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There was'a period, in the 1940s and 1950s, when classical analysis was considered 
dead and the hope for the future of analysis was considered to be in the abstract 
branches, specializing in generalization. As is now apparent, the rumour of the 
death of classical analysis was greatly exaggerated and during the 1960s and 1970s 
the field has been one of the most successful in all of mathematics. Briefly, I think 
that one can say that the reasons for this are the unification of methods from har­
monic analysis, complex variables and differential equations, the discovery of the 
correct generalizations to several variables and finally the realization that in many 
problems complications cannot be avoided and that intricate combinatorial argu­
ments rather than polished theories often are in the centre. 

This general description of classical analysis also summarizes the work of Charles 
Fefferman. In an eminent way he masters these techniques and has contributed 
to the success of our common field and it is with real joy and pride, as a friend and as 
co-worker in the field, J shall try to sketch some lines in the development with emphasis 
on certain of Fefferman's many contributions. 

It is natural to start with the Hardy spaces Hp
9 i.e. functions f(z) holomorphic 

in |z|<l and belonging LP on the boundary of \z\ = l. Through the work of 
Marcel Riesz we know that Hp is the dual of HQ for conjugate exponents p and 
q for l < / x ° ° 3 and the theory becomes similar to the Lp

9 LMJieory. There was, 
however, no analogy to the L1, L°°-duality and special methods were necessary 
for every situation for H1. It was therefore a great sensation when Fefferman in 
1971 showed that the dual of H1 was a space that had been used a few years earlier 
by John and Nirenberg, the space BMO of functions of bounded mean oscillation. 
This is the space of functions which on every interval differs in the mean from its 
mean value by a bounded quantity. A canonical non-bounded example is the 
logarithm of the absolute value. Many problems for H1 now become concrete, 
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constructive problems for this class. As a simple illustration of the force of the 
method, consider Hardy's theorem that if f(z)=]g0cnz

nÇ:H1 then 2\cn\n~1<00-
Dually this means that ^ ^ ^ g B M O > ^ = ^ 

and this is essentially trivial to verify. 
The idea, however, carries much further. The result from 1971 by Gundy, Burk-

holder and Silverstein that a harmonic function u(z) in |z|<l is the real part of 
an //^function if and only if , N . r 1 

J sup M(zJ^L1 

zeve 

where V0 is the Stolz angle at ei9
9 also gets a natural explanation as a representa­

tion problem for BMO. The interesting result appears that we need only take 
the sup over the radius. It is clear how this generalizes to several dimensions and we 
have in this theory one of the most rapidly expanding branches of analysis. In parti­
cular, I should like to mention the recent theory of Muckenhaupt, Wheeden and 
others, where also Fefferman has contributed essentially, generalizing the //-theory 
of conjugate functions to weighted ZAspaces. The culmination is Calderóne recent 
work on singular integrals on Cx-curves which you will hear more about during the 
congress. 

In the centre of this development is the theory of singular integrals and different 
maximal versions of these integrals. In particulai, the maximal partial sum operator 
for a Fourier series is essentially such a maximal operator 

S*(f) = sup £„(/)(*) = sup ff®BT dt. 
n n J X—t 

Fefferman has given a direct combinatorial proof in the spirit of Kolmogorov that 
SnM(x) for arbitrary choice of n(x) is uniformly bounded on 1? and hence a new 
proof of the a.e. convergence of the Fourier series of a continuous function. We have 
of course similar formulas in several variables. It is remarkable that Fefferman was 
the first to find a counterexample showing that no similar result holds for rectangular 
partial sums in several variables, even if we make strong restrictions on the ratio 
of the sides of the rectangles. This is a result that should have been proved 100 years 
ago! 

We have seen here how the interplay between ideas in real and complex analysis 
has given striking and deep new results and that singular integrals and Fourier 
analysis were the main tools. These tools are also, as you all know, closely tied to 
partial differential equations with constant coefficients because of the algebraic 
way in which Fourier transform reflects derivations. In a similar way one can also 
treat differential equations with variable coefficients — the idea is to introduce in 
the Fourier transform a function p — the symbol — which also depends on the 
space variables: ( p j | ) ^ = J J ^ - ^ ^ {> y)u(y) dy ^ 

