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Data Dependency

One of the fundamental limitations restricting whether operations can proceed concur-
rently is the concept of data dependency, e.g., a program statement can not proceed until
the data values used in that statement are available. There are several types of dependency;
some you are “stuck with” and some you are not.

Flow dependence This type of dependence is also known as data dependency, a.k.a.
true dependency, a.k.a read-after-write. It occurs when a statement (or an in-
struction) depends on the result of a previous statement (or instruction). For example:

// Assume values for x and y are already computed.

(1) a = x + y ;

(2) b = 2 * a ;

In this example, statement (2) uses the value a produced in statement (1). In this
example, there is nothing that can be done to enable statements (1) and (2) to run
simultaneously.

Anti-dependence Anti-dependence is also known as write-after-read. For example:

// Assume values for x, y, and z are already computed.

(1) a = x + y ;

(2) b = 2 * a ;

(3) a = z + 1 ;

Statement (3) is anti-dependent on statement (2). Notice that statements (2) and (3)
can not be done in reverse order. However, anti-dependence is an example of name

dependency. I.e., the dependency can be removed by re-naming some variables. For
example:

// Assume values for x, y, and z are already computed.

(1) a = x + y ;

(2) b = 2 * a ;

(3) a2 = z + 1 ;

// Replace all subsequent references to ’a’ by ’a2’.

Output dependence Output dependence is also known as write-after-write. For example:

(1) b = 7 ;

(2) a = 2 * b ;

(3) b = 11 ;

Statement (1) is output dependent on statement (3). Notice that the order of these
three statements can be not be changed without changing the final value of either a or
b. Output dependence is another form of name dependence. The dependency can be
removed by re-naming some variables. For example:

(1) b2 = 7 ; // Where b2 is a new name, not used

(2) a = 2 * b2 ; // anywhere else in the program.

(3) b = 11 ;
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Control dependence We start with a very simple example of control dependence:

(1) if ( a == b ) {

(2) c = 2 * a ;

(3) a = a + b ;

}

(4) b = a + b ;

The outcome of statement (1) will determine whether statements (2) and (3) will be
executed.

Formally, a statement S2 is said to be control dependent on another statement S1 if
and only if:

• there exists a path P from S1 to S2 such that every statement Si 6= S1 within P

will be followed by S2 in every possible path to the end of the program, and

• there is an execution path from S1 to the end of the program that does not go
through S2.

Control dependence can be expressed more concisely using the concepts of control flow
graphs, dominance and post-dominance.

Definition A basic block is a sequence of statements with a single entry point, and no
branching statements, except possibly the last statement.

Definition A control flow graph is a directed graph illustrating the possible paths that
execution may take. The nodes of the graph are basic blocks. If it is possible that
control may be transferred from block bi to bj then there exists an edge (bi, bj) in
the control flow graph.

An example control flow graph is illustrated below:

Definition A node d dominates a node n if every path from the entry node to n must
go through d. Notationally, this is written as d dom n (or sometimes d � n). By
definition, every node dominates itself.

In the example above, node 2 dominates nodes 3, 4, 5, and 6. Notice that node 4
does not dominate node 5.
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There are a number of related concepts:

Definition A node d strictly dominates a node n if d dominates n and d does not
equal n.

Definition The immediate dominator or idom of a node n is the unique node
that strictly dominates n but does not strictly dominate any other node that
strictly dominates n. Every node, except the entry node, has an immediate
dominator.

Definition The dominance frontier of a node d is the set of all nodes n such that
d dominates an immediate predecessor of n, but d does not strictly dominate
n. It is the set of nodes where d’s dominance stops.

Definition A dominator tree is a tree where each node’s children are those nodes
it immediately dominates. Because the immediate dominator is unique, it is
a tree. The start node is the root of the tree.

Definition A node z is said to post-dominate a node n if all paths to the exit node of
the graph starting at n must go through z.

Definition The immediate post-dominator of a node n is the post-dominator of n that
doesn’t strictly post-dominate any other strict post-dominators of n.

