
DIY Hosting for Online Privacy
Shoumik Palkar and Matei Zaharia

Stanford University
[shoumik,matei]@cs.stanford.edu

Abstract
Web users today rely on centralized services for applications
such as email, file transfer and chat. Unfortunately, these ser-
vices create a significant privacy risk: even with a benevolent
provider, a single breach can put millions of users’ data at risk.
One alternative would be for users to host their own servers, but
this would be highly expensive for most applications: a single
VM deployed in a high-availability mode can cost many dollars
per month. In this paper, we propose Deploy It Yourself (DIY),
a new model for hosting applications based on serverless com-
puting platforms such as Amazon Lambda. DIY allows users
to run a highly available service with much stronger privacy
guarantees than current centralized providers, and at a dramati-
cally lower cost than traditional server hosting. DIY only relies
on the security of container isolation and a key manager as op-
posed to the large codebase of a high-level application such as
Gmail (and all the Google teams using Gmail data). With attes-
tation technology such as SGX, DIY’s execution could also be
verified remotely. We show that a DIY email server that sends
500 messages/day costs $0.26/month, which is 50× cheaper
than a highly available EC2 server. We also implement a DIY
chat service and show that it performs well. Finally, we argue
that DIY applications are simple enough to operate that cloud
providers could offer a simple “app store” for using them.

1 Introduction
Web users rely on centralized providers to host communication
services such messaging, email, file sharing, and teleconfer-
encing. These systems offer high availability, low cost, and
ease of use: any user can create an account online to use them.

Unfortunately, in exchange for the high availability and low
cost these services provide, users sacrifice data privacy. Privacy
concerns have been steadily rising on the web due to issues
including promiscuous data resale and surveillance [7, 27, 28].
Even if a provider is perfectly benevolent, it only takes a sin-
gle breach or rogue employee to put users’ data at risk, as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotNets-XVI, November 30–December 1, 2017, Palo Alto, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.
ACM ISBN 978-1-4503-5569-8/17/11. . . $15.00
https://doi.org/10.1145/3152434.3152459

in the 2015 Yahoo! Mail hack that affected nearly one bil-
lion users [38]. Many providers also lock in user data, mak-
ing it hard to change providers, export data if a service shuts
down [17], or control the data’s geographic placement.

One strawman alternative would be for users to host their
own online applications (e.g., email servers), either by running
a server at home or using a VM in a public cloud. Widely used
communication protocols such as SMTP and XMPP already
support this through their federated design. Unfortunately,
hosting highly available servers would be far too expensive for
most users. Even ignoring the complexity of server manage-
ment, which could perhaps be automated by software, a small
virtual server in the public cloud costs at least $5/ month to run
24/7, and monitoring and failover cost even more. Users are
unlikely to take on this type of expense for every service they
use in order to gain more control over their data.

This paper proposes Deploy It Yourself (DIY), a new model
for deploying personal online applications at dramatically
lower costs while maintaining data privacy. The key idea in
DIY is to use emerging serverless computing platforms such as
Amazon Lambda [22] and Azure Functions [6] to host private
online applications. Serverless platforms are highly available,
georeplicated systems that can run arbitrary user code but bill
usage in a pay-per-request fashion at sub-second granular-
ity. These platforms are currently used for event processing
or batch computation in web applications, but we argue that
they are an ideal fit for private online applications as well:
users would pay for just a few hundred requests per day (a
few minutes of total computing time), while still enjoying the
availability of a best-in-class Internet service.

DIY offers much stronger privacy than centralized services
that store and operate over plaintext data. DIY stores encrypted
user data on cloud storage providers such as Amazon S3, and
only decrypts data while processing a request in an OS con-
tainer. Decryption keys are stored in a key management service
such as Amazon KMS [21], which is simple and relatively easy
to protect. DIY thus trusts only the isolation mechanisms of
the serverless platform and the KMS, in contrast to the massive
trusted computing base of an application such as Gmail and
all the internal analytics teams at Google that use Gmail data.
DIY’s narrow interface also means that the container execution
could eventually be verified remotely using technology such
as SGX [1]. Moreover, DIY gives users full control to migrate
their application to another provider, control its geographic
placement to avoid unfriendly surveillance laws, or delete data.

We evaluate the feasibility of DIY through a detailed cost
analysis of five applications and a minimal prototype of a
group chat service. We estimate that based on typical usage at
our organization, services such as email and group chat (e.g.,

https://doi.org/10.1145/3152434.3152459

Slack) could cost users anywhere from $0.12–$0.26/month in
total (including storage and bandwidth), as opposed to roughly
$4.50/month for a small virtual server running 24/7 with no
failover configured on EC2. Likewise, users can run private
teleconference servers at $0.11 for an hour-long HD call. Our
chat prototype achieves acceptable latency, showing that per-
formance need not suffer with DIY applications. Overall, DIY
can be an order of magnitude less expensive than virtual host-
ing platforms while keeping user data private and maintaining
the availability of a top-tier cloud service.

