
The scintillation method 
 

1 Introduction 
 

When electromagnetic (EM) radiation propagates through the atmosphere it is distorted by a number of 

processes that can influence its characteristics, e.g., its intensity (or amplitude), polarization and phase. Two of 

these processes are scattering and absorption by constituent gasses and atmospheric particles of the atmosphere, 

which remove energy from the beam and thus lead to attenuation. Note that by far the most important 

characteristic of scattered radiation is its intensity. The most serious mechanism that influences the propagation 

of EM radiation is small fluctuations in the refractive index of air (n). These turbulent refractive index 

fluctuations in the atmosphere lead e.g., to intensity fluctuations and are also known as scintillations. Some 

examples that clearly show the distortion of wave propagation by the turbulent atmosphere, which can be seen 

regularly, are the twinkling of stars, image dancing and image blurring above a hot surface. 

 

In most cases the atmosphere behaves turbulent. Turbulence is described as three-dimensional air motions or 

eddies, which have sizes ranging between millimetres to tens of metres. Turbulence in the atmosphere is the 

most effective transport mechanism for many scalar quantities, such as heat and water vapour. The refractive 

index of air is a function of the temperature (T) and to a lesser degree the humidity (Q) of the air, i.e., the density 

of the air (ρ). As eddies transport both heat and water vapour their refractive indices are different from their 

surroundings, resulting in refractive index fluctuations and thus scintillations.  

 

Since the 1950s many scientists have conducted theoretical studies trying to explain scintillation phenomena. 

Several different theoretical approaches have been proposed to describe the propagation of EM radiation in a 

turbulent medium. In some approaches the turbulent eddies are visualized as a collection of positive and negative 

lenses, which focus or defocus the beam resulting in scintillations. In others diffractional effects are taken into 

account. In the 1960s with the invention of the laser, experimental studies were conducted to validate the 

proposed propagation models. It was found that some of these models were very successful in describing certain 

phenomena for certain regimes. 

 

Due to the success of the models that were able to relate the propagations statistics of EM radiation with the 

turbulent properties of the atmosphere, it is now possible to measure and quantify the turbulent characteristics of 

the atmosphere using a remote sensing method, also known as the scintillation method. A scintillometer is an 

instrument that consists of a light source (transmitter part) and a detector (receiver part) that measures intensity 

fluctuations. Because the measured variance of intensity fluctuations is a measure of the turbulent behaviour of 

the atmosphere it can indirectly be related to the transport of certain quantities. Depending on the configuration 

of the scintillometer, e.g. the aperture size, wavelength and the number of receivers the fluxes of heat, water 

vapour and momentum can be derived. 
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Figure 1: Schematic of a scintillometer set-up where the EM beam emitted by the transmitter is scattered 

by turbulent eddies in the atmosphere. Also some important length scales are shown.  

 

A schematic of a scintillometer set-up is shown in Figure 1. The transmitter emits a beam of light with a certain 

wavelength (λ). At a known distance L from the light source the receiver analyses the intensity fluctuations 

(expressed as Cn
2) that are caused by the turbulent eddies. Also a number of length scales are shown that play a 

role in scintillometry; the diameter of the beam (D), the different eddy sizes bounded by lo and Lo and the height 

of the scintillometer above the surface (z).  

 

In the next paragraphs the basics of the scintillation method will be explained. As reference the papers selected 

by Andreas (1990) and the comprehensive review paper by Moene (2002) were used. The turbulent spectrum of 

refractive index fluctuations will be discussed in Paragraph 2. Structure functions, which are used to describe the 

behaviour of EM waves in random media, are explained in Paragraph 3. Several different wave propagations 

models have been proposed to describe the propagation of EM radiation in a turbulent medium. In Paragraph 4 

the approaches and limitations of some of them are discussed briefly. The most successful approach that links 

the propagation statistics of EM radiation with the turbulent characteristics of the atmosphere is given in 

Paragraph 5. An important limitation of the scintillation method, known as saturation, is discussed in Paragraph 

6. By increasing the aperture size of the scintillometer the path length can be extended without saturation effects. 

The basics of aperture averaging and the large aperture scintillometer (LAS) are explained in Paragraph 7. Both 

temperature and humidity fluctuations are responsible for fluctuations in the refractive index of air. This means 

that the measured Cn
2 can be related to CT

2 and CQ
2. Paragraph 8 will show that the contribution of temperature 

and humidity fluctuations is wavelength dependant. In Paragraph 9 is explained how the fluxes of heat (H) and 

latent heat (LvE) can be derived from CT
2 and CQ

2 using the Monin-Obukhov similarity theory. Finally, 

Paragraph 10 gives a short summary of the scintillation method. 



2 The turbulent spectrum 
 

In the atmospheric boundary layer (ABL) the flow behaves generally very chaotic, i.e., turbulent. Turbulence 

consists of a wide range of three-dimensional whorls, usually called eddies. In general the largest eddies are 

generated by both wind shear and convection (dependant on local climatology) and have a size in the order of the 

boundary layer depth. The large scale eddies are unstable and brake down into smaller and smaller eddies, 

known as the cascade process. Finally, the turbulent kinetic energy (ε) is dissipated into heat at the smallest 

molecular length scales, called the Kolmogorov micro scale 
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With typical values for the viscosity of air (ν) and the molecular dissipation rate of turbulent kinetic energy (ε), 

η is in the order of 1 mm. 

