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A simple epidemiological model is used as a framework to

explore the potential efficacy of measures to control antibiotic

resistance in community-based self-limiting human infections.

The analysis of the properties of this model predict that

resistance can be maintained at manageable levels if: first, the

rates at which specific antibiotics are used declines with the

frequency of resistance to these drugs; second, resistance

rarely emerges during therapy; and third, external sources

rarely contribute to the entry of resistant bacteria into the

community. We discuss the feasibility and limitations of these

measures to control the rates of antibiotic resistance and the

potential of advances in diagnostic procedures to facilitate this

endeavor.
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Introduction
Although some, not us, may question the contribution of

burning fossil fuels to Global Warming, there is no doubt

that the human use of antibiotics is responsible for the

emergence and spread of pathogenic bacteria with inher-

ited resistance to these drugs. As is the case for Global

Warming, what is questionable is whether we can do

anything about it. Can we reverse or even slow the rate

of ascent and dissemination of antibiotic resistant bacteria

by changing the ways we use these drugs, a problem and

endeavor of global concern [1–3]. Here we address this

question from the perspectives of evolutionary biology

and epidemiology.
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The evolution of inherited antibiotic resistance
was anticipated
More than 100 years ago Paul Ehrlich already suggested

multi-drug (combination) therapy to deal with resistant

parasites [4��], and interest in such strategy remains [5–7].

If he were living in Ehrlich’s time, Charles Darwin could

have predicted the ascent of resistance as well; the

elements for its evolution were certainly there, inherited

variation in the susceptibility to antibiotics and drug-

mediated selection favoring less susceptible variants.

Indeed, had Darwin witnessed the emergence and spread

of inherited resistance with human use of antibiotics, the

first chapter of the ‘Origin of the Species’ may well have

opened with this most compelling example of human-

mediated selection.

By mutations in one or two chromosomal genes, bacteria

can readily generate resistance to therapeutic concen-

trations of antibiotics like the aminoglycosides, the rifa-

mycins, the quinolones and fluoroquinolones, and even

beta-lactam agents. Many pathogenic bacteria can also

acquire heritable resistance to antibiotics by horizontal

(infectious) genetic transfer (HGT) of resistance-encod-

ing genes and genetic elements genetic elements from

other bacteria of different as well as the same species.

The evolution and maintenance of antibiotic resistance is

not just a matter of selection for bacteria bearing

mutations for resistance. The infectiously transmitted

semi-autonomous genetic elements, plasmids, transpo-

sons and integrons bearing resistance genes and,

arguably the genes themselves, have an evolutionary life

of their own [8]. The frequencies of resistant clones of

bacteria may wane to extinction, but the infectious

genetic elements bearing these resistance genes can

live on moving by continually to new clones of the

same and different species [9], and pollute wide environ-

ments in different ecosystems, if not the entire microbio-

sphere [10].

Antibiotic use and the evolution and
epidemiology of resistance: what
mathematical models tell us
Mathematical and computer simulation models have

been employed to explore the relationship between

antibiotic use and the evolution and epidemiology of

resistance in open communities [11–14] and in hospitals

[15�,16,17]. To facilitate our consideration of the

factors determining the frequencies of resistance and
Current Opinion in Microbiology 2014, 19:83–89

http://crossmark.crossref.org/dialog/?doi=10.1016/j.mib.2014.06.004&domain=pdf
blevin@emory.edu
http://dx.doi.org/10.1016/j.mib.2014.06.004
http://www.sciencedirect.com/science/journal/13695274


84 Ecology and industrial microbiology

Figure 1

Current Opinion in Microbiology

xs+xr

xr

xs

1-t(R)

 t(R)

STμ

U(βSS+βSTST)

UβRR

VSS

VRR

VSTST

U ST

S

R

Model of the epidemiology of a community-acquired directly transmitted, self-limiting infection with antibiotic treatment and resistance. For details, see

the text.
consequences of modifying them, we use a minimalist

model of the epidemiology of resistance in what may

well be the most common use of antibiotics, the treatment

of acute, community-acquired, self-limiting bacterial

infections (Figure 1).

