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Abstract. We provide an algorithm for learning an unknown regular
set of infinite words, using membership and equivalence queries. Three
variations of the algorithm learn three different canonical representations
of omega regular languages, using the notion of families of dfas. One is of
size similar to L$, a dfa representation recently learned using L∗ [7]. The
second is based on the syntactic forc, introduced in [14]. The third is
introduced herein. We show that the second can be exponentially smaller
than the first, and the third is at most as large as the first two, with up
to a quadratic saving with respect to the second.

1 Introduction

The L∗ algorithm learns an unknown regular language in polynomial time using
membership and equivalence queries [2]. It has proved useful in many areas
including AI, neural networks, geometry, data mining, verification and many
more. Some of these areas, in particular verification, call for an extension of the
algorithm to regular ω-languages, i.e. regular languages over infinite words.

Regular ω-languages are the main means to model reactive systems and are
used extensively in the theory and practice of formal verification and synthesis.
The question of learning regular ω-languages has several natural applications
in this context. For instance, a major critique of reactive-system synthesis, the
problem of synthesizing a reactive system from a given temporal logic formula,
is that it shifts the problem of implementing a system that adheres to the spec-
ification in mind to formulating a temporal logic formula that expresses it. A
potential customer of a computerized system may find it hard to specify his re-
quirements by means of a temporal logic formula. Instead, he might find it easier
to provide good and bad examples of ongoing behaviors (or computations) of the
required system, or classify a given computation as good or bad — a classical
scenario for interactive learning of an unknown language using membership and
equivalence queries.

Another example, concerns compositional reasoning, a technique aimed to
improve scalability of verification tools by reducing the original verification task
into subproblems. The simplification is typically based on the assume-guarantee
reasoning principles and requires identifying adequate environment assumptions
for components. A recent approach to the automatic derivation of assumptions
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uses L∗ [5,1,17] and a model checker for the different component playing the
role of the teacher. Using L∗ allows learning only safety properties (a subset of
ω-regular properties that state that something bad hasn’t happened and can be
expressed by automata on finite words). To learn liveness and fairness proper-
ties, we need to extend L∗ to the full class of regular ω-languages — a problem
considered open for many years [11].

The first issue confronted when extending to ω-languages is how to cope
with infinite words? Some finite representation is needed. There are two main
approaches for that: one considers only finite prefixes of infinite computations
and the other considers ultimately periodic words, i.e., words of the form uvω

where vω stands for the infinite concatenation of v to itself. It follows from
McNaughton’s theorem [15] that two ω-regular languages are equivalent if they
agree on the set of ultimately periodic words, justifying their use for representing
examples.

Work by de la Higuera and Janodet [6] gives positive results for polynomially
learning in the limit safe regular ω-languages from prefixes, and negative results
for learning any strictly subsuming class of regular ω-languages from prefixes.
A regular ω-language L is safe if for all w /∈ L there exists a prefix u of w such
that any extension of u is not in L. This work is extended in [8] to learning bi-ω
languages from subwords.

Saoudi and Yokomori [19] consider ultimately periodic words and provide an
algorithm for learning in the limit the class of local ω-languages and what they
call recognizable ω-languages. An ω-language is said to be local if there exist
I ⊆ Σ and C ⊆ Σ2 such that L = IΣω − Σ∗CΣω. An ω-language is referred
to as recognizable [19] if it is recognizable by a deterministic automaton all of
whose states are accepting.

Maler and Pnueli [13] provide an extension of the L∗ algorithm, using ulti-
mately periodic words as examples, to the class of regular ω-languages which are
recognizable by both deterministic Büchi and deterministic co-Büchi automata.
This is the subset for which the straightforward extension of right-congruence to
infinite words gives a Myhill-Nerode characterization [20]. Generalizing this to
wider classes calls for finding a Myhill-Nerode characterization for larger classes
of regular ω-languages. This direction of research was taken in [10,14] and is one
of the starting points of our work.

In fact the full class of regular ω-languages can be learned using the result
of Calbrix, Nivat and Podelski [4]. They define for a given ω-language L the set
L$ = {u$v | u∈Σ∗, v∈Σ+, uvω∈L} and show that L$ is regular by constructing
an nfa and a dfa accepting it. Since dfas are canonical for regular languages,
it follows that a dfa for L$ is a canonical representation of L. Such a dfa can
be learned by the L∗ algorithm provided the teacher’s counter examples are
ultimately periodic words, given e.g. as a pair (u, v) standing for uvω — a quite
reasonable assumption that is common to the other works too. This dfa can be
converted to a Büchi automaton recognizing it. This approach was studied and
implemented by Farzan et al. [7]. For a Büchi automaton with m states, Calbrix

et al. provide an upper bound of 2m + 22m
2+m on the size of a dfa for L$.



So the full class of regular ω-languages can be learnt using membership and
equivalence queries, yet not very efficiently. We thus examine an alternative
canonical representation of the full class of regular ω-languages. Maler and
Staiger [14] show that regular ω-languages can be represented by a family of
right congruences (forc, for short). With a given ω-language they associate a
particular forc, the syntactic forc, which they show to be the coarsest forc
recognizing the language. We adapt and relax the notion of forc to families
of dfas (fdfa, for short). We show that the syntactic forc can be factorially
smaller than L$. That is, there exists a family of languages Ln for which the syn-
tactic fdfa is of size O(n) and the minimal dfa for L$ is of size Ω(n!). We then
provide a third representation, the recurrent fdfa. We show that the recurrent
fdfa is at most as large as both the syntactic fdfa and an fdfa corresponding
to L$, with up to a quadratic saving with respect to the syntactic fdfa.