 

In Figure 2 a representation of the energy spectrum is depicted, which shows the distribution of the turbulent 

kinetic energy with wave number (κ). The wave number is defined as κ = 2π/l, where l is the size of the eddy. At 

eddy scales larger than the outer scale Lo (Ko = 2π/Lo) energy is introduced in the turbulent spectrum. In this part 

of the spectrum turbulence is not isotropic and inhomogeneous. In general the size of the outer scale is in the 

order of half the height above the surface (z). At wave number higher than Km, which is related to the inner scale 

lo (Km = 2π/lo), the turbulent kinetic energy is dissipated into heat. Typical size of the inner scale is 1 mm to 10 

mm. Hill and Clifford (1978) defined the inner sale as the intersection point of the asymptotic forms of the 

structure functions (see Paragraph 3) in the inertial and dissipation ranges. They showed that the inner scale is 

related to the Kolmogorov micro scale as follows 
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Figure 2: Schematic representation of the energy spectrum of turbulence. 

 

Part of the spectrum, which lies between the inner scale and outer scale of turbulence, is called the inertial sub 

range. This part of the spectrum is independent of the energy input and the viscous dissipation and where only 

the inertial transfer of energy is important. In the cascade process from large to intermediate and small size 

eddies Kolmogorov hypothesized that these small eddies have no memory of the large-scale processes and 

turbulence becomes isotropic at the high wave numbers (Garrat, 1992). 

 

Based on the concept of the cascade process Kolmogorov proposed the following form for the three-dimensional 

spectrum of refractive index fluctuations (ΦK(κ)) in the atmosphere (Tatarskii, 1961) 
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where κ is the wave number and Cn
2 is the structure parameter of the refractive index of air (see Paragraph 2.3). 

This model is only valid for the inertial sub range, although it is often extended over all wave numbers by 

assuming the inner scale is zero and the outer scale is infinite. However, it was found that the model 

overestimates ΦK(κ) in the dissipation range (i.e. it falls off more rapidly than –11/3). Therefore, Tatarskii (1961) 

proposed the following model 
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where κm = 5.92/lo. This model uses a Gaussian cut-off at high spatial wave numbers, which results in a steeper 

falloff than κ -11/3. This can be seen in Figure 3 where both the Kolmogorov (ΦK(κ)) and Tatarskii (ΦT(κ)) 

spectral model are shown. 
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Figure 3: Spectral models by Kolmogorov (ΦK(κ)) and Tatarskii (ΦT(κ)) of refractive index fluctuations. 

 

Fast temperature and velocity measurements by Champagne et al. (1977) and Williams and Paulson (1977) 

revealed a 'bump' in the spectrum at high wave numbers near lo
-1. Neither the model of Kolomogorov nor that of 

Tatarskii exhibits this bump. Based on the data of Champagne et al. (1977) Hill (1978) developed a theoretical 

model (ΦH(κ)) that describes this bump and agrees well with the observations. Churnside (1990) derived an 

analytical approximation to the Hill model 
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Frehlich (1992) determined ΦF(κ) directly from laser scintillation measurements. In Figure 4 the Hill-spectrum 

(1978) is shown together with the models of Churnside (1990) and Frehlich (1992). It can be seen that model of 

Tatarskii shows no bump and the models of Churnside and Frehlich slightly differ from the Hill spectrum. In 

Paragraph 5 will be shown that the exact form of the spectrum Φ(κ) at high wave numbers is important to know, 

especially when a near infrared point source/detector scintillometer is used (see e.g., Hartogensis et al, 2002a; De 

Bruin and Meijninger, 2002). The reason is that these scintillometer types are most sensitive to eddy sizes in the 

order of the inner scale lo, i.e. close to the bump in the spectrum. On the other hand a large aperture 

scintillometer is most sensitive to eddy sizes in the order of the aperture diameter (D) and is therefore less 

sensitive to the bump and thus the exact form of Φ(κ). 
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Figure 4: Scaled spectral models of refractive index fluctuations of Hill (1978), Churnside (1990) and 

Frehlich (1992) showing the ‘Hill’ bump plotted together with the Tatarskii spectrum as a function of the 

wave number scaled by the inner scale (lo/7.4). 

 

 

3 The structure parameter of the refractive index of air Cn2 
 

Wind speed (u), air temperature (T), the refractive index (n) and other quantities undergo irregular random 

fluctuations in a turbulent atmosphere. Random processes in space and time can be described by random 

functions, e.g., n(t), which is a random function describing the refractive index of air. However random functions 

are difficult to determine. In practice one uses statistical characteristics of the random functions. An important 

characteristic of a random function is the correlation function B(r1,r2), which describes the spatial structure of 

turbulence. The correlation function describing the refractive index fluctuations in a random field n(r) is as 

follows (Tatarskii, 1961) 

 

( ) ( ) ( )[ ] ( ) ( )[ ]221121 r'r'rrr,r nnnnBn −−= ,      (2.6) 

 

where a random field can be considered as a random function of three variables (e.g. the three velocity 

components in a velocity field) and the angle brackets denote an ensemble average. Bn describes the mutual 

relation between the fluctuations of a scalar n at different locations in space (r1 and r2). A random field is 

statistically homogeneous if it has a constant mean and Bn is unaffected by a simultaneous translation of r1 and r2 

in the same direction by the same amount, i.e. 
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Choosing r0 = -r2, the correlation function in a homogeneous field depends only on the difference r1 - r2 

 

( ) ( ) ( 212121 rr0,rrr,r −=−= nnn BBB ).       (2.8) 

 

A homogeneous random field is isotropic if Bn only depends on r=r , i.e. only on the distance between the 

points and not the direction 
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However homogeneous and isotropic random fields are only crude approximations to real meteorological fields. 

