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1. SU(3) and the Quark Model

The Lie algebra of SU(3) consists of the traceless antihermitian 3×3 complex matrices and
is eight-dimensional. A generalisation of the Pauli matrices are the Gell-Mann matrices

λ1 =

 0 1 0
1 0 0
0 0 0

 λ2 =

 0 −i 0
i 0 0
0 0 0

 λ3 =

 1 0 0
0 −1 0
0 0 0


λ4 =

 0 0 1
0 0 0
1 0 0

 λ5 =

 0 0 −i
0 0 0
i 0 0


λ6 =

 0 0 0
0 0 1
0 1 0

 λ7 =

 0 0 0
0 0 −i
0 i 0


λ8 =

1√
3

 1 0 0
0 1 0
0 0 −2

 (1.1)

These are traceless and hermitian and satisfy

Tr(λaλb) = 2δab (1.2)

The antiehermitian traceless generators of SU(3) can be taken to be

Ta = − i
2
λa (1.3)

with the structure constants defined by

[Ta, Tb] = fab
cTc (1.4)

The following sets of Gell-Mann matrices:

i) λ1, λ2, λ3

ii) λ4, λ5,
1
2(
√

3λ8 + λ3)

iii) λ6, λ7,
1
2(
√

3λ8 − λ3)

each have the same algebraic properties as the Pauli matrices and so determine three
natural L(SU(2)) subalgebras.

It will be convenient to use a different set of matrices. We define the following matrices

h1 =

 1
2 0 0
0 −1

2 0
0 0 0

 h2 =


1

2
√

3
0 0

0 1
2
√

3
0

0 0 − 1√
3
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e1+ =

 0 1√
2

0

0 0 0
0 0 0

 e1− =

 0 0 0
1√
2

0 0

0 0 0


e2+ =

 0 0 0
0 0 1√

2

0 0 0

 e2− =

 0 0 0
0 0 0
0 1√

2
0


e3+ =

 0 0 1√
2

0 0 0
0 0 0

 e3− =

 0 0 0
0 0 0
1√
2

0 0

 (1.5)

Then ih1, ih2 and i(em+ + em− ), em+ − em− for m = 1, 2, 3 form a basis for the antihermitian
traceless 3× 3 matrices (over R), and hence are a basis for L(SU(3)).

Suppose that d is the irreducible representation of L(SU(3)) acting on a complex vector
space V which is induced from an irreducible representation of SU(3) acting on V . It is
convenient to set

H1 = d(h1), H2 = d(h2), Em± = d(em± ) for m = 1, 2, 3 (1.6)

Then we find the following commutators:

[H1, H2] = 0

[H1, E
1
±] = ±E1

±, [H1, E
2
±] = ∓1

2
E2
±, [H1, E

3
±] = ±1

2
E3
±

[H2, E
1
±] = 0, [H2, E

2
±] = ±

√
3

2
E2
±, [H2, E

3
±] = ±

√
3

2
E3
± (1.7)

and

[E1
+, E

1
−] = H1

[E2
+, E

2
−] =

√
3

2
H2 −

1
2
H1

[E3
+, E

3
−] =

√
3

2
H2 +

1
2
H1 (1.8)

The remaining commutation relations are

[E1
+, E

2
+] =

1√
2
E3

+, [E1
−, E

2
−] = − 1√

2
E3
−

[E1
+, E

3
−] = − 1√

2
E2
−, [E1

−, E
3
+] =

1√
2
E2

+

[E2
+, E

3
−] =

1√
2
E1
−, [E2

−, E
3
+] = − 1√

2
E1

+ (1.9)

and

[E1
+, E

2
−] = [E1

−, E
2
+] = [E1

+, E
3
+] = [E1

−, E
3
−] = [E2

+, E
3
+] = [E2

−, E
3
−] = 0 (1.10)
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Note in particular that H1, H2 commute. The subalgebra of L(SU(3)) spanned by ih1 and
ih2 is called the Cartan subalgebra. It is the maximal commuting subalgebra of L(SU(3)).

1.1 Raising and Lowering Operators: The Weight Diagram

The Lie algebra of L(SU(3)) can be used to obtain three sets of L(SU(2)) algebras. In
particular, we find that

[H1, E
1
±] = ±E1

±, [E1
+, E

1
−] = H1 (1.11)

and

[
√

3
2
H2 −

1
2
H1, E

2
±] = ±E2

±, [E2
+, E

2
−] =

√
3

2
H2 −

1
2
H1 (1.12)

and

[
√

3
2
H2 +

1
2
H1, E

3
±] = ±E3

±, [E3
+, E

3
−] =

√
3

2
H2 +

1
2
H1 (1.13)

In particular, there are three pairs of raising and lowering operators Em± .
For simplicity, consider a representation d of L(SU(3)) obtained from a unitary repre-

sentation D of SU(3) such that d is an anti-hermitian representation- so that H1 and H2

are hermitian, and hence diagonalizable with real eigenvalues. Hence, H1 and
√

3
2 H2± 1

2H1,
can be simultaneously diagonalized, and the eigenvalues are real. (In fact the same can be
shown without assuming unitarity!)

Suppose then that |φ〉 is an eigenstate of H1 with eigenvalue p and also an eigenstate
of H2 with eigenvalue q. It is convenient to order the eigenvalues as points in R2 with
position vectors (p, q) where p is the eigenvalue of H1 and q of H2. (p, q) is then referred
to as a weight.

From the commutation relations we have the following properties

i) Either E1
± |φ〉 = 0 or E1

± |φ〉 is an eigenstate of H1 and H2 with eigenvalue (p, q)±(1, 0)

ii) Either E2
± |φ〉 = 0 or E2

± |φ〉 is an eigenstate with eigenvalue (p, q)± (−1
2 ,
√

3
2 )

iii) Either E3
± |φ〉 = 0 or E3

± |φ〉 is an eigenstate with eigenvalue (p, q)± (1
2 ,
√

3
2 )

Moreover, from the properties of L(SU(2)) representations we know that

2p = m1,
√

3q − p = m2,
√

3q + p = m3 (1.14)

for m1, m2, m3 ∈ Z. It follows that 2
√

3q ∈ Z. It is particularly useful to plot the sets of
eigenvalues (p, q) as points in the plane. The resulting plot is known as the weight diagram.
As the representation is assumed to be irreducible, there can only be finitely many points
on the weight diagram, though it is possible that a particular weight may correspond to
more than one state. Moreover, as 2p ∈ Z, 2

√
3q ∈ Z, the weights are constrained to lie

on the points of a lattice. From the effect of the raising and lowering operators on the
eigenvalues, it is straightforward to see that this lattice is formed by the tessalation of the
plane by equilateral triangles of side 1. This is illustrated in Figure 1, where the effect of
the raising and lowering operators is given (in this diagram (0, 0) is a weight, though this
need not be the case generically).
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E1