We provide a learning algorithm Lω that can learn an unknown regular ω-
language using membership and equivalence queries. The learned representations
use the notion of families of dfas (fdfas). Three variations of the algorithm can
learn the three canonical representations: the periodic fdfa (the fdfa corre-
sponding to L$), the syntactic fdfa (the fdfa corresponding to the syntactic
forc) and the recurrent fdfa. The running time of the three learning algorithms
is polynomial in the size of the periodic fdfa.

2 Preliminaries

Let Σ be a finite set of symbols. The set of finite words over Σ is denoted Σ∗,
and the set of infinite words, termed ω-words, over Σ is denoted Σω. A language
is a set of finite words, that is, a subset of Σ∗, while an ω-language is a set of
ω-words, that is, a subset of Σω. Throughout the paper we use u, v, x, y, z for
finite words, w for ω-words, a, b, c for letters of the alphabet Σ, and i, j, k, l,m, n
for natural numbers. We use [i..j] for the set {i, i+ 1, . . . , j}. We use w[i] for the
i-th letter of w and w[i..k] for the subword of v starting at the i-th letter and
ending at the k-th letter, inclusive.

An automaton is a tuple M = 〈Σ,Q, q0, δ〉 consisting of a finite alphabet Σ
of symbols, a finite set Q of states, an initial state q0 and a transition function
δ : Q×Σ → 2Q. A run of an automaton on a finite word v = a1a2 . . . an is a
sequence of states q0, q1, . . . , qn such that qi+1 ∈ δ(qi, ai+1). A run on an infinite
word is defined similarly and results in an infinite sequence of states. The transi-
tion function can be extended to a function from Q×Σ∗ by defining δ(q, λ) = q
and δ(q, av) = δ(δ(q, a), v) for q ∈ Q, a ∈ Σ and v ∈ Σ∗. We often use M(v) as
a shorthand for δ(q0, v) and |M | for the number of states in Q. A transition
function is deterministic if δ(q, a) is a singleton for every q ∈ Q and a ∈ Σ, in
which case we use δ(q, a) = q′ rather than δ(q, a) = {q′}.

By augmenting an automaton with an acceptance condition α, obtaining a
tuple 〈Σ,Q, q0, δ, α〉, we get an acceptor, a machine that accepts some words and
rejects others. An acceptor accepts a word, if one of the runs on that word is
accepting. For finite words the acceptance condition is a set F ⊆ Q and a run
on v is accepting if it ends in an accepting state, i.e. if δ(q0, v) ∈ F . For infinite



words, there are many acceptance conditions in the literature, here we mention
three: Büchi, co-Büchi and Muller. Büchi and co-Büchi acceptance conditions
are also a set F ⊆ Q. A run of a Büchi automaton is accepting if it visits F
infinitely often. A run of a co-Büchi is accepting if it visits F only finitely many
times. A Muller acceptance condition is a map τ : 2Q → {+,−}. A run of a
Muller automaton is accepting if the set S of states visited infinitely often along
the run is such that τ(S) = +. The set of words accepted by an acceptor A is
denoted [[A]].

We use three letter acronyms to describe acceptors. The first letter is d or
n: d if the transition relation is deterministic and n if it is not. The second
letter is one of {f,b,c,m}: f if this is an acceptor over finite words, b, c, m if
it is an acceptor over infinite words with Büchi, co-Büchi or Muller acceptance
condition, respectively. The third letter is always a for acceptor. For finite words
dfas and nfas have the same expressive power. For infinite words the theory
is much more involved. For instance, dbas are weaker than nbas, dmas are as
expressive as nmas, and nbas are as expressive as dmas. A language is said to
be regular if it is accepted by a dfa. An ω-language is said to be regular if it is
accepted by a dma.

An equivalence relation∼ onΣ∗ is a right-congruence if x ∼ y implies xv ∼ yv
for every x, y, v ∈ Σ∗. The index of ∼, denoted |∼| is the number of equivalence
classes of ∼. Given a language L its canonical right congruence ∼L is defined as
follows: x ∼L y iff ∀v ∈ Σ∗ we have xv ∈ L ⇐⇒ yv ∈ L. We use [∼] to denote
the equivalence classes of the right-congruence ∼ (instead of the more common
notation Σ∗/ ∼). For a word v ∈ Σ∗ the notation [v] is used for the class of ∼
in which v resides.

A right congruence ∼ can be naturally associated with an automaton M∼ =
〈Σ,Q, q0, δ〉 as follows: the set of states Q are the equivalence classes of ∼.
The initial state q0 is the equivalence class [λ]. The transition function δ is
defined by δ([u], σ) = [uσ]. Similarly, given an automaton M = 〈Σ,Q, q0, δ〉
we can naturally associate with it a right congruence as follows: x ∼M y iff
δ(q0, x) = δ(q0, y). The Myhill-Nerode Theorem states that a language L is
regular iff ∼L is of finite index. Moreover, if L is accepted by a dfa A then ∼A
refines ∼L. Finally, the index of ∼L gives the size of the minimal dfa for L.

