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The frequency and rates of ascent and dissemination of
antibiotic resistance in bacterial populations are anticipated to
be directly related to the volume of antibiotic use and inversely
related to the cost that resistance imposes on the fitness of
bacteria. The data available from recent laboratory studies
suggest that most, but not all, resistance-determining
mutations and accessory elements engender some fitness
cost, but those costs are likely to be ameliorated by
subsequent evolution.
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Introduction
The use of antibiotics by humans can be seen as an evolu-
tionary experiment of enormous magnitude, a window from
which to view not-quite-natural selection operating in real
time. Within 50 years, the number of species and strains of
pathogenic and commensal bacteria resistant to antibiotics
and the number of antibiotics to which they are resistant has
increased virtually monotonically world-wide. Infections
that had been readily treatable by chemotherapy may no
longer be [1–4]. It is clear that the evolution and spread of
resistance can be attributed to the use and overuse of antibi-
otics (also see Guillemot’s review on antibiotic usage, this
issue, pp 494–498). Not so clear is whether this situation can
be reversed in a reasonable amount of time. That depends
on factors which we may be able to control, such as the rate
and pattern of antibiotic use, but also on factors over which
we have no control, the biological cost resistance imposes on
the fitness of bacteria [5•,6•], and the rate and degree to
which natural selection will ameliorate these costs.

Measuring the biological costs of resistance
The fitness of the pathogens that are the targets of antibi-
otic therapy is a complex character with a number of
interrelated elements. The most important of these are the
relative rates at which antibiotic-sensitive and -resistant
bacteria firstly, reproduce and die (compete) in infected
hosts and the environment, secondly, are transmitted
between hosts, and thirdly, are cleared from infected hosts
[5•,6•]. At any given time, the magnitude of these elements
will depend on the extent and pattern of antibiotic use.

These components of the biological cost of resistance can be
measured in essentially three ways: first, retrospectively, by
fitting mathematical and numerical models of the changes
in frequencies of hosts infected with antibiotic-sensitive

and -resistant strains of bacteria following known changes
in the rates and patterns of antibiotic use in human popu-
lations; second, prospectively, by measuring the rates at
which individual humans become infected with and
cleared of sensitive and resistant bacteria; and third, exper-
imentally, by estimating the relative rates of growth,
survival, transmission and clearence of sensitive and resis-
tant bacteria in vitro and in vivo. We are aware of only one
study that formally estimated the biological cost of resis-
tance by the first of these methods [6•], none by the
second, and only a modest number by the third. Because
of this bias and our own biases, we concentrate most of the
rest of this ‘opinion’ on the results and interpretation of the
modest number of experimental studies of the costs of
antibiotic resistance and the adaptation to those costs.

Experimentally estimating the costs of
resistance and studying the adaptation to
those costs 
Experimental studies of the biological cost of resistance
have focused almost exclusively on the relative rates of
growth, survival and competitive performance of
antibiotic-sensitive and -resistant bacteria. In some stud-
ies, the costs of resistance were estimated from the
exponential growth rates of sensitive and resistant bacteria
in monocultures [7••,8•] but more commonly they have
been measured by pairwise competition experiments.
Mixtures of otherwise isogenic sensitive and resistant
strains are inoculated into chemostats, batch cultures or
laboratory animals, and the changes in their relative fre-
quencies are followed by selective plating [7••,8•,9–12].
These pairwise competition experiments simultaneously
estimate a number of components of the competitive fit-
ness of sensitive and resistant bacteria: their lag periods,
rates of exponential growth, resource utilization efficien-
cies, and their rates of mortality in the presence and
absence of host defenses. By extensively replicating these
pairwise competition experiments, it is possible to detect
differences in fitness as small as 1% [13,14].

The rate, nature and consequences of evolution of the costs
of resistance can be followed in vitro by maintaining resis-
tant bacteria in chemostats, by serial passages in vitro or in
experimental animals. By pairwise competition with the
ancestral strains (or from the decline in the frequency of a
low density, selectively neutral, indicator strain) it is possi-
ble to determine whether fitter mutants ascended to high
frequency and isolate such mutants. One can then ascertain
whether adaptation to the cost of resistance is accomplished
by one of several possible events: first, reversion to wild
type by back mutation or the loss of a resistance gene or
accessory element; second, compensation by intracistronic
or intercistronic suppression of the chromosomal resistance
gene [7••,12]; or third, genetic changes in the accessory
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element responsible for resistance and/or host adaptation to
the carriage of this element [10,15,16].