Finally, we speculate that DIY applications may be sim-
ple enough to operate that non-expert users could eventually
install and manage them through an “app store.” This would
give software developers (e.g., a startup company) a powerful
new vehicle for delivering communication applications with
strong security guarantees without having to host and manage
a complete multitenant service on their own, and accelerate
both innovation and user choice in Internet applications.

2 Target Applications

DIY targets online applications that perform independent com-
putations for each user (or each group of interacting users).
Some examples of suitable applications include:
• Chat applications such as instant messenger, IRC and

Slack, which relay messages and store history among either
pairs or groups of users.

• Email, where servers must be up 24/7 to receive messages
and deliver them to multiple client devices.

• File transfer services like Apple’s AirDrop or Dropbox, for
privately sending a large file to a group of users.

• Video or audio conferencing, where DIY can be used to
spin up a private relay server.

• Internet of Things (IoT) services such as a management
application for a smart home.

These applications are a good fit for DIY because they have
low request volume per user—for example, most people only
receive hundreds of emails or chat messages per day. In con-
trast, applications that might not be a good fit for DIY include
content publishing to a large audience (e.g., YouTube) or appli-
cations that must perform complex computation across many
different users (e.g., news feed ranking in a social network).

3 Goals

DIY’s main goals are to provide high availability, low cost, and
privacy for online applications. We next discuss these in turn.

3.1 High Availability

DIY’s first goal is providing high availability for users’ applica-
tions. Availability and reliability are features users expect from
any service, and are the major reasons centralized providers
have grown so popular on the web. Availability requires geo-
replicating the service, monitoring its health so new servers
may take the place of old ones, and so forth. DIY achieves high

availability by using serverless computing platforms, which
handle these tasks transparently beneath their API.

3.2 Low Cost

DIY’s second goal is to run applications at low cost, because
many alternatives to hosting a web service today are free. For
example, many centralized providers offer their functionality
at no cost in exchange for advertising revenue, or only charge
users for premium features. It is thus impractical to ask users to
have to pay several dollars a month for every service they use,
even if DIY provides stronger privacy guarantees. DIY again
leverages serverless platforms to deliver low cost by relying
on their fine-grained pay-per-request pricing model.

3.3 Privacy

DIY’s third goal is privacy. Today’s centralized services store
and access plaintext user data in order to operate. These ser-
vices put data at risk for at least five distinct reasons:
(1) Providers may sell user data, as in the case of email cleanup

service unroll.me, which sold anonymized Lyft ride
receipts to Uber [7].

(2) Providers may use data for ad targeting, which leaks in-
formation about the user [35]. For example, Facebook
reserves the right to use Messenger data this way [14].

(3) Providers use private data for many internal applications
(e.g., to build ad targeting or recommendation engines), cre-
ating a large trusted computing base that must protect data
against internal threats (attackers who gain unprivileged
access to database engines, analytics systems, etc).

(4) Providers must trust potentially thousands of employees
who have access to user data for testing or maintaining
internal systems. Even respected organizations have had
employees snoop on user data illicitly [16, 19, 34].

(5) Providers may lock in data, making it hard to switch to
different services or controlling its geographic placement.

DIY greatly reduces the trusted computing base required
to run an online service. Although DIY itself runs on a public
cloud, it does so through a much narrower interface, placing
trust only in container hosting and a key management service,
in contrast to the vast set of interconnected services at a central-
ized provider. In addition, unlike centralized services, public
cloud providers cannot access plaintext data via these narrow
interfaces without a serious and explicit breach of their secu-
rity models. Finally, DIY gives users back control over data
placement, migration and deletion.
Threat Model. DIY relies on two systems to be reliable in
its threat model: the serverless computing platform (and in
particular, its ability to hide the execution and state of user
functions from attackers) and the key management service
(including providing the user’s key only to her serverless func-
tions). Beyond this, we assume an attacker that has access to the
cloud provider’s internal network, to other cloud services (e.g.,
storage) and to Internet traffic between the user and the cloud.

The data stored in these external services and communicated
between the cloud and the user is encrypted.

DIY aims to protect the plaintext content of the user’s data,
e.g., emails, chatlogs, etc. DIY does not attempt to guard
against traffic analysis or access pattern attacks, although it
may make it harder to run classic attacks such as VM coloca-
tion [30] due to the short lifespan of serverless functions.

