
Two Bitcoins at the Price of One? Double-Spending Attacks on

Fast Payments in Bitcoin

Ghassan O. Karame
NEC Laboratories Europe
69115 Heidelberg, Germany
ghassan.karame@neclab.eu

Elli Androulaki
ETH Zurich

8092 Zürich, Switzerland
elli.androulaki@inf.ethz.ch

Srdjan Capkun
ETH Zurich

8092 Zürich, Switzerland
srdjan.capkun@inf.ethz.ch

Abstract

Bitcoin is a decentralized payment system that is
based on Proof-of-Work. Bitcoin is currently gaining
popularity as a digital currency; several businesses
are starting to accept Bitcoin transactions. An ex-
ample case of the growing use of Bitcoin was recently
reported in the media; here, Bitcoins were used as a
form of fast payment in a local fast-food restaurant.
In this paper, we analyze the security of using

Bitcoin for fast payments, where the time between
the exchange of currency and goods is short (i.e.,
in the order of few seconds). We focus on double-
spending attacks on fast payments and demonstrate
that these attacks can be mounted at low cost on
currently deployed versions of Bitcoin. We further
show that the measures recommended by Bitcoin de-
velopers for the use of Bitcoin in fast transactions are
not always effective in resisting double-spending; we
show that if those recommendations are integrated
in future Bitcoin implementations, double-spending
attacks on Bitcoin will still be possible. Finally, we
leverage on our findings and propose a lightweight
countermeasure that enables the detection of double-
spending attacks in fast transactions.

1 Introduction

First introduced in 2009, Bitcoin [21] is an emerging
digital currency that has, as of September 2011, ap-
proximately 60,000 users [1]. Bitcoin is currently in-
tegrated across several businesses [2] and has several
exchange markets (e.g., [3]). It is also foreseen that
Bitcoin ATMs will be deployed in locations around
the globe [4] in order to bridge the gap between dig-
ital currency and cash.
Bitcoin is a Proof-of-Work (PoW) based currency

that allows users to “mine” for digital coins by per-
forming computations. Users execute payments by

digitally signing their transactions and are prevented
from double-spending their coins (i.e., signing-over
the same coin to two different users) through a dis-
tributed time-stamping service [21]. This service
operates on top of the Bitcoin Peer-to-Peer (P2P)
network that ensures that all transactions and their
order of execution are available to all Bitcoin users.

Nowadays, Bitcoin is increasingly used in a num-
ber of “fast payment” scenarios, where the exchange
time between the currency and goods is short. Ex-
amples include online services, ATM withdrawals,
vending machine payments and fast-food payments
(recently featured in media reports on Bitcoin [5]),
where the payment is followed by fast (< 30 seconds)
delivery of goods. While Bitcoin PoW-based time-
stamping mechanism is appropriate for slow pay-
ments (e.g., on-line orders with delivery of physical
goods), it requires tens of minutes to confirm a trans-
action and is therefore inappropriate for fast pay-
ments. This mechanism is, however, essential for the
detection of double-spending attacks—in which an
adversary attempts to use some of her coins for two
or more payments. Since Bitcoin users are anony-
mous and users (are encouraged to) hold many ac-
counts, there is only limited value in verifying the
payment after the user obtained the goods (and e.g.,
left the store) or services (e.g., access to on-line con-
tent). The developers of Bitcoin implicitly acknowl-
edge this problem and inform users that they do not
need to wait for the payment to be verified as long
as the payment is not of high value [6]; this, how-
ever, does not solve this problem but merely limits
the damage as the system still remains vulnerable to
double-spending attacks.

Until now, double-spending attacks on fast pay-
ments in Bitcoin or mechanisms for their prevention
have not been studied. In this work, we analyze
double spending attacks in detail and we demon-
strate that double-spending attacks can be mounted

1

on currently deployed version of Bitcoin, when used
in fast payments. We further show that the measures
recommended by Bitcoin developers for fast trans-
actions are not always effective in resisting double-
spending; we argue that if those recommendations
are followed1, double-spending attacks on Bitcoin
are still possible. Finally, we propose a lightweight
countermeasure to detect double-spending attacks in
fast transactions.
More specifically, our contributions in this paper

can be summarized as follows:

- We measure and analyze the time required to con-
firm transactions in Bitcoin. Our analysis shows
that transaction confirmation in Bitcoin can be
modeled with a shifted geometric distribution and
that, although the average time to confirm transac-
tions is almost 10 minutes, its standard deviation is
approximately 15 minutes. We argue that this hin-
ders the reliance of transaction confirmation when
dealing with fast payment scenarios.

- We thoroughly analyze the conditions for perform-
ing successful double-spending attacks against fast
payments in Bitcoin. We then present the first
comprehensive double-spending measurements in
Bitcoin. Our experiments were conducted us-
ing modified Bitcoin clients running on a hand-
ful of hosts located around the globe. Our results
demonstrate the feasibility and easy realization of
double-spending attacks in current Bitcoin client
implementations2.

- We explore and evaluate empirically a number of
solutions for preventing double-spending attacks
against fast payments in Bitcoin. We show that the
recommendations of Bitcoin developers on how to
counter double-spending are not always effective.
Leveraging on our results, we propose a lightweight
countermeasure that enables the secure verification
of fast payments.

The remainder of the paper is organized as follows.
In Section 2, we briefly present Bitcoin. In Section 3,
we review how Bitcoin payments can be processed.
In Section 4, we analyze and evaluate the security
of fast payments with existing Bitcoin clients. We
then evaluate the security of possible measures to
alleviate double-spending against fast payments in
Bitcoin. In Section 6, we overview related work and
we conclude the paper in Section 7.

1These recommendations are still not integrated in the Bit-
coin implementation.

2In our experiments, we solely used Bitcoin wallets and
accounts that we own; other Bitcoin users were not affected
by our experiments.

2 Background on Bitcoin

Bitcoin is a decentralized P2P payment system [21]
that relies on PoW. Electronic payments are per-
formed by generating transactions that transfer Bit-
coin coins (BTCs) between Bitcoin peers. These
peers are referenced in each transaction by means
of virtual pseudonyms—referred to as Bitcoin ad-
dresses. Generally, each peer has hundreds of differ-
ent Bitcoin addresses that are all stored and man-
aged by its (digital) wallet. Each address is mapped
through a transformation function to a unique pub-
lic/private key pair. These keys are used to transfer
the ownership of BTCs among addresses.

Peers transfer coins to each other by issuing a
transaction. A transaction is formed by digitally
signing a hash of the previous transaction where this
coin was last spent along with the public key of the
future owner and incorporating this signature in the
coin [21]. Any peer can verify the authenticity of a
BTC by checking the chain of signatures.

Transactions are included in Bitcoin blocks that
are broadcasted in the entire network. To prevent
double-spending of the same BTC, Bitcoin relies on
a hash-based PoW scheme. More specifically, to gen-
erate a block, Bitcoin peers must find a nonce value
that, when hashed with additional fields (i.e., the
Merkle hash of all valid and received transactions,
the hash of the previous block, and a timestamp),
the result is below a given target value. If such a
nonce is found, peers then include it (as well as the
additional fields) in a block thus allowing any entity
to publicly verify the PoW. Upon successfully gen-
erating a block, a peer is typically granted 50 new
BTCs. This provides an incentive for peers to con-
tinuously support Bitcoin. Table 1 depicts the infor-
mation included in Bitcoin block number 80,000 as
reported in the Bitcoin block explorer [7]. The re-
sulting block is forwarded to all peers in the network,
who can then check its correctness by verifying the
hash computation. If the block is “valid”, then the
peers append it to their previously accepted blocks,
thus growing the Bitcoin block chain.

