i

pij�iih�ij (1)

wherej�ii is an eigenstate and the eigenvaluespi ’s are arranged in
decreasing order. Huffman coding of a corresponding classical source
with the same probability distributionpi ’s allows one to construct a
one-to-one correspondence between Huffman codewordshi and the
eigenstatesj�ii. Any input quantum statejuji may now be written as
a sum over the complete setj�ii. Remarkably, this means that, for such
a naive generalization of Huffman coding, the length of each signal is
a quantum-mechanical variable with its value in a superposition of the
length eigenstates. It is not clear what this really means nor how to
deal with such an object. If one performs a measurement on the length
variable, the statement that measurements lead to disturbance means
that irreversible changes to theN signals will be introduced which
disastrously reduce the fidelity.

Therefore, to encode the signals faithfully, the sender and the re-
ceiver are forbidden to measure the length of each signal. We empha-
size that this difficulty—that the sender is ignorant of the length of the
signals to be sent—is, in fact, very general. It appears in any distributed

scheme of quantum computation. It is also highly analogous to the
synchronization problem in the execution of subroutines in a quantum
computer: A quantum computer program runs various computational
paths simultaneously. Different computational paths may take different
numbers of computational steps. A quantum computer is, therefore,
generally unsure whether a subroutine has been completed or not. We
do not have a satisfactory resolution to those subtle issues in the general
case. Of course, the sender can always avoid this problem by adding re-
dundancies (i.e., adding enough zeros to the codewords to make them
a fixed length). However, such a prescription is highly inefficient and
is self-defeating for our purpose of efficient quantum coding. For this
reason, we reject such a prescription in our current discussion.

In the hope of saving resources, the natural next step to try is to
stack the signals in line in a single tape during the transmission. To
greatly simplify our discussion we shall suppose that the read/write
head of the machine is quantum-mechanical with its location given by
an internal state of the machine (this head location could be thought
of as being specified on a separate tape). But then the second problem
arises. Assuming a fixed speed of transmission, the receiver can never
be sure when a particular signal, say the seventh signal, arrives. This
is because thetotal length of the signals up to that point (from the first
to seventh signals) is a quantum-mechanical variable (i.e., it is in a
superposition of many possible values). Therefore, Bob generally has
a hard time in deciding when would be the correct instant to decode the
seventh signal in an instantaneous quantum code.

Let us suppose that the above problem can be solved. For example,
Bob may wait “long enough” before performing any measurements.
We argue that there remains a third difficulty which is fatal forinstan-
taneousquantum codes—that the head location of the encoder isen-
tangledwith the total length of the signals. If the decoder consumes the
quantum signal (i.e., performs measurements on the signals) before the
encoding is completed, the record of the total length of the signals in
the encoder head will destroy quantum coherence. This decoherence
effect is physically the same as a “which path” measurement that de-
stroys the interference pattern in a double-slit experiment. One can also
understand this effect simply by considering an example ofN copies
of a stateaj0i+ bj1i. It is easy to show that if the encoder couples an
encoder head to the system and keeps a record of the total number of
zeros, the state of each signal will become impure. Consequently, the
fidelity between the input and the output is rather poor.

III. STORAGE OFQUANTUM SIGNALS

Nevertheless, we will show here that Huffman-coding-inspired
quantum schemes do exist for both storage and communication of
quantum information. In this section we consider the problem of
storage. Notice that the above difficulties are due to the requirement
of instantaneousness. This leads in a natural way to the question of
storageof quantum information, where there is no need for instanta-
neous decoding in the first place. In this case, the decoding does not
start until the whole encoding process is done. This immediately gets
rid of the second (namely, when to decode) and third (namely, the
record in the encoder head) problems mentioned in the last section.
However, the first problem reappears in a new incarnation: Thetotal
length of sayN signals is unknown and the encoder is not sure about
the number of qubits that he should use. A solution to this problem
is to use essentially the law of large numbers. IfN is large, then
asymptotically the length variable of theN signals has a probability
amplitudeconcentrated in the subspace of values betweenN(L � �)

