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Abstract 

A necessary and sufficient condition on the Walsh-spectrum of a boolean 
function is given, which implies that this function fulfills the Strict Avalanche 
Crit,erion. This condition is shown to be f W e d  for a class of functions exhibit- 
ing simple spectral symmetries. Finally, an extended definition of the Strict 
Avalanche Criterion is proposed and the corresponding spectral characteriza- 
tion is derived. 

1 Introduction 
The “Strict Avalanche Criterion” (SAC) was introduced by A.F. Webster and 
S.E. Tavares. They write [l]: “If a function is to satisfy the strict avalanche cri- 
terion, then each of its output bits should change with a probability of one half 
whenever a single input bit E is complemented to T.” The cryptographic signifi- 
cance of the SAC is highlighted by considering the situation where a cryptographer 
needs some “complex” mapping f of n bits onto one bit. Although the expression 
“complex” has no precise mathematical defiiiit,ion here, an information-theoretical 
approach can help assigning it an intuitively pleasant meaning. Maximizing the 
entropy H ( f (  [ I I ,  1 2 , .  . . , I,,])) yields zero-one balanced functions, but this alone 
certainly does not ensure the “complexity” of a function. Maximizing the condi- 
tional entropy H (  [ f ( q , .  . . , I ; ,  . . . , s,]) I f( [q, . . . , zi, . . . ,z,,])) for all i, 1 5 i 5 n, 
leads to SAC-fulfilling boolean functions, according to the definition in 111. It is 
proposed here to go even further, by keeping one or more input bits of f constant, 
and making the obtained “subfunctions” complex as well. It is worthwhile pointing 
out the fact that any function f’ of n - 1 bits will be a relatively bad approximation 
of f if f fulfills the SAC. Indeed, the output of the best possible f‘ will differ from 
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the output of f with a probability of f .  This lack of accuracy of lower-dimensional 
approximations is a wisliable property of cryptosystems: the existence of some (rela- 
tively accurate) lower-dimensional approximation of an enciphering transformation 
could reduce the amount of work for an exhaustive search according to the dimen- 
sion of the domain of the approximation. Functions for which flipping one input 
bit always flips the output of course are still more difficult to approximate (the 
best lower-dimensional approximation is inaccurate in 50% of the cases), but their 
conditional entropy H([f(z,, . . . ,q,. . . ,z,,]) I f([zl,.  . . , z i , .  . . ,zn])) is zero. 

In the first part of this paper, Boolean functions f(g) with n bits input and 
one bit output are considered. The Walsh-transform has shown to be very useful 
for the analysis of (statistical) properties of boolean functions. It is shown that a 
boolean function f(g) fulfills the SAC if and only if, for all i E { 1 , 2 , .  . . ,n}, its 
Walsh transform ~ ( L E ) ,  w = [wl, w2,.  . . , w,], fulfius 

- 

where 2; denotes the n-dimensional vector space over the finite field GF(2). This 
set of conditions is shown to be fulfilled for a class of functions ~ ( I u )  that exhibits 
certain “visible symmetries” arising from equalities of the form p ( u )  = ~ ( L J  @ c). 

In the second part of the paper, the requirements on a boolean function are made 
stronger, introducing the concept of “SAC of higher order”. The corresponding 
spectral conditions are then established. 

2 Wals h- Spect rum of SAC- fulfilling Functions 

2.1 Spectral Characterization of Functions FuIAlIing the SAC 

First, a few basic definitions, lemmas and theorems are needed. 

Definition 1 [2,9,5] If f ( g )  is any  real-valued function whose domain i s  the vector 
space Z;, the Walsh transform of f(g) is defined as: 

F ( g )  = c f(g) ( - l ) F X ,  

EE z; 

where w E 2; and J Z I .  g denotes the dot-product of g and w, defined as 

g .  g = z1w1 @ 22w2 @ . . . @ z,w,. (2)  

The func t ion  f(g) can be recovered b o r n  F ( g )  b y  the inverse Walsh transform: 

f(g) = 2-” c F(w) - ( - 1 ) Z W .  

W€Z; 
(3) 
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The Walsh transform and its inverse (both defined for real-valued functions) may 
be applied to boolean functions if their values are viewed as the real values 0 and 1. 

Very often, it is easier to work with boolean functions that take values in the 
range (1, -1). The function f(g) is defined as 

f(z) = (-1)f(~) or f (g)  = 1 - 2f(:). (4) 

The relationship between the Walsh transforms of j ( g )  and j(g) is stated in the 
following lemma [2,3). 

