

Oracle Partitioning
in Oracle Database 12c Release 2

Extreme Data Management and Performance for every System

O R A C L E W H I T E P A P E R | M A R C H 2 0 1 7

1 | ORACLE PARTITIONING IN ORACLE DATABASE 12C RELEASE 2

Disclaimer

The following is intended to outline our general product direction. It is intended for information purposes only, and

may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and

should not be relied upon in making purchasing decisions. The development, release, and timing of any features or

functionality described for Oracle’s products remains at the sole discretion of Oracle.

2 | ORACLE PARTITIONING IN ORACLE DATABASE 12C RELEASE 2

Table of Contents

Executive Summary 3

Partitioning Fundamentals 4

Concept of Partitioning 4

Partitioning for Performance 6

Partitioning for Manageability 7

Partitioning for Availability 8

Information Lifecycle Management with Partitioning 8

Partitioning Strategies 9

Data distribution methods for partitioned objects 9

Single (one-level) Partitioning 10

Composite (two-level) Partitioning 10

Partitioning Extensions 10

Interval Partitioning 10

Auto List Partitioning 11

Reference Partitioning 11

Virtual column-based Partitioning 12

Partition Advisor 12

Partitioning Functionality at a Glance 13

Conclusion 14

3 | ORACLE PARTITIONING IN ORACLE DATABASE 12C RELEASE 2

Executive Summary

With more than 20 years in development, Oracle Partitioning has established itself as one of the most

successful and commonly used functionality of the Oracle database. With Oracle Partitioning, a single

logical object in the database is subdivided into multiple smaller physical objects, so-called partitions.

The knowledge about this partitioning enables the database to improve the performance,

manageability, or availability for any application. Whether you have an OLTP, data warehouse, or

mixed workload application and whether your system is hundred of GBs or in the Petabyte range, you

will benefit from Partitioning. Queries and maintenance operations are sped up by an order of

magnitude, while minimizing the resources necessary for processing. Together with zone maps,

functionality available on Engineered Systems, pruning capabilities is unlimited: tables and partitions

are broken down into smaller physical zones that are used for fine-grained data pruning.

Partitioning can greatly reduce the total cost of data ownership, using a “tiered archiving” approach of

keeping older relevant information still online, in the most optimal compressed format and on low cost

storage devices, while storing the hottest data in Oracle’s in-memory column store. When used

together with Automatic Data Optimization and Heat Maps, Partitioning provides a simple and

automated way to implement an Information Lifecycle Management (ILM) strategy. Moreover, Oracle

Database 12c Release 2 introduces partitioned external tables which allows to take advantage of

Oracle’s comprehensive partition pruning: whether the external data is partitioned, such as Hive tables,

or whether the data just happened to be logically separated into individual files, Oracle will only access

the external data that is relevant to satisfy a query.

Oracle Partitioning improves the performance, manageability, and availability for tens of thousands of

customers and hundreds of thousands of applications. Everybody can benefit from it, and you can do

so, too.

4 | ORACLE PARTITIONING IN ORACLE DATABASE 12C RELEASE 2

Partitioning Fundamentals

Concept of Partitioning

Partitioning enables tables and indexes to be subdivided into individual smaller pieces. Each piece of the database

object is called a partition. A partition has its own name, and may optionally have its own storage characteristics.

From the perspective of a database administrator, a partitioned object has multiple pieces that can be managed

either collectively or individually. This gives the administrator considerable flexibility in managing a partitioned object.

However, from the perspective of the application, a partitioned table is identical to a non-partitioned table; no

modifications are necessary when accessing a partitioned table using SQL DML commands. Logically, it is still only

one table and any application can access this one table as they do for a non-partitioned table.

Database objects – tables and indexes - are

partitioned using a partitioning key, a set of

columns that determine in which partition a

given row will reside. The partitions of a table

physically store the data, while the table itself

is metadata only. For example the Orders

table shown in Figure 1 is range-partitioned

on order date, using a monthly partitioning

strategy; the table appears to any application

as a single, 'normal' table. However, the

database administrator can manage and

store each monthly partition individually,

optimizing the data storage according to the importance of data and the frequency of being used. Partitions storing

older ranges of data can be stored in different storage tiers using table compression (or even stored in read only

tablespaces or marked as read only partitions) while the newest partitions are marked for being stored in Oracle’s in-

memory column store.

