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Abstract

Abstract. We present an O(V 4 log V ) coin flipping algorithm to test
vertex-colored graphs with bounded color multiplicities for color-preserving
isomorphism. We are also able to generate uniformly distributed ran-
dom automorphisms of such graphs. A more general result finds gener-
ators for the intersection of cylindric subgroups of a direct product of
groups in O(n7/2 log n) time, where n is the length of the input string.
This result will be applied in another paper to find a polynomial time
coin flipping algorithm to test isomorphism of graphs with bounded
eigenvalue multiplicities. The most general result says that if AutX is
accessible by a chain G0 ≥ · · · ≥ Gk = AutX of quickly recognizable
groups such that the indices |Gi−1 : Gi| are small (but unknown), the
order of |G0| is known and there is a fast way of generating uniformly
distributed random members of G0 then a set of generators of AutX
can be found by a fast algorithm. Applications of the main result im-
prove the complexity of isomorphism testing for graphs with bounded
valences to exp(n1/2+o(1)) and for distributive lattices to O(n6 log log n).

∗Apart from possible typos, this is a verbatim transcript of the author’s 1979 technical
report, “Monte Carlo algorithms in graph isomorphism testing” (Université de
Montréal, D.M.S. No. 79-10), with two footnotes added to correct a typo and a
glaring omission in the original.
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All algorithms depend on a series of independent coin flips and have a
small probability of failure (reaching no decision), but, unlike for some
classical Monte-Carlo algorithms, the correctness of the decision made
can always be checked and we are not referred to the hope that events
with small probability are practically impossible. We suggest the term
“Las Vegas computation” for such strong Monte-Carlo procedures.

0 Monte Carlo or Las Vegas?

0.1

Fast Monte-Carlo algorithms to decide some interesting recognition problems
have been around for a while now, the most notable among them being the
Strassen-Solovay primality test [16].

One feature of this algorithm is that in case of a negative answer (the
input number is decided to be prime) there is no check on the correctness
of the answer. The situation is similar in the case when we wish to decide
whether a multivariate polynomial vanishes identically, by substituting ran-
dom numbers for the variables. (R. Zippel [18]). In some cases, however,
we can check whether the decision reached was correct (as in Zippel’s GCD
algorithm [17]).

It may be worth distinguishing these two kinds of random algorithms by
reserving the term “Monte-Carlo” for the Strassen-Solovay type algorithms. I
propose the term “Las Vegas algorithm” for those stronger procedures where
the correctness of the result can be checked. Adopting this terminology, a
“coin-tossing” algorithm, computing a function F (x) will be called a

Monte-Carlo algorithm if it has

INPUT: x (a string in a finite alphabet)

OUTPUT: y (believed to be equal to F (x))

ERROR PROBABILITY: less than 1/3 (the error being y 6= F (x))1.

1Typo corrected: the original had 1/2 here. (Footnote added.)
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We shall call the computation a Las Vegas algorithm if it has

INPUT: x

OUTPUT: either “?” or F (x)

PROBABILITY OF FAILURE: less than 1/2 (the failure meaning “?” out-
put).

(Of course, repeatedly applying the algorithm t times, the probability of
error/failure is reduced to less than 2−t).

In particular, if our computation is to solve a recognition problem (i.e.
F (x) ∈ {yes, no}) and its running time is a polynomial of the length of the
input string2, then F belongs to the class called RP by Adleman and Manders
[1] if the algorithm is Monte-Carlo and it belongs to ∆R = RP ∩ coRP if the
algorithm is Las Vegas.

Note that every Las Vegas computation is Monte Carlo, but not con-
versely.

0.2

In this paper we give (contrary to the title) Las Vegas algorithms to test
isomorphism in certain classes of graphs. One of the applications of the
main results of this paper (2.5, 5.2) will be a polynomial time Las Vegas
isomorphism testing for graphs having bounded multiplicities of eigenvalues
[6]. In particular, non-isomorphism is in NP for these classes of graphs (i.e.
isomorphism is well characterized in the sense of Edmonds: the negative
answer can also be verified in polynomial time) (since ∆R ⊆ NP ∩ coNP ).
It is not known in general, whether non-isomorphism of two graphs on n
vertices can be proved in exp(o(n)) steps.

It is the author’s dream that such a proof, though difficult, isn’t out of
reach anymore, and the present paper may be a contribution to that modest
goal.

2We also need to assume that a “yes” answer is always correct. (Footnote added.)
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0.3

To the author’s knowledge, no coin-tossing algorithms have previously been
known to solve truly combinatorial recognition problems, not solvable by any
known polynomial time deterministic algorithm.

1 Introduction

1.1

Graph isomorphism testing by brute force takes n! time. (n will always
refer to the number of vertices.) Heuristic algorithms like the one treated
in 4.4 are often used to classify the vertices and thereby reduce the number
of trials needed (cf. [14]). If such a process splits the vertex set of a graph
X into pieces of sizes k1, . . . , kr(

∑
ki = n) and the same happens to the

graph Y then we are still left with
∏r

i=1(ki!) bijections as candidates for
an isomorphism X → Y . It is frustrating that this number is exponentially
large even if our vertex classification algorithm was as successful as to achieve
k1 = . . . = kr = 3, and we don’t know of any deterministic algorithm that
could test isomorphism of such pairs of graphs with so successfully classified
vertices within subexponential time.

1.2

We are able, however, to give an O(n4 log n) Las Vegas algorithm (for the case
when all classes have bounded size). The precise statement of the problem
to be solved is this. Given two graphs with colored vertices, each color class
having size ≤ k, decide whether they admit a color preserving isomorphism.
The cost of our Las Vegas computation will be O(k4kn4 log n). (Theorems
3.1, 3.2). (We remark that for k ≤ 2, there is a straightforward linear time
deterministic algorithm.)

After the computation is done, we shall also be able to generate uniformly
distributed random members of the automorphism group AutX of the colored
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graph X at O(k!n2) cost each. Moreover, the algorithm displays a set of
generators of AutX.

1.3

The more general setting, covering both the vertex-colored graphs with small
color multiplicities and the graphs with bounded eigenvalue multiplicities is
the following.

Suppose AutX is polynomially accessible from a well-described group. By
this we mean that we have a chain of groups G0 ≥ G1 ≥ · · · ≥ Gk =
AutX(k < nc) such that

(i) G0 is well-described, i.e. we know its order |G0| and we are able to
generate uniformly distributed random members of G0 (cf. Def. 2.1);

(ii) the indices |Gi−1 : Gi| are small (uniformly bounded by a polynomial
of n);

(iii) the groups Gi are recognizable (i.e., given a member of Gi−1 we can
decide in polynomial time whether it belongs to Gi, i = 1, . . . , k − 1).

Under these circumstances we proceed as follows (cf. Theorems 2.5 and
2.10).

