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The phenomenon of antibiotic resistance is of practical importance and theoretical interest.
As a foundation for further studies by simulation, experiment, and observation, we here
develop a mathematical model for the dynamics of resistance among the bacteria resident
in a population of hosts. The model incorporates the effects of natural selection within
untreated hosts, colonization by bacteria from the environment, and the rapid increase of
resistance in hosts who receive antibiotics. We derive explicit formulas for the distribution
of resistance among hosts and for the rise or fall of resistance when the frequency of treatment

is changed. © 1998 Academic Press

1. INTRODUCTION, BASIC IDEAS,
AND NOTATIONS

Antimicrobial chemotherapy, the use of chemical
agents to control infections with microparasites (bacteria,
protozoa, viruses and single cell fungi), is almost certainly
the single most significant achievement of interventive
medicine. It is also an achievement that may well be short-
lived. Ever since the first wide-scale applications of this
technology 50 years ago, the frequency of microbes resistant
to such chemotherapy has been steadily increasing. Virtually
all of the major species of pathogenic bacteria include
strains resistant to some, or in most cases a number, of
the antimicrobial agents employed to control them (Bloom,
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1992; Cohen, 1992; Cohen, 1994; Levy, 1994; McGowan,
1983; Neu, 1992; Tomasz, 1994). Chemotherapy-mediated
selection has also led to the ascent of resistance in major
protozoan parasites, like malaria, (vanEs, 1993; Skamene
and Schurr, 1993) and in a number of viruses as well
(Freifeld and Ostrove, 1994). During the early days of
antimicrobial therapy, new or modified antimicrobial
agents were discovered, developed and produced at a suf-
ficient rate to keep up with microbes’ evolving resistance.
Now, however, the prognosis is substantially more dreary;
“natural” selection appears to be winning the arms race
with technology (Neu, 1992). It is clear that we have to
husband the antimicrobial agents in our current arsenal
by becoming more prudent with the use of those currently
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available. Not so clear is whether prudence will pay off in
a reasonable amount of time.

To address this not-so-clear point, two questions have
to be answered. What is the relationship between the rate
and intensity of antimicrobial chemotherapy (treatment)
and the frequency of resistant microbes? How rapidly will
the frequency of resistant microbes respond to increases or
decreases in the rate of treatment?

Mathematical models need to be developed to answer
these questions for two distinct groups of bacteria. One
group includes those bacteria which are typically trans-
mitted from one diseased host to another (directly or
indirectly) and are eventually cleared; examples include
Mycobacterium tuberculosis, Neisseria gonnorhoeae, and
Vibrio cholerae. For such bacteria, antibiotic treatment
to cure the infections they cause will be the primary selec-
tive force favoring the ascent of resistance. Mathematical
models have been developed to address the population
dynamics of resistance in such organisms (Massad et al.,
1993; Antia et al., 1997; Bonhoeffer et al., 1997).

A second group of bacteria in which resistance is clini-
cally important are those bacteria that normally colonize
hosts asymptomatically, typically living on the skin or in
the digestive or upper respiratory tracts. Such asympto-
matic carriage is often long-lived, and carriage of these
bacteria is not typically cleared by the immune response
of the patient or even by antibiotic treatment. This group
includes a number of occasional or opportunistic pathogens,
whose translocation from their normal commensal habitat
into normally sterile sites, such as the blood, cerebrospinal
fluid, or lungs, can cause serious discase. Among these
normally commensal bacteria are a number of community-
and hospital-acquired pathogens such as Streptococcus
pneamoniae, Staphylococcus aureus, Enterococcus spp., and
Escherichia coli. In addition to their role as pathogens,
these commensal bacteria may also cause clinical problems
by donating resistance genes to pathogenic bacteria
(Schwalbe et al., 1990). Finally, commensal bacteria can
serve as indicator populations, showing the extent of
selection for antibiotic resistance in the community.

In an earlier report (Levin et al., 1997) we began to
address the population biology of antibiotic resistance
in such commensal populations using numerical simula-
tions. Here we develop a formal mathematical theory to
address these questions for the sustained (commensal)
microbial communities of hosts treated with chemothera-
putic agents.

In the mathematical theory that follows, we take as
given: (a) the frequency with which hosts are treated with
a particular antibiotic per unit time (A4 in what follows),
(b) the fraction of bacteria which become resistant in
a host when that host receives treatment (p* in what
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follows), (c) the fraction of bacteria in the environment
which are resistant (P in what follows), (d) the rate of
migration of these environmental bacteria into hosts per
unit time (m in what follows), and (e) the fitness cost of
resistance, i.e., the coefficient of selection against resistant
bacteria in untreated hosts per generation (s in what
follows). We present explicit formulas in terms of these
parameters for: (i) the distribution of the frequency of
resistant microbes in a community of hosts as a function
of the frequency and intensity of chemotherapy treatment
and fitness cost of resistance and (ii) the mean prevalence
of resistance averaged over all hosts. See (5.4), (6.3),
(6.4), (6.6), and (6.7) for the former and (5.5), (7.1), and
(7.2) for the latter. These formulas indicate that, once
resistance genes are established in the environment, even
large changes in their frequency may have very little
effect on what happens within the host population. Thus
calculations based on the unrealistic assumption (c) may
nevertheless yield valid insights. We briefly discuss the
implications of this theoretical analysis for the resistance
problem.