In this model, which is derived from that in [18], we

consider community-acquired directly transmitted bac-

terial infections. The variables U, S, ST, and R, are

respectively the densities and designations of hosts

within a defined community that are not colonized,

colonized with susceptible bacteria but not treated,

colonized with susceptible bacteria and treated, and

colonized with resistant bacteria. A fraction t(R)

(0 � t(R) � 1) of hosts colonized with susceptible bac-

teria are treated. Colonized hosts lose these infections

at rates, vS, vST and vR per day and immediately

enter the uninfected U state. U hosts become colonized

at a rate equal to the product of their densities and

that of the colonized hosts and donor-specific trans-

mission rate constant, bS, bST, and bR. With a prob-

ability m per host per day, by mutation or HGT treated

hosts acquire resistance and as a consequence of anti-

biotic-mediated selection are converted into carriers of

resistant bacteria, R.

To account for the input of susceptible and resistant

bacteria from sources external to the community,

like hospitals, nursing homes, daycare centers and
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some agricultural and veterinary settings, we assume

there is a constant input of susceptible and

resistant bacteria into the S and R compartments xs

and xr and a corresponding reduction in the density

of the U subpopulation. To account for the reality

that the rate of prescriptions for a given antibiotic

(treatment) of the host’s will decline with the fre-

quency of resistance to this drug, we assume a hyper-

bolic function,

tðRÞ ¼ T MAX 1 � p

ð p þ kRÞ

� �
:

where p the relative frequency of colonized hosts with

resistant bacteria, p = R/(R + S + ST), TMAX the maximum

proportion of patients treated with that drug and kR the

frequency of resistance where the rate of treatment is half

its maximum.

In this model there is no disease-associated mortality and

the population maintains a constant density. As in [18],

the transmission rate constants, the bs, are equal to the

product of the reproductive number of untreated suscept-

ible bacteria, R0 [19] and the rates of clearance. The

fitness cost of resistance, can be manifest as a higher rate

of spontaneous clearance vR < vS and/or a lower rate of

transmission, bR = bS(1 � ar) where (0 � aR �1). In

addition to reducing the term of infection, vST < vS,

treatment may also reduce the rate of transmission,

bST = bS(1 � aST) where (0 � aST � 1).
www.sciencedirect.com
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With these definitions and assumptions, the rates of

change in U, S, ST and R are expressed as four

coupled differential equations in which arrows entering

a compartment are positive terms and those leaving

negative. Copies of these equations and the Berkeley

MadonnaTM program used to solve them can be found in

the supplementary material or on www.eclf.net.

Results, predictions and implications
In Figure 2 we present the results of simulation of this

model.

(i) The classic use-resistance correlation: As is the case for

other models of epidemiology of resistance in open

communities [11,13,14], observed empirically

[20,21�,22] and anticipated intuitively, this model

predicts that the frequency of resistance will be

proportional to the rate of antibiotic use (Figure 2a).

Because there is a cost of resistance which is manifest

by a 5% lower rate of transmission, there is a

threshold frequency of antibiotic use, below which
Figure 2
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resistance will not ascend, TMAX < 0.1 with these

parameters. Because the treatment is facultative, the

rate of treatment with any particular drug declines

with the frequency of resistance to that drug,

resistance does not continue to increase but rather

levels off and is maintained at that level; there is a

stable internal equilibrium to use the jargon of

mathematical biology. This can be seen by the

convergence of lines in Figure 2a,c. When the initial

frequency of resistance is high, this frequency

declines and when low it increases and in both

cases approaches a level (equilibrium) that depends

on the rate of antibiotic treatment (TMAX and kr) and

the input of bacteria from external sources

(ii) The contribution of acquired resistance: Both the rate of

increase and/or decrease in the frequency of

resistance as well as the sustained level of resistance

depends on the rate at which treated hosts, ST,

acquire resistance and enter the R state, the

parameter m (Figure 2b). This parameter is rarely

measured in the clinical landscape. Its magnitude
1
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obviously depends of the rate at which susceptible

bacteria become resistant by mutation and/or HGT,

but also on the antibiotic treatment protocol, a

subject of some controversy. Could it be, as recently

suggested [23,24��], that ‘orthodox’ high dose

therapy more likely lead to acquired resistance than

more moderate dosing regimes? Or could it be that

high dose therapy is the optimum way to both

maximize the rate of cure and minimize the

likelihood of resistance emerging during the course

therapy [25]?