We extend this chain by adding Gk ≥ Gk+1 ≥ · · · ≥ Gk+n where Gk+j

is the stabilizer of the jth vertex of X in Gk+j−1(j = 1, . . . , n). Clearly
|Gk+n| = 1. By induction on i, we generate uniformly distributed random
members of Gi−1 in sufficient numbers such as to represent all left cosets of
Gi−1 mod Gi with high probability, and then select a complete set of left coset
representatives. We use these coset representatives to generate uniformly
distributed random members of Gi (once such elements of Gi−1 are available)
and continue. This way we compute the indices ri = |Gi−1 : Gi with a
possible error, but this will be eliminated by checking if ri = |Gi− 1 : Gi| but
this can be eliminated by checking if

∏k+n
i=1 ri = |G0|. If not, we output “?”; if

yes, we have all we wanted. AutX is generated by the coset representatives
below Gk = AutX.
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1.4

We apply this procedure to obtain improved theoretical bounds on the com-
plexity of isomorphism testing for distributive lattices (nc log log n, Cor. 3.4),
trivalent graphs (exp(cn1/2 log n)) and of graphs with bounded valence (exp(n1/2+o(1)),
Theorem 4.1). The best previously known bound for these classes was (1+c)n,
c a positive constant (G.L. Miller [14]).

1.5

It is the author’s hope that an exp((log n)c) Las Vegas isomorphism test for
trivalent graphs may arrive in the not too distant future. Besides the Las Ve-
gas algorithm presented here, results about the behavior of a simple canonical
vertex classification algorithm (4.4) combined with a depth-first search may
possibly possibly find further applications (Theorem 4.8, Algorithm 4.9).

1.6

Open problems, indicating the limits of (the author’s) present knowledge are
scattered throughout the paper. Some comments about the way how the
presented ideas arose are included with the acknowledgments at the end of
the paper.

1.7

Let me add here some comments on the shortcomings of the results. The fact
that the algorithms are not deterministic is not a defect from either theoret-
ical or practical point of view. Any attempt of practical implementation of
the colored graph isomorphism test 3.1-3.2 should, however, be preceded by
the use of all available heuristics, since the O(n4 log n) running time is too
long. It would be very interesting to see improvements on the exponent 4.
The most essential deficiency of our algorithm is, however, that it does not
provide a canonical labeling of the vertices. A canonical labeling of the class
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K of graphs is an assignment of a labeled graph C(X) to every graph X ∈ K
such that

(i) X ∼= C(X); (ii) X ∼= Y iff C(X) = C(Y ).

In all cases previously known to me, isomorphism testing algorithms ac-
tually yield canonical labeling (see e.g. [11], [2], [12]). R.E. Tarjan has kindly
informed me that the celebrated fast planar graph isomorphism test [7], [8],
[9] is no exception.

Problem 1.8. Find a (random) polynomial time canonical labeling algo-
rithm for vertex-colored graphs (V, E, f) where every color class has size
≤ 3.

(Here, (V, E) is a graph and f : V → {1, . . . , n} is an arbitrary map
called “coloring,” such that |f−1(i)| ≤ 3(i = 1, . . . , n). )

Remark 1.9. The hierarchy of the results of this paper and ref. [6] is this:

2.5 → 5.2 → 3.1 ↔ 3.2 → 3.3 → 3.4

↓ ↓ ↓

2.10 → [6] 4.1

l

2.11

In view of the technical nature of the proof of both 2.5 → 5.2, and
5.2 → 3.1, we present a direct proof of 2.5 → 3.1 in section 3.

2 The main result

We are going to handle large groups, far too large to be stored by their
multiplication tables. The group elements will be thought of as 0−1 strings,
and we require that group operations be carried out by a fast algorithm.
For our purposes it is not necessary to postulate that the set of those 0 −
1 strings representing group elements be recognizable by a fast algorithm,
although this will always be the case in the subsequent applications of the
main result. The information we need about our large group is its order,
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and an algorithm generating uniformly distributed random members of the
group (using random numbers).

For notational convenience, we adopt the convention to identify non-
negative integers M with the sets of their predecessors: M = {0, . . . ,M−1}.
A map g : M → G will be called uniform if |g−1(x)| = M/|G| for each x ∈ G.

Definition 2.1. We say that a group G is well described with respect to the
time bounds (t, T ) where t ≤ T if the following conditions are satisfied:

(a) the order N of G is given;

(b) we are given an algorithm executing group operations on G in less than t
steps (in particular, the length of the 0− 1 strings representing the elements
of G is less than t, hence N = |G| < 2t);

(c) we are given a multiple M of N , where M is still less than 2t, and an
algorithm computing a uniform map g : M → G in less than T steps.

Remark 2.2. Condition (c) means that we can compute uniformly dis-
tributed random members of G, within T steps, employing uniformly dis-
tributed random integers from M = {0, . . . ,M − 1}.

Definition 2.3. The numbers N, M and the algorithms (b) and (c) consti-
tute a good description of the group G w. r. to the time bounds t, T .

Definition 2.4. A chain of subgroups G0 ≥ G1 ≥ · · · ≥ Gk is recognizable
in time τ , if there is an algorithm with

INPUT: a pair (i, x) where x is known to belong to Gi−1 (1 ≤ i ≤ k);

OUTPUT: “yes” if x ∈ Gi, “no” otherwise;

RUNNING TIME: not exceeding τ .

(For k = 1, we shall say that G1 is a subgroup of G0, recognizable in time
τ .)

Now we are able to formulate the main result of this paper.

Let G0 be a group, well described w. r. to the time bounds t, T and let
G0 ≥ G1 ≥ · · · ≥ Gm = E (|E| = 1) be a chain of subgroups, recognizable in
time τ . Let Si ≥ |Gi−1 : Gi| be known upper bounds on the unknown indices
of subsequent subgroups (i = 1, . . . ,m).
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Theorem 2.5. There is a Las Vegas algorithm with

INPUT: a good description of G0 w.r. to time bounds (t, T ); an algorithm,
recognizing the chain of subgroups G0 ≥ G1 ≥ · · · ≥ Gm = E in τ steps; the
integers s1, . . . , sm (where si ≥ |Gi−1 : Gi|).

OUTPUT: either “?” or else

(i) Ri, a complete set of left coset representatives of each Gi−1 mod Gi

(i = 1, . . . ,m) (|Ri| = |Gi−1 : Gi|);

(ii) a good description of each Gi w. r. to the time bounds (t, T + 2(s1 +
. . . + si)τ) (i = 1, . . . ,m).

COST OF COMPUTATION: less than∑m
i=1 si(log si+log (4m))(T+2τ

∑i
j=1 sj) ≤ ms(log s+log (4m))(T+(m+1)τs)

binary operations and less than 4tms(log s + log m + 3) coin tosses, where
s = max{si : 1 ≤ i ≤ m}.

Remark 2.6. Output (i) yields, in particular, the orders of every Gi, and
also a set of at most

∑m
j=i+1 si generators of Gi. Output (ii) enables us to

generate uniformly distributed random members of Gi.

