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ABSTRACT

USING WEB ARCHIVES TO ENRICH THE LIVE WEB EXPERIENCE
THROUGH STORYTELLING

Yasmin AlNoamany
Old Dominion University, 2016
Director: Dr. Michael L. Nelson

Much of our cultural discourse occurs primarily on the Web. Thus, Web preservation

is a fundamental precondition for multiple disciplines. Archiving Web pages into themed

collections is a method for ensuring these resources are available for posterity. Services

such as Archive-It exists to allow institutions to develop, curate, and preserve collections

of Web resources. Understanding the contents and boundaries of these archived collections

is a challenge for most people, resulting in the paradox of the larger the collection, the

harder it is to understand. Meanwhile, as the sheer volume of data grows on the Web,

“storytelling” is becoming a popular technique in social media for selecting Web resources

to support a particular narrative or “story”.

In this dissertation, we address the problem of understanding the archived collections

through proposing the Dark and Stormy Archive (DSA) framework, in which we inte-

grate “storytelling” social media and Web archives. In the DSA framework, we identify,

evaluate, and select candidate Web pages from archived collections that summarize the

holdings of these collections, arrange them in chronological order, and then visualize these

pages using tools that users already are familiar with, such as Storify.

To inform our work of generating stories from archived collections, we start by building a

baseline for the structural characteristics of popular (i.e., receiving the most views) human-

generated stories through investigating stories from Storify. Furthermore, we checked the

entire population of Archive-It collections for better understanding the characteristics of

the collections we intend to summarize. We then filter off-topic pages from the collections

the using different methods to detect when an archived page in a collection has gone off-

topic. We created a gold standard dataset from three Archive-It collections to evaluate the

proposed methods at different thresholds. From the gold standard dataset, we identified

five behaviors for the TimeMaps (a list of archived copies of a page) based on the page’s

aboutness. Based on a dynamic slicing algorithm, we divide the collection and cluster the

pages in each slice. We then select the best representative page from each cluster based on

different quality metrics (e.g., the replay quality, and the quality of the generated snippet



from the page). At the end, we put the selected pages in chronological order and visualize

them using Storify.

For evaluating the DSA framework, we obtained a ground truth dataset of hand-crafted

stories from Archive-It collections generated by expert archivists. We used Amazon’s Me-

chanical Turk to evaluate the automatically generated stories against the stories that were

created by domain experts. The results show that the automatically generated stories by

the DSA are indistinguishable from those created by human subject domain experts, while

at the same time both kinds of stories (automatic and human) are easily distinguished from

randomly generated stories.



iv

Copyright, 2016, by Yasmin AlNoamany, All Rights Reserved.



v

To my husband Ahmed, my son Yousof, and the martyrs who sacrificed their life for

freedom, justice and dignity in Egypt.



vi

ACKNOWLEDGMENTS

First and above all, praise be to God (Alhamdulelah), the almighty for giving me the

opportunity to finish what I started. I hope the science introduced in this dissertation

glorifies him and benefits the people.

I would like to sincerely thank my advisor Dr. Michael L. Nelson, not only for his

superb guidance, but also for his time, patience, and support during my Ph.D. journey.

Discussions with Dr. Nelson always sparked interesting and great ideas and allowed me to

increase my knowledge in various aspects. Not only my presentation skills and performance

in research improved because of Dr. Nelson, but I also became interested in old cars and

learned that cats can live with dogs peacefully!

I am grateful to my dissertation committee, Dr. Michele C. Weigle, Dr. Hussein Abdel-

Wahab, and Dr. M’hammad Abdous for their support and for their input to enhance the

dissertation. I cannot thank enough Dr. Michele C. Weigle whose support, guidance, and

encouragement were always there throughout my time at Old Dominion University. Dr.

Weigle’s valuable comments helped in achieving high-quality standards in my research and

her support strengthened me in hard times when I was down and wanted to quit. A special

appreciation to Dr. Hussein Abdel-Wahab for his friendship, encouragement, and support in

the whole journey. Dr. Abdel-Wahab is always willing to listen, help, and answer questions.

I would like to acknowledge Kristine Hanna, Jefferson Bailey and the Archive-It team

and partners for supporting my research by providing us with the datasets and also for

helping in the evaluation phases. I’m grateful to the former and current members of the

Web Science and Digital Library group. Special appreciations for Lulwah Alkwai, my best

friend and teammate, for her support, encouragement, and help. I would like to thank

Justin F. Brunelle for answering my questions about the Ph.D. process and for being a

supportive friend. I would like also to thank him for allowing me to meet the youngest

member of Brunelle’s family, Brayden. I would like to acknowledge Sawood, Mohamed,

and Alex for their help and Mat, Shawn, Chuck, Scott, Martin, and Hany for the useful

discussions in the lab.

I’m indebted to have a supportive family (my mom, dad, and my brothers). Without

their prayers, I would not accomplish this. I am grateful for Yousof, my son and the joy

of my life. Currently, Yousof is 7 years old. I will not forget how much he was gentle and

understanding at this young age and also how much he prayed for me to finish, especially

in the last year. I would like to thank Ahmed Hesham and Sarra Elgammal, our second

family, for their help and support during this journey. I’m blessed to have many thoughtful

and supportive friends from all over the world who supported me these past several years:



vii

Nermeen, Tanlaya, Tasneem, Marwa, Lamia, Manar, Hana, Hend, Amira, Soad, Dalia,

Eman, Ghada, Dalia, Doaa, Maha, Ayat, Omnia, Azza, Ahmed, May, Mona, Doha, Heba,

Reem, Amr, Ethar, Walaa, Adrian, Yasmin, Ingie, Taghrid, Khadija, Waliyya. Their

uphold and encouragement cheered me on through the hard times.

Finally, words are not enough to thank the most patient, caring, and encouraging man

ever, my husband, Ahmed. I owe Ahmed a lot, he is my everything.



viii

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 ARCHIVED COLLECTIONS ARE IMPORTANT FOR POSTERITY . . . . . 4
1.2 PROBLEM STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 WITNESSING/LIVING THE PAST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 RESEARCH QUESTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.5 DISSERTATION ROADMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Chapter

2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.1 THE WEB AND WEB ARCHIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 CONTENT CURATION PLATFORMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.3 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3. RELATED WORK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1 COLLECTION UNDERSTANDING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 TELLING STORIES WITH DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3 INFORMATION RETRIEVAL MEASURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4 TRENDS IN WEB ARCHIVING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.5 DETERMINING DATETIME OF WEB PAGES . . . . . . . . . . . . . . . . . . . . . . . . 77
3.6 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4. HOW PEOPLE USE WEB ARCHIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.1 USER ACCESS PATTERNS IN WEB ARCHIVES . . . . . . . . . . . . . . . . . . . . . . 80
4.2 LINKING TO WEB ARCHIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5. THE DSA FRAMEWORK: GENERATING STORIES FROM ARCHIVED COL-
LECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.1 USAGE SCENARIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 CONVENTIONS AND DEFINITIONS OF THE DSA FRAMEWORK . . . . 96
5.3 TYPES OF STORIES GENERATED FROM ARCHIVED COLLECTIONS 96
5.4 THE DARK AND STORMY ARCHIVES (DSA) FRAMEWORK . . . . . . . . . 103
5.5 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6. CHARACTERISTICS OF SOCIAL MEDIA STORIES . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.1 CONSTRUCTING THE DATASET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2 GENERAL CHARACTERISTICS OF HUMAN-GENERATED STORIES. . 107
6.3 WHAT DOES A POPULAR STORY LOOK LIKE? . . . . . . . . . . . . . . . . . . . . . 117
6.4 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



ix

7. CHARACTERISTICS OF ARCHIVE-IT COLLECTIONS. . . . . . . . . . . . . . . . . . . . . . . . 122
7.1 CHARACTERISTICS OF ARCHIVED COLLECTIONS . . . . . . . . . . . . . . . . . 122
7.2 ARCHIVE-IT COLLECTIONS VERSUS STORIFY STORIES . . . . . . . . . . . 130
7.3 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8. DETECTING OFF-TOPIC PAGES IN WEB ARCHIVES. . . . . . . . . . . . . . . . . . . . . . . . 133
8.1 MOTIVATING EXAMPLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.2 DATASET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
8.3 TIMEMAP BEHAVIOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.4 RESEARCH APPROACH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.5 EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.6 EVALUATING ARCHIVE-IT COLLECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.7 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

9. SELECTING REPRESENTATIVE PAGES FOR THE STORIES . . . . . . . . . . . . . . . . 156
9.1 ELIMINATING (NEAR-)DUPLICATES IN WEB ARCHIVES . . . . . . . . . . . . 158
9.2 EXCLUDING THE NON-ENGLISH LANGUAGE PAGES . . . . . . . . . . . . . . . 160
9.3 SLICING THE COLLECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
9.4 CLUSTERING THE MEMENTOS OF EACH SLICE . . . . . . . . . . . . . . . . . . . 163
9.5 SELECT THE BEST REPRESENTATIVE MEMENTOS . . . . . . . . . . . . . . . . 163
9.6 ORDER THE SELECTED MEMENTOS CHRONOLOGICALLY . . . . . . . . . 173
9.7 VISUALIZING THE STORIES USING STORIFY . . . . . . . . . . . . . . . . . . . . . . 173
9.8 REVISITING THE EGYPTIAN REVOLUTION EXAMPLE IN CHAP-

TER 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
9.9 EVALUATING THE DARK AND STORMY ARCHIVE FRAMEWORK . . 175
9.10 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

10. CONTRIBUTIONS, FUTURE WORK, AND CONCLUSIONS . . . . . . . . . . . . . . . . . . . 199
10.1 RESEARCH QUESTIONS REVISITED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
10.2 CONTRIBUTIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
10.3 FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
10.4 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

VITA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239



x

LIST OF TABLES

Table Page

1. Examples of different types of content curation tools. . . . . . . . . . . . . . . . . . . . . . . . 46

2. The length of all Slides, Dives, and Skims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3. The median and the mean of session length and session duration of the sessions
that were divided based on the referrer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4. Four basic story types (others may be possible). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5. Distribution of features of the stories in the dataset. Editing time is measured
in hours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6. The top 25 domains based on the frequency of appearance in Storify stories.
Alexa global rank was retrieved in 2015-03. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7. The top 25 domains based on the number of stories they appear in (Story
Count). The percentage of stories is out of 14,568. Alexa global rank was
retrieved in 2015-03. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8. The 10 most frequent domains in the embedded resources of the tweets. . . . . . . . 112

9. The top 10 TLDs of the resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

10. The Kendall’s Tau correlation between the n most frequent domains in the
stories and their Alexa global Rank (τsf ) and between the top n domains that
have the most number of stories and Alexa global rank (τsc). . . . . . . . . . . . . . . . . 114