andN(L + �) for any � > 0 [10], [5], [1]. HereL is the weighted
average length of a Huffman codeword. One can, therefore, truncate
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the signal tape into one with afixedlength sayN(L+ �) (“0’s” can be
padded to the end of the tape to make up the number if necessary.). Of
course, the whole tape is not of variable length anymore. Nonetheless,
we will now demonstrate that this tape can be a useful component
of a new coding scheme—which we shall call quantum Huffman
coding—that shares some of the advantages of Huffman coding over
block coding. In particular, assuming that quantum gates can be
applied inparallel, the encoding and decoding of quantum Huffman
coding can be done efficiently. While a sequential implementation
of quantum sourceblock coding [10], [5], [1] forN signals requires
O(N3) computational steps [2], a parallel implementation of quantum
Huffman coding has onlyO((log N)a) depth for some positive in-
tegera, and a sequential implementation still uses justO(N(log N)a)

gates.
We will now describe our coding scheme for the storage of quan-

tum signals. As before, we consider a quantum source emitting a se-
quence of independent and identically distributed quantum signals with
a density matrix for each signal shown in (1) wherepi’s are the eigen-
values. Considering Huffman coding for a classical source with prob-
abilitiespi’s allows one to construct a one-to-one correspondence be-
tween Huffman codewordshi and the eigenstatesj�ii. For parallel im-
plementation, we find it useful to representj�ii by two pieces,1 the
first being the Huffman codeword, padded by the appropriate number
of zeros to make it into constant length,2 j0 � � � 0hii, the second being
the length of the Huffman codeword,jlii, whereli = length(hi). We
also pad zeros to the second piece so that it becomes of fixed length
dlog lmaxe wherelmax is the length of the longest Huffman codeword.
Therefore,j�ii is mapped intoj0 � � � 0hiijlii. Notice that the length of
the second tape isdlog lmaxe which is generally small compared ton.
The usage of the second tape is a small price to pay for efficient parallel
implementation.

In this section, we use the model of a quantum gate array for quantum
computation. The complexity classQNC is the class of quantum com-
putations that can be performed in polylogarithmic parallel depth [7].
We prove the following theorem.

Theorem 1: Encoding or decoding of a quantum Huffman code for
storage is in the complexity classQNC. Solving the classical Huffman
coding problem for the eigenvalues of the density matrix gives a coding
scheme with average codeword lengthL and maximum codeword
lengthlmax. For any� > 0, for large enoughN , the quantum Huffman
code stores data using less thanN(L + � + dlog lmaxe) qubits. The
encoding network has depthO((log N)2).

The proof follows in the next two subsections.

A. Encoding

Without much loss of generality, we suppose that the total number
of messages isN = 2r for some positive integerr. We propose to
encode by divide and conquer. First, we divide the messages into
pairs and apply a merging procedure to be discussed in (2) to each
pair. The merging effectively reduces the total number of messages
to 2r�1. We can repeat this process. Therefore, afterr applications
of the merging procedure below, we obtain a single tape containing
all the messages (in addition to the various length tapes containing
the length information).

1The second piece contains no new information. However, it is useful for a
massively parallel implementation of the shifting operations, which is an im-
portant component in our construction.

2The encoding process to be discussed below will allow us to reduce the total
length needed forN signals.

