An Auction Mechanism for a Cloud Spot Market

Adel Nadjaran Toosi,
Kurt Van Mechelen, and
Rajkumar Buyya

December 2, 2014

Abstract

Dynamic forms of resource pricing have recently been introduced by
cloud providers that offer Infrastructure as a Service (IaaS) capabilities,
in order to maximize profit and balance resource supply and demand. The
design of a mechanism that efficiently prices perishable cloud resources in
line with a provider’s profit maximization goal remains an open research
challenge however. In this paper, we propose an adaptation of the Consen-
sus Revenue Estimate auction mechanism to the setting of a multi-unit
online auction for cloud resources. The mechanism is envy-free, has a
high probability of being truthful, and generates a near optimal profit for
the provider. We combine the proposed auction design with a scheme for
dynamically calculating reserve prices based on data center Power Usage
Effectiveness (PUE) and electricity costs. Our simulation-based evalua-
tion of the mechanism demonstrates its effectiveness under a broad variety
of market conditions. In particular, we show how it improves on the clas-
sical uniform price auction and investigate the value of prior knowledge
on the execution time of virtual machines, for maximizing profit.

1 Introduction

The increased adoption and maturity of cloud computing offerings has been
accompanied by a growing role and significance of pricing mechanisms for trad-
ing computational resources. Especially Infrastructure as a Service (TaaS) cloud
providers that offer computational services in the form of Virtual Machine (VM)
instances with specific resource characteristics, have gradually expanded their
pricing plans in order to maximize their profits and further attract demand.
Currently, the most widely used model remains a fixed pay-as-you-go pricing
plan wherein the consumer is charged the amount of time a VM instance was
used at a fixed rate. However, the fact that computational resources sold by a
cloud provider can be characterized as a non-storable or perishable commodity?,

INote that resources tied to a VM are qualified as non-storable (perishable), as a non-used
hour of CPU time or memory space can never be reclaimed and therefore wastes data center
capacity.

combined with the fact that demand for computational resources is non-uniform
over time, motivates the use of dynamic forms of pricing in order to optimize
revenue [1]. Through price adjustment based on actual (and possibly forecasted)
supply and demand conditions, consumers can be incentivized to acquire spare
capacity or shift demand from on-peak to off-peak hours. Consequently, both
profit and consumer satisfaction can be increased.

Market-based pricing mechanisms that solicit reports (bids) from consumers
and subsequently use an allocation rule and pricing rule to compute the alloca-
tion of resources to consumers and their associated prices respectively, are well
fit to realize such dynamic forms of pricing. Recently, they have received sig-
nificant attention for selling underutilized capacity in cloud infrastructures [2].
Well-designed auction mechanisms can be particularly effective since they: 1)
incentivize users to bid in a truthful manner (i.e., report the price they are will-
ing to pay for resources), 2) ensure resources are allocated to those who value
them the most, and 3) correctly price resources in line with supply and demand
conditions by creating competition among buyers.

Amazon Web Services (AWS) has adopted an auction-like approach to ex-
pand its pricing plans with Spot Instances for the Amazon Elastic Compute
Cloud (EC2). In this scheme, consumers communicate their bids for a VM in-
stance hour to AWS. Subsequently, AWS reports a market-wide spot price at
which VM instance use is charged, while terminating any instances that are
executing under a bid price that is lower than the market price. Although
Amazon is not the only provider to offer dynamic pricing, it is currently the
only TaaS provider that publicly offers an auction-like mechanism for selling
TaaS resources. Nevertheless, attempts for creating such mechanisms have al-
ready been reported by other companies [3] and have also received attention by
academia [4-7].

AWS has revealed no detailed information regarding their auction mecha-
nism and the calculation of the spot price. At present, the design of an efficient,
fair, and profit-maximizing auction mechanism for pricing cloud computing re-
sources is an open research challenge, and of great interest to cloud providers.

In this chapter, we design such an auction mechanism aimed at generating
additional profit from the spare capacity of non-storable resources available in
cloud data centers. We refer to the marketplace in which this mechanism is
used to sell VMs as the cloud spot market (Fig. 1).