Lemma 1 If f(g) = (-l)f(z),  then 

@(g) = -2F(tu) + 2"S(m): ( 5 )  

which is equivalent to 
1 -  

F ( W )  = 2"-'s(lu_) - f("), 
where 

1, for w = 0 
S(W)  = 0 ,  else. 

Let g and gi denote two n-bit vectors, such that g and gi differ only in bit 2 ,  

1 5 i 5 n. 2; denotes the n-dimensional vector space over {0,1}. The function 
f(z) = z ,  z E ( 0 , l )  fulfills the SAC if and only if 

f(g) @ f ( g i )  = 2n-1,  for all i with 1 5 i 5 n. ( 8 )  
I€ z; 

If we denote by ci the n-dimensional unit-vector with a one at the i-th place and 
zeroes elsewhere, condition (8) may be alternatively written as 

f(z) @ j ( z  @ ci) = 2n-1, for all i with 1 5 i 5 n. (9) 
Z€ z; 

We now wish to express the SAC for the case of an j-function (with range (1, -l}). 
The following Lemma yields an alternative definition of the SAC. 

Lemma 2 f(g) fulfills the SAG i f  and only if the function i(g) = ( - l ) f (g)  fu&lZs 

for all ci with Hamming-weight one. 

This lemma is easily derived, considering that if a function f(c) fulfills the SAC, 
exactly half the g E 2," satisfy f(g) # f(c @ ci), for all i E 1 ,2 , .  . . ,n. This means 
that the function f(g) = (-l)f(g) satisfies 

f(:) . f (g  @ ci) = -1 for half the 2' E Z;, and (11) 
f ( a )  - f(;c @ ci) = 1 for the other half. (12) 
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Summing up over all the i e Z 2 " thus yields (10). The term on the left-hand side
of equation (10) can also be represented by the convolution of f(x) with itself:

c) = [f*f}(c). (13)

(14)

we see that the left-hand side of (10) is also the inverse Walsh-transform of F(yL) •
F{w) = F2{w), and with (3) we get:

[/*/](£,) = 2'n £ F2(w)-(-iy->-* (15)

From the well-known convolution theorem, which states that

Ms) = £ f(y) • 9(V ©£)<=> H(w) = F(w) • G(w),

= 2~n £ F2(w) i (16)

where we m a d e use of t h e fact t h a t c { is of the form [ 0 , 0 , . . . ,0,Cj = 1 , 0 , . . . , 0 ] .

Th i s , together wi th (5) , proves the following theorem.

Theorem 1 A function f(x) : Z2" —> {1,-1} fulfills the SAC if and only if its
Walsh-transform F(xv) satisfies

for all i 6 {1,2, . . . , n} . Equivalently, the Walsh-transform F(w) of f(x)
f{x)) has to fulfill

= | ( 1 -

(18)

for alii G {l,2,...,n}.

Note that F([0,... ,0]) equals the number of ones in the truth table of / (x) .

Example 1:
Consider the function f(x) : Z\ —• {0,1}, the corresponding f{x) =
(_l)/(s) a n d their respective Walsh-transforms F(xv) and F(x) given by
the following table:

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

/te); i
o:
11
I
0
0

o ;
i

1 :
1 ;

1
-1
-1
1
1
1

-1
-1

F(w)

4
0

-11
-1
0
0
2

-2

F(w)

0
0

-11
-4
0
0
4

24
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It is easily checked that flipping the bit xt flips the output f(x_) in 50%
of the cases. That is true for x3 too, but not for x2: flipping x2 always
changes f{x). Therefore,

H(f([x1,x-2ix3})\f([xuxI,xs})) = 0

and this function does not fulfill the SAC. Indeed, when we compute
Emez?!-1)10' • ^ 2 ( ^ ) for » = 1,2 and 3, we get zero for i = 1 and i = 3
and -64 for i = 2, which does not satisfy the requirements of theorem 1.

Example 2:
Next, we examine another function of three bits, g(x).

0
0
0
0
1
1
1
1

I 2 / W2

0
0
1
1
0
0
1
1

r3 / w3

0
1
0
1
0
1
0
1

9(3L)

0
0
0
1
0
1
1
1

g(x)

1
1
1

-l
1
1

-1
-1

G(m)

4
-2
-2
0

-2
0
0
2

<?(UL)

0
-4
-4
0

-4
0
0
4

The reader can check that flipping any of the three input bits involves
an output change in 50% of the cases. Therefore, this function fulfills
the SAC and the requirements of theorem 1 can be checked to hold for
i = 1,2 and 3.