The model considers a homogeneous population of indi-
viduals. All of them are hosts to populations of bacteria of
a particular species. Some of these, the RESISTANTS, possess
a discrete heritable resistance factor that renders them
immune to the action of a certain antibiotic. The rest,

TABLE 1

Symbols Used in the Calculations

Symbol Usage

t The time
N The number of bacteria in each host
H The number of hosts
p. P The fractions of resistant bacteria in a host and in the
environment

P The relative frequency of resistant bacteria averaged over
all hosts
a, b The smaller and larger roots of the quadratic in (2.2)
x The “sensitivity,” an alternative way of measuring the
relative frequency of sensitive bacteria in a host—see (2.7)
u A variable used to simplify formulas connecting p and x

p*, u* Maximal allowable values for p and u—see Section 4
K The rate of change of x—see (2.6)

s The selective advantage of sensitives in competition with
resistants

m The rate at which bacteria migrate from the wild into hosts

A The average frequency of antibiotic treatment of a host

B Alx

o The average duration of treatment

¢(x, t) the “density” of hosts with sensitivity x—see Section 3
@(t)  The number of hosts in a point concentration at the
maximum possible value of p
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called SENSITIVES, are assumed to be highly susceptible to
the antibiotic. There is also an ambient population of so
called wild bacteria of the same species in the environ-
ment. We assume that the numbers of both the hosts and
of bacteria per host are fixed and that these numbers are
so large that it is appropriate to deal with continuous
approximations and think in terms of densities of hosts
and frequencies of bacterial types rather than in terms of
actual numbers.

The exact definitions of the symbols to be used will be
given later as we describe the model. For convenient
reference, Table I lists the most important symbols with
indications as to their usage.

2. SELECTION AND MIGRATION
ACTING ON A SINGLE HOST

Consider a single host. Let p = p(¢) be the fraction of
the host’s bacteria that are resistant and let g=1— p be
the fraction that are sensitive.

We assume that each sensitive bacterium produces
new bacteria at a rate of « bacteria per day and for each
new bacterium produced, one of the existing bacteria is
chosen at random and eliminated. Thus the rate at which
such events are eliminating resistants is a/Npg per day.
Similarly, if the resistants have birth rate f, such births
will be adding resistants at a rate of fNpyq.

The effect of migration of bacteria from the environ-
ment into a host is handled similarly. Let P be the fraction
of the wild bacteria that are resistant. Assume that each
host is invaded by randomly chosen wild bacteria at a
rate of Nm bacteria per day and that randomly chosen
bacteria from the host’s population are eliminated at
the same rate. Thus the net rate of change in the
number of resistants attributable to migration will be
NmP — Nmp.

Putting it all together, the rate of change in the number
of resistants will be —aNpg+ fNpg+ Nm(P — p) and
the rate of change in the fraction, p, of resistants
will be

d
‘£=—yw+m@—p) (2.1)

where s = o — f§ is the selective advantage of the sensitives.

The right-hand side of (2.1) is a quadratic function
of p with leading coefficient 5. As p takes on the values
0, P, and 1, the right side assumes the values mP >0,
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—sP(1—P)<0, and m(P—1)<0. Thus (2.1) can be
rewritten as

d m mi
d’;——s[pz—<l +S>p+s} =—s(p—a)b—p)
(22)

forsome 0 <a<P<1<bh.

Numerical calculations and formulas telling how the
biological parameters (e.g., s, m, P, and p*) relate to
quantities introduced in developing the theory are
discussed in Appendix A.

In this article we will consider only the situation where
the frequency of resistants in the ambient population of
bacteria does not change. This assumption is unrealistic,
but we will show (see Fig. 6) that moderate changes in P
have little effect on the behavior of the model. Thus the
simplified model, which allows us to give explicit formulas
should, itself, give insights about the behavior of such
systems and more realistic models might start from it as
a first approximation.

When P is fixed the computations are greatly simplified
by introducing a new variable, x, to measure the prevalence
of resistants in a single host. This is conveniently done in
two steps. First use a linear fractional transformation
that linearizes the differential equation. Let

_p—a _a+bu
u_b—p and note that p= TTu (2.3)
Then
du _du dy
dr dp dt
b—a
=———5[—s(p—a)b—p)]
(b—p)?
:_s(b—a)piaz—;cu (2.4)
b—p

where k¥ =s(b —a) = /(s +m)? — 4smP.

When the frequency of resistants, p, is greater than P
both selection and migration will tend to lower p. On the
other hand, when p < P the two will work in opposite
directions, with selection tending to decrease p while
migration will tend to increase it. The two are in balance
when p =a. Antibiotic treatment will steadily decrease
the number of hosts with p <« and there is no compen-
sating process that will move hosts into the range 0 < p < a.
For that reason, we will ignore such hosts and consider
only those hosts with p > a.
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The second step introduces a variable that will yield
a partial differential equation with constant coefficients
when we consider the population of hosts. Let

p*—a

x = —In(u/u*) where u*:b_p* (2.5)

and p* is the frequency of resistant bacteria in a host who
is being treated with antibiotics. The quantity p* is
discussed in more detail in Section 4.

Figure 1 shows the relationship between p and x,
plotting x as a function of p for two representative sets of
parameter values.