The spare capacity that can be offered by an IaaS cloud provider in the
spot market is usually much larger than the demand?. Therefore a provider is
potentially able to accept all consumer requests. In this context, popular auction
mechanisms such as the second-price Vickrey [10] auction may fail to generate a
reasonable revenue for the provider. In general, when supply exceeds demand,
bidders are less motivated to bid competitively, which can prevent providers to
collect an optimal revenue. Providers therefore require an auction mechanism
that can maximize revenue while incentivizing bidders to reveal their true value.

2This can be explained by the promise of Clouds providing infinite capacity of resources [8]
and recent reports that suggest the overall utilization in large data centers is lower than 30%
most of the time [9].

Capacity=C
Cloud Provider

n bidders

Figure 1: Spot market and auction mechanism

Hence, we restrict our focus to truthful auction designs. An auction mechanism
is truthful if for each bidder 7 and any choice of order values by all other bidders,
bidder i’s dominant strategy is to report her private information with respect
to her order truthfully. A strategy is dominant if a bidder cannot increase the
pay-off derived from participating in the mechanism, by diverging from it.

If perfect knowledge about the distribution from which the bidders valuations
are drawn is available, such a truthful auction mechanism can be designed [4].
Unfortunately, this is not always the case and pricing depends heavily on the
accuracy of the underlying market analysis. Such analysis also needs to be
updated frequently in order to adapt to changes in the market. Moreover, since
customers of cloud services are distributed globally and experience different
latency for the same service, assuming that the valuations for all bidders are
drawn i.i.d. might be invalid.

This chapter focuses on designing a truthful auction mechanism for a cloud
spot market aimed at maximizing the cloud provider’s profit. The cloud spot
market context influences our auction design in the sense that the design needs
to: support multi-unit bids, operate in an online recurrent manner, result in a
single market-wide price and fair outcomes, operate under a limitation of the
maximal quantity a consumer can request, operate without prior knowledge on
the distribution of bidders’ valuations, and finally, allow for reserve prices to be
set during oversupply conditions. The chapter’s key contributions are:

e The design and application of a multi-unit, online recurrent auction mech-
anism within the context of IaaS resource trading. The mechanism extends
the off-line single-round auction with a single-unit demand model of the
consensus revenue estimate (CORE) mechanism proposed by Goldberg
and Hartline [11], to a two-dimensional bid domain. The proposed auc-
tion mechanism is envy-free, truthful with high probability and generates
near optimal profit for the provider. It adopts a greedy approach for max-
imizing provider profits in the online setting. It is initially designed for
the unlimited supply case, and is subsequently extended to the limited
supply case.

e The evaluation of the proposed mechanism with respect to revenue genera-
tion, truthfulness, and bid rejection rates. Extensive simulation results are
presented that demonstrate that it achieves near optimality w.r.t. maxi-

mizing revenue without requiring prior knowledge on the order distribu-
tions. It is also shown to achieve low bid rejection rates, mitigating the
bidder drop problem in online mechanisms [1]. We compare the proposed
mechanism to a clairvoyant and non-clairvoyant variant of the Optimal
Single Price Auction and to the Uniform Price Auction.

e A clairvoyant optimal auction mechanism (HTA-OPT) that uses dynamic
programming to calculate the set of accepted bids. HTA-OPT serves as a
benchmark that is used to quantify the efficiency loss caused by the lack
of information on the amount of time a bidder wants to run a VM, when
applying the allocation rule in a single auction round.

e The presentation of a method for dynamically computing a reserve price,
based on a coarse grained data center power usage model that can be used
by the provider within the proposed auction mechanism. The resulting
prices are shown to correspond to actual minimal spot prices observed on
the EC2 spot market.