We can make the theory still more general by replacing (x—y) • £ in the exponent 
by more general functions. This will be important for us later. 
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The theory becomes highly technical and a careful classification of symbols 
p in terms of estimates of derivatives is necessary. In joint work with R. Beals, 
Fefferman has introduced a new weighted classification. The main application is 
a new proof of a result of Nirenberg and Treves for the local solvability of a partial 
differential equation of principal type. Using these methods Fefferman and Phong 
recently showed a best possible version of the sharp Gärding inequality, i.e. if 
p(x, 0 ^ 0 an(* is a^ n i ° s t °f second order in £ then 

(p(x9D)u9u)>-C\\u\\l 
There is a natural connection back from partial differential equations to complex 

analysis in the classical Cauchy-Riemann equations. In several variables, these are 
really a system of equations and an important difference between one and several 
complex variables is that certain of these equations dbf=0 also make sense on the 
boundary of the domain Q. In particular, if / is given on the boundary there is 
a natural L2-projection on solutions of these equations. This projection is realized 
by a kernel, the Szegö kernel. Similarly, the projection corresponding to L2 for 
the volume of Q is given by the Bergman kernel K(z9 Q. Clearly, in the centre 
of interest, we have the regularity of K as the points approach the boundary. 
It was shown by Kerzman that for strictly pseudo convex domains, the singularities 
appear as z->£ and the case z=Ç is particularly interesting. 

If Q is a strictly pseudo convex domain given by a smooth plurisubharmonic 
function ^ so that fì:^<0, then Hörmander proved in 1965 that for z0€#ß 

dzx 

limi//(z)' ,+1#(z, z) 
71 ! 

det *-tay 
dip 

V' -5=--

= - ^ 0 / / ) . 

dl// # 
dz\ •" dzn 

By a direct very ingenious construction Fefferman (1974) obtained a complete asym­
ptotic formula which to everybody's surprise contained a logarithmic singularity: 

( - ^ « ^ ( z , z) = ^(z) + G(z)(-^)"+1log(-^) 
with F and G smooth. As was shown later by Boutet de Monvel and Sjöstrand 
this singularity can be best understood in the context of Fourier integral operators. 
Let^(z, Q be a convenient, explicit continuation of \jf(z9z)=\j/(z) from the diagonal 
in Q to CnXC". Then K(z9 Q is essentially a Laplace transform of the type 

oo 

f é*l*'Ok(z9£;t)dt 
0 

where k has a singularity at t=°° of the type tn which just produces singularities 
of Fefferman's type at the boundary where ^=0. 
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Fefferman's interest in the Bergman kernel originated in his desire to show the 
regularity of biholomorphic mappings up to the boundary of smooth domains. The 
metric 

is invariant under the mapping and its geodesies G are therefore natural bases for 
a geometric description of the correspondence between the boundaries of the domains, 
i.e. if we can show that G approaches a definite boundary point and that directions 
correspond smoothly to the boundary. Since we have a precise knowledge of the 
behavior of the metric at dQ all becomes concrete differential geometric problems. 
The difficulties are however very serious because of the singular behavior of K at dQ 
but were mastered by Fefferman in a remarkable way. 

Through Feffçrman's result we now have a foundation for a discussion of the 
mapping on the boundary. The fundamental problem is to classify domains which 
are biholomorphically equivalent or locally so. We shall only consider the local 
problem and then need a set of local invariants. In the case w=2 all local invariants 
were formed already by Eli Cartan and Chern and Moser gave a complete theory. 
In particular they found certain invariant curves; the chains. You will hear more 
about this in Jürgen Moser's lecture. Fefferman has given a differential geometric 
description of the Chern-Moser-chains derived from certain geodesies for a me­
tric, which is related to the Bergman kernel function. He has also started the big 
program to find algebraic descriptions of the local invariants. In all probability 
we are here at the beginning of a completely new theory in several complex 
variables. 

I should like to finish by pointing to an alternative approach which is very attractive 
to a classical analyst. The most important tool in one complex variable is the 
harmonic functions. The class is invariant under conformai mappings because 
A(uof) = \f'\2Au. The natural analogue in several variables is the Hessian 
determinant 

We have already seen A in Hörmander's formula Lu for K(z9 z) and actually 
Ä and L are related by the change u-Aogu. The study of the equation Au=q> 
has started but basic estimates are still missing. Fefferman has made the important 
observation that the equation Lu=l9 u=0 on dQ9 can be solved approximately, 
again with regularity until the critical singularities enter for the «th derivative. 
I am sure that we see here another example of the beginning of an important theory. 

I hope this brief survey has convinced you of the vitality of classical analysis and 
of the great contributions of Charles Fefferman. 
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