For example, most statistical characteristics of atmospheric turbulence are a function of altitude. Therefore, as 

with non-stationary random processes, it is better to use structure functions instead of correlation functions. 

 

The difference of the field values n(r) between r1 and r2 is mainly influenced by those inhomogeneities of the 

field n, which are smaller than 21 rr − . If this distance is not too large, the largest inhomogeneities have no 

effect on  and therefore the (second order) structure function ( ) ( )21 rr nn −

 

( ) ( ) ( )( ) ( ) ( )([ )]2221121 rrrrr,r nnnnDn −−−= ,     (2.10) 

 

depends on r1 - r2 only. This hypothesis, proposed by Kolmogorov, is known as local homogeneity. Thus the 

value of Dn characterizes the intensity of those fluctuations of n with scales smaller than or equal to r1 - r2. On 

the other hand Bn(r1,r2) depends not only on the distance r1 - r2 but also on r1 and r2 separately and therefore 

depends on inhomgeneities of all scales.  

 

In case of a locally homogeneous random field ( ( ) constr =n ), the structure function only depends on r1 - r2 
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Finally, a locally homogenous random field is locally isotropic if Dn only depends on 21 rr − , i.e. only on the 

distance and not the direction, which leads to the following simplified form of the structure function 
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The structure function is related to the three-dimensional spectrum as follows (Tatarskii, 1961) 
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By inserting only the inertial sub range part of the spectrum the following well-known relationship for a locally 

isotropic field can be derived 
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where Cn
2 is the structure parameter of the refractive index of air. When turbulence is homogeneous and 

isotropic within the inertial sub range Cn
2 is independent of r and is a measure of the amount of turbulent 

refractive index fluctuations. A larger value corresponds with more turbulent mixing of air. 

 

 

4 Wave propagation theory in random media 
 

When an EM wave propagates through a turbulent medium (e.g., the atmosphere) it suffers from scattering 

mechanisms and absorption. The most important mechanism that causes scattering in the atmosphere is random 

fluctuations in the refractive index of air. Both Obukhov and Tatarskii were one of the first who did theoretical 

studies on scintillation phenomena based on wave equations. Later on followed by experimental studies using 

lasers. So far the theory of optical propagation of EM waves through random media is not fully understood, 

except for certain regimes. 

 

Several theoretical models have been developed that describe certain phenomena of line-of-sight wave 

propagation in a random medium (Lawrence and Strohbehn, 1970; Strohbehn, 1969; Tatarskii, 1961). One of 

these is the geometrical optics approach (Tatarskii, 1961; 1971). In this approach amplitude fluctuations are 

attributed to the focusing and defocusing of the EM rays by the curvature of the turbulent eddies along the path, 

i.e. the eddies are considered as a collection of positive and negative lenses. This approach has been successfully 

applied to the line-of-sight propagation of short wavelengths, i.e. wavelengths that are small compared to the 

inner scale of turbulence (λ << lo). This is mainly needed to ensure that small-angle scattering can be assumed 

(Strohbehn, 1968). Tatarskii (1961; 1971) showed that in the geometrical optics method the smallest 

inhomogeneities of the order of lo are the most essential for intensity fluctuations (small eddies are more curved 

than large ones). The main restriction of the geometrical optics method is that it ignores diffractional spreading. 

Diffractional spreading, which has a scale size of LF λ=  also known as the first Fresnel zone, can be seen 

around the shadow of a certain object at a screen. In case the object is much larger than the scale of diffractional 

spreading, diffraction effects can be ignored (F << lo). Because F depends on the propagation distance L a 

certain point will be reached where F will become larger. When this happens the focusing and defocusing 

process by lenses of the order of lo no longer contribute to the observed intensity fluctuations, instead 



diffractional effects become dominant. Because F depends on L the geometrical optics method is restricted to 

short path lengths (see Paragraph 6). 

 

An alternative approach is the method of smooth perturbations, which takes diffraction effects into account 

(Tatarskii, 1961; 1971). As a result this approach is valid over longer distances. However, the method assumes 

that the wave is only perturbed slightly from its original state (i.e. weak scattering), which in practise again limits 

the distance. 

 

The best method so far is the so-called Rytov method, which is also a perturbation method and accounts for 

diffractional effects. Originally it was claimed that it would overcome the latter limitation of the smooth 

perturbation method. Later, experimental studies proved otherwise. The main difference between the two 

perturbation methods is that the Rytov method is applied to a transformation of the wave equation used in the 

original perturbation approach. Nevertheless, a perturbation method is only valid when the perturbations are 

small (i.e. weak turbulence conditions) and thus restricts the propagation distance.  

 

The starting point of all methods is the wave equation, which represents the propagation of a monochromatic 

wave through a random medium thereby neglecting polarisation effects (Lawrence and Strohbehn, 1970; 

Andrews et al., 2001) 

 

( ) ( ) ( ) 0222 =+∇ rErnkrE .        (2.15) 

 

∇2 is the three-dimensional Laplacian operator of an electromagnetic wave E, k the optical wave number (= 

2π/λ) and n the refractive index of the medium. The first term includes diffraction effects, which are ignored in 

the geometrical optics method. 

 

In the atmosphere it is known that the refractive index fluctuations around its mean value are very small. Based 

on this fact a perturbation expansion is used in order to solve Equation 2.15. I.e. a perturbation expansion of E 

and n; E = E0 + E1 where Eo is the incident electric field and E1 the scattered field and n = 1 + n1 where n1 << 1. 