For ω-languages, the right congruence ∼L is defined similarly, by quantify-
ing over ω-words. That is, x ∼L y iff ∀w ∈ Σω we have xw ∈ L ⇐⇒ yw ∈ L.
Given a deterministic automaton M we can define ∼M exactly as for finite
words. However, for ω-regular languages, right-congruence alone does not suffice
to obtain a “Myhill-Nerode” characterization. As an example consider the lan-
guage L1 = Σ∗aω. We have that ∼L1

consists of just one equivalence class, but
obviously an acceptor recognizing L1 needs more than a single state.

3 Canonical Representations of Regular ω-Languages

As mentioned in the introduction, the language L$ = {u$v | u∈Σ∗, v∈Σ+,
uvω∈L} provides a canonical representation for a regular ω-language L. As the
upper bound of going from a given Büchi automaton of size m to L$, is quite

large (2m + 22m
2+m) we investigate other canonical representations.



Second Canonical Representation - Syntactic FORC Searching for a
notion of right congruence adequate for regular ω-languages was the subject of
many works (c.f. [21,12,9,3,14]). In the latest of these [14] Maler and Staiger
proposed the notion of a family of right-congruences or forc.

Definition 1 (FORC, Recognition by FORC [14]). A family of right con-
gruences (in short forc) is a pair R = (∼, {≈u}u∈[∼]) such that

1. ∼ is a right congruence,
2. ≈u is a right congruence for every u ∈ [∼], and
3. x≈u y implies ux ∼ uy for every u, x, y ∈ Σ∗.

An ω-language L is recognized by a forc R = (∼,≈u) if it can be written as a
union of sets of the form [u]([v]u)ω such that uv ∼L u.1

Definition 2 (Syntactic FORC [14]). Let x, y, u ∈ Σ∗, and L be a ω-language.
We use x≈us y iff ux ∼L uy and ∀v ∈ Σ∗ if uxv ∼L u then u(xv)ω ∈ L ⇐⇒
u(yv)ω ∈ L. The syntactic forc of an ω-language L is (∼L, {≈us }u∈[∼L]).

Theorem 1 (Minimality of the Syntactic FORC [14]). An ω-language
is regular iff it is recognized by a finite forc. Moreover, for every regular ω-
language, its syntactic forc is the coarsest forc recognizing it.

Moving to Families of DFAs We have seen in the preliminaries how a right
congruence defines an automaton, and that the latter can be augmented with an
acceptance criterion to get an acceptor for regular languages. In a similar way,
we would like to define a family of automata, and augment it with an acceptance
criterion to get an acceptor for regular ω-languages.

Definition 3 (Family of DFAs (FDFA)). A family of dfas F = (M, {Aq})
over an alphabet Σ consists of a leading automaton M = (Σ,Q, q0, δ) and
progress dfas Aq = (Σ,Sq, s

0
q, δq, Fq) for each q ∈ Q.

Note that the definition of fdfa, does not impose the third requirement in
the definition of forc. If needed this condition can be imposed by the progress
dfas themselves.2

Definition 4 (Syntactic FDFA). Let L be a regular ω-language, and let M be
the automaton corresponding to ∼L. For every equivalence class [u] of ∼L let Aus
be the dfas corresponding to ≈us , where the accepting states are the equivalence
classes [v] of ≈us for which uv ∼L u and uvω ∈ L. We use Fs to denote the
fdfa (M, {Aus }), and refer to it as the syntactic fdfa.3

1 The original definition of recognition by a forc requires also that the language L
be saturated by R. An ω-language L is saturated by R if for every u, v s.t. uv ∼ u
it holds that [u]([v]u)ω ⊆ L. It is shown in [14] that for finite forcs, covering and
saturation coincide. Thus, the definition here only requires that L is covered by R.

2 In [10] Klarlund also suggested the notion of family of dfas. However, that work did
require the third condition in the definition of forc to hold.

3 The syntactic fdfa is well defined since, as shown in [14], uvω ∈ L implies [u][v]ω ⊆ L.



The following is a direct consequence of Theorem 1 and Definitions 1 and 4.

Proposition 1. Let L be an ω-language and Fs = (M, {Aus }) the syntactic
fdfa. Let w ∈ Σω be an ultimately periodic word. Then w ∈ L iff there exists u
and v such that w = uvω, uv ∼L u and v ∈ [[Aũs ]] where ũ = M(u).

To get an understanding of the subtleties in the definition of ≈us we consider
the following simpler definition of a right congruence for the progress automata,
and the corresponding fdfa. It is basically the fdfa version of L$.

Definition 5 (Periodic FDFA). Let x, y, u ∈ Σ∗ and L be an ω-language.
We use x≈up y iff ∀v ∈ Σ∗ we have u(xv)ω ∈ L ⇐⇒ u(yv)ω ∈ L. Let M be the
automaton corresponding to ∼L. For every equivalence class [u] of ∼L let Aup
be the dfa corresponding to ≈up where the accepting states are the equivalence
classes [v] of ≈us for which uvω ∈ L. We use Fp to denote the fdfa (M, {Aup}),
and refer to it as the periodic fdfa.4

It is not hard to see that the following proposition holds.