It follows that x =0 when p = p*, x > o0 as p — a, and
dx dxdu —1
—=——=—(—Ku)=rx. 2.
G TR (26)

For lack of a better word, we will say that a host whose
frequency of resistants is p has SENSITIVITY

p—a|p*—a
x=—In <b—p/b—p*>' (2.7)

The sensitivity is a pure number, but for dimensional
analysis the unit of sensitivity will be called the “sen.”
Note that x is measured in sens per day.

10.04
9.0
8.0
7.0
6.0

X 5.0
4.0
3.0
2.0
1.04

0.0

Fig. 1. The relationship between p (frequency of resistance) and
x (sensitivity). Dotted line: selection coefficient s=2% per 40 hour
generation, migration rate m = 1% per day, frequency of resistants in
the wild P =35%. Solid line: selection coefficient s =5.0 % per genera-
tion, migration rate m=0.1% per day, frequency of resistants in the
wild P =10%. The maximum resistant frequency, p*, is 96 % for both
curves. Vertical hairlines are the asymptotes at p =a. For the dotted
line, where m and s are nearly equal, this is only a little to the left of P/2,
but for the solid line it is very close to zero even though P is twice as
great as for the dotted line.
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3. SELECTION, MIGRATION, AND
ANTIBIOTIC ACTING ON
POPULATIONS

In what follows we use the notation of differentials,
throwing away higher order terms and interchanging the
order of limiting processes wherever it is appropriate to
do so.

Let ¢(x, t) hosts per sen be the density of hosts with
respect to sensitivity x in the sense that the number of
hosts with sensitivities in the interval (x, x + dx] at time
tis ¢(x, t) dx. It is helpful to think of the hosts as making
up a stream like a stream of cars moving along a road
with milestones labeled with the value of the sensitivity.

Since the sensitivity, x, of each host is increasing at a
rate of x sen per day, hosts are entering this interval at a
rate of k¢d(x, t) hosts per day. They are leaving the inter-
val for two reasons. Some because their sensitivity is
increasing and others because intense selection favoring
the resistants causes a precipitous decline in sensitivity
when a host is given the antibiotic. The former causes
hosts to pass out of the interval at a rate of kd(x + dx, t)
~rKg(x, t)+r(0¢(x, t)/0x) dx and the latter at a rate of
d(x, t) dxA, where A is the rate, per day, at which hosts
with sensitivity x receive antibiotic treatments. Then
the net rate of change is — [ x(0d(x, 1)/0x) + Ad(x, t)] dx
and

op(x, 1) . 0d(x, t)
o Ox

—AP(x, 1). (3.1)

Most of the calculations will be made under the
assumption that A4 is constant, but we will be particularly
interested in what happens when A is changed from one
value to another.

The characteristics of (3.1) are lines of the form x =
x(t) = ¢ + xt. Along such a line

dp(x(1),1) 04 04 dx

dr o Toxdr
__ 0 99
= —K P Ad +6x K
= —Ad(x, t). (3.2)

If the characteristic passes through (x,, #,) and (x, t,)
then, since ¢ = x, —xt,=x, — Kt,,
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(1, 11) = $(xo, fo) eXp (j 4 dt>

= Bz, tg) €4
= ¢(x05 to) e Al
= (X, 1p) e~ X170, (3.3)

where B= A/k.

Note that both 4 and B measure the rate of decay of
¢ along a characteristic. The difference is that 4 gives the
rate with respect to the time coordinate and B gives the
rate with respect to the sensitivity coordinate.

4. BOUNDARY CONDITIONS
AND EQUILIBRIA

Assume that when a host is treated with the antibiotic,
the host’s frequency of resistants increases immediately
to a value p*, a<<p* <1, and remains at that value
during a—possibly variable—delay of d days after which
the host rejoins the stream of hosts that are steadily gain-
ing sensitivity. This assumption implies that, in addition
to the stream of hosts on the SENSITIVITY HIGHWAY, there
will be a point concentration of hosts with sensitivity 0
consisting of those hosts whose delay times exceed the
time since their latest treatment. The total number of
hosts, H, can therefore be divided into those that are “in
treatment &(t), and those that are “on the highway,”
& ¢(x, 1) dx.

Although hosts with sensitivity 0 may well receive
further antibiotic treatment before their sensitivity starts
to decrease, we assume that x = 0 is the minimum possible
sensitivity. Thus such treatments will not affect the host’s
sensitivity. It might, however, restart the delay process.
Two different assumptions seem worth considering: (A)
rejoining the stream is a Poisson process with mean delay
time J, or (B) the delay time is a fixed constant, , and
treatment with the antibiotic resets the delay timer.

The situation is like that of a highway near a toll booth.
Suppose cars reach the toll booth at a rate of ¢ cars per
hour and, after leaving, accelerate rapidly to a speed of v
miles per hour. Then after an hour the first car will be v miles
from the toll booth and the others will be distributed between
it and the booth, giving a density of ¢/v cars per mile. To
apply similar reasoning to the present model, we reason
in terms of a very short time period so the equations need
not be concerned with changes in @(¢).