We make no assumptions about how serverless functions’
code is stored (i.e., it may be unencrypted and accessible by
adversaries, as is typical in current offerings), but do assume
that the cloud provider faithfully executes the correct function
code, and also assume that the function code itself is trusted
(e.g., the function will not send user data to an adversary).
Why is DIY More Secure? DIY improves privacy over cen-
tralized services for several reasons. First, user data is only
decrypted within the isolated container running a serverless
function. Decryption keys reside within secure key manage-
ment services which even employees of the cloud provider
cannot access. We believe that a breach of the key manage-
ment service (a hardened, audited system [9] whose main goal
is securing encryption keys) is significantly more difficult to
achieve than a breach caused by a rogue employee snooping
through user data at a web company. The provider thus cannot
sell user data or leak it indirectly through ad targeting.

Second, the trusted computing base of a DIY service is
much smaller than that of systems like Gmail. The DIY ar-
chitecture requires trusting only the isolation mechanisms of
the serverless platform and the key management service, as
opposed to the plethora of analytics systems which support
and monetize the centralized service by reading plaintext user
data. In short, in a centralized service the line between the
web service a user interacts with (e.g., Gmail) and the systems
supporting it are blurred, but in DIY the user only needs to
trust a small audited code base.

Third, DIY reduces the number of individuals employed by
the cloud provider that need to access user data. While compa-
nies such as Google are economically incentivized to provide
employees with user data access (e.g., to improve ad target-
ing), public cloud providers generally guarantee that they will
minimize access to user data internally [5]. Key management
services go as far as guaranteeing that no employee can access
user data, and are further incentivized to keep keys secure, both
to maintain product reputation and to avoid litigation [23].

Finally, users have the freedom of migrating their data across
providers at any time, e.g., to move out of insecure geographic
regions or clouds. With centralized services, this is often not
possible. For example, deleting an email may delete a record
in a database, but data may have already been indexed, used to
train a machine learning model, or copied into other services.
Users thus have little control over where their data goes once
they trust a centralized service with it.
Securing DIY with Enclaves. DIY could further protect
function execution using hardware enclave technology such as
Intel SGX [1], which cryptographically attests for the privacy
and integrity of the function’s execution. A serverless platform

Client
Client

Client

Email

f()
f()

f() Encrypted
User data

Load B
alancer

Cert

Serverless
Platform Key

Key Service
API
Call

Figure 1: In DIY, requests spawn serverless functions, which
access a key to securely retrieve data. Dotted boxes represent
the trusted computing base: the isolation mechanisms of the OS
container running the function and the key manager.

with enclave support could load the function into an enclave,
perform its attestation, and then execute it in a manner that the
client can verify. Key management services could also use en-
claves to ensure that they only provide a user’s key to enclaves
running that user’s code. Use of SGX in serverless platforms
has not been explored widely and is not offered by providers
today, but we believe that integrating enclave technology into
these platforms is an interesting avenue for future work.

4 DIY Architecture
In this section we describe a design for DIY using features
found on existing cloud platforms.

DIY relies on a fine-grained pricing model which charges
requests based on execution time. For example, Lambda allo-
cates functions a limited amount of memory (128MB to 1.5GB
at the time of writing), and charges by GB-seconds (the amount
of time the function executes weighted by the amount of mem-
ory allocated to the function). Amazon currently charges a flat
$0.20 fee for every million requests and $0.00001667 for every
GB-second, with one million free requests and 400,000 free
GB-seconds each month. Execution time is measured in incre-
ments of 100ms. Providers thus impose no charge on an idle
function, and cost scales per request (unlike serverless func-
tions, even virtual servers which are billed at a fine granularity
must always be running to listen for new requests). Automatic
scaling and a pay-per-request pricing model are the key advan-
tages of using serverless functions for hosting web services.

Figure 1 summarizes a design for DIY. The user first in-
stalls a serverless function and an event trigger which calls
the function (e.g., a message arriving at port 25 for an SMTP
server). The function runs the code to process a single request.
The serverless platform handles scaling, georeplication, load
balancing among functions, and so forth automatically.

The user configures a storage provider such as Amazon
S3 to store encrypted users data. An encryption key accesses
the stored data, and as outlined in §3.3, we assume that the
serverless function runs in an opaque container and can se-
curely access the key without a cloud provider extracting it.
The function can thus decrypt data in order to process requests.

Users store decryption keys in a secure key management
service such as Amazon KMS [21]. The serverless function
makes an API call to the key management service to obtain
the key during execution, so the function only contains the
key in its memory during execution (i.e., the stored function

Storage Compute Availability Total
Transfer: $0.09
Storage: $0.17 $4.32 Auto-scale: Free $4.58

Table 1: Monthly cost of running an email service on AWS (most
costs do not depend on request volume).

code does not contain the key). The management service au-
thenticates the function’s API call either via a client certificate
provided with the request or by configuring the serverless func-
tion with appropriate permissions (e.g., using IAM roles in
AWS). DIY secures network requests to the function using
standard encryption protocols such as TLS/SSL.