E2

E
3

E2

E1

E
3

+
+

+

−

−

−

The weight diagram has three axes of symmetry. To see this, recall that if m is a weight
of a state in an irreducible representation of L(SU(2)) then so is −m. In the context of
the three L(SU(2)) algebras contained in L(SU(3)) this means that from the properties of
the algebra in (1.11), if (p, q) is a weight then so is (−p, q), i.e. the diagram is reflection
symmetric about the line θ = π

2 passing through the origin. Also, due to the symmetry of
the L(SU(2)) algebra in (1.12), the weight diagram is reflection symmetric about the line
θ = π

6 passing through the origin: so if (p, q) is a weight then so is (1
2(p+

√
3q), 1

2(
√

3p−q)).
And due to the symmetry of the L(SU(2)) algebra in ((1.13) the weight diagram is reflection
symmetric about the line θ = 5π

6 passing through the origin: so if (p, q) is a weight then so
is (1

2(p−
√

3q), 1
2(−
√

3p− q)).
Using this symmetry, it suffices to know the structure of the weight diagram in the

sector of the plane π
6 ≤ θ ≤

π
2 . The remainder is fixed by the reflection symmetry.

Motivated by the treatment of SU(2) we make the definition:

Definition 1. |ψ〉 is called a highest weight state if |ψ〉 is an eigenstate of both H1 and
H2, and Em+ |ψ〉 = 0 for m = 1, 2, 3.

Note that there must be a highest weight state, for otherwise one could construct
infinitely many eigenstates by repeated application of the raising operators Em+ . Given
a highest weight state, let V ′ be the vector space spanned by |ψ〉 and states obtained by
acting with all possible products of lowering operators Em− on |ψ〉. As there are only finitely
many points on the weight diagram, there can only be finitely many such terms. Then, by
making use of the commutation relations, it is clear that V ′ is an invariant subspace of V .
As the representation is irreducible on V , this implies that V ′ = V , i.e. V is spanned by
|ψ〉 and a finite set of states obtained by acting with lowering operators on |ψ〉. Suppose
that (p, q) is the weight of |ψ〉. Then V is spanned by a basis of eigenstates of H1 and H2

with weights confined to the sector given by π ≤ θ ≤ 5π
3 relative to (p, q)- all points on the

weight diagram must therefore lie in this sector.

Lemma 1. The highest weight state is unique.
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Proof Suppose that |ψ〉 and |ψ′〉 are two highest weight states with weights (p, q), (p′, q′)
respectively. Then (p′, q′) must make an angle π ≤ θ ≤ 5π

3 relative to (p, q) and (p, q) must
make an angle π ≤ θ ≤ 5π

3 relative to (p′, q′). This implies that p = p′, q = q′.
Next suppose that |ψ1〉 and |ψ2〉 are two linearly independent highest weight states

(both with weight (p, q)). Let V1 and V2 be the vector spaces spanned by the states
obtained by acting with all possible products of lowering operators Em− on |ψ1〉 and |ψ2〉
respectively; one therefore obtains bases for V1 and V2 consisting of eigenstates of H1 and
H2. By the reasoning given previously, as V1 and V2 are invariant subspaces of V and the
representation is irreducible on V , it must be the case that V1 = V2 = V . In particular, we
find that |ψ2〉 ∈ V1. However, the only basis element of V1 which has weight (p, q) is |ψ1〉,
hence we must have |ψ2〉 = c |ψ1〉 for some constant c, in contradiction to the assumption
that |ψ1〉 and |ψ2〉 are linearly independent. �

Having established the existence of a unique highest weight state |ψ〉, we can proceed
to obtain the generic form for the weight diagram.

Suppose that |ψ〉 has weight (p, q). We have shown that all other states must have
weights making an angle π ≤ θ ≤ 5π

3 relative to (p, q). This implies that (p, q) must lie in
the sector π

6 ≤ θ ≤ π
2 relative to (0, 0), or at the origin. Denote this portion of the plane

by S.
To see this, note that if q < 0 then all weights must lie in the lower half plane, so there

are no weights in S. But from the reflection symmetry of the weight diagram, this then
implies that there are no weights at all. Next, note that if p < 0, then from the properties
of the L(SU(2)) algebra corresponding to (1.11), the state E1

+ |ψ〉 is non-vanishing, in
contradiction to the definition of the highest weight state. Hence, we must have p ≥ 0
and q ≥ 0. Next suppose that (p, q) lies in the sector 0 ≤ θ < π

6 . By the properties of
the L(SU(2)) algebra corresponding to (1.12), the state E2

+ |ψ〉 is non-vanishing, again
in contradiction to the definition of the highest weight state. Hence the only remaining
possibility if for (p, q) to lie in the sector π

6 ≤ θ ≤
π
2 relative to (0, 0), or at the origin.

Lemma 2. If the highest weight is (0, 0), then there is only one state in the representation,
which is called the singlet.
Proof. Let |ψ〉 be the highest weight state with weight (0, 0). Suppose that Em− |ψ〉 6= 0
for some m. Then by the reflection symmetry of the weight diagram, it follows that
Em+ |ψ〉 6= 0, in contradiction to the fact that Ei+ |ψ〉 = 0 for i = 1, 2, 3, as |ψ〉 is the highest
weight state. Hence Em± |ψ〉 = 0 for m = 1, 2, 3. Also H1 |ψ〉 = H2 |ψ〉 = 0. It follows that
the 1-dimensional subspace V ′ spanned by |ψ〉 is an invariant subspace of V , and therefore
V = V ′ as the representation is irreducible. �

There are then three possible locations for the highest weight state |ψ〉.

1.1.1 Triangular Weight Diagrams (I)

Suppose that the highest weight lies on the line θ = π
2 . In this case, by applying powers of

E2
− the states of the L(SU(2)) representation given in (1.12) are generated. These form a

line orthogonal to the axis of reflection θ = π
6 , about which they are symmetric, and there

are no states outside this line, as these points cannot be reached by applying lowering
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operators. Then, by using the reflection symmetry, it follows that the outermost states
from an equilateral triangle with horizontal base. Each lattice point inside the triangle
corresponds to (at least) one state which has this weight, because each lattice point in the
triangle lies at some possible weight within the L(SU(2)) representation given in (1.11),
and from the properties of L(SU(2)) representations, we know that this has a state with
this weight (i.e. as the L(SU(2)) weight diagram has no “holes” in it, neither does the
L(SU(3)) weight diagram).

This case is illustrated by

Proposition 1. Each weight in this triangle corresponds to a unique state.
Proof. Note that all of the states on the right edge of the triangle correspond to unique
states, because these weights correspond to states which can only be obtained by acting
on |ψ〉 with powers of E2

−. It therefore follows by the reflection symmetry that all of the
states on the edges of the triangle have multiplicity one.