The first step is the merging of two signals into a single message.
Let us introduce a message tape. For simplicity, we simply denote
j0 � � � 0hi i by jh1i, etc.,

jh1ijl1ijh2ijl2i j0itape
swap
�! j0ijl1ijh2ijl2i j0 � � � 0h1itape
shift
�! j0ijl1ijh2ijl2i jh10 � � � 0itape
swap
�! j0ijl1ij0ijl2i jh10 � � � 0h2itape
shift
�! j0ijl1ij0ijl2i jh1h20 � � � 0itape:

(2)

We remark that the swap operation between any two qubits can be
done efficiently by using an array of three XOR’s with the two qubits
alternately used as the control and the target.3 The shift operation is just
a permutation and therefore can be done in constant depth [7]. How-
ever, we actually need something slightly stronger: a controlled shift,
controlled by functions of the lengthsjl1i andjl2i, which are quantum
variables. To do a shift controlled by the registerjsi, we expands in bi-
nary, and perform a shift by2i positions conditioned on the appropriate
bit of s. Whenjsi is a quantum register in a superposition, this opera-
tion performed coherently will entangle the register with the tape, just
as in the third difficulty described above. It is no longer a problem here,
since we will disentangle the register and the tape during decoding.

Now the encoder keeps the original length tape foreachsignal as
well as the message tape for two messages, i.e.,

jl1ijl2ijh1h20 � � � 0itape:

Notice that it is relatively fast to compute the lengthl1 + l2 of the two
messages froml1 and l2—O(log l) steps for the obvious sequential
method (wherel is the larger ofl1 and l2), andO(log log l) depth
with a good parallel algorithm. Therefore, the merging procedure can
be performed in polylogarithmic depth.

More concretely, at the end the encoder obtains

jl1ijl2i � � � jlN ijh1h2 � � � hN0 � � � 0itape: (3)

He has performeddlog Ne merges. Merging two messages of max-
imum lengthl requiresdlog le shifts (each of constant depth) plus
swaps (of constant depth) and one addition (of depthO(log log l)).
The maximum lengthl = Nlmax, so the full merging procedure re-
quires depthO((log N)2 + log N log lmax. In addition, there is a
constant depth cost for performing the initial encoding, which we ne-
glect in the large-N limit. We will also neglect thelog N log lmax

term.
Finally, the encoder truncates the message tape: He keeps only say

the firstN(L+ �) qubits in the message tapejh1h2 � � �hN0 � � � 0itape
for some� > 0 and throws away the other qubits. This truncation min-
imizes the number of qubits needed. The only overhead cost compared
to the classical case is the storage of the length tapes of the individual
signals. This takes onlyNd log lmaxe qubits.4

B. Decoding

Decoding can be done by adding an appropriate number of qubits in
the zero statej0i behind the truncated message tape and simply running
the encoding process backward (again with only depthO((log N)a)).

What about fidelity? The key observation is the following:

Definition 2: The typical subspaceS� is the subspace where the first
N(L + �) qubits are arbitrary, and any qubits beyond that are in the
fixedstatej0 � � � 0i.

3In (2), we do not include the position of the head, since it is simply dependent
on the sum of the message lengths and can be reset to0 after the process is
completed.

4Further optimization may be possible. For instance, iflog l is large, one
can save storage space by repeating the procedure, i.e., one can now use quantum
Huffman coding for the problem of storing the quantum signalsjl i’s.
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Proposition 3: 8 �; � > 0; 9N0 > 0 such that8N > N0,
F � 1 � � whereF is the fidelity between the true state� of theN
quantum signals and the projection of� on the typical subspaceS� in
our quantum Huffman coding scheme.

Proof: The proof is identical to the case of Schumacher’s noiseless
quantum coding theorem [10], [5], [1].

Therefore, the truncation and subsequent replacement of the dis-
carded portion byj0 � � � 0i still lead to a high fidelity in the decoding.

In conclusion, we have constructed an explicit parallel encoding and
decoding scheme for the storage ofN independent and identically dis-
tributed quantum signals that asymptotically has onlyO((log N)a)
depth and usesN(L+�+dlog lmaxe) qubits for storage whereL is the
average length of the Huffman coding for the classical coding problem
for the set of probabilities given by the eigenvalues of the density ma-
trix of each signal. Here� can be any positive number andlmax is the
length of the longest Huffman codeword.

