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We present and analyze a series of mathematical models for the emergence of resistance during antibiotic
treatment of an infected host. The models consider the population dynamics of antibiotic-sensitive and
-resistant bacteria during the course of treatment and addresses the following problems: (i) the probability of
obtaining a resistant mutant during the course of treatment as a function of antibiotic exposure; (ii) the
conditions under which high, infrequent doses of an antibiotic are predicted to succeed in preventing the
emergence of resistance; (iii) the conditions for the success of multiple drug treatment in suppressing the
emergence of resistance and the relationship between antibiotic synergism and suppression of resistance; and
(iv) the conditions under which nonadherence to the prescribed treatment regimen is predicted to result in
treatment failure due to resistance. We analyze the predictions of the model for interpreting and extrapolating
existing experimental studies of treatment efficacy and for optimizing treatment protocols to prevent the
emergence of resistance.

The emergence of resistance to antimicrobial agents during
therapy threatens the successful treatment of several important
bacterial infections and in some cases risks the further spread
of resistant organisms to other patients. The growth of drug-
resistant subpopulations during the treatment of initially sen-
sitive infections is a particular problem in tuberculosis chemo-
therapy (37), but it also occurs in the treatment of pseudomonal
(19, 22), staphylococcal (51), and other bacterial (19) infections.
A number of animal and clinical studies have tested various

treatment protocols for their ability to control bacterial infec-
tions and to prevent the ascent of resistant organisms that can
lead to treatment failure. Two general principles have been
used with some success in designing dosing regimens that sup-
press resistant mutants. Combination therapy (treatment with
multiple antibiotics to which bacteria do not show cross-resis-
tance) has been used with considerable success to prevent the
emergence of resistance in treating tuberculosis (37) and other
infections, particularly in immunocompromised patients (9, 19,
35, 36). The rationale behind combination therapy is simple: if
mutants resistant to any single drug are present at frequency f,
then the frequency of mutants resistant to two or three drugs
will be f2 or f3, respectively. Since frequencies of mutation to
resistance are often on the order of 1026 to 1029, bacterial
populations of reasonable size in vivo are likely to contain
singly resistant mutants but not mutants resistant to two or
three drugs simultaneously. Therefore, at least one drug in a
combination therapy regimen should be effective against all
subpopulations of bacteria. Despite this logic, combination
therapy does not always succeed in preventing the emergence
of resistance; cases of failure have been attributed to factors
including nonadherence to the treatment regimen (50), heter-
ogeneity in drug exposure (17), and inadequate dosing.
A second means of suppressing resistant subpopulations that

has been proposed and tested in vivo is the use of large,
infrequent doses in antibiotic monotherapy (3, 14). Despite the
success of such regimens in some experimental tests, there has
been little theoretical or experimental consideration of the
circumstances under which such success is expected (for a

general discussion of the question in fluoroquinolones, see
reference 15).
Most of the studies examining the efficacy of various dosing

regimens in preventing the emergence of resistance have been
purely empirical and focused on particular systems. Virtually
none have employed mathematical models for the population
dynamics of sensitive and resistant organisms that provide an
explicit theoretical basis for how such regimens should be
developed and evaluated or for predicting the conditions un-
der which they might be expected to work.
The tools for developing such models are available. Explicit

models that combine pharmacokinetics with bacterial popula-
tion dynamics have been proposed to predict and optimize the
effectiveness of particular dosing regimens against bacteria
sensitive to the single drug considered (2, 25, 40, 54). So far,
however, this literature has given little if any consideration to
the problem of resistance (40).
Here we present a simple mathematical model of pharma-

cokinetics and bacterial population dynamics that is designed
explicitly to address the problem of suppressing the emergence
of resistance during treatment. Specifically, the model is used
to consider the following questions: under what circumstances
will resistant mutants appear and be selected during treat-
ment? Under what conditions will a particular single-drug
treatment regimen be able to suppress subpopulations with
low-level resistance? Why does combination therapy some-
times but not always prevent the ascent of resistant mutants?
How will the dosage, dosing frequency, and number of drugs
used in combination therapy affect the ability to prevent the
emergence of resistance? How does nonadherence to treat-
ment protocols affect the likelihood that resistance will
emerge, and how can protocols be modified to minimize this
likelihood? The purpose of such models is to suggest general
principles that may be useful in designing treatment protocols
and interpreting the results of tests of such protocols.
In the present models, we restrict our consideration to treat-

ment with bactericidal antibiotics and the evolution of resis-
tance by mutation (see Discussion for further consideration of
this assumption). We model treatment with a single antibiotic
and evaluate (i) the probability that new resistant mutants will
appear and be selected in a previously sensitive population
under drug treatment and (ii) the conditions under which low-
level resistance can be suppressed by using higher doses and
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lower frequencies of dosing. In considering combination (mul-
tiple-drug) therapy, we evaluate the effects of two major fac-
tors on the development of resistance during the course of
treatment: temporal fluctuations in the concentrations of an-
tibiotics between regular doses and nonadherence to the pre-
scribed treatment regimen.
(This work was presented in part at the 36th Interscience

Conference on Antimicrobial Agents and Chemotherapy, Sep-
tember 1996, in New Orleans, La.)