In case of a composite partitioned table, a partition is further subdivided into subpartitions, using a second set of

columns for further subdivision within a partition; the data placement of a given row is then determined by both

partitioning key criteria and placed in the appropriate subpartition1. With a composite partitioned table the partition

level becomes a metadata layer. Only subpartitions are physically stored on disk.

In the case of a partitioned external table, the concept of having different physical segments for different parts of a

table is extended to physical storage outside the database. Each partition of an external table has one or multiple

individual files that represent the subset of data of the partition. However, unlike regular partitioned tables, the data

placement is not enforced by the database. External tables, partitioned or non-partitioned are read only.

Application developers generally do not have to worry about whether or not a table is partitioned, but they also can

leverage partitioning to their advantage: for example a resource intensive DML operation to purge data from a table

can be implemented using partition maintenance operations, improving the runtime dramatically while reducing the

resource consumption significantly.

1 For simplicity reasons we will refer to partitions only for the rest of this document.

Figure 1: Application and DBA view of a partitioned table

5 | ORACLE PARTITIONING IN ORACLE DATABASE 12C RELEASE 2

Irrespective of the chosen table partitioning strategy, any index of a partitioned table is either coupled or uncoupled

with the underlying partitioning strategy of its table. Oracle Database 12c differentiates between three types of

indexes2.

A local index is an index on a partitioned table that is

coupled with the underlying partitioned table; the index

'inherits' the partitioning strategy from the table.

Consequently, each partition of a local index corresponds to

one - and only one - partition of the underlying table. The

coupling enables optimized partition maintenance; for

example, when a table partition is dropped, Oracle simply

has to drop the corresponding index partition as well. No

costly index maintenance is required since an index partition

is by definition only tied to its table partition; a local index

segment will never contain data of other partitions. Local

indexes are most common in data warehousing

environments.

 A global partitioned index is an index on a partitioned or

non-partitioned table that is partitioned using a different

partitioning-key or partitioning strategy than the table.

Global-partitioned indexes can be partitioned using range or

hash partitioning and are uncoupled from the underlying

table. For example, a table could be range-partitioned by

month and have twelve partitions, while an index on that table could be hash-partitioned using a different partitioning

key and have a different number of partitions. Decoupling an index from its table automatically means that any

partition maintenance operation on the table can potentially cause index maintenance operations. Global partitioned

indexes are more common for OLTP than for data warehousing environments.

A global non-partitioned index is essentially identical to an index on a non-partitioned table. The index structure is

not partitioned and uncoupled from the underlying table. In data warehousing environments, the most common

usage of global non-partitioned indexes is to enforce primary key constraints. OLTP environments on the other hand

mostly rely on global non-partitioned indexes.

All of the before-mentioned index types can be either created on all partitions of a partitioned table – so-called full

indexing, the default – or created only on a subset of the partitions of a partitioned table – so-called partial

indexing
3.

Only indexes on partitioned tables can be partial indexes. Whether a particular partition will be indexed is

determined by the properties of the partition and applied to all partial indexes. With partial indexing you can for

example to not index the most recent partition to avoid any index maintenance work at data insertion time, therefore

maximizing data load speed. Together with zone map data pruning the potential impact of not having indexes for

selective data access of the most recent partition is minimized.

The appropriate indexing strategy is chosen based on the business requirements and access patterns, making

partitioning well suited to support any kind of application.

2 Partitioned external tables cannot be indexed.

3 Unique indexes cannot be partial.

Figure 2: Indexing on partitioned tables

6 | ORACLE PARTITIONING IN ORACLE DATABASE 12C RELEASE 2

Partitioning for Performance

The placement of a given row is determined by its value of the partitioning key. How the data of a table is subdivided

across the partitions is stored as partitioning metadata of a table or index. This metadata is used to determine for

every SQL operation – queries, DML, and partition maintenance operations - what partitions of a table are relevant

for a given operation, and the database automatically only touches relevant partitions or, with zone maps, even only

portions of a partition or a table. By limiting the amount of data to be examined or operated on, partitioning provides

a number of performance benefits.

Partitioning pruning (a.k.a. partition elimination) is the simplest and also the most effective means to improve

performance. It can often improve query performance by several orders of magnitude by leveraging the partitioning

metadata to only touch the data of relevance for a SQL operation. For example, suppose an application contains an

Orders table containing an historical record of orders, and that this table has been partitioned by day on order date.