The main intuition behind Bitcoin is that for peers
to double-spend a given BTC, they would have to
replace the transaction where the BTC was spent
and the corresponding block where it appeared in,
otherwise their misbehavior would be detected im-
mediately. This means that for malicious peers to
double-spend a BTC without being detected, they
would not only have to redo all the work required
to compute the block where that BTC was spent,
but also recompute all the subsequent blocks in the

2

Hash: 000000000043a8c0fd1d6f726790caa2a406010d19efd2780db27bdbbd93baf6
Previous block: 00000000001937917bd2caba204bb1aa530ec1de9d0f6736e5d85d96da9c8bba
Next block: 00000000000036312a44ab7711afa46f475913fbd9727cf508ed4af3bc933d16
Time: 2010-09-16 05:03:47
Difficulty: 712.884864
Transactions: 2
Total BTC: 100
Size: 373 bytes
Merkle root: 8fb300e3fdb6f30a4c67233b997f99fdd518b968b9a3fd65857bfe78b2600719
Nonce: 1462756097

Input/Previous Output Source & Amount Recipient & Amount
N/A Generation: 50 + 0 total fees Generation: 50 + 0 total fees

f5d8ee39a430...:0 1JBSCVF6VM6QjFZyTnbpLjoCJ...: 50 16ro3Jptwo4asSevZnsRX6vf..: 50

Table 1: Example Block of Bitcoin. The block contains 2 transactions, one of which awards the generator peer with
50 BTCs.

chain3. This ensures that the Bitcoin network can
counter such misbehavior as long as the fraction of
honest peers in the network exceeds that of malicious
colluding peers [21].
In what follows, we provide a summary (adapted

from [21]) of the steps that peers undergo in Bitcoin
when a payment occurs.

• New transactions are broadcasted by peers in
the network.

• When a new transaction is received by a peer,
it checks whether the transaction is correctly
formed, and whether the BTCs have been pre-
viously spent in a block in the block chain. If
the transaction is correct, it is stored locally in
the memory pool of peers.

• Peers work on constructing a block. If they find
a nonce that solves the PoW, they include all
the transactions that appear in their memory
pool within the newly-formed block. Peers then
broadcast the block in the network.

• When peers receive a new block, they verify that
the block hash is valid and that every trans-
action included within the block has not been
previously spent. If the block verification is
successful, peers continue working towards con-
structing a new block using the hash of the last
accepted block in the “previous block” field (cf.
Table 1).

3Bitcoin claims that it is computationally infeasible for an
attacker to redo the PoW required to compute 6 consecutive
blocks.

Further details on Bitcoin can be found in [8,9,21].
Throughout the rest of the paper, we will adopt the
following notations.

Confirmed transactions: These refer to Bitcoin
transactions that appear in a valid block. As men-
tioned earlier, these transactions are checked before
being included in a block to prevent double-spending
attacks; since they already appear in a block in the
Bitcoin block chain, they cannot be modified easily.
In the paper, we refer to a transaction that has ac-
quired X confirmations (i.e., X − 1 blocks appear in
the chain after the block that confirms the transac-
tion) by an X-confirmation transaction.

Memory Pool: This is a local structure at each
peer that contains all transactions that have been re-
ceived and not yet confirmed. If a transaction that
appears in the memory pool of a given peer is con-
firmed elsewhere, the transaction is removed from
the memory pool. Note that a peer does not need
to be involved in any of the transactions appearing
in its memory pool.

3 Payments in Bitcoin

In transactions where the exchange between curren-
cies and services happens simultaneously, the pay-
ment verification is typically required to be immedi-
ate, e.g., fast credit-card authorization. Otherwise,
the delivery of the services will only occur after the
payment is processed, e.g., slow delivery by post.
Bitcoin is currently being used in both slow and

fast payment scenarios. In this section, we review

3

and analyze how Bitcoin transactions are processed
in these two scenarios. For that purpose, we consider
a system that consists of a Bitcoin P2P network, a
vendor V and a set of its customers.

3.1 “Slow Payments”—Transaction
Confirmation

As described in Section 2, the most conventional and
secure way for V to accept a payment made by a cus-
tomer C is to wait until the transaction issued from C
to V is confirmed in at least one block before offering
service to C. Note that the Bitcoin client can inform
V whether its transactions have been confirmed or
not. Since confirmed transactions are likely to be ac-
cepted by honest peers in the Bitcoin network, a ma-
licious client A has negligible advantage in tricking
V to accept incorrect or double-spent transactions.

Transaction Confirmation Time: In what fol-
lows, we briefly analyze the time it takes for a given
transaction to be confirmed.
Bitcoin is designed so that blocks are generated

every 10 minutes, on average. For that purpose, the
difficulty of the work required to construct a block
is adjusted dynamically depending on the time it
took to solve the previous blocks. More specifically,
Bitcoin requires that the hash of the block to be con-
structed is below a given target value. This target
is interpolated from the overall time it took to solve
the previous 2016 blocks [10]. If it took more than
two weeks4 to generate the last 2016 blocks, the tar-
get is increased, otherwise the target is decreased.
Since the fields required to construct the hash of a
block also change with time (e.g., timestamp, previ-
ous block hash), the probability to successfully con-
struct a valid block in Bitcoin is almost constant
with respect to the number of trials [11].
To measure the generation time of existing Bitcoin

blocks, we created a Python script that parses the
block chain of Bitcoin starting from the genesis block
(Block # 0) until Block # 1532605 and extracts the
time intervals between the generation of consecutive
blocks.
Our findings show that while the average block

generation time is approximately 10 minutes (9 min-
utes and 54 seconds), the standard deviation of the
measurements was about 881.24 seconds which cor-
responds to almost 15 minutes. This shows that
there is a considerable variability among the block

4This corresponds exactly to a generation time of 10 min-
utes per block.

5This block was generated on the 14th of November 2011,
as reported on the Bitcoin Block Explorer [12]

generation times. In Figure 1, we depict the distribu-
tion of the generation times of the extracted Bitcoin
blocks. As shown in Appendix A, this distribution
can be fitted to a shifted geometric distribution with
success probability 0.19. Our results also show that
only 64% of the blocks are generated in less than 10
minutes. The remaining 36% of the blocks require
between 10 and 40 minutes to be generated.

3.2 “Fast Payments”—Transaction
Reception

Our analysis shows that the time required to confirm
transactions impedes the operation of many busi-
nesses that are characterized by a fast-service time
(i.e., when the exchange of currency and goods is
shorter than a minute). As such, it is clear that
vendors, such as supermarkets, vending machines,
take-away stores [13], etc., cannot rely on transac-
tion confirmation when accepting Bitcoin payments.

To enable fast payments, Bitcoin encourages ven-
dors to give away service without waiting for the
transaction verification, as long as the transaction is
not of high value [6, 13].

As such, for low-cost transactions, Bitcoin pay-
ments with zero-confirmations can be accepted as
soon as the vendor receives a transaction from the
network transferring the correct amount of BTCs
from the client to one of its addresses. This verifica-
tion can be done using current Bitcoin clients since
the vendor can search in his wallet for the client’s
transaction. The main intuition here is that this
constitutes sufficient proof that the transaction was
indeed broadcasted in the network. We emphasize
that it typically takes few seconds (< 3 seconds)
for a transaction to propagate between two Bitcoin
peers—which explains the use of the terms “zero-
confirmation transactions” and fast payments inter-
changeably in the rest of this paper.

4 Security of Fast Payments with
Current Bitcoin Clients

Fast payments cannot rely on the timestamp server
of Bitcoin to prevent double-spending. Furthermore,
current and past Bitcoin clients (up to version 0.5.2)
do not employ any countermeasure against double-
spending fast payments. In what follows, we analyze
the necessary requirements for mounting a successful
double-spending in existing Bitcoin implementations
and we describe how to meet these requirements in
practical settings.

4

(a) Block generation times in Bitcoin. Assuming a (time) bin
size of 2 minutes, the block generation function can be fitted
to a shifted geometric distribution with p = 0.19. Refer to
Appendix A for further details.