11. The percentage of the stories based on the editing interval along with the median
of Web elements, text elements, and views. The percentage is out of 15,568 stories.115

12. The existence of the resources on the live Web (on the left) and in the archives
(on the right). Available represents the requests which ultimately return HTTP
200, while missing represents the requests that return HTTP 4xx, HTTP 5xx,
HTTP 3xx to others except 200, timeouts, and soft 404s. Total is the total
unique URIs from each domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

13. Distribution of features of Archive-It collections. Timespan is measured in days. 124

14. The top 25 domains based on the frequency of appearance in Archive-It. The
percentage is the frequency of the domain out of 305,522. Alexa global rank
was retrieved in 2015-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



xi

15. The top 25 domains based on the number of Archive-It collections they appear
in. The percentage is the number of collections the domain appeared in out of
3,109. Alexa global rank was retrieved in 2015-11. . . . . . . . . . . . . . . . . . . . . . . . . . . 126

16. The top 10 TLDs of the resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

17. The Kendall’s Tau between the most frequent n domains in the stories and
their Alexa global rank (τaf ) and between the top n domains that have the
most number of collections and Alexa global rank (τac). . . . . . . . . . . . . . . . . . . . . 128

18. The distributions of the number of collections in each time interval. . . . . . . . . . . . 129

19. Description of the Archive-It collections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

20. The results of manually labeling the collections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

21. The statistics of TimeMap behaviors in archived collections. . . . . . . . . . . . . . . . . . 139

22. The results of evaluating the similarity approaches averaged on three collections. 145

23. The results of the best three combined methods approaches averaged on three
collections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

24. The results of evaluating Archive-It collections through the assessment of the
detected off-topic pages using (Cosine, WordCount) methods at th = (0.10,
−0.85). Numbers in parenthesis are the total URI-Ms and URI-Rs for the
collection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

25. The characteristics of the collections used for the evaluation. . . . . . . . . . . . . . . . . . 181

26. The breakdown of the stories that we received from domain experts. . . . . . . . . . 184

27. The number of resources in the stories generated by domain experts and from
the DSA framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

28. The results of comparing human-generated stories versus automatically gener-
ated stories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194



xii

LIST OF FIGURES

Figure Page

1. The Archive-It interface of the 2013 Boston Marathon Bombing collection is a
list of URIs that are ordered alphabetically. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. We derive a story S from the collection C (C → S). For example, the “Egyptian
Revolution and Politics” collection at Archive-It contains more than 1000 URIs
in which they have 42,720 archived copies. We will automatically generate a
story of k ≈ 28 archived pages that best represent the collection. . . . . . . . . . . . . . 3

3. 1000memories.com is not available now on the live Web as of March 2016. . . . . . 5

4. Storify is for bookmarking, not for preserving. When the annotated link (on
the top) is requested, it results in a 404 (on the bottom). . . . . . . . . . . . . . . . . . . . . 7

5. There are multiple collections in Archive-It about the Jan. 25 Egyptian Revolution. 8

6. Current browsing and searching services for the “Egypt Revolution and Politics”
collection in Archive-It. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

7. Current browsing and searching services for the “Human Rights” collection in
Archive-It. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

8. Archive-It provides the collection curators with information about their crawls.
Retrieved in January 2016. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

9. Most of the archived pages of 7amla.com are off-topic, but are still included in
the “Egypt Revolution and Politics” collection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

10. An example of a URI that oscillates between on-topic and off-topic in the “Egypt
Revolution and Politics” collection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

11. The beginning of the events for the Jan. 25 Egyptian Revolution started on
“We are All Khaled Saeed” Facebook page, which formed in the aftermath of
Saeed’s beating and death. This post is from Jan. 17, 2011 before the start of
the Revolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

12. Coverage of the Egyptian Revolution from different Web sites at different times. 17

13. Coverage of the Egyptian Revolution from different Web sites at different times
(continued). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

14. Coverage of the Egyptian Revolution from CNN’s “This Just In” blog at differ-
ent times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



xiii

15. Egyptian State Newspaper, Al Ahram: “Millions go out in support of Mubarak:
Demonstrations in Cairo and surrounding areas to welcome - Mubarak’s latest
decisions, Millions demonstrate for their love of the president in Muhandiseen
and Mustafa Mahmood Square”. Source: http://imgur.com/DbtK1 . . . . . . . . . . 20

16. Coverage of the Egyptian Revolution from different sites at a specific time (Feb.
11, 2011). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

17. Coverage of the Boston Marathon Bombing from different Web sites at different
times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

18. Coverage of the Boston Marathon Bombing from different Web sites at different
times (continued). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

19. Coverage of the Boston Marathon Bombing from the Guardian at different times. 31

20. Coverage of the Boston Marathon Bombing from different sites on specific point
of time (April 15, 2013). Note that April 15, 2013 is the creation date of the
Web pages that were used to create this story. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

21. The relationship between identifier, resource, and representation [145]. . . . . . . . . 34

22. Memento Framework. Source: http://www.mementoweb.org/guide/

quick-intro/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

23. The current interfaces of the IA and its Wayback Machine. Retrieved in March
2016. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

24. Current Archive-It interfaces. Retrieved in January 2016. . . . . . . . . . . . . . . . . . . . . 41

25. For creating the collection, the curator specifies the seeds and the parameters
of crawls. Retrieved in January 2016. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

26. Starting Archive-It collections that are built by the Archive-It team. . . . . . . . . . . 43

27. The Process of Content Curation. Source: http://socialmediatoday.com/

pamdyer/1629516/60-content-curation-tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

28. A story about the Egyptian Revolution on Storify. Source: https://storify.
com/yasmina_anwar/egyptian-revolution-story-created-on-nov-2013 . . . 47

29. A story about the Egyptian Revolution on Pinterest. Source: https://www.

pinterest.com/makarems/egyptian-revolution/ . . . . . . . . . . . . . . . . . . . . . . . . . 48

30. A story about the Egyptian Revolution on Scoop.it. Source: http://www.

scoop.it/t/egyptian-revolution-the-beginning-of-the-story . . . . . . . . . . 50

31. A story about the Egyptian Revolution on Paper.li. Source: http://paper.

li/BEHAPPY2B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



xiv

32. ArchivesZ: First Level Search Results. Gives a full overview of years and top 10
subjects by total linear feet [188]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

33. Various views (List View, Graph View, Scatter Plot View, and Text View) for
the visual analytic system, Jigsaw [305]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

34. An example of Microsoft PivotViewer showing positions of NBA players from
the 2009/2010 season. Source: http://www.michaelmcclary.net/image.axd?
picture=image_12.png . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

35. A 3D wall visualization for collections in U.K. Web Archive. Source: http:

//takingaccountproject.wordpress.com/2012/03/14/uk-web-archive/ . . . . 58

36. Different visualizations for exploring Human Rights collection at Archive-It. . . . 60

37. Different visualizations for exploring Human Rights collection at Archive-It
(continued). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

38. “Pakistan Floods” collection after and before applying categorization. . . . . . . . . . 62

39. Genres of narrative visualization [285]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

40. Storyline visualization of the movie The Matrix [311]. . . . . . . . . . . . . . . . . . . . . . . . 67

41. CNN news from Aug. 1 to 24, 2006 in EventRiver [129]. . . . . . . . . . . . . . . . . . . . . . 68

42. An example of Story flow visualization [268]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

43. The history view of BBC homepage (www.bbc.co.uk) in Page History Explorer
[155]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

44. A memento from the “Egypt Revolution and Politics” collection in Archive-It
has different notions of times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

45. The timeline of a shared resource and the proposed process of carbon dating
[277]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

46. Sample of the Wayback Machine access log (line breaks and new lines added for
readability). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

47. User access patterns in Web archives (Dip, Dive, Slide, and Skim). . . . . . . . . . . . 83

48. Robots and humans exhibit different access patterns. . . . . . . . . . . . . . . . . . . . . . . . 85

49. Distributions of the years for the unique and requested mementos by humans. . . 88

50. The proportion of unique URI-Ms requested out of the potential requested for
each year. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



xv

51. The dataset of 6M HTTP requests is constructed from slices of 2M each from
03:00, 13:00, and 18:00 UTC on February 2, 2012. The peak hours in NY, LA,
Tokyo, Moscow, and Berlin are indicated by arcs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

52. (a) The temporal distribution of URI-Ms pointed to by the referrers and the
number of relative URI-Rs of these URI-Ms that are currently available on the
live Web. (b) The percentage of unavailable URI-Rs of these URI-Ms on the
live Web. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

53. Different kinds of stories created manually by selecting URIs from “Egypt Rev-
olution and Politics” collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

54. Different kinds of stories created manually by selecting URIs from “2013 Boston
Marathon Bombing” collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

55. Collections in Archive-It can be thought of as thematic samples from the live
Web. In the DSA framework, we sample k mementos from the pages of the
collection to create a summary story. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

56. The archived collection has two dimensions: URI and time . . . . . . . . . . . . . . . . . . 99

57. There are different models for the story that can be created from the collection.
The color maps to the unique URI-R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

58. Mementos differ based on the parameters influencing the representations at
crawl/capture time and the devices used to access the mementos [168]. . . . . . . . . 101

59. The main components of the Dark and Stormy Archives (DSA) framework. . . . . 104

60. An example of creating a story on Storify shows the Storify-defined categories
for resources of the stories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

61. Distribution of the characteristics of the 14,568 Storify stories analyzed. . . . . . . . 108

62. The relationship between the frequency of the domains in Storify stories and
the number of stories in which those domains appear. . . . . . . . . . . . . . . . . . . . . . . . 110

63. A tweet in Storify has an image as an embedded resource. Note that the text
of the tweet includes the URI of the image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

64. The distribution of the stories per year and the decay rate of the resources in
these stories through time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

65. Characteristics of popular and unpopular stories. . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

66. The distribution of the number of seed URIs and the mean number of mementos
per seed in Archive-It collections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123



xvi

67. The relationship between the frequency of the domains in Archive-It collections
and the number of collections in which those domains appear. . . . . . . . . . . . . . . . . 127

68. Example of johnbeard4gov.com in the 2003 California Recall Election collection
that went off-topic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

69. Example of a Facebook page from the Occupy Movement collection that went
off-topic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

70. A site for one of the candidates for Egypt’s 2012 presidential election. Many
of the captures of hamdeensabhay.com are not about the Egyptian Revolution.
Later versions show an expired domain (as does the live Web version). . . . . . . . . 136

71. Example showing different behaviors for TimeMaps (green=on-topic, red=off-
topic). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

72. An example for increasing the semantic context by the Web based kernel func-
tion using a search engine (SE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

73. Later versions of occupytheup.org are off-topic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

74. How cosine similarity separates the off-topic from the on-topic pages. . . . . . . . . . 147

75. How change of page size (based on word count) separates the off-topic from the
on-topic pages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