Corollary 4: A sequential implementation of the encoding algo-
rithm requires onlyO(N(log N)a) gates.

Proof: This follows immediately from the fact that the encoding is
in QNC and usesO(N) qubits: At each time step of a parallel imple-
mentation, onlyO(N) steps are implemented. Since the network has
depthO((log N)a), there can be at mostO(N(log N)a) gates in the
network.

IV. COMMUNICATION

We now attempt to use the quantum Huffman coding for commu-
nication rather than for the storage of quantum signals. By commu-
nication, we assume that Alice receives the signalsone by onefrom
a source and is compelled to encode them one by one. As we will
show below, the number of qubits required is slightly more, namely,
N(L+ �+ dlog lmaxe)+ dlog (Nlmax)e. The code that we will con-
struct is not instantaneous, but Alice and Bob can pay a small penalty
in stopping the transmission any time. In fact, we have the following
theorem.

Theorem 5: Sequential encoding and decoding of a quantum
Huffman code for communication requiresN(L+ �+ dlog lmaxe) +
dlog (Nlmax)e qubits and onlyO(N2(log N)a) computational gates.

The proof follows in the next three subsections.

A. Encoding

The encoding algorithm is similar to that of Section III except that
the signals are encoded one by one. More concretely, it is done through
alternating applications of the swap-and-shift operations.

jh1ijl1ijh2ijl2i � � � jhNijlNij0itape


j0itotal length
swap
�! j0ijl1ijh2ijl2i � � � jhN ijlNij0 � � � 0h1itape


j0itotal length

shift
�! j0ijl1ijh2ijl2i � � � jhN ijlNijh10 � � � 0itape


j0itotal length

add
�! j0ijl1ijh2ijl2i � � � jhN ijlNijh10 � � � 0itape


jl1itotal length
swap
�! j0ijl1ij0ijl2i � � � jhNijlNijh10 � � � 0h2itape


jl1itotal length

shift
�! j0ijl1ij0ijl2i � � � jhN ijlNijh1h20 � � � 0itape


jl1itotal length

add
�! j0ijl1ij0ijl2i � � � jhNijlNijh1h20 � � � 0itape


jl1 + l2itotal length
� � �
shift
�! j0ijl1ij0ijl2i � � � j0ijlNijh1h2 � � �hN0 � � � 0itape


jl1 + � � �+ lN�1itotal length

add
�! j0ijl1ij0ijl2i � � � j0ijlNijh1h2 � � � hN0 � � � 0itape


jl1 + � � �+ lNitotal length:

(4)

We have included an ancillary space storing the total length of the code-
words generated so far.5 This space requireslog(Nlmax) qubits.

Even though the encoding of signals themselves are done one by one,
the shifting operation can be sped up by parallel computation. Indeed,
as before, the required controlled-shifting operation can be performed
in O(log N +log lmax) depth. As before, if a sequential implementa-
tion is used instead, the complete encoding of one signal still requires
only O(N(log N)a) gates.

Now the encoding of theN signals in quantum communication is
done sequentially, implyingO(N) applications of the shifting opera-
tion. Therefore, with a parallel implementation of the shifting opera-
tion, the whole process has depthO(N(log N)a). With a sequential
implementation, it takesO(N2(log N)a) steps.

B. Transmission

Notice that the message is written on the message tape from left to
right. Moreover, starting from left to right, the state of each qubit once
written remains unchanged throughout the encoding process. This de-
coupling effect suggests that rather than waiting for the completion of
the whole encoding process, the sender, Alice, can start the transmis-
sion immediately after the encoding. For instance, after encoding the
first r signals, Alice is absolutely sure that at least the firstrlmin (where
lmin is the minimal length of each codeword) qubits on the tape have
already been written. She is free to send those qubits to Bob immedi-
ately. There is no penalty for such a transmission because it is easy to
see that the remaining encoding process requires no help from Bob at
all. (Note that in the asymptotic limit of larger, after encodingr sig-
nals, Alice can even sendr(L� �) qubits for any� > 0 to Bob without
worrying about fidelity.)