THEORY

Basic mathematical model. We model the changes of concentration C of a
single antibiotic, given at dose D to a host with volume of distribution V,
assuming instantaneous distribution, so that the antibiotic concentration in-
creases by C0 [ D/V at the time of each dose, with an interval of t time units
between doses. Elimination follows first-order kinetics with elimination constant
kel. The model also considers the changes in the populations of antibiotic-
sensitive (S) and -resistant (R) bacteria. Bacterial kinetics assume exponential
growth at a rate as follows: g 5 b 2 x, where g is the net growth rate of sensitive
bacteria, b is the rate of cell division, and x is the death rate due to host defenses
(assumed to be constant) and any other sources except the antibiotic. The
corresponding terms for resistant bacteria are marked with subscript Rs. Killing
by the antibiotic occurs according to an Emax model, where killing effect is a
saturating function of the antibiotic concentration with maximum killing rate kk
and half-maximum killing achieved at concentration C50. To model intermediate-
level resistance, we assume that resistant bacteria are also killed by the antibiotic
at a lower rate than are sensitive bacteria; the extreme case in which an antibiotic
has no effect on resistant bacteria can be accommodated in the model by suitable
choices of parameters (kkR30, C50R3`). Thus, the model is as follows:

dC/dt5 2 kelC

C5 C1 C0 (at each dosing interval t)

dS/dt5 gS2 f~C!S

dR/dt5 gRR2 fR~C!R

f~C! 5 kk
C

C1 C50

fR~C! 5 kkR
C

C1 C50R

This deterministic model is supplemented with a stochastic component, repre-
senting the appearance of mutants resistant to the antibiotic. These appear as a
Poisson process with rate m when sensitive bacteria replicate. Thus, in time
interval dt, R is set to R 1 1 with a probability equal to mbSdt.
Although the models are continuous, it is necessary to define the extinction of

a population. To model extinction of a particular population, computer simula-
tions of these models set populations whose sizes drop below 1 to 0.
Multidrug treatment extension of this model. In a multidrug extension of this

model, we track the sensitive population plus populations of bacteria resistant to
each one of the drugs used individually and in all possible combinations (three
resistant subpopulations for two drugs and seven for three drugs, etc.). In this
model, variables and parameters relating to populations carrying resistance to
each drug are labeled with subscripts with the number(s) of the drug(s) to which
the population is resistant; for example, bacteria resistant to drugs 1 and 2 are
counted by the variable R12.
We make one of two assumptions about the interaction between drugs. As-

sumption A is that drugs 1 and 2 have the same value of kk and combine
according to Loewe additivity (34), so that the drugs substitute for one another
as if they were different dilutions of the same compound. Under assumption B,
the killing effects of each drug act independently. This assumption that killing
effects are added together would appear synergistic according to Loewe’s defi-
nition (34).
For two drugs the equations read as follows:

dC1/dt5 2 kel1C1

dC2/dt5 2 kel2C2

C1 5 C1 1 C10 (at each dosing interval t)

C2 5 C2 1 C20 (at each dosing interval t)

dS/dt5 gS2 fs~C1,C2!S

dR1/dt5 g1R1 2 f1~C2!R1

dR2/dt5 g2R2 2 f2~C1!R2

dR12/dt5 g12R12

f1~C2! 5 kk2
C2

C2 1 C5022

f2~C1! 5 kk1
C1

C1 1 C5021

f~C1,C2! 5 5kk1
C1/C50–1 1 C2/C50–2

1 1 C1/C50–1 1 C2/C50–2
(assumption A)

or

kk1
C1

C1 1 C50–1
1 kk2

C2
C2 1 C50–2

(assumption B)

As in the single-drug case, mutations to resistance to drug i occur with probability
mi during each cell division. The mutation process, again, is modeled stochasti-
cally. Thus, for example, the expected number of R12 mutants in time period dt
is (m1b1R2 1 m2b2R1)dt.
Low-level resistance models.We used the models above to consider the effects

of different dosing schedules with the same total dose against infections contain-
ing bacterial subpopulations showing partial resistance to the drug used. Since
most existing work on the effects of such schedules on the suppression of resis-
tance has been done using fluoroquinolones, we have chosen pharmacokinetic
(7) and pharmacodynamic (26) parameters in ranges consistent with the litera-
ture on ciprofloxacin at standard human doses (see legend to Fig. 2). The MIC
for the resistant subpopulation is set to 1.0 or 4.0 mg/ml, which is in the range of
eight times the observed MIC for a number of organisms sensitive to ciprofloxa-
cin (26). For the purposes of the model, the MIC is defined as the concentration
of the drug that produces bacterial killing at a rate equal to the net growth rate
in the absence of antibiotic, yielding zero net growth: C50g/(kk 2 g). Parameters
for partially resistant strains are constructed by multiplying the approximate C50
measured for wild-type organisms (26) by a factor equivalent to the ratio of the
strains’ MICs and setting kkR equal to kk and gR equal to g.
Nonadherence model. Two models of nonadherence to the prescribed treat-

ment regimen are considered. Under the random nonadherence model, the
patient has probability P of taking each dose of drugs (0 # P # 1), and the
decision whether to take each dose is independent of decisions concerning each
of the other doses (1). Under the thermostat model of nonadherence, the
patient’s decision to take drugs is determined by the level of symptoms (1, 50);
using bacterial numbers as surrogates for symptoms, it is assumed that the
patient adheres to the treatment regimen from the beginning of treatment until
the point when the total number of bacteria in the host falls below minimum
value Nmin; the patient resumes compliance when the number of bacteria has
grown back to Nmax. In this paper, Nmin is always set to 104 and Nmax is set to 108.
Apart from these changes, the nonadherence simulations follow the equations
given above.