Our procedure rests on the following two observations. First, we note that
a recognizable subgroup H having small index in a well-described group G is
itself well described, and all we need in order to construct a good description
is a complete set of left coset representatives of G mod H. The second
observation will be that we have a good chance of obtaining a complete set of
representatives simply by guessing a sufficient number of random members
of G and selecting a maximal subset of pairwise left incongruent elements
among them (mod H).

Lemma 2.7. Let G be a group, well described w.r. to the time bounds
(T, t) and H a subgroup of G, recognizable in time τ . Then H has a good
description with time bounds (t, T + 2τ |G : H|). We can construct the good
description once a good description of G and a complete set of left coset
representatives of G mod H is given.

Proof. Let {a1, . . . , as} be a complete set of left coset representatives of
G mod H. We check Def. 2.1. (a), (b), (c) for H.
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(a) The order of H is |G|/s. (b) is clearly inherited to H. (c) Let M denote
the number occurring in the good description of G, and g : M → G the
corresponding uniform function. We use the same number M for H. First
we define a uniform map h : G → H by

h(x) = a−1
j x if x ∈ ajH.

(For any x ∈ G, h(x) can be computed by computing a−1
1 x, . . . , a−1

s x and
determining which of them belongs to H.)

Now, let ḡ(u) = hg(u) (u ∈ M). Clearly, ḡ : M → H is uniform.

Let again G be a group, well described w.r. to the time bounds (t, T );
and H a subgroup of G, recognizable in time τ . The index |G : H| is not
known to us, only an upper bound s ≥ |G : H|.

Lemma 2.8. There exists a Monte Carlo algorithm with

INPUT: a good description of the group G w.r. to the time bounds (t, T );

an algorithm, recognizing the subgroup H in time τ ;

an integer s which is known to be ≥ |G : H|;

a positive number q (the parameter of the cost-security tradeoff).

OUTPUT: a positive integer k (believed to be equal to |G : H|);

a set a1, . . . , ak of elements of G, pairwise left incongruent mod H.

PROBABILITY OF ERROR: less than e−q.

COST OF COMPUTATION: less than s(log s + q)(T + 2sτ) elementary op-
erations and ds(log s + q)e independent random numbers from the interval
M = {0, . . . ,M − 1}.

(dxe denotes the smallest integer, not smaller than x.)

Note that this is a Monte-Carlo algorithm, not Las Vegas. The possible error
is k < |G : H|.

Proof: The procedure is very simple. Guess r = ds(log s + q)e random
members b1, . . . , br of G. Of these, select a maximal subset a1, . . . , ak of
pairwise left incongruent elements mod H. Output k and a1, . . . , ak. End.
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To select the ai we have to perform at most (r− 1)s divisions of the form
b−1
i bj and test whether b−1

i bj ∈ H each time.

We estimate the error probability. For a coset bH, the probability that
bi ∈ bH is 1/|G : H| ≥ 1/s, hence the probability that none of the bi belongs
to bH is at most (1 − 1/s)r < e−r/s. Finally, the probability that there is a
coset not represented by b1, . . . , br (i.e., k < |G : H|) is less than se−r/s ≤ e−q.

Now we are ready to prove Theorem 2.5. We construct subsets R1, R2, . . .
(Ri ⊆ Gi−1) such that the members of Ri are pairwise left incongruent
mod Gi. We pretend that Ri is a complete set of left coset representatives of
Gi−1 mod Gi (i.e. |Ri| = |Gi−1 : Gi|) unless we obtain a proof of the contrary,
in which case we output “?” and stop.

Suppose R1, . . . , Ri−1 have already been constructed. If our assumption,
that |Rj| = |Gj−1 : G| holds for j = 1, . . . , i − 1, is correct then an (i − 1)-
tuple application of Lemma 2.7 defines a good description of Gi−1 w.r. to
the time bounds (t, T + 2τ(si + . . . + si − 1)). Hence we can apply Lemma
2.8 with q = log (4m) to obtain a set Ri which is a complete set of left
coset representatives of Gi−1 mod Gi with (conditional) probability exceeding
1−e−q = 1−1/4m. We may, however, find it impossible to repeatedly apply
Lemma 2.7, namely, if for some j ≤ i − 1, |Rj| < |Gj−1 : Gj|, we may
(randomly) generate an x ∈ Gj−1, not contained in any coset represented
by Rj. If so, we output “?”, else continue the procedure until R1, . . . , Rm

are constructed. Then we compute the product |R1| · · · |Rm|. If this number
is less than N = |G0|, we output “?” (we know there was an error in
computing the indices |Gj−1 : Gj|), else we conclude that there was no error,
|Ri| = |Gi−1 : Gi| holds, indeed, for each i = 1, . . . ,m, and we output sets Ri

and the good descriptions of the Gi.

The probability of failure (“?” output) is less than m · 1/(4m) = 1/4,
given the Q =

∑m
i=1dsi(log si + log (4m)e independent random numbers from

M . We describe how to compute these numbers. Let ` = dlog (M − 1)e. By
4Q` coin tosses we define 4Q random numbers from the uniform distribution
over 2`. If at least 3Q+1 of these numbers are ≥ M , we output “?” and end,
else we select the first Q from those, not exceeding M − 1. The probability
of failure at this step is less than
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1

24Q

Q−1∑
j=0

(
4Q
j

)
<

1

4

.

Finally, the combined probability of failure either in the process of gen-
erating random numbers or in determining coset representatives is less than
1/4 + 1/4 = 1/2.

As ` ≤ t, the number of coin tosses required is at most 4tm(s(log s +
log (4m)) + 1).

As a first application of the main result, we derive a sufficient condition for
the existence of a polynomial time Las Vegas isomorphism testing algorithm
for a class K of graphs.

In this context, n will always denote the number of vertices of the input
graphs, and “polynomial” refers to “bounded by nc” where the constant c
depends on the class K only. A group is well described if it is so w.r. to
polynomial time bounds.

Definition 2.9. A class of pairs (n, H) where n is a positive integer and
H is a finite group, will be called polynomially accessible from well described
groups, if there is an algorithm, which computes in nc time:

(i) a good description of a group G0;

(ii) a positive integer k < nc;

(iii) recognizes a chain G0 ≥ G1 ≥ · · · ≥ Gk = H of subgroups of G0, where
|Gi : Gi+1| < nc for every i. (The input is (n,H).

Theorem 2.10. Let K be a class of graphs such that the class {(n, AutX) :
X ∈ K, |V (X)| = n} of groups is polynomially accessible from well described
groups. Then there is a polynomial time Las Vegas algorithm with:

INPUT: a graph X ∈ K;

OUTPUT: either “?”, or a set of generators of AutX (in particular, the orbit
partition of V (X)); and a good description of AutX in polynomial time.

Theorem 2.11. Let K be a class of graphs as in Theorem 2.10. Suppose
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moreover that

(i) if X ∈ K and Y is a connected component of X, then Y ∈ K;

(ii) If X and Y are connected graphs belonging of K then their vertex-disjoint
union also belongs to K.