Now note the commutation relation

[E1
−, E

2
−] = − 1√

2
E3
− (1.15)

This implies that products of lowering operators involving E3
− can be rewritten as linear

combinations of products of operators involving only E1
− and E2

− (in some order). In
particular, we find

(E1
−)(E2

−)n |ψ〉 = [E1
−, E

2
−](E2

−)n−1 |ψ〉+ E2
−E

1
−(E2

−)n−1 |ψ〉

= − 1√
2
E3
−(E2

−)n−1 |ψ〉+ E2
−E

1
−(E2

−)n−1 |ψ〉
. . .

= − n√
2
E3
−(E2

−)n−1 |ψ〉 (1.16)

by simple induction, where we have used the fact that E1
− |ψ〉 = 0 and [E2

−, E
3
−] = 0.
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A generic state of some fixed weight in the representation can be written as a linear
combination of products of E2

− and E1
− lowering operators acting on |ψ〉 of the form

Π(E1
−, E

2
−) |ψ〉 (1.17)

where Π(E1
−, E

2
−) contains m powers of E2

− and ` powers of E1
− where m, ` are uniquely

determined by the weight of the state- only the order of the operators is unfixed.

Using (1.16), commute the E1
− states in this product to the right as far as they will

go. Then either one finds that the state vanishes (due to an E1
− acting directly on |ψ〉), or

one can eliminate all of the E1
− terms and is left with a term proportional to

(E2
−)m−`(E3

−)` |ψ〉 (1.18)

where we have used the commutation relations [E2
−, E

3
−] = [E1

−, E
3
−] = 0.

Hence, it follows that all weights in the diagram can have at most multiplicity 1.
However, from the property of the L(SU(2)) representations, as the weights in the outer
layers have multiplicity 1, it follows that all weights in the interior have multiplicity at
least 1. Hence, all the weights must be multiplicity 1. �

1.1.2 Triangular Weight Diagrams (II)

Suppose that the highest weight lies on the line θ = π
6 . In this case, by applying powers of

E1
− the states of the L(SU(2)) representation given in (1.11) are generated. These form a

horizontal line orthogonal to the axis of reflection θ = π
2 , about which they are symmetric,

and there are no states outside this line, as these points cannot be reached by applying
lowering operators. Then, by using the reflection symmetry, it follows that the outermost
states from an inverted equilateral triangle with horizontal upper edge. Each lattice point
inside the triangle corresponds to (at least) one state which has this weight, because each
lattice point in the triangle lies at some possible weight within the L(SU(2)) representation
given in (1.11), and from the properties of L(SU(2)) representations, we know that this
has a state with this weight (i.e. as the L(SU(2)) weight diagram has no “holes” in it,
neither does the L(SU(3)) weight diagram).

This case is illustrated by
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Proposition 2. Each weight in this triangle corresponds to a unique state.
Proof. Note that all of the states on the horizontal top edge of the triangle correspond to
unique states, because these weights correspond to states which can only be obtained by
acting on |ψ〉 with powers of E1

−. It therefore follows by the reflection symmetry that all
of the states on the edges of the triangle have multiplicity one.

Now, using (1.15) it is straightforward to show that

E2
−(E1

−)n |ψ〉 =
n√
2
E3
−(E1

−)n−1 |ψ〉 (1.19)

for n ≥ 1, where we have used E2
− |ψ〉 = 0. Next consider a state of some fixed weight in

the representation; this can be written as a linear combination of terms of the form

Π(E1
−, E

2
−) |ψ〉 (1.20)

where Π(E1
−, E

2
−) contains m powers of E1

− and ` powers of E2
− in an appropriate order,

where m and ` are determined uniquely by the weight of the state in question. Using
(1.19), commute the E2

− states in this product to the right as far as they will go. Then
either one finds that the state vanishes (due to an E2

− acting directly on |ψ〉), or one can
eliminate all of the E1

− terms and is left with a term proportional to

(E1
−)m−`(E3

−)` |ψ〉 (1.21)

where we have used the commutation relations [E2
−, E

3
−] = [E1

−, E
3
−] = 0.

Hence, it follows that all weights in the diagram can have at most multiplicity 1.
However, from the property of the L(SU(2)) representations, as the weights in the outer
layers have multiplicity 1, it follows that all weights in the interior have multiplicity at
least 1.

Hence, all the weights must be multiplicity 1. �
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1.1.3 Hexagonal Weight Diagrams

Suppose that the highest weight lies in the sector π
6 < θ < π

2 . In this case, by applying
powers of E1

− the states of the L(SU(2)) representation given in (1.11) are generated. These
form a horizontal line extending to the left of the maximal weight which is orthogonal to
the line θ = π

2 , about which they are symmetric, There are no states above, as these points
cannot be reached by applying lowering operators. Also, by applying powers of E2

− the
states of the L(SU(2)) representation given in (1.12) are generated. These form a line
extending to the right of the maximal weight which is orthogonal to the axis of reflection
θ = π

6 , about which they are symmetric, and there are no states to the right of this line,
as these points cannot be reached by applying lowering operators.

Then, by using the reflection symmetry, it follows that the outermost states form a
hexagon. Each lattice point inside the hexagon corresponds to (at least) one state which
has this weight, because each lattice point in the hexagon lies at some possible weight
within the L(SU(2)) representation given in (1.11), and from the properties of L(SU(2))
representations, we know that this has a state with this weight (i.e. as the L(SU(2)) weight
diagram has no “holes” in it, neither does the L(SU(3)) weight diagram).

This case is illustrated by

The multiplicities of the states for these weight diagrams are more complicated than for the
triangular diagrams. In particular, the weights on the two edges of the hexagon leading off
from the highest weight have multiplicity 1, because these states can only be constructed as
(E1
−)n |ψ〉 or (E2

−)m |ψ〉. So by symmetry, all of the states on the outer layer of the hexagon
have multiplicity 1. However, if one proceeds to the next layer, then the multiplicity of all
the states increases by 1. This happens until the first triangular layer is reached, at which
point all following layers have the same multiplicity as the first triangular layer.
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Suppose that the top horizontal edge leading off the maximal weight is of length m,
and that the other outer edge is of length n, with m ≥ n. This situation is illustrated
below
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n

m

The highest weight is then at (m2 ,
1

2
√

3
(m + 2n)). The outer n layers are hexagonal,

whereas the n + 1-th layer is triangular, and all following layers are also triangular. As
one goes inwards through the outer n+ 1 layers the multiplicity of the states in the layers
increases from 1 in the first outer layer to n+ 1 in the n+ 1-th layer. Then all the states
in the following triangular layers have multiplicity n+ 1 as well.

We will prove this in several steps.