The remainder of this chapter is organized as follows: After reviewing related
work in Section 2, we introduce required terminology and notations in Section 3.
Sections 4, 5 and 6 discuss respectively the competitiveness, truthfulness and
envy-freeness properties for our auction design. Section 7 describes the pro-
posed auction mechanism, while Section 8 focuses on the limited supply setting
and the computation of the reserve price in that setting. Section 9 describes
the online version of the proposed auction mechanism and mechanisms used in
the comparative analysis. Our experimental evaluation of the mechanism can
be found in Section 10. We compare its performance to the Optimal Single
Price Auction and the Uniform Price Auction, and investigate the impact of
perfect knowledge on the execution time of a VM. We also provide simulation
results concerning the probability that any bidder can benefit from an untruth-
ful reporting of the number of VM instances required. Our conclusions follow
in Section 11.

2 Related Work

The use of an auction-like mechanism to sell spare capacity in cloud data centers
was pioneered in late 2009 by Amazon. In Amazon’s spot market, customers bid
the maximum hourly price they are willing to pay to obtain a VM instance®. All
instances incur a uniform charge, the spot market price. According to Amazon,
this price is set dynamically based on the relationship of supply and demand
over time. A unique feature of spot instances is that the provider has the right
to terminate them when their associated bid falls below the spot market price.
As a result, the resulting quality of service (QoS) may be lower compared to
on-demand and reserved instances, depending on the bid made. Current spot

Shttp://aws.amazon.com/ec2/spot-instances/

market data shows customers can acquire VMs at price reductions between 50%
to 93% compared to on-demand instances.

Amazon has revealed little information on the pricing and allocation rules
of their pricing mechanism. Ben-Yehuda et al. [5] examined the price history of
the EC2 spot market through a reverse engineering process, and found that the
mechanism was not completely driven by demand and supply. Their analysis
suggests that spot prices are usually drawn from a tight, fixed price interval,
and reflect a random non-disclosed reserve price. In this chapter, we propose an
auction mechanism with transparent allocation and pricing rules, while sharing
similar properties with the EC2 spot market.

Several authors have presented strategies for customers to utilize Amazon
spot instances (cost-)effectively [12-16]. However, as of yet a limited amount
of work has been conducted that focuses on the design of auction mechanisms
to the benefit of cloud providers, and the associated algorithms for allocating
resources and capacity planning to maximize the provider’s revenue. The prob-
lem of dynamically allocating resources to different spot markets in order to
maximize a cloud provider’s revenue has been investigated by Zhang et al. [7].
Danak and Manno [6] present a uniform-price auction for resource allocation
that suits the dynamic nature of grid systems. Mihailescu and Teo [17] inves-
tigate Amazon EC2’s spot market as a case in a federated cloud environment.
They argue that spot pricing used by Amazon is truthful only in a market with
a single provider, and show that rational users can increase their utility by being
untruthful in a federated cloud environment. Recently, Zaman et al. have in-
vestigated the applicability of combinatorial auction mechanisms for allocation
and pricing of VM instances in cloud computing [18].

Wang et al. [4] proposed an optimal recurrent auction for a spot market
based on the seminal work of Myerson [19]. The mechanism was designed in the
context of optimally segmenting the provider’s data center capacity between on-
demand and spot market requests. Their work differs from ours since they adopt
a Bayesian approach wherein it is assumed that the customers’ private values
are drawn from a known distribution. They also propose a truthful dynamic
auction [20] that periodically computes the number of instances to be auctioned
off in order to maximize providers revenue. Unlike EC2 spot marketplace, their
approach offers guaranteed services (i.e., instances are never be terminated by
the provider) and constant price over time (i.e. as the price is set for the
user, it remains constant as long as the user holds the instance). Their auction
charges each user a different price and does not generate a market-wide single
price. Moreover, their auction mechanism requires a priori known distribution
of valuations and near future demand prediction.

In contrast, we propose an auction mechanism designed to maximize profit
based on a competitive auctioning framework proposed by Goldberg and Hart-
line [21]. The mechanism computes a uniform price outcome, and focuses on
maximizing profit when the seller knows very little about the bidders valua-
tions. In order to achieve truthfulness in this context, we rely on a consensus
estimation technique [11].

