Agbirigba: The birth of an Igboid language ${ }^{1}$
Akinbiyi Akinlabi and Ozo-Mekuri Ndimele
Rutgers University and University of Port Harcourt

1.0 Introduction

Agbirigba is a new (possibly artificial) 'lect' based on the Ogbakiri dialect of Ikwere, an Igboid language spoken in Port Harcourt. The Ogbakiri people are surrounded by Emowhua [émòhwá], Tombia [tómbíà], Rumolumini [rúmòlúmìnì]. This artificial language was apparently born from the need to communicate secretly by a (recently) persecuted section of the Ogbakiri community. Our consultants claim that there are only about 30 speakers of Agbirigba ${ }^{2}$, and that speakers of the main Ogbakiri dialect do not understand it.

In this paper, we discuss the phonological strategies used to derive Agbirigba from Ogbakiri. Four aspects of the formation will be discussed: (a) Consonant epenthesis, (b) vowel epenthesis, (c) Tone copying, and (d) tone mapping.

Agbirigba is phonologically interesting in several respects, including the two we discuss here. First, it appears on the surface as if there is epenthesis of a whole [CV] syllable, in specific phonological locations. We claim, following many researchers (Goldsmith 1990, Hayes 1986a,b, McCarthy 1986, McCarthy and Prince 1995, and others) that phonological processes perform one operation at a time, and affect one segment at time. Just as deletion affects one segment at a time, epenthesis inserts one segment at a time. The reasons for this are fairly straightforward. Empirically, the prosodic contexts for consonant epenthesis are in general different from the contexts for vowel epenthesis. Formally, operations like insertion and deletion do not take prosodic categories like the syllable, the foot, etc., as input (McCarthy and Prince 1995). Secondly, Agbirigba provides evidence for the position that single vowels or moraic nasals (Clements and Osu 2005) may not constitute syllables. The syllable, in Agbirigba, must consist minimally of a CV sequence. Vowels and syllabic (or moraic) nasals are "less than" full syllables (cf. Ola 1995, Orie 1997). They are sub-syllabic units in Agbirigba because they do not trigger the processes that full syllables trigger.

2.0 Segmental inventory

Clements and Osu (2005) provide an excellent descriptive account of the Ogbakiri sound inventory. The summary provided in this section is based entirely on their description. For full details, the reader is referred to Clements and Osu's important work.

The authors propose the following vowel inventory for Ogbakiri (Ikwere): a set of nine contrastive oral vowels, and nine contrastive nasal vowels. All the nasal vowels contrast after obstruent consonants, and they all nasalize preceding sonorant consonants. (See Clements and Osu (2005:168) for the examples in (1) and (2)).

[^0](1) Ogbakiri vowel inventory Oral Vowels

(2) Vowel contrast in Ogbakiri

ákã̀	'sickness of hens'
èh ${ }^{\text {wé }}$	'to float'
غ̀htî	'body'
ńhễ	'thing'
ézì	'pig'
odờ	'yellow dye'
$1^{\prime} \mathrm{g}^{\mathrm{w}}$ ¢	'fishbone'
’dờ	'tail'
	'to defecate'

Clements and Osu (2005:169) also propose the following consonant inventory for Ogbakiri. The inventory includes two symmetrical sets of oral and nasal sonorant consonants, in B and C, in (3).
(3) Ogbakiri consonant inventory

Set A: obstruents

voiceless explosive stops	p	t	c	k	k^{w}
voiced explosive stops	b	d	j	g	g^{w}
voiceless fricatives	f	S			
voiced fricatives	V	Z			

Set B: oral non-obstruents
voiced nonexplosive stop
glottalized nonexplosive stop
lateral approximant
central approximant
aspirates
Set C: nasal nonobstruents
plain nasal stops
glottalized nasal stop
central approximants
aspirates
b
'b
1
$\begin{array}{llll}r & y & \text { r }\end{array}$
$\mathrm{h} \quad \mathrm{h}^{\mathrm{w}}$
m n
'm
$\begin{array}{llll}\tilde{r} & \tilde{y} & \tilde{\gamma} & \tilde{W}\end{array}$
$\underset{\sim}{h} \quad h^{W}$
(4) Ogbakiri Word Initial Phonotactics
(a)

ó-t tfí	'leg'
rí- + fí	'head'

ń-dá 'father'
?m'bórô 'dream'
¿̀-fó 'to respect'
(b) mṍn กิ 'oil'
tó: 'lú 'nine'