Under Hypothesis A the rate at which hosts leave the
point concentration is @(z)/0 hosts per day. Hosts that
leave during the time interval [z, t + dt) will be spread
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out over the sensitivity interval [0, x df) so the host
density will satisfy the boundary condition

AH/k=BH if 6=0

¢(0, t):{é(t)/lcg it 50 (4.14)

Under Hypothesis B hosts arrive at x =0 at the rate of
AH hosts per day. The probability that one of these hosts

will not be treated again sometime before J days have

elapsed is e ~“°, so

AH
¢(0’ l)= 7A(5 BH€7A5

K

(4.1B)

When A4 is not constant, the first 4 in (4.1B) must be
replaced by A(t — ) and the exponent must be replaced
by — |5 A(t—9) do.

Let & and $(x) be the equilibrium values of @ and ¢.
Then, according to (3.3),

$(x)=§(0) e~ (42)

and

H—q>=¢§(0)j:e*Bde=@. (43)

Substituting from (4.1) and solving for &:

HAS
. < under Hypothesis A
G={1+40 P (44)
H(l—e *%)  under Hypothesis B.

Substituting this back into (4.3) yields the boundary
value at equilibrium:

BH HA
T A5 (11 A49) under Hypothesis A
A K
O =
¢( ) — Ao HA — Ao .
BHe =€ under Hypothesis B.

(4.5)

The quantity ¢(0) will be important in what follows.
In some places, formulas under the two hypotheses are
identical except for which value of ¢ is to be used. In
other places, it is clear from the context which is intended.
Explicit reference to the hypothesis is usually omitted
because it would only be a distraction.
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5. THE DISTRIBUTION OF
RESISTANCE

Up to now, ¢(x, t) has been the density with respect to
the variable x, but x was introduced merely to simplify
calculations. To calculate the frequency of hosts with
different levels of resistance we need the density with
respect to p. We will use subscripts to distinguish the two
densities. Let ¢,(p, t) dp and ¢ (x, t)|dx| be the number
of hosts in corresponding intervals [ p, p+dp) and
(x+dx, x] so

Pp(ps 1) dp = —¢.(x, 1) dx. (5.1)

The minus sign is needed because, according to (2.3)
and (2.5), x decreases when « and p increase.

In what follows we need to supplement the formulas
of Section 2. From (2.5), (2.3), and (2.7), respectively, we
get

_a+ bu*e "

= and
14+u*e™~

u=u*e ", p

5.2
dx (b—a) (5-2)

dp~ (p—a)b—p)

At equilibrium, (4.2) and (2.5) yield

b)) =$.(0) e~ =§.(0) ( u ) (53

u*

Thus at equilibrium the density of hosts with resistant
frequency p is

o $.0) (p—a)\”|dx
PPV =" p <b—p> dp
$.(0) (b—a)

T peay To—pr Y

where ¢ (0) is given by 4.5.

With realistic parameter values, B tends to be quite
small. So, provided the minimum at p,,=[(b+a)—
(b —a) B]/2falls between @ and p*, the graph of the density
#,(p) is a (reversed) J-curve, falling from the infinity at
p =atothe minimumat p_;, and then rising to a finite value
atp=p*.

The frequency of resistants, averaged over all hosts,
can be calculated by averaging with respect to either
variable and is
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p*
p=H"' [dﬁp* +f pd,(p. 1) dp]
j% a+bu*e™™

=H '| op*
[ Pt o l4u*e™

¢4nznk}. (5.5)

Equation (5.5) is a special case of equations in Section 7
and numerical integration of such formulae is discussed
in Appendix A.

6. DYNAMICS

In what follows there is no occasion to use ¢, and we
will drop the subscript from ¢ .. The value of ¢(x, ¢) can
be calculated, using (3.3), from its boundary and initial
values. Thus

#0, t —x/K) e B~
d(x—xt,0) e

if x<xt

d(x, t)= { (6.1)

if x>kt

However, the boundary conditions and the behavior
of @(¢) will depend on which of the two hypotheses we
assume.

Under Hypothesis A the past history of the system is
irrelevant, but under Hypothesis B the value of &(¢)
depends on arrivals and departures during the entire
period from time # — § to time ¢. One situation of consider-
able practical interest—the only case we will consider in
detail—is that where the system is essentially at equilibrium
with one rate of antibiotic use and that a quite different
regime is to be used thereafter. We will let # =0 be the time
of the change and let 4 be the new rate at which the anti-
biotic is administered while 4, will be the earlier rate.
Further, let zero subscripts indicate values at the old
equilibrium.

Consider first Hypothesis A. Hosts arrive at x=0
at a rate of 4 [§° ¢(x, 1) dx=A[ H— ®(t)] and leave at
random with an average delay of 5. Thus

A !
C_ ym—(4+=) o 2
di < +5> (6.2)

Hence, integrating and using (4.4),

HAS HAS -
_ _ _ _| oA+ 1/5)e
(1) 1+A6+[¢m) 1+A5}e
=P+ [Dy—D]e TV, (6.3)
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When =0 the system was at the old equilibrium so
(6.1) implies that when x > xt

B, 1) = Blx =K1, 0) €' = (0) ¢~ A
= o(0) e Ao Do~ Fox, (6.4A)
The values when x < xct are also conveniently expressed
in terms of the equilibrium values at x =0. According to

(4.1A), ¢(0)= D/ 5 and §y(0) = D, /x 8. Let 4;=(0)
— $o(0). Then (6.1), (4.1A), and (6.3), imply that for x <t

D(t— x/k)
¢

— Bx

d(x,t)=¢(0, 1 —x/k) e P =
_ L
K6

=¢E‘(O) efo+A¢A67Atef(lctfx)/xr§.

