
The repeated demise of logic programming
and

why it will be reincarnated

Carl Hewitt

MIT EECS (emeritus)
at alum.mit.edu try carlhewitt

Abstract

Logic Programming is the proposal to implement systems
using mathematical logic. Perhaps the first published proposal
to use mathematical logic for programming was John
McCarthy’s Advice Taker paper.
Planner was the first language to feature ''procedural plans''
that were called by ''pattern-directed invocation'' using ''goals''
and ''assertions''. A subset called Micro Planner was
implemented by Gerry Sussman, Eugene Charniak and Terry
Winograd and was used in Winograd's natural-language
understanding program SHRDLU, Eugene Charniak's story
understanding work, and some other projects. This generated a
great deal of excitement in the field of AI. It also generated
controversy because it proposed an alternative to the logic
approach that had been one of the mainstay paradigms for AI.
The question arose as what the difference was between the
procedural and logical approaches. It took several years to
answer this question. The upshot is that the procedural
approach has a different mathematical semantics (based on the
denotational semantics of the Actor model) from the semantics
of mathematical logic.
There were some surprising results from this research
including that mathematical logic is incapable of implementing
general concurrent computation even though it can implement
sequential computation and some kinds of parallel computation
including the lambda calculus. Also along the way a large
number of logic programming experiments were carried out
although none met with great success. Also classical logic
blows up in the face of inconsistent information that is
becoming more ubiquitous with the growth of the Internet.
Now we are in the midst of a huge paradigm shift to massive
concurrency with the advent of Web Services and many-core
computer architectures. This paradigm shift enables and
requires a new generation of systems incorporating ideas from
mathematical logic in their implementation. The result will be
that logic programming will be reincarnated. But something is
often transformed when reincarnated!

Actors

Actors are the universal primitives of concurrent digital
computation. In response to a message that it receives, an
Actor can make local decisions, create more Actors, send
more messages, and designate how to respond to the next
message received. A Serializer is an Actor that is
continually open to the arrival of messages. Messages sent
to a Serialize always arrive although delivery can take an
unbounded amount of time. (The Actor model can be
augmented with metrics.)

Unbounded nondeterminism is the property that the
amount of delay in servicing a request can become
unbounded as a result of arbitration of contention for
shared resources while still guaranteeing that the request
will eventually be serviced.

Arguments for unbounded nondeterminism include the
following:
• There is no bound that can be placed on how long it takes a

computational circuit called an Arbiter to settle.

– Arbiters are used in computers to deal with the
circumstance that computer clocks operate
asynchronously with input from outside, ''e.g..'',
keyboard input, disk access, network input, ''etc.'‘

– So it could take an unbounded time for a message
sent to a computer to be received and in the
meantime the computer could traverse an
unbounded number of states.

• Electronic mail enables unbounded nondetermism since mail
can be stored on servers indefinitely (perhaps the server is
down temporarily) before being delivered.

• Communication links to servers on the Internet can be out of
service indefinitely.

Actor Programming Language Semantics

Actors can be used to define the semantics of concurrent
programming languages.

Actor script semantics
Actor script semantics are defined by the behavior of
Actors that serve as the script elements of an Actor
programming language.

For example consider the following concurrent
programming language in which each <expression> is
one of the following kinds:

<identifier><identifier><identifier><identifier>
When Communication[Eval[environment]
customer] is received, send environment
Communication[lookup[<identifier>]customer]

sendsendsendsend <recipient> <communicatio <recipient> <communicatio <recipient> <communicatio <recipient> <communication>n>n>n>
When Communication[Eval[environment]
customer] is received, send <recipient>
Communication[Eval[environment] customer’]
where customer’ is a new Actor such that when customer’
receives the communication r, then send <communication>
Communication[Eval[environment] customer’’]
where customer’’ is a new actor such that when
customer’’ receives the communication c, then send r c

<recipient>.<message><recipient>.<message><recipient>.<message><recipient>.<message>
When Communication[Eval[environment]
customer] is received, send <recipient>
Communication[Eval[environment] customer’]
such that when customer’ receives the communication r, then
send <message>
Communication[Eval[environment] customer’’]
such that when customer’’ receives the communication m,
then send r Communication[m, customer]

receiverreceiverreceiverreceiver <<<<patternpatternpatternpattern>>>>iiii <express<express<express<expression>ion>ion>ion>iiii
When Communication[Eval[environment]
customer] is received, send customer a new actor r such
that

when r receives a communication com, then try
environment.bind[<pattern>i com] and

1. if a new environment’ is created send
<expression>i
Communication[Eval[environment’]]

2. otherwise try <pattern>i+1

behaviorbehaviorbehaviorbehavior <pattern><pattern><pattern><pattern>iiii <expression> <expression> <expression> <expression>iiii
When Communication[Eval[environment]
customer] is received, send customer a new actor r such
that

when r receives Communication[message
customer’], then try
environment.bind[<pattern>i message] and

1. if a new environment’ is created send
<expression>i
Communication[Eval[environment’]
customer’]