Our work differs from that of Goldberg et al., in several aspects. First,

their analysis relies on the assumption that each customer is restricted to for-
mulate unit demand, which is not the case for cloud consumers as they can ask
and bid for multiple VM instances. Consequently, we revisit the definition and
truthfulness analysis of the mechanism for the multi-unit case. Second, their
auction mechanism is designed for off-line single-round scenarios. The context of
a cloud spot market however requires an online auction where customers arrive
over time and resources allocated by VM instances can be released and subse-
quently reused by other consumers. We adopt a greedy approach in realizing
the online character of the auction, and investigate its performance compared to
a clairvoyant optimal mechanism that relies on dynamic programming. Finally,
the production cost of goods is not taken into account in their work. In the IaaS
setting, taking this cost into account is important as a seller has the option to
either shut down server capacity or sell the capacity at a given reserve price.
We add such reserve pricing to the mechanism and introduce a coarse-grained
cost model to determine that.

Lee and Szymanski [1] have proposed an auction mechanism for time sensi-
tive e-services where services must be resold for future time periods repeatedly.
They investigated the bidder drop problem in recurrent auctions that occurs
when the least wealthy bidders tend to withdraw from the future auction rounds
due to repeatedly losing the auction. Our proposed auction is not specifically
designed to address this issue, however our evaluation shows that it rejects a
lower number of requests compared to the Optimal Single Price auction while
generating near optimal revenue.

3 Preliminaries and Notation

Consider a cloud provider with capacity C for a specific type of VM. That is, at a
given time ¢ up to C' instances of the specific type can be hosted simultaneously.
The provider runs a sealed-bid auction, A, to sell this capacity. First, we assume
the case that the provider’s capacity far exceeds the total demand, in line with
the cloud’s promise of delivering an unlimited supply of resources. Subsequently,
we generalize the results to a scenario in which supply is limited and lower than
total demand.

Suppose there are n customers joining the auction at time ¢. Each bidder 4
(1 < i < n) requires ¢; VM instances and has a private valuation v;, denoting
the maximum amount ¢ is willing to pay for each VM instance per time slot
(e.g., 1 hour). Customers submit an order (request), (r;, b;), where r; represents
the number of required VM instances and b; the bid price. We denote by d
the vector of all submitted orders. The ith element of d, d;, is the order by
customer 3.

Given d, the provider (auctioneer) computes an allocation vector, x =
(z1, 22, ...,2n), and a price vector, p = (p1,p2, ..., Pn). The ith component z; of
the allocation vector indicates whether bidder i receives the r; VMs requested
in its order (if x; = 1) or not (x; = 0). A bidder for which z; = 1 is called a
winner and pays the corresponding price p;, otherwise, the bidder is called a

loser and does not make any payment to the mechanism. As we focus on single
price auctions, all p; are equal for all winning bidders and we therefore refer to
the sale price as p. Partial fulfillment of requests, in which only a fraction of
the number of VM instances requested is allocated to a winning bidder, is only
considered in the case of limited supply and when b; = p. We allow for partial
fulfillment for those orders in line with the behavior of the EC2 spot market.

Note that bidders are individually rational users that try to maximize their
utility. Therefore, as long as it is deemed beneficial, a customer will strategically
misreport her bid or the required number of VMs i.e., b; # v; or r; # q;, where
v; and ¢; are private information known only to customer ¢. We define customer
i’s utility at time ¢ for one time slot of VM usage as follows:

ooy (@i —mipi)zi, i b > piand 1 > qi;
ui(ri, bi) = { 0, otherwise. (1)

The values of r; and v; for each customer are drawn from distributions that
are unknown to the provider. Customer i’s optimal bidding strategy must be
defined so that it maximizes ¢’s utility over all time slots. However, assuming
that customers are not aware of the future and have no time-dependent valu-
ation for resources, we define the utility function in (1) based on a single time
slot. Winners in an auction round are awarded their requested VM instances
and automatically attend the next round of the auction until they cancel their
requests on their own account or they lose the auction. In the latter case, VMs
held by an outbid customer are terminated by the provider without any prior
notice.