Proposition 2. Let L be a regular ω-language and Fp = (M, {Aus }) the periodic
fdfa. Let w ∈ Σω be an ultimately periodic word. Then w ∈ L iff there exists u
and v such that w = uvω, uv ∼L u and v ∈ [[Aũp ]] where ũ = M(u).

Maler and Staiger show that the syntactic forc is the coarsest forc. They
do not compare its size with that of other representations. Below we show that it
can be factorially more succinct than the periodic forc, and the same arguments
can be used to show that the syntactic forc is factorially more succinct than
the dfa for L$. Intuitively, the reason is that Fp pertinaciously insists on finding
every period of u, while Fs may not accept a valid period, if it accepts some
repetition of it. For instance, take L2 = (aba + bab)ω. Then Aλp accepts ab as
this is a valid period, yet Aλs rejects it, since λ 6∼L ab but it does accept its
repetition ababab. This flexibility is common to all acceptance conditions used
in the theory of ω-automata (Büchi, Muller, etc.) but is missing from L$ and
Fp. And as the following example shows, it can make a very big difference.

Theorem 2. There exists a family of languages Ln whose syntactic fdfa has
O(n) states but the periodic fdfa has at least n! states.

Proof. Consider the languages Ln over the alphabet Σn = [0..n] described by
the dba B in Fig. 1 on the left.5 The leading automaton L looks like B but has
no accepting states. The syntactic progress dfa for the empty word is described
by Sλ (in the middle), the syntactic progress dfa for any i ∈ [1..n] is given by Si
(on the right), and the syntactic progress dfa for ⊥ is the trivial dfa accepting
the empty language.

4 It is easy to see that uvω ∈ L implies [u][v]ω ⊆ L. Thus the periodic fdfa is well
defined.

5 The automata for the languages Ln are the deterministic version of the automata
for a family Mn introduced by Michel [16] to prove there exists an nba with O(n)
states whose complement cannot be recognized by an nba with fewer than n! states.
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Fig. 1. On the left, Büchi automaton B for Ln, and the syntactic fdfa for Ln.
On the right, leading automaton L for Tn, the syntactic and recurrent progress
automaton for i, Si and Ri.

We now show that the progress automaton for λ in the periodic fdfa requires
at least (n + 1)! states. The idea of the proof is as follows. Given a word v we
use fv to denote the function from [0..n] to [0..n] that satisfies f(i) = δ(i, v).
We show that with each permutation π = (i0 i1 . . . in) of [0..n] we can associate
a word vπ (of length at most 3n) such that fvπ = π (i.e. fvπ (k) = ik for every
k ∈ [0..n]). Let V be the set of all such words. We then show that for each
v1, v2 ∈ V we can find a word y such that v1y

ω ∈ Ln iff v2y
ω /∈ L. Since V is of

size (n+1)! any dfa with fewer than (n+1)! states is bound to make a mistake.

Case Condition y

1 i0 = 0, j0 6= 0 j00j0

2 i0 6= 0, j0 = 0 i00i0

3 i0 6= 0, j0 6= 0, i0 6= j0 i00i0j0

4 i0 = j0 = 0, ik 6= jk, ik = k kjk0jk

5 i0 = j0 = 0, ik 6= jk, jk = k kik0ik

6 i0 = j0 = 0, ik 6= jk, ik 6= k, jk 6= k kjk0jkik

7 i0 = j0 6= 0, ik = k i0kjk0jk

8 i0 = j0 6= 0, jk = k i0kik0ik

9 i0 = j0 6= 0, ik 6= k, jk 6= k i0kjk0jkij

Table 1. Distinguishing word y.

We now show that we can associate
with each π the promised word vπ. With
π0 = (0 1 . . . n) we associate the word
λ. It is known that one can get from any
permutation π to any other permutation
π′ by a sequence of at most n transposi-
tions (transformations switching exactly
two elements). It thus suffices to provide
for any permutations π = (i0 i1 . . . in)
and π′ = (i′0 i

′
1 . . . i

′
n) differing in only two

elements, a word u such that fvπu = π′.
Suppose π and π′ differ in indices j and
k. If both ij 6= 0 and ik 6= 0 then the word
ijikij will take state ij to ik and state ik to ij and leave all other states un-
changed. If ij = 0 the word ik does the job, and symmetrically if ik = 0 we
choose ij . We have thus shown that with each permutation π we can associate
a word vπ such that fvπ = π.

We now show that for each two such words v1, v2 we can find a differentiating
word y. Let fv1 = (i0 i1 . . . in) and fv2 = (j0 j1 . . . jn). Table 1 explains how we
choose y. In the first three cases we get fv1y(0) = 0 and fv2y(0) = ⊥ or vice versa.
In the rest of the cases we get fv1y(0) = k, fv1y(k) = 0 and fv2y(0) = k,fv2y(k) =
⊥ or vice versa. Thus f(v1y)2 = f2v1y(0) = 0 and f(v2y)n = fnv2y(0) = ⊥ for any
n ≥ 2, or vice versa. Thus (v1y)ω ∈ L iff (v2y)ω /∈ L. ut



Families of FDFAs as Acceptors Families of automata are not an operational
acceptor. The answer to whether a given ultimately periodic word w ∈ Σω is
accepted by the fdfa relies on the existence of a decomposition of w into uvω, but
it is not clear how to find such a decomposition. We would like to use families of
automata as acceptors for pairs of words, such that (u, v) being accepted implies
uvω is. We can try defining acceptance as follows.