A query requesting orders for a single week would only access seven partitions of the Orders table. If the table had

2 years of historical data, this query would access seven partitions instead of 730 partitions. This query could

potentially execute 100x faster simply because of partition pruning. Partition pruning works with all of Oracle's other

performance features. Oracle will utilize partition pruning in conjunction with any indexing technique, join technique,

or parallel access method.

Zone maps
4, functionality available on Engineered Systems, expand Oracle’s pruning capabilities beyond the

partitioning metadata of a table. Data pruning can occur on a partition level and even on a much finer granularity, on

‘zones’. A zone is a contiguous region of blocks for which a zone map tracks the minimum and maximum values for

specified columns. Note that these columns are not the partition key columns; while partition key columns can be

included, the most common usage of zone maps is to use other non-partition key columns. For partitioned tables the

zone map also contains the aggregated minimum and maximum column values for every partition. Whenever a SQL

operation is using the columns specified in a zone map to limit (filter) the data of interest, Oracle will compare the

filter and the zone map information and not access zones and partitions that do not contain matching data. Zone

maps are similar to Exadata Storage indexes in that sense, but provide additional benefits that complement Storage

Indexes. Zone maps are persistent data structures processed in the database and allow the specification of local

columns – columns of the table with the zone map - and joined columns.

Having zone maps in the database allows every statement to benefit. Using the Orders table from the previous

example, any query requesting information about orders that were shipped in a specific time period has to access all

partitions of the Orders table (because the partitioning key is order date, not ship date). While there is a correlation

between the order date and the ship date, it is impossible to limit the partitions being accessed using the ship date

alone. With zone maps, however, the database knows about the minimum and maximum values for ship date as

well; the zone map stores this information for every partition. If the order data and ship date are within a business

week of one another, queries asking for products that were shipped in the last three weeks would only have to

access the partitions for orders of the last four weeks, and within these partitions only zones that were shipped in

that time period. You get partition and zone map pruning without having specified any filter criteria on the partition

key column.

Partitioning can also improve the performance of multi-table joins, by using a technique known as partition-wise

joins. Partition-wise joins can be applied when two tables are being joined together, and at least one of these tables

is partitioned on the join key. Partition-wise joins break a large join into smaller joins of 'identical' data sets for the

joined tables. 'Identical' here is defined as covering exactly the same set of partitioning key values on both sides of

4 See the Oracle Data Warehousing Guide for a detailed and comprehensive discussion of zone maps.

7 | ORACLE PARTITIONING IN ORACLE DATABASE 12C RELEASE 2

the join, thus ensuring that only a join of these 'identical' data sets will produce a result and that other data sets do

not have to be considered. Oracle is using either the fact of already (physical) equi-partitioned tables for the join or is

transparently redistributing (= “repartitioning”) one table – the smaller one - at runtime to create equi-partitioned data

sets matching the partitioning of the other table, completing the overall join in less time, using less resources. This

offers significant performance benefits both for serial and parallel execution.

Partitioning for Manageability

By partitioning tables and indexes into smaller, more manageable units, database administrators can use a "divide

and conquer" approach to data management. Oracle provides a comprehensive set of SQL commands for

managing partitioning tables. These include commands for adding new partitions, dropping, splitting, moving,

merging, truncating, and exchanging partitions.

With partitioning, maintenance operations can be focused on particular portions of tables. For example, a database

administrator could compress a single partition containing say the data for the year 2015 of a table, rather than

compressing the entire table; as part of the compression operation, this partition could also being moved to a lower

cost storage tier, reducing the total cost of ownership for the stored data even more. This partition maintenance

operation can be done in a completely online fashion, allowing both queries and DML operations to occur while the

data maintenance operation is in process.

Oracle Database 12c further allows partition maintenance operations on multiple partitions as single atomic

operation: for example, you can merge the three partitions ‘January 2012’, ‘February 2012’, and ‘March 2012’ into a

single partition ‘Q1 2012’ with a single merge partition operation.

Another typical usage of partitioning for manageability is to support a 'rolling window' load process in a data

warehouse. Suppose that a DBA loads new data into a table on daily basis. That table could be range-partitioned so

that each partition contains one day of data. The load process is simply the addition of a new partition. Adding a

single partition is much more efficient than modifying the entire table, since the DBA does not need to modify any

other partitions.