RESULTS

Appearance and ascent of resistance in a wholly sensitive
population during treatment. We begin our analysis of these
models by examining the simplest case. A host is infected with
S0 bacteria which, at the start of treatment, are all sensitive to
the drug used. We wish to determine the likelihood that resis-
tance will emerge in the course of treatment. Initially, we
assume that the drug is maintained at a constant concentration,
Ĉ (consequences of relaxing this assumption are addressed
below). Thus, the net per capita growth rate of sensitive bac-
teria is b 2 x 2 f(Ĉ). If the drug is given at an adequate dose,
the bacterial population will continuously decline, and the op-
portunity for the appearance of a resistant mutant is propor-
tional to the number of cell divisions during this period of
decline, up to the extinction of the sensitive population.
Mathematically, the expected number of mutants appearing

during treatment, E(M), is given by

E~M! 5 mE
t0

text

bS~t!dt (1)

where m is the mutation rate, t0 is the time at which treatment
starts, and text is the time at which the sensitive population is
extinguished. Solving the integral gives
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E~M! < mS0
b

x1 f~Ĉ! 2 b (2)

the product of the mutation rate, the initial population size,
and the cell division rate divided by the net rate of decline. If
the rate of cell division in the absence of any host defenses or
drug (b) has the same order of magnitude as the total rate of
decline in the presence of host defenses and the drug, then
E(M) is 'mS0. This number is the same as the expectation of
the number of mutants present in the population at the start of
treatment. If the existing population contains no resistant mu-
tants, that suggests that mS0 is less than 1. Therefore, if no
resistant mutants are present at the start of treatment and if
the antibiotic (plus any host defenses) kills bacteria at a rate
such that their net decline occurs at a rate comparable to their
intrinsic rate of cell division, then no mutants are likely to arise
during treatment. Several studies of mouse thigh infections
with gram-negative bacteria and in vitro models of antibiotic
killing suggest that realized killing rates can indeed be as fast
as or faster than growth rates in the absence of drug or host
defenses (10, 20, 22, 29).
Figure 1a shows how the probability that a resistant mutant

will appear during treatment depends on the mutation rate and
initial population size of sensitive mutants and on the cell
division and net killing rates. This is calculated by using the
Poisson assumption that the probability a mutant will appear is
P(M) 5 1 2 exp[2E(M)]. When the net rate of decline of

sensitive bacteria in the presence of antibiotics is very low
compared to the cell division rate, the probability that a resis-
tant mutant will appear can be large. However, when the net
killing rate equals the cell division rate, resistance is expected
to emerge in 10% of cases or fewer if the product of the initial
population size and the mutation rate is less than 0.1. As the
figure shows, this probability falls off rapidly as killing rates
increase or the product of the initial population size and the
mutation rate decreases.
If the antibiotic concentration is low enough to allow net

growth of the sensitive population, it will eventually be large
enough to give rise to a resistant mutant. The first resistant
mutant will occur, on average at a time after the start of
treatment (t1) as follows:

t1 5
1

b2 x2 f~Ĉ!
ln Sb2 x2 f~Ĉ!

S0bm
1 1D (3)

The first appearance of a resistant mutant occurs later as the
killing rate increases, since the growth of the sensitive popu-
lation is thereby delayed (Fig. 1b). Once the resistant mutant
has appeared, the ratio of sensitive to resistant cells will change
at a rate of b9 2 b 1 f(Ĉ) per unit of time, which will make
resistant bacteria the majority population at a time after the
first resistant mutant appears (t2) as follows:

t2 5
1

b9 2 b1 f~Ĉ!
ln SS0 1

b2 x2 f~Ĉ!

bm D (4)

Thus, the time from the start of treatment until resistant bac-
teria reach the majority is t1 1 t2 (Fig. 1b). Resistant mutants
reach a majority of the population fastest when the killing rate
f(Ĉ) reaches an intermediate value. Selection is most efficient
at this intermediate value because when killing is quite fast, the
first resistant mutant takes a long time to appear, but when

FIG. 1. (a) Probability that a resistant mutant will appear during treatment as
a function of the net killing rate by the antibiotic divided by the cell division rate
(horizontal axis) and the product of the mutation rate to resistance and the
population size at the beginning of treatment (mS0 5 1, 0.1, and 0.01). (b) Time
from the beginning of treatment until appearance of the first resistant mutant
and the rise of resistant mutants to constitute a majority of the population as a
function of the rate at which the antibiotic kills sensitive bacteria (at subinhibi-
tory concentrations). Slower killing speeds the appearance of the first mutant but
retards selection of that mutant. Parameters: mS05 0.01, b5 1.5, x5 0, and bR5
1.5. (c) Schematic comparison of the opportunity for generating a resistant
mutant with cycles of killing and regrowth (curve) or constant-rate killing at the
same net rate. The opportunity for generating a resistant mutant is proportional
to the area under the curve of bacterial counts over time; this area (shaded) is
smaller under killing and regrowth than under constant killing.
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killing is too slow, the selection in favor of the resistant mutant
becomes weak. The killing rate f(C*) that minimizes the time
before resistant bacteria constitute a majority of the popula-
tion can be obtained by setting

d~t1 1 t2!
df~C!