The holding time of a VM is the specific amount of time a customer wants to
run the VM. The VM’s actual holding time might be smaller than the expected
time if it is terminated by the provider instead of the owner. The holding time
of a VM by the customer is not known to the provider (or to the mechanism)
in advance. Therefore, in our model, a provider acts in a greedy manner to
maximize revenue according to the arriving requests and the current existing
requests in each round of auction. This can be modeled as a single round auction
which is recurrently conducted by the provider as new requests arrive or current
requests are terminated. In section 10.4, we compare the performance of this
greedy strategy to the optimal strategy that has prior knowledge on the VM
holding time. From this point onwards, we limit our discussion only to a single
round of the auction. In Section 9, we introduce the recurrent version of the
mechanism.

4 Competitive Framework

The revenue generated by auction A4 in a time slot equals:

Ad) =Y rip. 2)

K2

The problem of maximizing revenue in an auction for cloud resources can
be solved optimally if the seller knows the distribution from which the bidders’
valuations are drawn i.i.d. [4]. In conventional economics this is called Bayesian
Optimal Mechanism Design [19,22]. However, we assume that the distributions
from which the bidder’s private information are drawn are unknown to the
provider. Therefore, we base our approach on the competitive mechanism design
proposed by Goldberg et al. [21]. We will compare the revenue attained by
our mechanism to that of the Optimal Single Price auction for the unlimited
capacity case.

Definition 1. The Optimal Single Price auction, F, is defined as follows: Let
d be an order vector. Without loss of generality, suppose the components of d
are sorted in descending order by bid values. So, (r;, b;) is the ith largest bid
in d regardless of ;. The auction F on input d determines the value k such
that by Zle r; is maximized. We denote by oj(d) the sum of the number of
requested instances in the sorted vector of orders from the first order to kth
order (op(d) = Zle r;). All bidders with b; > by win at price by and all
remaining bidders lose. Thus, the revenue of F on input d is

F(d) = max bioi(d) . (3)

If more than one value of i maximizes b;o;(d), choosing the price point that
results in a lower transacted volume is preferable considering the cost of ac-
commodating VM instances (e.g., electricity cost). From this point forward, we
assume d is sorted decreasingly by bids values (b;), unless otherwise mentioned.

We are interested in an auction mechanism that is competitive with F on
every possible input; however, if a single bidder’s utility dominates the total
utility of the other bidders, no auction can compete with F as shown by Gold-
berg et al. [21]. We do not consider this to be an issue in our setting, because
the cloud environment can be viewed as a mass-market where the number of
winners of the optimal single price auction is typically large. In a mass-market,
removing one order does consequently not change the maximum extractable
profit significantly.

Definition 2. (Mass-market): Let F(d) be the revenue of F and hy(d) denote
the maximum value of b in d, then F(d) > hy(d) in mass-markets, which
implies that F sells m > 1 units.

We say that auction A is competitive if there exists a constant 5 such that
A(d) > F(d)/B. For a randomized mechanism?, the previous equation for
competitiveness becomes:

E[A(d)] > %

Assuming the fact that F sells at least m units, we define 5(m)-competitiveness
for a mass-market as below:

4The mechanism’s allocation and/or pricing rule procedure has a randomized component.

Definition 3. Auction A is B(m)-competitive for a mass-market if for all order
vectors d such that F sells at least m units, we have:
F(d)

E[A(d)] > Alm) (4)

5 Truthfulness

Let d_; denote the vector of orders d with (r;, b;) removed that is:

d—; = ((r1,b1), - (rim1,bi-1), (Tig15 bi41)s oo, (P, b))
and further introduce the notation F((r;,b;),d_;) = F(d).

Proposition 1. F is not truthful.

Proof. Suppose F is truthful, then utility for each bidder i is maximized if
b; = v; and r; = ¢; for any choice of d_;.