Removing data in a very efficient and elegant manner is another key advantage of partitioning. For example, to

purge data from a partitioned table you simply drop or truncate one or multiple partitions, a very cheap and quick

data dictionary operation, rather than issuing the equivalent delete command, using lots of resources and touching

all the rows to being deleted. The common operation of removing data with a partition maintenance operation such

as drop or truncate is optimized in Oracle Database 12c: these operations do not require any immediate index

maintenance to keep all indexes valid, making it fast metadata-only operations.

While Partition maintenance operations allow the fast removal of data, the granularity of such an operation is tied to

the bounds of the partitions being dropped or truncated. But as often in life, there are rules to the exception: for

example, as part of you rolling window operation you want to remove all data that is older then 3 years but you must

not remove any order that has not been officially closed. While this is a very rare situation for your business, this

business requirement rules out to use a truncate or drop partition out of the box. You have to cope with this situation

programmatically by preserving the outliers. Beginning with Oracle Database 12c Release 2, partition maintenance

operations got enhanced to allow filtering of data as part of any partition maintenance operation. In our example,

8 | ORACLE PARTITIONING IN ORACLE DATABASE 12C RELEASE 2

moving the partition and preserving all old records that are not officially closed achieve the removal of the data.

Filtered partition maintenance operations bring data maintenance to partition maintenance operations5.

Partitioning for Availability

Partitioned database objects provide partition independence. This characteristic of partition independence can be an

important part of a high-availability strategy. For example, if one partition of a partitioned table is unavailable, all of

the other partitions of the table remain online and available. The application can continue to execute queries and

transactions against this partitioned table, and these database operations will run successfully if they do not need to

access the unavailable partition.

The database administrator can specify that each partition be stored in a separate tablespace; this would allow the

administrator to do backup and recovery operations on an individual partition or sets of partitions (by virtue of the

partition-to-tablespace mapping), independent of the other partitions in the table. Therefore in the event of a

disaster, the database could be recovered with just the partitions comprising of the active data, and then the inactive

data in the other partitions could be recovered at a convenient time, thus decreasing the system down-time. The

most relevant data becomes available again in the shortest amount of time, irrespective of the size of the overall

database.

Moreover, partitioning can reduce scheduled downtime. The performance gains provided by partitioning may enable

database administrators to complete maintenance operations on large database objects in relatively small batch

windows.

Information Lifecycle Management with Partitioning

Today's challenge of storing vast quantities of data for the lowest possible cost can be optimally addressed by using

Oracle Partitioning with Automatic Data Optimization and Heat Map. The independence of individual partitions,

together with efficient and transparent data maintenance operations for partitions, are key enablers for addressing

the online portion of a “tiered archiving” strategy. Specifically in tables containing historical data, the importance -

and access pattern – of the data heavily relies on the age of the data; Partitioning enables individual partitions (or

groups of partitions) to be stored on different storage tiers, providing different physical attributes – such as

compression or whether data is read only or not - and price points.

In addition to read only tablespaces - which prevent any physical changes to the underlying storage container(s) of a

tablespace - Oracle Database 12c Release 2 offers the capability to set individual partitions to read only. Setting a

partition to read only prevents any DML of the data within a partition to prevent any inadvertent changes to the data

within a read only partition. Technically speaking, read only guarantees that the data in all existing columns of the

table at the point when a partition was made read only must not change. For example, in an Orders table containing

5 years worth of data, you could store only the most recent quarter on an expensive high-end storage tier and keep

the rest of the table (almost 90% of the data) on an inexpensive low cost storage tier. You furthermore can store the

oldest 2 years as read only partitions, the data that has to be kept in the system for regulatory purposes but is never

changed again.

5 Filtered partition maintenance operations allow filter predicates on the partitioned only.

9 | ORACLE PARTITIONING IN ORACLE DATABASE 12C RELEASE 2

The addition of Automatic Data Optimization – ADO – allows you to define policies that specify when storage tiering

and compression tiering should be implemented for a given partition, based on the usage statistics automatically

collected by Heat Map. ADO policies are automatically evaluated and executed by the Oracle Database without any

manual intervention required, making it possible to experience the cost savings and performance benefits of storage

tiering and compression without creating complex scripts and jobs.

Partitioning Strategies

Oracle Database 12c Release 2 provides the most comprehensive set of partitioning strategies, allowing customers

to optimally align the data subdivision with the actual business requirements. All available partitioning strategies rely

on fundamental data distribution methods that can be used for either single (one-level) or composite (two-level)

partitioned tables. Furthermore, Oracle provides a variety of partitioning extensions, increasing the flexibility for

the partitioning key selection, providing automated partition creation as-needed, sharing partitioning strategies

across groups of logically connected tables through parent-child relationships, and advising on partitioning strategies

for non-partitioned objects.