(b) Cumulative Distribution Function (CDF) of block gener-
ation times. 36% of Bitcoin blocks take between 10 and 40
minutes to be generated.

Figure 1: Block generation times in Bitcoin. Transactions are confirmed when they appear in valid blocks. The
histogram of block generation times was created assuming a bin size δt = 2 minutes. Our measurements show that
the average time to generate a Bitcoin block is almost 9 minutes and 54 seconds with a standard deviation of 14
minutes and 41 seconds.

4.1 Attacker Model

A malicious client A constitutes the core of our at-
tacker model. We assume that A is equipped with
a device that runs Bitcoin. We further assume that
A is motivated to acquire a service from V without
having to spend its BTCs. For instance, A could try
to double-spend the coin she already transferred to
V. By double-spending, we refer to the case where
A can redeem and use the same coins with which she
payed V so as to acquire a different service elsewhere.
We assume that A can only control few peers in the
network (that she can deploy since Bitcoin does not
restrict membership) and does not have access to V’s
Bitcoin keys or machine. We assume, however, that
A knows the Bitcoin and IP addresses of V6. The re-
maining peers in the network are assumed to be hon-
est and to correctly follow the Bitcoin protocol. We
point out here that the computing power harnessed
by A and its helpers does not exceed the aggregated
computer power of all the honest peers in the net-
work. This prevents A from inserting/confirming in-
correct blocks in the Bitcoin block chain. In this pa-
per, we consider the scenario where A does not mine
for blocks (i.e., it does not participate in the block
generation process). This also suggests that when a
transaction is confirmed in a block, this transaction
cannot be modified by A.

Conforming with the operation of Bitcoin, we as-
sume that the set of addresses used by A are insuffi-
cient to identify A. This also suggests that although
the misbehavior of A may be detected at some later
point in time (after it has acquired a service), its

6When issuing a transaction, a Bitcoin client could either
specify a recipient Bitcoin address or an IP address.

Figure 2: Example construction of TRA and TRV .
Here, we show two different transactions with the same
inputs and different outputs. TRA and TRV can share
a subset of their inputs—in which case A only tries to
double-spend a subset of the BTCs that she pays with.

true identity is unlikely to be revealed.

4.2 Necessary Conditions for Suc-
cessful Double-Spending

To perform a successful double-spending attack, the
attackerA needs to trick the vendor V into accepting
a transaction TRV that V will not be able to redeem
subsequently. While this might be computationally
challenging for A to achieve if TRV was confirmed
in a Bitcoin block7, this task might be easier if the
vendor accepts fast payments.
In this case, A creates another transaction TRA

that has the same inputs as TRV (i.e., TRA and
TRV use the same BTCs) but replaces the recipient
address of TRV—the address of V— with a recipient
address that is under the control of A. Note that our

7As mentioned earlier, A will then have to do all the work
required to re-generate the block where the transaction ap-
pears in (and all subsequent blocks).

5

Figure 3: Sketch of a double-spending attack against
fast payments in Bitcoin. In typical cases, the attacker
A dispatches two transactions that use the same BTCs
in the Bitcoin network. The double-spending attack is
deemed successful if the BTCs that A used to pay for V
cannot be redeemed (i.e., when the second transaction is
included in the upcoming Bitcoin block).

analysis is not restricted to the case where the recip-
ient address is controlled by A and applies to other
scenarios, where the recipient is another merchant.
An example construction of TRA and TRV is de-

picted in Figure 2. If both transactions are sent adja-
cently in time, they are likely to have similar chances
of getting confirmed in an upcoming block. This
is the case since Bitcoin peers will not accept mul-
tiple transactions that share common inputs; they
will only accept the version of the transaction that
reaches them first which they will consider for inclu-
sion in their generated blocks and they will ignore all
remaining versions. Given this, a double-spending
attack can succeed if V receives TRV , and the major-
ity of the peers in the network receive TRA so that
TRA is more likely to be included in a subsequent
block. This is sketched in Figure 3.
In this respect, let tVi and tAi denote the times at

which node i receives TRV and TRA, respectively.
As such, tVV and tAV denote the respective times at
which V receives TRV and TRA.
The necessary conditions forA’s success in mount-

ing a double-spending attack are the following:

Requirement 1 — tVV < tAV : This requirement
is essential for the attack to succeed. In fact, if tVV >
tAV , then V will first add TRA to its memory pool

 0

 20

 40

 60

 80

 100

 120

 140

Day 01 Day 02 Day 03 Day 04 Day 05 Day 06

N
u
m

b
er

 o
f

co
n
n
ec

ti
o
n
s

Time

North America
Europe

Figure 4: Number of connections that two Bitcoin
nodes (in North America and in Europe, respectively)
witnessed over the period of 6 consecutive days. Since
the connectivity of peers in Bitcoin varies with time, A
has considerable opportunities to establish at least one
direct connection with V.

and will reject TRV as it arrives later. After waiting
for few seconds without having received TRV , V can
ask A to re-issue a new payment.

Requirement 2 — TRA is confirmed in the
block chain: As mentioned previously, if TRV is
confirmed first in the block chain, TRA can never
appear in subsequent blocks. In this case, V has
received its BTCs, and can redeem them at its con-
venience. The attack of A therefore fails unless TRA

is confirmed first in the block chain.

We point out that Requirements (1) and (2) are
sufficient for the case where the vendor only checks
for the reception of the transaction as a proof of pay-
ment and does not employ other double-spending
prevention/detection techniques. This accurately
mimics the functionality provided by existing Bit-
coin client implementations. In Section 5, we ex-
tend our analysis and we evaluate the effectiveness
of possible measures to alleviate double-spending.

4.3 Mounting Double-Spending At-
tacks in Bitcoin

In this section, we discuss how A can satisfy Re-
quirements (1) and (2).

Satisfying Requirement 1: A connects as a
direct neighbor to V in the P2P network8. Given the
Bitcoin protocol specification, V will always accept

8Recall that the IP address of V is public.

6

the connection requests by other peers as long as the
maximum number of its current inbound connections
has not been reached. By default, this number is set
to 125.9 As shown in Figure 4, the connectivity of
Bitcoin peers is heavily dependent on the churn of
the Bitcoin network (i.e., peers departing/joining);
this gives a considerable number of opportunities for
A to establish a direct connection with V (e.g., A
could try to connect with V over the weekend or in
the evening, when the number of connections of V
drops below the maximum).
In the sequel, we assume that A has access to one

or more helpers, denoted by H. A and H do not nec-
essarily have to be on physically disjoint machines
(e.g., H could run as a thread/process on the same
machine as A). We further assume that A and H
communicate using a low-latency confidential chan-
nel (e.g., by exchanging encrypted messages using a
direct TCP connection) and that H never connects
to V.
A sends TRV to V at time τV and TRA to H at

time τA, such that τA = τV + ∆t. V and H relay
the transactions that they received from A in the
network. Let δtAHV refer to the time it takes TRA to
propagate in the Bitcoin P2P network from H to V
and δtVAV denote the time it takes TRV to reach V.
In this case, tAV − tVV can be estimated as follows:

tAV − tVV ≈ τA + δtAVH − (τV + δtVAV) (1)

≈ ∆t+ δtAVH − δtVAV . (2)

Note that since H is never an immediate neighbor
of V, there is at least one hop on the path between
H and V. Since A is an immediate neighbor of V
and assuming no congestion at network paths, then
δtAVH ≥ δtVAV , . This suggests that, in this case,
tVV < tAV for reasonably chosen ∆t (e.g., ∆t ≥ 0).

Satisfying Requirement 2: Since H and V are
highly likely to have different neighbors, the broad-
casted transactions are likely to spread in the net-
work till the point where either (i) all Bitcoin peers
accept in their memory pools TRV or TRA or (ii)
either TRV or TRA get confirmed in a block.
In what follows, we estimate the probability that

TRA is confirmed in a block first. In our analysis, we
assume that at time t0 both transactions TRA and
TRV coexist in the network10, and that no block con-
taining at least one of them has been generated till

9The default maximum number of connections is 125. Note
that the maximum number of connections can be modified
using the “-maxconnections” command [14].