(D+[D—Dyle U 1/5)(1 S B
(6.4B)

Turn now to Hypothesis B.

Consider first the situation at a time 7, 0 <7 <J. At
that time a host will be on the sensitivity highway if and
only if he received no treatment between times — (& — 7)
and 0 and none between times 0 and ¢. These are inde-
pendent events with probabilities e ~°~" and e~
Thus the probability that any given host is on the highway
is e (@ = De =4l = o= 9%e(4 = and the number of hosts
not on the highway, i.e., the number in the point concentra-
tion, is

Ay (Ag—A)t :
cb(z):{H[l eiAge ] %f 0<

H[1l—e ] if =
where the second line is obtained in the same way as
in (4.4).

Similar reasoning shows that hosts are entering the
highway at a rate of HAye %% ~4" when 0<1<J
and at a rate of HAe ~“° when 6 < . Since they move off
at a rate of x sen per unit time their density is

H:o o —A00 p(Ag—A)1 _ g50(0)6(/107,4)r

$(0, 1) = if 0<r<d (6.6)
HA A _
767/40:(]5(0) if (S<Z

When x(f —9) < x <kt, t — X/Kk <0 50

DX, 1) = $(0, £ — /i) e B = §(0) oAt v Bx

= Jo(0) el De = Fox, (6.7A)
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On the other hand, exactly the same reasoning that led
to (6.4A) shows that (6.7A) continues to be valid when
X = Kt.

When x<x(t—9),t>0. By that time treatments
occurring before time =0 will have ceased to have any
effect and ¢(0, ) will be ¢#(0). Thus

d(x, 1) =P(0, 1 — x/Kc) e B =(0) e ¥ (6.7B)

7. THE RISE OR FALL OF RESISTANCE

In this section, we are concerned,only with frequencies
and the number of hosts is irrelevant. Thus, there is no
loss of generality in letting H =1 here, even though that
would make nonsense of the reasoning in Sections 3
and 4.

Equation (5.5) is still valid. To calculate p we still
average p = (a + bu*e ~™)/(1 + u™e ~*) with respect to the
density, ¢, but the formula for ¢(x, 1)—(6.4) or (6.7)—
no longer consists of a single expression. That makes it
necessary to break up the integral into several pieces.

Under Hypothesis A,

p=(@+[dy—gle " 1)p*

A vt q+ bu*e ™~
o) [T

— Bx
o l+u*e ™™ ¢ dx

- %, — 2
+A4§87A1 Jhta—i_bu e 7(K"I7X)/I\"(>:dx

o l4u*e™™

R 0 bu*e—*
+¢o(0)e“‘°*‘“’f axOUC mdy. (T0)

Kt 1 + u*e -~

Under Hypothesis B, the dual nature of (6.7) makes it
necessary to give two formulas, one for 0<7<¢ and a
different one for 1 >0. If 0 <t <9

p= [1 _efAOSe(AofA)z]p*

N 0 bu*e
+4o(0) et | aXOUE o Begy  (72A)

o l+u*e™™
while, if 1 =9,

1©(t=0) g + bu*e

n — _ — A5 * r — Bx
p=[1—e*]p -i-(i5(0)J0 Trae © dx

e~ B~ dx.

. o bu*e ™™
B N OPIER]
i (7.2B)

(t—10) 1 + u*eix
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The integrals are all very similar and, as shown in
Appendix A, numerical calculations can be conveniently
handled by making suitable substitutions.

8. PARAMETERS AND PREDICTIONS

We have analyzed a mathematical model of the popu-
lation dynamics of sensitive and resistant bacteria living
commensally in a population of hosts subject to occasional
treatment with a single antibiotic. The model makes
explicit predictions about both the equilibrium distribution
of antibiotic-sensitive and -resistant bacteria in such a
population and the time scale of changes in this distribu-
tion in response to a change in the frequency of antibiotic
use.

Parameter Values: Empirical Evidence

Before describing and discussing the biological signifi-
cance of the results of the models, we describe the empirical
evidence relevant to estimating the appropriate ranges
for several important parameters of the model: selection
against resistance in untreated hosts, frequency of anti-
biotic treatment, bacterial generation time, environmental
prevalence of resistant bacteria, the rate of migration of
bacteria from the environment into hosts, and the frequency
of resistants in treated hosts.

Fitness Cost of Resistance (s). The strength of selec-
tion against antibiotic-resistance genes in the absence of
antibiotics has been measured in a variety of studies and
depends on the bacteria, the antibiotic, the environment,
and the genetics and biochemistry of resistance mechanisms
(Godwin and Slater, 1979; Helling et al., 1981; Bouma
and Lenski, 1988; Modi and Adams, 1991; Nguyen et al.,
1989; Schrag and Perrot, 1996). At the higher extreme it
has been found that the carriage of resistance plasmids
can reduce fitness by as much as 50 % (Godwin and Slater,
1979; Helling et al., 1981) and at the lower extreme, the
cost of mutations to nalidixic acid resistance in another
strain of E. coli was found to be below a measurement
threshold of about 1 % per generation (B.R.L., unpublished
observations). Several studies have found that continued
growth of resistant strains results in a rapid reduction in the
cost of resistance by selection of subpopulations carrying
compensatory mutations (Bouma and Lenski, 1988; Schrag
and Perrot, 1996).