In all, the serverless function follows a standard workflow.
After receiving a client request, the function accesses a key via
an API call to the key manager, and then makes an API call
to a storage provider to retrieve relevant data. It then decrypts
the fetched data, processes the request, writes new data (e.g., a
new chat message or a new email), and returns data requested
by the user as a response. Plaintext user data is only present
in a small trusted computing base (the container running the
serverless function). Note that features like hardware-based
enclaves such as SGX further strengthening the privacy of
DIY by removing the container isolation mechanism from the
trusted computing base.

After installing the serverless function, registering a trigger,
and associating it with a key and storage provider, deploy-
ments require little maintenance by the user. Indeed, we imag-
ine cloud providers facilitating and managing deployment of
DIY services through an “app store”-like user interface, where
users download applications from a marketplace and associate
it with an encryption key, with storage and permissions set
automatically by the interface. We discuss what such a store
might look like in §8.

5 Strawman: Traditional Hosting
As one possible strawman solution, consider hosting a personal
email server using a VM-based server on a public cloud such
as Amazon EC2. The server must always be able to respond
to client requests, but is usually idle and likely receives at most
hundreds of requests per day. VMs have similar security guar-
antees to using a serverless platform (like in DIY), but must
configure high availability manually.

Table 1 summarizes the cost of running an email server on
AWS [3] with costs broken down by component. With no repli-
cation, Amazon charges $4.58 for the smallest VM instance
type. Replicating the instance to another geographic region
doubles this cost. In contrast, §6 shows that we can deploy a
DIY email server configured with high availability and with
the same privacy guarantees for less than $0.30/month due to
its pay-per-request model.

We note that services which host an email server for the user
(which have the same privacy disadvantages of centralized sys-
tems) cost anywhere between $2/month [29] to $5/month [15].
DIY is less expensive than these services and provides stronger
privacy guarantees since data in these hosted services is gen-
erally not encrypted.

6 Evaluation
We evaluate DIY in two ways. First, we estimate the cost of
several services running on DIY using Amazon Lambda with
typical request rates and usage patterns. These results show
that DIY is practical even with today’s serverless pricing, and
supports a variety of common web services. Next, we describe
a prototype XMPP-based chat service. Our prototype moti-
vates DIY by showing it performs comparably to a web server
at much lower cost and almost no management overhead.

6.1 Cost Analysis

Table 2 shows estimated costs for deploying several web ser-
vices with DIY’s design. Unless otherwise noted, for each
service, we use Amazon Lambda as the serverless computing
platform and Amazon S3 as the storage provider1. Account-
ing for both compute and storage, the costs of running these
services is very practical: for most services, users should not ex-
pect to pay more than $1/month, a substantial saving compared
to the cost of hosting a single server (see Table 1).
Group Chat. Group chat is a natural DIY service. Each user
will send only up to hundreds of requests per day (for reference,
the authors’ Slack group sends an average of 5000 Slack mes-
sages per week among a group of 15 people) and each request
requires only the user’s data (i.e., messages which the user
should download or append). At 2000 messages sent/received
per day, users can deploy a DIY chat service for free on Ama-
zon Lambda. Assuming 2GB/month of data transfer and stor-
age, users pay $0.14/month for these services.
Email. Email is another natural service for DIY. A serverless
SMTP service can forward outgoing mail and encrypt and store
incoming mail into a storage provider like Amazon S3. While
Lambda currently does not support SMTP endpoints, we can
use Amazon’s SES service to provide the send service, and use
Lambda as a hook to encrypt email (e.g., using PGP encryption)
before storing it. The compute cost for DIY email remains free
until roughly 33,000 emails are sent or received daily; users
pay $0.26/month for storage (assuming 5GB of data). DIY
could also support features like spam detection using widely
used open source detectors such as SpamAssassin [33].
Cloud Based File Transfer. DIY can be used to create a file
storage and transfer server, providing a service similar to Ap-
ple’s AirDrop service. Clients connect to the service with a
request to transfer a file by filename and a recipient. The sender
uploads the file to temporary storage, and the receiver down-
loads the file simultaneously. Table 2 shows an estimate for
the cost of this service, assuming a 1GB file transfer. We as-
sume only a small number of requests per day (most users
likely don’t transfer large files too often), but allocate more
memory to the Lambda function to buffer the file. The service
runs serverless functions for free in the typical case, with costs
coming from file storage and data transfer.

1Amazon DynamoDB is a low-latency alternative to S3.