Proposition 3. States with weights on the k-th hexagonal layer for k = 1, . . . , n or the
k = n+ 1-th layer (the first triangular layer) have multiplicity not exceeding k.
Proof. In order to prove this, consider first a state on the upper horizontal edge of the
k-th layer for k ≤ n+ 1. The length of this edge is m− k+ 1. A general state on this edge
is obtained via

Π(E2
−, E

1
−) |ψ〉 (1.22)

where Π(E2
−, E

1
−) contains (in some order) k − 1 powers of E2

− and ` powers of E1
− for

` = k − 1, . . . ,m.
Now use the commutation relation (1.15) to commute the powers of E2

− to the right as
far as they will go. Then the state can be written as a linear combination of the k vectors

|vi〉 = (E3
−)i−1(E1

−)`−i+1(E2
−)k−i |ψ〉 (1.23)

for i = 1, . . . , k. It follows that this state has multiplicity ≤ k.
Next consider a state again on the k-th level, but now on the edge leading off to the

right of the horizontal edge which we considered above; this edge is parallel to the outer
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edge of length n. Take k ≤ n+ 1, so the edge has length n− k+ 1. A state on this edge is
obtained via

Π̂(E1
−, E

2
−) |ψ〉 (1.24)

where Π̂(E1
−, E

2
−) contains (in some order) k − 1 powers of E1

− and ` powers of E2
− where

` = k − 1, . . . , n. Now use the commutation relation (1.15) to commute the powers of E1
−

to the right as far as they will go. Then the state can be written as a linear combination
of the k vectors

|wi〉 = (E3
−)i−1(E2

−)`−i+1(E1
−)k−i |ψ〉 (1.25)

for i = 1, . . . , k.
So these states also have multiplicity ≤ k. By using the reflection symmetry, it follows

that the all the states on the k-th hexagonal layer have multiplicity k. �
We also have the

Proposition 4. The states with weights in the triangular layers have multiplicity not
exceeding n+ 1.
Proof. Consider a state on the k-th row of the weight diagram for m + 1 ≥ k ≥ n + 1
which lies inside the triangular layers. Such a state can also be written as

Π(E2
−, E

1
−) |ψ〉 (1.26)

where Π(E2
−, E

1
−) contains (in some order) k − 1 powers of E2

− and ` powers of E1
− for

` = k − 1, . . . ,m. and hence by the reasoning above, it can be rewritten as a linear
combination of the k vectors |vi〉 in (1.23), however for i < k−n, |vi〉 = 0 as (E2

−)k−i |ψ〉 = 0.
The only possible non-vanishing vectors are the n + 1 vectors |vk−n〉 , |vk−n+1〉 , . . . , |vk〉.
Hence these states have multiplicity ≤ n+ 1. �

Next note the lemma

Lemma 3. Define |wi,k〉 = (E3
−)i−1(E1

−)k−i(E2
−)k−i |ψ〉 for i = 1, . . . , k, k = 1, . . . , n+ 1.

Then the sets Sk = {|w1,k〉 , . . . , |wk,k〉} are linearly independent for k = 1, . . . , n+ 1.
Proof. By using the commutation relations, it is straightforward to prove the identities

E3
+ |wi,k〉 = (i− 1)

(√3
2
q +

1
2
p+

i

2
+ 1− k

)
|wi−1,k−1〉

− 1√
2

(k − i)2
(√3

2
q − 1

2
p+

i

2
+

1
2
− k

2
|wi,k−1〉

E2
+ |wi,k〉 = E1

−
( 1√

2
(i− 1) |wi−1,k−1〉

+ (k − i)
(√3

2
q − 1

2
p− 1

2
(k − i− 1)

)
|wi,k−1〉

)
(1.27)

(with obvious simplifications in the cases when i = 1 or i = k)
Note that S1 = {|ψ〉} is linearly independent. Suppose that Sk−1 is linearly indepen-

dent (k ≥ 2). Consider Sk. Suppose
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k∑
i=1

ci |wi,k〉 = 0 (1.28)

for some constants ci. Applying E3
+ to (1.28) and using the linear independence of Sk−1

we find the relation

i(
√

3
2

+
1
2
p+

i

2
+

3
2
− k)ci+1 −

1√
2

(k − i)2(
√

3
2
q − 1

2
p+

i

2
+

1
2
− 1

2
k)ci = 0 (1.29)

for i = 1, . . . , k − 1. Applying E2
+ to (1.28) another recursion relation is obtained

1√
2
ici+1 + (k − i)(

√
3

2
q − 1

2
p+

i

2
+

1
2
− 1

2
k)ci = 0 (1.30)

Combining these relations we find ci+1 = 0 for i = 1, . . . , k−1. If
√

3
2 q−

1
2p+ i

2 + 1
2−

1
2k 6= 0

when i = 1 then one also has c1 = 0. This holds if k ≤ n+ 1, however if k = n+ 2 then c1
is not fixed by these equations. The induction stops at this point. �

These results are sufficient to fix the multiplicity of all the states. This is because the
vectors in Sk for 1 ≤ k ≤ k + 1 correspond to states with weight (p, q) − (k − 1)(1

2 ,
√

3
2 )

which are at the top right hand corner of the k-th hexagonal (or outermost triangular for
k = n + 1) layer. We have shown therefore that these weights have multiplicity both less
than or equal to, and greater than or equal to k. Hence these weights have multiplicity
k. Next consider the states on the level k edges which are obtained by acting with the
L(SU(2)) lowering operators E1

− and E2
− on the “corner weight” states. Observe the

following lemma, whose proof is left as an exercise:

Lemma 4. Let d be a representation of L(SU(2)) on V be such that a particular L(SU(2))
weight m > 0 has multiplicity p. Then all weights m′ such that |m′| ≤ m have multiplicity
≥ p

By this lemma, all the states on the k-th layer obtained in this fashion have multi-
plicity k also. Then the reflection symmetry implies that all states on the k-th layer have
multiplicity k. In particular, the states on the outer triangular layer have multiplicity n+1.
We have shown that the states on the triangular layers must have multiplicity not greater
than n+ 1, but by the lemma above together with the reflection symmetry, they must also
have multiplicity ≥ n+ 1. Hence the triangular layer weights have multiplicity n+ 1, and
the proof is complete.

This was rather long-winded. There exist general formulae constraining multiplicities
of weights in more general Lie group representations, but we will not discuss these here.

1.1.4 Dimension of Irreducible Representations

Using the multiplicity properties of the weight diagram, it is possible to compute the
dimension of the representation. We consider first the hexagonal weight diagram for m ≥ n.

Then there are 1+ · · ·+(m−n)+(m−n+1) = 1
2(m−n+1)(m−n+2) weights in the

interior triangle. Each of these weights has multiplicity (n+ 1) which gives 1
2(n+ 1)(m−
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n + 1)(m − n + 2) linearly independent states corresponding to weights in the triangle.
Consider next the k-th hexagonal layer for k = 1, . . . , n. This has 3((m + 1 − (k − 1)) +
(n+ 1− (k − 1))− 2) = 3(m+ n+ 2− 2k) weights in it, and each weight has multiplicity
k, which gives 3k(m+ n+ 2− 2k) linearly independent states in the k-th hexagonal layer.