Treatment Frequency (A). While the use of particular
antibiotics can and does vary widely, it is unlikely that on
a population-wide basis any particular drug is prescribed
more than twice per year per person, except perhaps in
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subpopulations (e.g., day care attendees and immuno-
compromised persons) with particularly intensive use of
specific antibiotics.

Generation Time. We have chosen a bacterial genera-
tion time of 40 h. This estimate is based on the elegant
calculation of Savageau (1983) that the total population
of bacteria in the gut remains constant reflecting a balance
between the rates of growth and evacuation. This calcula-
tion suggests that bacteria in the human gut divide at
approximately 1% of their maximum rate.

The other parameters of the model—the environmental
prevalence of resistant bacteria (P), the rate of migration
of bacteria from the environment to hosts (m), and the
frequency (p*) of resistants in hosts immediately after
treatment—are less well documented, though the experi-
ments of Corpet (1988) might provide some basis to
estimate m.

The calculations for Figs. 5-9, which show the effects of
the various parameters, were made under the unrealistic
assumption that d = 0, i.e., that treatment had no duration
and that hosts re-entered the sensitivity highway imme-
diately after receiving the antibiotic. This is no great loss
because a simple formula, described in Appendix B, can
allow for the effect of .

Predictions

The model makes predictions in three general areas:
(1) the frequency distribution of hosts with respect to the
degree of resistance in their bacterial populations, (2) the
time scale of changes in the distribution of bacteria in
the host population, and (3) the way the parameters
influence the average frequency of resistants in the entire
population.

The frequency distribution of hosts is determined by
the balance between treatment, which raises the frequency
of resistant bacteria in treated hosts to 100 % (or nearly
s0), and selection against resistant bacteria in hosts and
migration of (predominantly sensitive) bacteria from the
environment into hosts. Within the parameter ranges
specified above the parameter B in (5.4), (6.4), and (6.7)
is usually less than 1. In that case the equilibrium distri-
bution of hosts has a vertical asymptote at a low frequency
of resistance, a in the model. As the frequency, p, increases the
density decreases, but the density will usually reach a mini-
mum before p reaches p* and then the graph will be a
(reversed) J-shaped curve. If the rate of use of the anti-
biotic is suddenly changed, as is assumed in Sections 6
and 7, the distribution curves will consist of two parts with
a sharp break at p=(a+bu*e™"")/(1+u*e ") under
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Hypothesis A and a discontinuity at p = (a + bu*e " ~%))/
(1 4+ u*e "=y under Hypothesis B. See Fig. 2.

Surveys of antibiotic resistance in commensal bacteria
and opportunistic pathogens typically measure the resis-
tance of one or at most a very few colonies of bacteria
from each host (Johnson et al., 1996). The distributions
predicted by the model suggest that measuring the frequency
of resistance in a large population of bacteria from each
host (by selective plating, for example) would be a better
way to measure the frequency of antibiotic resistance in
these typically polyclonal populations. This is because
most hosts will carry a mixed population, and single colony
surveys can reveal only the average frequency of resistance,
not the shape of the distribution. The few surveys
conducted by selective plating have indeed found mixed
populations within hosts (Levin ef al., 1997).

Figures 3 and 4 illustrate the time scale of changes in
the level of resistance. They suggest that changes in the
bacterial population should be evident within a time scale
of years to one decade after changes in antibiotic use,
provided that the selective coefficient against resistance
in untreated hosts is on the order of 0.2% or more per
generation and that there is a low but finite level of migra-
tion of sensitive bacteria into hosts from the environment
(replacement of >10~* per day is sufficient, though the
time scale is considerably faster with a replacement of 10 >
per day).

3.0
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Density of hosts.
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Frequency of resistants in hosts.

FIG. 2. The distribution of resistance in the host population and
how it changes over time. The dependent variable is the density of hosts
with respect to the frequency of resistants among their resident bacteria.
To make comparison between Hypotheses A and B more clear, there is
a vertical line joining the two halves of the curves for Hypothesis B.
Solid line is the equilibrium distribution at time ¢ = 0; dashed line: after
six months; dotted line: after one year. Current frequency of treatment
A=0.5 per year. Previous frequency of treatment 4,=2 per year.
Frequency of resistants in the wild P =0.1%. Mean duration of treat-
ment § = 10 days. Maximum resistant frequency p* = 99 %.
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Migration rate 1% per day.
Maximum resistant frequency 100%.

Mean Frequency of Resistants.

0.0 LRAREN R AR AR RN | T T T T T T T T T T LAAR] T 1
10 20 30 40 50 60 70 80 90 100 110
Time in Weeks.
1.0
] Migration rate 0.01% per day
Maximum resistant frequency 90%

% 0.8
=
g E
E
& 0.6
N AY
dﬁ) \
g 0.44 AN
- 1y \\
(53 _\\ S
g | TSl
=024 % e

0.0 T T T T T T T 1

Time in Years.

FIG. 3. The decay of resistance when the frequency of treatment is
reduced. The different curves show the dependence on the selection
coefficient: solid line s = 0.2 %, dashed line s = 1 %, dotted line s = 5 %.
Previous frequency of treatment 4, =2 per year. Current frequency of
treatment 4 = 0.2 per year. Mean duration of treatment J =20 days.
The thicker lines were calculated assuming Hypothesis A and the barely
discernable thinner lines assuming Hypothesis B. (A) m = 1%, p* =100 %;
(B) m=0.01%, p* =90%.