Then there is a polynomial time Las Vegas algorithm with

INPUT: a pair of graphs X, Y ∈ K;

OUTPUT: either “?” or an isomorphism between X and Y , or a proof that
they are not isomorphic.

Proof 2.11 is a corollary to 2.10, since it suffices to test connected members
X, Y of K for isomorphism. X and Y are isomorphic if one of the generators
of Aut(X∪̇Y ) maps X onto Y .

In order to prove 2.10, let X ∈ K and G0 ≥ G1 ≥ · · · ≥ G` = AutX be
the chain of polynomially recognizable subgroups of a well described group
G0. Let V = {v1, . . . , vn} be the vertex set of X, and let G`+i denote the
pointwise stabilizer of {v1, . . . , vi} in AutX. The chain G` ≥ · · · ≥ G`+n = E
is clearly recognizable in linear time, hence, setting m = n+ `, we may apply
Theorem 2.5 to the chain G0 ≥ · · · ≥ Gm = E to obtain the desired output
within polynomial time, with < 1/2 probability of failure (but without any
possibility of error).

Remark 2.12. In Theorems 2.10 and 2.11, the group G0 is not necessarily
a subgroup of the symmetric group Sn. In one of the principal applications
of these results [6] G0 will be a direct product of groups of matrices, acting
essentially on the eigen-subspaces of the adjacency matrix of X.

Remark 2.13. Note that, under the conditions of 2.10, we are able to
generate in polynomial time uniformly distributed random automorphisms
of X.

Remark 2.14. It may happen that we are unable to build the required
tower of groups on top of AutX, but we can build such a tower on top of
the stabilizer of some suitably chosen small subset of the vertex set. This
approach will be used in Section 4.
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3 Colored graphs with bounded multiplici-

ties of colors, and applications to posets

and distributive lattices.

We are going to apply the main result in a frequently occurring situation.
We consider the isomorphism problem for vertex-colored digraphs, where the
size of each color-class is bounded by a number k. (Isomorphisms preserve
colors by definition.)

By coloring we mean an arbitrary function f : V → n, not necessarily a
good coloring in the sense of chromatic graph theory.

Theorem 3.1. There is a Las Vegas algorithm with:

INPUT: A vertex-colored digraph X;

OUTPUT: either a set of generators of AutX, or “?.”

COST OF COMPUTATION: O(k2kn
4 log n) operations and O(kkn3 log n)

coin tosses,

where n is the number of vertices and k denotes the size of the largest color-
class. (The O notation refers to absolute constraints, not depending on either
k or n.)

Proof. Let p denote the number of color-classes and V1, . . . , Vp the classes
themselves. Let Wij denote the subgraph induced by Vi ∪ Vj(1 ≤ i ≤ j ≤ p.
Let X0 denote the empty graph on the colored vertex-set V = V (X), the
color-classes being V1, . . . , Vp. We define an increasing sequence of subgraphs
of X : X0 ⊆ X1 ⊆ · · · ⊆ Xq = X where q = (p

2), by setting X1 = X0 ∪W12,
X2 = X1 ∪W13, . . . , Xp−1 = Xp−2 ∪W1p, Xp = Xp−1 ∪W23, . . . , Xq = Xq−1 ∪
Wp−1,p. We view each of these digraphs as colored digraphs with the same
coloration as in X. Further, we define the colored digraphs Xq+1, . . . , Xq+p

by subsequent refinement of the color-classes to singletons. The edge set of
Xq+1, . . . , Xq+p is the same as the edge set of X = Xq. Xq+1 differs from
Xq+i−1 only in that the color-class Vi of Xq+i−1 is split (by introducing new
colors) into singletons (i = 1, . . . , p). Hence in Xq+p all vertices have different
colors and so Aut(Xq+p) = E(|E| = 1).
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Set m = 2q + p and G2i = AutXi(i = 0, . . . , q). For Xi = Xi−1 ∪Wj`, let
G2i−1 consist of those elements of G2i−2 whose restriction to V −Vj coincides
with the restriction of some member of G2i to V − Vj(i = 1, . . . , q). Set
G2q+1 = AutXq+i for i = 0, . . . , p. Observe that G0 ≥ G1 ≥ · · · ≥ Gm = E.

Let |Vi| = ki(i = 1, . . . , p)(ki ≤ k),
∑p

i=1ki=n. The restriction of AutX0 to
Vj has order kj!, hence

|Gi−1 : Gi| ≤ k!(i = 1, . . . , 2q).

Further, clearly |G2q+i−1 : G2q+i| ≤ ki!(i = 1, . . . , p), G2q+i being the stabi-
lizer of Vi in G2q+i−1.

We conclude that |Gi−1 : Gi| ≤ k!(i = 1, . . . ,m).

Suppose now that x
∑

Gi−1. In order to decide whether x ∈ Gi if i ≤ 2q we
only have to check whether the restriction of x to a pair of color-classes is
an automorphism of the subgraph, induced by these color-classes if i is even;
and whether its restriction to one of these color-classes is the restriction of
of an automorphism of such as induced subgraph on two classes if i is odd.
To this end, we only have to compute the images of fewer than 4k2 edges. If
i > q, all we have to check is whether Vi−q is pointwise fixed under x. Hence
the chain G0 ≥ G1 ≥ · · · ≥ Gm is recognizable in τ = O(k2) time.

Finally, G0 = AutX0 = Sk1 × . . . × Skp (direct product of symmetric
groups) is well described w.r. to the time bounds (t, T ) where t = τ =
O(n log k. Clearly, we may choose M = N = |G0| =

∏p
i=1(ki!) for the good

description of G0.

We have now all we need in order to apply Theorem 2.5. Our output will
be either “?,” or R2q+1 ∪ . . . ∪ Rm, a generating set of G2q = AutX. The
probability of failure is less than 1/2 by 2.5.

Let s = k!. Clearly, m = 2q + p < n2.

The cost of computation is less than

ms(log s + log (4m))(T + (m + 1)τs) =

= O(n2k!(k log k + log n)(n log k + n2k2k!)) =

O(n4 log n(k + 2)!2) operations and less than
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4tms(log s + log m + 3) = O(n log k · n2k! · (k log k + log n)) =

= O(n3 log n(k + 2)!) coin tosses.

Corollary 3.2. There is a Las Vegas algorithm with

INPUT: vertex-colored digraphs X and Y ;

OUTPUT: either “?,” or an isomorphism between X and Y , or a proof that
they are not isomorphic.

COST OF COMPUTATION: O(k4kn4 log n) operations and O(k2kn3) log n
coin tosses,

where n is the number of vertices of X and k is the size of its largest color-
class.