Data distribution methods for partitioned objects

Oracle Partitioning offers three fundamental, basic data distribution methods that control how the data is placed into

partitions, namely:

» Range: The data is distributed based on a range of values of the partitioning key (for a date column as the

partitioning key, the 'January-2016' partition contains rows with the partitioning-key values between '01-JAN-2016'

and '31-JAN-2016'). Range distribution is a continuum without any holes. Ranges are always defined as an

excluding upper boundary of a partition, and the lower boundary of a partition is automatically defined by the

exclusive upper boundary of the preceding partition. Partition boundaries are always increasing; as a

consequence, the first partition of a table – the one with the lowest range boundary - is always open-ended

towards lower values. The last partition – the one with the highest partition boundary – can be optionally set to

being open-ended as well. Range partitioning can have one or multiple partition key columns, up to 16 columns.

» List: The data distribution is defined by a discrete list of values of the partitioning key (for a region column as the

partitioning key, the 'North America' partition may contain values 'Canada', 'USA', and 'Mexico'). A special

'DEFAULT' partition can be defined to catch all values for a partition key that are not explicitly defined by any of

the lists. For heap tables, list partitioning can have one or multiple partition key columns, up to 16 columns. Index-

organized tables only support one partition key column.

» Hash: An internal hash algorithm is applied to the partitioning key to determine the partition for a given partition

key. Unlike the other two data distribution methods, hash does not provide any logical mapping between the data

and any partition, but it provides roughly equi-balanced sizes of the partitions. You get the best balance of

partition sizes with a sufficient number of distinct values for the partitioning key and by choosing a number of

partitions that is a power of two, e.g. 4, 16, 64. Hash partitioning can have one or multiple partition key columns,

up to 16 columns.

Using these three fundamental data distribution methods range, list, and hash, a table can be partitioned either as

single or composite partitioned table.

In addition to the fundamental methods Oracle offers System partitioning: the database only provides the

framework to partition a table but does not store any metadata to determine the data placement. The application

layer manages the data placement, both for data insertion and for data access (if the application wants to leverage

partition pruning). System partitioning is designed as development framework with special needs for data placement

or access, such as domain indexes, and only supports heap tables with single (one-level) partitioning. The definition

and management of the equivalent of a partition key is solely in the discretion of the application.

10 | ORACLE PARTITIONING IN ORACLE DATABASE 12C RELEASE 2

Single (one-level) Partitioning

A table is defined by specifying one of the above-mentioned data distribution methodologies, using one or more

columns as the partitioning key. For example consider a table with a number column as the partitioning key and two

partitions 'less_than_five_hundred' and 'less_than_thousand', the 'less_than_thousand' partition contains rows

where the following condition is true: 500 <= Partitioning key <1000. The partitions of a single partitioned table or

index are individual physical segments in the database that store the actual data of the object.

You can specify range, list, hash, and system partitioned heap tables and index-organized tables. Hash clusters can

be partitioned using range partitioning only6.

Composite (two-level) Partitioning

Combinations of two data distribution methods are used to define a composite partitioned table. First, the table is

partitioned by data distribution method one and then each partition is further subdivided into subpartitions using the

second data distribution method. For example, a range-list composite partitioned table is first range-partitioned, and

then each individual range-partition is further sub-partitioned using the list partitioning technique. Partitions of a

composite partitioned table are metadata and do not represent the actual data storage: the subpartitions of a

partition of a composite partitioned table or index are the physical segments in the database that store the data of a

given partition.

Available composite partitioning techniques are range-hash, range-list, range-range, list-range, list-list, list-hash, as

well as hash-hash, hash-range, and hash-list. Composite partitioning is only supported for heap tables and not

supported for index-organized tables or hash clusters.

Global partitioned indexes can be partitioned using range or hash partitioning. Composite partitioning is not

supported for global partitioned indexes.

Partitioning Extensions

Oracle provides partitioning extensions that enhance the usage of the basic partitioning strategies. Partitioning

extensions enhance the manageability of partitioned objects and provide more flexibility in defining the partitioning

key of a table or even groups of tables that are logically connected through parent-child relationships. Partitioning

extensions are only supported for heap tables and not supported for index-organized tables.

Interval Partitioning

Interval partitioning extends the capabilities of the range method by defining equi-partitioned ranges for any future

partitions using an interval definition as part of the table metadata. An interval partitioned table can automatically

grow up to the maximum total number of 1048575 partitions without any user intervention, even when the partitioned

table is initially created only with one partition only. Rather than creating future individual range partitions explicitly,

Oracle will create any new partition automatically as-needed whenever data for such a partition is inserted for the

very first time. Interval partitioning greatly improves the manageability of a partitioned table. For example, an interval

6 Clusters are schema objects that consist of multiple tables stored within its data structure. With Hash Clusters the database stores together rows that

have the same hash value. Clusters are used predominantly in OLTP environments to minimize IO.

11 | ORACLE PARTITIONING IN ORACLE DATABASE 12C RELEASE 2

partitioned table could be defined so that Oracle creates a new partition for every day in a calendar year; a partition

is then automatically created for 'September, 19th 2015' as soon as the first record for this day is inserted into the

database.

Interval partitioning is an extension to range partitioning. Any range partitioned table can be evolved into an interval

partitioned table by specifying an interval definition for future partitions. The only requirement for this to happen is

that the last partition of the range partitioned table has a discrete upper bound and not MAXVALUE prior to being

changed. Having an open-ended infinite upper bound is contradictory to the creation of future partitions based on an

interval definition.

The available techniques for an interval partitioned table are interval, interval-list, interval-hash, and interval-range.

Oracle Database 12c Release 2 also supports the combination of the partitioning extensions interval partitioning and

reference partitioning. Interval as subpartitioning strategy for any top-level partitioning method (*-Interval) is currently

not supported.

Auto List Partitioning

Similar to interval partitioning, auto list partitioning enables the automatic creation of new list partitions as soon as a

new partition key value is inserted into an auto list partitioned table. Every distinct value will be stored in its individual

partition if the value is not already included as partition key value of an existing partition.

Auto list partitioning is an extension to list partitioning, and any existing list partitioned table can be evolved into an

auto list partitioned table. The only requirement for this to happen is that the list partitioned table must not have a

DEFAULT partition defined prior to being changed. Having this catch-it-all partition is contradictory to the automatic

creation of new partitions for any new partition key value.

Auto list partitioning is available as partition extension. It is currently not supported as subpartitioning strategy and

not supported in combination with reference partitioning today.

Reference Partitioning

Reference partitioning allows partitioning a table by leveraging an existing parent-child relationship. The primary key-

foreign key relationship is used to inherit the partitioning strategy of the parent table to its child table without the

necessity to store the parent's partitioning key columns in the child table. The partitioning strategy of a parent and

child table becomes identical. For every partition in the parent table there is exactly one partition in the child table,

and the child partitioning strategy is solely defined through the primary key-foreign key relationship. All child records

of a given primary key value are stored in the “same” partition of the child table than the parent record. Without

reference partitioning you have to duplicate all partitioning key columns from the parent table to the child table if you

want to take advantage of the same partitioning strategy. Reference partitioning allows you to naturally leverage the

parent-child relationship of the logical data model without duplication of the partitioning key columns, thus reducing

the manual overhead for de-normalization and saving space. Reference partitioning also transparently inherits all

partition maintenance operations that change the logical shape of a table from the parent table to the child table.

Partition-wise joins are automatically enabled when joining the equi-partitions of the parent and child table,

improving the performance for this operation. For example, a parent table Orders is range partitioned on the order

date column; its child table Order Items does not contain the order date column but can be partitioned by reference

to the Orders table. If the orders table is partitioned by month, all order items for orders in 'March 2016' will then be

stored in a single partition in the Order Items table, equi-partitioned to the parent table Orders. If a partition 'April

12 | ORACLE PARTITIONING IN ORACLE DATABASE 12C RELEASE 2

2016' is added to the Orders table – either explicitly or through Interval Partitioning - Oracle will transparently add

the equivalent partition to the Order Items table.

Oracle Database 12c Release 2 supports the combination of reference partitioning with both virtual column-based

partitioning and interval partitioning. Auto list partitioning is not supported together with reference partitioning.