Definition 6 (FDFA Exact Acceptance). Let F = (M, {Au}) be a fdfa
and u, v finite words. We say that (u, v) ∈ [[F ]]E if v ∈ [[Aũ]] where ũ = M(u).

Since our goal is to use families of automata as acceptors for regular ω-
languages, and an ultimately periodic ω-word w may be represented by different
pairs (u, v) and (x, y) such that w = uvω = xyω (where u 6= x and/or v 6= y) it
makes sense to require the representation to be saturated, in the following sense.

Definition 7 (Saturation). A language L of pairs of finite words is said to be
saturated if for every u, v, x, y such that uvω = xyω we have (u, v) ∈ L ⇐⇒
(x, y) ∈ L.

Calbrix et al. [4] have showed that (1) L$ is saturated, and (2) a regular
language of pairs K is saturated iff it is L$ for some regular ω-language L. It is
thus not surprising that the periodic family is saturated as well.

Proposition 3. Let L be an ω-language and Fp and Fs the corresponding peri-
odic and syntactic fdfas. Then [[Fp]]E is saturated.

The language [[Fs]]E on the other hand, is not necessarily saturated. Consider
L3 = aω + abω. Let x = aa, y = a, u = a, v = a. It can be seen that although
xyω = uvω we have (aa, a) ∈ [[Fs]]E yet (a, a) /∈ [[Fs]]E. The reason is that, in
order to be smaller, the syntactic family does not insist on finding every possible
legitimate period v of u (e.g. period a of a in this example). Instead, it suffices
in finding a repetition of it vk, starting from some u so that reading uv on the
leading automaton takes us back to the state we got to after reading u.

Given a right congruence ∼ of finite index and a periodic word w we say
that (x, y) is a factorization of w with respect to ∼ if w = xyω and xy ∼ x.
If w is given by a pair (u, v) so that w = uvω we can define the normalized
factorization of (u, v) as the pair (x, y) such that (x, y) is a factorization of uvω,
x = uvi, y = vj and 0 ≤ i < j are the smallest for which uvi ∼L uvi+j . Since
∼ is of finite index, there must exist such i and j such that i+ j < |∼|+ 1. If
we base our acceptance criteria on the normalized factorization, we achieve that
[[Fs]]N is saturated as well.

Definition 8 (FDFA Normalized Acceptance). Let F = (M, {Au}) be an
fdfa, and u, v finite words. We say that (u, v) ∈ [[F ]]N if y ∈ AM(x) where (x, y)
is the normalized factorization of (x, y) with respect to ∼M .

Proposition 4. Let L be an ω-language and Fp and Fs the corresponding peri-
odic and syntactic families. Then [[Fp]]N and [[Fs]]N are saturated.



Proof. We show that given an ultimately periodic word w, for any x, y such that
w = xyω, (x, y) ∈ [[Fs]]N iff w ∈ L. This shows that [[Fs]]N is a saturated acceptor
of L. Assume towards contradiction that w = uvω, w ∈ L yet (u, v) /∈ [[Fs]]N.
Let (x, y) be the normalized factorization of (u, v) with respect to ∼L. We have
xy ∼L x, x = uvi and y = vj for some i, j. Let x̃ be M(xyj). Let ỹ = Ax̃(y).
Thus ỹ is not an accepting state. Meaning x̃ ỹω /∈ L.

On the other hand we have that uvω ∈ L and uvω = uvivω = xvω. Since
x̃ ∼L x we get that x̃yω ∈ L and since yω = (yj)ω that x̃(yj)ω ∈ L. Since y≈x̃s ỹ
and x̃y ∼L x̃ it follows that x̃ỹω /∈ L. Contradiction.

Similar arguments show that [[Fp]]N as well is saturated. ut

New Canonical Representation - The Recurrent FDFA We note that
there is some redundancy in the definition of the syntactic fdfa: the condition
that ux ∼L uy can be checked on the leading automaton rather than refine
the definitions of the ≈us ’s. We thus propose the following definition of right
congruence, and corresponding fdfa.

Definition 9 (Recurrent FDFA). Let x, y, u ∈ Σ∗ and L be an ω-language.
We use x≈ur y iff ∀v ∈ Σ∗ if uxv ∼L u and u(xv)ω ∈ L then uyv ∼L u and
u(yv)ω ∈ L. We use Fr to denote the fdfa (M, {Aur}) where the accepting states
of Aur are those v for which uv ∼L u and uvω ∈ L. We refer to Fr as the recur-
rent fdfa.

Note that the proof of Proposition 4 did not make use of the additional
requirement ux ∼L uy of ≈us . The same arguments thus show that the recurrent
fdfa is a saturated acceptor of L.

Proposition 5. Let L be a regular ω-language and Fr = (M, {Aur}) be its re-
current fdfa. Then [[Fr]]N is saturated and is an acceptor of L.

It follows from the definitions of ≈us and ≈ur and ≈up that (a) ≈up refines
≈ur (b) ≈us refines ≈ur and (c) if | ∼L | = n and |≈ur | = m then ≈us is of size
at most nm. Thus there is at most a quadratic size reduction in the recurrent
fdfa, with respect to the syntactic fdfa. We show a matching lower bound.