| f~C!5f~C*! 5 0

C* can be calculated numerically from the following implicit
equation:

lnFh~C*!S0 bm
1 1G/h~C*! 2 lnFh~C*!bm 1 S0G/@b9 2 h~C*!#2

2
b9

h~C*!@b2 h~C*!#@h~C*! 2 S0 b9m#
5 0 (5)

where h(C) is defined to mean b 2 x 2 f(C), and all other
variables are as stated in Theory.
This prediction is consistent with the frequent observation

that growth of bacteria in subinhibitory concentrations can
select effectively for resistant mutants (5, 6, 16, 23, 30, 32, 52).
The model predicts that such selection will be most efficient at
an intermediate rate of antibiotic-mediated killing.
The results in this section assume that the drug concentra-

tion is constant and that bacterial cell division continues at its
normal pace in the presence of antibiotic; all effects of the
antibiotic are attributed to replication-independent killing of
cells. Relaxing either assumption decreases the probability that
new resistant bacteria will appear.
If the bacterial cell division rate is a decreasing function of

drug concentration, then the expected number of resistant
mutants is proportional to S0 b(Ĉ)/[x 1 f(Ĉ) 2 b(Ĉ)], which is
less than the probability predicted above.
In a treated host, drug concentrations will fluctuate between

doses, possibly permitting regrowth of the drug-sensitive bac-
terial population (10); a mathematical description of this pro-
cess has been published for the first-order kinetics/Emax model
used here (2, 54). As shown in Fig. 1c, the number of cell
divisions when concentrations fluctuate between doses will be
less than the number observed if the net rate of decline re-
mained constant at its average value over the entire dosing
interval. The expected number of new mutants arising during
treatment is equal to cell division rate b times mutation rate m
times the area under the curve of bacterial numbers (from
equation 1). As Fig. 1c demonstrates, the area is less in the case
of killing and regrowth than under constant killing at the av-
erage rate; therefore, the probability of emergence is corre-
spondingly less.
Suppression of mutant subpopulations with low-level resis-

tance. For a number of drug-organism combinations, resistant
subpopulations are already present at the start of treatment. In
many cases, these initially resistant subpopulations are still
partially sensitive to the drug used, with MICs 4 to 16 times
those for the majority population (14, 22–24, 28, 39, 44, 47).
High peak concentrations of antibiotics have been proposed
and tested in vitro and in animal models as a way of eliminating
these minority populations of intermediate resistance (3, 14).
We have modeled the treatment of infections with small, par-
tially resistant subpopulations to study the predicted effects of
such strategies.
The Emax model implies that the marginal effectiveness of a

given quantity of antibiotic decreases as concentration increas-
es—that is, the effects of antibiotic increase less than linearly
with concentration. Under this model, increasing the peak
concentration by giving the same total amount of drug per unit

of time in less frequent, larger doses will always decrease the
total effect over the dosing interval (25). Therefore, if the
dose-response function of partially resistant bacteria follows an
Emax model, the use of high peak concentrations should be less
effective against this population over the course of a whole
dosing interval than the same total amount of antibiotic given
more frequently in smaller doses.
However, high peak concentrations may prevent the out-

growth of low-level resistant strains in another way: by driving
the resistant subpopulation to extinction with an early, high
dose, before the concentration drops low enough to allow
regrowth of the subpopulation. This strategy takes advantage
of the fact that resistant subpopulations will initially be small,
so sustained killing over a whole dosing interval may not be
necessary to extinguish them. Not surprisingly, the Emax model
predicts that a large dose will have a greater maximum killing
effect than a small one, although the total reduction in the
bacterial population over a 24-h period will be less for large,
infrequent doses than for the same total dose given in smaller,
more frequent administrations.
For an Emax model with first-order pharmacokinetics the

number of bacteria (B) remaining after time t from the admin-
istration of dose C(0) is given (2, 54) by

ln
B~t!
B~0! 5 gt1

kk
kel
ln
C50 1 C~0!exp(2kelt)

C50 1 C~0! (6)

and the bacterial population reaches its minimum value at a
time (Tmin) as follows:

Tmin 5
1
kel
ln FC~0!

C50
z
kk 2 g
g G (7)

By using equations 6 and 7, the minimum number of bacteria
during the dosing interval is as follows:

ln Bmin 5 ln B(Tmin) 5 ln B~0! 1
g
kel
ln SC~0!

C50
z
kk 2 g
g D

2
kk
kel
ln SC50 1 C~0!