Virtual column-based Partitioning

Virtual columns allows the partitioning key to be defined by an expression, using one or more existing columns of a

table, and storing the expression as metadata only. Partitioning using virtual columns enables a more

comprehensive match of the business requirements; business attributes not explicitly defined as columns in a table

can be used to define the partitioning strategy of an object. It is not uncommon to see columns being overloaded

with information; for example a 10-digit account id can include account branch information as the leading three

digits. With the extension of virtual column-based partitioning, the Accounts table containing a column account id

can be extended with a virtual (derived) column account branch that is derived from the first three digits of the

account id column that becomes the partitioning key for this table.

Oracle Database 12c Release 2 supports virtual column-based partitioning with all other partitioning extensions.

Partition Advisor

SQL Access Advisor generates partitioning recommendations, in addition to recommendations for indexes,

materialized views and materialized view logs. Recommendations generated by the SQL Access Advisor will show

the anticipated performance gains that will result if the recommendations were implemented. The generated script

with the recommendations can either be executed manually, as complete script or individual recommendations, or

being submitted into a queue within Oracle Enterprise Manager.

The Partition Advisor is integrated into the SQL Access Advisor.

13 | ORACLE PARTITIONING IN ORACLE DATABASE 12C RELEASE 2

Partitioning Functionality at a Glance

The following table shows all available basic partitioning methods in Oracle Database 12c Release 2:

BASIC PARTITIONING METHODS IN ORACLE DATABASE 12C RELEASE 2

Partitioning Strategy Data Distribution Sample Business Case

Range Partitioning Consecutive ranges of values. Orders table range partitioned by order_date

List Partitioning Unordered lists of values. Orders table list partitioned by country

Hash Partitioning Internal hash algorithm Orders table hash partitioned by customer_id

Composite Partitioning

 Range-

[Range | List | Hash]

 List-

[Range | List | Hash]

 Hash-

[Range | List | Hash]

Combination of two of the

above-mentioned basic

techniques of Range, List, and

Hash

Orders table is range partitioned by order_date and

sub-partitioned by hash on customer_id

Orders table is list partitioned by country and sub-

partitioned by range on order_date

Orders table is hash partitioned by country and

sub-partitioned by hash on customer_id

The basic partitioning methods can be used in conjunction with the following partitioning extensions.

PARTITIONING EXTENSIONS IN ORACLE DATABASE 12C RELEASE 2

Partitioning Extension Description Sample Business Case

Interval Partitioning

 Interval-

[Range | List | Hash]

Extension to Range Partitioning. Defined by

an interval, providing equi-width ranges.

With the exception of the first partition all

partitions are automatically created on-

demand when matching data arrives.

Orders table partitioned by order_date

with a predefined daily interval, starting

with '01-Jan-2013'

Auto List Partitioning Extension to List Partitioning. Defined

through keyword AUTOMATIC, partitions

are created automatically when a partition

key value is inserted without having a

matching partition. Only one ‘starter

partition’ has to be created initially

Orders table list partitioned by country,

with only a ‘GERMANY’ partition being

pre-created.

Reference Partitioning Partitioning for a child table is inherited from

the parent table through a primary key –

foreign key relationship. The partitioning

keys are not stored in actual columns in the

child table.

(Parent) Orders table range partitioned

by order_date and inherits the

partitioning technique to (child) order

lines table. Column order_date is only

present in the parent orders table

Virtual column based

Partitioning

Defined by any partition techniques where

the partitioning key is based on a virtual

column. Virtual columns are not stored on

disk and only exist as metadata.

Orders table has a virtual column that

derives the sales region based on the

first three digits of the customer

account number. The orders table is

then list partitioned by sales region.

14 | ORACLE PARTITIONING IN ORACLE DATABASE 12C RELEASE 2

Conclusion

Since its first introduction in Oracle 8.0 in 1997, Oracle continually enhances the functionality of Oracle Partitioning

with every release, by either adding new partitioning techniques, enhancing the scalability, or extending the

manageability and maintenance capabilities. Oracle Database 12c Release 2 is no different by offering enhanced

composite partitioning strategies and vastly enhanced partition maintenance operations.

Oracle Partitioning is for everybody. Partitioning can greatly enhance the manageability, performance, and

availability of almost any database application. Since partitioning is transparent to the application, it can be easily

implemented for any kind of application because no costly and time-consuming application changes are required.

Oracle Corporation, World Headquarters Worldwide Inquiries

500 Oracle Parkway Phone: +1.650.506.7000

Redwood Shores, CA 94065, USA Fax: +1.650.506.7200

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0317

C O N N E C T W I T H U S

blogs.oracle.com/oracle

facebook.com/oracle

twitter.com/oracle

oracle.com