Proof. We may assume X and Y are connected and both have the same set
of colors, each color occurring the same number of times in the two graphs.
We apply Theorem 3.1. to the disjoint union X ∪ Y . Clearly, X and Y
are isomorphic if and only if at least one of the generators of Aut(X ∪ Y )
interchanges X and Y , thus providing an isomorphism. The proof of non-
isomorphism consists of displaying coset representatives for the subsequent
subgroups in the chain, constructed in the proof of Theorem 3.1, and proving
that each of them is a complete set of coset representatives (by multiplying
their orders), and finally observing that none of the elements thus proven to
generate Aut(X ∪ Y ) interchange X and Y .

We have an immediate application to partially ordered sets (posets). The
width of a poset is the size of its largest antichain.

Corollary 3.3. There is a Las Vegas algorithm with

INPUT: posets X and Y ;

OUTPUT and COST OF COMPUTATION: as in Corollary 3.2, with n being
the number of elements of X, and k standing for the width of X.

Proof. The partial orders can be viewed as digraphs. Let us assign color
i to a vertex x of X or Y if i is the length of the longest chain below x.
Clearly, the color classes are antichains, hence their size does not exceed k.
This coloration being invariant under isomorphisms, the result is immediate
from 3.2.
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The isomorphism problem for lattices is isomorphism complete (i.e., poly-
nomial time equivalent to graph isomorphism) (FRUCHT [4]). This is, how-
ever, very unlikely to be the case for distributive lattices, in view of the
following result.

Corollary 3.4. There is a Las Vegas algorithm with

INPUT: distributive lattices X, Y (given by their operation tables);

OUTPUT: either “?,” or an isomorphism between X and Y , or a decision
that they are not isomorphic;

COST OF COMPUTATION: O(n6 log log n) operations and coin tosses. (n =
|X| = |Y |).

Proof. Every finite distributive lattice X is isomorphic to the lattice of
ideals of the poset J(X) of its join-irreducible elements. (Birkhoff, see [5, p.
61]). X and Y are isomorphic if and only if J(X) and J(Y ) are isomorphic.
Therefore we find the posets J(X) and J(Y ) and apply Cor. 3.3. We have to
estimate k, the width of J(X). If J(X) contains an antichain A ⊆ J(X), then
A generates a Boolean algebra on 2|A| elements in X. Hence, 2k ≤ |X|. Also,
obviously |J(X)| < |X|, hence our estimate on the cost of the computation
follows.

Remark 3.5. There is an nc log log n isomorphism testing for projective planes,
hence for modular lattices of length 3 (Gary L. Miller [12]). Can this be gener-
alized to all modular lattices? Or, perhaps, modular lattices are isomorphism
complete?

4 Trivalent graphs and graphs with bounded

valences.

Gary L. Miller has pointed out to the author that isomorphism of trivalent
graphs can be done in cn time (as opposed to n! for general graphs), simply by
selecting an arbitrary cyclic order of the edges at each vertex, thus defining
an orientable map, and testing the resulting maps for isomorphism. (The
same argument works for graphs with bounded valences.)
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We don’t know any deterministic algorithm whose worst case behavior
on trivalent graphs would be better than cn for every c > 1. We are, how-
ever, able to replace the exponent n by essentially

√
n, using our Las Vegas

algorithm.

Theorem 4.1. There is a Las Vegas algorithm with

INPUT: graphs X and Y with maximum valence 3;

OUTPUT: either “?,” or an isomorphism of X and Y , or a decision that they
are not isomorphic;

COST OF COMPUTATION: less than exp((4 + o(1))
√

n log n) operations
and coin tosses.

More generally, for maximum valence d ≥ 3 the cost of our computation
will be less than exp((4 + o(1))

√
n(log n)1+π(d−1))/2) where π(x) denotes the

number of primes not exceeding x. (π(2) = 1, π(3) = π(4) = 2, π(5) =
π(6) = 3.)

Remark 4.2. For bounded d this is an exp(n1/2+o(1)) cost. For d < (1 −
2c) log n (c a positive constant), our cost is exp(n1− c + o(1)), still better
than the previously known exp(n1+o(1)) bounds.

The next problem to be solved in this area is to extend the range of
possible maximum degrees.

Problem 4.3. Find a positive constant c such that if X and Y are non-
isomorphic graphs on n vertices with maximum valence less than nc then
their non-isomorphism has a proof, shorter than exp(n1−c).

Procedure 4.4. The proof of 4.1 will use a well-known naive canonical
vertex classification which we have to describe here (cf. [15]).

Let X = (V, E) be a graph with colored vertices, the function f : v → n
being the coloration. We suppose that the set of colors actually occurring
forms an initial segment of n = {0, 1, . . . , n− 1}. We refine the color classes
as follows. For v ∈ V , let ki(v) denote the number of those neighbors of v
having color i. Let us assign to v the vector g(v) = (f(v), k1(v), . . . , kn(v)).
Let us arrange these vectors lexicographically, say w1 < · · · < wr if there are
r different ones among them. We define the refined coloring by f ′(v) = j if
g(v) = wj. Clearly f(v1) < f(v2) implies f ′(v1) < f ′(v2) but not conversely.
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f ′(v1) = f ′(v2) if g(v1) = g(v2).

Let now f0 = f, f1 = f ′, . . . , fi+1 = f ′i . Clearly, we have fi0 = fi0+1 =
. . . = fn = . . . for some i0 ≤ n. (There are not more than n − 1 proper
refinements possible.) Let us call fn the stable refinement of f and denote it
by f̄ . Let us call a coloration f stable if f = f ′ (hence f = f̄). Clearly, the
stable refinement of any coloration is stable.

By a semiregular bipartite graph we mean a bipartite graph with color
partition V = V1 ∪ V2 such that all vertices in one class have the same
valence. For V1, v2 disjoint subsets of the vertex set of X, the bipartite
subgraph induced by (V1, V2) means the bipartite graph on V1 ∪ V2 whose
edge set consists of those edges of X connecting a vertex of V1 to a vertex of
V2. We denote this bipartite graph by X(V1, V2). Also, the subgraph induced
by V1 will be denoted by X(V1). The following is straightforward.

Proposition 4.5. The coloration f of the graph X is stable iff all in-
duced subgraphs X(f−1(i)) are regular and all induced bipartite subgraphs
X(f−1(i), f−1(j)) are semiregular (i, j < n, i 6= j).

We shall need to change f by assigning a new color to a vertex v, unless
its color-class was a singleton.

Definition 4.6. For a coloration f and v ∈ V let the v-pointed recoloration
f 0

v be defined by

f 0
v (x) = f(x) if x 6= v,

f 0
v (v) = min(n {f(x) : x 6= v}).

Observe that f 0
v = f iff f−1(f(v)) = {v}.

The f 0
v -color-class of v is necessarily a singleton. Let fv denote the stable

refinement of f 0
v . We call fv the stabilizer of v in f . For S = (v1, . . . , vs)

an ordered s-tuple of vertices, the stabilizer of S in f will be fS = fv1...vs ,
obtained by repeated application of the operation above. (The terms are
borrowed from the theory of permutation groups. The classes of a stable
coloring imitate some properties of the orbits of the automorphism group of
a (colored) graph. We prove one of these analogies below, Lemma 4.8.).