76. Example of a significant change in cbs8.com: from Oct. 24, 2007 to Oct. 31,
2007. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

77. Example of a significant change in 760kfmb.com: from Oct. 23, 2007 to Oct.
31, 2007. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

78. Snapshots of mementos of news.egypt.com from the Egyptian Revolution col-
lection that have duplication. Each group of similar mementos are grouped and
annotated with the same color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

79. Example of duplicate in a TimeMap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

80. Visualizations for the Memento-Datetimes of Archive-It collections. . . . . . . . . . . . 161

81. The coverage of the same news from two popular Web sites, but the archived
version of the BBC page is missing style sheets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

82. The XKCD example demonstrates that embedded resources have varying
human-perceived importance to their page [55]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

83. Storify creates better snippets from a specific article (i.e., deep links) than a
homepage about the same event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167



xvii

84. Frequently a memento of a Twitter account does not produce good
representative snippet. Link: http://wayback.archive-it.org/1784/

20100131023240/http:/twitter.com/Haitifeed/ . . . . . . . . . . . . . . . . . . . . . . . . . 169

85. Frequently a memento of a Facebook page does not produce a good
representative snippet. Link: http://wayback.archive-it.org/2358/

20141225080305/https:/www.facebook.com/elshaheeed.co.uk . . . . . . . . . . . . 170

86. The snippet of cnn.com on Storify. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

87. The JSON object of a generated story from the Egypt Revolution collection in
Archive-It by our implementation of the DSA framework. . . . . . . . . . . . . . . . . . . . . 172

88. Example for how we override Storify’s extracted favicon to generate more visu-
ally attractive snippets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

89. Example for Storify and and Newspaper extraction. . . . . . . . . . . . . . . . . . . . . . . . . . 176

90. Storify extracts images better than the Newspaper library. . . . . . . . . . . . . . . . . . . . 177

91. The story of the Egyptian Revolution and politics collection. . . . . . . . . . . . . . . . . . 178

92. The story of the North Africa & the Middle East 2011-2013. . . . . . . . . . . . . . . . . . 179

93. The story of the 2010-2011 Arab Spring collection. . . . . . . . . . . . . . . . . . . . . . . . . . 180

94. An example of a Sliding Page, Sliding Time story from the Boston Marathon
Bombing collection that was generated by domain experts. Link: https://

storify.com/mturk_exp/3649b1s-57218803f5db94d11030f90b . . . . . . . . . . . . . 185

95. An example of a Sliding Page, Sliding Time story from the Boston Marathon
Bombing collection that was generated automatically. Link: https://storify.
com/mturk_exp/3649b0s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

96. An example of a Sliding Page, Sliding Time story from the Boston Marathon
Bombing collection that was generated randomly. Link: https://storify.

com/mturk_exp/3649b2s-57227227bb79048c2d0388dc . . . . . . . . . . . . . . . . . . . . . . 187

97. An example of a poorly generated story from the Boston Marathon Bombing
collection to judge the selection of the turkers. Link: https://storify.com/

mturk_exp/3649bads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

98. A sample HIT that shows two stories that turkers evaluate and select their
preferred story. Each HIT contains two comparisons. . . . . . . . . . . . . . . . . . . . . . . . . 191

99. A plot of the time taken by the turkers for submitting the HITs. . . . . . . . . . . . . 192

100. The summary results of MT evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193



xviii

101. The results of MT evaluation for each type of story. . . . . . . . . . . . . . . . . . . . . . . . . 195

102. The results of MT evaluation for each collection. . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

103. The results of MT evaluation for each collection (continued). . . . . . . . . . . . . . . . . . 198



1

CHAPTER 1

INTRODUCTION

Since it was invented approximately 25 years ago, the Web has developed significantly

and new research methodologies have evolved. Moreover, the beginning of Web 2.0 in

early 2000 allowed users to contribute born-digital materials to the Web including images,

videos, geo-locations, and text. With the emergence of Web 2.0, digital materials have

become part of our cultural heritage and preserving the resources of the Web has become

essential to facilitate research in history, sociology, political science, media, literature, and

other related disciplines. For many, social media has become the primary resource when

an important event occurs [195], and it also can provide the initial spark for important

stories (for example, the initial events of the Egyptian Revolution occurred on Facebook

[308, 172, 128]).

With the extensive growth of the Web, multiple Web archiving initiatives have been

started to archive different aspects of the Web [37]. This was followed by emerging prac-

tices and technologies from the archiving communities. For example, the Internet Archive1

(IA), which has been archiving the Web since 1996, generated standards, tools, and tech-

nologies to capture Web pages and replay them (e.g., the Wayback Machine [238]). Several

universities built their own Web archives for research purposes (e.g., the Stanford WebBase

Archive) [73].

Additionally, multiple archiving initiatives exist to allow people to archive Web re-

sources into themed collections to ensure these resources are available for posterity. For

example, Archive-It2, a subscription service from the IA, allows institutions to develop, cu-

rate, and preserve topic-oriented collections of Web resources by specifying a set of seeds,

Uniform Resource Identifiers (URIs), that should be crawled periodically. Archive-It pro-

vides a listing of all seeds in the collection along with the number of times and dates over

which each page was archived, as well as a full-text search of archived pages (Figure 1).

Although Archive-It provides users with tools for searching and browsing collections, it is

not easy for users to understand the essence of these collections [252].

With the user in the loop, we develop the Dark and Stormy Archive (DSA) framework,

which automatically extracts summary stories3 from Archive-It collections to help the user

1http://archive.org/
2http://www.archive-it.org/
3We use “story” in its current, loose context of social media, which is sometimes missing elements from

the more formal literary tradition of dramatic structure, morality, humor, improvisation, etc.
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FIG. 1: The Archive-It interface of the 2013 Boston Marathon Bombing collection is a list
of URIs that are ordered alphabetically.
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FIG. 2: We derive a story S from the collection C (C → S). For example, the “Egyptian
Revolution and Politics” collection at Archive-It contains more than 1000 URIs in which
they have 42,720 archived copies. We will automatically generate a story of k ≈ 28 archived
pages that best represent the collection.

to understand the collections. Figure 2 shows an example of deriving a story S from a

collection C, represented as C → S. From all of the pages in a collection, we choose

different sets of k archived pages to create summary stories that give different perspectives

about the collection. Then we push those chosen pages to Storify. We also help to improve

the collection’s quality by detecting the non-relevant pages to the topic of a collection.

We start by discussing the importance of the archived collections and their societal

impact for understanding world events (Section 1.1). Then, we explain the problem of col-

lection understanding and issues with seed URIs using examples from Archive-It collections

(Section 1.2). We demonstrate the importance of replaying stories from the past through

multiple stories about two important events: the Egyptian Revolution and the Boston

Marathon Bombing (Section 1.3). The research questions we address in this dissertation

are overviewed in Section 1.4 and the roadmap of the dissertation is detailed in Section 1.5.
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1.1 ARCHIVED COLLECTIONS ARE IMPORTANT FOR POSTERITY

Most societies place importance on preserving artifacts of their culture and

heritage. Without such artifacts, civilization has no memory and no mechanism

to learn from its successes and failures. Our culture now produces more and

more artifacts in digital form. The Archive’s mission is to help preserve those

artifacts and create an Internet library for researchers, historians, and scholars.

— The Internet Archive’s mission statement [9].

Because the Web is a dynamic information space, the resources may change, disappear,

and frequently move from one location to another [183, 177]. Many studies have shown that

the expected lifetime of a Web page is short (between 44 to 190 days) [222, 201, 162, 49] and

that Web resources disappear quickly [277, 180, 182]. This could be for various reasons

such as service discontinuance, deliberate deletion by authors or system administrators,

death, removing information that was publicly known at a certain time and preventing

third parties to access this information, etc. An example is the “the right to be forgotten”

movement by the European Court of Justice forcing search engines like Google to remove

links of specific Web sites [269]. Jones et al. [158] claimed that Google received 239,337

requests to eliminate 867,930 URLs from search results and has removed 305,095 URLs as

of April 2015.

Much of our cultural discourse occurs primarily on the Web and its preservation is a

fundamental precondition for research in history, sociology, political science, media, liter-

ature, and other related disciplines [240]. There are multiple examples where Web sites

dedicated to documenting important events have been lost. However, some of these Web

sites were partially archived. For example sonicmemorial.com was constructed to be an

archive of digital memorials and shared media from 9/11 [77], but that site itself has since

been lost and is only partially archived4.

The conversation around major revolutionary events, such as the Arab Spring, started

on the Web, specifically Twitter and Facebook [308, 172, 128]. Several Web sites, blogs,

Storify entries, and channels on YouTube were created by the public, not historians, uti-

lizing the tools of Web 2.0 to document the Jan. 25 Egyptian Revolution. Several digi-

tal libraries of thousands of articles, posts, images, videos, etc. resulted from collecting

these resources to save the history of the revolution for the future generations. For exam-

ple, 1000memories.com/egypt was an online memorial for the martyrs of the 18 January

protest to free Egypt. An example of an archived page5 of 1000memories.com/egypt is

4It became spam in 2006: http://wayback.archive.org/web/*/http://www.sonicmemorial.com/
5http://wayback.archive-it.org/2358/20110211072306/http://1000memories.com/egypt
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(a) The people who were killed during the Jan. 25 Egyptian Revolution.

curl -I http://1000memories.com/egypt

HTTP/1.1 404 Not Found

Content-Length: 177

Content-Type: text/html

Date: Mon, 09 March 2016 17:11:10 GMT

Server: nginx/1.4.6 (Ubuntu)

Connection: keep-alive

(b) The HTTP response headers for the 1000memories.com/egypt as of March 2016.

FIG. 3: 1000memories.com is not available now on the live Web as of March 2016.
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shown in Figure 3(a). The 1000memories site contained a digital collection of around 403

photos with information about the lives of the martyrs [275]. The entire Web site is unavail-

able now (see Figure 3(b)). Fortunately, 1000memories.com/egypt has multiple copies in

the “Egypt Revolution and Politics”6 collection in Archive-It (Figure 3(a)).

Other examples are iamtahrir.com, which contained the artwork produced during the

Egyptian Revolution, and iamjan25.com, which contained about 3,525 images and 2,387

videos posted by people about the January demonstrations [276]. Both sites were created

for collecting content related to the Egyptian Revolution. The two repositories were lost

from the live Web7, but luckily there are multiple copies of the two repositories in Archive-

It8,9.

Additionally, storytelling services such as Storify have been used widely during the

Egyptian Revolution to craft digital narratives in real time by curating social media content

(e.g., Facebook, Twitter, and other Web resources). For example, a Storify story related

to the Egyptian revolution is shown in Figure 4(a). Figure 4(b) shows an embedded link

in the story in Figure 4(a) that is no longer available on the live Web. The reader of this

story will not be able to get an idea about the content of the missing resources, especially

if text around the link does not provide enough context.

