
SERIE B � INFORMATIK

A Simple Min Cut Algorithm

Mechtild Stoer �

Frank Wagner��

B �����
May ����

Abstract

We present an algorithm for �nding the minimum cut of an edge�weighted graph� It is

simple in every respect� It has a short and compact description� is easy to implement

and has a surprisingly simple proof of correctness� Its runtime matches that of the

fastest algorithm known� The runtime analysis is straightforward� In contrast to

nearly all approaches so far� the algorithm uses no �ow techniques� Roughly spoken

the algorithm consists of about jV j nearly identical phases each of which is formally
similar to Prim�s minimum spanning tree algorithm�

�Konrad�Zuse�Zentrum f�ur Informationstechnik Berlin� Heilbronner Str� ��� ����� Berlin� Germany� e�
mail	 stoer
zib�berlin�de�
��Institut f�ur Informatik� Fachbereich Mathematik und Informatik� Freie Universit�at Berlin� Takustra�e ��
�
��� Berlin�Dahlem� Germany� e�mail	 wagner
math�fu�berlin�de�



�

� Overview

Graph connectivity is one of the classical subjects in graph theory� and has many
practical applications� e	 g	 in chip and circuit design� reliability of communication
networks� transportation planning and cluster analysis	 Finding the minimum cut
of an edge
weighted graph is a fundamental algorithmical problem	 Precisely� it
consists in �nding a nontrivial partition of the graph�s vertex set V into two parts
such that the sum of the weights of the edges connecting the two parts is minimum	
The usual approach to solve this problem is to use its close relationship to the max

imum 
ow problem	 The famous Max
Flow
Min
Cut
Theorem by Ford and Fulker

son �FF��� showed the duality of the maximum 
ow and the so
called minimum s
t
cut	 There� s and t are two vertices which are the source and the sink in the 
ow
problem and have to be separated by the cut� i	e	� they have to lie in di�erent parts
of the partition	 Until recently all cut algorithms were essentially 
ow algorithms
using this duality	 Finding a minimumcut without speci�ed vertices to be separated
can be done by �nding minimum s
t cuts for all O�jV j�� pairs of vertices and then
selecting the lightest one	 Gomory and Hu �GH��� reduced this to O�jV j� pairs of
vertices and thus O�jV j� maximum 
ow computations	
Recently Hao and Orlin �HO��� showed how to use the maximum 
ow algorithm by
Goldberg and Tarjan �GT���� the fastest so far� in order to solve the minimum cut
problem as fast as the maximum 
ow problem� i	e	� in time O�jV jjEj log�jV j��jEj�	
In the same year Nagamochi and Ibaraki �NI��a� published the �rst minimum cut
algorithm that is not based on a 
ow algorithm� has the slightly better running time
of O�jV jjEj � jV j� log jV j� but is still rather complicated	 In the unweighted case
they use a fast search technique to decompose a graph�s edge set E into subsets
E�� � � � � E� such that the union of the �rst k Ei�s is a k
edge
connected spanning
subgraph of the given graph and has size at most kjV j	 They simulate this approach
in the weighted case	 Their work is one of a number of papers treating questions of
graph connectivity by non

ow
based methods �NP��� NI��a� M���	
In this context we present in this paper a remarkably simple minimumcut algorithm
with the optimal running time established in �NI��b�	 We reduce the complexity
of the algorithm of Nagamochi and Ibaraki by avoiding the unnecessary simulated
decomposition of the edge set	 This enables us to give a comparably straightforward
proof of correctness avoiding e	 g	 the distinction between the unweighted� integer
�
rational
� and real
weighted case	

� The Algorithm

Throughout the paper we deal with an ordinary undirected graph G with vertex set
V and edge set E	 Every edge e has positive real weight w�e� 	
In order to describe the idea of the algorithm we start by reminding the reader of
Prim�s minimum spanning tree algorithm�

MinimumSpanningTree�G�w� a�



A Simple Min Cut Algorithm �

A� fag
T � �
while A �� V

add to A the most loosely connected vertex
add to T the connecting edge

A subset A of the graph�s vertices grows starting with an arbitrary single vertex
until A is equal to V 	 In each step the vertex outside of A most loosely connected

with A is added	 Formally� we add a vertex

z �� A such that w�a� z� � minfw�b� y� j b � A� y �� A� by � Eg

where w�b� y� is the weight of edge by and az is the connecting edge	
At the end the set of all the connecting edges then forms a minimum spanning tree	
The simple minimum cut algorithm we describe here consists of jV j � � phases each
of which is very similar to Prim�s algorithm�

MinimumCutPhase�G�w� a�
A� fag
while A �� V

add to A the most tightly connected vertex
store the cut
of
the
phase and shrink G by merging the two vertices added last

A subset A of the graph�s vertices grows starting with an arbitrary single vertex
until A is equal to V 	 In each step the vertex outside of A most tightly connected

with A is added	 Formally� we add a vertex

z �� A such that w�A� z� � maxfw�A� y� j y �� Ag

where w�A� y� is the sum of the weights of all the edges between A and y	
At the end of each such phase the two vertices added last are merged� i	e	� the two
vertices are replaced by a new vertex� and any edges from the two vertices to a
remaining vertex are replaced by an edge weighted by the sum of the weights of the
previous two edges	 Edges joining the merged nodes are removed	
The cut of V that separates the vertex added last from the rest of the graph is
called the cut�of�the�phase	 The lightest of these cuts
of
the
phase is the result of
the algorithm� the desired minimum cut	

MinimumCut�G�w� a�
while jV j � �

MinimumCutPhase�G�w� a�
if the cut
of
the
phase is lighter than the current minimum cut

then store the cut
of
the
phase as the current minimum cut

Notice that the starting vertex a stays the same throughout the whole algorithm	

� An Example



�

� �

� �

�

���� �

�� �

��w��� �� � �

�

�

��

Figure �� A graph G � �V�E� with edge
weights	

�

�

�

���� �

�� �

���
a b c

d efs

t
� �

�

�

� �

Figure �� The graph after the �rst MinimumCutPhase�G�w� a�� a � �� and the
induced ordering a� b� c� d� e� f� s� t of the vertices	 The �rst cut�of�the�phase corre

sponds to the partition f�g� f�� �� �� �� �� �� �g of V with weight w � �	

�

�

�

��� �

�� �

��
�

��

�

�� �

a

b c

d e

s t

Figure �� The graph after the second MinimumCutPhase�G�w� a�� and the in

duced ordering a� b� c� d� e� s� t of the vertices	 The second cut�of�the�phase corre

sponds to the partition f�g� f�� �� �� �� �� �� �g of V with weight w � �	



A Simple Min Cut Algorithm �

�

�

�

��

��

�
�

�

�� �

�

�

�� �
b

a d s

tc

Figure �� After the thirdMinimumCutPhase�G�w� a�	 The third cut�of�the�phase

corresponds to the partition f�� �g� f�� �� �� �� �� �g of V with weight w � �	

�� �

b

�

�
�

�

�

s

�� �
�

�

�

t
�

c

a

�

�� �

�

�

�� �
�� �

�

�

t

sb

a

�
�

�

Figure �� After the fourth and �fth MinimumCutPhase�G�w� a�� respectively	
The fourth cut�of�the�phase corresponds to the partition f�� �� �g� f�� �� �� �� �g	 The
�fth cut�of�the�phase corresponds to the partition f�� �� �� �g� f�� �� �� �g with weight
w � �	



�

�

�

a

�

V n �
�� �

�� �� �
st �

�� �

�
�

t

s

Figure �� After the sixth and seventh MinimumCutPhase�G�w� a� respectively	
The sixth cut�of�the�phase corresponds to the partition f�� �g� f�� �� �� �� �� �g with
weight w � �	 The last cut�of�the�phase corresponds to the partition f�g� V n f�g�
its weight is w � �	 The minimum cut of the graph G is the �fth cut�of�the�phase

and the weight is w � �	

� Correctness

The core of the proof of correctness is the following somewhat surprising lemma	

Lemma Each cut�of�the�phase is a minimum s�t cut in the current graph� where s
and t are the two vertices added last in the phase�

Assuming� that the lemma holds� we can show by a simple case distinction� that the
smallest of these cuts
of
the
phase is indeed the minimum cut we are looking for	
This is done by induction on jV j	 The case jV j � � is trivial	 If jV j � �� look at the
�rst phase� If G has a minimum cut� that is at the same time a minimum s
t cut�
then� according to the lemma� the cut
of
the phase is already a minimum cut	 If not�
then G has a minimum cut with s and t on the same side	 Therefore� a minimum
cut of G�� the input graph of phase �� that di�ers from G by the merging of s and
t� is a minimum cut of G	 Now� by induction� the lightest of the cuts
of
the
phases
� to jV j � � is such a minimum cut of G�	 Notice that the application of phases �
to jV j � � to G� is the same as the application of the complete algorithm to G�	