The most general limitation of estimating the cost of resis-
tance in these laboratory experiments is the interpretation
of negative results. If no effect of resistance is observed in
competition experiments performed under a variety of in
vitro and in vivo conditions, it becomes increasingly likely
that the costs of resistance are low or non-existent. It still
remains possible, however, that there are realistic condi-
tions where these costs are profound. On the other hand, if
significant costs of resistance are observed in these exper-
iments, it is reasonable to assume that in natural
populations there are conditions where resistance would
engender a burden on the fitness of a bacterium. Another
limitation of the experimental studies of the cost of resis-
tance performed to date is the focus on growth and
competitive performance. Although one can estimate the
transmission and clearance costs of drug resistance experi-
mentally, to our knowledge, those experiments have not
been performed (or not published).

Is there a cost to resistance?
It is convenient to separately consider the costs of resis-
tance encoded by chromosomal mutations, where
resistance is achieved primarily by the modification of tar-
get molecules [17–21], and that determined by accessory
elements, where resistance is generally due to enzymes
that inactivate the antibiotic or pumps that remove it from
the cell [17–23]. Resistance encoded by accessory ele-
ments may also give rise to costs associated with the
replication and maintenance of the elements themselves.

In the majority of studies performed, resistance caused by
target alterations has been found to engender some cost to
fitness (Table 1), but mutants with no measurable costs
have also been observed. One example of a ‘no cost’ resis-
tance mutation is the 42nd codon AAA (Lys)→AGA (Arg)
substitution of the rpsL gene, responsible for resistance to
high concentrations of streptomycin in S. typhimurium and
other enteric bacteria [7••,8•]. Other substitutions at the

same position cause severe reductions in fitness both in
vitro and in mice [7••,12], whereas these rpsL AGA muta-
tions appear to be selectively neutral and may even confer
a slight advantage over wild type [7••].

Also apparent from these studies is that the fitness cost
associated with chromosomal resistance depends on
growth conditions. For example, resistant mutants that
show no cost in laboratory medium may have large costs in
laboratory mice, and conversely, mutants that show no cost
in mice may have substantial costs in vitro (J Björkman,
D Hughes, DI Andersson, unpublished data). This condi-
tionality supports the view that experimental estimates of
the cost of resistance should be done under a variety of cul-
ture conditions in vitro as well as in experimental animals.

A number of studies have reported fitness burdens associ-
ated with the carriage of resistance-encoding (R) plasmids
[9–11,24–27] At this juncture, however, it is not clear how
common these costs are and how they vary among plas-
mid–host combinations from natural populations. All of the
quantitative studies estimating the fitness burden of
R-plasmids of which we are aware have been done in vitro
and most commonly with cloning and other plasmids that
have been genetically altered or maintained in the labora-
tory for extensive periods.

Reversion, compensatory evolution and
amelioration of fitness costs
Although occasionally, in the absence of antibiotics, drug-
sensitive revertants have evolved in most cases, adaptation
to the costs of chromosomal resistance in vitro and in vivo
has been through compensatory mutations (Table 2). In
the majority, but not all cases, the second site mutations
compensating for the cost of resistance have been identi-
fied. These occur by additional (or alternative) mutations
at the same locus as the resistance gene, intragenic sup-
pression, or at other loci, extragenic suppression. The
physiological mechanisms by which compensatory muta-
tions restore fitness have been determined for a few cases.
For example, compensation for the cost of streptomycin
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Table 1

The biological cost of resistance conferred by target-altering chromosomal mutations.

Bacteria Resistance Mutation Cost Assay system Reference

S. typhimurium Streptomycin rpsL Yes/no Mice, in vitro [7••,8•]
Rifampicin rpoB Yes Mice, in vitro [7••]
Nalidixic acid gyrA Yes Mice, in vitro [7••]
Fusidic acid fusA Yes/no Mice, in vitro [34](a)

E. coli Streptomycin rpsL Yes/no In vitro [12,32]
Rifampicin rpoB Yes/no In vitro (b)

M. tuberculosis/bovis Isoniazid katG Yes Mice [35–37]

S. aureus Fusidic acid fus Yes/no Rats, in vitro (a)

aJ Björkman et al., unpublished data. bBR Levin et al., unpublished data.



resistance in rpsL mutants is achieved by second site
mutations restoring the efficacy and rate of translation to
wild-type or nearly wild-type levels [8•,12].

Why, in the absence of antibiotics, evolution ameliorating
the cost of resistance is more common than reversion to
drug sensitivity has been attributed to two processes: com-
pensatory mutations being more common than true
reversion (which is commonly restricted to single
nucleotide substitution), and the population bottlenecks
associated with serial passage [28•]. Moreover, once the
compensatory mutants are fixed in the population, rever-
tants are unlikely to ascend because in the genetic
background of the compensatory mutant they may be at a
substantial disadvantage [8•,12]. Also see Borman et al. [29]
for the same phenomenon for the adaptation of HIV resis-
tance to a protease inhibitor.