The Jan. 25 Egyptian Revolution is one of the most important events that has happened

in recent history. Several books and initiatives have been published for documenting the

18 days of the Egyptian Revolution [271, 185, 95, 288]. Furthermore, an enormous number

of studies [256, 110, 344, 136] have been conducted for studying the Arab Spring and,

specifically, the Egyptian Revolution. These books and studies cited the digital collections

that we mentioned earlier in this section and other sites that were dedicated to document

the Egyptian Revolution (e.g., 25Leaks.com). Unfortunately, the links to many of these

Web sites are now broken and there is no way (without the archive) to know what they

contained.

Today’s ordinary information will be tomorrow’s resources for historical research. The

content captured and published on the Web narrating the incidents and giving unfiltered

insights for future generations and historians is important to clarify the exact turning

points in history. Therefore, archiving Web pages into themed collections is a method for

ensuring these resources are available for posterity. Happily, the Web sites mentioned in

the previous examples were captured as a part of the Egyptian Revolution collection in

Archive-It.

6https://archive-it.org/collections/2358/
7As of March 2016, they are 404 Not Found
8http://wayback.archive-it.org/2358/*/http://www.iamtahrir.com/
9http://wayback.archive-it.org/2358/*/http://iamjan25.com/
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(a) A story related to the Egyptian Revolution

(b) The bookmarked link is broken

FIG. 4: Storify is for bookmarking, not for preserving. When the annotated link (on the
top) is requested, it results in a 404 (on the bottom).
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FIG. 5: There are multiple collections in Archive-It about the Jan. 25 Egyptian Revolution.

1.2 PROBLEM STATEMENT

In this section, we demonstrate the limitations of understanding archived collections

and the current issues with seed URIs.

1.2.1 COLLECTION UNDERSTANDING

I want my son, who is now 7 years old, to know what happened during the Jan. 25

Egyptian Revolution as I saw it happening on the Web. Let us assume that he knows

about the archived collections that are devoted of archiving important events, such as

those at Archive-It. He will use the current browsing interface of archive-it.org to look

for collections related to the Egypt Revolution. If he uses the searching and browsing tools

that Archive-It provides, he will find about four or five collections containing information

about the Jan. 25 Egyptian Revolution (Figure 5). Aside from the brief metadata about the

collection (Figure 6(a)), the interface mainly consists of a list of seed URIs in alphabetical

order (Figure 6(b)), and for each of these URIs a list of the times when the page was

archived (Figure 7(c)). It is not feasible for him to figure out what is inside the collection

without going through all the URIs in the collection and their relative archived copies.

Understanding the essence of the collection from the current interface of Archive-It is not

easy.
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(a) Archival metadata for the collection. (b) Alphabetical list of URIs in the collection.

(c) Archived copies of a URI in the collection. (d) A copy of “Iam25Jan”

FIG. 6: Current browsing and searching services for the “Egypt Revolution and Politics”
collection in Archive-It.
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(a) Archival metadata for the collection. (b) Alphabetical list of URIs in the collection.

(c) Archived copies of the first URI in the collection.

FIG. 7: Current browsing and searching services for the “Human Rights” collection in
Archive-It.

Collection understanding is defined as gaining a comprehensive view of a collection

[70]. When an archivist creates a collection, it can include 1000s of seed URIs (see Chapter

7). Over time, each of these URIs can be crawled 100s or 1000s of times, resulting in a

collection having thousands to millions of archived Web pages. Understanding the contents

and boundaries of a collection is then difficult for most people, resulting in the paradox of

the larger the collection, the harder it is to use.

Figure 7 is another example that shows the current browsing interface for a collection

about human rights. It is difficult for users arriving at the page shown in Figure 7(a) to

understand what is in this collection and how it differs from the approximately 17 other

collections in Archive-It that are also about human rights, albeit each with their own

specialization.
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FIG. 8: Archive-It provides the collection curators with information about their crawls.
Retrieved in January 2016.

Providing a summary of the content of archived collections is a challenge because there

are two dimensions that should be summarized: the URIs that comprise the collection

(e.g., cnn.com) and the archived copies (called “mementos”) of those URIs at different

times (e.g., cnn.com@t1, cnn.com@t2,.., bbc.co.uk@tn). Either dimension by itself is

difficult, but combined they present a number of challenges, and are hard to adapt to most

conventional visualization techniques.

We have explored applying well-known, advanced visual interfaces (e.g., timelines, wor-

dles, bubble charts, image plots with histogram) to Archive-It collections and the results

are sufficient for those already with an understanding of what is in the collection, but they

do not facilitate an understanding to those who are unfamiliar with collection [252]. One

problem with the above approaches is there is not an emphasis on ignoring content: there is

often an implicit assumption that everything in a collection is equally valuable and should

be visualized. Some of the web pages change frequently and some are near-duplicates.

Some go off-topic and no longer contribute to the collection. Furthermore, collections grow

quickly: the Human Rights collection in Figure 7(a) has nearly 1000 seed URIs, and each
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URI has between one and 60 archived pages. Visualization techniques with an emphasis

on recall (i.e., “here’s everything in the collection”) do not scale.

1.2.2 ISSUES WITH SEED URIS

Archive-It provides tools that allow collection curators to perform collection manage-

ment as well as quality control for the crawls. However, the tools are currently focused on

crawl issues such as the mechanics of HTTP (e.g., how many HTML files and other file

types, how many 404 missing URIs). For example, Figure 8 shows a report of the file types

in the created collection. Currently, there are no content-based tools that allow curators to

detect when seed URIs (and other crawled pages) are off-topic to discover candidate seed

URIs that are not currently included. Off-topic here means pages that are not relevant to

the topic of the collection.

Figures 9 and 10 are different scenarios for pages in the “Egypt Revolution and Politics”

collection that go off-topic. Figure 9(a) shows the TimeMap of a relevant Web page (Figure

9(b)) that goes off-topic after losing the domain registration (Figure 9(c)). Figure 10(a) is

the TimeMap of the homepage of Middle East news on BBC10, which has multiple archived

pages over many years. The page goes off-topic (Figure 10(c)) and on-topic (Figure 10(b))

many times. For example, some archived copies of this page contains news about Syria,

Iraq, etc. This is an example for the frequency of change of the “aboutness” of the page in

terms of relevancy to the collection. The relevancy can be for the topic of the page or the

topic of the collection. For example, the topic of the page in Figure 10 should be relevant

to the countries in the Middle East, not only Egypt. So, in terms of the page topic, the

archived copies of this page are all on-topic. However, the collection that contains this

page is about Egypt Revolution and Politics only. So the pages go off-topic relative to

the collection when their content has nothing about Egypt. There are different cases for

changing the “aboutness” of a page through time. We will explain these cases in detail in

Chapter 8.

1.3 WITNESSING/LIVING THE PAST

There are multiple stories that can be generated from an archived collection with dif-

ferent perspectives about the collection. For example, a user may want to see a story that

is composed of the key events from a specific Web site, a story that is composed of the

key events of the story regardless of the sources, or how a specific event at a specific point

in time was covered by different Web sites, etc. We will explore many different types of

stories. The story types will be defined and explained in Chapter 5.

10http://www.bbc.co.uk/news/world/middle_east/
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(a) The TimeMap of the http://www.7amla.net Web site goes off-topic

(b) March 07, 2011: on-topic (c) Sept. 11, 2011: off-topic the domain registration
is lost

FIG. 9: Most of the archived pages of 7amla.com are off-topic, but are still included in the
“Egypt Revolution and Politics” collection.
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(a) The TimeMap of the BBC Middle East homepage goes off-topic and on-topic

(b) Feb. 04, 2011: on-topic (c) Jan. 02, 2012: not relevant to the Egyptian Rev-
olution

FIG. 10: An example of a URI that oscillates between on-topic and off-topic in the “Egypt
Revolution and Politics” collection.
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FIG. 11: The beginning of the events for the Jan. 25 Egyptian Revolution started on “We
are All Khaled Saeed” Facebook page, which formed in the aftermath of Saeed’s beating
and death. This post is from Jan. 17, 2011 before the start of the Revolution.

In the following scenarios, we show manually created stories that bring insight into

two Archive-It collections, the “Egypt Revolution and Politics”11 and the “2013 Boston

Marathon Bombing”12, using different sets of archived pages from the collections.

1.3.1 THE JAN. 25 EGYPTIAN REVOLUTION

I was in Norfolk, Virginia when the uprisings of the Jan. 25 Egyptian Revolution started.

I remember my feeling at that time and how I badly wanted to go back to Egypt and do

something for freedom and dignity. I could not do something during the 18 days except

watch all the news and social media channels, witnessing the events. It started with a group

of brave young Egyptians calling for demonstrations on Facebook and Twitter (Figure 11).

11https://archive-it.org/collections/2358/
12https://archive-it.org/collections/3649/
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Millions of people took to the streets in a nationwide protest against President Hosni

Mubarak. They aimed to battle injustice, corruption, and poverty. Street demonstrations

quickly grew into a national revolutionary movement that in 18 days removed Mubarak

and his National Democratic Party (NDP). In the following subsections, we will go back

in time and see the 18 days and other perspectives about the Egyptian Revolution as they

appeared on the Web.

How did the Jan. 25 Egyptian Revolution evolve over time in 18 days?

• 2011-01-25: Tens of thousands of young people gathered in Tahrir Square on January

25, 2011 protesting against the government (Figure 12(a)).

• 2011-01-27: Newspapers started full coverage of the protests with increasing number

of protesters because of violent clashes between security forces and protesters (Figures

12(b)).

• 2011-01-31: The Egyptian military took to the streets, but vowed not to use force

against protesters (Figure 12(c)).

• 2011-01-31 to 2011-02-02: With the increasing anger and the number of protests

all over Egypt, the government used multiple ways to stop the protests, such as

shutting down access to the Internet [33, 337] and suppressing the media to close

communications as these were the main methods that gathered and connected the

people. During this period, there was also a speech from Mubarak promising not to

seek re-elections, police brutality against the protesters, deadly attacks and clashes

from the pro-Mubarak protesters, etc. (Figures 12(d) - 12(f) and Figure 13(a)).

• 2011-02-04: After the number of martyrs increased, the people’s anger grew and the

numbers of protesters increased significantly all over the country (Figure 13(b)).

• 2011-02-07: During the protests, Google executive Wael Ghonim revealed that he was

behind the account of “We are All Khaled Saeed”13 Facebook page, which started the

anti-government protests that began on Jan. 25. He was arrested during the protests,

then he was released (Figure 13(c)).

• 2011-02-10: Mubarak re-appeared on television in Feb. 10, 2011 and struck a defiant

tone (Figure 13(d)).

• 2011-02-11: The crowd raised their shoes in a response to his speech and insisted

that they will not leave until he leaves (Figure 13(e)).