C50
z
kk 2 g
g D (8)

By applying this equation to the subpopulation with low-level
resistance (with appropriate values of kk, g, and C50), it is
possible to calculate the maximum decrease in the (logarith-
mic) population size during the first dosing interval, as well as
the change in the bacterial population over an entire dosing
interval, for a range of dosing schedules. Figure 2 shows the
predicted effects of different dose fractionation regimens using
the same total dose over 24 h. As described above, the overall
effect in 24 h is greatest for small, frequent doses, while the
maximum kill is greatest for large, infrequent doses. The value
of the overall decline is given assuming that the peak concen-
tration has reached its steady-state value (due to pharmacoki-
netic accumulation), while the value for the maximum drop is
given for the first dose. Values are shown assuming MICs of 1
mg/ml (panel a) and 4 mg/ml (panel b).
Figure 2 shows that the efficacy of large, infrequent doses

against resistant subpopulations depends on the parameters of
dose-effect relations and drug elimination. Under certain cir-
cumstances, such as those in Fig. 2b, the high-dosing strategy is
predicted to be effective in extinguishing a small population of
partially resistant organisms. The equivalent of a single intra-
venous dose of 400 mg (see figure legend for details) produces
a maximum decline of about 1 log10 in the population of
bacteria for which the MIC is 4 mg/ml. This is the best outcome
of any dosing regimen in Fig. 2b, since none of the dosing
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schedules is capable of producing a net reduction over the
whole 24-h period. In Fig. 2a, however, a subpopulation with
low-level resistance (MIC 5 1 mg/ml) is better controlled by
more frequent dosing, since all schedules considered can pro-
duce net killing over the full 24 h. While increasing the size of
and interval between doses increases the maximum effect, it
decreases the total effect over the dosing interval.
Multiple-drug treatment: conditions for suppressing resis-

tant mutants and necessity of suppressing singly resistant
subpopulations. Treatment failure with multidrug regimens
occurs as a result of the outgrowth of singly resistant subpopu-
lations, which may then give rise to doubly or multiply resistant
mutants. In multidrug therapy of an infection that includes
subpopulations resistant to either of the drugs individually, the
fate of these singly resistant populations is likely to be impor-
tant to treatment success.

Under combination antibiotic therapy, subpopulations resis-
tant to one of the drugs effectively experience single-drug
treatment. Therefore, the results given above for the probabil-
ity of single-drug resistance arising in a sensitive population
under single-drug therapy are applicable directly to the prob-
ability that resistance to a second drug will arise in a singly
resistant subpopulation. If a subpopulation resistant to one of
the drugs in a two-drug regimen is present at the start of
treatment, then rapid killing of this subpopulation (relative to
the rate of cell division) will minimize the likelihood that mul-
tiple resistance will emerge.
Since the successful suppression of resistance depends on a

treatment regimen’s effect on singly resistant subpopulations,
combination therapy regimens designed to maximize killing of
fully sensitive organisms may not be optimal for preventing the
growth of resistant subpopulations. Figure 3 shows the simu-

FIG. 2. Model’s predicted effects of giving the same total daily dose fractionated every 2, 4, 6, 8, 12, and 24 h (qh2 and qh4, etc.) on the killing of partially resistant
bacteria. White bars show maximum decline in the partially resistant subpopulation obtained during the first dosing interval. Black bars show change in the partially
resistant population over 24 h. Shown are predictions for partially resistant strains for which the MIC is 1 mg/ml (a) and 4 mg/ml (b). Parameters are specific for human
dosing of ciprofloxacin: half-life, 4 h; C0 5 6.7 mg/ml for a 400-mg intravenous dose (7) (assumed to be linearly related to dose for other doses); total dose 5 800 mg
(intravenous)/day; kk 5 2.4/h; g 5 1.2/h (26). Total effect over 24 h declines with less frequent doses in both cases, while maximum killing improves with less frequent
doses. For the subpopulation for which the MIC 5 4 mg/ml (b), decreased frequency is beneficial, but decreased frequency is less effective for the subpopulation for
which the MIC 5 1.0 mg/ml.
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lated dynamics of a bacterial population that is majority sen-
sitive but contains a subpopulation resistant to one antibiotic,
drug 1. The infection is treated with two drugs (1 and 2) that
have identical dose-response functions and combine according
to Loewe additivity; however, they do not show cross-resis-
tance (such a relationship is unlikely in practice but serves as
an illustration of the principle). Figure 4a shows treatment
with equal doses of both drugs, while Fig. 4b shows the same
infection treated with twice as much drug 1 and half as much
drug 2 as in Fig. 4a.
Because the drugs are interchangeable (show Loewe addi-

tivity) and more total drug is used in Fig. 4b, the sensitive
population is cleared more quickly there. However, only the
regimen in Fig. 4a is capable of suppressing the subpopulation
resistant to drug 1. This occurs because the prevention of
resistance depends on effective killing by a drug alone, while
the rapid clearance of the majority population depends on the

combined effect of the drugs given. Simulations using other
functions for drug interactions, including the simple form of
synergism given by assumption B in Theory, can produce the
same effect.
Nonadherence as a form of inadequate dosing. Nonadher-

ence to the treatment regimen may also permit net growth of
singly resistant subpopulations. The model defines conditions
under which this will occur.
(i) Random nonadherence. Under random nonadherence, a

patient takes each dose of combined antimicrobial treatment
with a probability P between 0 and 1 and does not compensate
afterwards for the failure to take a particular dose. This form
of nonadherence will favor the growth of singly resistant strains
in two ways. First, each missed dose will permit bacteria to
grow under conditions of reduced or effectively zero antibiotic
concentrations. Second, in frequent-dosing regimens, a missed
dose may decrease the effective concentration of antibiotics