The following is straightforward.
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Proposition 4.7. Let f be a stable coloration of X such that the color-class
of x ∈ V is a singleton. Then for any vertices y, z ∈ V , dist(x, y) 6= dist(x, z)
implies f(y) 6= f(z).

Now we prove that if X is connected and a vertex of valence less than
the maximum has a singleton for its color-class then all prime divisors of the
lengths of the color-classes are less than the maximum valence.

For m ≥ 2, let pr(m) denote the largest prime divisor of m. Set pr(1) =
1, pr(0) = 0.

Now we give a bound on the prime divisors of the lengths of the color-
classes of fx for a connected graph X with bounded valences. Note that
under the same conditions, the same bounds are easily seen to be valid for
the prime divisors of the order of the stabilizer subgroup of the automorphism
group and consequently for the orbit lengths of the stabilizer, cf. [3, Theorem
1].

Lemma 4.8. Suppose that all vertices of the connected graph X have va-
lences≤ d. Let f be a stable coloration of X such that the color-class of a ver-
tex x of valence ≤ d−1 is a singleton (i.e. fx = f). Then pr(f−1(i)) ≤ d−1
for every i < n (i.e. the lengths of the color-classes have no prime divisor
exceeding d− 1).

Proof. Let z ∈ V . We prove by induction on the distance dist(x, z) that
the color-class of z has no prime divisors exceeding d − 1. This is true if
z = x. Suppose it holds for all distances less than dist(x, z) = k > 1. Let
y ∈ V be a neighbor of z at distance k − 1 from x. Let A and B denote
the color-classes of y and z, resp. (A 6= B by 4.7.) pr(|A|) ≤ d − 1 by the
induction hypothesis. Let the vertices from A and B have valence a and b,
resp., in the bipartite graph X(A, B). Clearly, a, b ≤ d. Moreover, a ≤ d− 1
since if k ≥ 2 then y has a neighbor at distance k − 2 from x; if k = 1 then
y = x and |B| ≤ d− 1 (since now B is a subset of the neighbors of x).

Clearly, a|A| = b|B|, ab 6= 0,

hence pr(|B|) ≤ max(a, pr(|A|)) ≤ d− 1.

Now we are able to describe our Las Vegas algorithm to test isomorphism
of graphs with maximum valence d. We may supppose both X and Y are
connected. (It suffices to test components.)
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The idea is that we shall be able to reach a coloration with color-classes
of moderate size by stabilizing an initial trivial coloration at a sequence of
vertices, the sequence having moderate length. We do this in all possible
ways and decide whether the obtained colored graphs are isomorphic using
the Las Vegas algorithm of Cor. 3.2. “Moderate” here means

√
n(log n)c, c

constant. By “guess” we shall mean an arbitrary choice.

Algorithm 4.9. Choose a positive integer k. This will be our desired upper
bound on the color multiplicities and we shall compute its optimum value at
the end of the proof (before Remark 4.13). Guess an edge of X, and halve it
by inserting a new vertex x0 of valence 2. Denote the obtained graph on n+1
vertices by X ′. Define a coloring g of X ′ by g(x0) = 0 and g(x) = 1 for x ∈ V .
Let f be the stable refinement of g. Clearly f = fx0 . If there is a color-class
of size exceeding k, let i be the smallest number such that the color-class
f−1(i) has largest size. Guess a vertex x1 from f−1(i). Compute the stable
coloration fx0x1 and guess a vertex x2 from the first color-class of largest size
if it is larger than k, etc., until we arrive at a sequence S = (x0, x1, . . . , xs)
of vertices such that the length of each color-class of fs is at most k.

Let us execute the same operations on Y . There are |E(Y )| ≤ nd/2 ways
of guessing the edge to be halved by y0, and we have at most ns ways of
guessing the sequence y1, . . . , ys. Clearly, X and Y are isomorphic if there is
a correct guess, i.e. for at least one of these sequences of arbitrary choice, the
obtained colored graphs are isomorphic (colors are preserved under isomor-
phism by definition). Hence we may apply the Las Vegas algorithm of Cor.
3.2 to test whether the colored graph (X ′, fs) is isomorphic to any of the at
most nsnd/2 augmented and colored versions of Y . In each case when the
Las Vegas algorithm fails (outputs “?”), we repeat it until decision is reached,
but the total number of calls on the Las Vegas algorithm should not exceed
ns+1d. If this number of calls is insufficient (failure occurs in more than half
of the cases), we output “?.” Clearly, the probability that this happens is
less than 1/2.

The cost of the computation is ns+1d/2 applications of the stable refine-
ment procedure which costs (n2d) each time, and an ns+1d-fold application
of the Las Vegas isomorphism test for colored graphs with at most k-fold
colors. Hence the total number of operations required is
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O(k4kns+5d log n) < O(k4kns+6).

Clearly, there is a k − s tradeoff here that we have to analyze.

Let
δ(n, d) = max

2h≤n
|{x : h ≤ x < 2h, prx < d}|.

Clearly δ(n, 3) = 1. The following can be proved easily by induction on
d ≥ 3.

Proposition 4.10. δ(n, d) ≤ ∏( log n
log p

+ 1
)

where the product is taken over
all primes p, 3 ≤ p ≤ d− 1.

Corollary 4.11. δ(n, d) ≤
(

log n log 3
+

1
)π(d−1)−1

where π(x) denotes the num-
ber of primes, not exceeding x.

Lemma 4.12. The number of points xi we have to guess for xi-pointed
recoloration in order to achieve that each color-class has length ≤ k in the
above algorithm can be estimated by s < 2δ(n, d)n/k.

Proof. Let A0 be one of the color-classes under a stable coloration of X ′

with f−1(x0) = {x0}.

Suppose |A0| > k.

We wish to estimate how many of the xi had to be selected from A0 for
xi-pointed recoloration until we obtained a stable coloration such that each
subclass of A0 had size ≤ |A0|/2. Let z1, . . . , zr be these xi. Let Ai be the
(unique) largest subclass of Ai−1 after the stable refinement of the zi-pointed
recoloration (i = 1, . . . , r − 1). This class is unique since |Ai| > |A0|/2 ≥
|i− 1|/2. It is a proper subset of Ai−1 since zi ∈ Ai−1 (zi was always selected
from a largest color-class) and zi 3 Ai (since the color-class of zi became a
singleton at this step). Hence |A0| > |A1| > · · · > |Ar−1 > |A0|/2.

By Lemma 4.8, pr(|Ai|) ≤ d− 1, hence r ≤ δ(n, d).