2. otherwise try <pattern>i+1

{<expression1>, <expression2>}{<expression1>, <expression2>}{<expression1>, <expression2>}{<expression1>, <expression2>}
When Communication[Eval[environment]
customer] is received, send <expression1>
Communication[Eval[environment]] and concurrently

send <expression2>
Communication[Eval[environment] customer]

letletletlet <identifier> = <expression1> <identifier> = <expression1> <identifier> = <expression1> <identifier> = <expression1>
 inininin <expression2> <expression2> <expression2> <expression2>
When message[Eval[environment] customer] is
received, then create a new environment’ by
environment.bind[<identifier>
<expression1>.Eval[environment]] and send
<expression2>
Communication[Eval[environment’] customer]

serializerserializerserializerserializer <expression> <expression> <expression> <expression>
When Communication[Eval[environment]
customer] is received, then send customer a new actor s
such that communications sent to s are processed in FIFO order
with a behavior Actor that is initially
<expression>.Eval[environment] and:

When communication com is received by S, then send the
behavior Actor Communication[com customer’]
where customer’ is a new actor such that when it receives
an Actor then it is used as the behavior Actor for the next
communication received by S.

Example Actor script
An example Actor script for a simple storage cell that can
contain any Actor address is as follows:
Cell ≡
 receiver
 Communication[Create[initial] customer]
 send customer
 serializer readWrite(initial)}
The above script which creates a storage cell makes use of
the behavior readWrite which is defined as follows:
readWrite(contents) ≡
 behavior
 Communication[read[] customer]
 {send customer contents,
 readWrite(contents)}
 Communication[write[x] customer]
 {send customer x,
 readWrite(x)}
For example the following expression creates a cell x with
initial contents 5 and then concurrently writes to it with the
values 7 and 9.
let x = Cell.Create[5]
 in {x.write[7],
 x.write[9],
 x.read[]}
The value of the above expression is either 7 or 9.

A Limitation of Logic Programming
In his 1988 paper on the early history of Prolog, Bob
Kowalski published the thesis that “computation could
be subsumed by deduction” and quoted with approval
“Computation is controlled deduction.” which he
attributed to Pat Hayes. Contrary to Kowalski and
Hayes, Hewitt's thesis was that logical deduction was
incapable of carrying out concurrent computation in

open systems because of indeterminacy in the arrival
order of messages.

Indeterminacy in Concurrent Computation
Hewitt [1985], Hewitt and Agha [1991], and other
published work argued that mathematical models of
concurrency did not determine particular concurrent
computations as follows: The Actor model makes use of
arbitration for determining which message is next in the
arrival ordering]of an Actor that is sent multiple
messages concurrently. For example Arbiters can be
used in the implementation of the arrival ordering of an
Actor which is subject to physical indeterminacy in the
arrival order.

In concrete terms for Actor systems, typically we cannot
observe the details by which the arrival order of
messages for an Actor is determined. Attempting to do
so affects the results and can even push the
indeterminacy elsewhere. Instead of observing the
internals of arbitration processes of Actor computations,
we await outcomes. Physical indeterminacy in arbiters
produces indeterminacy in Actors. The reason that we
await outcomes is that we have no alternative because of
indeterminacy.

According to Chris Fuchs [2004], quantum physics is a
theory whose terms refer predominately to our interface
with the world. It is a theory not about observables, not
about beables, but about ‘dingables’ We tap a bell with
our gentle touch and listen for its beautiful ring.

The semantics of indeterminacy raises important issues
for autonomy and interdependence in information. In
particular it is important to distinguish between
indeterminacy in which factors outside the control of an
information system are making decisions and choice in
which the information system has some control.

It is not sufficient to say that indeterminacy in Actor
systems is due to unknown/unmodeled properties of the
network infrastructure. The whole point of the appeal to
quantum indeterminacy is to show that aspects of Actor
systems can be unknowable and the participants can be
entangled.

Actor Model and Mathematical Logic
What does the mathematical theory of Actors have to
say about logic programming? A closed system is
defined to be one which does not communicate with the
outside. Actor model theory provides the means to
characterize all the possible computations of a closed
Actor system. So mathematical logic can characterize
(as opposed to implement) all the possible computations

of a closed Actor system. However, this is impossible
for an open Actor system S in which the addresses of
outside Actors are passed into S in the middle of
computations so that S can communicate with these
outside Actors. These outside Actors can then in turn
communicate with Actors internal to S using addresses
supplied to them by S.

Prolog-like concurrent message-passing
programming languages
Keith Clark, Herve Gallaire, Steve Gregory, Vijay
Saraswat, Udi Shapiro, Kazunori Ueda, etc. developed a
family of Prolog-like concurrent message passing
programming languages using unification of shared
variables and data structure streams for messages.
Claims were made that these languages were based on
mathematical logic. This kind of programming language
was used as the basis of the Japanese Fifth Generation
Project (ICOT).

However, the Prolog-like concurrent programming languages
(like the Actor model) were based on message passing and
consequently were subject to the same indeterminacy. This
was the basis of the argument in Carl Hewitt and Gul Agha
[1991] that the Prolog-like concurrent programming languages
were neither deductive nor logical.

Updating the Scientific Community Metaphor
The Scientific Community Metaphor paper was published
in 1981 by Bill Kornfeld and Carl Hewitt as an approach to
understanding |scientific communities by extending pattern
directed invocation programming languages that invoke
high level procedural plans on the basis of messages, e.g.,
assertions and goals. Their work built on the philosophy,
history and sociology of science with its analysis that
scientific research depends critically on monotonicity,
concurrency, commutativity, and pluralism to propose,
modify, support, and oppose scientific methods, practices,
and theories.

A programming language named Ether was developed that
invokes procedural plans to process goals and assertions
concurrently by dynamically creating new rules during
program execution. Ether also addressed issues of conflict
and contradiction with multiple sources of knowledge and
multiple viewpoints.

At this point the metaphor needs an update. Some ideas
are presented in the sections below.

Monotonicity, Concurrency, Commutatvity,
Pluralism, Skepticism, and Provenance
Scientific communities have characteristics of
monotonicity, concurrency, commutativity, pluralism,

skepticism, and provenance whose semantics can be
studied using the Actor model.

Monotonicity. Once something is published it cannot be taken
back. Results are published so they are available to a community.
Published work is collected and indexed. Retractions can be
published in case of error. Publications are sometimes lost or
difficult to retrieve. Sometimes it is easier to rederive a result than
to look it up.

Concurrency. The activities overlap in time. The participants
interact with each other by message passing. Resources are
limited by including processing, communications, and storage

Commutativity. Publications can be read regardless of whether
they initiate new research or become relevant to ongoing
research. Initiating work on a new scientific raises the question
whether the answer has already been published. While working
on a project, attention needs to be paid to ongoing developments
that can affect the project. The order in which information is
received can influence how it is processed.

Pluralism. Publications include heterogeneous, overlapping and
possibly conflicting information. There is no central arbiter of
truth in scientific communities. Scientific fads sometimes sweep
up almost everyone in a field. Sponsors can try to control
scientific activities.

Skepticism. Skepticism is an important commitment of the
Scientific Community Metaphor. Great effort is expended to try
to undermine current information and replace it with better
information.

Provenance. The provenance of information is of intense interest
in the Scientific Community Metaphor.

Viewpoints
Ether used viewpoints to modularize information in
publications. However a great deal of information is shared
across viewpoints. So Ether made use of inheritance so that
information in a viewpoint could be readily used in other
viewpoints. Sometimes this inheritance is not exact as
when the laws of physics in Newtonian mechanics are
derived from those of Special Relativity. In such cases
Ether used translation instead of inheritance. Imre Lakatos
studied very sophisticated kinds of translations of
mathematical (e.g., the Euler formula for polyhedra) and
scientific theories.

Logical Viewpoints (Theories, Context). Viewpoints
were used to implement natural deduction (Fitch [1952]) in
Ether. In order to prove classically a goal of the form
(P implies Q) in a viewpoint V, it is sufficient to
create a new viewpoint V' that inherits from V, assert P in
V', and then prove Q in V'. An idea like this was
originally introduced into programming language proving
by Rulifson, Derksen, and Waldinger [1973] except since
the Scientific Community Metaphor is concurrent rather
than being sequential it does not rely on being in a single

viewpoint that can be sequentially pushed and popped to
move to other viewpoints.

Negotiation Viewpoints. More challenging semantics are
processes for negotiation as studied in the sociology and
philosophy of science by Michel Callon, Paul Feyerabend,
Elihu M. Gerson, Bruno Latour, John Law, Karl Popper,
Susan Leigh Star, Anselm Strauss, Lucy Suchman, etc.

Observational Viewpoints. According to Relational
Quantum Physics [Laudisa and Rovelli 2005], the way
distinct physical systems affect each other when they
interact (and not of the way physical systems "are")
exhausts all that can be said about the physical world. The
physical world is thus seen as a net of interacting
components, where there is no meaning to the state of an
isolated system. A physical system (or, more precisely, its
contingent state) is reduced to the net of relations it
entertains with the surrounding systems, and the physical
structure of the world is identified as this net of
relationships. In other words, “Quantum physics is the
theoretical formalization of the experimental discovery that
the descriptions that different observers give of the same
events are not universal.”

The concept that quantum mechanics forces us to give up
is: the description of a system independent from the
observer providing such a description; that is the concept
of the absolute state of a system. I.e., there is no observer
independent data at all. According to Zurek [1982],
“Properties of quantum systems have no absolute meaning.
Rather they must be always characterized with respect to
other physical systems.”

Does this mean that there is no relation whatsoever
between views of different observers? Certainly not.
According to Rovelli [1996] “It is possible to compare
different views, but the process of comparison is always a
physical interaction (and all physical interactions are
quantum mechanical in nature).”

Further limitations of Classical Mathematical

Logic
In addition to the inability to implement concurrent
computation, the semantics of mathematical logic suffers
from difficulties including unruly combinatorics and the
semantic failure of classical proof theory and model theory
in the face of inconsistency as discussed below.

Unruly combinatorics
General mathematical theorem proving has been
intractable in practice although verification has been more
successful.

Semantic failure of classical proof theory and
model theory in the face of inconsistency

Claim: AAAAll very large knowledge bases ll very large knowledge bases ll very large knowledge bases ll very large knowledge bases
about human information system about human information system about human information system about human information system
interactionsinteractionsinteractionsinteractions are inconsistent. are inconsistent. are inconsistent. are inconsistent.

In the face of inconsistency, classical mathematical logic
fails, e.g.,

• Proof theory fails because everything can be proved: If
Ψ is inconsistent, then ∀∀∀∀ΩΩΩΩ ΨΨΨΨ ⊢⊢⊢⊢ ΩΩΩΩ

• Model theory fails because there are no models: If Ψ is
inconsistent, then ¬¬¬¬∃∃∃∃M M M M ⊢⊢⊢⊢ MMMM ΨΨΨΨ

Irrelevance

Classical mathematical logic allows many irrelevant

derivations, e.g., ⊢ ((P ∧ ¬P) ⇒ Q), ⊢ (P⇒Q ∨ Q⇒R),

and ⊢ (P ⇒ (P ∨ Q))

Dichotomy
In classical mathematical logic ⊢ (P ∨ ¬ P) and

⊢(¬ ¬P ⇒ P). The idea was that truth values could be
assigned to ground propositions and a ground proposition
is either true or false. But inconsistency means
unsatisfiability and therefore there is no assignment of
truth values to ground propositions that works in the face
of inconsistency.

Why does it matter that classical mathematical logic fails
for very large knowledge bases of human information
system commitments?

One of my colleagues made the argument that it is not fault
of classical logic that very large knowledge bases of
human information system commitments are inconsistent.
It just means that the knowledge base has bugs just like our
programs. A problem with the argument is that the
semantics of classical logic collapses in the face of
inconsistency whereas the Actor denotational semantics
does not collapse in the face of programs with bugs. So we
need to replace classical logic with a reasoning system that
does not collapse in the face of inconsistency.

Direct Logic

A foolish consistency is the hobgoblin A foolish consistency is the hobgoblin A foolish consistency is the hobgoblin A foolish consistency is the hobgoblin
of little mindsof little mindsof little mindsof little minds-------- Emerson Emerson Emerson Emerson

We need a revised mathematical logic to address the
limitation of classical mathematical in dealing with
inconsistency and irrelevancy.

The goals of Direct Logic are to clarify provenance in case
of inconsistency and to make derivations more relevant.
Consequently Direct Logic does not embrace full indirect
proof (Ψ├ Φ), (Ψ├ ¬Φ)├ ¬Ψ because it would
immediately blow up in case of an inconsistency.
Similarly Direct Logic does not embrace disjunctive

expansion Ψ├ Ψ∨Φ because it (together with disjunction
elimination Ψ∨Φ,¬Ψ├ Φ) also cause a blow up via the
following derivation [Lewis and Langford 1959]]: Ψ,¬Ψ├
Ψ∨Φ, ¬Ψ├ Φ

However, Direct Logic does allow the direct form of
indirect proof (Ψ├ ¬Ψ)├ ¬Ψ.

Direct Logic uses ideas from Relevance Logic and
Intuitionistic Logic. (Note that Direct Logic is distinct
from the Direct Predicate Calculus [Ketonen and
Weyhrauch 1984].)

Sequences of formulas
Direct Logic makes use of unordered sequences of
formulas separated by commas intuitively meaning and
(i.e. conjunction).

Basic Rules for ├
The basic rules for ├ are as follows:

ΨΨΨΨ├ ├ ├ ├ ΨΨΨΨ
((((ΨΨΨΨ├ ├ ├ ├ ΘΘΘΘ))))├ (├ (├ (├ (ΨΨΨΨ, , , , ΦΦΦΦ├ ├ ├ ├ ΘΘΘΘ))))
((((ΨΨΨΨ├ ├ ├ ├ ΦΦΦΦ, , , , ΘΘΘΘ))))├ (├ (├ (├ (ΨΨΨΨ├ ├ ├ ├ ΦΦΦΦ))))
((((ΨΨΨΨ├├├├ ΦΦΦΦ),(),(),(),(ΩΩΩΩ├├├├ ΘΘΘΘ))))├ (├ (├ (├ (ΨΨΨΨ,,,,ΩΩΩΩ├ ├ ├ ├ ΦΦΦΦ,,,,ΘΘΘΘ))))
((((ΨΨΨΨ├ ├ ├ ├ ΦΦΦΦ), (), (), (), (ΦΦΦΦ├ ├ ├ ├ ΘΘΘΘ))))├ (├ (├ (├ (ΨΨΨΨ├ ├ ├ ├ ΘΘΘΘ))))

Direct Indirect Proof
Direct Logic only allows for the direct form of indirect
proof which is the following rule:

((((ΨΨΨΨ├ ├ ├ ├ ¬¬¬¬ΨΨΨΨ))))├├├├ ¬¬¬¬ΨΨΨΨ

Rule for ∧∧∧∧
The basic rule for ∧ (conjunction) is

ΨΨΨΨ, , , , ΦΦΦΦ ≅≅≅≅ ΨΨΨΨ∧∧∧∧ΦΦΦΦ
The above rule justifies the following rules:

((ΨΨΨΨ∧∧∧∧ΦΦΦΦ)├ ΘΘΘΘ) ≅≅≅≅ (ΨΨΨΨ, ΦΦΦΦ├ ΘΘΘΘ)
(ΦΦΦΦ├ (ΨΨΨΨ∧∧∧∧ ΘΘΘΘ)) ≅≅≅≅ (ΦΦΦΦ├ ΨΨΨΨ, ΘΘΘΘ)

Rules for ∨∨∨∨
The most basic rule for ∨∨∨∨ is

ΨΨΨΨ∨∨∨∨ΦΦΦΦ ≅≅≅≅ ((((¬¬¬¬ΨΨΨΨ├ ├ ├ ├ ΦΦΦΦ)))) ∧∧∧∧ ((((¬¬¬¬ΦΦΦΦ├ ├ ├ ├ ΨΨΨΨ))))
Note that the provenance of ⇒⇒⇒⇒ is derivational as opposed
to truth functional.
For the convenience of users, the negation elimination rule
for ∨∨∨∨ ((((disjunction) is:

¬¬¬¬((((ΦΦΦΦ∨∨∨∨ΨΨΨΨ)))) ≅≅≅≅ ¬¬¬¬ΨΨΨΨ ∧∧∧∧ ¬¬¬¬ΦΦΦΦ
And the negation elimination rule for ∧∧∧∧ ((((conjunction) is:

¬¬¬¬((((ΦΦΦΦ∧∧∧∧ΨΨΨΨ)))) ≅≅≅≅ ¬¬¬¬ΨΨΨΨ ∨∨∨∨ ¬¬¬¬ΦΦΦΦ
The last two equivalences above lead to the following
equivalence:

¬¬¬¬ ¬¬¬¬ ¬¬¬¬ΨΨΨΨ ≅≅≅≅ ¬¬¬¬ΨΨΨΨ

Rule by Cases for ∨∨∨∨
Direct Logic has the Rule by Cases is a follows:

ΨΨΨΨ∨∨∨∨ΦΦΦΦ, (, (, (, (ΨΨΨΨ├ ├ ├ ├ ΘΘΘΘ),),),), ((((ΦΦΦΦ├ ├ ├ ├ ΘΘΘΘ))))├ ├ ├ ├ ΘΘΘΘ
Rules for ∧∧∧∧ and ∨∨∨∨
For convenience of users, Direct Logic has the
following equivalences for ∧∧∧∧ and ∨∨∨∨:
(Ψ ∧ Ψ) ≅ Ψ
(Ψ ∧ Φ) ≅ (Φ ∧ Ψ)
(Ψ ∧ (Φ ∧ Θ)) ≅ ((Ψ ∧ Φ) ∧ Θ)

(Ψ ∨ Ψ) ≅ Ψ
(Ψ ∨ Φ) ≅ (Φ ∨ Ψ)
(Ψ ∨ (Φ ∨ Θ)) ≅ ((Ψ ∨ Φ) ∨ Θ)

(Ψ ∧ (Φ ∨ Θ)) ≅ ((Ψ ∧ Φ) ∨ (Ψ ∧ Θ))
 (Ψ ∨ (Φ ∧ Θ)) ≅ ((Ψ ∨ Φ) ∧ (Ψ ∨ Θ))

Rule for ⇒⇒⇒⇒
The most basic rule for ⇒⇒⇒⇒ is

ΨΨΨΨ⇒⇒⇒⇒ΦΦΦΦ ≅≅≅≅ ((((ΨΨΨΨ├ ├ ├ ├ ΦΦΦΦ)))) ∧∧∧∧ ((((¬¬¬¬ΦΦΦΦ├ ├ ├ ├ ¬¬¬¬ΨΨΨΨ))))
Note that the provenance of ⇒⇒⇒⇒ is derivational as opposed
to truth functional.

Integers and XML
A theory of integers and XML is needed. So Direct Logic
allows quantification over the integers and XML
expressions where there is a standard encoding of logical
formulas into XML. If mmmm∈∈∈∈ωωωω then

∧∧∧∧nnnn≥≥≥≥mmmmΨΨΨΨ[n] [n] [n] [n] ≅≅≅≅ ΨΨΨΨ[[[[mmmm]]]] ∧∧∧∧ ∧∧∧∧nnnn≥≥≥≥m+1m+1m+1m+1ΨΨΨΨ[n][n][n][n]

∨∨∨∨nnnn≥≥≥≥mmmmΨΨΨΨ[n] [n] [n] [n] ≅≅≅≅ ΨΨΨΨ[[[[mmmm]]]] ∨∨∨∨ ∨∨∨∨nnnn≥≥≥≥m+1m+1m+1m+1ΨΨΨΨ[n][n][n][n]
The fundamental rules for quantification are:

∀∀∀∀nnnn∈∈∈∈ωωωω ΨΨΨΨ[n] [n] [n] [n] ≅≅≅≅ ∧∧∧∧nnnn≥≥≥≥0000ΨΨΨΨ[n][n][n][n]