It should be pointed out that if a function fulfills the SAC, it does not imply
that it is zero/one balanced, as can be seen from the following example.

Example 3:

0
0
0
0
1
1
1
1

x7 /w2

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

h(x)

0
0
0
1
1
0
0
0

k(x)

1
1
1
1

-1
1
1
1

H(w)

2
0
0
2
0

-2
0

H{w)

-4
0
0
4
0

-4
-2
0

h(x) takes on six times the value zero and only twice the value one,
which doesn't prevent it from fulfilling the SAC.
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2.2 Construction of SAC-Fulfilling Functions 
A geometrical interpretation of theorem 1 can be introduced if we look at the 
n-tuples [wl ,w2, .  . . ,w,] as the corners of an n-dimensional cube with edges of 
length one. Let’s attach to each corner g = [wI ,wz, .  . . ,w,] a weight m, equal 
to P2(x). The center of gravity of this n-dimensional body has the coordinates 
[a,%, . . . , % I  with 

c @’”(a) = o  

1: w , = l  

And in that case we have 

( 22) 
- cw: wi=1 *’”(W) - c,: w,=o @w w; = - 

E:UI€z; PYX) Cgez; P 2 ( 4  ’ 
which shows that the coordinate W; of the center of gravity of the considered cubic 
body remains unchanged if all the weights on one “face” of the cube (face with wi = 
0) are moved to the opposite “face” (face with w; = 1 )  and conversely. Therefore, 
we can state that a function ](g) fulfills the SAC if and only if the n-cube with 
weights equal to f ‘*(w) attached to its corners has a center of gravity which is 
epuididant from any two  opposite “face8” of the cube, and t h w  from all the corner8 
of the cube. The center of gravity of the body associated to the Walsh-spectrum of 
an SAC-fulfilling function therefore has the coordinates [ f ,  f ,  . . . , i]. 

Example 4: 
The 3-dimensional cube associated to the function g ( g )  of example 2 is 
represented on the right-hand side of Fig. 1. The dark circles designate 
weights of magnitude @(g) = 16. The exchange of “faces” may be 
performed in three ways: 

G:f(w) = P 2 ( m  [ l , O , O ] ) ,  
&> = P2(Y @ [O, 1, O]), 

G i ( W )  = P(v @ [O,O, l]), 

dl of them yielding the same body, namely the one represented on the 
left-hand side of Fig. 1. 



--+ 
W1 

Figure 1: The 3-dimensional cubic body associated to the function g(c) of example 2 
and its associated body obtained by exchaiigiilg "faces". 

The idea that now naturally arises is to use this as a construction for new SAC- 
fulfilliiig functions from known ones. The pitfall is that P(g) inight be taken as 
3zJG for each one of the 2" w's. For the worst case where all 2" u ' s  are 
associated to nonzero values of P 2 ( g ) ,  this will yield 2'" possible choices for the 
mapping @(a), not all of them having valid boolean functions (i.e. 1/-1 valued) 
as inverse Walsh-transforms. In fact, a function f(g) is a boolean (1,'-1 valued) 
function if and only if 

f^z(g) = I, for all a: E 2;. (23) 
By the convolution theorem, we see that this is equivalent to 

Theorem 2 /2, p.1671 P(g) is the Walsh-transform of a boolean function f(a:) : 
2; - { 1, -1) if and onzy if 

2" for = [O, . . . ,O], 
0 otherwise. c P ( W )  * P(g 63 2) = 2"S(sj = 

X€ 2; 

Let x be an operator on 2; which, when applied to 4, permutes its indices [2, p.1651: 

?r= [%%.. . ,Gll  ===+ xz= [2,,,2,2,-,%,1. (2.5) 

TT-' is the inverse operator such that 

We write 
2 = [ ~ l ,  YZ, * * - 7 ~ n ]  .j r - ' ~  = [ Y T ~  t YTA j . .  ., yrk]. (27) 

Example 5: 
If the permutation x = [xl, x 2 ,  7r3] = [2,3,1] is applied to a, = [zl, 2 2 ,  z3j, 
one gets x z  = [z2, 23,511. The inverse operator 7r-1 = [T:,  T T ~ ,  7 4 1  in this 
case equals [3,1,2], since x- ' (m) must equal g. 
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0 0 0  
0 0 1  
0 1 0  
0 1 1 i  
1 0 0 1  
1 0 1 1  

1 1 1  O I  

If a function f(g) fulfills the SAC, it is easy to see that this property is preserved 
under any permutation ?r of the input bits. Thus, gig) = ~ ( A Z )  fulfills the SAC too. 
Furthermore, j ( : @ c )  = A(:) has (-I)cxeG(g) = H ( w )  as Walsh-transform (by the 
translate theorem), and this implies I?(g) = G2(g) for all g E 2;. Consequently, 
H(w) satisfies equation (17) and the following theorem holds. 