Consider d as any arbitrary vector of orders, assume F(d) is the maximum
revenue by F and by is the sale price. Suppose Fa(d) is the second largest
revenue which can be obtained by F and we limit d to those vectors such that
F(d) > Fa(d). Given a fixed d_j, 7k, g, bidder k is able to reduce her bid
from by, to by, and still be the winner as long as F((rx, b)) ,d—;) > Fa(d). As a
result, fixing other variables and considering that bidder % is a winner (zy = 1),
bidder k is able to increase her utility from gyvy, — 7bg to grvr — D). So there
exists a d_; and a bidder ¢ such that u; can be increased by misreporting ¢’s
true value, i.e., b; # v;. This contradicts the supposition that F is truthful. A
similar proof can be constructed for the number of requested instances, which
we omit here for space considerations. O

In order to create a truthful auction, an intuitive idea is to design the mech-
anism in a way that a bidder believes that her own order does not affect the
price she pays. This is called an order-independent auction since the price the
bidder is offered in the auction is independent of the bidder’s bid value [21]. An
order-independent auction can be viewed as a function that maps d_; to a price
for each bidder.

Definition 4. The order-independent auction offers a price p; to bidder i com-
puted by the function f according to the order vector d_;, i.e., p; = f(d—;).
If bidder ’s bid is greater or equal to p; (b; > p;), the bidder wins the auc-
tion (z; = 1) and pays p;; otherwise the bidder loses the auction (x; = 0) and
pays zero.

Lemma 1. The order-independent auction is truthful.

Proof. Following Definition 4, bidder i’s order does not affect the price she ends
up paying, so the bidder is not able to increase her utility by changing her order.
As a result, the bidder has no incentive to misreport her bid or quantity levels
as this does not change the amount she pays. O

Following [21], we introduce the optimal order-independent auction. To de-
fine it, first we define the notion of the optimal single sale price for a set of
orders.

Definition 5. Let d be a sorted vector of orders by descending values of bids.
Denote opt(d) the optimal single sale price for d that maximizes the revenue
for the auctioneer, i.e.,

opt(d) = argmax b;o;(d). (5)

b;

Now we can define the optimal order-independent auction, which is a truthful
auction, as follows:

Definition 6. The optimal order-independent auction is defined by the order-
independent function f such that f(d_;) = opt(d_;).

Unfortunately, even though the optimal order-independent auction is truth-
ful, it has two main characteristics that make it unsuitable for our purposes.
Firstly, it is not single price and secondly, a bidder j might lose the auction while
bidder ¢ with b; < b; wins and is charged p; < b;. In this case the auction’s
outcome is not fair and the losing bidder envies the winning bidder’s outcome.
This might happen as the sale price for bidder ¢ is computed based on d_;
which is different for each bidder. Proof of Lemma 2 provides examples of these
outcomes.

6 Envy-freeness

In an envy-free auction no bidder can increase its utility by adopting another
bidder’s outcome. For our case, an envy-free auction requires a single sale price.
All bidders willing to pay this price are provided with VM instances and charged
at that price uniformly.

In this work, it will be irrelevant how bids that equal the sale price are
treated, however, we assume that they are always provided with VM instances if
the provider’s capacity allows for it. Note that, according to the utility function
in Equation 1, the utility value (u;) is always zero for those bidders with true
bid values (v;) equal to p, irrespective of them winning or losing. Therefore,
those bidders are assumed to have no preference over the two possible outcomes.

Lemma 2. The optimal order-independent auction is not envy-free.

Proof. Tt suffices to construct an example showing that the optimal order-
independent auction is not single price. Consider three bidders with the fol-
lowing orders dy = (1, $8), do = (2,$7), and d3 = (4,$2). In order to calculate
the sale price for each bidder i, first we obtain d_; by removing bidder i’s or-
der from d. Then opt(d_;) is computed according to (5). Performing the above
process for all bidders, we obtain the outcome for each bidder as follows. Bidder
one and two win the auction and pay $7 and $2 respectively, while bidder three

10

loses the auction and pays zero. This shows that optimal order-independent
auction is not single price.