The total number of linearly independent states is then given by

1
2

(n+1)(m−n+1)(m−n+2)+
n∑
k=1

3k(m+n+2−2k) =
1
2

(m+1)(n+1)(m+n+2) (1.31)

This formula also applies in the case for m ≤ n and also for the triangular weight diagrams
by taking m = 0 or n = 0. The lowest dimensional representations are therefore 1,3,6,8,10...

1.1.5 The Complex Conjugate Representation

Definition 2. Let d be a representation of a Lie algebra L(G) acting on V . If v ∈ L(G),
then viewing d(v) as a matrix acting on V , the complex representation d̄ is defined by

d̄(v)u = (d(v))∗u (1.32)

for u ∈ V , where ∗ denotes matrix complex conjugation.
Note that as d(v) is linear in v over R, it follows that (d(v))∗ is also linear in v over

R. Also, as
d([v, w]) = d(v)d(w)− d(w)d(v) (1.33)

for v, w ∈ L(G), so taking the complex conjugate of both sides we find

d̄([v, w]) = d̄(v)d̄(w)− d̄(w)d̄(v) (1.34)

i.e. d̄ is indeed a Lie algebra representation. Suppose that Ta are the generators of L(G)
with structure constants cabc. Then as d is a representation,

[d(Ta), d(Tb)] = cab
cd(Tc) (1.35)

Taking the complex conjugate, and recalling that cabc are real, we find

[d̄(Ta), d̄(Tb)] = cab
cd̄(Tc) (1.36)

i.e. the d(Ta) and d̄(Ta) satisfy the same commutation relations.
In the context of representations of L(SU(3)), the conjugate operators to iH1, iH2,

i(Em+ +Em− ) and Em+ −Em− are denoted by iH̄1, iH̄2, i(Ēm− +Ēm+ ), and Ēm+ −Ēm− respectively
and are given by

iH̄1 = (iH1)∗

iH̄2 = (iH2)∗

i(Ēm− + Ēm+ ) = (i(Em+ + Em− ))∗

Ēm+ − Ēm− = (Em+ − Em− )∗ (1.37)

which implies
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H̄1 = −(H1)∗, H̄2 = −(H2)∗, Ēm± = −(Em∓ )∗ (1.38)

Then H̄1, H̄2 and Ēm± satisfy the same commutation relations as the unbarred operators,
and also behave in the same way under the hermitian conjugate. One can therefore plot the
weight diagram associated with the conjugate representation d̄, the weights being the (real)
eigenvalues of H̄1 and H̄2. But as H̄1 = −(H1)∗ and H̄2 = −(H2)∗ it follows that if (p, q) is
a weight of the representation d, then (−p,−q) is a weight of the representation d̄. So the
weight diagram of d̄ is obtained from that of d by inverting all the points (p, q)→ −(p, q).
Note that this means that the equilateral triangular weight diagrams N and H of equal
length sides are conjugate to each other.

1.2 Some Low-Dimensional Irreducible Representations of L(SU(3))

1.2.1 The Singlet

The simplest representation has only one state, which is the highest weight state with
weight (0, 0). This representation is denoted 1.

1.2.2 3-dimensional Representations

Take the fundamental representation. Then as h1 and h2 are already diagonalized, it is
straightforward to compute the eigenstates and weights.
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State Weight1
0
0

 (1
2 ,

1
2
√

3
)

0
1
0

 (−1
2 ,

1
2
√

3
)

0
0
1

 (0,− 1√
3
)

The state of highest weight is

1
0
0

 which has weight (1
2 ,

1
2
√

3
). The weight diagram is

d u

s

This representation is denoted 3. It will be convenient to define the following states in the
3 representation.

u =

1
0
0

 , d =

0
1
0

 , s =

0
0
1

 (1.39)

so that u has weight (1
2 ,

1
2
√

3
), d has weight (−1

2 ,
1

2
√

3
) and s has weight (0,− 1√

3
). The

lowering operators have the following effect: d =
√

2e1−u, s =
√

2e3−u and s =
√

2e2−d.
The complex conjugate of this representation is called 3̄ and the weights are obtained by
multiplying the weights of the 3 representation by −1.
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State Weight1
0
0

 (−1
2 ,−

1
2
√

3
)

0
1
0

 (1
2 ,−

1
2
√

3
)

0
0
1

 (0, 1√
3
)

The state of highest weight is

0
0
1

 which has weight (0, 1√
3
). The weight diagram is

s

u d

It will be convenient to define the following states in the 3̄ representation.

ū =

1
0
0

 , d̄ =

0
1
0

 , s̄ =

0
0
1

 (1.40)

so that ū has weight (−1
2 ,−

1
2
√

3
), d̄ has weight (1

2 ,−
1

2
√

3
) and s̄ has weight (0, 1√

3
). The

lowering operators have the following effect: ū = −
√

2ē3−s̄, d̄ = −
√

2ē2−s̄ and ū = −
√

2ē1−d̄;
where ēm± = −(em∓ )∗.
Exercise: Verify that all other lowering operators ēm− (except those given above) annihilate
ū, d̄, s̄. Also compute the effect of the raising operators ēm+ .
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1.2.3 Eight-Dimensional Representations

Consider the adjoint representation defined on the complexified Lie algebra L(SU(3)), i.e.
ad(v)w = [v, w]. Then the weights of the states can be computed by evaluating the
commutators with h1 and h2:

State v [h1, v] [h2, v] Weight
h1 0 0 (0, 0)
h2 0 0 (0, 0)
e1+ e1+ 0 (1, 0)
e1− −e1− 0 (−1, 0)
e2+ −1

2e
2
+

√
3

2 e
2
+ (−1

2 ,
√

3
2 )

e2−
1
2e

2
− −

√
3

2 e
2
− (1

2 ,−
√

3
2 )

e3+
1
2e

3
+

√
3

2 e
3
+ (1

2 ,
√

3
2 )

e3− −1
2e

3
− −

√
3

2 e
3
− (−1

2 ,−
√

3
2 )

The highest weight state is e3+ with weight (1
2 ,
√

3
2 ). All weights have multiplicity 1 except

for (0, 0) which has multiplicity 2. The weight diagram is a regular hexagon:

1.3 Tensor Product Representations

Suppose that d1, d2 are irreducible representations of L(SU(3)) acting on V1, V2 respec-
tively. Then let V = V1

⊗
V2 and d = d1⊗ 1 + 1⊗ d2 be the tensor product representation

of L(SU(3)) on V . In general d is not irreducible on V , so we want to decompose V into
a direct sum of invariant subspaces on which the restriction of d is irreducible.

To do this, recall that one can choose a basis of V1 which consists entirely of eigenstates
of both d1(h1) and d1(h2). Similarly, one can also choose a basis of V2 which consists entirely
of eigenstates of both d2(h1) and d2(h2). Then the tensor product of the basis eigenstates
produces a basis of V1

⊗
V2 which consists of eigenstates of d(h1) and d(h2).