13https://www.facebook.com/elshaheeed.co.uk/
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(a) 25 Jan. 2011 (b) 27 Jan. 2011

(c) 31 Jan. 2011 (d) 31 Jan. 2011

(e) 01 Feb. 2011 (f) 02 Feb. 2011

FIG. 12: Coverage of the Egyptian Revolution from different Web sites at different times.
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(a) 02 Feb. 2011 (b) 04 Feb. 2011

(c) 07 Feb. 2011 (d) 10 Feb. 2011

(e) 11 Feb. 2011 (f) 11 Feb. 2011

FIG. 13: Coverage of the Egyptian Revolution from different Web sites at different times
(continued).
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(a) 2 Feb. 2011 (b) 4 Feb. 2011

(c) 5 Feb. 2011 (d) 7 Feb. 2011

(e) 11 Feb. 2011 (f) 11 Feb. 2011

FIG. 14: Coverage of the Egyptian Revolution from CNN’s “This Just In” blog at different
times.
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FIG. 15: Egyptian State Newspaper, Al Ahram: “Millions go out in support of Mubarak:
Demonstrations in Cairo and surrounding areas to welcome - Mubarak’s latest decisions,
Millions demonstrate for their love of the president in Muhandiseen and Mustafa Mahmood
Square”. Source: http://imgur.com/DbtK1

• 2011-02-11: On the Friday of departure (as it was called by the protesters), Egypt’s

Vice President Omar Suleiman announced that Mubarak would step down after 30

years of rule in an address on state television (Figure 13(f)).

By looking at the Web pages in the previous example, the user can get an idea about

the Egyptian Revolution’s main events from the start of the protests on Jan. 25, 2011 until

Mubarak resigned on Feb. 11, 2011. The story in this section is composed of different Web

sites at different times.

How did CNN cover the 18 days of the 25 Jan. Egyptian Revolution?

Figure 14 contains different snapshots of the timeline of the Egyptian Revolution as it

appeared on http://news.blogs.cnn.com/. We notice that the start date of the crawl for

the URIs in the Egyptian Revolution collection is Feb. 1, 2011, which is seven days after

the start date of the Egyptian Revolution (Jan. 25, 2011).

This scenario shows the evolution of a single page through time. There are several cases

where the user might want to see the evolution of a single Web page through time [150].

For example, a user might be interested in the main changes of a popular Web site, or key

events from specific Web sites during given period.
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How did different newspapers cover Mubarak resigning?

Egypt is the largest Arabic country and has played a central role in Middle Eastern politics.

Therefore, there were widely varying reactions toward the Egyptian Revolution, nationally

and internationally. This is how Pasha described the coverage of the Egyptian media during

the 18 days of demonstrations [256]:

Egyptian media, including Al-Ahram, falls under the authoritarian type, where

the ruling regime and the elites monopolize media outlets. The authoritarian

type indicates that journalism is subservient to the interests of the state in

maintaining social order and achieving political goals. Saying that Al-Ahram

is under the authoritarian type implies it avoids criticism to the President, the

government policies or officials, and it censors publishing any material that

challenges the established order.

Inside Egypt, the official newspapers did not cover the protests as they were happening.

They were biased against the protests and supported Mubarak until he stepped down [218].

An example shown in Figure 15 contains the headline from Feb. 3, 2011 on the cover page of

Al-Ahram, the most widely circulating state-owned daily newspaper and the second oldest

newspaper in Egypt, founded in 1875. It reads “Millions go out in support of Mubarak”

and has no news about the protests against Mubarak at that time.

A wide range of research has been conducted to study the media’s coverage of the

Egyptian Revolution [110, 344, 256]. These studies discovered that the coverage by the

governmental newspapers of the Egyptian demonstration differed from the international

newspapers. Youssef Ahmed presented many examples for how Al-Ahram was prone to ac-

centuate protesters’ acts of violence and published many articles to affect people’s opinions

against the protests [344].

The pages shown in Figure 16 cover through multiple sites the reactions to Mubarak

stepping down. Figure 16(f) shows the coverage of one of the national Egyptian newspaper

on Feb. 11, 2011, the day when Mubarak stepped down. Although the page shows the

reaction of Saudi Arabia on the Revolution and their support of Mubarak, it does not have

any coverage for Mubarak stepping down.

To gain insight about a specific event, there is a need to know the date of the event.

If a user wants to browse all the pages that were crawled on Feb. 11, 2011 (e.g., the

pages in Figure 16), there is no way to do this with the current Archive-It interface. Our

proposed DSA framework will provide the ability to create a story about a specific event

from different resources with multiple perspectives at nearly the same time. This type of

story will be important to social science and humanities researchers.
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(a) 11 Feb. 2011 (b) 11 Feb. 2011

(c) 11 Feb. 2011 (d) 11 Feb. 2011

(e) 11 Feb. 2011 (f) 11 Feb. 2011

FIG. 16: Coverage of the Egyptian Revolution from different sites at a specific time (Feb.
11, 2011).
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1.3.2 THE BOSTON MARATHON BOMBING

The Boston Marathon Bombing was a terrorist attack that occurred when two pressure

cooker bombs exploded during the Boston Marathon on April 15, 2013 near the marathon’s

finish line on Boylston Street.

Figures 17 - 20 show different types of stories in which the events unfolded according

to media at that time. The pages of the events are archived pages from the “2013 Boston

Marathon Bombing” collection in Archive-It.

The Timeline of the Boston Marathon Bombing

• 2013-04-15: Two bombs exploded near the finish line of the Boston Marathon, killing

three spectators and wounding over 100 people (Figure 17(a)).

• 2013-04-15: The investigation started directly by looking at explosive devices at the

place of the incident (Figure 17(b)).

• 2013-04-16 and 2013-04-17: There were reactions to the attack such as President

Obama’s remarks about the explosions and how Muslims reacted (Figure 17(c) -

17(e)).

• 2013-04-18: The terrorists were identified and an intense manhunt occurred that shut

down the Boston area ((Figure 17(f)).

• 2013-04-18: President Obama came to Boston for a memorial for the victims (Figure

18(a)).

• 2013-04-19: More information about the incident was released (Figure 18(b)).

• 2013-04-19: An emergency declaration for Massachusetts was issued by the governor

and then an intensive manhunt followed (Figure 18(c)).

• 2013-04-19: Gunfire was heard in Watertown between the suspects and authorities

who had tracked them, resulting in the death of one of the suspects and an injury for

a police officer (Figure 18(d)).

• 2013-04-20 and 2013-04-21: The other suspect escaped, but was later found in a boat

and was captured (Figure 18(e) - 19(f)).

The story in Figures 17 and 18 shows the coverage of the Boston Marathon Bombing

from different Web sites over a broad range of times. This story has the broadest coverage

because the diversity of the sources over a different times. The user gets an idea about
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collection and main events of the Boston Marathon Bombing from browsing the Web pages

of Figures 17 and 18.

The Story of the Boston Marathon Bombing from The Guardian

Figure 19 shows two key events in the story of the Boston Marathon Bombing from the same

Web site, The Guardian. Note that this illustrates a slightly different approach from the

Egyptian Revolution story from CNN (Figure 14). The story of the Egyptian Revolution

that was covered on CNN was created from the same URI (http://news.blogs.cnn.com/

category/world/egypt-world-latest-news/) at different times. However, the Boston

Marathon Bombing story of Figure 19 was created from different URIs but from the same

domain.

The Coverage of the Boston Marathon Bombing on April 15

Figure 20 shows the coverage of Boston Marathon Bombing on April 15, 2013 from different

Web sites. It shows how the newspapers covered this event and the reactions of different

sites. We see that most of the reactions of the newspapers in Figure 20 are similar in

covering the event. Some of the newspapers focused on reaction of Boston area baseball

players and fans (Figure 20(a)), and others just focused on the incident and the numbers

of victims (Figure 20(c) and 20(d)). Note that April 15, 2013 is the creation date of the

Web pages that were used to create this story.

1.4 RESEARCH QUESTIONS

We will combine two existing tools in an innovative way. The goal of Archive-It is not

necessarily crafting a story, but preserving content. The goal of Storify is not necessarily

preserving content, but crafting a story. By combining Archive-It and Storify we can do

both. The focus of this research is to explore information retrieval techniques to automati-

cally generate stories summarizing a collection that will approximate what a knowledgeable

human would generate. In other words, we will develop techniques to automatically (with

optional human review and “steering”) sample pages from a collection that summarize and

describe the collection. For example, given a collection of 1000s of pages, our tool will

automatically select approximately 28 representative pages that will then be linked in a

storytelling web applications, such as Storify. Although page selection is not dependent on

tools such as Storify, we are committed to the approach of using existing tools instead of

developing new ones. It will also provide tools for collection curators to help them detecting

when the seed URIs go off-topic.
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The research in this dissertation addresses the following questions to understand the

current challenges and to better construct a framework to solve them.

RQ1. How do people browse the past Web? One of the concerns in Web archiving

world is how to generate more interest in using Web archives. To better understand the

current use of Web archives, we investigate how users access Web archives based on Web

access logs from the IA’s Wayback Machine (Chapter 4). We check what users are looking

for, why they come to the IA, where they come from, and how pages link to the IA. We

also investigate the differences between human and robot accesses of the Wayback Machine,

identify four major Web archive access patterns along with the browsing sessions’ length,

and uncover the temporal preference for Web archive access.

RQ2. Can we automatically generate stories that convey different perspectives

of the collection? Different types of stories that give different perspectives of the topic

of the collection can be generated from the collection. For example, the user may want to

see a broadly defined story that samples from different URIs and different times, a story

from different URIs at approximately the same time, or a story from the same URI at

different times, and the same URI at the same time. We provide the definitions of the

different types of stories that can be extracted from a collection (Chapter 5). We also

provide definitions of an archived collection.

RQ3. How do we build quantitative, descriptive models of human-generated

stories and collections in Archive-It? We need to understand the measurables of

both stories and collections, as generated by humans, before we can automatically gener-

ate stories from archived collections. By sampling stories from Storify, we determine the

characteristics of the human-generated stories such as the mean and median length of re-

sources in the stories, the nature of the resources, how quickly the resources linked to from

stories become unavailable, and the popularity of the resources linked to from stories (e.g.,

popular like cnn.com or little-known outlets, blogs, and other sites). We establish struc-

tural features for what differentiates popular stories from unpopular stories for building a

baseline for the stories we will automatically generate from the archives (Chapter 6).

We also determine the characteristics of Archive-It collections through measurements

of all Archive-It collections such as the number of URIs, the number of mementos, the most

used resources in these collections, the average timespan of the collections, etc. (Chapter

7). In summarizing a collection, we can only choose from what is archived. For example, if

there are no tweets in the collection, twitter.com will not appear in the generated stories.
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We compare the descriptive models of the created stories on social media and the

collections in Archive-It to understand the similarities and the differences between the

human-generated stories in social media and the human-curated collections in archives.