As seen in the last two forms in (4a), the glottal stop may precede a vowel or a moraic nasal. In part for this distribution, Clements and Osu (2005) propose that moraic nasals are underlyingly nasal vowels, since the glottal stop may not precede any other consonant. In fact no other segments may be preceded by a glottal stop in Ogbakiri. Secondly, Clements and Osu analyze initial vowels, moraic nasals, initial [?V], and initial [rV] as being outside of the "phonological root", or essentially "phonological prefixes". As we show below, initial vowels and moraic nasals pattern together in Agbirigba. (4b) shows that apart from [PV] and [rV], words may begin with other forms of CVs, and these initial CVs form part of the "phonological root".

4.0 From Ogbakiri to Agbirigba

On the surface, the derivation of Agbirigba forms from Ogbakiri appears simple. There is a [-tV-] sequence (the coronal stop [t] followed by a high vowel) before every [CV] syllable of the equivalent Ogbakiri form. The following examples illustrate the point.
(5) The epenthesis of [-tV-]

Ogbakiri	Agbirigba	
imĩ	`itimĩ	nose
á ${ }^{\text {²á }}$	átí ${ }^{\text {º }}$ á	hand
ńnẽ́	ńtinér	mother
ńhễ	ńtíhẽ	thing
owù	òtuwù / òtùhù	goat
と́fó	Étúfó	run
m̀fu	ǹtưu	horn
ńdá	ńtúdá	father
m' ${ }^{\text {ºb }}$ ¢ ómà	ńtư ${ }^{\text {'bá }}$ ótùmà	chest

However, this is where the simplicity ends. There are several constrains on the apparent surface epenthesis of the [-tV-], which we describe below. The examples in (5) give the false impression that the epenthesis takes place only with vowel initial words. This is not the case. If the word begins with a CV sequence, the [-tV-] sequence comes before this
initial CV, as examples in (6) show.
(6) Epenthesis before initial CV-

First, the examples in (6a) on the other hand show that it does not matter whether the form is monosyllabic or disyllabic. The epenthesis occurs before all CV sequences.

Secondly, the examples in (6b) show that the [rV-] "phonological prefixes" are treated as any other initial CV sequences. This is in contrast to the vowel and nasal consonant prefixes in the examples in (5). Recall that Clements and Osu (2005) show that all "phonological prefixes", including the vowel and nasal consonant prefixes, are exempted from nasal harmony and ATR harmony. The forms in (6b) suggest that the vowel and nasal prefixes do not have the same status as [rV-] prefixes. We propose that while the [rV-] prefixes constitute full syllables, the vowel and nasal prefixes are just moraic, that is, they constitute only syllable peaks.

As the examples show, there are no initial epentheses before vowel-initial words (5), but there is epenthesis before consonant initial words (6). If we assume that vowels are syllables, then we must conclude wrongly that there is no epenthesis initially. But this is clearly false, because epenthesis occurs before consonant initial words. If however we assume that epenthesis can occur anywhere, we must find a way to rule out epenthesis before vowels or initial nasals. The simple way to do this is to assume that they do not have the same prosodic status as CV sequences: they are not syllables.

Since only a [-CV-] counts as a syllable, and not a V or a nasal, the number of epenthetic [-tV-] sequences depends on the number of underlying CVs.

5.0 A Phonological Analysis of the Agbirigba epenthetic [-tV-]

In this section, we examine the constraints responsible for the Agbirigba output forms. We propose that the surface forms are derived from the following "constraints". As proposed above, we assume that moraic elements like vowels and non-onset nasal consonants are not syllables.
(7) Descriptive "constraints" for Agbirigba epenthetic [-tV-]
(a) Insert [t] before every syllable.
(b) Split the consonant cluster with a high vowel.
(c) The ATR value of the high vowel depends on the root vowel; and the labial value depends on the labial quality of the following syllable.
(d) The tone of the high vowel is a copy of the tone of the following syllable.