Explicitly, suppose that |φi〉 ∈ Vi is an eigenstate of di(h1) and di(h2) with weight
(pi, qi) (i.e. di(h1) |φi〉 = pi |φi〉 and di(h2) |φi〉 = qi |φi〉) for i = 1, 2. Define |φ〉 =
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|φ1〉 ⊗ |φ2〉. Then

d(h1) |φ〉 = (d1(h1) |φ1〉)⊗ |φ2〉+ |φ1〉 ⊗ (d2(h1) |φ2〉)
= (p1 |φ1〉)⊗ |φ2〉+ |φ1〉 ⊗ (p2 |φ2〉)
= (p1 + p2) |φ〉 (1.41)

and similarly

d(h2) |φ〉 = (q1 + q2) |φ〉 (1.42)

So the weight of |φ〉 is (p1+p2, q1+q2); the weights add in the tensor product representation.

Using this, one can plot a weight diagram consisting of the weights of all the eigenstates
in the tensor product basis of V , the points in the weight diagram are obtained by adding
the pairs of weights from the weight diagrams of d1 and d2 respectively, keeping careful
track of the multiplicities (as the same point in the tensor product weight diagram may be
obtained from adding weights from different states in V1

⊗
V2.)

Once the tensor product weight diagram is constructed, pick a highest weight, which
corresponds to a state which is annihilated by the tensor product operators Em+ for m =
1, 2, 3. (Note that as the representation is finite-dimensional such a state is guaranteed
to exist, though as the representation is no longer irreducible, it need not be unique). If
there are multiple highest weight states corresponding to the same highest weight, one
can without loss of generality take them to be mutually orthogonal. Picking one of these,
generate further states by acting on a highest weight state with all possible combinations
of lowering operators. The span of these (finite number) of states produces an invariant
subspace W1 of V on which d is irreducible. Remove these weights from the tensor product
weight diagram. If the multiplicity of one of the weights in the original tensor product
diagram is k, and the multiplicity of the same weight in the W1 weight diagram is k′ then
on removing theW1 weights, the multiplicity of that weight must be reduced from k to k−k′.
Repeat this process until there are no more weights left. This produces a decomposition
V = W1

⊕
...
⊕
Wk of V into invariant subspaces Wj on which d is irreducible.

Note that one could also perform this process on triple (and higher order) tensor
products e.g. V1

⊗
V2
⊗
V3. In this case, one would construct the tensor product weight

diagram by adding triplets of weights from the weight diagrams of d1 on V1, d2 on V2 and
d3 on V3 respectively.

This process can be done entirely using the weight diagrams, because we have shown
that for irreducible representations, the location of the highest weight fixes uniquely the
shape of the weight diagram and the multiplicities of its states.

We will see how this works for some simple examples:

1.3.1 3⊗ 3 decomposition.

Consider the 3⊗ 3 tensor product. Adding the weights together one obtains the following
table of quark content and associated weights
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Quark content and weights for 3⊗ 3

Quark Content Weight

u⊗ u (1, 1√
3
)

d⊗ d (−1, 1√
3
)

s⊗ s (0,− 2√
3
)

u⊗ d, d⊗ u (0, 1√
3
)

u⊗ s, s⊗ u (1
2 ,−

1
2
√

3
)

d⊗ s, s⊗ d (−1
2 ,−

1
2
√

3
)

Plotting the corresponding weight diagram gives

The raising and lowering operators are Em± = em± ⊗ 1 + 1 ⊗ em± . The highest weight state
is u ⊗ u with weight (1, 1√

3
). Applying lowering operators to u ⊗ u it is clear that a

six-dimensional irreducible representation is obtained. The (unit-normalized) states and
weights are given by

States and weights for the 6 in 3⊗ 3

State Weight

u⊗ u (1, 1√
3
)

d⊗ d (−1, 1√
3
)

s⊗ s (0,− 2√
3
)

1√
2
(d⊗ u+ u⊗ d) (0, 1√

3
)

1√
2
(u⊗ s+ s⊗ u) (1

2 ,−
1

2
√

3
)

1√
2
(d⊗ s+ s⊗ d) (−1

2 ,−
1

2
√

3
)
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which has the following weight diagram

This representation is called 6. Removing the (non-vanishing) span of these states
from the tensor product space, one is left with a 3-dimensional vector space. The new
highest weight is at (0, 1√

3
) with corresponding state 1√

2
(d⊗ u− u⊗ d) (this is the unique

linear combination- up to overall scale- of d⊗ u and u⊗ d which is annihilated by all the
raising operators). This generates a 3̄. The states and their weights are

States and weights for the 3̄ in 3⊗ 3

State Weight
1√
2
(d⊗ u− u⊗ d) (0, 1√

3
)

1√
2
(d⊗ s− s⊗ d) (−1

2 ,−
1

2
√

3
)

1√
2
(s⊗ u− u⊗ s) (1

2 ,−
1

2
√

3
)

Hence 3 ⊗ 3 = 6 ⊕ 3̄. The states in the 6 are symmetric, whereas those in the 3̄ are
antisymmetric.

1.3.2 3⊗ 3̄ decomposition

For this tensor product the quark content/weight table is as follows:
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Quark content and weights for 3⊗ 3̄

Quark Content Weight

u⊗ s̄ (1
2 ,
√

3
2 )

u⊗ d̄ (1, 0)

d⊗ s̄ (−1
2 ,
√

3
2 )

u⊗ ū, d⊗ d̄, s⊗ s̄ (0, 0)

d⊗ ū (−1, 0)

s⊗ ū (−1
2 ,−

√
3

2 )

s⊗ d̄ (1
2 ,−

√
3

2 )

with weight diagram

ds us

du dd,uu,ss ud

su sd

The raising and lowering operators are Em± = em± ⊗ 1 + 1 ⊗ ēm± All weights have
multiplicity 1, except for (0, 0) which has multiplicity 3. The highest weight state is u⊗ s̄
with weight (1

2 ,
√

3
2 ). Acting on this state with all possible lowering operators one obtains

an 8 with the following states and weights

States and weights for the 8 in 3⊗ 3̄

State Weight

u⊗ s̄ (1
2 ,
√

3
2 )

u⊗ d̄ (1, 0)

d⊗ s̄ (−1
2 ,
√

3
2 )

1√
2
(d⊗ d̄− u⊗ ū), 1√

6
(d⊗ d̄+ u⊗ ū− 2s⊗ s̄) (0, 0)

d⊗ ū (−1, 0)

s⊗ ū (−1
2 ,−

√
3

2 )

s⊗ d̄ (1
2 ,−

√
3

2 )
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Removing these weights from the weight diagram, one is left with a singlet 1 with
weight (0, 0), corresponding to the state

1√
3

(u⊗ ū+ s⊗ s̄+ d⊗ d̄) (1.43)

which is the unique linear combination- up to an overall scale- of u⊗ū, s⊗ s̄ and d⊗d̄ which
is annihilated by the raising operators Em+ . Hence we have the decomposition 3⊗3̄ = 8⊕1.