FIG. 3. Comparison of two combination dosing regimens for their ability to kill the majority, sensitive population and a subpopulation resistant to antibiotic 1. Peak
concentrations used are 4 mg of both drugs per ml (a) and 8 mg of drug 1 per ml plus 2 mg of drug 2 per ml (b). Drugs are assumed to act according to Loewe additivity,
so the larger total dose in panel b results in faster clearance of the susceptible population. However, the dose of drug 2 in panel b is inadequate to suppress mutants
resistant to drug 1, resulting in the outgrowth of drug 1-resistant mutants. Parameters: g 5 gR 5 0.6/h; kk 5 1.25; C50 5 1.0; half-life, 4 h. All parameters (except dose)
are the same for both drugs.
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during the next treatment interval by reducing pharmacoki-
netic accumulation (43). Although the effects on accumulation
theoretically last into all future dosing intervals, in practice, the
effects will be negligible in all dosing intervals after the next.
Hence, we model only these first- and second-order effects and
ignore all higher-order effects of missed doses—effects on the
growth of the bacteria in dosing intervals after the one imme-
diately following the missed dose. This assumption introduces
a less than 1% error into concentrations for treatment regi-
mens in which the peak/trough ratio of concentrations exceeds
10:1 (equivalently, for which the time between doses is longer
than approximately 3.3 drug half-lives).
With these assumptions, equation 6 can be modified to show

the effects of partial compliance with the treatment regimen on
the growth of singly resistant subpopulations. The population
resistant to drug 1 (susceptible only to drug 2) will grow ac-
cording to the following pharmacodynamic equation:

ln
B~t!
B~0! < g1t 1

kk2t
kel2t

HP2 ln C5022 1 a~11 a!C20

C5022 1 ~11 a!C20
1 P~12 P!

F ln C5022 1 aC20

C5022 1 C20
1 ln

C50 1 a2C20

C50 1 aC500
GJ (9)

Here, t is the total time since the start of treatment and t is the
time between doses; thus, there have been t/t dosing intervals
and the patient has taken his drugs, on average, Pt/t times. The
fraction of a given dose that is left at the time of the next dose
is given as a 5 exp(2kelt).
The first term of equation 9 refers to the effect of the drug

during dosing intervals in which the patient has taken the
prescribed dose and did so the previous dosing interval, as well.
The second term considers dosing intervals where the patient
takes the dose but did not in the previous interval (thus, there
is no accumulation factor), and the third considers the residual
effects of the previous dose in cases where it was taken but the
present dose was not. These situations occur with probabilities
P2, P(1 2 P), and P(1 2 P), respectively. Figure 4 shows the
expected growth rate of singly resistant populations in a two-
drug treatment regimen under different levels of random non-

adherence and the number of runs (out of 100) in which mul-
tiple resistance emerged in a Monte Carlo simulation using
these parameters and treatment with two drugs. As the figure
demonstrates, the average growth of singly resistant popula-
tions, as specified by equation 9, is a good predictor of the
outcome of stochastic simulations; when it is positive, double
resistance tends to appear, and when it is negative, treatment
nearly always succeeds in extinguishing the bacterial popula-
tion.
(ii) Thermostat nonadherence. Under the thermostat scheme

of nonadherence, selection of singly resistant mutants occurs be-
cause they are killed more slowly during periods of drug taking
and then grow back during periods of nonadherence to form a
larger fraction of the population. This process of enrichment is
shown in Fig. 5a. Once the singly resistant population becomes
sufficiently large, it may give rise to a doubly resistant mutant,
setting the stage for treatment failure (in the case of treatment
with two drugs to which the infecting organism is sensitive) or
stepwise evolution of more resistance (in the case of treatment
with more than two such drugs).
There are two necessary conditions for the selection of a

singly resistant subpopulation by thermostat nonadherence.
The first is that the singly resistant subpopulation must not go
extinct during the period of compliance with the treatment
regimen. Although singly resistant bacteria are (presumably)
killed more slowly than the majority, sensitive population dur-
ing periods of drug taking, the population of these bacteria is
also smaller and therefore more likely to be extinguished dur-
ing periods of compliance. Mathematically, the condition for a
singly resistant population to persist during the first period of
compliance is

dS
dR
ln ~fNmax! . ln

Nmax
Nmin

(10)

where dS and dR are the average rates of killing of sensitive and
singly resistant bacteria, respectively; f is the frequency of
single-drug-resistant mutants in the population at the begin-
ning of treatment; and Nmax and Nmin are the bacterial popu-
lation sizes at which the patient begins treatment and stops

FIG. 4. Emergence of multiple resistance under random nonadherence to the treatment regimen is related to growth of singly resistant subpopulations. Predicted
net growth of singly resistant subpopulations during a treatment interval (straight line) and number of runs (out of 100 in a Monte Carlo simulation) in which multiple
resistance emerged (squares) increases with the probability of nonadherence to each dose; the threshold for the emergence of resistance is approximately zero net
growth of singly resistant bacteria. Parameters: m1 5 2 3 1028/cell division; m2 5 2 3 10210/cell division (13); g 5 1/day; kk 5 2.5/day for drugs 1 and 2; half-life, '2
h; C0 5 15 mg/ml; C50 5 0.1 mg/ml. Drug interaction: assumption A. See Theory for other parameters.
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taking the prescribed antibiotics, respectively. Figure 5b shows
the extinction of resistant subpopulations during periods of
compliance; despite repeated periods of noncompliance, singly
resistant populations are not enriched and therefore never
become sufficiently large to give rise to doubly resistant mu-
tants.
The second condition is that the effect of the cycle of ad-

herence (as the bacterial population drops from Nmax to Nmin
and then regrows to Nmax) must be an increase in the propor-
tion of the population that is singly resistant. This condition is
simply

dS
dR

.
gS
gR

(11)