Proposition 6. There exists a family of languages Tn such that the size of the
syntactic fdfa for Tn is Θ(n2) and the size of the recurrent fdfa is Θ(n).

Proof. Consider the alphabet Σn = {a0, a1, . . . , an−1}. Let Li abbreviate a+i .
Let Ui be the set of ultimately periodic words (L0L1 . . . Ln−1)∗(L0L1 . . . Li)a

ω
i .

Finally let Tn be the union U0∪U1∪....Un−1. In Figure 1 on the right we show its
leading dfa and the syntactic and recurrent progress dfas for state i. (The sink
state is not shown, and ⊕,	 are plus and minus modulo n.) The total number
of states for the recurrent fdfa is (n+ 1) + 3n+ 1 and for the syntactic fdfa it
is (n+ 1) + n(n+ 3) + (n+ 1). ut



Algorithm 1: The Learner Lω

1 Initialize the leading table T = (S, S̃, E, T ) with S = S̃ = {λ} and E = {(λ, λ)}.
2 CloseTable(T , ent1,dfr1) and let M = Aut1(T ).

3 forall u ∈ S̃ do

4 Initialize the table for u, Tu = (Su, S̃u, Eu, Tu), with Su = S̃u = Eu = {λ}.
5 CloseTable(Tu, entu2 ,dfru2 ) and let Au = Aut2(Tu).

6 Let (a, u, v) be the teacher’s response on the equivalence query H = (M, {Au}).
7 while a =“no” do
8 Let (x, y) be the normalized factorization of (u, v) with respect to M .
9 Let x̃ be M(x).

10 if mq(x, y) 6= mq(x̃, y) then
11 E = E ∪ FindDistinguishingExperiment(x, y).
12 CloseTable(T , ent1,dfr1) and let M = Aut1(T ).

13 forall u ∈ S̃ do
14 CloseTable(Tu, entu2 ,dfru2 ) and let Au = Aut2(Tu).

15 else
16 Ex̃ = Ex̃ ∪ FindDistinguishingExperiment(x̃, y).

17 CloseTable(Tx̃, entx̃2 ,dfrx̃2) and let Ax = Aut2(Tx̃).

18 Let (a, u, v) be the teacher’s response on equivalence query H = (M, {Au}).
19 return H

We observe that the recurrent family may not produce a minimal result.
Working with the normalized acceptance criterion, we have that a progress dfa
Pu for leading state u should satisfy [u]([[Pu]] ∩ Cu) = L ∩ [u]Cu where Cu =
{v | uv ∼L u}. Thus, in learning Pu we have don’t cares for all the words that
are not in Cu. Minimizing a dfa with don’t cares is an NP-hard problem [18].
The recurrent fdfa chooses to treat all don’t cares as rejecting.

4 Learning ω-regular Languages via Families of DFAs

In the previous section we have provided three canonical representations of reg-
ular ω-languages as families of dfas. The L∗ algorithm provides us an efficient
way to learn a dfa for an unknown regular language. Have we reduced the prob-
lem to using L∗ for the different dfas of the family? Not quite. This would be
true if we had oracles answering membership and equivalence for the languages
of the leading and progress dfas. But the question we consider assumes we have
oracles for answering membership and equivalence queries for the unknown reg-
ular ω-language. Specifically, the membership oracle, given a pair (u, v) answers
whether uvω ∈ L, and the equivalence oracle answers whether a given fdfa F ,
satisfies [[F ]]N = L and returns a counterexample if not. The counterexample is
in the format (a, u, v) where a is one of the strings “yes” or “no”, and if it is
“no” then uvω is in (L \ [[F ]]N) ∪ ([[F ]]N \ L).

We use a common scheme for learning the three families (Fp, Fs and Fr)
under the normalized acceptance criteria, see Alg. 1. This is a simple modification



of the L∗ algorithm to learn an unknown dfa using membership and equivalence
queries [2]. We first explain the general scheme. Then we provide the necessary
details for obtaining the learning algorithm for each of the families, and prove
correctness.

Auxiliary Procedures The algorithm makes use of the notion of an obser-
vation table. An observation table is a tuple T = (S, S̃, E, T ) where S is a
prefix-closed set of strings, E is a set of experiments trying to differentiate the S
strings, and T : S×E → D stores in entry T (s, e) an element in some domain D.
Some criterion should be given to determine when two strings s1, s2 ∈ S should
be considered distinct (presumably by considering the contents of the respective
rows of the table). The component S̃ is the subset of strings in S considered
distinct. A table is closed if S is prefix closed and for every s ∈ S̃ and a ∈ Σ we
have sa ∈ S.

The procedure CloseTable thus uses two sub-procedures ent and dfr to
fulfill its task. Procedure ent is used to fill in the entries of the table. This
procedure invokes a call to the membership oracle. The procedure dfr is used
to determine which rows of the table should be differentiated. Closing the leading
table is done using ent1 and dfr1. Closing the progress table for u is done using
ent2 and dfr2. (This is where the algorithms for the different families differ.)

A closed table can be transformed into an automaton by identifying the
automaton states with S̃, the initial state with the empty string, and for every
letter a ∈ Σ defining the transition δ(s1, a) = s2 iff s2 ∈ S̃ is the representative of
s1a. By designating certain states as accepting, e.g. those for which T (s, λ) = d∗
for some designated d∗ ∈ D, we get a dfa. Procedures Aut1(T ) and Aut2(T )
are used for performing this transformation, for the leading and progress tables
respectively.