1.3.3 3⊗ 3⊗ 3 decomposition.

For this tensor product the quark content/weight table is as follows:

Quark content and weights for 3⊗ 3⊗ 3

Quark Content Weight

u⊗ u⊗ u (3
2 ,
√

3
2 )

s⊗ s⊗ s (0,−
√

3)

d⊗ d⊗ d (−3
2 ,
√

3
2 )

u⊗ u⊗ s, u⊗ s⊗ u, s⊗ u⊗ u (1, 0)

u⊗ u⊗ d, u⊗ d⊗ u, d⊗ u⊗ u (1
2 ,
√

3
2 )

s⊗ s⊗ u, s⊗ u⊗ s, u⊗ s⊗ s (1
2 ,−

√
3

2 )

s⊗ s⊗ d, s⊗ d⊗ s, d⊗ s⊗ s (−1
2 ,−

√
3

2 )

d⊗ d⊗ s, d⊗ s⊗ d, s⊗ d⊗ d (−1, 0)

d⊗ d⊗ u, d⊗ u⊗ d, u⊗ d⊗ d (−1
2 ,
√

3
2 )

u⊗ d⊗ s, u⊗ s⊗ d, d⊗ u⊗ s,
d⊗ s⊗ u, s⊗ u⊗ d, s⊗ d⊗ u (0, 0)

with weight diagram

ddd ddu duu uuu

dds
dus

uus

dss uss

sss

The raising and lowering operators are Em± = em± ⊗ 1 ⊗ 1 + 1 ⊗ em± ⊗ 1 + 1 ⊗ 1 ⊗ em± .
There are six weights of multiplicity 3, and the weight (0, 0) has multiplicity 6. The highest
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weight is u⊗ u⊗ u with weight (3
2 ,
√

3
2 ). By applying lowering operators to this state, one

obtains a triangular 10-dimensional irreducible representation denoted by 10, which has
normalized states and weights:

States and weights for 10 in 3⊗ 3⊗ 3

State Weight

u⊗ u⊗ u (3
2 ,
√

3
2 )

s⊗ s⊗ s (0,−
√

3)

d⊗ d⊗ d (−3
2 ,
√

3
2 )

1√
3
(u⊗ u⊗ s+ u⊗ s⊗ u+ s⊗ u⊗ u) (1, 0)

1√
3
(u⊗ u⊗ d+ u⊗ d⊗ u+ d⊗ u⊗ u) (1

2 ,
√

3
2 )

1√
3
(s⊗ s⊗ u+ s⊗ u⊗ s+ u⊗ s⊗ s) (1

2 ,−
√

3
2 )

1√
3
(s⊗ s⊗ d+ s⊗ d⊗ s+ d⊗ s⊗ s) (−1

2 ,−
√

3
2 )

1√
3
(d⊗ d⊗ s+ d⊗ s⊗ d+ s⊗ d⊗ d) (−1, 0)

1√
3
(d⊗ d⊗ u+ d⊗ u⊗ d+ u⊗ d⊗ d) (−1

2 ,
√

3
2 )

1√
6
(u⊗ d⊗ s+ u⊗ s⊗ d+ d⊗ u⊗ s+
d⊗ s⊗ u+ s⊗ u⊗ d+ s⊗ d⊗ u) (0, 0)

The 10 weight diagram is

ddd ddu duu uuu

dds dus uus

dss uss

sss

Removing the (non-vanishing) span of these states from the tensor product space, one
is left with a 17-dimensional vector space. The new weight diagram is
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ddu duu

dds
dus

uus

dss uss

Note that the highest weight is now (1
2 ,
√

3
2 ). This weight has has multiplicity 2. It

should be noted that the subspace consisting of linear combinations of d⊗ u⊗ u, u⊗ d⊗ u
and u ⊗ u ⊗ d which is annihilated by all raising operators Em+ is two-dimensional and
is spanned by the two orthogonal states 1√

6
(d ⊗ u ⊗ u + u ⊗ d ⊗ u − 2u ⊗ u ⊗ d) and

1√
2
(d ⊗ u ⊗ u − u ⊗ d ⊗ u). By acting on these two states with all possible lowering

operators, one obtains two 8 representations whose states are mutually orthogonal.

The states and weights of these two 8 representations are summarized below:

States and weights for an 8 in 3⊗ 3⊗ 3

State Weight
1√
6
(d⊗ u⊗ u+ u⊗ d⊗ u− 2u⊗ u⊗ d) (1

2 ,
√

3
2 )

1√
6
(s⊗ u⊗ u+ u⊗ s⊗ u− 2u⊗ u⊗ s) (1, 0)

1√
6
(2d⊗ d⊗ u− d⊗ u⊗ d− u⊗ d⊗ d) (−1

2 ,
√

3
2 )

1
2
√

3
(s⊗ d⊗ u+ s⊗ u⊗ d+ d⊗ s⊗ u

+u⊗ s⊗ d− 2d⊗ u⊗ s− 2u⊗ d⊗ s),
1

2
√

3
(2s⊗ d⊗ u+ 2d⊗ s⊗ u− s⊗ u⊗ d
−d⊗ u⊗ s− u⊗ s⊗ d− u⊗ d⊗ s) (0, 0)
1√
6
(s⊗ d⊗ d+ d⊗ s⊗ d− 2d⊗ d⊗ s) (−1, 0)

1√
6
(2s⊗ s⊗ u− s⊗ u⊗ s− u⊗ s⊗ s) (1

2 ,−
√

3
2 )

1√
6
(2s⊗ s⊗ d− s⊗ d⊗ s− d⊗ s⊗ s) (−1

2 ,−
√

3
2 )
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States and weights for another 8 in 3⊗ 3⊗ 3

State Weight
1√
2
(d⊗ u⊗ u− u⊗ d⊗ u) (1

2 ,
√

3
2 )

1√
2
(s⊗ u⊗ u− u⊗ s⊗ u) (1, 0)

1√
2
(d⊗ u⊗ d− u⊗ d⊗ d) (−1

2 ,
√

3
2 )

1
2(s⊗ d⊗ u+ s⊗ u⊗ d− d⊗ s⊗ u− u⊗ s⊗ d),
1
2(s⊗ u⊗ d+ d⊗ u⊗ s− u⊗ s⊗ d− u⊗ d⊗ s) (0, 0)

1√
2
(s⊗ d⊗ d− d⊗ s⊗ d) (−1, 0)

1√
2
(s⊗ u⊗ s− u⊗ s⊗ s) (1

2 ,−
√

3
2 )

1√
2
(s⊗ d⊗ s− d⊗ s⊗ s) (−1

2 ,−
√

3
2 )

Removing these weights from the weight diagram, we are left with a singlet 1 with
weight (0, 0). The state corresponding to this singlet is

1√
6

(s⊗ d⊗ u− s⊗ u⊗ d+ d⊗ u⊗ s− d⊗ s⊗ u+ u⊗ s⊗ d− u⊗ d⊗ s) (1.44)

which is the only linear combination-up to overall scale- of u⊗ d⊗ s, u⊗ s⊗ d, d⊗ u⊗ s,
d⊗ s⊗ u, s⊗ u⊗ d and s⊗ d⊗ u which is annihilated by all the raising operators.