5.1 [t] Epenthesis

The first constraint has two implications: (a) that [t$]$ is inserted by itself and not at the same time with the vowel, and (b) that the target is a syllable and not just any mora. The first point finds support in the fact that in most cases, especially when the onset of the syllable is a nasal consonant, there are two variant forms. The examples in (8) illustrate this.
(8) Output variation before nasal onsets:

Ogbakiri
ó 1 nứ
ámã̀
¡Mĩ̃
ńnẽ́
mĩ́nĨ́

Agbirigba
ót tứn
átưmã̀ / átmã̀ knife
itimì /itmĩ nose
ńtiné / ńtnẽ́
tímĩ́ tínĩ̃ / tmî́ tnĩ́ mother water

This creates all sorts of [t-nasal] clusters that are otherwise unattested in Ogbakiri. One of our consultants regularly uses the only the forms with the clusters, while the other alternates between the forms with an epenthetic vowel and the forms without. In fact, the first consultant also sometimes uses other [t-consonant] clusters, while the second consultant did not. These [t-C] clusters included all classes of consonants. The only common denominator is that they only occur with the epenthetic [t].
(9) Other t-C clusters

Ogbakiri oro	Agbirigba oturo / otro	house
ili	itili / itili	neck
¢́fó	ع́tưfó / Etfó	run
ńdá	ńtúdá / ńtdá	father
á ${ }^{\text {²á }}$	áatı ${ }^{\text {d }}$ ká / át${ }^{\text {² }}$ ká	hand

Therefore, given data like those in (8) and (9) we must conclude that [t] is inserted by itself, and the high vowel is simply inserted to break up the resulting cluster. Inserting a syllable [tV-] and then deleting the high vowel makes no sense, because there is no prosodic motivation for deleting the high vowel to create a consonant cluster! More-over, a deletion analysis would be poor case of the "Duke-of-York" derivation (i.e. inserting a vowel only to delete it later. Pullum 1976, Kenstowicz and Kisseberth 1977).

The second point, that target or domain of epenthesis is the syllable, finds support in the fact that there is no epenthesis before a vowel or a moraic nasal. This is true regardless of whether the vowel or moraic nasal occurs initially as in (10a), or finally as in (10b).
(10) No epenthesis before moraic elements
(a)

Ogbakiri Agbirigba

ite	itite	clay pot
ع́fó	ع́túfó	run
ǹrí	ǹtirí	ten
ijinu	itifíítùù	six

(b)
b̀á
àhíà
lém

tùbíá	come
átíhìa	wash

aspectual marker (completed aspect)

5.2 High vowel epenthesis

As stated above, the sole purpose of the high vowel epenthesis is to break up the resulting consonant cluster from the [t] epenthesis. The surface appearance is thus as if a syllable [-tV-] is inserted. On the surface, the epenthetic high vowel takes one of four melodies: $[\mathrm{i}, \mathrm{I}, \mathrm{u}, \mathrm{v}]$. The data in (11) - (15) illustrate the high vowel epenthesis.
(11) [i] as epenthetic vowel

Ogbakiri	Agbirigba	
rí ${ }^{+}$¢́i	tírítí \downarrow ¢i	head
imĩ	\itmì / itimì	nose
¢ili	¿itil / itili	neck
ite	¡itite	clay pot
ńnế	ńtnẽ́ / ńtinẽ́	mother
mînî́	tmî́ tnî / tímî́ tinĩ	water
rí	tirí	eat
rid3îi	tirì tíd3 3 ii	black
ídsí	ítídzí	yam
isê:	¡itisè	five
ǹrí	ǹtirí	ten

(12) [I] as epenthetic vowel

$\mathrm{o}^{\prime} \mathrm{t}$ ts ${ }_{\text {I }}$		leg
rijirio ${ }^{1} \mathrm{lt} \mathrm{f}_{\text {Í }}^{\prime}$		foot
	ntîjé̃ tırıı tixjaั̀	female
ritfá	tirir titfá	white
ahio	àtíhía (àtéhia) ${ }^{3}$	wash

[^1]| | | shoulder |
| :---: | :---: | :---: |
| ¢ $\dot{\text { sâ }}$: | ètísà seven | |

[u] as epenthetic vowel

òwù	òtùwù / òtùhù	goat
bú	túbú	kill
óbú	otúbú	to kill
ótù	ótutú	one
ó	níllú	tútó'túlú

(14) $[u]$ as epenthetic vowel

		mouth
m' ${ }^{\text {¢ }}$ bó ómà	nıtú ${ }^{\text {b bo }}$ ótùma	chest
òr	otro / oturs	house
jũjé rùkã̀	ńtijué từù tùkã̀	male
biá	tùbíá (tobráa)	come
と́fó	ع́tfó / ' ¢tưfó	run
ع́Wứ	ع́tứWứ	die
¢̀う	ètưbo	two
èto	ètútó	three
غ̀nô:	ètno / Etưno	four

Broadly speaking, the ATR and labial qualities of the epenthetic vowel depend on the following syllable. The ATR quality is straightforward to explain. The epenthetic vowel is [+ATR] ([i], [u]) if the following vowel is [+ATR] (as in (11)), and it is [-ATR] ([I], [U]) if the following vowel is [-ATR] (as in (12)).