Theorem 3 I f f ( : )  : 2; - (1, -1) fulf;llJ the SAC, then j ( z )  = j(nz@_c) fulf;lls 
it too, f o r  any permutation operator A a n d  any constant c E 2;. 

For symmetry reasons, the following lemma is easily seen to be true. 

Lemma 3 The f unc t ion  g(5) = -](g) (resp. g ( g )  = f(g)) fulfills the SAC if a n d  
only if i(:) (resp. f(g)) f u ~ r l s  the SAC. 

At this point, we already dispose of some tools to construct SAC-fulfilling 
boolean functions, and the question arises whether it is possible to construct all 
SAC-fulfilling functions with those tools. Computer experiments were carried out, 
in order to find such functions 

(i) by exhaustive testing of all the 22n existing boolean functions of n bits (n = 3 

- 

and n = 4)) 

(ii) by making use of Theorem 3 and Lemma 3 (but without trying out all possible 
assignations G ( w l =  k J G ) .  

This established the fact that the above construction does not generate all the 
SAC-fulfilling functions, but only subclasses of them. We call the attention of the 
reader to the redundancy of the described synthesis rules: nothing ensures us that 
a newly obtained function will be different from the starting one or from a formerly 
constructed one. 

Example 0:  
Let g ( 1 )  = j(g @ [l, 0, l]), where f(c) is defined through the following 
table. 

1 
1 
1 

-1 
.1 
1 

-: 

1 
1 
1 

-1 
1 
1 

-1 
1 - 

We notice that g(8.) = f(z) for all a: E 2:. The reason is that f(;c) 
is partialIy symmetric  in z1 and t3 [4, p.1231, that is f([21,22,z3]) = 
i ( [ ~ , 5 2 , 4 )  for all [ ~ 1 , 2 2 , ~ 3 1  E 223. 
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2.3 Spectral Symmetries of SAC-Fulfilling Functions 

We now introduce the definition of the 50%-dependence of boolean functions with 
respect to one of their input bits. The concept is not new: it was implicitely used 
in the definition of the SAC. 

Definition 2 A func t ion  f : Z; -----+ {1,-1} (resp. f : 2; - {O,1}) is  said to 
be 50%-dependent of its i-th input bit zi if and only if any two n-tuples I: 
and 3 that differ only in bit i are mapped onto two different values with probability 
112 and onto the same  value with the same probability of 112. Or formally 

1 f(x) * f^(z @ c ; )  = 0, 

c f (z) @ f( ?2 63 6 ; )  = 2-l 

(28) 
z€ zp 

for (1, -1)-valued funct ions,  and 

(29) 
E€Z,n 

for (0 , l ) -valued funct ions.  

We thus see that a boolean function fulfills the SAC if and only if it is 500Jo-dependent 
of each of its input bits. 

The following theorem gives a suficient condition for a function to be 50%- 
dependent of one or more of its input bits. 

Theorem 4 Iffor some nonzero c E 2; and for all w E 2; 

P(3) = P2(3 @ 6 )  ( 30) 
holds, and if c has Hamming-weight rn (ci, = c;, = . . . = c;,,, = 1, 1 5 m 5 n), then 
](I:) is  5U%-dependent of the input bits z;, , z;, , . . . , T;, . 

Proof: 
According to the value of the subvector w’ = [w;, ,wi, ,  ... , ,wim], the 
vector space 2; can be divided into 2” disjoint subsets SWl. - To each 
of these subsets S,I - one can uniquely associate the subset Sv, - where 
v’ = [ w i I ) q 2 ) .  . . , K], and because of (30) one can write -- 

c P+) = c P’2(W) (31)  
- WES,I - ur€S,J - 

for each choice of 3‘ E ZF. Consequently, we have the following set of 
2”-1 equations: 

c Pf”(w)  = 1 P ( w )  
lu_€ q 0 , o  .... ,0] E€S[I,l .... ,I] 
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0 0 0 0  0 0 0 1  0 0 1 0  0 0 1 1  0 1 0 0  0 1 0 1  0 1 1 3  

Summing up the left-hand side terms and the right-hand side terms 
respectively, we get 

1 - - 
c 

0 1 1 1  1 0 0 0  1 0 0 1  1 0 1 0  1 0 1 1  1100 1 1 0 1  1 1 1 0  1 1 1 1  - 
- 

or equivalently 

which means that f(g) is 50%-dependent of I;, . For symmetry reasons, 
we get the same result for +i2 >.  . . z;,,, . 