Hence we have the decomposition 3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1 where the states in 10
are symmetric, but the state in 1 is antisymmetric. The 8 states have mixed symmetry.

1.4 The Quark Model

It is possible to arrange the baryons and the mesons into SU(3) multiplets; i.e. the states
lie in Hilbert spaces which are tensor products of vector spaces equipped with irreducible
representations of L(SU(3)). To see examples of this, it is convenient to group hadrons into
multiplets with the same baryon number and spin. We plot the hypercharge Y = S + B

where S is the strangeness and B is the baryon number against the isospin eigenvalue I3
for these particles.

1.4.1 Meson Multiplets

The pseudoscalar meson octet has B = 0 and J = 0. The (I3, Y ) diagram is
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Y

I3

+  −

−

1/2

1

−1/2

−1

Mass(Mev)
495

137

549

495

K K

K K
0

0 +  

π π π0

η−1 −1/2 1/2 1

There is also a J = 0 meson singlet η′. The vector meson octet has B = 0 and J = 1. The
(I3, Y ) diagram is

Y

I3

+  −

−

1/2

1

−1/2

−1

Mass(Mev)
892

770

783

892

K K

K K
0

0 +  

0

∗ ∗

∗ ∗

ρ ρ ρ

ω−1 −1/2 1/2 1

There is also a J = 1 meson singlet, φ.

1.4.2 Baryon Multiplets

The baryon decuplet has B = 1 and J = 3
2 with (I3, Y ) diagram

– 27 –



Y

I3

1/2

  1

−1/2

−1

−3/2

  −2

∆ ∆ ∆ ∆

Σ Σ Σ

Ξ Ξ

Ω

+

+

++0

0

0

−

−

−

−

∗ ∗ ∗

∗ ∗

Mass (Mev)

1235

1385

1530

1670

 −3/2       −1      −1/2                   1/2        1        3/2

There is also an antibaryon decuplet with (I3, Y )→ −(I3, Y ). The baryon octet has B = 1,
J = 1

2 with (I3, Y ) diagram

Y

I3

n p

Σ Σ

Ξ Ξ

+  

+  

Σ−

−

Λ

0

0

1/2

1

−1/2

−1

Mass(Mev)
939

1193

1116

1318

−1/2 11/2−1

and there is also a J = 1
2 baryon singlet Λ0∗.

1.4.3 Quarks: Flavour and Colour

On making the identification (p, q) = (I3,
√

3
2 Y ) the points on the meson and baryon octets

and the baryon decuplet can be matched to points on the weight diagrams of the 8 and 10
of L(SU(3)).

Motivated by this, it is consistent to consider the (light) meson states as lying within
a 3 ⊗ 3̄; as 3 ⊗ 3̄ = 8 ⊕ 1, the meson octets are taken to correspond to the 8 states, and
the meson singlets correspond to the singlet 1 states. The light baryon states lie within a
3⊗ 3⊗ 3; the baryon decuplet corresponds to the 10 in 3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1; the
baryon octet corresponds to appropriate linear combinations of elements in the 8 irreps,
and the baryon singlet corresponds to the 1.
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In this model, the fundamental states in the 3 are quarks, with basis states u (up),
d (down) and s (strange). The basis labels u, d, s are referred to as the flavours of the
quarks. The 3̄ states are called antiquarks with basis ū, d̄, s̄. Baryons are composed of
bound states of three quarks qqq, mesons are composed of bound states of pairs of quarks
and antiquarks qq̄. The quarks have J = 1

2 and B = 1
3 whereas the antiquarks have J = 1

2

and B = −1
3 which is consistent with the values of B and J for the baryons and mesons.

The quark and antiquark flavours can be plotted on the (I3, Y ) plane:

Y

I3

1/3

−2/3

d u

s

−1/2                                                                    1/2
I3−1/2                                                                    1/2

Y
2/3

−1/3

s

u d

We have shown that mesons and baryons can be constructed from qq̄ and qqq states
respectively. But why do qq particles not exist? This problem is resolved using the notion
of colour. Consider the ∆++ particle in the baryon decuplet. This is a u⊗u⊗u state with
J = 3

2 . The members of the decuplet are the spin 3
2 baryons of lowest mass, so we assume

that the quarks have vanishing orbital angular momentum. Then the spin J = 3
2 is obtained

by having all the quarks in the spin up state, i.e. u ↑ ⊗u ↑ ⊗u ↑. However, this violates the
Pauli exclusion principle. To get round this problem, it is conjectured that quarks possess
additional labels other than flavour. In particular, quarks have additional charges called
colour charges- there are three colour basis states associated with quarks called r (red), g
(green) and b (blue). The quark state wave-functions contain colour factors which lie in
a 3 representation of SU(3) which describes their colour; the colour of antiquark states
corresponds to a 3̄ representation of SU(3) (colour). This colour SU(3) is independent of
the flavour SU(3).

These colour charges are also required to remove certain discrepancies (of powers of
3) between experimentally observed processes such as the decay π0 → 2γ and the cross
section ratio between the processes e+e− → hadrons and e+e− → µ+µ− and theoretical
predictions. However, although colour plays an important role in these processes, it seems
that one cannot measure colour directly experimentally- all known mesons and baryons
are SU(3) colour singlets (so colour is confined). This principle excludes the possibility
of having qq particles, as there is no singlet state in the SU(3) (colour) tensor product
decomposition 3 ⊗ 3, though there is in 3 ⊗ 3 ⊗ 3 and 3 ⊗ 3̄. Other products of 3 and 3̄
can also be ruled out in this fashion.

Nevertheless, the decomposition of 3⊗3 is useful because it is known that in addition
to the u, d and s quark states, there are also c (charmed), t (top) and b (bottom) quark
flavours. However, the c, t and b quarks are heavier than the u, d and s quarks, and are
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unstable- they decay into the lighter quarks. The SU(3) symmetry cannot be meaningfully
extended to a naive SU(6) symmetry because of the large mass differences which break the
symmetry. In this context, meson states formed from a heavy antiquark and a light quark
can only be reliably put into 3 multiplets, whereas baryons made from one heavy and two
light quarks lie in 3⊗ 3 = 6⊕ 3̄ multiplets.
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