It must be noted that in the perturbation expansion only the first scattering term is considered (i.e. E2, E3 …= 0) 

in order to derive an analytical solution. In Paragraph 6 experimental evidence will reveal that ignoring these 

higher-order terms restricts the validity of derived solutions of Equation 2.15. In the Rytov method the wave 

equation is transformed by substituting Ψ = ln(E). Considering a plane wave E = AeiS, where A is the amplitude 

and S the phase, Ψ becomes 

 

iS+=Ψ χ .          (2.16) 

 

If the perturbations are small, i.e. E1 << E0, a solution of Equation 2.15 can be derived in the form of an 

unperturbed and perturbed part, where the amplitude (χ) and phase (S’) fluctuations can be expressed as 
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and 

 

0' SSS −= ,          (2.18) 

 

where A0 and S0 are the amplitude and phase of the unperturbed wave E0. A similar perturbation approach is 

applied to Equation 2.15 for spherical waves (i.e., a point source/detector). In the next Paragraph the solution of 

the Rytov method for spherical waves will be discussed, which is applicable for small aperture scintillometers. 

 

 

5 Statistical solution of the wave equation 
 

The solution of the wave equation following the Rytov approach for spherical waves (i.e. point source/detector) 

propagating through a random medium, which is statistically homogeneous and locally isotropic, is as follows 

(Lawrence and Strohbehn, 1974) 
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σχ
2 is the variance of the logarithm of amplitude fluctuations (χ) measured by a small aperture scintillometer 

(SAS), k the optical wave number, L the path length, κ the (spatial) wave number and Φ(κ) the three-

dimensional spectrum of refractive index fluctuations. Inserting the Kolmogorov spectrum thereby ignoring 

small-scale effects and carrying out the integration gives the following relation between σχ
2
 and the path 

averaged Cn
2 (Tatarskii, 1961) 
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This equation, which is based on the first-order scattering theory, is only valid in the weak scattering regime and 

is therefore only applicable when σχ
2 < 0.3 (Clifford et al., 1974, Paragraph 6). Small scale effects can be 

ignored when F >> lo. For example a scintillometer that operates at a radio wavelength of 11 mm has a Fresnel 

size of several meters, thus F >> lo. When the wavelength lies in the visible to near-infrared wavelength region F 

approximately equals lo. In that case small effects cannot be ignored and an accurate three-dimensional spectrum 

(i.e. the Hill spectrum) must be substituted instead, which leads to the following expression 
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where the function Φ(lo/F) accounts for the small scale effects. Important to note is that due to the large Fresnel 

zone of a scintillometer that operates at a wavelength of 11 mm the scintillometer becomes more sensitive to 

outer scale effects because F approaches Lo. Note that Equations 2.20 and 2.21 are often expressed as a function 

of intensity fluctuations (σlnI
2 = 4σlnA

2 = 4σχ
2) because most scintillometers measure intensity fluctuations. 

 

When Equation 2.19 is written in a more convenient form, showing the averaging of Cn
2 along the path L 
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the path weighting function W(x) can be derived 
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An example of the path weighting function is depicted in Figure 5 (assuming the detector approximates a point 

detector), which shows that the path weighting function has its maximum in the centre of the path and gradually 

drops to zero at the ends. This means that the scintillometer is most sensitive to 'scintillating' eddies in the middle 

of its path. 
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Figure 5: The path weighting function (W) of a point source transmitter/detector (i.e. a spherical wave) as 

a function of the relative position u (= x/L). 



 

In order to analyse the size of the eddies that produce the most powerful scintillations the integrand of Equation 

2.23, rewritten as 
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has to be analysed. For x/L = 0.5 and 0.05 this integrand is plotted in Figure 6 as a function of F/l (= Fκ/2π). The 

Figure reveals that the optically most effective eddies are of the order of the diameter of the first Fresnel zone F 

in the centre of the path (x/L = 0.5) and decreases in size towards the transmitter and receiver ends (x/L = 0.05). 

As mentioned before, depending on the configuration of the scintillometer (i.e. λ) and its set-up (i.e. L) F varies 

between several millimetres to a few meters. 
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Figure 6: Values of the integrand (normalized to 1) as a function of the size of the inhomogeneity l, which 

is normalized by the first Fresnel zone F (for x/L = 0.5 and 0.05). 

 

A more simple physical model to derive the size of the optically most effective eddies is shown in Figure 7 

(Clifford et al., 1974). This Figure shows an irregularity (e.g., an eddy) of diameter 2l at an arbitrary point X 

between the transmitter (S) and the receiver (at distance L). The eddy will be most effective in producing a 

'scintillation' at point L when the difference between path SAL and SL equals λ/2, i.e. in this way the two rays 

interfere destructively. Note that it is assumed that the spherical wave is scattered only once. Working out the 

geometry gives 
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Again the most optically eddy has a size of approximately F in the centre (x/L = 0.5) and decreases in size 

towards the ends (x/L → 0 and 1). If there are smaller eddies than F at point X scintillations will be produced at 

places, which lie between point X and the receiver (L). Although these scintillations eventually will reach point 

L their contribution to the total variance at the receiver is small. On the other hand eddy sizes larger than F will 

not produce intensity fluctuations because of their long focal lengths and will only tilt the wave. 
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Figure 7: The geometry of a simple eddy model. The receiver (L) observes scintillations of a spherical 

wave emitted by the transmitter (S), which are produced by an eddy/irregularity at point X. 

 

 

6 Saturation 
 

Equation 2.19 is based on first-order scattering theory (i.e., the wave is scattered only once, see Paragraph 4). 