Application Provider Daily
Requests

Compute
Time

per Request

Lambda
Mem.
(MB)

Monthly
Storage

(GB)

Monthly
Compute

Cost

Monthly
Storage +

Transfer Cost

Total
Monthly

Cost
Group Chat Lambda 2000 500 ms 128 2 $0.00 $0.14 $0.14

Email Lambda 500 500 ms 128 5 $0.00 $0.26 $0.26
File Transfer Lambda 100 2000 ms 1024 2 $0.00 $0.14 $0.14

IoT Controller Lambda 100 500 ms 128 1 $0.00 $0.12 $0.12
Video Conferencing EC2 1 15 min call - 1 $0.01 $0.83 $0.84

Table 2: Per-user costs of potential DIY services. We report the costs at typical request rates. In comparison, running a single dedicated
cloud server on EC2 costs roughly $4.50. Services which host, e.g., email have similar price points.

IoT Controller. An IoT controller, which relays user queries
to IoT devices, is another service which fits the DIY architec-
ture. Users send requests to the serverless function’s endpoint.
The function stores statistics/metadata about the queries and
then relays the request to an IoT connected device. The func-
tion may also serve other features available in centralized IoT
services, such as dashboards and alerts (where alerts are gener-
ated by IoT devices making requests to the service). At typical
requests rates users can run this service for $0.12/month.
Private Video Conferencing. A video conferencing service
is similar in design to a text-based chat service, but has stricter
delay requirements and more demanding throughput require-
ments. The service works best on a platform where the server-
less function allowed multiple incoming connections and re-
lays data among connected clients. Since Lambda does not
support multiple connections yet, we use a t2.medium EC2
instance (with 4GB of RAM), which is billed per second. Costs
are quite practical: a 15 minute video call every day would cost
roughly $0.84 per month, including data transfer and temporary
storage. For data transfer, we assume Skype’s recommended
bandwidth of 3 Mbps for HD video calls [32], which translates
to around 10GB transferred per month. A single hour-long HD
call will cost roughly $0.11.

6.2 Prototype Implementation

As a proof-of-concept, we also implemented an instant messag-
ing server using Amazon Lambda based on the XMPP protocol.
Our implementation supports basic session initiation and mes-
sage exchange. We tested all components in us-west-2.

Our server deviates from standard XMPP to work around
limitations with existing serverless platforms. First, messages
are tunneled through HTTPS, because Lambda only supports
HTTP(S)-based endpoints. Second, XMPP over HTTP uses
long-polling to receive messages. We implement long polling
by having the serverless function post encrypted messages to
Amazon’s Simple Queue Service, which the client then long
polls. The queuing service provides one million free requests
per month and charges $0.40 for every million requests there-
after. Clients poll 876,000 times per month (assuming the maxi-
mum 20 second poll interval), which is well within the free tier.

We deployed our code on a 448 MB lambda function. Table 3
summarizes our findings. Even though our function only uses
51MB of memory, allocating 448 MB gave significantly better
latencies than a 128 MB function; we found that API calls to
S3 took significantly longer when we allocated less memory
to the function. Note also that the Lambda execution time is

Statistic Value
Med. Lambda Time Billed 200 ms
Med. Lambda Time Run 134 ms
E2E Chat Latency 211 ms
Lambda Memory Allocated 448 MB
Peak Memory Used 51 MB
Med. Lambda Cost per 100K Requests $0.014

Table 3: Statistics collected for our chat service.

only 138ms; most of the time in the end-to-end chat latency
comes from waiting for a message to be delivered via SQS.

Users can send over 25,000 messages per day without incur-
ring any compute cost and pay $0.09 per GB of transfer. We
expect this cost to be low. We also note two qualitative advan-
tages of DIY. First, services are easy to deploy. With some
support from cloud providers, we can imagine a marketplace
which users can use to start their own web services. Second,
DIY keeps data private while providing similar availability
guarantees as centralized services. We believe these two points
present an exciting prospect: for the first time, any web user has
the opportunity to reclaim control of their data and deploy their
own web service as easily as running a program on a laptop.

7 Related Work
Web users are increasingly concerned with privacy, giving
rise to a number of end-to-end encrypted applications such
as Signal [31] and WhatsApp [37]. However, the protocols
backing these applications run on clients and cannot, e.g., host
an SMTP server, since this service need access to plaintext
data. DIY is a broader model to achieve stronger privacy for
applications where servers need to process data.

DIY is related to designs that decouple user data from web
services, such as Amber [10]. Unlike these works, DIY pro-
poses a way for users to host their own web services rather than
relying on centralized entities to manage data. Picocenter [41]
proposes a new hosting platform for “mostly idle” applications
that can efficiently swap out OS containers, and notes that it
could be used for email servers. DIY shows that these services
can run on existing serverless platforms such as Lambda at sim-
ilar performance and cost, and also studies how to minimize
an application’s trusted computing base to improve privacy.