In addition, Alice can send the firstr length variablesl1, � � �, lr ,
but she must retain the total-length variable for continued encoding.
Since the total-length variable is entangled with each branch of the
encoded state, decoding cannot be completed by Bob without use of
this information. In other words, Alice must disentangle her system
from the encoded message before decoding may be completed.

C. Decoding

With the length information of each signal and the received qubits,
Bob canstart the decoding process before the whole transmission is
completeprovided thathe does not perform any measurement at this
moment. For instance, having receivedrlmin qubits in the message tape
from Alice, Bob is sure that at leasts = brlmin=lmaxc signals have
already arrived. He can separate thoses signals immediately using the
length information of each signal. This part of the decoding process is
rather straightforward and we will skip its description here.

The important observation is, however, the following: If Bob were to
perform a measurement on his signals now, he would find that they are

5As in (2), we do not include the position of the head.
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of poor fidelity. The reason behind this has already been noted in Sec-
tion II. Even though the subsequent encoding process does not involve
Bob’s system, there is still entanglement between Alice and Bob’s sys-
tems. More specifically, the shifting operations in the remaining en-
coding process by Alice require explicitly the information on the total
length of decoded signals. Before Bob performs any measurement on
his signals, it is, therefore, crucial for Alice to disentangle her system
first, as mentioned above.

Suppose in the middle of their communication in which Bob has
already receivedKL qubits from Alice, Bob suddenly would like to
perform a measurement on his signals. He shall first inform Alice of
his intention. Afterwards, one way to proceed is the following: They
choose some convenient point, say themth signal, to stop and consider
quantum Huffman coding for only the firstm signals and complete the
encoding and decoding processes.

We shall consider two subcases. In the first subcase, the numberm

is chosen such that themth signal is most likely still in the sender
(Alice)’s hands (e.g.,m > K + O(

p
K) in the asymptotic limit).

The sender Alice now disentangles the remaining signal from the first
m quantum signals by applying a quantum shifting operation. She can
now complete the encoding process for quantum Huffman coding of
them signals and send Bob any untransmitted qubits on the tape. In
the asymptotic limit of largeK, O(

p
m) qubits of forward transmis-

sion (from Alice to Bob) are needed. (The required depth of the network
is polynomial inlog m if a parallel implementation of a quantum gate
array is used.) In addition, Alice must send her record of the total length
of the signals. However, this requires only an additionaldlog (mlmax)e
qubits, so the total number which must be transmitted for disentangle-
ment is stillO(

p
m).

In the second subcase, the numberm is chosen such that themth
signal is most likely already in the receiver (Bob)’s hands (e.g.,m <

K �O(
p
K) in the asymptotic limit). The receiver Bob now attempts

to disentangle the remaining signals from the firstm quantum sig-
nals by applying a quantum shifting operation. Of course, he needs
to shift some of his qubits back to Alice. This asymptotically amounts
toO(

p
m) qubits ofbackwardcommunication. This is a penalty that

one must pay for this method. After this is done, Alice must again send
her length register to Bob (after subtracting the lengths of the signals
returned to her). This requires an additionalO(log m) qubits.

If m is chosen betweenK � O(
p
K) andK + O(

p
K), neither

sending signals forward or backward will suffice to properly disen-
tangle the varying lengths of the signals. One possible solution is to
choosem0

> K+O(
p
K) and perform the above procedure, sending

m
0 total signals to Bob. Then Bob decodes and returns them

0�m extra
signals to Alice. This method requiresO(

p
K) qubits transmitted for-

ward andO(
p
K) qubits transmitted backward to disentangle.