Therefore, this Equation is only valid in a weak scattering medium. If the turbulence becomes too intense (i.e. a 

strong scattering medium where scattering occurs more than once) the proportionality between σχ
2 and Cn

2 will 

fail. This phenomenon is known as saturation of the signal. Clifford et al. (1974) found that saturation occurs 

when σχ
2 > 0.3. When this happens a further increases of Cn

2 no longer result in an increase of σχ
2. Figure 8 

shows observed values of σχ
2 plotted against theoretical predicted values of σχ

2 using Equation 2.19 and known 

values of k and L and Cn
2 values derived from temperature probes. It can be seen that for all path lengths except 

the shortest saturation occurs. Over extreme long path lengths a point will be reached were σχ
2 starts to decrease. 

This is called super saturation (see Figure 8 for L = 1750 m). 

 



 

Figure 8: Measured values of σχ
2 (vertical axis) plotted against modelled σχ

2 values (horizontal axis) 

showing the saturation effect which occurs over long path lengths (Strohbehn, 1968). The solid line equals 

a 1:1 line. 

 

Clifford et al. (1974) explained the saturation effect as follows, which is sketched in Figure 9. As the wave 

passes through a strong scattering medium lenses at both sides of the lens F will be distort the wave front 

resulting in small irregularities in the wave front. When the size of these irregularities is smaller than the size of 

F the power of lens F will be diminished. Finally, this results in a pattern at x = L, which is different in size 

compared with the pattern for a single scattering situation with an undisturbed spherical wave front. This effect 

is known as smearing of the pattern and will result in a decrease of σχ
2. When the size of lens F becomes smaller 

and smaller eventually a point will be reached where there can be no irregularities in the wave front than the 

smallest eddy lo. This means that if lens F has the size lo it can no longer be distorted and is effective in 

producing scintillations. In the case the irregularities in the wave front are larger than the F the pattern at point x 

= L will not change in size but only its position will shift on the screen (this can be seen as tilting of the wave 

front). To summarize over longer path lengths the most effective eddies are no longer of the scale size of the first 

Fresnel zone. Instead smaller scales become dominant. According to the turbulent power spectrum small scale 

turbulence is less powerful than large scale turbulence resulting in a decrease of σχ
2 as is shown in Figure 8. 
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Figure 9: Schematic representation of the smearing effect caused by irregularities smaller than lens F 

under strong turbulent conditions. 

 

 

7 The Large Aperture Scintillometer 
 

A simple way to avoid saturation is by limiting the path length. Another way to overcome saturation of the signal 

is to increase the aperture size (D) of the scintillometer (Wang et al., 1978). When the aperture size of the 

receiver is larger than the scale of the optically most effective eddies (F) the receiver will average out 

fluctuations of the received signal over the aperture area. This process, called aperture averaging leads to 

reduced intensity fluctuations. 

 

In Figure 10 a schematic of the averaging effect is shown. Due to the diffraction process in the atmosphere a 

scintillation pattern, which consists of a wide range of dark and bright structures, will drift over a screen 

positioned at the receiver side. A very small receiver will be sensitive to all these scales in the scintillation 

pattern. As the aperture of the receiver increases fine scale structures in the pattern will average out over the 

aperture, i.e., small dark and bright spots will compensate. As a result σχ
2 will decrease. Very large-scale 

structures in the scintillation pattern, which are larger than the aperture diameter, will not be seen because they 

don’t produce intensity fluctuations. On the other hand structures that are in the order of the aperture diameter 

will be dominant. Although it is less apparent, the same averaging occurs when the diameter of the transmitter 

increases (assuming an incoherent source). In this case the aperture of the transmitter can be regarded as a 

collection of point sources, which filter out fine scale turbulence. 



D

 

Figure 10: Schematic of aperture averaging of fine scale turbulence. 

 

For equal transmitting and receiving apertures with diameter D, the expression for σχ
2 is as follows (Hill and 

Ochs, 1978) 
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where J1 is the Bessel function. Note that this expression is still based on the first-order scattering theory, which 

means that a large aperture scintillometer also has saturation point. The term between the brackets accounts for 

the aperture averaging. For infinite small aperture (i.e. D → 0) this term approaches unity and the resulting 

equation is valid again for a point source/detector scintillometer (Equation 2.19). In Figure 11 this term is plotted 

as a function of wave number. At high wave numbers this term goes to zero, i.e., small-scale turbulence is 

filtered out. 
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Figure 11: The ‘aperture averaging’ term of Equation 2.26 as a function of wave number (for u = 0.5). 

 

After inserting the spectrum of refractive index fluctuations and integrating Equation 2.26 the relation between 

σχ
2
 and the path averaged Cn

2 for a large aperture scintillometer can be derived (Wang et al., 1978) 
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Important to note is that aperture size must be sufficiently large. In Figure 12 the normalized variance σχ
2 is 

plotted as a function of the normalized aperture diameter α (= D/F). It can be seen that σχ
2 is only proportional to 

α -7/3 when α is larger than 2, i.e., D > 2F. This means that if L becomes too large Equation 2.27 is no longer 

valid. 
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Figure 12: The normalized σχ
2 as a function of α (= D/F). For small α (i.e., small D) σχ

2 is no longer 

proportional to α -7/3. 



 

As for the point source/detector scintillometer Equation 2.26 can be re-written in a more convenient form to 

derive the path weighting function W(x) for a LAS 
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The path weighting function is depicted in Figure 13, which shows that a large aperture scintillometer is also 

most sensitive in the centre of its path. 
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Figure 13: The path weighting function (W) of a large aperture scintillometer (λ = 940 nm) as a function of 

the relative position u (= x/L). 