There have been several proposals for peer-to-peer proto-
cols for services like social networking [8, 24], email [20], and
VoIP [18]. These protocols may fit into the DIY design where
each user stores her own data and connects to other users’ ser-
vices to exchange data. They could be significantly cheaper
and more reliable to run on serverless platforms than on users’
personal computers.

Finally, various systems propose performing computations
over encrypted user data [11, 25, 26, 36] using cryptographic
primitives such as homomorphic encryption. Unlike DIY,
these techniques come with large performance overheads and
require adoption from centralized web services. However,
the threat model of these approaches is stronger than DIY’s,
since they do not require trusting a third party provider for
key management. No-trust cryptographic communication pro-
tocols [2, 12] similarly have stronger threat models, but are
harder to deploy (e.g., they require running a mixnet).

8 Discussion and Open Questions
We have shown that DIY could give users significantly stronger
privacy at low cost, without sacrificing the availability of cur-
rent centralized Internet services. We now discuss questions
that remain in improving the performance, usability and secu-
rity of DIY, as well as possible future research directions.

8.1 DIY App Store

In order to materially improve web privacy, DIY applications
must be easily deployable for the average Internet user. With
some support from cloud providers or a third-party market-
place, we believe users may be able to install DIY applications
with one click via an “app store”-like interface, similar to smart-
phone app stores today. These applications can be audited for
security (as in the iOS app review process), and further secured
via sandboxing mechanisms such as Native Client [39]. Users
can then update or delete applications (and any corresponding
data) at any time. The app store would also handle application
resources (e.g., setting up serverless functions, configuring
storage, installing keys, etc) on behalf of the user and report
their total resource consumption in a centralized UI, similar to
the storage management interfaces on current smartphones.

We also believe that many application developers might be
incentivized to adopt the DIY model because they would no
longer have to handle securing each user’s data, and could focus
on functionality rather than service management and security.
Today, any developer with an idea for a useful server-side ap-
plication (e.g., a competitor to Gmail, Slack or Evernote) must
build and operate a complete, secure multitenant offering and
gain users’ trust to bring their idea to market. This creates sub-
stantial capital cost, operating expenses and business risk. In
contrast, with a DIY app store, the developer could publish an
application that gets automatically deployed in an isolated en-
vironment for each customer, and where the app store platform
can give each user simple controls over what the application
may do (e.g., restrict the application to only communicate with
this company’s VPN). If this approach is successful, it cloud
enable a proliferation of high-quality server-side apps simi-
lar to today’s mobile app ecosystems, and greatly reduce the
barriers to innovation and user choice for online applications.

To facilitate building DIY applications, we imagine that de-
velopers might extend the APIs in existing web programming
frameworks, such as Django [13]. These APIs already handle
concerns such as connection management and sessions, and
are already being extended to run on serverless platforms [40].

8.2 Security Guarantees

Serverless functions today run in opaque containers, and hence
provide better security than a centralized service which has ac-
cess to all plaintext data under a threat model where the cloud
provider does not try to extract information from the container.
However, even in cases where the cloud provider is not trusted,
solutions like Intel SGX [1] could provide strong security. We
have not yet explored in detail how to apply these technologies
in DIY, leaving this task to future research.

DIY applications are also susceptible to DDoS attacks,
which can impose high financial cost to the user. These attacks
may be mitigated by throttling requests using tools provided
by the cloud provider (e.g., AWS provides free basic DDoS
protection [4]), but we have not explored them in detail.

8.3 Server Platform Limitations

Current serverless platforms such as Lambda only run func-
tions in response to HTTP(S) requests or other classes of inter-
nal events (e.g., posts to an Amazon SQS queue or uploads to
S3). It would be interesting to expand cloud platforms so they
can efficiently store arbitrary TCP servers with the same avail-
ability guarantees as current serverless platforms. This may
be purely an engineering task, or may require some help from
the application, e.g., for load balancing. Likewise, a second
limitation we found is that platforms do not easily support long
idle connections (the function is billed while the HTTP request
is active). Being able to suspend the user’s container while
a TCP connection remains open [41] could further improve
these platforms’ programmability and performance.

9 Conclusion
We have proposed Deploy It Yourself (DIY), a new model
for deploying personal online applications at dramatically
lower costs while maintaining data privacy. Users can deploy
a highly available email server which keeps data private for
only $0.26/month using DIY, and host a private hour long
HD video call for only $0.11. We argue that DIY applications
are simple enough to develop and deploy that cloud providers
could offer a simple “app store” for using them. The prospect
of online applications with a familiar developer API and effort-
less deployability is an exciting one: for the first time, perhaps,
since the days of ARPANET, any Internet user will be able to
run her own service with strong personal data privacy guaran-
tees without sacrificing the functionality and availability of the
centralized services we all rely on today.