1 

8 

4 

I 

t 

Figure 2: An SAC-fulfilling function f^(z) of 4 bits whose squared Walsh-spectrum 
satisfies (34) 

For the special case 

(34) - 2  F (w) = F2(W @ [I,. . . ,1]) = k='(-), 
theorem 4 asserts that f(g) is 50%-dependent of all its input bits, or, in ot,her words, 
that f ( ~ )  fulfills the SAC. This is interesting from a practical point of view, because 
the equality (34) is easily noticeable when looking at the squared Walsh-spectrum 
F y w ) .  
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Example 7: 
The function f(8) : 2; - { 1, -1)  takes on the following values (from 
the top to the bottom of the truth table): l,l,l,l,l,-1,-l,l,-l,l,-1,-l,l,- 
1,-1,-1. Fig. 2 shows this function, its Walsh-spectrum and its squared 
Walsh-spectrum. The discrete points where the functions are defined are 
connected by lines to make the diagrams more easily readable. We ob- 
serve a symmetrical form of @(w) according to (34) and i(:) therefore 
fulfills the SAC. 

But (34) is not a necessary condition for a function to fulfill the SAC. If, for example, 
f(g) is such that its squared Walsh- transform satisfies 

P ( g )  = P ( g  @ [l, 1 ,1 ,0 . .  a .  ,O])  (35) 
and P2(w) = P’(g@ [ l , l , O , l ,  ..., 11) (36) 

we know, by theorem 4 that f(;c) fulfills the SAC (by (351, f(g) is 50%-dependent 
of the bits z l , zZ  and z3, by (36), f(g) is 50%-dependent of ~ 1 , ~ 2 , ~ 4 , .  . . ,z,). The 
following example shows that a function f(g) might be 50%-dependent of its input 
bit E ;  even if there is no c E 2; such that c; = 1 and (30) is satisfied for all w E 2;. 
In other words, the condition of theorem 4 is sufficient but not necessary. 

Example 8: 
~ ’ ” ( I Q )  of Fig. 3 satisfies 

fi2(w) = P(0 @ [l,  0,1,1]) (37) 

for all g E 2; but no other relation of the form (30). Equation (37) 
implies that f (g )  is 50%-dependent of E l , t 3  and t4, but says nothing 
about 22. Nonetheless, one can check that f(g) is 50%-dependent of 2 2  

as well. 

3 Strict Avalanche Criterion of Higher Order 

3.1 Definitions 
As mentioned in the introduction, the SAC is cryptographically relevant because it 
maximizes the conditional entropy H (  [f( z l , .  . . , q, . . . , z,]) 1 f( [ z l , .  . . , z,, , . . , z,])) 
and it assures that the best possible lower-dimensional space approximation of a 
mapping yields an erroneous result in 25% of the cases. We consider now a map- 
ping of TZ bits onto one bit that fulfills the SAC. If one or more of its input bits 
are kept constant, the question arises whether it is possible to find some accurate 
approximation of this reduced mapping (reduced in the sense that it is defined only 
on a subspace of 2;). If this is possible, the exhaustive search over the considered 
subspace can be reduced (compared with the exhaustive search over the full space 

- 
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Figure 3: An SAC-fulfilling function that does not satisfy any equation of the form 
@'(w) = @'(u$ [cl, c2 = 1, c3, c4]) but nevertheless is 50%-dependent of the second 
input bit. 

without approximation). In a chosen-plaint.ext attack, the opponent has the oppor- 
tunity to perform such tests where one or more input bits are kept constant. For 
this reason, we now extend the definition of the SAC in order to cover situations 
like the one just described. 