The Main Scheme The algorithm starts by initializing and closing the leading
table (lines 1-2), and the respective progress tables (lines 3-5) and asking an
equivalence query about the resulting hypothesis. The algorithm then repeats
the following loop (lines 7-18) until the equivalence query returns “yes”.

If the equivalence query returns a counter example (u, v) the learner first ob-
tains the normalized factorization (x, y) of (u, v) with respect to its current lead-
ing automaton (line 8). It then checks whether membership queries for (x, y) and
(x̃, y), where x̃ is the state M arrives at after reading x, return different results.
If so, it calls the procedure FindDistinguishingExperiment to find a distinguish-
ing experiment to add to the leading table (line 11). It then closes the leading
table and all the progress tables (lines 12-14) and obtains a new hypothesis H
(line 18).

If membership queries for (x, y) and (x̃, y) return the same results, it calls the
procedure FindDistinguishingExperiment to find a distinguishing experiment in
the progress automaton for x̃ (line 16). It then closes this table (line 17) and
obtains a new hypothesis (line 18).

It is clear that if the learning algorithm halts, its output is correct. We discuss
the time complexity at the end of the section.



Specializing for Fp, Fs and Fr We now turn to provide the details for
specializing Lω to learn the different families Fp, Fs and Fr.

The different learning algorithms differ in the content they put in the progress
tables (i.e. procedure ent2), in the criterion for differentiating rows in a progress
table (i.e. procedure dfr2), the states they choose to be accepting (i.e. proce-
dure Aut2) and the way they find a distinguishing experiment (i.e. procedure
FindDistinguishingExperiment). The details of the latter are given within the
respective proofs of correctness.

For learning the leading automaton, which is same in all 3 families, the fol-
lowing procedures: ent1, dfr1 and Aut1 are used. For u ∈ Σ∗ and xyω ∈ Σω

the procedure ent1(u, xyω) returns whether uxyω is in the unknown language
L. Given two row strings u1, u2 ∈ S the procedure dfr1(u1, u2) returns true, if
there exists w ∈ E s.t. T (u1, w) 6= T (u2, w). We use Aut1 for the procedure
transforming the leading table into a dfa with no accepting states.

For the periodic fdfa, given u, x, v ∈ Σ∗, we have entup (x, v) = T iff u(xv)ω ∈
L, and dfrp(x1, x2) is simply ∃v ∈ E s.t. T (x1, v) 6= T (x2, v). The procedure
Autp declares a state x as accepting if T (x, λ) = T.

Theorem 3. Calling the learner Lω with ent1,dfr1,Aut1 and entp,dfrp,Autp
halts and returns the periodic fdfa.

Proof. We need to show that in each iteration of the while loop at least one
state is added to one of the tables. Suppose the returned counter example is
(u, v), and its normalized factorization with respect to the current leading au-
tomaton M is (x, y). The learner then checks whether membership queries for
(x, y) and (x̃, y) return different results where x̃ = M(x). Let |x| = n and for
i ∈ [1..n] let si = M(x[1..i]) be the state of the leading automaton reached after
reading the first i symbols of x. Then x̃ = sn, and we know that a sequence
of membership queries with (x, y), (s1x[2..n], y), (s2x[3..n], y), and so on, up to
(sn, y) = (x̃, y) has different answers for the first and last queries. Thus, a sequen-
tial search of this sequence suffices to find a consecutive pair, say (si−1x[i..n], y)
and (six[i+1..n], y), with different answers to membership queries. This shows
that the experiment (x[i+1..n], y) distinguishes si−1x[i] from si in the leading
table, though δ(si−1, x[i]) = si, so that adding it, there will be at least one more
state in the leading automaton.

If membership queries for (x, y) and (x̃, y) return same answers, we look for
an experiment that will distinguish a new state in the progress table of x̃. Let
ỹ = Mx̃(y). Let |y| = n and for i ∈ [1..n] let si = Ax̃(y[1..i]) be the state reached
by Ax̃ after reading the first i symbols of y. Thus sn = ỹ. Consider the sequence
(λ, y), (s1, y[2..n]), (s2, y[3..n]), up to (sn, λ). Then we know the entry for first
and last return different results, though they should not. We can thus find, in
an analogous manner to the first case, a suffix y′ of y that is a differentiating
experiment for the progress table for x̃. ut

For the syntactic fdfa, given u, x, v ∈ Σ∗, the procedure entus (x, v) returns
a pair (m, c) ∈ {T,F} × {T,F} such that m = T iff u(xv)ω ∈ L and c = T iff



uxv ∼L u. Given two rows x1 and x2 in the progress table corresponding to lead-
ing state u, the procedure dfrus (x1, x2) returns true if either M(x1) 6= M(x2),
or there exists an experiment v ∈ Eu for which T (u1, v) = (m1, c1), T (u2, v) =
(m2, c2) and (c1 ∨ c2) ∧ (m1 6= m2). The procedure Auts declares a state x as
accepting if T (x, λ) = (T,T).

Theorem 4. Calling the learner Lω with ent1,dfr1,Aut1 and entus ,dfr
u
s ,Auts

halts and returns the syntactic fdfa.