We remark that the shifting operation can be done rather easily in
distributed quantum computation between Alice and Bob. This is a
nontrivial observation because the number of qubits to be shifted from
Alice to Bob is itself a quantum-mechanical variable. This, however,
does not create much problem. Bob can always communicate with
Alice using a bus of fixed length. For example, he applies local opera-
tions to swap the desired quantum superposition of various numbers of
qubits from his tape to the bus, sends such a bus to Alice, etc.

The result is the following theorem.

Theorem 6: Alice and Bob may truncate a communication session
after the transmission ofm encoded signals, retaining high fidelity with
the cost ofO(

p
m) additional qubits transmitted.

In the above discussion, we have focused on the simple case when
Bob would like to perform a measurement on the whole set of the first
m signals. Suppose Bob is interested only in a particular signal, say the

mth one, but not the others. There exists a more efficient scheme for
doing it. We shall skip the discussion here.

V. CONCLUDING REMARKS

We have successfully constructed a Huffman-coding-inspired
scheme for the storage of quantum information. Our scheme is highly
efficient. The encoding and decoding processes ofN quantum signals
can be donein parallel with depth polynomial inlog N . (If parallel
machines are unavailable, as shown in Section IV-A our encoding
scheme will still take onlyO(N(log N)a) computational steps for
a sequential implementation. In contrast, a naive implementation of
Schumacher’s scheme will requireO(N3) computational steps.) This
massive parallelism is possible because we explicitly use another tape
to store the length information of the individual signals. The storage
space needed is asymptoticallyN(L + � + dlog lmaxe) whereL is
the average length of the corresponding classical Huffman coding
problem for the density matrix in the diagonal form,� is an arbitrary
small positive number, andlmax is the length of the longest Huffman
codeword.

We also considered the problem of using quantum Huffman coding
for communication in which case Alice encodes the signals one
by one.N(L + � + dlog lmaxe) + O(log N) qubits are needed.
With a parallel implementation of the shifting operation, depth of
O(N(log N)a) is needed. On the other hand, with a sequential
implementation,O(N2(log N)a) computational steps are needed.
In either case, the code is not instantaneous, but, by paying a small
penalty in terms of communication and computational costs, Alice
and Bob have the option of stopping the transmission and Bob may
then start measuring his signals.

More specifically, while the receiver Bob is free to separate the
signals from one another, he is not allowed to measure them until the
sender Alice has completed the encoding process. This is because
Alice’s encoder head generally contains the information of the total
length of the signals. In other words, its state is entangled with Bob’s
signals. Therefore, whenever Bob would like to perform a measure-
ment, he should first inform Alice and the two should proceed with
disentanglement. We present two alternative methods of achieving
such disentanglement one of which involves forward communication
and the other of which involves both forward and backward.

Since real communication channels are always noisy, in actual im-
plementation source coding is always followed by encoding into an
error-correcting code. Following the pioneering work by Shor [11] and
independently by Steane [12], various quantum error-correcting codes
have been constructed. We remark that quantum Huffman coding algo-
rithm (even the version for communication) can be immediately com-
bined with the encoding process of a quantum error-correcting code for
efficient communication through a noisy channel.

As quantum information is fragile against noises in the environ-
ment, it may be useful to work out a fault-tolerant procedure for
quantum source coding. The generalizations of other classical coding
schemes to the quantum case are also interesting [6]. Moreover, there
exist universal quantum data compression schemes motivated by the
Lempel–Ziv compression algorithm for classical information [8].
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Optimization of Distributed Detection Systems Under the
Minimum Average Misclassification Risk Criterion

Maurizio Magarini and Arnaldo Spalvieri

Abstract—A common model for distributed detection systems is that of
several separated sensors each of which measures some observable, quan-
tizes it, and communicates to a fusion center the quantized observation.
The fusion center collects the quantized observations and takes the deci-
sion. The present correspondence deals with the design of the quantizers
and of the fusion center under a rate constraint. The system of interest al-
lows soft nonbreakpoint quantizers and nonindependent observations. Our
finding is that locally optimal design of the distributed detection system is
feasible via alternate minimization of the average misclassification risk.