Acknowledgements
We thank Pratiksha Thaker, Deepak Narayanan, Saba Eskan-
darian, and the many members of the Stanford InfoLab for their
valuable feedback on this work. This research was supported in
part by affiliate members and other supporters of the Stanford
DAWN project – Intel, Microsoft, Teradata, and VMware –
as well as NSF CAREER grant CNS-1651570. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

References

[1] Anati, Ittai and Gueron, Shay and Johnson, Simon and Scarlata, Vin-
cent. Innovative Technology for CPU Based Attestation and Sealing.
In Proceedings of the 2nd international workshop on hardware and
architectural support for security and privacy, volume 13, 2013.

[2] S. Angel and S. T. Setty. Unobservable Communication over Fully
Untrusted Infrastructure. In OSDI, pages 551–569, 2016.

[3] Amazon Web Services Simple Monthly Calculator. https:
//calculator.s3.amazonaws.com/index.html.

[4] AWS Shield. https://aws.amazon.com/shield/.
[5] AWS Data Privacy. https://aws.amazon.com/compliance/

data-privacy-faq/.
[6] Azure Functions. https://azure.microsoft.com/en-us/services/functions/.
[7] S. Biddle. Stop Using Unroll.me, right now. It sold

your data to Uber. https://theintercept.com/2017/04/24/
stop-using-unroll-me-right-now-it-sold-your-data-to-uber/.

[8] A. Bielenberg, L. Helm, A. Gentilucci, D. Stefanescu, and H. Zhang.
The Growth of Diaspora-a Centralized Online Social Network in the
Wild. In Computer Communications Workshops (INFOCOM WKSHPS),
2012 IEEE Conference on, pages 13–18. IEEE, 2012.

[9] AWS Key Management Service Cryptographic Details. https://d0.
awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf, 2015.

[10] T. Chajed, J. Gjengset, J. Van Den Hooff, M. F. Kaashoek, J. Mickens,
R. Morris, and N. Zeldovich. Amber: Decoupling User Data from Web
Applications. In HotOS, volume 15, pages 1–6, 2015.

[11] H. Corrigan-Gibbs and D. Boneh. Prio: Private, Robust, and Scalable
Computation of Aggregate Statistics. In 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17), pages
259–282, Boston, MA, 2017. USENIX Association.

[12] H. Corrigan-Gibbs and B. Ford. Dissent: Accountable Anonymous
Group Messaging. In Proceedings of the 17th ACM conference on
Computer and communications security, pages 340–350. ACM, 2010.

[13] Django. http://djangoproject.com.
[14] Facebook Data Policy. https://www.facebook.com/full_data_use_

policy.
[15] GoDaddy Email Hosting. https://www.godaddy.com/email/

professional-email.
[16] Ex-Googler Allegedly Spied on User E-mails, Chats. https:

//www.wired.com/2010/09/google-spy/.
[17] Google Talk is Being Discontinued. https://news.ycombinator.com/

item?id=13950002.
[18] S. Guha and N. Daswani. An experimental study of the skype

peer-to-peer voip system. Technical report, Cornell University, 2005.
[19] Five IRS Employees Charged with Snooping on Tax Returns.

https://www.wired.com/2008/05/five-irs-employ/.
[20] W. R. Kallman, D. L. Hoffman, and M. T. Mitchell. Peer-to-peer email,

Oct. 20 2015. US Patent 9,166,937.
[21] Amazon Key Management Service. https://aws.amazon.com/kms.
[22] Amazon Lambda. https://aws.amazon.com/lambda.
[23] Data Breach Lawsuit. https://www.classaction.com/data-breach/

lawsuit/.
[24] G. Mega, A. Montresor, and G. P. Picco. Efficient dissemination in

decentralized social networks. In Peer-to-Peer Computing (P2P), 2011
IEEE International Conference on, pages 338–347. IEEE, 2011.

[25] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan. CryptDB:
protecting confidentiality with encrypted query processing. In
Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, pages 85–100. ACM, 2011.

[26] R. A. Popa, E. Stark, S. Valdez, J. Helfer, N. Zeldovich, and H. Balakr-
ishnan. Building Web Applications on Top of Encrypted Data Using
Mylar. In 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14), pages 157–172, Seattle, WA, 2014. USENIX
Association.

[27] PRISM Surveillance Program. https://www.theguardian.com/us-news/
prism.

[28] UK Report Finds Rising Digial Privacy Concerns. https://techcrunch.
com/2016/04/21/uk-report-finds-rising-digital-privacy-concerns/.

[29] Rackspace Email Service. https://www.rackspace.com/en-us/
email-hosting/webmail.

[30] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, You, Get Off
of My Cloud: Exploring Information Leakage in Third-Party Compute
Clouds. In Proceedings of the 16th ACM conference on Computer and
communications security, pages 199–212. ACM, 2009.

[31] Signal. https://whispersystems.org.
[32] How Much Bandwidth does Skype Need?

https://support.skype.com/en/faq/FA1417/how-much-bandwidth-
does-skype-need.

[33] Apache SpamAssassin. http://spamassassin.apache.org.
[34] Rogue tax workers snooped on ex-spouses, family members.

https://www.thestar.com/news/canada/2010/06/20/rogue_tax_
workers_snooped_on_exspouses_family_members.html.

[35] P. Vines, F. Roesner, and T. Kohno. Exploring adint: Using ad targeting
for surveillance on a budget âĂŤ or âĂŤ how alice can buy ads to track
bob. In Workshop on Privacy in the Electronic Society, 2017.

[36] F. Wang, C. Yun, S. Goldwasser, V. Vaikuntanathan, and M. Zaharia.
Splinter: Practical Private Queries on Public Data. In NSDI, pages
299–313, 2017.

[37] WhatsApp Security. https://www.whatsapp.com/security/.
[38] Yahoo Says 1 Billion Accounts Were Hacked. https://www.nytimes.

com/2016/12/14/technology/yahoo-hack.html?_r=0, 2016.
[39] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,

S. Okasaka, N. Narula, and N. Fullagar. Native client: A sandbox for
portable, untrusted x86 native code. In Security and Privacy, 2009 30th
IEEE Symposium on, pages 79–93. IEEE, 2009.

[40] Zappa. https://github.com/Miserlou/Zappa.
[41] L. Zhang, J. Litton, F. Cangialosi, T. Benson, D. Levin, and A. Mislove.

Picocenter: Supporting Long-lived, Mostly-idle Applications in Cloud
Environments. In Proceedings of the Eleventh European Conference
on Computer Systems, EuroSys ’16, pages 37:1–37:16, New York, NY,
USA, 2016. ACM.

https://calculator.s3.amazonaws.com/index.html
https://calculator.s3.amazonaws.com/index.html
https://aws.amazon.com/shield/
https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/compliance/data-privacy-faq/
https://azure.microsoft.com/en-us/services/functions/
https://theintercept.com/2017/04/24/stop-using-unroll-me-right-now-it-sold-your-data-to-uber/
https://theintercept.com/2017/04/24/stop-using-unroll-me-right-now-it-sold-your-data-to-uber/
https://d0.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf
https://d0.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf
http://djangoproject.com
https://www.facebook.com/full_data_use_policy
https://www.facebook.com/full_data_use_policy
https://www.godaddy.com/email/professional-email
https://www.godaddy.com/email/professional-email
https://www.wired.com/2010/09/google-spy/
https://www.wired.com/2010/09/google-spy/
https://news.ycombinator.com/item?id=13950002
https://news.ycombinator.com/item?id=13950002
https://www.wired.com/2008/05/five-irs-employ/
https://aws.amazon.com/kms
https://aws.amazon.com/lambda
https://www.classaction.com/data-breach/lawsuit/
https://www.classaction.com/data-breach/lawsuit/
https://www.theguardian.com/us-news/prism
https://www.theguardian.com/us-news/prism
https://techcrunch.com/2016/04/21/uk-report-finds-rising-digital-privacy-concerns/
https://techcrunch.com/2016/04/21/uk-report-finds-rising-digital-privacy-concerns/
https://www.rackspace.com/en-us/email-hosting/webmail
https://www.rackspace.com/en-us/email-hosting/webmail
https://whispersystems.org
h
http://spamassassin.apache.org
https://www.thestar.com/news/canada/2010/06/20/rogue_tax_workers_snooped_on_exspouses_family_members.html
https://www.thestar.com/news/canada/2010/06/20/rogue_tax_workers_snooped_on_exspouses_family_members.html
https://www.whatsapp.com/security/
https://www.nytimes.com/2016/12/14/technology/yahoo-hack.html?_r=0
https://www.nytimes.com/2016/12/14/technology/yahoo-hack.html?_r=0
https://github.com/Miserlou/Zappa

	Abstract
	1 Introduction
	2 Target Applications
	3 Goals
	3.1 High Availability
	3.2 Low Cost
	3.3 Privacy

	4 DIY Architecture
	5 Strawman: Traditional Hosting
	6 Evaluation
	6.1 Cost Analysis
	6.2 Prototype Implementation

	7 Related Work
	8 Discussion and Open Questions
	8.1 DIY App Store
	8.2 Security Guarantees
	8.3 Server Platform Limitations

	9 Conclusion
	References