The resistant strain’s advantage in net killing rate in the pres-
ence of drug is greater than its disadvantage in growth rate in
the absence of drug.
Both conditions for the emergence of resistance require that

dS/dR be sufficiently large. This ratio of the effect of treatment
on sensitive organisms to that on singly resistant organisms is

one measurement of synergism, since sensitive organisms ex-
perience the combined effects of all drugs, while singly resis-
tant bacteria avoid the effects of one drug. This indicates that
under thermostat nonadherence, highly synergistic drug com-
binations may not be optimal for the prevention of resistance.
In fact, the only difference between Fig. 5a, where resistance
emerges due to nonadherence, and Fig. 5b, where it does not,
is that the former assumes that two drugs interact according to
Loewe additivity (assumption A [see Theory]) while the latter
assumes a greater degree of synergism—in which killing effects
are additive (assumption B [see Theory])—between the two
drugs (so that the overall interaction between the drugs is
synergistic by Loewe’s definition [34]). More generally, any
regimen that kills singly resistant bacteria at a rate more sim-
ilar to that of fully sensitive bacteria is less likely to result in
enrichment of resistant strains under thermostat noncompli-
ance.

DISCUSSION

We have analyzed a quantitative pharmacokinetic/pharma-
codynamic model of the population dynamics of bacteria under
single- and multiple-antimicrobial treatment. The analysis was
performed with a view toward providing testable hypotheses
about the mechanisms behind the emergence and prevention
of resistance and the design of dosing regimens to avoid treat-
ment failure resulting from resistance.
Our model predicts that resistance will rarely emerge in a

population of antibiotic-sensitive bacteria under treatment
with a given antibiotic when (i) resistant mutants are not
present at the start of treatment and (ii) the average net rate of
decline in the bacterial population during treatment is compa-
rable to the rate of cell division. We have derived mathematical
expressions to predict the time until the emergence of resis-
tance when these conditions are not met. The model predicts
that sustained exposure to subinhibitory concentrations should
effectively select for resistance and that the effectiveness of
selection, as measured by the time until resistant mutants form
a majority of the population, is maximized at an intermediate
rate of antibiotic-mediated killing. The theoretical treatment
represents an advance over previous treatments in that (i) it
incorporates the stochastic and discrete nature of resistance
mutations and (ii) it predicts that an intermediate concentra-
tion provides the maximum rate of selection. For an earlier
quantitative treatment of the emergence of resistance at vari-
ous antibiotic concentrations, see reference 32.
The model can also account for the efficacy of large, infre-

quent doses of a single drug against bacterial populations con-
taining a small minority of partially resistant bacteria, but only
in a limited range of parameters; for other parameters, more
frequent, smaller doses are predicted to be more effective. The
models therefore indicate that promising results with high-
dose chemotherapy as a means of suppressing resistance (3,
14) may not generalize to other drug-organism combinations.
In addition, the models suggest how dose-kill rate functions for
sensitive and resistant bacteria can be used to predict circum-
stances where such regimens may be useful.
In the multiple-drug version of the model, treatment failure

(due to the outgrowth of singly resistant bacteria or the ap-
pearance of multiply resistant variants) occurs when, for any
reason, singly resistant subpopulations experience net growth.
This prediction is consistent with experimental results (22, 27,
37, 46), and the model emphasizes the similarities between
inadequate dosing and various forms of nonadherence to the
treatment regimen in the mechanism of selecting resistance.
Monte Carlo simulations of random nonadherence, for exam-

FIG. 5. Enrichment of singly resistant bacteria during thermostat noncom-
pliance requires survival of the singly resistant subpopulation during periods of
adherence to the treatment regimen, which in turn is most likely when killing
rates of sensitive and singly resistant bacteria are similar. Shown are two simu-
lations of treatment with thermostat noncompliance, in which enrichment occurs
(a) or does not occur (b). (a) The interaction between drugs is synergistic; (b)
drug interaction is Loewe additive. Parameters are as described in the legend to
Fig. 4.
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ple, show that net growth or net decline of singly resistant
mutants under the realized treatment regimen predicts well
whether multiple resistance will arise. The importance of sup-
pressing singly resistant populations points out that a regimen
optimized for its synergistic effect against the sensitive majority
population may or may not be optimal for suppressing resis-
tance.
The purpose of the models considered here is not (at least

initially) to fit curves through points but rather to suggest (i)
predictions that may be tested in vitro and in animal models for
how dosing regimens may be optimized and (ii) interpretations
of existing data and how such data may or may not be extrap-
olated. Like all such models, this model makes a number of
simplifying assumptions. Before considering the predictions
and interpretations stemming from the model, we briefly re-
view some of its most limiting assumptions.
First, the model makes simplistic assumptions about the