Index Terms—Alternate optimization, average misclassification risk, dis-
tributed detection.

I. INTRODUCTION

Distributed detection systems have received a lot of attention
in the past two decades, as documented in the special issue of the
PROCEEDINGS OF THEIEEE [1]. A common model for these systems
involves several separated sensors, each of which measures some
observable, quantizes it, and communicates to a fusion center the
quantized observation. The fusion center collects the quantized
observations and takes the decision. Since the rate of transmission
between the sensors and the fusion center is a cost, fine quantization
of data may be not allowed. A crucial problem is therefore the design
of coarse quantizers that satisfy a rate constraint and that introduce
low degradation in the detection capability of the system. Tsitsiklis
and Athans have shown in [2] that, when conditional independence of
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the observation given the hypothesis cannot be assumed, the design
problem is NP complete. Hence one is lead to renounce to global
optimality and to study suboptimal strategies. Several design strategies
have been studied in the past, most of which were tailored to hard
(one-bit) quantizers. Tenney and Sandell optimized the decentralized
quantizers with a fixed fusion rule [3], while Chair and Varshney
considered the design of the fusion rule for fixed quantizers [4]. Joint
design of soft (multibit) quantizers has been studied by Longoet al.in
[5], where an alternate optimization technique is proposed. Specifi-
cally, the approach in [5] is to maximize the Bhattacharyya distance
between the multivariate conditional probabilities of quantized data
given the hypotheses. The potential weakness of this approach is that
the Bhattacharyya distance is not the natural measure of performance
of detection systems. Therefore, one wonders whether joint design
of quantizers and the fusion rule under the natural criterion of
performance is feasible. Our answer is that locally optimal design,
that is, minimization of the average misclassification risk, is feasible
by alternate optimization. A similar method was adopted in [6] in the
framework of decentralized parameter estimation. Also, in [7] the
alternate optimization technique is considered as a method to minimize
a general distortion measure. Like [5], [7], our method applies to
nonindependent observations and to soft (multibit) nonbreakpoint
quantizers.

II. SYSTEM MODEL AND PROBLEM STATEMENT

For the sake of simplicity, consider two scalar observations and
binary detection. Extensions are straightforward. Letx1, x2 denote
the observations, and assume that they are drawn from the continuous
spacesX1, X2. In the classical formulation of the detection problem,
a hidden discrete random variable (theclass, or the hypothesis) is
drawn together with the observation vector according to some known
joint probability distribution. We call such a discrete random variable
c 2 C = fc1; c2g. The goal of the detection system is to guess the
hidden class given the observation vector.

A. System Description

The decentralized detection system we are concerned with is mod-
eled as a decision rule made by two scalar quantizers and a fusion
center. Each scalar quantizer is allowed here to be a nonbreakpoint one.
QuantizerQn(xn),n = 1; 2; is modeled as a mapping fromXn toIn,
whereIn=f0; 1; � � � ; In�1g. Of course, the rateRn of thenth quan-
tizer isRn=log2 In. Inversion ofQn(x) is hereafter intended as

Q
�1

n
(i) = fxn 2 Xn: Qn(xn) = ig:

The decision function performed by the fusion center, denoted
�(i1; i2), is a mapping fromI1 � I2 to C. The decision rule of the
decentralized detection system, denoted�(Q1(x1); Q2(x2)), is a
mapping fromX1 �X2 to C. As in [5], we assume that the processing
to be performed at the fusion center is unlimited in complexity. In
practice, this means that the fusion center is a lookup table with
2R +R entries. A pictorial example of the decision rule for a specific
two-dimensional decentralized detection system is later illustrated in
Fig. 6.

B. Statement of the Problem

The Bayesian risk (or cost) in deciding in favor of classĉ 2 C when
x1; x2 is observed is

R(ĉjx1; x2) =

2

i=1

b(ci 7! ĉ)P (cijx1; x2) (1)
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