10This does not necessarily mean that TRA and TRV are
broadcasted at the same time.

that time. We argue that this is a realistic assump-
tion given that TRA and TRV need to be typically
broadcasted back to back given a small delay (in the
order of few seconds); it is therefore unlikely that
one of them is confirmed within the first few sec-
onds in a new block. In Section 4.4, we relax this
assumption and we evaluate the general case where
either TRA and TRV can be confirmed immediately
when they are broadcasted in the network.
We divide time into equal intervals of size δt, such

that, the probability of successful block generation
in each δt can be modeled as a Bernoulli trial with
success probability η · p, where η is the number of
peers and p the success probability of a peer in gener-
ating a block within δt (for the reasoning why, refer
to Appendix A).
Let tk = k · δt + t0 and ηkV and ηkA denote the

number of Bitcoin peers that have received TRV and
TRA respectively until time tk. Recall that each
Bitcoin node will only add the first transaction it
receives (among TRV and TRA) to its memory pool
and that only the transactions that appear in the
memory pool of peers are eligible to be confirmed in
subsequent blocks. Given this, the probability that
TRV is included in a block that is generated within
time interval (tk, tk+1] is given by PrkV = ηkV · p.
Similarly, for TRA, the corresponding probability is
PrkA = ηkA · p. The probability pV(k) that a block
containing TRV is generated within the time interval
(tk, tk+1], is:

pV(k) = PrkV ·
k−1
∏

i=0

(1− PriV) = ηkVp ·
k−1
∏

i=0

(1− ηiVp).

Similarly, the probability that a block containing
TRA is generated at the same time interval is given
by:

pA(k) = PrkA ·
k−1
∏

i=0

(1− PriA) = ηkAp ·
k−1
∏

i=0

(1− ηiAp).

If at time ts = s ·δt+ t0 every node in the network
has received at least one of the transactions TRV or
TRA, the following holds:

ηkA ≤ ηk+1
A

and ηkV ≤ ηk+1
V

,
if k < s

ηkA = ηk+1
A = ηsA and ηkV = ηk+1

V = ηsV ,
otherwise.

This suggests that ∀i ≥ s, ηiV + ηiA = ηsV + ηsA.
To compute the probability of success of the

double-spending attack, we make the assumption

7

0 1 2 3 4 5 6

x 10
4

0

0.2

0.4

0.6

0.8

1

Number of Bitcoin Nodes that received
the double−spent transaction

S
u

cc
e

ss
 P

ro
b

a
b

ili
ty

p=10−6

p=10−5

Figure 5: PS for various values of ηk
A and ηk

V , with
p = 10−6, δt = 10 seconds, t0 = 0, ts = δt and the
number of peers in the network is 60000. Further details
can be found in Appendix B.

that, ∀k, ηkV and ηkA do not exchange their newly
constructed blocks; in this way, the time tgV required
by peers that are mining in favor of TRV to generate
a new block is independent of that required by the
peers that are mining in favor of TRA, tgA . Given
this, the probability that Requirement (2) is satis-
fied, PS

(2), is computed as follows:

PS
(2) = Prob(tgA < tgV) +

1

2
Prob(tgA = tgV). (3)

That is, PS is composed of two components; one
corresponds to the event that the block containing
TRA is first generated and the second to the event
where the blocks containing TRA and TRV are gen-
erated at the same time, i.e., tgA = tgV . In the latter
case, the probability that the block containing TRA

is eventually adopted by the Bitcoin peers is 0.5.

Prob(tgA < tgV) =
∞
∑

gA=0

pA(gA) · pV(gV > gA|gA)

= η0Ap(1− η0Vp)+

∑∞

gA=0 η
gA
A p ·(1−η

gA
V p) ·

∏gA−1
j=0 (1−ηjVp)(1−ηjAp).

Similarly,

Prob(tgA = tgV) =

∞
∑

gA=1

p2η
gA
V η

gA
A ·

gA−1
∏

j=0

(1− ηjVp)(1− ηjAp).

In Figure 5, we depict PS
(2) for various values of

ηkV , η
k
A and p when δt = 10 seconds, ts = δt and the

number of peers in the network is 60000. Due to lack

Location Number of Hosts

Europe 4
North America 3
Asia Pacific 2

South America 1

Table 2: Geographic location of the Bitcoin nodes that
we used in our measurements. We made use of 10 Bit-
coin nodes located around the globe. All the hosts were
running Ubuntu 11.10 with at least 613 MB of RAM.

of space, we include in Appendix B the approxima-
tions/formulas that were used to generate the plots
in Figure 5.
Our analysis therefore shows that A can maximize

PS
(2) by increasing the number of peers that receive

TRA, ηkA, ∀tk. A can achieve this: (i) by sending
TRA before TRV and therefore giving TRA a better
advantage in spreading in the network and/or (ii)
by relying on multiple helpers to spread TRA faster
in the network. In the former case, A can delay
the transmission of TRV by a maximum of ∆t =
δtAVH − δtVAV (cf. Equation 1) after sending TRA

while ensuring that V first receives TRV . In this way,
both Requirements (1) and (2) can be satisfied.

We denote by PS = PS
(1) · PS

(2), the probability
that the attack succeeds (in satisfying Requirements
(1) and (2)). Here, PS

(1) refers to the probability
that Requirement (1) is satisfied.

4.4 Experimental Evaluation

We now present the experimental results of double-
spending experiments in the Bitcoin network. Our
experiments aim at investigating the satisfiability of
aforementioned Requirements (1) and (2).

Experimental Setup: We adopt the setup de-
scribed in Section 4.3 in which the attacker A is
equipped with one or more helper nodes H that help
her relay the double-spent transaction. In our ex-
periments, we made use of 10 Bitcoin nodes located
around the globe (Table 2); this serves to better as-
sess the different views seen from multiple points in
the Bitcoin overlay network and to abstract away
the peculiarities that might originate from specific
network topologies. Appendix C includes the Bit-
coin addresses that we used while performing our
experiments.
Conforming with our analysis in Section 4.3, we

modified the C++ implementation of Bitcoin client
version 0.5.2 as follows:

8

Figure 6: PS versus ∆t when the vendor has 8 con-
nections.

Figure 7: PS versus ∆t when the vendor has 40 con-
nections.

Figure 8: PS versus ∆t when the vendor has 125 con-
nections.

Location # Helpers ∆t (sec) PS

Asia Pacific 1, 125 conn. 2 0 100%
Asia Pacific 2, 125 conn. 2 0 100%
North America 1, 8 conn. 1 0 100%
North America 2, 40 conn. 1 0 90%
Asia Pacific 1, 8 conn. 2 1 100%
Asia Pacific 2, 125 conn. 2 1 100%
North America 1, 40 conn. 1 -1 100%

Figure 9: Summary of Results. Here, “Location” de-
notes the location of V, “conn” is the number of V’s
connections.

• The attacker only connects to the vendor’s ma-
chine.

• The attacker creates transactions TRV and
TRA constructed using the same coins. She
sends TRV using the Bitcoin network to the
neighboring vendor and TRA via a direct TCP
connection to one or more helper nodes with
an initial delay ∆t of -1, 0, 1, and 2 seconds.
Here, ∆t refers to the time delay between the
transmission of TRV and TRA by A.

• Upon reception of TRA, each helper node
broadcasts it in the Bitcoin network.

• V accepts the payment if it receives TRA.

With this setup, we performed double-spending
attempts when the vendors are located in 4 different
network locations (2 vendors were in North America
and the remaining 2 were in Asia Pacific). In our ex-
periments, A was located in Europe. However, since
A does not contribute in spreading in the Bitcoin
network any transaction herself, her location does
not affect the outcome of the attack. That is, the
sole role of A is to send TRV to V using a direct
connection in the Bitcoin network and TRA to the
helper nodes using a direct TCP connection.