(iii) Contribution of external input of bacteria: If hosts are

colonized with susceptible as well as resistant

bacteria from environmental sources, the equi-

librium frequency of resistance will increase in

proportion to the amount of input (Figure 2c).

(iv) The epidemiological benefit of treatment: In addition to

the virtue of reducing the term of infection of

individual host (by a factor of two in these

simulations), antibiotic treatment can have an

epidemiological benefit. Because it lowers the

term of infectiousness and thereby the amount of

transmission, treatment can reduce the fraction of

the population that is colonized with potential

pathogens. Resistance, however, thwarts this

epidemiological virtue of antibiotic treatment as

does input of bacteria from external sources

(Figure 2d).

(v) The importance of surveillance and awareness: This

model predicts that if the rate of antibiotic use

declines with the frequency of resistance, that

frequency need not continue to increase and can

be maintained at a tolerable levels. Currently to

achieve this end, physicians need local, up-to-date

information about the frequencies of pathogens

resistance to different antibiotics to facilitate their

choice of drugs and adjust their doses. There is a

caveat, as awareness of high rates of resistance might

also provoke higher consumption of broad-spectrum

drugs [26�], yet another argument for extensive and

ongoing programs to educate the public as well as

health care professionals about antibiotic use.

(vi) Modifying rates and patterns of antibiotic use is not

the only way to control the incidence of infections

and the frequency of resistance [27,28]. This can be

seen with this minimalist model. By infection

control, better hygiene and other methods, the

transmission rates of pathogens, the bs, can be

reduced and with that the frequency of resistance.

For example if we assume a TMAX = 0.20, a 10%

reduction in the transmission rate constant, b, results

in a 9.1% increase in the frequency of uninfected

hosts, U, and respectively a 58.1% and 41.5%

decrease in hosts colonized with susceptible and

resistant bacteria Vaccination is also a promising

strategy to fight against antibiotic resistance

[29,30��].
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Some inconvenient realities
(i) The cost of resistance and compensatory evolution:

Central to the control of resistance by changing

rates of antibiotic use is that resistant bacteria are less

fit than susceptible. When first acquired resistance

genes and genetic elements may indeed impose a

fitness cost, the magnitude of that cost is likely to be

ameliorated by the subsequent evolution of com-

pensatory mutations [31–35,36��,37,38��,39–45,46�].
(ii) A dearth of alternatives: Implicit to decisions not to

employ an antibiotic because of higher than desired

frequencies of resistance, is the availability of

alternative drugs for which resistance are less

frequent. Not only has the supply of alternative

antibiotics with no cross-resistance to existing drugs

declined, there is little sign of its being replenished

in the near future [47,48�]. Adding to this supply

dilemma is an increasing frequency of multi drug

resistance; selection for resistance to one antibiotic

increases the frequency of other genetically linked

resistance genes.

(iii) Environmental sources of resistance: In addition to the

direct, person to person transmission within the

community, in this model antibiotic resistant

bacteria as well as genes and genetic elements

can be acquired from external sources. For

normally self-limiting community acquired infec-

tions of the sorts this model considers, like otitis

media, sinusitis, conjunctivitis, and many upper

respiratory infections, as well as uncomplicated

skin infections, the primary external sources of the

bacteria responsible, like Streptococcus pneumoniae,
Haemophilus influenzae, and Staphylococcus aureus,
are likely to be the hospitals, long-term-care

facilities, nursing homes and daycare centers,

rather than food and water. For enteric infections

the external sources of primary concern are

reservoirs in the normal microbiota following

exposure to food, water (particularly sewage-

contaminated water in underdeveloped countries)

and other polluted environmental sources

[49��,50]. While the mathematical models for

infections acquired from these kinds of external

sources will be different from that considered

above, more like that in [11], we would anticipate

an analogous dynamics; environmental sources of

resistant bacteria will increase the frequency of

resistance in the pathogens colonizing and infect-

ing humans. Unless there is a major effort to

address this issue, there is every reason to

anticipate that these external to the human

community sources of resistant bacteria are going

to increase the rate of ascent and frequency of

resistant pathogens in human populations. More-

over, even at the subtherapeutic concentrations

anticipated in these environmental sources, selec-

tion will favor resistance [51–53].
www.sciencedirect.com



The evolution and future of antibiotic resistance Levin, Baquero and Johnsen 87
(iv) The spread of high-risk resistant clones: In a number of

cases, resistance rates might be a consequence of

local spread of highly transmissible resistant clones

exacerbated by antibiotic exposure [3], but it is also

true that the spread of highly transmissible anti-

biotic-susceptible clones might decrease antibiotic

resistance rates.