The degree of restoration of fitness by the compensatory
mutations varies greatly, and in some cases restoration
appears complete, whereas in others it is only partial
[7••,8•,12]. An unexpected finding is that the types of com-
pensatory mutations obtained depend on the conditions
under which they were selected. One example is the strep-
tomycin resistant rpsL mutants in S. typhimurium. When
selected in mice, compensatory mutations are only intra-
genic. In contrast, when selection for restored fitness is
done in laboratory medium, compensation occurs by extra-
genic suppressor mutations [7••,8•].

The few experimental studies that have been done on
plasmid–host coevolution suggest that compensatory evo-
lution may also play a prominent role in the adaptation to
accessory-element-encoded resistance [10,11,15,16,24,26].
Although R-plasmids could be lost by vegetative segrega-
tion, two processes work against this. One is post segrega-
tional killing [30] by which R plasmids, like R1 and RK2,
have mechanisms that kill bacteria that lose these ele-
ments. The other is, of course, intermittent antibiotic-

mediated selection for one or more of the resistance-
encoding genes borne by these elements. 

Reality
Experimental studies of the costs of resistance, and adapta-
tion to those costs make a number of predictions that can be
tested (and rejected) by examining the resistance genes and
accessory elements found in bacteria isolated from humans
and domestic animals to see if the same mutations ascend.
The results of the few tests of this type done to date suggest
that chromosomal mutations responsible for acquired resis-
tance in pathogenic bacteria are likely to be the same as
those mutations observed to have little or no cost experi-
mentally. For example, Böttger et al [31•] found that the
rpsL mutations responsible for resistance to streptomycin in
clinical isolates of Mycobacterium tuberculosis, were the same
as those that had no cost in experiments done in
S. typhimurium and Escherichia coli. Not so clear from this
study, is whether these ‘no cost’ streptomycin-resistance
genes were the primary mutations, or evolved to compen-
sate for a more costly original mutation as has also been
observed experimentally [7••,8•,12,32]. To test for compen-
satory evolution, it will be necessary to either see the second
site compensatory mutations along with the original muta-
tions observed in vitro, or follow the progression from the
first appearance of primary resistance in a patient. 

To our knowledge, the only evidence for compensatory
evolution occurring in bacteria isolated from patients
comes from a retrospective study of isoniazid-resistant
M. tuberculosis [33]. These bacteria become resistant by
virtue of knock-out mutations in the katG gene, which
cause a loss of catalase activity and avirulence [34–36]. The
majority of clinical isolates with the katG mutation also
contain a promoter-up mutation in the ahpC gene, which
causes an increase in the level of alkyl hydroxyperoxidase
reductase (AhpC). Even though no direct causality has
been established, it is likely that the overproduction of
AhpC due to promoter-up mutations compensates for the

The biological cost of antibiotic resistance Andersson and Levin    491

Table 2

Compensatory evolution and amelioration of fitness losses caused by chromosomal mutations.

Bacteria Resistance mutation Compensatory mutation Selection for Reference
(resistance) (resistance in compensated mutant) compensation in

S. typhimurium rpsL (streptomycin) Intragenic, rpsL (maintained) Mice [7••]
rpsL (streptomcyin) Extragenic, rpsD/E, (maintained) Laboratory medium [7••,8•]
gyrA (nalidixic acid) Intragenic, gyrA (maintained) Mice [7••]
rpoB (rifampicin) Intragenic, rpoB (maintained) Mice [7••]
fusA (fusidic acid) True reversion, fusA (lost) Mice (a)
fusA (fusidic acid) Intragenic, fusA (often maintained) Laboratory medium [34]

S. aureus fus (fusidic acid) Intragenic, fu, (maintained/lost) Laboratory medium (a)

E. coli rpsL (streptomcyin) Extragenic, rpsD/E (maintained) Laboratory medium [12,32]
rpoB (rifampicin) Intragenic, rpoB (maintained) Laboratory medium (b)

M. tuberculosis katG (isoniazid) Extragenic, ahpC (maintained) Humans [33]

aJ Björkman et al., unpublished data. bBR Levin et al., unpublished data.



lack of catalase in the isoniazid resistant katG mutants and
restores virulence [33].

Implications
Although it has been long thought that antibiotic-resistance
genes and accessory elements would engender a cost in the
fitness of bacteria, the actual evidence for this being the
case is, at best, modest and that which has been gathered
recently does not paint a rosy picture for the future of the
resistance problem. Resistance mutations, such as those
found in the bacteria from patients treated with antibiotics,
have virtually no cost when measured by competition
experiments in vitro or in experimental animals. Moreover,
in those cases where resistance mutations and accessory
elements engender a cost, subsequent evolution in the
absence of antibiotics commonly results in the amelioration
of those costs rather than reversion to drug sensitivity. If
these laboratory observations reflect the situation for bacte-
ria in hospital and community acquired infections, even low
levels of antibiotic use could be sufficient for the ascent and
long-term persistence of resistance [5•,6•].
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