The labial quality however depends on the entire following syllable, and not just the following vowel. The high vowel is labial (or rounded) under two conditions: (a) if the following syllable has a labial vowel, or (b) if the following consonant is labial. This implies that the epenthetic vowel can be labial if the following consonant, but not the following vowel is labial. A form like (Ogbakiri) bíá \rightarrow (Agbirigba) tùbíá 'come', confirms this. In this form, the labial consonant [b] is followed by non-labial vowel [I].

The second complication on labiality arises when the stem contains the vowel [a], as in the examples in (15).
(15) Epenthetic vowels before syllables with [a]

Ogbakiri Agbirigba
(a)

m’’’́ ó ómà	ńtư' ${ }^{\text {bó }}$ ótùmà	chest
ámã̀	átmaั̀ / átùmã̀	knife
ńdá	ńtdá / ńtúdá	father

(b)

white
female
eye
hand
seven

When the following syllable has a vowel [a], the epenthetic vowel may be [U] or [I . It is [U] if the following consonant is a non-palatal consonant. Otherwise the epenthetic vowel is [I].

There is an interesting alternation in this regard, involving the epenthetic vowels in the Agbirigba forms for "male" and "female".

Ogbakiri	Agbirigba	
njuẽ rùkà̀	ńtijé́ tưrù tùkã̀	"male"
njuế rịjằ	ńtijéf tirì tijjã	"female"

In the form for 'male' the epenthetic vowel is [u] in [tưrù tùkã̀], but in the form for 'female', the epenthetic vowel is [I$]$, as in [tirì tĩ̃à $]$. One can assume that it is [U$]$ in [tưrù], because the stem has [U], and that it is [I] in [tiri] because the stem has [I]. But the following stem vowels in the next syllable are identical, and yet the epenthetic vowels are different. There are two ways to explain this, we can either blame the quality of the epenthetic vowel on the vowel of the preceding syllable, or we can blame it on the following consonant. We have no evidence in our data that preceding segments affect the quality of the epenthetic vowel, but we have evidence that following segments do. That is, the epenthetic vowel anticipates the quality of the following segments, vowel and consonant. Therefore we propose that the epenthetic vowel is [u] in [tùkã̀], because the following consonant is [DORSAL], and it is [r] in [tifã̀], because the following consonant is a posterior [CORONAL]. ${ }^{4}$

5.3 The tone of the [-tV-] syllable

The final issue is the determination of the tone of the epenthetic syllable. In the default case, the tone of the epenthetic syllable is simply a copy of the tone syllable that it precedes. The nasality of the following vowel is also copied on the high epenthetic vowel.

[^2]| Tone copying | | |
| :---: | :---: | :---: |
| Ogbakiri | Agbirigba | |
| ámã̀ | átừmã̀ / átmã̀ | knife |
| âjã̀ | átĩjà | eye |
| ótu | ótùtu | one |
| ¿̀tó | ¿̀tútó | three |
| ǹrí | ǹtirí | ten |
| ritfá | tiris tritfá | white |

If the Ogbakiri syllable has a contour tone, the contour is split into its component High and Low and distributed over the epenthetic [-tV-] syllable and the input syllable as in (18). The tonal sequences LH and HL are treated as one unit that is mapped onto the derived form.
(18) Mapping Input contour tones

Ogbakiri	Agbirigba	
biá	tưbíá	come
àhîa	àtiohia	wash
moั́noิ์	tứmṍtứn ั̀	oil
ยถวิ.	¿̇tn̄ / غ̀ứno	four
¢̀sâ:	ètísà	seven
isê:	¡itise	five

6.0 Other Issues

While our study of the details of Agbirigba continues, it is important to end this introductory paper by noting that we have not noticed any difference in the phrase structures of Ogbakiri and Agbirigba. Our initial observation is that the phrase structure is exactly that of Ogbakiri. The basic clause structure is "Subject-Verb-Object" (SVO), as the following forms in (19) show. The only variation is the epenthesis of the appropriate [-tV-], before the appropriate CV syllable.
(19) Agbirigba simple phrase