(v) The tragedy of the commons: Antibiotics are perceived

to be and largely are to the advantage of

individuals, whilst resistance is primarily (but

not entirely) a problem for the collective [54].

Presumably motivated by concern for resistance as

problem for the collective, Northern European

countries tend to use narrow-spectrum antibiotics

(narrow-selective antibiotics), but in many other

parts of the world the rapid antibiotic effect takes

the priority, justifying broad-spectrum (broadly-

selective) drugs [55], yet another tragedy of the

commons [56,57��,58,59].

The future of antibiotic resistance: we have
not crossed the red line
We do not believe ‘the post antibiotic era [60]’ is upon us.

To be sure, we will not return to a time when inherited

drug resistance was undetectable in human pathogens.

Evolution has taken its course and the tape cannot be

played again. On the other hand, even accepting the

above listed and doubtless other undesirable realities,

there are compelling epidemiological, social and technical

reasons to be optimistic about the future of the treatment

and prevention of bacterial diseases.

As we attempted to demonstrate in this model/compu-

ter-assisted rant, resistance can be controlled; there is

no reason to expect that pathogens refractory to all

extant antibiotics will universally replace those that

are susceptible to one or more effective drug. Despite

our excessive use of these drugs and their increasing

abundance in our environment, variants that are

susceptible to the majority of currently employed

antibiotics continue to persist for virtually all bacteria

and dominate the majority of pathogenic species.

There is no reason to expect the reservoir of

susceptible bacteria will be exhausted and it could well

be replenished.

From the perspective of social norms, physicians and

the population at large are increasingly aware of the

resistance problem and its potential deleterious effects

on them as practitioners, individuals and even corpor-

ations. As suggested by [56,61] the tragedy of the

commons that has dominated antibiotic use these past

decades can be overcome by social pressure and the

reinforcement of responsibility to the collective. Our

technology is also working in the right direction. To be

sure, even if it were technically and economically

feasible, we cannot sustain, much less win the arms
www.sciencedirect.com 
race with evolution by developing ever more traditional

antibiotics. On the other hand, thanks to the increasing

awareness of the resistance problem, impressive

advances in molecular biology and tools for that enter-

prise, and of course economic incentives there is every

reason to anticipate the development of methods to

deal with the resistance problem. Biomarkers, such as

procalcitonin, are useful to guide the initiation and

duration of antimicrobial therapy reducing total anti-

biotic exposure and treatment duration [62,63]. Cost-

effective diagnostic procedures are being developed

that not only rapidly (within hours) identify the bacteria

responsible for symptomatic infections, but also their

pattern of resistance. Some of these diagnostic methods

are already available for widely distributed strains of

community-acquired pathogens, like MRSA [64]. We

believe, however, that it is unlikely that these resist-

ance-determining diagnostics will become available for

the vast numbers of strains of commensals/pathogens

responsible for the majority of community-acquired

infections and the plethora of resistance mechanisms

involved. It should however be at least possible to

develop cheap and rapid diagnostic tests that would

enable physicians to determine whether or not the

symptoms presented by a patient can be attributed

to bacteria and whether antibiotic treatment is appro-

priate. This would reduce unnecessary prescriptions

and thereby the intensity of selection for resistance

in our commensal microbiota.

But we need not and should not wait for technological

advances to address the resistance problem. The pro-

found decline in infectious disease mortality during

the 20th century occurred before the antibiotic era

and can be attributed to environmental interventions,

deep improvements in sanitation, water supplies, food

handling and food preservation, and education

about infectious diseases [65]. Coupled with improved

antibiotic stewardship [66] the same methods can be

used to not only reduce the incidence of infection, but

also to control resistance. We certainly have the motiv-

ation and technology to achieve this and hopefully the

will as well.
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