In addition, the order-independent auction is not fair as there are situations
in which a bidder might lose the auction while another bidder with a lower
bid price wins the auction. Consider four bidders with orders di = (2, $13),
dy = (5,83), ds = (1,$2) and dy = (20,$1). Bidder one and three win the
auction and both pay bidder four’s bid price, i.e., $1 per instance, while bidder
two with a bid price higher than bidder three ($3 > $2) loses the auction. O

Goldberg and Hartline [23] showed that no truthful, envy-free auction can be
constant competitive and they provided the lower bound of log(n)/log (log(n))
with n the number of bidders. In order to obtain a constant competitive auction
mechanism, we relax the assumption of truthfulness and extend the proposed
Consensus Revenue Estimate (CORE) auction [23] for our case. The proposed
auction is envy-free but is only truthful with high probability.

Definition 7. An auction is truthful with probability 1 — € if the probability
that any bidder can benefit from an untruthful bid is at most e. If € is inverse
polynomial in some specified parameters of the auction (such as the number of
items or bidders) then we say the mechanism is truthful with high probability.

In the following section, we show that the proposed auction mechanism is
truthful with high probability with respect to the bid price dimension. We also
provide simulation results concerning the probability that any bidder can benefit
from an untruthful reporting of the number of VM instances required.

7 Extended Consensus Revenue Estimate Auc-
tion

Recall that the optimal order-independent auction in Section 5 is truthful since
it is order-independent. Due to the fact that it is not single price, and therefore
not envy-free, it is not suitable for our problem context. The question therefore
arises as to how a single price can be computed for an order-independent auction
while attaining the revenue of the optimal auction, that is, F(d). It is clear
that F(d) cannot be computed from d_; and consequently, a function f that
generates the optimal sale price based on d_; cannot be built. Therefore, we are
interested in a mechanism that provides us with a sufficiently accurate estimate
of F(d) that is constant on d_; for all ¢ (i.e., it achieves consensus). If F(d_;)
is limited by a constant fraction of F(d), it is possible to pick a good estimate of
F(d) such that it achieves consensus with high probability [23]. In the remainder
of this section, we will outline how this estimate is computed.

In mass-markets such as clouds, F(d) is much larger than the highest bid.
Let hy(d) denote the maximum bid value in d, then F(d) > ahp(d) in mass-
markets, which implies that F sells at least a units.

Let m (m > «) be the number of sold units in F. If m is sufficiently large
and the maximum number of units that can be requested by a customer is

11

limited, removing an order does not change F(d) considerably. We show this
in Lemma 3.

Enforcing a restriction on the maximum number of VM instances that can
be simultaneously acquired by a customer is reasonable and done by public
cloud providers such as Amazon®. Such restriction reduces the chance of system
stability being threatened by very large unpredicted requests. In addition, it
reduces the risk of starvation for customers with small requests in the presence
of wealthy customers.

Lemma 3. Let r denote the supremum of the number of requested units in d,
ie., r; < r for all bidders, 1 < i < n. If m, the number of sold units in F, is
sufficiently large, then for any ¢,

m—-r

—LF(d) < F(d-) < F(d). 0

Proof. Without loss of generality, suppose d is sorted in descending order of
bids (b;), i.e., by > by > ... > by,. Suppose k is the rank of the bidder in d whose
bid maximizes b;o;(d), i.e., F(d) = bror(d). By removing order i from d, the
maximum reduction in F(d) is 7;b; (when ¢ < k), and the minimum reduction
is zero (when i > k). Therefore,

F(d) —riby < F(d—;) < F(d).

k

F(d)

m:er = b= —>,
= m

F(d)

i <r=nrb, <r

=

m—-r

F(d) < F(d_;) < F(d).

m

O

We introduce p for ——. In mass-markets, %]—'(d) < F(d-;) < F(d), mean-
ing that F(d_;) is at least a constant fraction of F(d).

The Extended Consensus Revenue Estimate Auction (Ex-CORE) combines
two general ideas as its name implies: consensus estimation and revenue extrac-
tion. For consensus estimation, it picks a function that estimates F(.) with high
quality and achieves consensus with high probability. A function that works well
in our case is g, defined as:

g(F(.)) = F(.) rounded down to the nearest ¢/t
where ¢ > p is a constant chosen as to maximize the quality of the estimation,

u is a uniform random value on [0, 1], and [is the largest integer so that c!T% <
F().