We now re-consider our definition of control dependence:

Alternate Definition A statement S2 is said to be control dependent on another statement
S1 if and only if:

• there exists a path P from S1 to S2 such that every statement Si 6= S1 within P

is post-dominated by S2, and

• S2 does not post-dominate S1.

Loop-Carried Dependence A loop-carried dependence is a situation where a computation
is data dependent on a value which was created in a previous loop iteration. For
example, Newton’s Method is a efficient approximation technique for finding the zero
crossing1 of a function. I.e., let f : R → R be a scalar function. Then to solve f(x) = 0,
we make an initial guess x0 and then iterate on i using the formula:

xi+1 = xi −
f(xi)

f ′(xi)

where f ′(x) denotes the derivative of f with respect to x.

In the case of Newton’s method, little can be done about the loop-carried dependence,
and in general, one-variable Newton’s method does not lend itself well to parallel im-
plementation.

But, loop carried dependence can be deceptive. Consider the prefix sum problem. Given
a sequence of numbers:

[a0, a1, a2, ..., an−1]

the prefix sum is a sequence:

s0 = a0

si =
∑i

j=0
aj for i = 1, 2, 3, .., , n− 1

1Trivia question: What 70’s musical group has a song that refers to a zero crossing ?
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A simple way to compute the sequence s0, s1, ..., sn−1 is as follows:

void prefix_sum( int n, int a[], int s[] )

{

s[0] = a[0] ;

for ( int i = 1 ; i < n ; i++ ) {

s[i] = s[i-1] + a[i] ;

}

}

We note that the computational complexity of function prefix_sum() is obviously
O(n).

Function prefix_sum() clearly has a loop-carried dependence: the computation of
s[i] requires the value s[i-1] which was computed on the previous loop iteration. It
appears that there is little hope of parallelizing this computation.

But, appearances can be deceiving. One aspect of the art of designing parallel algo-
rithms is to re-think the problem from the beginning. One of the pitfalls in parallel
computation is that our minds can become fixated on an obvious sequential approach
that does not lead to a parallel version. It is often too easy to convince ourselves that
nothing more can be done.

For the prefix sum problem, we can make use of commutativity and associativity of
sums.

Parallel Prefix Sum
Figure 1 illustrates the operations needed to compute parallel prefix sums with n = 16.

The computation proceeds in a sequence of stages. At each stage, some addition operations
can be performed in parallel. Notice there are 2 log2(n) − 1 stages, so the parallel time
complexity is O(log n).

Processor number →

Time ↓

Figure 1: Parallel prefix computation with n = 16.

The careful reader will notice that some operations in the lower half of Figure 1 do not
have to wait until all of the operations in the upper portion are complete. In fact, only
log2(n) stages are needed as shown in the following pseudocode parallel prefix algorithm.
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Parallel Prefix Sum

Input: A number n of the form n = 2k for some k ≥ 0 and and array A of length n.

Output: The sequence of prefix sums stored in array S.

Number of Processors: n. Processors ID numbers are 0, 1, 2., , ., n− 1

Private variables: Processor ID number, p
Loop control variable i
Temporary variable t

Shared variables: Arrays A[] and S[]

Method:

Each processor p performs the following in parallel:
S[p] = A[p] ;

synchronize ; // Barrier synchronization
for i = 1 to k do { // Recall k = log2(n)

if ( p ≥ 2i ) {

t = S[ p ] + S[ p - 2i ] ;

}
synchronize ; // Barrier synchronization

if ( p ≥ 2i ) {
S[p] = t ;

}
synchronize ; // Barrier synchronization

}
output S

Discussion Question

The Fibonacci numbers are defined by:

f0 = 0
f1 = 1
fn = fn−1 + fn−2 for n ≥ 2

A simple sequential implementation is as follows:

void fib( int n, int f[] )

{

f[0] = 0 ;

f[1] = 1 ;

for ( int i = 2 ; i <= n ; i++ ) {

f[i] = f[i-1] + f[i-2] ;

}

}

Function fib() has a loop carried dependence over two consecutive prior iterations.
Can the Fibonacci numbers be computed in parallel ?
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