 

In Figure 14 the integrand of Equation 2.28 is shown. This Figure is similar to Figure 6 showing the most 

effective eddy seen by a scintillometer. In Figure 14 the peak of the integrand lies at a scale of the order of the 

aperture diameter D instead of the first Fresnel zone for x/L = 0.5, showing that a LAS is most sensitive to D 

sized scales. 
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Figure 14: Values of the integrand (normalized to 1) as a function of the size of the inhomogeneity l, which 

is normalized by the aperture diameter D (for x/L = 0.5 and 0.05). 

 

According to Wang et al. (1978) the diameter of the aperture should be sufficiently large in order to avoid 

saturation. They derived the following criterion 

 

( ) 5/3298.0 χσ
λ

>
L

D
.         (2.29) 

 

By substituting the latter Equation in Equation 2.27 the maximum value for Cn
2 can be derived, which is a 

function of aperture diameter, the path length and the optical wavelength 

 
6/23/83/52 93.0 λ−< LDCn .        (2.30) 

 

Based on experimental measurements Ochs and Hill (1982) found that the restriction given by Wang et al. 

(1978) was too optimistic. They proposed the following criteria 

 

( ) 5/327.2 χσλ
>

L
D

         (2.31) 

 

and thus as maximum Cn
2 

 
6/23/83/52 18.0 λ−< LDCn .        (2.32) 

 

Their criterion is about 5 times stricter than Wang et al. (1978) proposed. However, it must be noted that Ochs 

and Hill used dual-aperture tangent detector scintillometers instead of single-aperture detector designs. Frehlich 



and Ochs (1990) also studied the saturation effect on optical large aperture scintillometers. They found that 

forσχ
2 values of about 0.03 the large aperture scintillometer underestimated the fluxes in the order of 10% (see 

Kohsiek et al., 2002). Based on the σχ
2 value of 0.03 the following criteria can be derived 

 

( ) 5/324.5 χσ
λ

>
L

D
         (2.33) 

 

and 

 
6/23/83/52 057.0 λ−< LDCn ,        (2.34) 

 

which is about 3 times stricter than Ochs and Hill (1982). Frehlich and Ochs (1990) studied the effect of 

saturation in strong turbulence by comparing observations with theoretically derived predictions of saturation 

effects. However, a complete analysis could not be done due to missing inner scale measurements. As Frehlich 

and Ochs noted, further research is required. 

 

Another advantage of the large aperture scintillometer, besides its saturation resistance, is that the effect of inner 

scale dependence is small (Wang et al., 1978). In Paragraph 5 it was shown that if the Fresnel size for a point 

source/detector configuration approaches the size of lo inner scale effects could no longer be ignored. This means 

that an exact shape of the spectrum of refractive index fluctuations (Φ(κ)) is required in order to derive Cn
2 from 

σχ
2 measurements. The same applies for large aperture scintillometers, i.e., when the diameter of the aperture 

becomes too small the scintillometer looses its calibration and becomes dependant on lo. Hill and Ochs (1978) 

found that aperture diameter should be 20 times larger than lo to be inner scale independent. 

 

 

8 Related structure parameters 
 

Temperature (T), humidity (Q) and to a lesser extend pressure (P) fluctuations cause fluctuations in the refractive 

index of air (n). By neglecting pressure fluctuations Cn
2 can be related to the structure parameters of temperature 

(CT
2), humidity (CQ

2) and the covariant term (CTQ) as follows (Hill et al., 1980) 
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AT en AQ are functions of the wavelength and the mean values of temperature, humidity and atmospheric 

pressure (Hill et al., 1980; Andreas, 1989). For visible and near-infrared wavelengths (λ between 0.36-3 µm) AT 

and AQ are defined as follows 
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( )QmRA vQ λ2= ,         (2.37) 

 

where Rv is the specific gas constant for water vapour (461.5 J K-1 kg-1). In case of a near-infrared wavelength of 

940 nm m1 = 0.78×10-6 K Pa-1 and m2 = -0.126×10-6 K Pa-1. At radio wavelengths (λ > 3 mm) AT and AQ are 

slightly different (Kohsiek and Herben, 1983; Andreas, 1989) 
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In Table 1 typical values for AT and AQ are given. For a wavelength of 940 nm it can be seen that AT >> AQ. This 

means that at this wavelength temperature fluctuations are dominant. At radio wavelengths (e.g. 11 mm) AQ 

approaches AT, i.e., both humidity fluctuations and temperature fluctuations are important. Table 2 shows some 

values of Cn
2 measured with a near-infrared and radio wave scintillometer and the contributions of T and Q. 

 

Table 1: Typical values for AT and AQ for 'normal' atmospheric conditions for λ = 940 nm and λ = 11 mm 

(P = 1×105 Pa, T = 288 K and Q = 0.012 kg m-3). 

 AT [-] AQ [-] 

λ = 940 nm -0.27×10-3 -0.70×10-6 

λ = 11 mm -0.34×10-3 0.72×10-4 

 

Table 2: Cn
2 values measured with a near-infrared and a radio wave scintillometer and contributions of 

CT
2, CQ

2 and CTQ to Cn
2 (Flevoland experiment, 1998) 

 2
nC  2

2

2

T
T C

T

A
 TQ

QT C
QT
AA

2  2
2

2

Q
Q C

Q

A
 

λ = 940 nm 1.22×10-14 1.09×10-14 1.19×10-15 3.89×10-17 

λ = 11 mm 8.7×10-13 1.7×10-14 -2.49×10-13 1.10×10-12 

 

 



The problem is to solve Equation 2.35. Kohsiek (1982a) suggested measuring Cn
2 at three different wavelengths 

in order to obtain CT
2, CQ

2 and CTQ. However, the problem is that there is no wavelength where only humidity 

fluctuations are dominant. To some degree temperature fluctuations always play a role at most wavelengths (e.g., 

see Table 2). Kohsiek and Herben (1983) proposed as an alternative to use two wavelengths plus an extra 

relation between T and Q fluctuations instead. 