Finally� we show the claimed property of the cut
of
the
phase	 The run of a
MinimumCutPhase orders the vertices of the current graph linearly� starting with
a and ending with s and t� according to their order of addition to A	 Now we look
at an arbitrary s
t cut C of the current graph and show� that it is at least as heavy
as the cut
of
the
phase	



A Simple Min Cut Algorithm �

We call a vertex v �� a active �with respect to C� when v and the vertex added just
before v are in di�erent parts of C	 Let w�C� be the weight of C� Av the set of all
vertices added before v �excluding v�� Cv the partition of Av � fvg induced by C�
and w�Cv� the weight of the induced cut� i	e	� the sum of the weights of the edges
going from one part of the induced partition to the other	
We show that for every active vertex v

w�Av� v� 	 w�Cv�

by induction on the set of active vertices�
For the �rst active vertex the inequality is satis�ed with equality	 Let the inequality
be true for all active vertices added up to the active vertex v� and let w be the next
active vertex that is added	 Then we have

w�Aw� w� � w�Av� w� � w�Aw nAv� w� �� �

Now� w�Av� w� 	 w�Av� v� as v was chosen as the vertex most tightly connected
with Av	 By induction w�Av� v� 	 w�Cv�	 All edges between Aw nAv and w connect
the di�erent parts of C	 Thus they contribute to w�Cw but not to w�Cv�	 So

� 	 w�Cv� � w�Aw nAv� w� 	 w�Cw�

As t is always an active vertex with respect to C we can conclude that w�At� t� 	
w�Ct� which says exactly that the cut
of
the
phase is at most as heavy as C	

� Running Time

As the running time of the algorithm MinimumCut is essentially equal to the
added running time of the jV j � � runs of MinimumCutPhase� which is called
on graphs with decreasing number of vertices and edges� it su�ces to show that
a single MinimumCutPhase needs at most O�jEj � jV j log jV j� time yielding an
overall running time of O�jV jjEj� jV j� log jV j�	
The key to implementing a phase e�ciently is to make it easy to select the next
vertex to be added to the set A� the most tightly connected vertex	 During execution
of a phase� all vertices that are not in A reside in a priority queue based on a key
�eld	 The key of a vertex v is the sum of the weights of the edges connecting it to
the current A� i	e	� w�A� v�	 Whenever a vertex v is added to A we have to perform
an update of the queue	 v has to be deleted from the queue� and the key of every
vertex w not in A� connected to v has to be increased by the weight of the edge vw� if
it exists	 As this is done exactly once for every edge� overall we have to perform jV j
ExtractMax and jEj IncreaseKey operations	 Using Fibonacci heaps �FT����
we can perform an ExtractMax operation in O�log jV j� amortized time and a
IncreaseKey operation in O��� amortized time	
Thus the time we need for this key step that dominates the rest of the phase� is
O�jEj� jV j log jV j�	
Notice� that this runtime analysis is very similar to the analysis of Prim�s minimum
spanning tree algorithm	



�

Acknowledgement

The authors thank Dorothea Wagner for her helpful remarks	

References

�FT��� M� L� Fredman and R� E� Tarjan� Fibonacci heaps and their uses in

improved network optimization algorithms� Journal of the ACM �� ������ ����
���

�FF��� L� R� Ford� D� R� Fulkerson� Maximal �ow through a network� Cana

dian Journal on Mathematics � ������ �������

�GT��� A� V� Goldberg and R� E� Tarjan� A new approach to the maximum

�ow problem� Journal of the ACM �� ������ �������

�GH��� R� E� Gomory� Multi�terminal network �ows� Journal of the SIAM �

������ �������

�HO��� X� Hao and J� B� Orlin� A faster algorithm for �nding the minimum cut

in a graph� �rd ACM
SIAM Symposium on Discrete Algorithms ������ �������

�M��� D� W� Matula A linear time ��� approximation algorithm for edge connec�

tivity � Proceedings of the �th ACM
SIAM Symposium on Discrete Mathematics
������ �������

�NI��a� H� Nagamochi and T� Ibaraki� Linear time algorithms for �nding a

sparse k�connected spanning subgraph of a k�connected graph� Algorithmica �

������ �������

�NI��b� H� Nagamochi and T� Ibaraki� Computing edge�connectivity in multi�

graphs and capacitated graphs� SIAM Journal on Discrete Mathematics � ������
�����

�NP��� T� Nishizeki and S� Poljak� Highly connected factors with a small num�

ber of edges� Preprint ������

�P��� R� C� Prim� Shortest connection networks and some generalizations� Bell
System Technical Journal �� ������ ���������


