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Abstract 

Logic Programming is the proposal to implement systems 
using mathematical logic. Perhaps the first published proposal 
to use mathematical logic for programming was John 
McCarthy’s Advice Taker paper. 
Planner was the first language to feature ''procedural plans'' 
that were called by ''pattern-directed invocation'' using ''goals'' 
and ''assertions''. A subset called Micro Planner was 
implemented by Gerry Sussman, Eugene Charniak and Terry 
Winograd and was used in Winograd's natural-language 
understanding program SHRDLU, Eugene Charniak's story 
understanding work, and some other projects. This generated a 
great deal of excitement in the field of AI. It also generated 
controversy because it proposed an alternative to the logic 
approach that had been one of the mainstay paradigms for AI. 
The question arose as what the difference was between the 
procedural and logical approaches. It took several years to 
answer this question. The upshot is that the procedural 
approach has a different mathematical semantics (based on the 
denotational semantics of the Actor model) from the semantics 
of mathematical logic. 
There were some surprising results from this research 
including that mathematical logic is incapable of implementing 
general concurrent computation even though it can implement 
sequential computation and some kinds of parallel computation 
including the lambda calculus. Also along the way a large 
number of logic programming experiments were carried out 
although none met with great success.  Also classical logic 
blows up in the face of inconsistent information that is 
becoming more ubiquitous with the growth of the Internet. 
Now we are in the midst of a huge paradigm shift to massive 
concurrency with the advent of Web Services and many-core 
computer architectures. This paradigm shift enables and 
requires a new generation of systems incorporating ideas from 
mathematical logic in their implementation. The result will be 
that logic programming will be reincarnated. But something is 
often transformed when reincarnated! 

Actors 

Actors are the universal primitives of concurrent digital 
computation. In response to a message that it receives, an 
Actor can make local decisions, create more Actors, send 
more messages, and designate how to respond to the next 
message received.  A Serializer is an Actor that is 
continually open to the arrival of messages.  Messages sent 
to a Serialize always arrive although delivery can take an 
unbounded amount of time.  (The Actor model can be 
augmented with metrics.) 
 
Unbounded nondeterminism is the property that the 
amount of delay in servicing a request can become 
unbounded as a result of arbitration of contention for 
shared resources while still guaranteeing that the request 
will eventually be serviced.  
 
Arguments for unbounded nondeterminism include the 
following: 
• There is no bound that can be placed on how long it takes a 

computational circuit called an Arbiter to settle. 

– Arbiters are used in computers to deal with the 
circumstance that computer clocks operate 
asynchronously with input from outside, ''e.g..'', 
keyboard input, disk access, network input, ''etc.'‘ 

– So it could take an unbounded time for a message 
sent to a computer to be received and in the 
meantime the computer could traverse an 
unbounded number of states. 

• Electronic mail enables unbounded nondetermism since mail 
can be stored on servers indefinitely (perhaps the server is 
down temporarily) before being delivered. 

• Communication links to servers on the Internet can be out of 
service indefinitely. 

Actor Programming Language Semantics 

Actors can be used to define the semantics of concurrent 
programming languages. 



Actor script semantics 
Actor script semantics are defined by the behavior of 
Actors that serve as the script elements of an Actor 
programming language. 
 
For example consider the following concurrent 
programming language in which each <expression> is 
one of the following kinds: 
    
<identifier><identifier><identifier><identifier>    
When Communication[Eval[environment] 
customer] is received, send environment 
Communication[lookup[<identifier>]customer] 
    
sendsendsendsend <recipient> <communicatio <recipient> <communicatio <recipient> <communicatio <recipient> <communication>n>n>n>    
When Communication[Eval[environment] 
customer] is received, send <recipient> 
Communication[Eval[environment] customer’] 
where customer’ is a new Actor such that when customer’ 
receives the communication r, then send <communication> 
Communication[Eval[environment] customer’’] 
where customer’’ is a new actor such that when 
customer’’ receives the communication c, then send r c 
    
<recipient>.<message><recipient>.<message><recipient>.<message><recipient>.<message>    
When Communication[Eval[environment] 
customer] is received, send <recipient> 
Communication[Eval[environment] customer’] 
such that when customer’ receives the communication r,  then 
send <message> 
Communication[Eval[environment] customer’’] 
such that when customer’’ receives the communication m, 
then send r Communication[m, customer] 
    
receiverreceiverreceiverreceiver    <<<<patternpatternpatternpattern>>>>iiii    <express<express<express<expression>ion>ion>ion>iiii    
When Communication[Eval[environment] 
customer] is received, send  customer a new actor r such 
that  

when r receives a communication com, then try 
environment.bind[<pattern>i com] and 

1. if a new environment’ is created send 
<expression>i 
Communication[Eval[environment’]] 

2. otherwise try <pattern>i+1 
    
behaviorbehaviorbehaviorbehavior    <pattern><pattern><pattern><pattern>iiii <expression> <expression> <expression> <expression>iiii    
When Communication[Eval[environment] 
customer] is received, send customer a new actor r such 
that  

when r receives Communication[message 
customer’], then try 
environment.bind[<pattern>i message] and 

1. if a new environment’ is created send 
<expression>i 
Communication[Eval[environment’] 
customer’] 

2. otherwise try <pattern>i+1 
    
{<expression1>, <expression2>}{<expression1>, <expression2>}{<expression1>, <expression2>}{<expression1>, <expression2>}    
When Communication[Eval[environment] 
customer] is received, send <expression1> 
Communication[Eval[environment]] and concurrently 

send <expression2> 
Communication[Eval[environment] customer]  
    
letletletlet <identifier> = <expression1> <identifier> = <expression1> <identifier> = <expression1> <identifier> = <expression1>    
                inininin <expression2> <expression2> <expression2> <expression2>    
When message[Eval[environment] customer] is 
received, then create a new environment’ by 
environment.bind[<identifier> 
<expression1>.Eval[environment]] and send 
<expression2> 
Communication[Eval[environment’] customer] 
    
serializerserializerserializerserializer <expression> <expression> <expression> <expression> 
When Communication[Eval[environment] 
customer] is received, then send customer a new actor s 
such that communications sent to s are processed in FIFO order 
with a behavior Actor that is initially 
<expression>.Eval[environment] and: 

When communication com is received by S, then send the 
behavior Actor Communication[com customer’] 
where customer’ is a new actor such that when it receives 
an Actor then it is used as the behavior Actor for the next 
communication received by S. 

 
Example Actor script 
An example Actor script for a simple storage cell that can 
contain any Actor address is as follows: 
Cell ≡ 
  receiver    
                Communication[Create[initial] customer] 
      send customer 
           serializer readWrite(initial)} 
The above script which creates a storage cell makes use of 
the behavior readWrite which is defined as follows: 
readWrite(contents) ≡ 
  behavior 
                Communication[read[] customer] 
      {send customer contents, 
       readWrite(contents)} 
       Communication[write[x] customer] 
      {send customer x, 
       readWrite(x)} 
For example the following expression creates a cell x with 
initial contents 5 and then concurrently writes to it with the 
values 7 and 9. 
let x = Cell.Create[5] 
  in {x.write[7], 
      x.write[9], 
      x.read[]} 
The value of the above expression is either 7 or 9. 
 

A Limitation of Logic Programming 
In his 1988 paper on the early history of Prolog, Bob 
Kowalski published the thesis that “computation could 
be subsumed by deduction” and quoted with approval 
“Computation is controlled deduction.” which he 
attributed to Pat Hayes. Contrary to Kowalski and 
Hayes, Hewitt's thesis was that logical deduction was 
incapable of carrying out concurrent computation in 



open systems because of indeterminacy in the arrival 
order of messages. 
 
Indeterminacy in Concurrent Computation 
Hewitt [1985], Hewitt and Agha [1991], and other 
published work argued that mathematical models of 
concurrency did not determine particular concurrent 
computations as follows: The Actor model makes use of 
arbitration for determining which message is next in the 
arrival ordering]of an Actor that is sent multiple 
messages concurrently.  For example Arbiters can be 
used in the implementation of the arrival ordering of an 
Actor which is subject to physical indeterminacy in the 
arrival order. 
 
In concrete terms for Actor systems, typically we cannot 
observe the details by which the arrival order of 
messages for an Actor is determined. Attempting to do 
so affects the results and can even push the 
indeterminacy elsewhere.  Instead of observing the 
internals of arbitration processes of Actor computations, 
we await outcomes.  Physical indeterminacy in arbiters 
produces indeterminacy in Actors. The reason that we 
await outcomes is that we have no alternative because of 
indeterminacy. 
 
According to Chris Fuchs [2004], quantum physics is a 
theory whose terms refer predominately to our interface 
with the world. It is a theory not about observables, not 
about beables, but about ‘dingables’  We tap a bell with 
our gentle touch and listen for its beautiful ring. 
 
The semantics of indeterminacy raises important issues 
for autonomy and interdependence in information.  In 
particular it is important to distinguish between 
indeterminacy in which factors outside the control of an 
information system are making decisions and choice in 
which the information system has some control. 
 
It is not sufficient to say that indeterminacy in Actor 
systems is due to unknown/unmodeled properties of the 
network infrastructure.  The whole point of the appeal to 
quantum indeterminacy is to show that aspects of Actor 
systems can be unknowable and the participants can be 
entangled. 
 
Actor Model and Mathematical Logic 
What does the mathematical theory of Actors have to 
say about logic programming? A closed system is 
defined to be one which does not communicate with the 
outside. Actor model theory provides the means to 
characterize all the possible computations of a closed 
Actor system. So mathematical logic can characterize 
(as opposed to implement) all the possible computations 

of a closed Actor system. However, this is impossible 
for an open Actor system S in which the addresses of 
outside Actors are passed into S in the middle of 
computations so that S can communicate with these 
outside Actors. These outside Actors can then in turn 
communicate with Actors internal to S using addresses 
supplied to them by S. 
 
Prolog-like concurrent message-passing 
programming languages 
Keith Clark, Herve Gallaire, Steve Gregory, Vijay 
Saraswat, Udi Shapiro, Kazunori Ueda, etc. developed a 
family of Prolog-like concurrent message passing 
programming languages using unification of shared 
variables and data structure streams for messages. 
Claims were made that these languages were based on 
mathematical logic. This kind of programming language 
was used as the basis of the Japanese Fifth Generation 
Project (ICOT). 
 
However, the Prolog-like concurrent programming languages 
(like the Actor model) were based on message passing and 
consequently were subject to the same indeterminacy. This 
was the basis of the argument in Carl Hewitt and Gul Agha 
[1991] that the Prolog-like concurrent programming languages 
were neither deductive nor logical. 
 

Updating the Scientific Community Metaphor 
The Scientific Community Metaphor paper was published 
in 1981 by Bill Kornfeld and Carl Hewitt as an approach to 
understanding |scientific communities by extending pattern 
directed invocation programming languages that invoke 
high level procedural plans on the basis of messages, e.g., 
assertions and goals.  Their work built on the philosophy, 
history and sociology of science with its analysis that 
scientific research depends critically on monotonicity, 
concurrency, commutativity, and pluralism to propose, 
modify, support, and oppose scientific methods, practices, 
and theories. 
 
A programming language named Ether was developed that 
invokes procedural plans to process goals and assertions 
concurrently by dynamically creating new rules during 
program execution.  Ether also addressed issues of conflict 
and contradiction with multiple sources of knowledge and 
multiple viewpoints. 
 
At this point the metaphor needs an update.  Some ideas 
are presented in the sections below. 

Monotonicity, Concurrency, Commutatvity, 
Pluralism, Skepticism, and Provenance 
Scientific communities have characteristics of 
monotonicity, concurrency, commutativity, pluralism, 



skepticism, and provenance whose semantics can be 
studied using the Actor model. 
 
Monotonicity. Once something is published it cannot be taken 
back. Results are published so they are available to a community. 
Published work is collected and indexed. Retractions can be 
published in case of error. Publications are sometimes lost or 
difficult to retrieve. Sometimes it is easier to rederive a result than 
to look it up. 
 
Concurrency. The activities overlap in time. The participants 
interact with each other by message passing. Resources are 
limited by including processing, communications, and storage 
 
Commutativity. Publications can be read regardless of whether 
they initiate new research or become relevant to ongoing 
research. Initiating work on a new scientific raises the question 
whether the answer has already been published. While working 
on a project, attention needs to be paid to ongoing developments 
that can affect the project. The order in which information is 
received can influence how it is processed. 
 
Pluralism. Publications include heterogeneous, overlapping and 
possibly conflicting information. There is no central arbiter of 
truth in scientific communities. Scientific fads sometimes sweep 
up almost everyone in a field. Sponsors can try to control 
scientific activities. 
 
Skepticism. Skepticism is an important commitment of the 
Scientific Community Metaphor.  Great effort is expended to try 
to undermine current information and replace it with better 
information. 
 
Provenance. The provenance of information is of intense interest 
in the Scientific Community Metaphor. 
 
Viewpoints 
Ether used viewpoints to modularize information in 
publications. However a great deal of information is shared 
across viewpoints. So Ether made use of inheritance so that 
information in a viewpoint could be readily used in other 
viewpoints. Sometimes this inheritance is not exact as 
when the laws of physics in Newtonian mechanics are 
derived from those of Special Relativity. In such cases 
Ether used translation instead of inheritance. Imre Lakatos 
studied very sophisticated kinds of translations of 
mathematical (e.g., the Euler formula for polyhedra) and 
scientific theories. 
 
Logical Viewpoints (Theories, Context). Viewpoints 
were used to implement natural deduction (Fitch [1952]) in 
Ether. In order to prove classically a goal of the form 
(P implies Q) in a viewpoint V, it is sufficient to 
create a new viewpoint V' that inherits from V, assert P in 
V', and then prove Q in V'. An idea like this was 
originally introduced into programming language proving 
by Rulifson, Derksen, and Waldinger [1973] except since 
the Scientific Community Metaphor is concurrent rather 
than being sequential it does not rely on being in a single 

viewpoint that can be sequentially pushed and popped to 
move to other viewpoints. 
 
Negotiation Viewpoints. More challenging semantics are 
processes for negotiation as studied in the sociology and 
philosophy of science by Michel Callon, Paul Feyerabend, 
Elihu M. Gerson, Bruno Latour, John Law, Karl Popper, 
Susan Leigh Star, Anselm Strauss, Lucy Suchman, etc. 
 
Observational Viewpoints. According to Relational 
Quantum Physics [Laudisa and Rovelli 2005], the way 
distinct physical systems affect each other when they 
interact (and not of the way physical systems "are") 
exhausts all that can be said about the physical world. The 
physical world is thus seen as a net of interacting 
components, where there is no meaning to the state of an 
isolated system. A physical system (or, more precisely, its 
contingent state) is reduced to the net of relations it 
entertains with the surrounding systems, and the physical 
structure of the world is identified as this net of 
relationships. In other words, “Quantum physics is the 
theoretical formalization of the experimental discovery that 
the descriptions that different observers give of the same 
events are not universal.” 
 
The concept that quantum mechanics forces us to give up 
is:  the description of a system independent from the 
observer providing such a description; that is the concept 
of the absolute state of a system. I.e., there is no observer 
independent data at all.  According to Zurek [1982], 
“Properties of quantum systems have no absolute meaning.  
Rather they must be always characterized with respect to 
other physical systems.” 
 
Does this mean that there is no relation whatsoever 
between views of different observers?  Certainly not. 
According to Rovelli [1996] “It is possible to compare 
different views, but the process of comparison is always a 
physical interaction (and all physical interactions are 
quantum mechanical in nature).” 
 
Further limitations of Classical Mathematical 

Logic 
In addition to the inability to implement concurrent 
computation, the semantics of mathematical logic suffers 
from difficulties including unruly combinatorics and the 
semantic failure of classical proof theory and model theory 
in the face of inconsistency as discussed below. 
 
Unruly combinatorics 
General mathematical theorem proving has been 
intractable in practice although verification has been more 
successful. 
 



Semantic failure of classical proof theory and 
model theory in the face of inconsistency 

Claim: AAAAll very large knowledge bases ll very large knowledge bases ll very large knowledge bases ll very large knowledge bases 
about human information system about human information system about human information system about human information system 
interactionsinteractionsinteractionsinteractions are inconsistent. are inconsistent. are inconsistent. are inconsistent. 

In the face of inconsistency, classical mathematical logic 
fails, e.g., 

• Proof theory fails because everything can be proved:  If 
Ψ is inconsistent, then ∀∀∀∀ΩΩΩΩ    ΨΨΨΨ    ⊢⊢⊢⊢    ΩΩΩΩ 

• Model theory fails because there are no models:  If Ψ is 
inconsistent, then ¬¬¬¬∃∃∃∃M M M M ⊢⊢⊢⊢    MMMM    ΨΨΨΨ 

Irrelevance 

Classical mathematical logic allows many irrelevant 

derivations, e.g., ⊢ ((P ∧ ¬P) ⇒ Q), ⊢ (P⇒Q ∨ Q⇒R), 

and ⊢ (P ⇒ (P ∨ Q)) 
 
Dichotomy 
In classical mathematical logic ⊢ (P ∨  ¬ P) and 

⊢(¬ ¬P ⇒  P).  The idea was that truth values could be 
assigned to ground propositions and a ground proposition 
is either true or false.  But inconsistency means 
unsatisfiability and therefore there is no assignment of 
truth values to ground propositions that works in the face 
of inconsistency. 

Why does it matter that classical mathematical logic fails 
for very large knowledge bases of human information 
system commitments? 

One of my colleagues made the argument that it is not fault 
of classical logic that very large knowledge bases of 
human information system commitments are inconsistent.  
It just means that the knowledge base has bugs just like our 
programs.  A problem with the argument is that the 
semantics of classical logic collapses in the face of 
inconsistency whereas the Actor denotational semantics 
does not collapse in the face of programs with bugs.  So we 
need to replace classical logic with a reasoning system that 
does not collapse in the face of inconsistency. 

Direct Logic 

A foolish consistency is the hobgoblin A foolish consistency is the hobgoblin A foolish consistency is the hobgoblin A foolish consistency is the hobgoblin 
of little mindsof little mindsof little mindsof little minds-------- Emerson Emerson Emerson Emerson    

We need a revised mathematical logic to address the 
limitation of classical mathematical in dealing with 
inconsistency and irrelevancy. 

The goals of Direct Logic are to clarify provenance in case 
of inconsistency and to make derivations more relevant.  
Consequently Direct Logic does not embrace full indirect 
proof (Ψ├ Φ), (Ψ├ ¬Φ)├ ¬Ψ because it would 
immediately blow up in case of an inconsistency.  
Similarly Direct Logic does not embrace disjunctive 

expansion Ψ├ Ψ∨Φ because it (together with disjunction 
elimination Ψ∨Φ,¬Ψ├ Φ) also cause a blow up via the 
following derivation [Lewis and Langford 1959]]:  Ψ,¬Ψ├ 
Ψ∨Φ, ¬Ψ├ Φ 

However, Direct Logic does allow the direct form of 
indirect proof (Ψ├ ¬Ψ)├ ¬Ψ. 

Direct Logic uses ideas from Relevance Logic and 
Intuitionistic Logic. (Note that Direct Logic is distinct 
from the Direct Predicate Calculus [Ketonen and 
Weyhrauch 1984].) 
 
Sequences of formulas 
Direct Logic makes use of unordered sequences of 
formulas separated by commas intuitively meaning and 
(i.e. conjunction). 
 
Basic Rules for ├    
The basic rules for ├ are as follows: 

ΨΨΨΨ├ ├ ├ ├ ΨΨΨΨ    
((((ΨΨΨΨ├ ├ ├ ├ ΘΘΘΘ))))├ (├ (├ (├ (ΨΨΨΨ, , , , ΦΦΦΦ├ ├ ├ ├ ΘΘΘΘ))))    
((((ΨΨΨΨ├ ├ ├ ├ ΦΦΦΦ, , , , ΘΘΘΘ))))├ (├ (├ (├ (ΨΨΨΨ├ ├ ├ ├ ΦΦΦΦ))))    
((((ΨΨΨΨ├├├├    ΦΦΦΦ),(),(),(),(ΩΩΩΩ├├├├    ΘΘΘΘ))))├ (├ (├ (├ (ΨΨΨΨ,,,,ΩΩΩΩ├ ├ ├ ├ ΦΦΦΦ,,,,ΘΘΘΘ))))    
((((ΨΨΨΨ├ ├ ├ ├ ΦΦΦΦ), (), (), (), (ΦΦΦΦ├ ├ ├ ├ ΘΘΘΘ))))├ (├ (├ (├ (ΨΨΨΨ├ ├ ├ ├ ΘΘΘΘ))))    

 
Direct Indirect Proof 
Direct Logic only allows for the direct form of indirect 
proof which is the following rule: 

((((ΨΨΨΨ├ ├ ├ ├ ¬¬¬¬ΨΨΨΨ))))├├├├    ¬¬¬¬ΨΨΨΨ    
 
Rule for ∧∧∧∧    
The basic rule for ∧ (conjunction) is 

ΨΨΨΨ, , , , ΦΦΦΦ     ≅≅≅≅        ΨΨΨΨ∧∧∧∧ΦΦΦΦ 
The above rule justifies the following rules: 

((ΨΨΨΨ∧∧∧∧ΦΦΦΦ)├ ΘΘΘΘ) ≅≅≅≅ (ΨΨΨΨ, ΦΦΦΦ├    ΘΘΘΘ) 
(ΦΦΦΦ├ (ΨΨΨΨ∧∧∧∧ ΘΘΘΘ)) ≅≅≅≅ (ΦΦΦΦ├ ΨΨΨΨ, ΘΘΘΘ) 

 
Rules for ∨∨∨∨    
The most basic rule for ∨∨∨∨    is 

ΨΨΨΨ∨∨∨∨ΦΦΦΦ    ≅≅≅≅ ( ( ( (¬¬¬¬ΨΨΨΨ├ ├ ├ ├ ΦΦΦΦ) ) ) ) ∧∧∧∧ ( ( ( (¬¬¬¬ΦΦΦΦ├ ├ ├ ├ ΨΨΨΨ))))    
Note that the provenance of ⇒⇒⇒⇒    is derivational as opposed 
to truth functional. 
For the convenience of users, the negation elimination rule 
for ∨∨∨∨ ( ( ( (disjunction) is: 

¬¬¬¬((((ΦΦΦΦ∨∨∨∨ΨΨΨΨ) ) ) ) ≅≅≅≅    ¬¬¬¬ΨΨΨΨ    ∧∧∧∧    ¬¬¬¬ΦΦΦΦ    
And the negation elimination rule for ∧∧∧∧ ( ( ( (conjunction) is:    

¬¬¬¬((((ΦΦΦΦ∧∧∧∧ΨΨΨΨ) ) ) ) ≅≅≅≅    ¬¬¬¬ΨΨΨΨ    ∨∨∨∨    ¬¬¬¬ΦΦΦΦ    
The last two equivalences above lead to the following 
equivalence: 

¬¬¬¬    ¬¬¬¬    ¬¬¬¬ΨΨΨΨ        ≅≅≅≅        ¬¬¬¬ΨΨΨΨ    



Rule by Cases for ∨∨∨∨ 
Direct Logic has the Rule by Cases is a follows: 

ΨΨΨΨ∨∨∨∨ΦΦΦΦ, (, (, (, (ΨΨΨΨ├ ├ ├ ├ ΘΘΘΘ), ), ), ), ((((ΦΦΦΦ├ ├ ├ ├ ΘΘΘΘ))))├ ├ ├ ├ ΘΘΘΘ    
Rules for ∧∧∧∧    and    ∨∨∨∨    
For convenience of users, Direct Logic has the 
following equivalences for ∧∧∧∧    and    ∨∨∨∨:    
(Ψ ∧ Ψ) ≅ Ψ 
(Ψ ∧ Φ) ≅ (Φ ∧ Ψ) 
(Ψ ∧ (Φ ∧ Θ)) ≅ ((Ψ ∧ Φ) ∧ Θ) 
 
(Ψ ∨ Ψ) ≅ Ψ 
(Ψ ∨ Φ) ≅ (Φ ∨ Ψ) 
(Ψ ∨ (Φ ∨ Θ)) ≅ ((Ψ ∨ Φ) ∨ Θ) 
 
(Ψ ∧ (Φ ∨ Θ)) ≅ ((Ψ ∧ Φ) ∨ (Ψ ∧ Θ)) 
 (Ψ ∨ (Φ ∧ Θ)) ≅ ((Ψ ∨ Φ) ∧ (Ψ ∨ Θ))  
 
Rule for ⇒⇒⇒⇒    
The most basic rule for ⇒⇒⇒⇒    is 

ΨΨΨΨ⇒⇒⇒⇒ΦΦΦΦ    ≅≅≅≅ ( ( ( (ΨΨΨΨ├ ├ ├ ├ ΦΦΦΦ) ) ) ) ∧∧∧∧    ((((¬¬¬¬ΦΦΦΦ├ ├ ├ ├ ¬¬¬¬ΨΨΨΨ))))    
Note that the provenance of ⇒⇒⇒⇒    is derivational as opposed 
to truth functional. 
 
Integers and XML 
A theory of integers and XML is needed.  So Direct Logic 
allows quantification over the integers and XML 
expressions where there is a standard encoding of logical 
formulas into XML. If mmmm∈∈∈∈ωωωω    then 

∧∧∧∧nnnn≥≥≥≥mmmmΨΨΨΨ[n] [n] [n] [n] ≅≅≅≅ ΨΨΨΨ[[[[mmmm]]]]    ∧∧∧∧    ∧∧∧∧nnnn≥≥≥≥m+1m+1m+1m+1ΨΨΨΨ[n][n][n][n]    

∨∨∨∨nnnn≥≥≥≥mmmmΨΨΨΨ[n] [n] [n] [n] ≅≅≅≅ ΨΨΨΨ[[[[mmmm]]]]    ∨∨∨∨    ∨∨∨∨nnnn≥≥≥≥m+1m+1m+1m+1ΨΨΨΨ[n][n][n][n]    
The fundamental rules for quantification are: 

∀∀∀∀nnnn∈∈∈∈ωωωω    ΨΨΨΨ[n] [n] [n] [n] ≅≅≅≅    ∧∧∧∧nnnn≥≥≥≥0000ΨΨΨΨ[n][n][n][n]    

∃∃∃∃nnnn∈∈∈∈ωωωω    ΨΨΨΨ[n] [n] [n] [n] ≅≅≅≅    ∨∨∨∨nnnn≥≥≥≥0000ΨΨΨΨ[n][n][n][n]    
For the convenience of users, the following rules are 
provided: 
0000∈∈∈∈ωωωω    
∀∀∀∀nnnn∈∈∈∈ωωωω n+1 n+1 n+1 n+1∈∈∈∈ωωωω    
∀∀∀∀nnnn∈∈∈∈ωωωω 0 0 0 0≤≤≤≤nnnn    
∀∀∀∀n,mn,mn,mn,m∈∈∈∈ωωωω n=m  n=m  n=m  n=m ⇔⇔⇔⇔    n+1=m+1n+1=m+1n+1=m+1n+1=m+1    
∀∀∀∀n,mn,mn,mn,m∈∈∈∈ωωωω n n n n≤≤≤≤m m m m ⇔⇔⇔⇔ ( ( ( (n=m n=m n=m n=m ∨∨∨∨ n+1 n+1 n+1 n+1≤≤≤≤m)m)m)m)    
∀∀∀∀n,mn,mn,mn,m∈∈∈∈ωωωω n n n n≤≤≤≤m m m m ∨∨∨∨ n=m  n=m  n=m  n=m ∨∨∨∨ m m m m≤≤≤≤nnnn    
∃∃∃∃nnnn∈∈∈∈ωωωω    ΨΨΨΨ[n] [n] [n] [n] ⇒⇒⇒⇒ ( ( ( (∃∃∃∃mmmm∈∈∈∈ωωωω    ΨΨΨΨ[m] [m] [m] [m] ∧∧∧∧    
                                                            ∀∀∀∀iiii∈∈∈∈ωωωω    ΨΨΨΨ[i][i][i][i]⇒⇒⇒⇒ m m m m≤≤≤≤i)i)i)i)    
    
Induction 
Direct Logic has the rule of induction: 
ΨΨΨΨ[0][0][0][0], , , , ((((∀∀∀∀nnnn∈∈∈∈ωωωω    ΨΨΨΨ[n][n][n][n]├ ├ ├ ├ ΨΨΨΨ[n+1])[n+1])[n+1])[n+1])├├├├  ∀∀∀∀nnnn∈∈∈∈ωωωω    ΨΨΨΨ[n][n][n][n] 

Reflection 
Direct Logic has reflection of provability: 

∀∀∀∀αααα∈∈∈∈XML XML XML XML ├ ├ ├ ├ αααα├ ├ ├ ├ αααα 
∀∀∀∀αααα∈∈∈∈XML XML XML XML ¬├ ├ ├ ├ αααα├ ├ ├ ├ ((((¬├├├├    αααα ))))    

 
Rules for ∧∧∧∧    and    ∨∨∨∨    
In addition, Direct Logic has the following structural 
equivalences for ∧∧∧∧ and ∨∨∨∨ 

∧i∈ωΨi ∧ ∨i∈ωΦi ≅ ∧i,j∈ω(Ψi∨Φi) 

∨i∈ωΨi ∨ ∧i∈ωΦi ≅ ∨i,j∈ω(Ψi∧Φi) 
 
Negation Elimination 
For convenience, Direct Logic has the following structural 
equivalences for negation elimination 
¬∨i∈ωΨi ≅ ∧i∈ω¬Ψi 

¬∧i∈ωΨi ≅ ∨i∈ω¬Ψi 

¬∀x∈XML Ψ[x] ≅ ∃x∈XML ¬Ψ[x] 
¬∃x∈XML Ψ[x] ≅ ∀x∈XML ¬Ψ[x] 
 
Incompleteness 
Theorem (after Carnap): Let ΨΨΨΨ be a predicate on formulas 
Fix(Fix(Fix(Fix(ΨΨΨΨ) ) ) ) ????├├├├    ΨΨΨΨ(Fix((Fix((Fix((Fix(ΨΨΨΨ))))))))    

where Fix(Fix(Fix(Fix(ΨΨΨΨ) ) ) ) ≡ ≡ ≡ ≡ Ω(Ω)Ω(Ω)Ω(Ω)Ω(Ω) 
where Ω = Ω = Ω = Ω = λλλλ(P) (P) (P) (P) ΨΨΨΨ(P(P))(P(P))(P(P))(P(P))    

Theorem (after Gödel): In Direct Logic ParadoxParadoxParadoxParadox but 

¬⊢ParadoxParadoxParadoxParadox where Paradox Paradox Paradox Paradox ≡ Fix(≡ Fix(≡ Fix(≡ Fix(λλλλ(x)(x)(x)(x)¬¬¬¬⊢⊢⊢⊢xxxx)))) 
 
Caveat 
The rules of Direct Logic have been stated as broadly as 
possible to make the logic more useful. However, it has not 
yet been verified that that it does not blow up.  If it does, 
then its rules will have to be adapted. 
 

Using Provenance to Undercut a Derivation 
In order to illustrate how provenance can be used to 
undercut a derivation consider the following (inconsistent) 
sentences: 
(Says[person,s] ∧ Reliable[person])⇒ s 
 
Says[Curveball, WMD] 
Says[Tenet, Reliable[Curveball]] 
Reliable[Tenet]] 
Says[CIAstaff,¬Reliable[Curveball]] 
Reliable[CIAstaff] 
The derivation of WMD from Says[Curveball, WMD] and 
Reliable[Curveball] is undercut by the derivation of 
¬Reliable[Curveball] from 
Says[CIAstaff,¬Reliable[Curveball]] and 
Reliable[CIAstaff].].].].    



Future Work 
Developments in hardware and software technology for 
the Internet since the original paper was published are 
tending to increase the importance of the Scientific 
Community Metaphor. 
 
Legal concerns (e.g., HIPAA, Sarbanes-Oxley, "The 
Books and Records Rules" in SEC Rule 17a-3/4 and 
"Design Criteria Standard for Electronic Records 
Management Software Applications" in DOD 5015.2 in 
the US) are leading organizations to store information 
monotonically forever. It has just now become less 
costly in many cases to store information on magnetic 
disk than on tape. With increasing storage capacity, sites 
can monotonically record what they read from the 
Internet as well as monotonically recording their own 
operations. 
 
Search engines currently provide rudimentary access to 
all this information. Future systems will provide 
interactive question answering broadly conceived that 
will make all this information much more useful. 
 
Massive concurrency (i.e., Web services and many-core 
computer architectures) lies in the future posing 
enormous challenges and opportunities. 
 
The future of Logic Programming lies in the further 
development of Direct Logic and the Scientific 
Community Metaphor in the context of massive 
concurrency. 
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Appendix 
Perhaps the first published proposal to use mathematical logic 
for programming was John McCarthy [1958]. Planner is a 
programming language designed by Carl Hewitt at MIT, and 
first published in 1969. Hewitt championed the "procedural 
embedding of knowledge" in the form of high level procedural 
plans in contrast to the logical approach pioneered by John 
McCarthy who advocated expressing knowledge declaratively 
in mathematical logic for Artificial Intelligence. This raised a 
fundamental question: "What is the difference between the 
procedural and logical approaches?" The upshot is that the 

procedural approach has a different mathematical semantics 
(based on the denotational semantics of the Actor model) from 
the semantics of mathematical logic. 
Planner was the first language to feature ''procedural plans'' 
that were called by ''pattern-directed invocation'' using ''goals'' 
and ''assertions''. A subset called Micro Planner was 
implemented by Gerry Sussman, Eugene Charniak and Terry 
Winograd and was used in Winograd's natural-language 
understanding program SHRDLU, Eugene Charniak's story 
understanding work, and some other projects. This generated a 
great deal of excitement in the field of AI.  
However, computer memories were very small by current 
standards because they were expensive, being made of iron 
ferrite cores at that time. So Planner adopted the then common 
expedient of using backtracking control structures to 
economize on the use of computer memory. In this way, the 
computer only had to store one possibility at a time in 
exploring alternatives. 
Bruce Anderson at Edinburgh University implemented a subset 
of Micro Planner and Julian Davies at Edinburgh essentially 
the whole of Planner.  At SRI, Jeff Rulifson, Jan Derksen, and 
Richard Waldinger developed QA4 (later evolved into QLisp) 
which built on the constructs in Planner and introduced a 
context mechanism to provide modularity for expressions in 
the data base as well as enriched data structures (sets and bags) 
along with associative-commutative unification for these data 
structures. 
Peter Landin had introduced a powerful control structure using 
his J (for Jump) operator that could perform a nonlocal goto 
into the middle of a procedure invocation. In fact the J operator 
could jump back into the middle of a procedure invocation 
even after it had already returned! Drew McDermott and Gerry 
Sussman called Landin's concept "Hairy Control Structure" 
and used it in the form of a nonlocal goto for the Conniver 
programming language. Scott Fahlman used Conniver in his 
planning system for robot construction tasks. 
These difficulties with control structure inspired the 
development of the Actor model of computation.  Hewitt 
reported: ''... we have found that we can do without the 
paraphernalia of "hairy control structure" (such as possibility 
lists, non-local gotos, and assignments of values to the internal 
variables of other procedures in CONNIVER.)... The 
conventions of ordinary message-passing seem to provide a 
better structured, more intuitive foundation for constructing 
the communication systems needed for expert problem-solving 
modules to cooperate effectively.'' 
Bob Kowalski, who had been one of the principal members of 
the logic paradigm community, then adapted in collaboration 
with Alain Colmerauer some theorem proving ideas into a 
form similar to a subset of Micro Planner called Prolog. 
Indeed, Prolog can be viewed as largely a reinvention of a 
subset of Micro Planner, e.g., Micro Planner (unlike Prolog) 
had the capability to use pattern-directed invocation of 
procedural plans from assertions as well as goals. 
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