∃∃∃∃nnnn∈∈∈∈ωωωω ΨΨΨΨ[n] [n] [n] [n] ≅≅≅≅ ∨∨∨∨nnnn≥≥≥≥0000ΨΨΨΨ[n][n][n][n]
For the convenience of users, the following rules are
provided:
0000∈∈∈∈ωωωω
∀∀∀∀nnnn∈∈∈∈ωωωω n+1 n+1 n+1 n+1∈∈∈∈ωωωω
∀∀∀∀nnnn∈∈∈∈ωωωω 0 0 0 0≤≤≤≤nnnn
∀∀∀∀n,mn,mn,mn,m∈∈∈∈ωωωω n=m n=m n=m n=m ⇔⇔⇔⇔ n+1=m+1n+1=m+1n+1=m+1n+1=m+1
∀∀∀∀n,mn,mn,mn,m∈∈∈∈ωωωω n n n n≤≤≤≤m m m m ⇔⇔⇔⇔ ((((n=m n=m n=m n=m ∨∨∨∨ n+1 n+1 n+1 n+1≤≤≤≤m)m)m)m)
∀∀∀∀n,mn,mn,mn,m∈∈∈∈ωωωω n n n n≤≤≤≤m m m m ∨∨∨∨ n=m n=m n=m n=m ∨∨∨∨ m m m m≤≤≤≤nnnn
∃∃∃∃nnnn∈∈∈∈ωωωω ΨΨΨΨ[n] [n] [n] [n] ⇒⇒⇒⇒ ((((∃∃∃∃mmmm∈∈∈∈ωωωω ΨΨΨΨ[m] [m] [m] [m] ∧∧∧∧
 ∀∀∀∀iiii∈∈∈∈ωωωω ΨΨΨΨ[i][i][i][i]⇒⇒⇒⇒ m m m m≤≤≤≤i)i)i)i)

Induction
Direct Logic has the rule of induction:
ΨΨΨΨ[0][0][0][0], , , , ((((∀∀∀∀nnnn∈∈∈∈ωωωω ΨΨΨΨ[n][n][n][n]├ ├ ├ ├ ΨΨΨΨ[n+1])[n+1])[n+1])[n+1])├├├├ ∀∀∀∀nnnn∈∈∈∈ωωωω ΨΨΨΨ[n][n][n][n]

Reflection
Direct Logic has reflection of provability:

∀∀∀∀αααα∈∈∈∈XML XML XML XML ├ ├ ├ ├ αααα├ ├ ├ ├ αααα
∀∀∀∀αααα∈∈∈∈XML XML XML XML ¬├ ├ ├ ├ αααα├ ├ ├ ├ ((((¬├├├├ αααα))))

Rules for ∧∧∧∧ and ∨∨∨∨
In addition, Direct Logic has the following structural
equivalences for ∧∧∧∧ and ∨∨∨∨

∧i∈ωΨi ∧ ∨i∈ωΦi ≅ ∧i,j∈ω(Ψi∨Φi)

∨i∈ωΨi ∨ ∧i∈ωΦi ≅ ∨i,j∈ω(Ψi∧Φi)

Negation Elimination
For convenience, Direct Logic has the following structural
equivalences for negation elimination
¬∨i∈ωΨi ≅ ∧i∈ω¬Ψi

¬∧i∈ωΨi ≅ ∨i∈ω¬Ψi

¬∀x∈XML Ψ[x] ≅ ∃x∈XML ¬Ψ[x]
¬∃x∈XML Ψ[x] ≅ ∀x∈XML ¬Ψ[x]

Incompleteness
Theorem (after Carnap): Let ΨΨΨΨ be a predicate on formulas
Fix(Fix(Fix(Fix(ΨΨΨΨ)))) ????├├├├ ΨΨΨΨ(Fix((Fix((Fix((Fix(ΨΨΨΨ))))))))

where Fix(Fix(Fix(Fix(ΨΨΨΨ)))) ≡ ≡ ≡ ≡ Ω(Ω)Ω(Ω)Ω(Ω)Ω(Ω)
where Ω = Ω = Ω = Ω = λλλλ(P) (P) (P) (P) ΨΨΨΨ(P(P))(P(P))(P(P))(P(P))

Theorem (after Gödel): In Direct Logic ParadoxParadoxParadoxParadox but

¬⊢ParadoxParadoxParadoxParadox where Paradox Paradox Paradox Paradox ≡ Fix(≡ Fix(≡ Fix(≡ Fix(λλλλ(x)(x)(x)(x)¬¬¬¬⊢⊢⊢⊢xxxx))))

Caveat
The rules of Direct Logic have been stated as broadly as
possible to make the logic more useful. However, it has not
yet been verified that that it does not blow up. If it does,
then its rules will have to be adapted.

Using Provenance to Undercut a Derivation
In order to illustrate how provenance can be used to
undercut a derivation consider the following (inconsistent)
sentences:
(Says[person,s] ∧ Reliable[person])⇒ s

Says[Curveball, WMD]
Says[Tenet, Reliable[Curveball]]
Reliable[Tenet]]
Says[CIAstaff,¬Reliable[Curveball]]
Reliable[CIAstaff]
The derivation of WMD from Says[Curveball, WMD] and
Reliable[Curveball] is undercut by the derivation of
¬Reliable[Curveball] from
Says[CIAstaff,¬Reliable[Curveball]] and
Reliable[CIAstaff].].].].

Future Work
Developments in hardware and software technology for
the Internet since the original paper was published are
tending to increase the importance of the Scientific
Community Metaphor.

Legal concerns (e.g., HIPAA, Sarbanes-Oxley, "The
Books and Records Rules" in SEC Rule 17a-3/4 and
"Design Criteria Standard for Electronic Records
Management Software Applications" in DOD 5015.2 in
the US) are leading organizations to store information
monotonically forever. It has just now become less
costly in many cases to store information on magnetic
disk than on tape. With increasing storage capacity, sites
can monotonically record what they read from the
Internet as well as monotonically recording their own
operations.

Search engines currently provide rudimentary access to
all this information. Future systems will provide
interactive question answering broadly conceived that
will make all this information much more useful.

Massive concurrency (i.e., Web services and many-core
computer architectures) lies in the future posing
enormous challenges and opportunities.

The future of Logic Programming lies in the further
development of Direct Logic and the Scientific
Community Metaphor in the context of massive
concurrency.

Acknowledgments
Sol Feferman, David Israel, Ben Kuipers, Pat Langley,
Vladimir Lifschitz, John McCarthy, Fanya Montalvo, Ray
Perrault, Mark Stickel, Richard Waldinger, and others
provided valuable feedback at seminars at Stanford, SRI, and
UT Austin in which I presented earlier versions of the material
in this paper. Subsequently Richard Waldinger and the
AAMAS-06 and KR-06 reviewers made valuable suggestions
for improvement of material in this paper.

Appendix
Perhaps the first published proposal to use mathematical logic
for programming was John McCarthy [1958]. Planner is a
programming language designed by Carl Hewitt at MIT, and
first published in 1969. Hewitt championed the "procedural
embedding of knowledge" in the form of high level procedural
plans in contrast to the logical approach pioneered by John
McCarthy who advocated expressing knowledge declaratively
in mathematical logic for Artificial Intelligence. This raised a
fundamental question: "What is the difference between the
procedural and logical approaches?" The upshot is that the

procedural approach has a different mathematical semantics
(based on the denotational semantics of the Actor model) from
the semantics of mathematical logic.
Planner was the first language to feature ''procedural plans''
that were called by ''pattern-directed invocation'' using ''goals''
and ''assertions''. A subset called Micro Planner was
implemented by Gerry Sussman, Eugene Charniak and Terry
Winograd and was used in Winograd's natural-language
understanding program SHRDLU, Eugene Charniak's story
understanding work, and some other projects. This generated a
great deal of excitement in the field of AI.
However, computer memories were very small by current
standards because they were expensive, being made of iron
ferrite cores at that time. So Planner adopted the then common
expedient of using backtracking control structures to
economize on the use of computer memory. In this way, the
computer only had to store one possibility at a time in
exploring alternatives.
Bruce Anderson at Edinburgh University implemented a subset
of Micro Planner and Julian Davies at Edinburgh essentially
the whole of Planner. At SRI, Jeff Rulifson, Jan Derksen, and
Richard Waldinger developed QA4 (later evolved into QLisp)
which built on the constructs in Planner and introduced a
context mechanism to provide modularity for expressions in
the data base as well as enriched data structures (sets and bags)
along with associative-commutative unification for these data
structures.
Peter Landin had introduced a powerful control structure using
his J (for Jump) operator that could perform a nonlocal goto
into the middle of a procedure invocation. In fact the J operator
could jump back into the middle of a procedure invocation
even after it had already returned! Drew McDermott and Gerry
Sussman called Landin's concept "Hairy Control Structure"
and used it in the form of a nonlocal goto for the Conniver
programming language. Scott Fahlman used Conniver in his
planning system for robot construction tasks.
These difficulties with control structure inspired the
development of the Actor model of computation. Hewitt
reported: ''... we have found that we can do without the
paraphernalia of "hairy control structure" (such as possibility
lists, non-local gotos, and assignments of values to the internal
variables of other procedures in CONNIVER.)... The
conventions of ordinary message-passing seem to provide a
better structured, more intuitive foundation for constructing
the communication systems needed for expert problem-solving
modules to cooperate effectively.''
Bob Kowalski, who had been one of the principal members of
the logic paradigm community, then adapted in collaboration
with Alain Colmerauer some theorem proving ideas into a
form similar to a subset of Micro Planner called Prolog.
Indeed, Prolog can be viewed as largely a reinvention of a
subset of Micro Planner, e.g., Micro Planner (unlike Prolog)
had the capability to use pattern-directed invocation of
procedural plans from assertions as well as goals.