We conclude that it took less than δ(n, d)n/` pointed recolorations to re-
duce the size of the largest color-class from ≤ 2` to ≤ `. (Namely, there
are less than n/` classes of size greater than `.) Let us apply this ar-
gument to ` = k, 2k, 4k, . . . , 2mk where 2m−1k ≤ n < 2mk. We obtain
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that the total number of pointed recolorations occurring in the algorithm is
s < δ(n, d)

(
n
k

+ n
2k

+ . . . + n
2mk

)
< δ(n, d)2n

k
.

End of the proof of Theorem 4.1.

Now we are kin the position to make our optimal choice of the parameter
k. Let k = d(δ(n, d)n)1/2e. Then by 4.12 s < 2(δ(n, d)n)1/2 and the logarithm
of the cost of the computation is estimated by

log (O(k4kns+6)) = o(1) + 4k log k + (s + 6) log n <

< (4 log n + 2 log δ(n, d) + o(1))(δ(n, d)n)1/2 <

< (4 + o(1))n1/2(log n)(1+π(d−1))1/2

(using 4.11).

Remark 4.13. The o(1) notation refers to a quantity tending to 0 with
n → ∞ uniformly in d. Note that for d > log n our result doesn’t make
sense: even brute force is faster.

Remark 4.14. The guesses (for pointed recoloration) we made in the al-
gorithm are an example of the depth-first search. The stable refinement
procedure is a breadth-first search. The global approach of our Las Vegas
algorithm using a tower of supergroups of AutX could, however, be hardly
classified by these terms.

Remark 4.16. It is the author’s hope that a deeper understanding of the sta-
bilizer of an edge in the automorphism group of trivalent graphs will result
in a further great improvement on the complexity given in 4.1, and hope-
fully exp(c log2 n) could be reached. (For the class of arc-transitive trivalent
graphs, this goal has been achieved by R. Lipton [11].) A nice intermedi-
ate problem, providing a good starting point for research, has recently been
formulated by Maria Klawe.

Problem 4.17. (Maria Klawe [10]) By a marked graph we mean a triple
X = (V, E, R) where (V, E) is a graph and R is an equivalence relation.
Estimate the complexity of isomorphism testing for marked binary trees.
(Isomorphism preserves both relations E and R.)

It was this problem which led the author to Theorem 4.1. It is worth
noting that the automorphism group of a binary tree (V, E) is the iterated
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wreath product of cyclic groups of order two. It is well-described in the sense
of Def. 2.1. It is a 2-group, hence there is a chain of subgroups

Aut(V, E) = G0 ≥ G1 ≥ · · · ≥ Gr = AutX

where |Gi : Gi+1| ≤ 2. The problem is, however, to find such a chain,
recognizable in polynomial (or exp(log2 n)) time; then 2.10 could be applied.

In contrast to 4.17, Maria Klawe observes:

Proposition 4.18. (Maria Klawe [10]) Marked trees are isomorphism com-
plete (i.e. isomorphism of marked trees is as hard as graph isomorphism).

Proof. Let X = (V, E) be a graph on n vertices. Let (W, F ) denote the tree
defined by

W = {w0} ∪ V ∪ {(v, z) : (v, z) ∈ E};

F = {[w0, v] : v ∈ V } ∪ {[v, (v, z)] : v, z ∈ V, [v, z] ∈ E}.

(The vertex w0 is adjacent to n vertices. All points at distance two from w0

have valence one. Two such points correspond to every edge of x.)

Define R on W by

R = {(x, x) : x ∈ w} ∪ {((v, z), (z, v)) : [v, z] ∈ E}.

(Each equivalence class is either a singleton or a pair. The edges of X are in
one-to-one correspondence with the 2-element classes of R.)

Let T (X) = (W, F, R) denote the obtained marked tree. Clearly, X ∼= Y
if T (X) ∼= T (Y ), hence graph isomorphism reduces in linear time to marked
tree isomorphism.

4.19. I propose some terminology for often occurring complexity classes.
The terms exponential and subexponential should be defined to be invariant
under polynomial equivalence (substituting nc for n, c > 0). Hence f(n)
grows exponentially if exp(nc) < f(n) < exp(nd)(0 < c < d) for n large
enough, and subexponential should mean exp(o(n)). Important classes of
subexponential functions are the logonomial functions of degree c, meaning
f(n) = exp((log n)c+o(1))(c > 1). (This class is invariant under polynomial
equivalence for every particular value of c. (Etymology: log f(n) is a polyno-
mial of log n.) nlog log n is sublogonomial (i.e. exp((log n)1+o(1))). It is worth in-
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troducing such subclasses of the exponential functions that are invariant un-
der linear substitutions only. exp(n2/3+o(1)) might be called 2/3-exponential.
Theorem 4.1 says that isomorphism of graphs with bounded valence is at
most half-exponential (exp(n1/2+o(1))), and the same holds for strongly regu-
lar graphs by [2]. Functions satisfying nc < f(n) < nd, 0 < c < d < 1 (for n
large enough) might be called frexponential (the exponent of the exponent is
a proper fraction). (R.L. Graham warns me; this term will never catch on.)

4.20. Using this terminology, the fundamental goals of the theory of isomor-
phism testing for the not too distant future are, in my opinion, the following.

PROBLEM A. Find a frexponential isomorphism testing algorithm for all
graphs.

PROBLEM B. Find a logonomial isomorphism testing algorithm for triva-
lent graphs.

5 Intersection of cylindric subgroups of a di-

rect product.

In this section we generalize the situation of Theorem 3.1. Theorem 5.2 is the
result to be applied in [6] to find a polynomial time Las Vegas isomorphism
testing algorithm for graphs whose adjacency matrix has bounded eigenvalue
multiplicities.

Definition 5.1. Let H0, . . . , Hr−1 be groups and J ⊆ r a subset of the index
set. Let B be a subgroup of

∏
j∈J Hj. Let D =

∏
j<r Hj be the direct product

of all the Hj and C = B × ∏
j3J Hj a subgroup of D. We call C a cylinder

with base B and base index set J .

We shall be interested in determining a set of generators of the intersection
of a family cylinders given the factors Hj by their multiplications tables and
the base groups by the set of their elements. (Group operations in B are
defined by those in the Hj.)

Theorem 5.2. Let H0, . . . , Hr−1 be groups, J0, . . . , Js−1 subsets of the
index set r, and Bi ≤ ∏

j∈Ji
Hj base subgroups for the cylinders Ci =
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Bi ×
∏

j 3 JiHj ≤ D where D =
∏

j<r Hj. Let A = ∩i<sCi.

There exists a Las Vegas algorithm with

INPUT: the integers r, s, the multiplication tables of the group Hj(j < r),
and the sets Bi(i < s).

OUTPUT: Either “?,” or a set of generators of A (the intersection of the
cylinders) and a good description of A w.r. to the time bounds O(s(log s +
log h)), O(Ksh2 log h)) where h = max{|Hj|, |Bi| : j < s, i < r} and K =∑

i<r |Ji|.

COST OF COMPUTATION:

O(K2sh3 log h(log h + log K))

binary operations and

O(Ksh(log2 h + log K(log s + log h)))

coin flips.