 

Following the suggestion of Kohsiek and Herben, Andreas (1989) found that a combination of a visible to near-

infrared scintillometer and a near-millimetre to radio wave scintillometer, denoted as the ‘two-wavelength 

method’, is the best option for measuring the fluxes of H and LvE. Both Hill et al. (1988) and Andreas (1989) 

presented a method to solve CT
2 and CQ

2 from Cn
2 values measured at a near-infrared (nir) and a radio wavelength 

(rw) thereby assuming TQQTTQ CCCR =22  in order to eliminate CTQ 
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with 

 

QT
AAAA rwQnirTnirQrwT ____ −

=Γ .       (2.42) 

 

RTQ is the correlation coefficient between the temperature and the absolute humidity within the inertial sub range. 

Because in most cases CTQ is not measured directly, it is customary to assume that RTQ is ±1 in order to estimate 

CTQ from CT and CQ. 

 

In case Cn
2 is measured at only one wavelength Wesely (1976a) showed that at visible to near-infrared 

wavelengths Equation 2.35 can be rewritten as follows 
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First, it is assumed that RTQ equals ±1 to get an estimate CTQ. Second, the Bowen ratio is expressed as 
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which is used to replace (CT / CQ). Kohsiek (1982b) experimentally showed that β could be derived from CT and 

CQ measurements. Finally, this leads to the following very practical Equation (using ρ = 1.2 kg m-3, cp = 1005 J 

kg-1 K-1 and Lv = 2.45×106 J kg-1) 
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for deriving CT
2 from Cn

2 measurements obtained with a visible to near-infrared scintillometer. 

 

 

9 Monin-Obukhov Similarity Theory 
 

In the lowest part (≈ 10%) of the planetary boundary layer (PBL), the surface layer (SL), it is considered that the 

vertical fluxes of momentum and conservative scalars are nearly constant with height. Within the SL the Monin-

Obukhov similarity theory (MOST) makes it possible to link the structure parameter of temperature (CT
2) and 

humidity (CQ
2) with the surface fluxes H and LvE. Assuming stationary conditions and a horizontal homogeneous 

surface MOST describes this relationship as follows 
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with z is the height of the scintillometer above the surface, d the displacement and LOb the Obukhov length 
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where kv the von Kármán constant. The temperature scale T*, the friction velocity u* and the absolute humidity 

scale Q*, are defined as follows 
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Wyngaard et al. (1971) proposed the first expression for f between CT
2 and H, that was based on in-situ 

measurements done during the Kansas 1968 experiment 
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with cT1 = 4.9 and cT2 = 7. This expression is only valid for unstable atmospheric conditions. Alternative 

expressions have been proposed (Wesely, 1976b; Andreas, 1988; Thiermann and Grassl, 1992; Hill et al., 1992a; 

De Bruin et al., 1993) for both unstable (some examples are depicted in Figure 15) and stable conditions. Most 

proposed expressions are based on in-situ eddy covariance observations of the Kansas experiment (Wyngaard et 

al., 1971; Andreas, 1988). Interesting to note is that it is not known how well the eddy covariance derived fluxes 

did close the energy balance during these experiments (Kohsiek et al., 2002), which questions the validity of f. 
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Figure 15: Stability functions proposed by Wyngaard, De Bruin and Hill for unstable conditions (z/LOb < 

0). 

 

In order to solve H the friction velocity is required. The friction velocity can be determined using different 

techniques. First, measure the inner scale lo using a small aperture scintillometer (see e.g., Hill et al., 1992a; 

Thiermann, 1992; Thiermann and Grassl, 1992). Once the inner scale is known u* and the fluxes can be derived 



iteratively. Second, an eddy covariance system can be used to measure the friction velocity ( ''* wuu −= ). 

Third, u* can be derived by applying the CT
2 - profile method proposed by Hill et al. (1992b) thereby using two 

large aperture scintillometers installed at two different heights. Finally, the friction velocity can be obtained from 

wind speed data (u) and an estimate of the surface roughness (z0) 
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Ψm is the well-known Businger-Dyer expression. The main advantage of the first and third method is that path 

averaged values for u* can be derived. The second and latter methods are ‘traditional’ point techniques for 

estimating u*. For these cases one can question their representativeness over non-homogeneous areas. 

 

For very unstable atmospheric conditions ( 1>−
−

ObL
dz

) the following simple expression for the sensible heat 

flux can be derived 
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= varies between 0.48 and 0.57 (Kohsiek, 1982b; De Bruin et al., 1995). This 

expression is also known as the free convection limit and provides a simple method to determine H directly from 

CT
2 without knowing u*. In practical applications the free convection approach can provide accurate fluxes when 

the scintillometer is installed relatively high above the surface (≈ 10 m). Despite its simplicity it must be noted 

that the measurement height of the scintillometer should be measured accurately because H is linearly related to 

the measurement height (z-d) (see e.g., Hartogensis et al., 2002b). In non-flat areas this can be complicated. 