We conduct our experiments with a varying num-
ber of connections of the vendor (8, 40 and 125 con-
nections) and by varying the number of helper nodes
(1 and 2) chosen randomly from the nodes in Ta-
ble 2.The helper nodes were connected to at least
125 other Bitcoin peers. Each data point in our
measurements corresponds to 10 different measure-
ments, totaling approximately 500 double-spending
attempts with a total of 20 BTCs11. We point out
that since all the hosts in our measurements were
using wallets that were under our control, other Bit-
coin users were not affected by our measurements.
We also created a Python script that, for each

conducted measurement, parses the generated logs
along with the Bitcoin block explorer [12] to check
whether the Requirements (1) and (2) described in
Section 4.2 are satisfied.

Results: To assess the feasibility of double-
spending in fast Bitcoin payments, we evaluate em-
pirically the success probability, PS, with respect to
the number of helper nodes, the number of connec-
tions of the vendor and ∆t.

11We point out that since all the hosts in our measurements
were using wallets that were under our control, other Bitcoin
users were not affected by our measurements.

9

Our results, depicted in Figures 6, 7, 8, and 9
show that, irrespective of a specific network topol-
ogy, the probability that A succeeds in mounting
double-spending attacks is significant.
Confirming our analysis, PS decreases as ∆t in-

creases. As explained in Section 4.3, this is due to
the fact that the higher is ∆t, the larger is the num-
ber of peers that receive TRV ; in turn, the proba-
bility that TRA is confirmed before TRV decreases.
As shown in Figures 6, 7, and 8, this can be reme-
died if the number of helper nodes that spread TRA

increases. Our results show that even for a large ∆t
of 2 seconds, relying on 2 helper nodes still guaran-
tees that double-spending succeeds with a consider-
able probability; when ∆t = 1 seconds, the attack
is guaranteed to succeed (PS approaches 1) using 2
helpers. This is summarized in Figure 9.
The number of V’s connections considerably af-

fects PS especially when A controls only one helper;
in the case where V has a similar number of con-
nections when compared to the number of connec-
tions of the helper, PS approaches 0.5. This corre-
sponds to the case where both TRA and TRV are
spread equally in the network (Figure 8). On the
other hand, as the connectivity of V decreases, TRA

spreads faster in the network. This is depicted in
Figures 6 and 7. We thoroughly investigate the im-
pact of the connectivity of V in Section 5.1.

5 Countering Double-Spending in
Fast Bitcoin Payments

In this section, we evaluate two strategies that the
vendor can adopt, as recommended by Bitcoin de-
velopers, to resist double-spending: using a listen-
ing period and inserting observers. Moreover, we
propose an effective countermeasure based on the
propagation of “alert”messages and we show that it
does not require significant modifications on existing
clients.

5.1 Using a “Listening Period”

The Bitcoin daemon locally generates an error if
it receives a transaction whose inputs have already
been spent. However, this error is not displayed to
the Bitcoin user. Therefore, Requirements (1) and
(2) can be satisfied (as shown in Section 4), but A
can only trick a vendor who does not thoroughly
check the transactions that are processed by its Bit-
coin daemon. Such a functionality would require a
modification of existing Bitcoin clients.
As advocated in [13], one possible way for V to

detect double-spending attempts is to adopt a lis-

tening period, of few seconds, before delivering its
service to A; during this period, V monitors all the
transactions it receives, and checks if any of them at-
tempts to double-spend the coins that V previously
received from A. This countermeasure is based on
the intuition that since it takes every transaction few
seconds12 to propagate to every node in the Bitcoin
network, then it is highly likely that V would receive
both TRV and TRA within the listening period (and
before granting service to A).

We show that this detection technique can be,
however, circumvented by A as follows. A can at-
tempt to delay the transmission of TRA such that
t =(tAV − tVV) exceeds the listening period while TRA

still has a significant chance of being spread in the
network. On one hand, as t increases, the probability
that all the immediate neighbors of V in the Bitcoin
P2P network receive TRV first also increases; when
they receive TRA later on, TRA will not be added to
the memory pool of V’s neighbors and as such TRA

will not be forwarded to V. On the other hand, A
should make sure that TRA was received by enough
peers so that Requirement (2) can be satisfied. To
that end, A can increase the number of helpers it
controls.

To validate this claim, we conducted experiments
using the setup described in Section 4.4. Our exper-
iments aimed at finding triplets (∆t, NH, C), where
NH is the number of helper nodes, and C is the num-
ber of V’ connections, such that the probability PD

that V receives TRA (after having received TRV) is
minimized. We illustrate our results in Table 3.

Conforming with our analysis, our findings show
that, for C < 80, ∃∆t, such that PS ≥ PD. That is,
in the case where V utilizes a listening period of few
seconds to detect double-spending, there are a num-
ber of cases in which A can circumvent this counter-
measure and perform a successful double-spending
attack without being detected. Note that if PD is
small, A has incentives to attempt to double-spend
even in the case when PS ≈ 0.1), since her attempts
will be detected with low probability. For a subset
of our measurements, we also show that ∃(∆t,N,C),
such that tAV −tVV = ∞. This case corresponds to the
event where all the neighbors of V receive TRV first
(and do not forward TRV to V). In this case, PD = 0
and V cannot detect the misbehavior of A, irrespec-
tive of the number of double-spending attempts that
A performs.

12Our experiments in Section 4.4 show that the average
time for a peer to receive both TRA and TRV is approxi-
mately 3.354 seconds.

10

PS PD tAV − tVV (sec) % Observed

Europe, 8 Connections, 3 Helpers, ∆t = 2.00 10% 10% 8.664 53%
Europe, 8 Connections, 3 Helpers, ∆t = 2.25 10% 10%∗ 5.65 47%

South America, 8 Connections, 2 Helpers, ∆t = 2.5 20% 6.66%∗ 3.749 62%
South America, 8 Connections, 3 Helpers, ∆t = 2.5 7.7% 0% ∞ 53%
South America, 8 Connections, 4 Helpers, ∆t = 3.0 13.33% 0% ∞ 57%
Asia Pacific, 8 Connections, 3 Helpers, ∆t = 2.75 10% 0% ∞ 57%
Asia Pacific, 8 Connections, 2 Helpers, ∆t = 1.75 55% 20%∗ 5.5 91%
Asia Pacific, 8 Connections, 3 Helpers, ∆t = 2.75 5% 0%∗ ∞ 66%

North America, 20 Connections, 3 Helpers, ∆t = 2.75 5% 0% ∞ 47%
North America, 20 Connections, 5 Helpers, ∆t = 3.00 11% 11% 3.208 46%
North America, 20 Connections, 5 Helpers, ∆t = 1.75 10% 10% 5.76 74%
North America, 20 Connections, 1 Helper, ∆t = 1.25 30% 30%∗ 3.34 78%
North America, 20 Connections, 4 Helpers, ∆t = 2.00 82% 63% 2.85 78%
North America, 20 Connections, 2 Helpers, ∆t = 2.00 20% 20%∗ 4.79 60%
North America, 20 Connections, 1 Helper, ∆t = 1.50 40% 30%∗ 3.51 60%

Europe, 20 Connections, 3 Helpers, ∆t = 1.0 45% 45%∗ 3.844 87%
Europe, 30 Connections, 1 Helper, ∆t = 1.5 15% 10%∗ 3.412 42%

Asia Pacific, 40 Connections, 1 Helper, ∆t = 2.9 10% 10%∗ 4.946 42%
Europe, 40 Connections, 1 Helper, ∆t = 1.25 10% 10% 1.841 36%
Europe, 40 Connections, 2 Helpers, ∆t = 1.5 20% 20%∗ 3.075 36%