Remark 5.3. Compare these numbers with the n = O((shn2 + K) log h)
length of the input string.

We obtain that the algorithm runs within O(jn7/2 log n) steps. For bounded
h, it is O(n3 log n).

5.4. It is instructive to see how the situation of Theorem 3.1 fits in this
scheme.

Let X be a vertex-colored digraph, the color-classes having size kj(j <
r)(
∑

j<r kj = n). Let Hj be the symmetric group Skj
acting on the j th

color-class. For i < ` < r let Ji` = {i, `} and Bi` = AutWi` where Wi` is the
subgraph induced by the ith and `th color-classes. Clearly, AutX = ∩i<`<rCi`

where Ci` is the cylinder with base Bi`.

In what follows we generalize the procedure given in the proof of 3.1 to
reduce 5.2 to the main result (2.5).

Proof of Theorem 5.2.
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For J ⊆ r, set HJ =
∏

j∈J Hj.

For I ⊆ J let prI
J : HJ → HI denote the projection map.

For each i < s choose a strictly descending chain of subsets

Ji = J0
i ⊃ · · · ⊃ J `i

i = ∅ where `i = |Ji|

hence JP
i − Jp+1

i = {jp
i } is a singleton for each p < `i.

Set Bp
i = prJpi

Ji
Bi and let Cp

i be the cylinder with base Bp
i , i.e.,

Cp
i = Bp

i ×Hr−Jp
i
.

Clearly, Ci = C0
i ≤ C1

i ≤ · · · ≤ C`i
i = D,

and |Cp+1
i : Cp

i | ≤ |Hji
p| ≤ h.

Moreover, A = ∩{Cj
i : i < s, j < `i}.

Set
∑

i<q `i = mq, q = 0, . . . , s(m0 = 0).

Define the chain G0 ≥ G1 ≥ · · · ≥ Gms = A as follows. Let G0 = D.

Suppose mq < t ≤ mq+1 for some q < s and Gt−1 has already been
defined. Let t = mq + (`q − p) (clearly 0 ≤ p < `q) and set

Gt = Gt−1 ∩ Cp
q .

Hence Gms is the intersection of all the cylinders Cp
q , implying Gms = A.

It is easy to verify that |Gt−1 : Gt| ≤ h.

This follows from the fact that if A, B, C are arbitrary subgroups of a group
and B ≤ A than |A : B| ≥ |A ∩ C : B ∩ C|.

We want to estimate the complexity of recognizing the chain G0 ≥ · · · ≥
Gms . Given x ∈ Gt−1, we have to decide whether x ∈ Gt, i.e. whether
x ∈ Cp

q . This is decided by searching through the list of elements of Bp
q

which is obtained by deleting some columns of the array representing Bq and
deciding whether prJu

q x occurs there, where u = `q − p.

This takes at most |Bq||Jq| ≤ hs decisions of the type y = y′ for some
y, y′ ∈ Hj for some j < s. Assuming the Hj are properly encoded, the cost
of such a decision should be O(log |Hj|).
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We conclude that the chain G0 ≥ · · · ≥ Gms is recognizable in τ =
O(sh log h) steps.

In order to be able to apply 2.5, we have to continue our chain beyond
A. Let Ej denote the unit subgroup of Hj and set

Kd =
∏

j<d Ej ×
∏

d≤j<s Hj ≤ D.

(d = 0, . . . , s)(K0 = D, |Kd| = 1). Clearly |Kd : Kd+1| = |Hd| ≤ h.

Set Gms+d = Gms ∩Kd, and ms + s = m.

This way we get the chain G0 ≥ G1 ≥ · · · ≥ Gm, |Gm| = 1,

|Gi−1 : Gi| ≤ h for i = 1, . . . ,m, and the chain is recognizable in O(sh log h)
steps. We are almost ready to apply 2.5. We only have to check the time
bounds of the good description of G0 = D. The order of D is

∏
j<s |Hj| ≤

hs. With proper encoding, group operations in Hj are executed in O(log h)
hence in D group operations cost O(s log(hs)). A uniform map |D| → D
is computable by subsequent divisions with remainder by the orders of the
Hj. The cost of division of a number ≤ hs by another not exceeding h is
O(s log2 h), hence the uniform map |D| → D will be computed in O(s2 log2 h)
steps. All this amounts to a good description of D w.r. to the time bounds
(O(s log(sh)), O(s2 log2 h)). (This corresponds to (t, T ) in 2.5. Note that our
h is denoted by s in 2.5.)

Now 2.5 says that the required output can be obtained at the cost of

mh(log h+log(4m)(O(s2 log2 h+(m+1)sh2 log h) = O(K2h3s log h(log h+
log K))

elementary operations (since m < 2ms = K), and

O(mhs log(sh)(log h + log m)) =

= O(Khs(log2 h + log K(log h + log s))) coin flips.

The good description of A within the time bounds claimed follows similarly.

Remark 5.5. The cylinder intersection problem for cosets is the following:
for each Bi ≤ HJi

select a bi ∈ HJi
and take the coset biBi for the base

of a cylinder C ′
i = biBi ×

∏
j3JiHj

. Now the problem is to decide whether
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∩i<sC
′
i = ∅. This problem is easily seen to be equivalent to the cylinder

intersection problem for groups, solved in polynomial Las Vegas time by
5.2. We remark that if all groups Hi are abelian, there is a deterministic
polynomial time solution [6].

The cylinder intersection problem can also be formulated for arbitrary
sets Hi rather than for groups. Let Hi(i < r) be finite sets, J0, . . . , Js−1 ⊆ r
subsets of the index set and Bi ⊆

∏
j∈Ji

Hj base subsets for the cylinders
Ci = Bi ×

∏
j 6∈Ji

Hj. The problem is to decide whether ∩i<sCi = ∅.

The following observation of Gary L. Miller caused some headaches to
the author.

Proposition 5.6. (Gary L. Miller [13]) The cylinder intersection problem
is NP-complete, even in the particular case |H0| = . . . = |Hr−1| = 3 and
|J0| = . . . = |Js−1| = 2.

Proof. We reduce 3-colorability of graphs to the cylinder intersection prob-
lem.

Let X = (r, E) be a graph on the vertex set r = {0, . . . , r − 1}. Let
Hj be the 3-set 3 × {j}(j < r). The elements of D =

∏
j<r Hj are easily

identified with the 3-colorations of the vertex set, regardless of adjacency.
Let E = {e0, . . . , es−1} and set Ji = {p, q} if ei = [p, q](i < s). Define the
base set Bi by

Bi = {((g, p), (h, q)) : g 6= h, g, h < 3}.

So, |Bi| = 6.

Clearly the cylinder Ci = Bi ×
∏

j 6=p,q Hj

consists of those colorations of the vertex set respecting the adjacency of p
and q, assigning different colors to them. This implies that the intersection
A = ∩i<sCi consists precisely of all good colorations of X, hence X is 3-
colorable iff A 6= ∅.
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