 

 

10 Summary 
 

In the preceding Paragraphs the basics of the scintillation method is explained. Based on the Rytov method it is 

now possible to describe the propagation of EM radiation in a turbulent medium. This means that we can link the 

propagation statistics of EM radiation (i.e. the Rytov variance σχ
2) with the characteristics of the atmosphere 

(Cn
2) using a small aperture or point source/detector scintillometer (further denoted as SAS). A scintillometer is 

considered a SAS when its diameter is smaller than first Fresnel zone (F). However the proportionality between 



σχ
2 and Cn

2 is only valid when σχ
2 remains smaller than 0.3. Above this limit the signal becomes saturated. This 

means that for near infrared to visible wavelengths the optical path is restricted to short distances of 

approximately 250 m. In the radio wavelength region saturation is less likely and the distance can be several 

kilometres. Turbulent scales in the order of the first Fresnel zone (F) primarily cause the scintillations observed 

by a SAS. Depending on the operational wavelength of the light source F varies between several millimetres 

(near infrared region) to a few meters (radio wave region). A near-infrared SAS is therefore very sensitive to 

inner scale effects. Outer scale effects are relevant in the propagation statistics of radio waves meaning that non-

isotropic conditions can distort the measurements. Another problem is that at radio wavelengths also absorption 

fluctuations by water molecules influence the intensity statistics. 

 

The large aperture scintillometer (LAS) and the extended XLAS, which operate in the near infrared region, are 

designed to overcome the saturation effect of the near-infrared SAS. Due to the increased aperture small-scale 

structures are filtered out, which lead to a reduction of the amount of scintillations. As a result the LAS can 

operate over longer distances, i.e., the proportionality between σχ
2 and Cn

2 remains valid under strong turbulent 

conditions. Although the LAS and XLAS also have a saturation maximum, it has not been thoroughly 

investigated. Another advantage of the LAS is that the instrument is most sensitive to eddy sizes in the order of 

its diameter (LAS, D = 0.15 m; XLAS, D = 0.31 m), which lie far from the inner scale and outer scale. As a 

results the LAS is less sensitive to inner scale and outer scale effects. In Table 3 an overview is given of 

different, widely used, scintillometer types; the near-infrared small aperture scintillometer (SAS), the near-

infrared large aperture scintillometers (LAS and XLAS) and the radio wave small aperture scintillometer (RW-

SAS); their operational regimes, characteristic length scales and sensitivities. The LAS, XLAS and SA-RWS 

have the potential to obtain surface fluxes over spatial scales of several kilometres (see Chapter 3 and 4). 

 

Table 3: Overview of different scintillometer types: the near infrared small aperture (SAS), the large 

aperture scintillometer (LAS and XLAS) and the small aperture radio wave scintillometer (SA-RWS). 

 SAS LAS XLAS SA-RWS 

λ 670 nm 940 nm 940 nm 11 mm 

L 20 – 250 m 500 – 5000 m 1 – 10 km 1 – 10 km 

F ≈ 0.01 m ≈ 0.05 m ≈ 0.08 m ≈ 5 m 

D ≈ 0.002 m 0.15 m 0.31 m 0.6 m 

Most effective eddy ≈ F ≈ D ≈ D ≈ F 

Restrictions of:     
2
χσ  (saturation) < 0.3 ( ) 5/327.2 χσλ

>
L

D
 ( ) 5/327.2 χσλ

>
L

D
 

< 0.3 

D (‘inner scale dependence’) - D >> 20lo D >> 20lo - 

D (‘aperture averaging’) - D > 2F D > 2F - 

F, D lo ≈ F << Lo lo << F << D < Lo lo << F << D < Lo lo << F << Lo 

 



Once Cn
2 is known, CT

2 and/or CQ
2 can be derived depending on the scintillometer configuration (a near-infrared 

SAS, LAS or a combined LAS - SA-RWS configuration). The final step is to relate CT
2 and/or CQ

2 to the surface 

fluxes of sensible and latent heat applying MOST. The latter step is most sensitive to distortions, especially when 

Cn
2 is obtained over long path lengths of several kilometres since MOST requires stationary and homogeneous 

surface conditions. This issue will be discussed in the next chapters. 

 

Based on the restrictions of e.g., the LAS given in Table 3, the operational regime of the LAS can be derived, 

which is shown in Figure 16. The minimal height of the LAS is estimated for 6 different surface characteristics 

(H = 100 Wm-2 to 600 W m-2) and path lengths using the proposed saturation regime of Ochs and Hill (1982) and 

applying the free convection approach. The area below the 6 curves represents the area where saturation occurs. 

It can be seen that for a constant height and path length over wet areas the LAS can be installed at lower heights 

than over dry areas. The maximum path length of a LAS is approximately 5 km in order to satisfy the criterion 

that the diameter must be larger than two times the Fresnel zone F. The minimum distance of the LAS is 

approximately 500 m and depends solely on the signal-to-noise characteristics of its electronics. It has been 

shown in Paragraph 9 that in the surface layer (10% of the boundary layer height, h or zi), when 1>−
−

ObL
dz

 the 

local free convection approach can be applied, and u* no longer is an important MOST variable. Above the 

surface layer, inside the mixed layer the structure functions can be scaled as a function of large-scale structures 

in the order of the boundary layer height (h or zi) instead of MOST. Experimental data have shown (see e.g., 

Wyngaard and LeMone, 1980; Kohsiek, 1988) that this mixed-layer-scaling holds only in the lower part of the 

convectively driven boundary layer (0.2zi ~ 0.3zi), and thus limits the installation-height of the scintillometer.  
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Figure 16: Operational regimes of the LAS. 
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