References
Gul Agha. Actors: A Model of Concurrent Computation in
Distributed Systems Doctoral Dissertation. 1986.
Bruce Anderson. “Documentation for LIB PICO-PLANNER”
School of Artificial Intelligence, Edinburgh University. 1972.
William Athas and Nanette Boden “Cantor: An Actor
Programming System for Scientific Computing” in Proceedings
of the NSF Workshop on Object-Based Concurrent Programming.
1988. Special Issue of SIGPLAN Notices.
Fisher Black. “A deductive question answering system” Harvard
University. Thesis. 1964.
H. Blair and V. S. Subrahmanian. “Paraconsistent Logic
Programming”. Theoretical Computer Science, 68(2) 1989
Daniel Bobrow, “A Model for Control Structures for Artificial
Intelligence Programming Languages” IJCAI 1973.
Will Clinger. Foundations of Actor Semantics MIT Mathematics
Doctoral Dissertation. June 1981.
F. S. Correa da Silva, J. M. Abe, and M. Rillo. “Modeling
Paraconsistent Knowledge in Distributed Systems”. Technical
Report RT-MAC-9414, Instituto de Matematica e Estatistica,
Universidade de Sao Paulo, 1994.
Julian Davies. “Popler 1.5 Reference Manual” University of
Edinburgh, TPU Report No. 1, May 1973.
Scott Fahlman. A Planning System for Robot Construction Tasks
MIT AI TR-283. June 1973.
Adam Farquhar, Anglela Dappert, Richard Fikes, and Wanda
Pratt. “Integrating Information Sources Using Context” Logic
Knowledge Systems Laboratory. KSL-95-12. January, 1995.
Frederic Fitch. Symbolic Logic: an Introduction. Ronald Press,
New York, 1952.
Michael Gelfond and Vladimir Lifschitz. “Logic programs with
classical negation” 7th International Conference on Logic
Programming. MIT Press 1990.
C. Cordell Green: “Application of Theorem Proving to Problem
Solving” IJCAI 1969:
Irene Greif. Semantics of Communicating Parallel Processes MIT
EECS Doctoral Dissertation. August 1975
Ramanathan Guha. Contexts: A Formalization and Some
Applications PhD thesis, Stanford University, 1991.
Carl Hewitt. “Planner: A Language for Proving Theorems in
Robots” IJCAI 1969.
Carl Hewitt. “Procedural Embedding of Knowledge In Planner”
IJCAI 1971.
Carl Hewitt. “Description and Theoretical Analysis (Using
Schemata) of Planner, A Language for Proving Theorems and
Manipulating Models in a Robot” AI Memo No. 251, MIT
Project MAC, April 1972.
Carl Hewitt, Peter Bishop and Richard Steiger. “A Universal
Modular Actor Formalism for Artificial Intelligence” IJCAI 1973.
Carl Hewitt and Henry Baker Laws for Communicating Parallel
Processes IFIP. August 1977.
Carl Hewitt. “Viewing Control Structures as Patterns of Passing
Messages” Journal of Artificial Intelligence. June 1977.
Carl Hewitt. “The Challenge of Open Systems” Byte Magazine.
April 1985.
Carl Hewitt and Gul Agha. “Guarded Horn clause languages: are
they deductive and Logical?” International Conference on Fifth
Generation Computer Systems. Ohmsha 1988.

Carl Hewitt. “New Foundations for Concurrency: Denotational
Actor Semantics” Submitted for publication. 2005.
Carl Hewitt. “What is Commitment? Physical, Organizational,
and Social” Submitted for publication. 2005.
J. Ketonen and R. Weyhrauch. “A decidable fragment of
Predicate Calculus” Theoretical Computer Science. 1984.
Bill Kornfeld and Carl Hewitt. “The Scientific Community
Metaphor” IEEE Transactions on Systems, Man, and Cybernetics.
January 1981.
Bill Kornfeld. Parallelism in Problem Solving MIT EECS
Doctoral Dissertation. August 1981.
Robert Kowalski. “The limitation of logic” Proceedings of the
1986 ACM fourteenth annual conference on Computer science.
Robert Kowalski “Predicate Logic as Programming Language”
Memo 70, Department of AI, Edinburgh University. 1973.
Robert Kowalski. “The Early Years of Logic Programming”
CACM. January 1988.
Clarence Lewis and H. L. Langford. Symbolic Logic 2nd Ed.
Dover. 1959.
Federico Laudisa and Carlo Rovelli. "Relational Quantum
Mechanics", The Stanford Encyclopedia of Philosophy (Fall 2005
Edition).
Henry Lieberman. “A Preview of Act 1” MIT AI memo 625.
June 1981.
Edwin Mares. “Relevance Logic” The Stanford Encyclopedia of
Philosophy. Summer 1998.
John McCarthy. “Programs with common sense” Symposium on
Mechanization of Thought Processes. National Physical
Laboratory. Teddington, England. 1958.
John McCarthy. “Generality in Artificial Intelligence” CACM.
December 1987.
John McCarthy. “A logical AI Approach to Context” Technical
note, Stanford Computer Science Department, 1996.
Drew McDermott and Gerry Sussman. “The Conniver Reference
Manual” MIT AI Memo 259. May 1972.
Robin Milner ''Elements of interaction: Turing award lecture'',
CACM. January 1993.
Joan Moschovakis. “Intuitionistic Logic” The Stanford
Encyclopedia of Philosophy. Spring 2004.
Graham Priest and Koji Tanaka. “Paraconsistent Logic” The
Stanford Encyclopedia of Philosophy. Winter 2004.
Carlo Rovelli "Relational quantum mechanics” International
Journal of Theoretical Physics 35 1637-1678. 1996.
Jeff Rulifson, Jan Derksen, and Richard Waldinger. “QA4, A
Procedural Calculus for Intuitive Reasoning” SRI AI Center
Technical Note 73, November 1973.
Davide Sangiorgi and David Walker. “The Pi-Calculus : A
Theory of Mobile Processes” Cambridge University Press. 2001.
Gerry Sussman, Terry Winograd and Eugene Charniak. “Micro-
Planner Reference Manual (Update)” AI Memo 203A, MIT AI
Lab, December 1971
Ehud Shapiro. “The family of concurrent logic programming
languages” ACM Computing Surveys. September 1989.
Terry Winograd. Procedures as a Representation for Data in a
Computer Program for Understanding Natural Language. MIT
AI TR-235. January 1971.
Wojciech Zurek. Physics Review Letters. D26 1862. 1982.