South America, 40 Connections, 1 Helper, ∆t = 2.0 30% 40% 3.217 57%
South America, 60 Connections, 1 Helper, ∆t = 2.5 6.67% 20%∗ 3.999 41%
South America, 60 Connections, 2 Helpers, ∆t = 2.75 6.67% 13.33% 4.157 28%
Asia Pacific, 60 Connections, 1 Helper, ∆t = 3.00 10% 0%∗ ∞ 20%
Asia Pacific, 60 Connections, 2 Helpers, ∆t = 2.75 30% 50% 3.992 50%
Asia Pacific, 80 Connections, 1 Helper, ∆t = 3.7 10% 20% 5.04 18%
Europe, 80 Connections, 1 Helper, ∆t = 2.25 33.33% 66.67% 3.648 61%
Europe, 80 Connections, 1 Helper, ∆t = 2.75 13.33% 26.67% 5.093 28%

North America, 100 Connections, 3 Helpers, ∆t = 1.0 60% 80%∗ 2.25 88%
Asia Pacific, 100 Connections, 1 Helper, ∆t = 1.75 44.4% 66.66% 2.871 82%
Asia Pacific, 100 Connections, 1 Helper, ∆t = 1.5 80% 80% 2.807 88%

Table 3: Monitoring received transactions at V (Section 5.1) and its observers (Section 5.2) to detect double-
spending. Each data point corresponds to 20 measurements. The helpers used in these experiments had between
125 and 400 connections. “PD” denotes the probability that V receives TRA. “% Observed” refers to the fraction of
observers (among 5) that received TRA. tAV − tVV refers to the average of the time it takes V to receive TRA after
having received TRV , for those cases where V receives TRA (PD).

∗ refers to the case where TRA was received after
15 seconds (beyond the listening period); otherwise, the absence of ∗ shows that TRA was not received.

The Connectivity of V as a Security Param-
eter: As shown from our results in Table 3, the
fewer connections of V, the more likely is that all
the neighbors of V receive TRV before TRA and
thus that V does not receive TRA. Similarly, as
the number of connections of V increases, the effort
(i.e., the number of helpers, the amount of delay)
that A needs to invest to ensure that none of V’s
neighbors receive TRA becomes considerable. This
is depicted in Figure 10; when V adopts a listening
period of at least 15 seconds, PD increases as the
number of V’s connections increases. When V has
more than 100 connections, the probability that it
does not receive TRA is negligible; in this case, using

a listening period can be indeed effective to detect
double-spending.
However, since the connectivity of Bitcoin peers

largely varies with the network churn13 (Figure 4),
V needs to constantly monitor its connection count
to ensure that it does not drop below a threshold so
that it can detect double-spending.
In Section 5.3, we propose a countermeasure that

effectively detects double-spending even in the case
when the number of the connections of V is small.

13For example, some of the nodes used in our experiments
could not acquire more than 40 connections over a period of
few days, due to the fact that these nodes were often restarted.
In such cases, other Bitcoin peers will assign a low priority to
connecting to these nodes.

11

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 50 100 150 200 250

P
D

Number of Connections

Figure 10: The connectivity of V as a security param-
eter. We measure PD with respect to the number of
connections of V. Here, we consider a setting where V is
located in Asia Pacific, ∆t = 3.0 seconds and A controls
4 helpers. As the number of connections of V increases,
the probability that V receives both TRA and TRV also
increases.

5.2 Inserting Observers in the Net-
work

Another possible technique that naturally extends
the aforementioned proposal based on the adop-
tion of listening period would be for V to insert a
node that it controls within the Bitcoin network—
an “observer”—that would directly relay to V all the
transactions that it receives. In this case, V can be
aware within few seconds of a double-spending at-
tempt if either it or its observer receive TRA.

We evaluated this technique using up to 5 ob-
servers. These observers were chosen from the hosts
listed in Table 2. Our findings in Table 3 show
that this method can indeed help detecting double-
spending as all double-spent transactions were re-
ceived by at least one observer within few seconds.
However, given that A delays the transmission of
TRA, our results show that only a subset of the ob-
servers receive TRA. As mentioned previously, this
corresponds to the case where all the neighbors of
these observers have received TRV first and as such
they will not forward TRA back to the observers.

Therefore, V needs to employ a considerable num-
ber of observers (≈ 3) (that connect to a large num-
ber of Bitcoin peers) to ensure that at least one ob-
server detects any double-spending attempt; this,
however, comes at the expense of additional costs
for V to maintain the observers in the network.

5.3 Communicating Double-
Spending Alerts Among Peers

Given our findings, an efficient countermeasure to
combat double-spending on fast Bitcoin payments
would be for Bitcoin peers to propagate alerts when-
ever they receive two or more transactions that share
common inputs and different outputs (cf. Figure 2).
This countermeasure extends the solutions outline
in the previous sections. However, unlike the afore-
mentioned solutions, double-spending alerts (i) can-
not be evaded by A and (ii) do not incur additional
costs on V.
The main intuition behind this solution is that

while A might be able to prevent V and a subset
of V’s observers from receiving TRA, a considerable
number of Bitcoin peers receive both TRA and TRV .
If the majority of these peers are honest14, they can
immediately alert the entire network by broadcast-
ing an alert that includes both TRA and TRV as a
proof of double-spending to all network peers. Given
the fast broadcast medium in Bitcoin, alert broad-
casts would eventually reach V within few seconds;
the double-spending of A can be therefore detected
before A actually receives the service from V.

We emphasize that similar alert mechanisms al-
ready exist in the current implementation of Bitcoin,
but were devised for other purposes and are cur-
rently unused15. As such, this technique does not
require any significant modification in the Bitcoin
client. Furthermore, we argue that this solution can
easily combat false claims; honest Bitcoin peers will
only forward alert messages if TRA and TRV are
indeed correctly formed, share common inputs and
different outputs and are equipped with legitimate
signatures.

6 Related Work

First introduced in 2009, Bitcoin has recently at-
tracted the attention of the research community.
In [20], Elias investigates the legal aspects of pri-
vacy in Bitcoin. Reid and Harrigan [35] explore user
anonymity limits in Bitcoin. In [24], Babaioff et al.
address the lack of incentives for Bitcoin peers to
include recently announced transactions in a block.
In [19], Syed et al. propose a user-friendly technique
for managing Bitcoin wallets.
Finney [15] describes a double-spending attack in

Bitcoin where the attacker includes in her generated

14This is the underlying assumption that ensures the cor-
rect operation of Bitcoin.

15Bitcoin plans to use “alert” messages to broadcast infor-
mation signed by the private key of Bitcoin’s founder.

12

blocks transactions that transfer some coins between
her own addresses; these blocks are only released
to the network after the attacker double-spends the
same coins using fast payments and acquires a given
service. In its official documentation [6, 13], Bit-
coin acknowledged that double-spending might oc-
cur when dealing with fast payments but still en-
couraged its users to “sell things without waiting for
a confirmation as long as the transaction is not of
high value” [6]. Bitcoin developers claim in [6] that
the cost of mounting double-spending attacks for
low-cost transactions is comparatively high and that
vendors could adopt a listening period for few sec-
onds before delivering a product to counter double-
spending attacks. In this work, we thoroughly inves-
tigate double-spending attacks in Bitcoin. Namely,
we show that (i) double-spending fast payments in
Bitcoin can be performed without incurring costs
on the attacker and (ii) the countermeasures rec-
ommended by Bitcoin to alleviate double-spending
can be circumvented.

Double-spending in online payments has received
considerable attention in the literature [23, 31]. In
Credit-Card based payments, fairness is achieved
through the existence of a bank (e.g., [26,33]) or an-
other trusted intermediary (e.g., PayPal [30], Mon-
eyBookers [16]). Here, the intermediaries are trusted
(i) to verify that the client has not already spent
the funds he/she is paying the vendor with, and
(ii) to reverse a charge, if the vendor has misbe-
haved. Micropayments [22, 32, 34, 36] is an efficient
payment scheme aiming primarily at enabling low-
cost transactions. Here, the payer provides signed
endorsements of monetary transfers on the vendor’s
name. Digital signatures in these systems consti-
tute the main double-spending resistance mecha-
nism. ECash [27–29] is another form of digital
cash which supports payer anonymity. ECash of-
fers strong accountability guarantees by relying on
a set of cryptographic primitives that ensure that
when a user double-spends a coin, his/her identity
is revealed.