RQ4. How to detect the off-topic Web pages in the archives? In our DSA

framework, we do not consider off-topic pages for selection when creating a story. We

propose different methods (cosine similarity, Jaccard similarity, intersection of the 20 most

frequent terms, Web-based kernel function, and the change in size using number of words

and content length) to detect when the page has gone off-topic through subsequent captures

(Chapter 8). Those predicted off-topic pages will be presented to the collection’s curator

for possible elimination from the collection or cessation of crawling.

RQ5. How do we identify, evaluate, and select candidate (archived) Web pages

for the story? Choosing the best representative pages for a story is a challenge. There

are multiple dimensions of quality when we have multiple candidates for the same event in

a story, such as quality of the replayed archived page or quality of the visual snippet that

will be generated. We propose quality metrics for evaluating Web pages and then select

the page with the highest weight (Chapter 9).

There are also important factors that affect the quality of the generated summary story.

For example, for the broad story, the selection should cover the time range of the collection

equally. We propose a slicing algorithm that allows equally covering all the parts of the

collections through time. We leverage a storytelling service, Storify, to visualize the set of

selected pages.

1.5 DISSERTATION ROADMAP

This dissertation is organized as follows:

Chapter 2: Background - Before discussing our specific work toward establishing the

DSA framework, we explore the evolution of Web archives and existing content curation

tools. We also explain the related terminology that is adopted in the following chapters,

such as the Memento terminology.

Chapter 3: Related Work - The work performed by prior researchers that provided

the foundation for our work is presented in this chapter. We first present how the archival

community tended to solve the collection understanding problem through the development

of a new standard for archival description (Section 3.1). Then we overview many related

fields such as summarizing text and image collections, video summarization, time series
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visualizations, information retrieval techniques, Web usage mining technique, and the dif-

ferent notions of time of a Web page.

Chapter 4: How People Use Web Archives - Our work toward understanding

how people use Web archives, why do they come to Web archives, how people link to Web

archives, how many of links that users access disappear from the live Web, and many other

questions related to the usage of Web archives is presented in this chapter.

Chapter 5: Generating Stories From Archived Collections - This chapter con-

tains the contextualization of our work along with the terminology and definitions that

represent the basics of the DSA framework. It also discusses the research methodology for

achieving the proposed framework. We also present the abstract idea of the DSA framework

along with the framework components that will be detailed in later chapters.

Chapter 6: Characteristics of Social Media Stories - To inform our work of

generating stories from archived collections automatically, we studied 14,568 stories from

Storify, comprising 1,251,160 individual resources. We modeled the structural character-

istics of these stories, with particular emphasis on “popular” stories (i.e., the top 25% of

views, normalized by time available on the Web). We checked the domain used in the

stories, the types of elements, and the number of elements. We also investigated how many

resources in the stories are missing from the live Web and how many are available in public

Web archives.

Chapter 7: Characteristics of Archive-It Collections - We present a baseline

for the characteristics of the archived collections using the whole population of Archive-It

collections in terms of the number of seed URIs, the average number of the mementos per

seed, and the timespan, which is the range of time period over which the Web pages have

been archived. Furthermore, we contrast the general characteristics of human-generated

stories from Storify that were presented in Chapter 6 and human-curated collections from

Archive-It.

Chapter 8: Detecting Off-Topic Pages in Web Archives - We introduce differ-

ent approaches for detecting off-topic pages in Web archives. The approaches depend on

comparing the versions of the pages through time. Three methods depend on the textual

content (cosine similarity, intersection of the most frequent terms, and Jaccard coefficient),

one method uses the semantics of the text (Web-based kernel function using the search en-

gine (SE)), and two methods use the size of pages (the change in number of words and the

content length). We also investigate how the page’s aboutness changes through time based

on a dataset from Archive-It. We evaluate the proposed methods at different thresholds at

the end of the chapter.
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Chapter 9: Selecting Representative Pages for Generating Stories - This

chapter shows the steps of selecting representative archived pages for the stories. It starts

with eliminating the duplicates of each page (Algorithm 1), then slicing the collection

dynamically based on the collection size (Algorithm 2). We then cluster the archived pages

in each slice based on their content. The chapter also includes the quality metrics we used

for selecting pages that best represent the story. Furthermore, we show how the extraction

of page’s metadata is done and how we visualize the selected pages using Storify. At the end

of the chapter, we present an evaluation inspired by the Turing Test for the automatically

generated stories from archived collections. We obtained a set of human-generated stories

by domain experts of the collections. We used human evaluation (e.g., Mechanical Turk)

to see if the resulting stories are distinguishable from human generated stories.

Chapter 10: Contributions, Future Work, and Conclusions - We revisit the

research questions we introduced in Chapter 1 and summarize how we addressed each

question, including the contributions of this dissertation. Directions for future work are

presented. We conclude with a summary of our findings.
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(a) 15 April 2013 (b) 15 April 2013

(c) 16 April 2013 (d) 16 April 2013

(e) 17 April 2013 (f) 18 April 2013

FIG. 17: Coverage of the Boston Marathon Bombing from different Web sites at different
times.
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(a) 18 April 2013 (b) 19 April 2013

(c) 19 April 2013 (d) 19 April 2013

(e) 20 April 2013 (f) 21 April 2013

FIG. 18: Coverage of the Boston Marathon Bombing from different Web sites at different
times (continued).
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(a) 15 April 2013 (b) 15 April 2013

(c) 17 April 2013 (d) 17 April 2013

(e) 18 April 2013 (f) 18 April 2013

FIG. 19: Coverage of the Boston Marathon Bombing from the Guardian at different times.
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(a) 15 April 2013 (b) 15 April 2013

(c) 15 April 2013 (d) 15 April 2013

(e) 15 April 2013 (f) 15 April 2013

FIG. 20: Coverage of the Boston Marathon Bombing from different sites on specific point
of time (April 15, 2013). Note that April 15, 2013 is the creation date of the Web pages
that were used to create this story.
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CHAPTER 2

BACKGROUND

There has been much interest in crafting digital narratives out of online resources and

social media content to create stories using curation tools (e.g., Storify, Scoop.it) [250].

Despite the flexibility of these tools, they do not preserve the content of the resources (for

example, Figure 4 in Chapter 1). While Web archives are solutions for preserving the Web,

they lack tools that allow users to understand the archived collections. In our work, we

will address integrating the storytelling techniques that users already are familiar with and

Web archives which provide persistent data.

In this chapter, we briefly introduce the topics and concepts necessary to adequately

understand the problem we are investigating in this dissertation. Moreover, the chapter

includes the necessary terminology and definitions that will be discussed and utilized ex-

tensively throughout the next chapters. We introduce the anatomy of Web archives and

content curation tools along with examples and illustrations on how they are used. The

Memento Framework terminology adopted in the rest of the paper will be introduced as

well.

2.1 THE WEB AND WEB ARCHIVES

The Web has become a major holder of our cultural record. Consequently, Web preser-

vation is a fundamental precondition for research in history, sociology, political science,

media, literature, and other related disciplines [240]. Before explaining the current trends

in Web archives, we will briefly introduce the conventions of the Web as a primer to the

background information needed to discuss the framework.

2.1.1 ARCHITECTURE OF THE WEB

The World Wide Web (WWW, or simply Web) was invented approximately 25 years ago

by Tim Berners-Lee [44] as an information space for sharing documents and resources glob-

ally and providing distributed access for these resources, which are identified by Uniform

Resource Identifiers (URI) [45]. The W3C’s Architecture of the WWW [145] is illustrated

in Figure 21. The figure demonstrates the relation between the URI, resource, and rep-

resentation. As shown in the figure, resources are identified by URIs and when a URI is

dereferenced, a representation (e.g., HTML, PDF) of the current state of the resource is

returned to the user-agent (e.g., a browser). The common client-server relationships exist
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FIG. 21: The relationship between identifier, resource, and representation [145].

in the context of the Web over the HyperText Transfer Protocol (HTTP), which determines

the form of the representation through content-negotiation [103]. The time dimension has

been absent from HTTP until the Memento protocol was introduced. We provide details

about the Memento protocol in Section 2.1.3.

2.1.2 LONGEVITY OF URIS

Because the Web is a highly dynamic information space, the resources change, dis-

appear, and move from one location to another frequently [177]. Many studies have

shown that the expected lifetime of a Web page is short (between 44 to 100 days)

[124, 182, 241, 201, 335, 34, 162] and Web resources disappear quickly [277, 302, 180].

In 1997, Brewster Kahle claimed that the average lifetime of a Web page was only 44 days

[162]. In a subsequent study in 2001, Lawrence et al. [201] claimed that pages disappear

after an average time of only 75 days. In a Washington Post article that was published in

2003, the expected lifetime of a Web page was estimated to be 100 days [335].

SalahEldeen et al. [276, 278] measured loss based on analyzing six different event-

centeric datasets of resources shared in social media. They found that resources linked to

in social media disappear (i.e., HTTP 404) at the rate of 11% per year for the first year,

and 7% each year afterwards.
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FIG. 22: Memento Framework. Source: http://www.mementoweb.org/guide/

quick-intro/

Marshall et al. [222] showed that there are many reasons why URIs, or even entire

websites, break such as: hacking, loss of account, owner deletion, server/service discontin-

ued, etc. Lawrence et al. [201] found that many URI citations in computer science related

papers have become invalid by a year or two after their publications. McCown et al. [227]

conducted a study on articles published in D-Lib Magazine and found that the half-life of

links in the articles is 10 years. Wallace Koehler [182] estimated the half-life of a random

Web page is approximately two years.

The sites of Content Management Systems (CMS) such as MediaWiki, the platform

used by Wikipedia1 (the most popular information resource in the world with more than

500 million unique visitors monthly), typically links to external references in each article

[10]. There are about 128,604 articles with dead links in Wikipedia references [2]. A recent

Harvard study found that 49% of the URIs referenced in U.S. Supreme Court decisions are

now dead [209].

The ephemeral nature of the Web highlights the importance of Web archives for histor-

ical purposes and records management compliance, capturing information. Providing tools

that help normal users to understand the holdings of Web archives is important for raising

awareness about Web archiving.

2.1.3 MEMENTO FRAMEWORK

As we have discussed in the previous section, the Web contains a huge amount of

resources and these resources change over time. Web archives hold a substantial amount of

1http://www.wikipedia.org/
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the Web. Integrating these archived resources into the live Web is important to give users

access to archival content and allow people to browse the past [328].