Ogbakiri -	ýgózí	rí	11	íd3í	Ngozi ate yam
Agbirigba -	ńtúgótizí	tirí	tirí	ítídzí	
	Ngozi	eat	past	yam	
Ogbakiri -	ńgózí	wứ	lêm		Ngozi died
Agbirigba -	ńtúgótizí	tứwứ	tílem		
	Ngozi		comp	ted-aspect	

7.0 Conclusions

Given the social and ethnic strife that gave birth to Agbirigba, one would be tempted to conclude that it is an attempt by the speakers to create a means of communication not understood by their persecutors. It is an attempt to create a language. But the details appear to show no more than a complicated language game, based on Ogbakiri. Amazingly, other speakers of Ogbakiri who are not part of the group do not understand Agbirigba, even though ALL of the forms are based on Ogbakiri. Agbirigba reflects at least two things about human language. First, it reflects the computational and creative powers of the human brain. The computation is seen in the assignment of an extra syllable to every underlying syllable, and the assimilation of the vocalic melody to the following vowel. Secondly, Agbirigba shows that it takes very little variation for two speech forms to become distinct lects. In this case, it is the addition of a somewhat predictable syllable to every underlying syllable, with various changes to make the vowel fit the context. More complication arises with the new C-Nasal clusters that Agbirigba permits, but which Ogbakiri forbids.

References

Clements, George, N. and Syslvester Osu. 2002. Explosives, implosives, and nonexplosives; some linguistic effects of air pressure differences in stops. In Laboratory Phonology 7, Carlos Gussenhoven and Natasha Werner (eds.). Pp. 200-350. Berlin: Mouton de Gruyter.

Clements, George, N. and Syslvester Osu. 2003. Ikwere nasal harmony in typological perspective. In Typologie des langues d'Afrique et universaux de la grammaire; Patrick Sauzet and Anne Zribi Hertz (eds.) vol. 2: 70-95. Paris: L’Harmanttan.

Clements, George, N. and Syslvester Osu. 2005. Nasal harmony in Ikwere, a language with no phonemic nasal consonants. Journal of African languages and linguistics 26: 165-200.

Goldsmith, John. 1990. Autosegmental and Metrical Phonology. Oxford: Blackwell.
Hayes, Bruce. 1986a. Inalerability in CV Phonology. Language 62: 321-351.
Hayes, Bruce. 1986b. Assimilation as spreading in Toba Batak. Linguistic Inquiry 17: 467-499.

Kenstowicz, Michael and Charles Kisseberth. 1977. Topics in Phonological Theory. New York: Academic Press.

Ladefoged, Peter, Kay Williamson, Ben Elugbe and Ann Angela Uwulaka. 1976. The stops of Owerri Igbo. Studies in African Linguistics, Supplement 6: 147-163.

McCarthy, John. 1986. OCP effects: Gemination and Antigemination. Linguistic Inquiry 17: 207-263.

McCarthy, John and Alan Prince. 1995. Prosodic Morphology 1986. Technical Report 32. Rutgers Center for Cognitive Science, New Brunswick, NJ.

Ola, Olanike. 1995. Optimality in Benue-Congo prosodic phonology and morphology. Ph.D. dissertation, University of British Columbia.

Orie, Olanike Ola. 1997. Benue-Congo Prosodic Phonology and Morphology in Optimality Theory. Muchen: Lincom Europa.

Pullum, Geoffrey. 1976. The Duke of York gambit. Journal of Linguistics 12: 83-102.
Williamson, Kay. 2000. Reconstructing Proto-Igboid obstruents. In Trends in African Linguistics 4. Proceedings of ACAL 28. Vicki Carstens and Frederick Parkinson (eds.) Pp. 1-18. Trenton: Africa World Press.

[^0]: ${ }^{1}$ The research reported here was supported by a National Science Foundation DEL grant 0553971 awarded to Akinbiyi Akinlabi and Bruce Connell. We are grateful to the NSF for this support.
 ${ }^{2}$ The data discussed here was gathered on July 31, 2010, by both authors. Our consultants were Mr. Ikechi Emesiobi (male, 44) and Apostle Sydney N. Chigeru (male, 51).

[^1]: ${ }^{3}$ Whereever we indicate a form in parenthesis, it is an alternative way we heard the word pronounced.

[^2]: ${ }^{4}$ We must distinguish between anterior and posterior [CORONAL] here because [t] has no influence on the quality of the epenthetic vowel. We also hasten to say that the proposal in this paragraph is tentative, pending further investigation of Agbirigba.