Proof. Again we need to show that each iteration of the while loop creates a state.
The proof for the first part is same as in Thm. 3. For the second part, let (x, y) be
the normalized factorization of the given counter example w.r.t to current leading
automaton. We can consider the sequence of experiments (λ, y), (s1, y[2..n]),
(s2, y[3..n]), up to (sn, λ) as we did in the periodic case. Now, however, the
fact that two experiments (x1, v), (x2, v) differ in the answer to the membership
query does not guarantee they would get distinguished, as this fact might be
hidden if for both M(uxiv) 6= M(u). Let (m0, c0), (m1, c1), . . . , (mn, cn) be the
respective results for the entry query. We know that m0 6= mn. Also, we know
that c0 = T since we chose x and y so that M(xy) = M(x). Let i be the smallest
for which mi−1 6= mi. If all the cj ’s for j ≤ i are T, we can find a distinguishing
experiment as in the case of periodic fdfa. Otherwise let k be the smallest for
which ck = F. Then M(xsk−1y[k..n]) = M(x) but M(xsky[k + 1..n]) 6= M(x).
Therefore y[k + 1..n] distinguishes sk−1y[k] from sk and so we add it to the
experiments Ex̃ of the progress table for x̃. ut

For the recurrent fdfa, given u, x, v ∈ Σ∗ the query entur(x, v) is same as
entus (x, v). The criterion for differentiating rows, is more relaxed though. Given
two rows x1 and x2 in the progress table corresponding to leading state u, the
procedure dfrur(x1, x2) returns true if there exists an experiment v for which
T (x1, v) = (T,T) and T (x2, v) 6= (T,T) or vice versa. The procedure Autr also
declares a state x as accepting if T (x, λ) = (T,T).

Theorem 5. Calling the learner Lω with ent1,dfr1,Aut1 and entur ,dfr
u
r ,Autr

halts and returns the recurrent fdfa.

Proof. The first part is same as in the proof of Theorem 3. For the second part,
let (x, y) be the normalized factorization of (u, v) with respect to M . Let x̃ be
M(x) and let ỹ be Ax̃(ỹ). As in the proof of Theorem 4, consider the sequence
of experiments (λ, y), (s1, y[2..n]), (s2, y[3..n]) up to (sn, λ) and the respective
entries (m0, c0), (m1, c1), . . . , (mn, cn) in the table Tx̃. We know that out of
(m0, c0) and (mn, cn) one is (T,T) and the other one is not. Therefore for some
i we should have that (mi, ci) is (T,T) and (mi−1, ci−1) is not, or vice versa.
Thus, the experiment y[i+ 1..n] distinguishes si−1y[i] from si. ut

Starting with a Given Leading Automaton In [10] Klarlund has shown that
while the syntactic forc is the coarsest forc recognizing a certain language,
it is not necessarily the minimal one. That is, taking a finer (bigger) leading
congruence may yield smaller progress congruences. In particular, he showed a



family of languages Kn where |∼Kn | = 1, and its syntactic progress dfa is of size
O(nn), but it has an fdfa with n states in the leading automaton and n states
in each of the progress dfas — thus the total size is O(n2). The family Kn over
the alphabet Σn = {a1, a2, . . . , an} ∪ {b | b ∈ {0, 1}n} accepts all words where
at some point ai appears infinitely often, all other aj ’s stop appearing, and the
number of 1’s in the i-th track between two occurrences of ai is exactly n. It can
be seen that the recurrent fdfa will also have O(nn) states. The family that has
a total of O(n) states has a leading automaton K with n states, remembering
which letter among the ai’s was the last to occur.

We can change Lω so that it starts with a given leading automaton, and
proceeds exactly as before. The resulting algorithm may end up refining the
leading automaton if necessary. If we apply it to learn Kn by giving it K as the
leading automaton, the learnt syntactic/recurrent families would have O(n2)
states as well.

Time Complexity In each iteration of the while loop, i.e. in processing each
counter example, at least one new state is added either to the leading automaton
or to one of the progress automata. If the leading automaton is learned first, we
are guaranteed that we have not distinguished more states than necessary, and
so, since each operation of the while loop is polynomial in the size of the learned
family, the entire procedure will run in time polynomial in the size of the learned
family. However, it can be that we will unnecessarily add states to a progress
automaton, since the leading automaton has not been fully learned yet, in which
case the progress automaton may try to learn the exact periods as does the
periodic family. At a certain point the leading automaton will be exact and the
size of that progress automaton will shrink as necessary. But the worse case time
complexity for all three families is thus polynomial in the size of the periodic
family, rather than the size of the learned family.

5 Conclusions

We provide an algorithm for learning an unknown regular ω-language, using
membership and equivalence queries. The learning algorithm Lω uses the notion
of a family of dfas (fdfa), with which we can represent and learn three differ-
ent canonical representations: the periodic, syntactic and recurrent fdfas. The
periodic fdfa corresponds to L$ [4], a representation learned via L∗ in [7]. The
syntactic fdfa corresponds to the notion of syntatic family of right congruences,
introduced in [14]. The recurrent fdfa is introduced herein. We have compared
the sizes of the families, and have shown that the recurrent fdfa, is the smallest
among these. The learning algorithm running time for the 3 versions is polyno-
mial in the size of the periodic family. For future work we hope to be able to
provide a learning algorithm polynomial in the size of the learned family.
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