The rate of change of the mean frequency of resistance
will be different when antibiotic use is increased from
when it is decreased (see Fig. 4). This is because the net
strength of the forces causing such changes (increased
treatment dominates when treatment increases, while selec-
tion and migration dominate when treatment declines)
need not be the same. Similar results have been found for
the decline of insecticide resistance when insecticide use
stopped, which is much slower than the rise of resistance
when use is instituted (Anderson and May, 1991)

Figure 5 quantifies the well-known fact that the overall
level of resistance in a population can be very high when
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FIG. 4. Comparing the approach to equilibrium when the frequency
of treatment is raised with that when it is lowered. The change is from
twice a year to once every two years or vice versa. The solid line shows
what happens when the rate is decreased from 2.0 to 0.5; the dashed
lines show the behavior when it is increased from 0.5 to 2.0. Migration
rate m=0.1% per day. Frequency of resistants in the wild P =0.1%.
Mean duration of treatment § = 20 days. Maximum resistant frequency
p*=99%. Hypothesis A is assumed throughout. The thin lines show
equilibrium values.

antibiotics are used indiscriminately. The assumed migra-
tion from the environment, 0.1 % per day, is sufficient to
ensure that there will be enough sensitive bacteria for
selection to be effective in restoring sensitivity, even when
all sensitives in a host are killed by treatment. Were m
very much smaller, the wide lines for p* =100% would
be very much higher.
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FIG. 5. Mean frequency of resistants in hosts as a function of the
frequency of treatment. Migration rate m = 0.1 % per day. Frequency of
resistants in the wild P =1%. Frequency of resistants in treated hosts:
wide lines p* =100 %, thin lines: p* =95 %. Selection coefficient per
generation: dotted lines s=5%, solid lines s=1%, dashed lines
s=0.2%.
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Figure 6 shows that the level of resistance in the
environment has virtually no effect on the equilibrium
average level of resistance in hosts. This effect occurs
because, provided any host that is treated harbors enough
resistant bacteria for antibiotic-mediated selection to
work (an assumption of the model), changes in P are
likely to have little effect on the calculations. A change in
P will merely change one small value of a to another
small value. This expectation is confirmed by Fig. 6
which shows that changing P between 0 and 10% has
very little effect on the predictions suggested by the model.

Although the migration of resistants has little effect in
this model, the migration of sensitives plays two impor-
tant roles (Levy, 1997), which are shown in Fig. 7. On the
one hand, if the migration rate, m, is comparable with the
selection rate, s, then the ratio m/s plays a decisive role in
all our equations, beginning with (2.2). As Fig. 7 shows,
when m and s are of the same order of magnitude—near
the left edge of the picture—the effect of the latter is, to
a considerable extent, masked by the effect of the former.
However, Fig. 7 also indicates that even small values of m
may have a significant effect when p* is near 100 %.

When m is small it is still the m/s ratio that is relevant,
but what is now more important is the tradeoff between
m and p*. Figures 8 and 9 present two ways of examining
the interaction between the two parameters. From a strictly
practical point of view there is little difference between the
two figures. If m is small and p* is near 100 %, the over all
level of resistance will inevitably be high and the antibiotic
will have lost much of its effectiveness. From a theoretical
point of view it may be of interest to look at the interplay
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FIG. 6. Mean frequency of resistants in hosts as a function of
the the frequency of resistants in the wild. Frequency of treatment 4 =1
per year. Migration rate m =0.1% per day. Frequency of resistants in
treated hosts: wide lines p* = 100 %, thin lines: p* = 95 %. Selection coef-
ficient per generation: dashed lines s = 5 %, solid lines s = 1 %, dotted lines
5=0.2%.
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of resistants in the wild P =1 %. Frequency of resistants in treated hosts:
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in two different ways. In Fig. 8§ we show how each value
of p* sets a value of m, below which reducing m makes
little difference, while Fig. 9 shows how each m deter-
mines a value above which p* makes little difference.

It is also important to note that unless selection and/or
migration rates are quite high, the equilibrium level of
resistance may remain quite high, even when treatment
frequencies are on the order of 0.1 per capita per year.
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FIG. 8. Mean frequency of resistants in hosts as a function of the
the migration rate. Frequency of treatment 4 =1 per year. Selection
coefficient per generation: s =1%. Frequency of resistants in the wild
P=1%. Frequency of resistants in treated hosts: dash-and-dots line
p*=90%, dashed line p* =95%, solid line p*=99%, dotted line
p*=99.9%, dot-dash line p* =100 %.
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FIG. 9. Mean frequency of resistants in hosts as a function of the
frequency of resistants in treated hosts. Frequency of treatment 4 =1
per year. Selection coefficient per generation: s=1%. Frequency of
resistants in the wild P =1%. Migration rate, per day: dash-and-dots
line m = 102, dashed line m =103, solid line m = 10 ~*, dotted line
m=10"° the dot-dash line shows the behavior when there is no
migration at all between hosts and the environment.