The Memento protocol [328, 327, 329] was introduced in 2009 to allow temporal navi-

gation of the Web. Memento is an HTTP protocol extension that enables time travel on

the Web by linking current resources with their prior state. Memento introduces content

negotiation in the datetime dimension using a special HTTP header, Accept-Datetime,

that is sent by the user-agent to the TimeGate, a special resource that is aware of prior

versions of Web resources, to indicate the preferred datetime (Figure 22). The Memento

framework introduces new Relation Types for the HTTP “Link” header to convey typed

links among Original Resources, TimeGates, Mementos, and TimeMaps.

Memento defines the following terms, which we will adopt in the rest of the dissertation:

• URI-R denotes the original resource. It is the resource as it used to appear on the

live Web; it may have 0 or more mementos (URI-Ms).

• URI-M is an archived snapshot, or memento, for the URI-R at a specific datetime,

which is called Memento-Datetime. e.g., URI-Mi= URI-R@ti.

• URI-T denotes a TimeMap, a resource that provides a list of mementos (URI-Ms)

for a URI-R with their Memento-Datetimes. URI-T(URI-R) = {URI-M1, URI-M2,

..., URI-Mn}.

Although Memento is supported with an effective set of client tools (e.g., MementoFox

[282], Memento for Chrome [286], and for mobile iOS and Android devices [325], Mink

[170], mCURL [23]), many users may not know the times of the events, so they want to

see the events as narrative-based more than time-based (the way Memento is currently

constructed).

2.1.4 WEB ARCHIVING

Ben Saad and Gançarski [42] defined Web archiving as “the process of continuously

collecting and preserving portions of the World Wide Web for future generations”. An

archived page is a snapshot of how this archived page looked at a particular point in time.

Ainsworth et al. estimated the coverage of Web resources in Web archives in “How

Much of the Web Is Archived?” [13]. They sampled 4000 URIs from DMOZ, Delicious,

Bitly, and search engines and measured their coverage in the public Web archives and the

number and frequency of archived versions. They found that, according to the URI source,

the archived percentage varies from 16% to 79%. These numbers increased in 2013 to be

from 33% to 95% [24].
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Helen Hockx-Yu provided a high-level overview of the Web archiving processes [133].

Based on her framework, the main processes of Web archiving are:

• Selection is determining the websites to be included in the Web archive collection.

• Harvesting (or crawling) automatically downloads copies of the specified websites.

This starts with a list of seed URIs, then continues to crawl the hyperlinks.

• Storage is retaining the archived copies on a storage medium using archival formats,

such as ARC [165] and WARC (Web ARChive) [314].

• Access refers to replaying and allowing the users to access the archived materials.

• Digital Preservation is the set of standards and technologies that are needed to ensure

access to Web archives over time.

Selection is a key issue for Web archiving. Selection for Web archives can be manual

(e.g., specifying seed URIs by people creating collections) or automatic (e.g., reading the

URIs from a public directory). It is important to have a selection policy to ensure continuity

and consistency in selection and revision [225]. The Archive-It service of the Internet

Archive enables easy collection setup and management for institutions. As we detail in

Section 2.1.5, the selection of the seed URIs that compose collections in Archive-It is

personal, depending mainly on the domain knowledge of the curator, which suggests a

need for tools that automatically discover new seed URIs.

Julien Masanès [225, 224] expressed a vision of the main issues involved by Web archiv-

ing such as the selection, storage, and preservation of Web content and the challenges that

face them. Adrian Brown [53] also provided a practical guide for archiving the Web and

the process of the archiving from selection, collection, storage, and delivery to the user.

It is a challenge for Web archiving institutes to balance between the completeness

and quality of archived materials meanwhile avoid wasting time and space for storing

and indexing [42]. The limitation of the resources of Web archives such as the storage,

site politeness rules, etc., brought much attention from many researchers to optimize the

processes of Web archiving lifecycle such as the selection, storage, and preservation [72, 42,

74, 248, 25, 26, 43].

AlSum et al. worked on enriching APIs for Web archives to support the access process

[25, 26]. However, better APIs do not directly support increased archive exploration by

humans. Rather than developing custom exploration interfaces for Web archives, we plan

to utilize existing interface tools, such as Storify, which users are familiar to the general

public.
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Lin et al. [208] proposed Warcbase, which is a scalable Web archiving platform for

storing, managing, and analyzing web archives to support the exploration and discovery in

web archives. Warcbase applies modern “big data” infrastructure: HBase [69], an open-

source platform for managing large semi-structured datasets, and Hadoop [68, 89], the open-

source implementation of the MapReduce programming model. In a later work, Lin [207]

describes how to scale down the infrastructure of Warcbase for providing new opportunities

for personal web archiving.

Ben Saad et al. [42] proposed a framework that optimized page indexing and storage

by discovering patterns from the temporal evolution of page changes using the data from

the archive of French public TV channels. They claimed that these patterns can be a useful

tool to predict changes and thus efficiently archive Web pages.

Focused crawling has become an active area of research to make such collection-building

crawls more effective [67, 43, 100]. As Bergmark et al. mentioned [43], the goal of the

focused crawl is to make a “best-first” crawl of the Web.

The previous techniques have focused on optimizing Web archives materials during the

life cycle of Web archiving. Although these techniques are a good trend to avoid wasting

time and space for storing and indexing Web pages, there is also a need to check the quality

of archived materials that already exist in Web archives.

Excluding the off-topic pages from TimeMaps will significantly affect large-scale studies

on archived materials. For example, the thumbnail summarization work [27] that was done

by AlSum and Nelson would show off-topic pages in the generated summaries if these pages

have not been detected before generating the summaries.

2.1.5 TYPES OF WEB ARCHIVES

With the significant growth in the amount of data, multiple Web archiving initiatives

were started to archive different aspects of the Web [37, 113]. Web archives are those

institutions that preserve much of the cultural discourse by archiving the Web [213]. We

can categorize Web archiving initiatives into based on the scope and the purposes of their

creation:

• Non-proprietary initiatives for archiving and preserving the entire Web, such as In-

ternet Archive [3].

• Subscription services that allow institutions to create theme-based collections, such

as Archive-It and the Web Archiving Service [7].

• On-demand free archiving services, such as Archive.is [1] and WebCite [99].
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(a) The current interface of the Internet Archive.

(b) The current interface of the Wayback Machine.

FIG. 23: The current interfaces of the IA and its Wayback Machine. Retrieved in March
2016.
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• National libraries, such as the UK Web Archive [6], the Pandora project [65] at the

National Library of Australia, the Greek Web project [198], etc.

In our work, we generate summary stories from the archived collections, such as the

ones in Archive-It. Next, we will provide details on how these collections are created and

how the people use Archive-It.

The Internet Archive

The Internet Archive is the largest and oldest Web archive [238], holding over 450 billion

Web pages as far back as 1996 [164]. The Internet Archive was founded by Brewster

Kahle to maintain an archive of the entire Web by taking periodic snapshots of pages then

providing an access to these snapshots via the Wayback Machine [319].

The Internet Archive enables users to see archived versions of Web pages across time,

which the archive calls a “three dimensional index” [98]. In addition to Web pages, it

also includes texts, audio, moving images, recordings, video games, TV broadcasts, and

software in addition to a number of other projects such as the NASA Images Archive,

the wiki-editable library catalog, and the Open Library. Moreover, the IA provides the

Archive-It subscription service for institutions to build their own collections. Figure 23(a)

shows the current homepage of the Internet Archive.

Access to the vast archive of Web pages is available through the Wayback Machine

(Figure 23(b)), which allows archives of the World Wide Web to be accessed [319]. The

Wayback Machine receives more than 82 million requests per day [18]. In Chapter 4,

we study how humans and robots access and use Web archives using a dataset from the

Wayback Machine’s access logs.

The Internet Archive announced an initiative to fix the broken links across the Internet

to make URIs persistent on the live Web, such as using the archived pages for citing the

references on Wikipedia [270, 8]. The content from Web archives can be used to fill the

gaping holes left by dead pages on the live Web. This was a strong motive for us to

create stories that are composed of persistent resources and integrate these stories with a

storytelling service that people already know how to use.

Archive-It

Archive-It is a collection development service that has been operated by the Internet

Archive since 2006. Archive-It provides Web archiving practices to a large number of

organizations in the United States. As of May 2016, Archive-It was used by over 400 in-

stitutions in 48 states and featured over 9B archived Web pages in nearly 3,500 separate

collections.
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(a) The Archive-It interface from the user’s view.

(b) The Archive-It interface from the curator’s view.

FIG. 24: Current Archive-It interfaces. Retrieved in January 2016.
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(a) Specifying the seed URIs for collection creation

(b) Specifying the parameters of crawl, such as the depth, the frequency, etc.

FIG. 25: For creating the collection, the curator specifies the seeds and the parameters of
crawls. Retrieved in January 2016.
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(a) acquiring seed URIs about Boston
Marathon Bombing

(b) acquiring seed URIs about Nelson Mandela

FIG. 26: Starting Archive-It collections that are built by the Archive-It team.

Archive-It provides their partners with tools that allow them to create themed collec-

tions of archived Web pages hosted on Archive-It machines (Figure 24). This is done by the

curator specifying a set of seeds URIs that the curator believes best exemplifies the topic

of the collection (Figure 25(a)). These URIs should be crawled periodically (the frequency

is tunable by the curator), and to what depth (e.g., follow the pages linked to from the

seeds two levels out), as shown in Figure 25(b). The Heritrix [233, 290] crawler, an open

source Web crawler developed by Internet Archive specially designed for Web archiving,

at Archive-It crawls/recrawls these seeds based on the predefined frequency and depth to

build a collection of archived Web pages.

Archive-It provides tools that allow collection curators to perform collection manage-

ment as well as quality control for the crawls. However, the tools are currently focused on

crawl issues such as the mechanics of HTTP (e.g., how many HTML files and other file

types, how many 404 missing URIs), as shown in Figure 8.

Archive-It collections are stored in the WARC file format [314], a revision of the Internet

Archive’s ARC file format that has traditionally been used to store Web crawls. The

resources of the collection are combined and aggregated in a large WARC file. Each resource

has a header containing metadata about how the resource was requested followed by the

HTTP header and the response.

Starting Collections in Archive-It

Choosing seed URIs for a collection, especially collections centered around a specific event,

is currently more art than science. Archive-It staff members create collections of global
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events (e.g., Arab Spring collection2, SOPA Blackout collection3) under the name of In-

ternet Archive Global Events. They collect the seed URIs by asking people to nominate

URIs that are related to these events (Figure 26). Figure 26(a) shows an Archive-It request

for URI nominations about the Boston Marathon Bombing, and Figure 26(b) contains a

request to the community to nominate URIs about Nelson Mandela. The seed URIs are

manually collected by people based on domain knowledge, which means there is no policy

for automatically collecting the seed URIs. The result is a list of ad hoc URIs that are

manually collected by users. Discovering seed URIs for building a collection is not easy.