Similar to Bitcoin, a number of decentralized pay-
ment systems [25,37] were designed to resist double-
spending attacks. In [37], Yang and Garcia-Molina
introduce a P2P payment system, in which the first
owner of an electronic coin authorizes that coin’s
transfer among other peers in the network. Thus,
the generator of the coin is responsible for preventing
double-spending. In [25], Belenkiy et al., introduce
an ECash-based P2P payment scheme that provides
accountability at the cost of privacy.

7 Concluding Remarks

Given its design, Bitcoin can only ensure the secu-
rity of payments when a payment verification time
of few tens of minutes can be tolerated. Moreover,
our results show that the verification time of pay-
ments exhibits a large variance as it depends on
the confirmation of transactions in blocks—which
follows a shifted geometric distribution. This slow
payment verification is clearly inappropriate for fast
payments; it is, however, essential for the detection
of double-spending attacks.
In this paper, we addressed the double-spending

resilience of Bitcoin in fast payments, in which the
time to acquire a service is in the order of few sec-
onds. More specifically, we showed that not only
these attacks succeed with overwhelming probabil-
ity, but also that, contrary to common beliefs, they
do not incur any significant overhead on the at-
tacker. For that purpose, we analyzed the condi-
tions for performing successful double-spending at-
tacks against fast payments in Bitcoin and we exper-
imentally confirmed our analysis. As far as we are
aware, our experiments constitute the first compre-
hensive double-spending measurements in Bitcoin.
It is noteworthy that we have performed thousands
of double-spending attempts using fixed Bitcoin ad-
dresses without having to bear any type of penalty.
Finally, we explored the solution space for secur-

ing Bitcoin against double-spending attacks. Our
findings show that the measures recommended by
Bitcoin developers for fast transactions are not al-
ways effective in resisting double-spending. By lever-
aging on our results, we propose a lightweight mea-
sure that would enable the secure and albeit verifi-
cation of Bitcoin transactions.
Given that the vulnerability of existing clients

to double-spending might severely harm the growth
of Bitcoin, and impact its financial and economic
standing, we argue that the integration of double-
spending countermeasures in the current implemen-
tation of Bitcoin emerges as a necessity. As we show
in this work, the propagation of double-spending
alerts in the network would constitute a first im-
portant step towards efficiently detecting double-
spending.

References

[1] Bitcoin – Wikipedia, Available from https://
en.bitcoin.it/wiki/Introduction.

[2] Trade - Bitcoin, Available from https://en.
bitcoin.it/wiki/Trade.

13

[3] Bitcoin Charts, Available from http:
//bitcoincharts.com/.

[4] Bitcoin ATM, Available from http:
//bitcoinatm.com/.

[5] CNN: Bitcoin’s uncertain future as cur-
rency, Available from http://www.youtube.
com/watch?v=75VaRGdzMM0.

[6] FAQ - Bitcoin, Available from https://en.
bitcoin.it/wiki/FAQ.

[7] Bitcoin Block 80000, Available from http://
blockexplorer.com/b/80000.

[8] Protocol Rules – Bitcoin, Available from
https://en.bitcoin.it/wiki/Protocol_
rules.

[9] Protocol Specifications – Bitcoin, Avail-
able from https://en.bitcoin.it/wiki/
Protocol_specification.

[10] Difficulty – Bitcoin, Available from https://
en.bitcoin.it/wiki/Difficulty.

[11] Block hashing algorithm – Bitcoin, Availabe
from https://en.bitcoin.it/wiki/Block_
hashing_algorithm.

[12] Bitcoin Block Explorer, Available from http:
//blockexplorer.com/.

[13] Myths - Bitcoin, Available from https://
en.bitcoin.it/wiki/Myths#Point_of_sale_
with_bitcoins_isn.27t_possible_because_
of_the_10_minute_wait_for_confirmation.

[14] Satoshi Client Node Connectivity, Avail-
able from https://en.bitcoin.it/wiki/
Satoshi_Client_Node_Connectivity.

[15] The Finney Attack, Available from
https://en.bitcoin.it/wiki/Weaknesses#
The_.22Finney.22_attack.

[16] MoneyBookers, Available from https://www.
moneybookers.com/app/.

[17] Comparison of Mining Pools, Available from
https://en.bitcoin.it/wiki/Comparison_
of_mining_pools.

[18] Comparison of Mining Hardware, Available
from https://en.bitcoin.it/wiki/Mining_
hardware_comparison.

[19] Bitcoin Gateway, A Peer-to-peer Bitcoin Vault
and Payment Network, 2011. Available from
http://arimaa.com/bitcoin/.

[20] Bitcoin: Tempering the Digital Ring of
Gyges or Implausible Pecuniary Privacy, 2011.
Available from http://ssrn.com/abstract=
1937769ordoi:10.2139/ssrn.1937769.

[21] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer
Electronic Cash System.

[22] Androulaki, E., Raykova, M., Stavrou,
A., and Bellovin, S. M. PAR: Payment
for Anonymous Routing. In Proceedings of
the 8th Privacy Enhancing Technologies Sym-
posium (2008).

[23] Asokan, N., Janson, P., Steiner, M., and
Waidner, M. State of the Art in Electronic
Payment Systems. IEEE Computer (1999).

[24] Babaioff, M., Dobzinski, S., Oren, S.,
and Zohar, A. On Bitcoin and Red Balloons.
CoRR (2011).

[25] Belenkiy, M., Chase, M., Erway, C., Jan-
notti, J., Küpçü, A., Lysyanskaya, A.,
and Rachlin, E. Making P2P Account-
able without Losing Privacy. In Proceedings of
WPES (2007).

[26] Bellare, M., Garay, J., Hauser, R.,
Krawczyk, H., Steiner, M., Herzberg,
A., Tsudik, G., van Herreweghen, E.,
and Waidner, M. Design, Implementation
and Deployment of the iKP Secure Electronic
Payment System. IEEE Journal on Selected Ar-
eas in Communications (2000).

[27] Brands, S. Electronic Cash on the Internet. In
Proceedings of the Symposium on the Network
and Distributed System Security (1995).

[28] Camenisch, J., Hohenberger, S., and
Lysyanskaya, A. Compact E-Cash. In Pro-
ceedings of Advances in Cryptology - EURO-
CRYPT (2005).

[29] Chaum, D., Fiat, A., and Naor, M. Un-
traceable electronic cash. In Proceedings on Ad-
vances in Cryptology - CRYPTO (1990).

[30] Company, P. Paypal, Available from http:
//www.paypal.com.

[31] Everaere, P., Simplot-Ryl, I., and
Traore, I. Double Spending Protection for E-
Cash Based on Risk Management. In Proceed-
ings of Information Security Conference (2010).

14

Figure 11: Distribution of time intervals between an-
nouncements of successive transactions. To measure the
transaction announcement times, we parsed the block
chain of Bitcoin and we counted the number of transac-
tions in each block. To generate the plot, we assumed
that transactions are announced uniformly at random
within two successive block generations.

[32] Karame, G., Francillon, A., and Čap-
kun, S. Pay as you Browse: Microcomputa-
tions as Micropayments in Web-based Services.
In Proceedings of the International World Wide
Web Conference (WWW) (2011).

[33] Krawczyk, H. Blinding of Credit Card Num-
bers in the SET Protocol. In Proceedings of the
International Conference on Financial Cryptog-
raphy (1999).