9. GENERAL DISCUSSION AND
LIMITATIONS OF THE MODEL

From a biological perspective, it should be pointed out
that even if the frequency of resistance declines to low
levels, this may not result in a return to the situation
prior to the introduction of the antibiotic. The useful life
of an antibiotic (the time until resistance is so widespread
that the antibiotic is no longer suitable for general use)
can be divided into two periods: the period from the first
use of the antibiotic until the first appearance of organisms
bearing resistance genes for that antibiotic, and the period
from the first appearance of those genes to the widespread
dissemination of resistant organisms. In some cases, for
example vancomycin resistance in enterococci (Arthur et
al., 1996), the first period was quite long (on the order of 30
years) but the spread of clinically significant vancomycin
resistance has been rapid, making the second period short.
In such situations, even if it were possible to drive down the
frequency of antibiotic resistance by temporarily reducing
antibiotic usage, the return of resistance would likely be
much quicker than its initial appearance and spread.

This paper treats each host as independent of every
other host; there is no traffic of bacteria between hosts,
either directly or through the environment. Biologically,
this approximation, which is necessary to enable the
analytic treatment here, is reasonable in cases in which
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there is little traffic of bacteria from hosts to the environ-
ment. An alternate assumption (considered in a simula-
tionstudy, Levin ez al., 1997) is that hosts exchange bacteria
through a common environmental reservoir. The simplifi-
cation of ignoring exchange between hosts is likely to have
negligible effects on our results. Figure 5, shown above,
demonstrates that the immigration of resistant bacteria
from the environment makes only tiny differences in the
equilibrium reached.

The model also does not take into account possible
evolutionary changes in the cost of resistance to the anti-
biotic, s (Bouma and Lenski, 1988; Schrag and Perrot,
1996). The cost of resistance to antimicrobial agents,
such as antibiotics and bacteriophage, can be mitigated
by subsequent selection for growth in the presence of that
antimicrobial agent, as described above. However, the
effects of changes in the selective cost of resistance can be
modeled using the framework developed here simply by
lowering s.

Another assumption of the model is that treatment
only transiently reduces the population of bacteria within
a host and that the proportion of resistant bacteria in a
host following treatment reaches a fixed level, unrelated
to the proportion of resistants in that host before treat-
ment. Together these assumptions reflect the observation
that resistant bacteria rapidly repopulate the gut following
treatment (Levy et al., 1988; Levin et al., 1997).

Finally, this model considers only resistance to a single
antibiotic and ignores the possibility of genetic linkage
between resistance determinants to different antibiotics.
In fact, many resistance genes are carried on plasmids
that carry genes for resistance to other antibiotics. Because
of this linked resistance, bacteria “traveling down the
sensitivity highway” can be sent back to high frequencies
of resistance not only due to the application of the specific
antibiotic, but also by application of other antibiotics
whose resistance determinants are linked to the antibiotic
in question. Linkages between resistance determinants
that are under selection will increase the effective rate of
treatment above the rate of treatment with any individual
antibiotic (Summers et al., 1993; Davis, 1994).

Determinations of the severity of the antibiotic resistance
problem and the ability to make recommendations about
how to deal with the problem depend critically on an
accurate understanding of the population dynamics of
sensitive and resistant bacteria (Levy, 1997; Levin ef al.,
1997). This will require close collaboration between
population biologists familiar with mathematical models,
microbiologists, epidemiologists and clinical investigators
to determine the parameters of these models and test
their predictions. Careful studies of some such param-
eters, such as the fitness cost of resistance, have been
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and are being conducted. Further studies on the changes
in bacterial populations in response to patterns of anti-
biotic uses both within individual hosts (Levy, 1986) and
on a hospital- or community-wide level (McGowan,
1986) are urgently needed.

APPENDIX A: NUMERICAL
CALCULATION

The quadratic formula easily provides rough bounds
for the larger root of the quadratic in (2.2). Thus

<1 +m><1 —2'”S?P><b
s (m+s)”

_ m+s+

(m+s)>—4msP m
<l+—
2s

So, unless P is large and m is comparable to s, b~
1 +m/s. Itis not a good idea to use the quadratic formula
to calculate the smaller root because that may involve
taking the difference of two nearly equal quantities. It is
better to divide the constant term by the larger root. Thus

mP
m4+s

P
azm—/bz
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It should now be clear why P, so long as it is not very
large, has little effect on the predictions of the model. To
a first approximation the fundamental rate constant is

1 4smP

In Section 7 and the computations below
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For efficient numerical calculation of the second integral
in (7.1) it may be necessary to introduce an additional
parameter. Let y =e "/ ~*/*° Then

ef(lcrfx)/lcét: yl/p

>

dx=—1dy,
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The three integrands can be calculated by a single func-
tion provided certain parameters are supplied as global
variables. Let
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APPENDIX B: ADJUSTING FOR THE
DURATION OF TREATMENT

Figures 4-8, which show the equilibrium value of p as
a function of the various parameters, were drawn for
the case where 0 =0. Let p, be the value shown in the
graph. Then, according to (4.5) and (4.2), $(0)= BH and
¢(x) = BHe . Hence, according to (5.5) and cancelling

the H’s:

a+bu*e>

Do= L plx) Be™ ™ dx where - p(x) = 1 +u*e ™"

When 6#0, (43) and (42) imply that §(x)=
B(H — @) e ?* and hence

p=H""' {Cﬁp*—kj p(x) B(H—®) e 5 dx
0

S

:Hil[dgp*‘l‘(H_é) Pol=Do+— (p*—Po)

S8

where @ is given by (4.4).
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