immune system: (i) the death rate of bacteria from all immune
mechanisms is constant and the same for sensitive and resistant
populations, and (ii) the immune system is not saturable; that
is, small populations and large populations of bacteria are
subject to the same degree of inhibition by the immune system.
Both assumptions may be well approximated in severely im-
munocompromised hosts (3), who form one of the major pop-
ulations for whom emergence of antibiotic resistance during
treatment is a major problem. For example, experiments with
Pseudomonas aeruginosa in neutropenic mice appear to con-
form roughly to these assumptions (22). In the case of tuber-
culosis, there are clearly major changes in the antimycobacte-
rial immune response over the course of infection, but during
the course of antimicrobial treatment of frank tuberculosis, it
may again be reasonable to assume that immune-mediated
killing of mycobacteria remains at a constant level. In acute
infections of immunocompetent hosts, these assumptions may
not be met. Testing the assumptions is an important avenue for
future experimental work.
In the model of dose-response relationship, we assume that

killing follows a standard Emax model, which implies strictly
decreasing marginal effects of antibiotics at higher doses, and
we make no provision for a postantibiotic effect. Both of these
assumptions tend to increase the effectiveness of low, sustained
doses relative to that of high, infrequent doses (if the total
amount of a drug given per unit of time is the same). A more
complex model, such as a sigmoid Emax dose-response curve,
may be more favorable to high, infrequent doses, because at
low concentrations in such a model, the response increases
more than linearly with increases in the dose. Likewise, incor-
poration of a postantibiotic effect increases the efficacy of frac-
tionated dosing regimens (11, 15).
Furthermore, we assume that the exposure of the bacterial

population to antibiotic action is homogeneous. Heterogene-
ities in antibiotic exposure have been identified in tuberculosis
(17, 38) and other infections (12, 41), and we are in the process
of modeling the effects of such heterogeneity (33), which is
thought to contribute to the emergence of resistance (17, 37).
Finally, the model is based on the assumption that resistance

occurs by mutation, which is, of course, only one of the mech-
anisms by which bacteria become resistant to antibiotic action.
Therefore, the model is directly applicable principally to the
treatment of mycobacterial and pseudomonal infections and to
the use of fluoroquinolones and, for some bacteria, beta-lac-
tams, for which mutational resistance is known. In certain
cases, however, recombinational events, including plasmid
transfer, can be modeled like mutation, since the frequency of
such events is expected to be low and proportional to the
number of sensitive bacteria present (31, 49). Such recombi-

national events probably occur in vivo during antibiotic treat-
ment (45), although their frequency is unknown.
Despite these limitations and assumptions, the model makes

a number of robust predictions that can be tested in dosing
regimen studies. Among these predictions are the following.
(i) The elimination of partially resistant subpopulations dur-

ing the first dosing interval is likely to be the key to the success
of dosing regimens using large, infrequent doses. This is be-
cause the model predicts that for many realistic parameter
combinations, the resistant subpopulations would experience
net growth over an entire dosing interval if they survive the
initial peak concentrations. Therefore, the benefits garnered
from such regimens should be obtainable by a single (first) high
dose, regardless of whether the succeeding doses are large and
infrequent or smaller and more frequent. The only empirical
study of which we are aware that has tested dosing regimens
for their ability to suppress populations with low-level resis-
tance while monitoring bacterial numbers indeed found that
with a high dose, the bacterial population (both sensitive and
resistant) was extinguished in the first dosing interval, before it
had a chance to regrow (3).
(ii) Studies of synergism (18), while important in themselves,

will not be predictive of the ability of combination therapy
regimens to suppress the emergence of resistance. Rather,
suppression of resistance is likely to correlate with the activity
of each antibiotic alone against mutants resistant to the other
antibiotic. For further discussion of the relationship between
synergism and efficacy, see the work of Zinner et al. (55).
(iii) The effects of random nonadherence to the treatment

regimen (for which directly observed therapy is presently rec-
ommended as a preventive measure [8]) may be lessened by
more potent combinations of drugs. This is because regimens
that kill rapidly will be able to accommodate more regrowth
during intervals of nonadherence and still maintain a net de-
cline in all subpopulations. This possibility, of course, should
be weighed against the possibility that more rigorous courses
of treatment increase the patient’s inclination not to take his or
her prescribed medicines.
Another interesting prediction or interpretation offered by

the model, particularly for tuberculosis, is that nonadherence
should be especially favorable to the development of resistance
in immunocompromised patients. Under random nonadher-
ence, this occurs because of the same mechanism just dis-
cussed; a greater fraction of doses must be taken to maintain
net killing of the bacterial population if the immune system is
not contributing to the suppression of bacterial growth. Under
the thermostat model of nonadherence, addition of an immune
killing term for both sensitive and resistant populations will
decrease the ratio of killing rates between the two strains,
making it less likely that inequalities 10 and 11 will be satisfied.
Epidemiological studies of the emergence of drug resistance in
human immunodeficiency virus-infected patients are beginning
to appear (4), and such data should provide tests of the model’s
prediction; if it is correct, compromised immunity and nonad-
herence should have a more than additive effect in increasing
the likelihood that resistance will emerge during treatment.
The development of theoretical frameworks for understand-

ing antibiotic dose-effect relations (21), kinetics of populations
of tumor cells (48) and infectious agents (53) in response to
antimicrobial treatment, and the interactions between drugs
(34, 42) has yielded important insights into the biology under-
lying these processes and the optimization of therapy. Contin-
ued development and testing of mathematical models of the
population dynamics of drug resistance during treatment of
bacterial infections will be important in the effort to evaluate
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and improve treatment courses with existing and new antibac-
terial agents.
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