[34] Micali, S., and Rivest, R. L. Micropay-
ments Revisited. In Proceedings of CT-RSA
(2002).

[35] Reid, F., and Harrigan, M. An Analysis
of Anonymity in the Bitcoin System. CoRR
(2011).

[36] Rivest, R. Peppercoin Micropayments. In
Proceedings of Financial Cryptography (2004).

[37] Yang, B., and Garcia-Molina, H. PPay:
micropayments for peer-to-peer systems. In
Proceedings of the ACM Conference on Com-
puter and Communication Security (2003).

A Block Generation in Bitcoin

In what follows, we analyze the distribution of block
generation times in Bitcoin.
To generate a block, peers work on solving a PoW

problem. In particular, given the set of transactions
that have been announced since the last block’s gen-
eration, and the hash of the last block, Bitcoin peers

need to find a nonce that would make the SHA-256
hash of the formed block smaller than a 256-bit num-
ber, referred to as target . That is:

SHA-256{Bll || MR(TR1, . . . , TRn) || No} ≤ target ,
(4)

where,

• Bll denotes the last generated block,

• MR(x) denotes the root of the Merkle tree with
elements x,

• TR1 || . . . || TRn is a set of transactions which
have been announced (and not yet confirmed)
since Bll’s generation,

• No is the 32-bit nonce,

• target is a 256-bit number which that sets the
difficulty of the PoW. It is updated according
to the generation times of the last 2016 blocks.

To solve the PoW, each peer chooses a particular
subset of the candidate solutions’ space and per-
forms brute-force search. It is apparent that the
bigger target is, the easier is to find a nonce that sat-
isfies the PoW. For the purpose of our analysis, we
note the following:

1. The probability of success in a single nonce-trial
is negligible. Taking in consideration that SHA-
256 maps its arguments randomly to the target

space, each of the 232 nonces has
target

max(target)

probability of satisfying the PoW, where, target
is the number of targets which are less or equal
than target and max(target) = 2256 − 1 is the
number of all possible targets16.

2. Peers compute their PoW independently of each
other; as such, the probability that one of them
succeeds does not depend on the progress of
PoW of the others.

3. Peers are frequently required to restart their
PoW. In particular, whenever a new transac-
tion is added to the memory pool of a peer,
the Merkle root (included in the block) changes;
therefore, the effort in constructing the PoW is
“reset”. This also applies to the case when new
blocks are generated; the “previous block” field
needs to be updated (cf. Figure 1). For the sake

16Note that target is equal to the number of 256-bit numbers
which are less or equal to it; as such, max(target) is equal to
2256 − 1, which is the number of all possible targets (target is
never equal to zero). The inverse of this probability is known
as difficulty in Bitcoin block generation.

15

of our analysis, we approximate the time in-
terval between the announcement of successive
transactions as follows. We extract the various
block generation times from the Bitcoin block
explorer (cf. Figure 1) and we assume that
transactions are announced uniformly at ran-
dom within two successive block generations.
Our findings (Figure 11) show that the time in-
terval between the announcement of most pairs
of successive transactions is below 15 seconds.
Therefore, we assume in the sequel that the
PoW for block generation is “reset” approxi-
mately every dt ≈ 15 seconds17.

Given the first two observations, the probability
of an average peer in succeeding in an individual
block generation attempt can be modeled as an in-
dependent Bernoulli process with success probability

ε =
target

max(target) .

Given this, and based on the last observation, we
claim that consecutive block generation attempts
can be modeled as sequential Bernoulli trials with
replacement. Our claim for replacement is justified
by the fact that maximum possible PoW progress
performed by a peer (expressed as a number of
hash calculations) before its PoW resets, is neg-
ligible in comparison to max(target). This is the
case since the PoW progress approximates 235 (
max(target) given the computing power of most Bit-
coin peers [17, 18]. This also means that ε is always

equal to
target

max(target) .

Let ni refer to the number of attempts that a peer
mi performs within a time period δt. Typically, δt is
in the order of few minutes. the probability pi of mi

finding at least one correct PoW within these trials
is given by pi = 1 − (1 − ε)ni . Since ε and ni are
small, pi can be approximated to:

pi = 1− (1− ε)ni ≈ niε.

Therefore, the set of trials of mi within δt can be
unified to constitute a single Bernoulli process with
success probability niε.
Assuming that there are % peers, mi, i = 1 . . . %

with success probability pi, i = 1 . . . % respectively,
the overall probability of success in block generation
can be approximated to:

p ≈ 1−
!
∏

i=1

(1− pi).

17While there are other parameters that can affect the
“reset” of PoW, we believe that transaction announcements
causes the most frequent PoW “resets” at honest Bitcoin
peers.

In the simplified case when the peers have equal com-
puting power, pi = p, i = 1 . . . %, the previous proba-
bility reduces to:

p = 1− (1− p)! ≈ % · p,

since p% < 1.
Let time be divided into small intervals

(t0, t1], . . . , (tn−1, tn] of equal size δt, where t0 = 0
denotes the time when the last block was gener-
ated. Here, each peer can make up to ni trials
for block generation within each interval. Let the
random variable Xk denote the event of success in
δt = {tk, tk+1}. That is,

Xk =

{

1 if a block is created within{tk, tk+1},
0 otherwise.

It is evident that:

Prob(Xk = 1) = p.

Conceivably, after a success in block generation,
peers stop mining for that particular block. We
denote the number of attempts until a success is
achieved by another random variable Y.

Prob(Y = k) = Prob(Xk = 1)
k−1
∏

i=1

Prob(Xi = 0)

= p(1− p)k−1.

Assuming a constant rate of trials per time win-
dow δt, the number of failures until a success is ob-
served in block generation is proportional to the time
it takes for a block to be generated. More specifi-
cally, let T denote the time period till a block is
generated. Then, the following holds:

Prob(T = k · δt) = Prob(Y = k) = p(1− p)k−1.

Given this, we conclude that the distribution of
block generation times can be modeled with a shifted
geometric distribution with parameter p. In Fig-
ure 1, we confirm this analysis and we show that
(experimental) block generation times in Bitcoin, as
reported in [12], can be fitted to a shifted geometric
distribution with p = 0.19. For the purpose of our
experiments, we considered δt to be 2 minutes.

B Formulas for Deriving the Plot in
Figure 5

In Equation 3, we derived the probability PS
(2). In

what follows, we show how to estimate Equation 3
to produce the plots in Figure 5.

16

For the purpose of this analysis, we assume that
ts = δt and that δt = 10 seconds. We can therefore
rewrite Equation 3 as follows:

PS = Prob(tgA < tgV) +
1
2Prob(tgA = tgV).

Prob(tgA < tgV) =
η0Ap(1− η0Vp) + η1Ap(1− η0Ap)(1− η0Vp)(1− η1Vp)
∞
∑

gA=2

η1Ap(1−η0Ap)(1−η1Ap)
(gA−2)·(1−η0Vp)(1−η1Vp)

(gA−1)

Prob(tgA = tgV) = η0Vη
0
Ap

2+
∞
∑

gA=1

η1Vη
1
Ap

2(1−η0Vp)·(1−η0Ap)[(1−η1Vp)·(1−η1Ap]
(gA−1)

C Bitcoin Addresses Used in Our Ex-
periments

Throughout our experiments, we used the following
Bitcoin addresses.

• Merchant’s addresses:

- 1Lr3SYuKnjdQA9fxMghd7sYwgWR4Q4ANxi.

- 15SPb6DZZxVBagNHEQMz6DQVPTggiYknU9.

- 1AhvENkVCus9XT835VjoCfHAghbigyF5XZ.

• Attacker’s addresses:

- 1C4x2tkYezM2keLVdSMo77ZLuvPiJ4MfdV.

- 1Bkcc27HRur9SMdMPHCvUD8ecj9r1v5qkC.

The complete log of the exchanged transactions
can be obtained from the Bitcoin Block Explorer [12]
by searching for these addresses.

17