Shttp://aws.amazon.com/ec2/faqs/\#How_many_Spot_Instances_can_I_request

12

Lemma 4. [11] For ¢ > p and any d with %]—'(d) < F(d—;) < F(d), the
probability that g outputs a value which is constant on all d_; (i.e., achieves
consensus) is 1 — log, p.

Lemma 5. [11] If payoff for g, -4, is defined as:

g(F(.)), if g achieves consensus;
% (F () = { 0(7 +) otherwise. (7)

then for all F(.), we have:

FO) (1 1
E)] = L 8
Ol =5 (5-7) 0

Let us now discuss how to choose the value of c. We are interested in the
expected payoff to be large relative to F(.), i.e., E[y,(F(.))]/F(.) is large over
different values of F(.). For a fixed value of p, we can choose the value of ¢ that

maximizes lnl(c) (% - %) This function is differentiable on ¢ € (1,00) and it
has an absolute maximum on that interval. Therefore, by taking the derivative

of it w.r.t. ¢ and setting it to zero, we have:

B[y (F()I/F()

5 —0=
C
pln(e) +p—c
W:07 p>1, c>p=
pln(c)+p—c=0 9)

Note that (9) does not have an exact solution and needs to be solved by
numerical methods.

The second component of Ex-CORE, a revenue extraction mechanism, ex-
tracts a target revenue from the set of bidders if this is possible. The algorithm
is based on the cost sharing mechanism proposed by Moulin and Shenkar [24].
Given an order vector d sorted in descending order of bids and a target rev-
enue R, the revenue extractor function er(d) finds the largest k& such that
R/ok(d) > bg. In other words, it finds the k bidders with the highest bid values
that allow for the extraction of R. R is then shared among these k bidders
based on the number of requested instances by each bidder, that is, each of
these bidders are charged R/oy(d). If no subset of bidders can share R, the
auction has no winners.

Lemma 6. Given a target revenue R, the revenue extraction mechanism is
truthful for the price dimension but not for the quantity dimension.

Proof. Without loss of generality, we consider d as sorted. The revenue extrac-
tion mechanism is truthful if w;(g;, v;) > u;(r;, b;) for all values of b; and r; and
for every bidder 7, 1 < i < n. First, we show that given a fixed r; any untruthful
submission of the bid price, i.e., b; # v; decreases bidder’s i utility. It suffices
to consider the following two cases:

13

Bid price Bid price

1
P — e

—

1
:
1
- , — l
p L :
1
1
:

duantity
(a) Reporting b; < v; increases the price to p’ > v;.

Bid price Bid price

ey

Quantity T Quant‘ity
(b) Reporting b; > v; decreases the price to p’ > v;.

Figure 2: Effect of misreporting true value on the sale price. Truthful submission
leads to (a) winning and (b) losing.

Case 1: Suppose the truthful submission (v; = b;) leads to bidder ¢ winning
the auction, it is easy to verify that reporting b; > v; only decreases the rank
of bidder ¢ in d, assuming d remains unchanged except for bidder i. Therefore,
it does not change the sale price and as a result, bidder ¢’s utility also remains
unchanged.

If bidder ¢ reports b; < v;, as long as b; > p (p is the sale price), p remains
unchanged. Hence, bidder i’s utility does not increase or decrease. However, as
soon as b; < p, bidder ¢ loses the auction, the sale price rises, and the bidder’s
utility drops to zero. This is illustrated in Fig. 2(a). Consequently, submitting
b; < v; might not improve bidder ¢’s utility and might reduce it to zero.

Case 2: Suppose the truthful submission (v; = b;) leads to the bidder losing
the auction, then reporting b; < v; would clearly not change the zero utility of
the bidder.

If reporting b; = v; leads to bidder ¢ losing the auction, it follows that p > v;.
Assume p = R/s, where s is the sum of the number of requested units by largest
group of k bidders with highest bid values that can at least generate a revenue
of R. Consider s’ = g;(d), as a result s’ > s, since we know