Let f(g) be a function which maps 2; onto {0,1} and which fulfills the SAC. It 
is well-known that f(c) can be written as 

f ( ~ )  = X i  * f i . l ( z 1 i  i zi-1izi+l,. . . ,  zn) E * fi,o(zly. * * j zi-1, Z i + l i * .  * 7 zn) (38) 

for every i E {1 ,2 , .  . . , n } .  The function f i ,*  (resp. fi,o) is obt.aiiied from f ( z )  by 
keeping the i-th bit of 1 constant and equal to 1 (resp. to 0). We now consider the 
50%-dependence of the output of fi,l and fi,o wit,h respect to each of their n - 1 
input bits. 

Definition 3 A f unc t ion  f ( ~ )  : 2; -+ { O i l }  i s  said to fulfill the Strict Avalanche 
Criterion of order 1 if and only zf 

0 f(g) fulfill3 the SAC,  

0 and every func t ion  obtained from f(c) by  keeping the i;th input bit constant 
and equal to c  fulfill^ the S A G  as well  (for every i E { 1 , 2 , .  . . , n}, and f o r  
c = 0 and c = 1). 
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Y1 YZ Y3 ~ fi,O f1,l fZ,O f 2 , l  f3,O f 3 , l  f4,O f4,l 1 

The definition can be extended to order m, where 1 5 m 5 n - 2, if nz input bits 
of f(z) are kept constant. 

~ 

0 0 0  
l o o 1  
1 0 1 0  
1 0 1 1  

i i i o  

I 1 0 0  
1 0 1  

1 1 1 1  

Definition 4 A function f(g) : 2; - {0,1} is said to fulfill the Strict Avalanche 
Criterion of order m if and only if 

f(g) fulfills the SAC of order m - 1, 

and any function obtained from f(c) b y  keeping m of i ts  inpuf  bits constant 
fulfills the SAC as well (this must be true for any choice of the positions and 
o f  the values of the m constant bits). 

0 1 0  0 0 0 0 0 

0 0 0 1 0  1 0  1 ’  
1 0  1 1  1 1  1 

1 0  0 0 0 0  0 0 

0 0 0 1 0  1 0  1 1  

0 0 1 0  1 0  1 :~ 
1 o o o o o o 
1 1  0 1 0  1 1  1 J  

In what follows, the “classical” SAC will sometimes be called “SAC of order 0”. 

Example 9: 
f(c) : 2; ---i (0, l} is defined through the following truth table. 

/ 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 /  

1 0  0 1 1  0 0 1 1  0 0 1 1  0 0 1 1 ,  
1 0  0 0 0 1 1  1 1  0 0 0 0 1 1 1  1 ’  r- 2 4  1 0  1 0 1 0 1 0 1 0 1 0  1 0  1 0 1 ;  

I 
/ f ( E ) / / O  0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 )  

Keeping the bit 11 equal to 0, we get a function f1,o : 2; - {0,1} 
(left-hand half of truth table of f ( g ) )  which can be checked to fulfill the 
SAC. To check whether j(g) fulfills the SAC of order one, we must go 
further and control all eight functions of three bits obtained by keeping 
each input bit of f (g) fix (equal to zero resp. to one); they are listed in 
the following table. All of them fulfill the SAC. 

Therefore, f (g)  fulfills the SAC of order one. Keeping each pair ( z i ,  zj) 
constant and equal to (O,O), (0,1), (1 ,O)  and (1,l) respectively, one gets 



463 

. 4 = 6 . 4 = 24 functions of 2 bits and each of them fulfills the 

SAC. f(g) thus even satisfies the SAC of order 2. It makes of course 
no sense to consider the SAC of order 3 for this function, since keeping 
three input bits constant yields functions of one variable for which the 
SAC is not defined. 

3.2 Spectral Characterization for SAC of Higher Order 
From example 9, it is clear that a boolean function of n bits can fulfill the S A C  of 
order at moJt n - 2. 

We are interested in a spectral characterization of boolean functions that fulfill 
some SAC of higher order. We again consider f(s) = (-1)f(g) rather than f(c). 
The following equation is quite similar to (38). 

f ( ~ )  = x i . f i , l ( [ t l , . - .  , z  ; - 1 1 2 , + 1 , . . . , 2 n ] ) t ~ . f i , 0 ( [ 2 1 : . . . , ~ , - 1 , 2 i + l , . . .  7 ~ n l )  (39) 

and can be written for each i E {1 ,2 , .  . . , n}. The “subfunctions” fi,l and f ; , ~  map 
Z;-l onto (1, -l}, and all 2n subfunctions f;,j must fulfill the SAC of order zero if 
f(g) is to fulfill the SAC of order 1. We introduce 

.fi,r(g) = Ti * fi,i([zl,. + - 7 2 1 - 1  7 z;+i 7 .  . ., zn]) and (40) 
. f i , r r ( ~ )  = E .  (41 1 

and we compute their Walsh-transforms. 

- z’ = [zl,. . . , E ~ - ~ , z ; + ~ , .  . . ,zn], g‘ E 2Zn-l and (44) 
w_’ = [ U I l , .  . . , wi-1, tu;+1,. . . , UI,], g’ E 2r-l (4.5) 

we obtain 

&(g) = c f&‘) * (-1y . ( - 1 p ’  (46) 

= (-1y . l?,1(g‘), (47) 

& , I I ( U )  = c i,0(11’) . (-I)=‘ ”’ = R,O(E‘). (48) 

z’EZ;-’ 

where kt,1(z’) designates the Walsh-transform of f,,l(g’). Similarly, we get 

- 2 : 2 , = 0  
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Because of the linearity of the Walsh-transform and the fact that “+” in expres- 
sion (39) can be considered as int>eger addition (because always one of both terms 
on the right-hand side of (39) equals zero) we get: 

P(w_) = ( - - ~ ) ~ i  . Pi,l(~’) + Pi,o(z’) ,  for all i E {1,2 , .  . . , n.1 (49) 

or equivalently 

Adding, respectively subtracting both equations gives 

1 -  
pi,o(af) = ~ [ F ( x )  + P(Z ~9 GI)] 

1 
R,I(X‘) = 2 - (-1)”t . [Qm) - P(g @ c*)] 652) 

where c1 = [O,O,. . . ,0 ,  c, = 1,0 , .  . . , O ] .  By theorem 1, j ( g )  will fulfill the SAC of 
order 1 if and only if 

(-1)”; &:o(w’) = 0 and (53) 

c ( - 1 ) W i  .t;JZ’) = 0 (54) 

X’E z; -1 

- W’EZ;-’ 

for all i , j  E {1,2,. . . , n} with i # j .  Replacing p,,o in ( 5 3 )  by its equivalent form 
from (51) gives 

c p ( W )  + k ( w $  r,)12 * (-lyP: = 0 , j ’ i i  ( 5 5 )  
g : w,=o 

or 

1 1 - 
t 5 [ ~ ’ ( K J )  + @(w @ c l ) ]  . k(~)p(w @ c , )  - (-l)Wi = 0. ( 5 6 )  

4 ur ! w,=o - w :  w,=o 

The first sum in t.56) can be writ,ten as CWEz; P2(u,) . and t.herefore equals 
zero since f(g) fulfills the SAC of order 0 (necessary condition for fulfilling the SAC 
of order one). Thus 

- 

c P(w) . P(w @ c,) . (-1yJ‘ = 0, ( j ’  # i) ( 5 7 )  
g:w,=u 

which implies 

Inserting (52) in (54) also leads to (58). Theorem 5 follows. 
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Theorem 6 A f unc t ion  f(g) : 2; - {11-1} fulfills the SAC of order 1 if and 
only if it fulfills the SAC of order zero and 

c P(w)P(g @ c;) * ( - 1 p  = 0 
w_€ Z,- 

for all i, j E { 1 , 2 , . .  . ,n} with i # j .  

(59) 

To verify whether a function of n bits fulfills the SAC of order 1 or not, a t  most 
SAC order 0 s,Ac Trder+l 

+ n . (n - 1) checks are therefore required. The spectral characteri- 
zations of the SAC of order 2 and of higher orders can be derived in a similar way 
and are given without proof in the following two theorems. 

Theorem 6 A f unc t ion  f(g) : 2; + (1, -1) fuljills the SAC of order 2 if and 
only i f  it fulfills the SAC of orders 0 and 1, and 

c P(w)P(z& @ Gi,J ’ (-1y = 0 (60) 
E€Z; 

for all distinct i, j ,  k E ( 1 , 2 , .  . . , }> and with ci,j denoting the n-tuple with a one at 
the i- th and j - t h  place and zeroes elsewhere. 

Verifying whether the SAC of order 2 is fulfilled or not thus requires at most 

n(n  - 1) + (9) (n - 2) checks. 

Theorem 7 A f u n c t i o n  f(g) : 2; --i (1 ,  -1)  fd f i l l s  the SAC of order m, 0 I 
m 5 n - 2, i f  and only i f  

+ 

for all  
such that the Ic-th bit of c, is zero. 

E 2; with Hamming-weights s = 0 , 1 , 2 , .  . . ,rn and for all k E {1 ,2 , .  . . ,n} 

Verifying whether the SAC of order m is fulfilled or not requires at most n + n(n - 

1) + (;) (n - 2) + ( i)  ( R  - 3) + . . . + ( (rt - rn) checks. 

Example 10: 
If f (& is a boolean function of five bits, the following sums have to be 
checked: 

SACorderO { ~ m E z ~ k ; 2 ( t u ) - ( - 1 ) w ~ ,  - j E { 1 1 2 , . . . , n } ,  
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In - 112 3 4 5 6 1  

no SAC 
SAC order 0 
SAC order 1 
SAC order 2 
SAC order 3 
SAC order 4 

8 192 61408 ? ? 
8 48 3808 ? ? 
- 16 288' ? ? 

32 ? ? 
- 64 ? 
- - 128 

Table 1: Number of functions that fulfill the SAC of some given order 

I Cwez; P(zu)P(u, GI [ l l O O O ] )  * ( - l ) W J ,  j E {3,4,5}, 

Exhaustive computer search through funct,ions of 2, 3 and 4 bits allowed to count 
how many boolean functions fulfill the SAC of a giveii order. The results are listed 
in table 1. One can check that the columns for n = 2 , 3  and 4 sum up to 2'". Notice 
that no function is counted twice, although in fact each function that fulfills the SAC 
of some order m by definition also fulfills the SAC of orders m - 1, m - 2 , .  . . ,1,0. 

3.3 Construction of Functions Fulfilling the SAC of Maxi- 
mum Order 

The method used to count the SAC-fulfilling functions of maximum order n - 2 for 
n = 5 and 7~ = 6 is a constructive one. The definition of the SAC of order m implies 
the following lemma. 

Lemma 4 A boolean func t ion  f (x) of n bits fulf i l ls  the SAC: of order m if and only 
if 

f ( ~ )  fulfills the SAC of order UJ and 

any  func t ion  obtained from f ( g )  b y  keeping one input bit constant (equal to  U 
or to  1 )  fulfills the SAC of order m - I. 
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0 0  0 0 0 0 1 1 1 1 
0 1  0 0 1 1 0 0 1 1 
1 0  0 1 0 1 0 1 0 1 

This gives rise to the idea of using functions of n - 1 bits that fulfill the SAC of 
order n - 3 as basic elements for the synthesis of functions of n bits that fulfill the 
SAC of order n - 2. 

Example 11: 
The eight functions of two bits that fulfill the SAC of order zero are 
listed below. 

I 1  11 1 0 0 1 0 1 1 0 

We can define f(;r)) : 2; - {0,1} as 

f(:) = f([21,22,23]) = Z I  .f;([.z,~~])+~.fj([22,23]) (62) 

= 28 functions f(g); with i, j E {1,2 , .  . . ,8}, i # j and we get 

sixteen of them can be checked to fulfill the SAC of order 1. We can 
be sure that no other function of three bits satisfies the SAC of order 1, 
since any such function necessarily is decomposable according to ( 6 2 )  
(by Lemma 4). 

(9 

The procedure used in example 11 can be applied to the sixteen functions of three 
bits that fulfill the SAC of order 1, and it yields the 32 functions of four bits that 
fulfill the SAC of order 2, and so on. 

4 Conclusion 
The Strict Avalanche Criterion of order m has been introduced which corresponds 
to a generalized definition of the known SAC. It has been shown that the SAC of 
any order can be easily characterized in the Walsh-domain. This representation 
was used for the construction of further SAC-fulfilling boolean functions. The ap- 
plication of SAC-fulfilling functions for cryptosystem-design has still to be studied. 
An application would be, for instance, to use such functions for the synthesis of 
S-boxes in substitution/permutation (SP) block-ciphers. Since an S-box has many 
inputs and n outputs, n SAC-fulfilling functions should be chosen and combined 
in some adequate manner. For example, statistical dependencies between output 
bits should be avoided. Statistical independencies between input rn-tuples and 
the output of boolean functions is known as rn-th order correlation-immunity. It 
might be interesting to examine whether there are restrictions in the compatibil- 
ity of correlation-immunity and SAC of order m. Any boolean function that is 



rn-th order correlation-immune [6] has vanishing values of F(w)  for all g ’ s  with 
Hamnling-weigths between one and rn [5]. Exhaustive search for functions of three 
and four bits showed that eight functions of ihree bits as well as ninety-six functions 
of four bits are first-order correlation-immune and fulfill the SAC of order 1 at the 
same time. 
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