Browsing Archive-It Collections

Archive-It provides a listing of all URIs in the collection along with the number of times

and dates over which each site was archived, as well as a full-text search of archived sites,

as we showed before in Figure 5 in Chapter 1. The main interface of the curated collection

contains metadata about the collection that is added by the collection curator (Figure

24(b)). The Archive-It interface consists mainly of a list of seed URIs in alphabetical order

in which the crawl information of each URI is available (Figure 6(a) and 6(b)). Clicking

on any URI in the list presents a table listing dates when the mementos were captured

(Figure 6(c)). Clicking on any date displays the archived version of the Web page at that

date (Figure 6(d)). There is no tool to help users to understand the collection and gain

insight about it other than the descriptive metadata on the collection page. To understand

the collection, the user must go through all the URIs and browse all their relevant archived

copies.

2.2 CONTENT CURATION PLATFORMS

Because of the sheer volume of information on the Web, there is a trend for creating

tools that allow users to select and organize Web resources to create a narrative or story for

a certain topic of interest [223]. These tools, which are called content curation tools, allow

users to choose, collect, and manage their own narratives or stories (e.g., Storify, Scoop.it).

Ann Handley [122] defined content curation as:

Content curation is the act of continually identifying, selecting and sharing the

best and most relevant online content and other online resources (e.g., articles,

blog posts, videos, photos, tools, tweets, etc.) on a specific subject to match

the needs of a specific audience

2https://archive-it.org/collections/2349/
3https://archive-it.org/collections/3010/
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FIG. 27: The Process of Content Curation. Source: http://socialmediatoday.com/

pamdyer/1629516/60-content-curation-tools

Content curation platforms allow users to create narratives or stories from the Web

resources. The process of content curation (Figure 27) starts with selecting resources

related to a topic of interest to the user (i.e., content aggregation) and then adding context

to the collected content. The definition of “Digital Curation”, as defined by the UK Digital

Curation Centre, is “Digital curation, broadly interpreted, is about maintaining and adding

value to, a trusted body of digital information for current and future use” [41, 111]. Holton

et al. [134] described content curation tools as a filtering method for huge streams of social

media.

Curation is important for people to handle information overload in digital resources

[211]. Based on the analysis of 100 Web artifacts (e.g., blog posts, online news articles,

videos including the comments in these posts), Liu [211] identifies seven curatorial activities

that are interconnected: collecting, organizing, preserving, filtering, crafting a story, dis-

playing, and facilitating discussions. Content curation existed before the Information Age,

and for librarians it is much the same as what librarians used to do in the past [266, 41];

the curation of reference materials was being used a long time ago by patrons in the form

of encyclopedias and specialized reference books.

Most of the content curation tools are general-purpose collection tools (i.e., they are

not limited to news only, there are many forms of curation, such as video curation and
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TABLE 1: Examples of different types of content curation tools.

Social bookmarking services
Diigo diigo.com

Reddit reddit.com

Visual bookmarking services
Pinterest pinterest.com

Symbaloo symbaloo.com

Hybrid curation tools
Storify storify.com

Scoop.it scoop.it

product curation) [114]. The art of finding, aggregating, filtering, selecting, curating,

and republishing high-quality news stories on a specific topic or interest is important for

librarians as well as journalists [250].

Recently, there have been many tools developed for digital curation. Table 1 shows

examples of different kinds of curation tools [266] and examples for each kind: social

bookmarking services, visual bookmarking services, and hybrid curation tools that are

used for bookmarking and creating stories. Although recently there is increasing interest

in content curation by users on social media platforms, relatively little attention has been

given to the analysis of content curation platforms. In the next section, we will highlight

some of the most popular curation tools and also the studies that have been done for

understanding the nature of these tools.

2.2.1 STORIFY

Storify is a social networking curation service launched in 2010 that allows users to cre-

ate a “story” of their own choosing, consisting of manually chosen Web resources, arranged

with a visually attractive interface, clustered together with a single URI and suitable for

sharing. Storify is one of the most prominent platforms for creating stories from many

social media channels. Storify has a global rank of 5,410 as measured by Alexa4 and has

850,000 users [261]. It provides a graphical interface for selecting URIs of Web resources

and arranging the resulting snippets and previews, with a special emphasis on social media

(e.g., Twitter, Facebook, YouTube, Instagram). The gathered resources of the story can

be reordered and annotated. An example that shows a generated story about the Egyptian

Revolution is illustrated in Figure 28.

The problem of Storify and the other curation tools is the persistency of resources that

have been used to create a story or narrative. Like the problem of citation using non-

persistent articles, if the URI that is chosen to be included in the story disappears, it will

be difficult to know what it is about and the context will not be kept.

4http://www.alexa.com/siteinfo/storify.com/, accessed on May. 27, 2016
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FIG. 28: A story about the Egyptian Revolution on Storify. Source: https://storify.

com/yasmina_anwar/egyptian-revolution-story-created-on-nov-2013

Storify has been used in many studies by journalists [304] and also to explore how

curation works in the classroom [231, 197]. Cohen et al. [78] believed that Storify can be

used to encourage students to become empowered storytellers and researchers. Laire et

al. [197] used Storify to study the effect of social media on teaching practices and writing

activities.

Kieu et al. [174] proposed a method for predicting the popularity of social curation

content based on a dataset from Storify. They specified the popularity of social curation

using the number of views of the content. They used a machine learning approach based on

curator and curation features (for example, the number of followers, the number of stories

for the users, and the time that the user started using Storify) from stories. They found

that combining the curator features (social features) and the curation features (content

features) improves the performance of predicting the popularity.

We use Storify to present automatically created summaries of collections of archived

Web pages in a social media interface that is more familiar to users (as opposed to custom

interfaces for summaries, e.g. [252]). Since the stories in Storify are created by humans, we

model the structural characteristics of these stories, with particular emphasis on “popular”

stories (i.e., the top 25% of views, normalized by time available on the Web) (see Chapter

6).
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FIG. 29: A story about the Egyptian Revolution on Pinterest. Source: https://www.

pinterest.com/makarems/egyptian-revolution/
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2.2.2 PINTEREST

Pinterest is the most popular curation service with nearly 100 million users [142], as

of September 2015. Pinterest has a global rank of 32 as measured by Alexa5. Pinterest is

currently estimated as the third most popular social media website in the United States

behind Facebook and Twitter [345, 118]. Pinterest’s users pin images and videos onto

boards to tell stories with pictures and videos found all over the Web, with the option

of adding metadata to the resource [347]. Pinterest revolves around the metaphor of a

pinboard, in which the user pins photos or videos of interest to create theme-based im-

age/video collections such as hobbies, fashion, events, etc. In Pinterest, each pin includes

the number of times it has been liked or re-pinned, along with a feed of any comments it

has received. Users also can browse other pinboards for images. An example of a board

about the Egyptian Revolution is shown in Figure 29.

Many studies have been conducted to study data curation using datasets from Pinterest

[121, 283, 347, 112]. Zhong et al. [347] studied why and how people curate using datasets

from Pinterest in January 2013 and Last.fm in December 2012. They found that curation

tends to focus on items that may not be highly ranked in popularity and search rankings,

which slightly contradicts our finding [19] based on a dataset from Storify.

The most used subject areas by Pinterest users are food and drinks, décor and design,

and apparel and accessories [118]. Most of the pins on Pinterest come from blogs, and a large

number of pins were uploaded by the users from their own systems. Based on analyzing

Pinterest data, Hall and Zarro [118] found that of the source type in their sample, there

were 0.5% from archives, libraries, and museums.

2.2.3 SCOOP.IT

Scoop.it allows users to organize online content into magazine format by pulling infor-

mation from various sources. The user specifies keywords to represent a specific topic so

the content from multiple social media channels (e.g., Twitter, Facebook, Google, Scoop.it

topics, and RSS Feeds) will be suggested. The user can edit the list of keywords at any

time. There is also a bookmarklet to allow a user to add any page of interest. The primary

feature that highlights Scoop.it is automatic suggestion, which allows users to get the latest

resources that are related to a particular topic, then the user can publish the update and

share it.

Antonio et al. [30] and Tuffley et al. [322] studied the potential of Scoop.it for facilitating

learning and engaging the digital information literacy skills among high school students.

5http://www.alexa.com/siteinfo/pinterest.com/, accessed on May. 27, 2016
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FIG. 30: A story about the Egyptian Revolution on Scoop.it. Source: http://www.scoop.
it/t/egyptian-revolution-the-beginning-of-the-story

They found that it is important for the students to know how to prioritize the selected Web

pages they collect to create stories. They also found that Scoop.it facilitates engagement,

but it has less effect on improving the digital information literacy skills of the students.

Saaya et al. [272, 273] introduced a content-based recommendation framework for au-

tomatically assigning new resources of a collection to users based on the content of the

collection. Their method depends on capturing the essence of the collection using features

extracted from the pages, such as titles and descriptions, then classifying a given URI

as belonging to a particular collection. They used three information retrieval approaches

(TF-IDF, which is calculated using Lucene [126]) and two other classification approaches:

Naive Bayes Multinomial (NBM) [173] and Support Vector Machines (SVM) [80] in Weka

[119].

2.2.4 PAPER.LI

Paper.li enables users to create and publish their own topic based newspapers, called

a paper. It allows users to choose the sources, such as Facebook, Google+, Twitter, RSS

feeds, and other sources based on keywords. After this, it creates a paper automatically

that contains the most recent related materials, such as text (e.g., blogs, news articles),
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FIG. 31: A story about the Egyptian Revolution on Paper.li. Source: http://paper.li/

BEHAPPY2B

photos (e.g., Flickr, Twitpic), and videos (e.g., YouTube, Vimeo). Paper.li automatically

detects the relevant content daily, and then updates the paper [141].

Figure 31 contains an example of a paper about the Egyptian Revolution on Paper.li.

2.2.5 OTHER TOOLS

There are many other content curation tools that allow users to bookmark, collect,

and organize their favorite resources manually, for example, Facebook6 timeline, Twitter7

timeline, Roojoom8 (presents the collected resources in a timeline), Pearltrees9 (visually

organizes the resources and place them in a tree), Bundlr10 (presents the gathered resources

in list view or grid view), Togetter11 (a popular curation service in Japan, was being used

for the social curation of microblogs such as tweets [96]) and TweetDeck12 (a social media

dashboard for organization tweets in a column-based interface).

6https://www.facebook.com/
7https://www.twitter.com/
8https://www.roojoom.com/
9http://www.pearltrees.com/

10http://bundlr.com/
11http://togetter.com/
12https://tweetdeck.twitter.com/
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2.3 SUMMARY

In this chapter, we presented the definitions and terminology that are adopted in the

rest of chapters. We presented a high level overview of the Web, the Web architecture,

longevity of URIs, and the anatomy of Web archives and content curation tools. We

explained processes of Web archiving life cycle and how its optimization processes has been

handled in research. We also presented the types of Web archives, focusing on the Internet

Archive and Archive-It. We illustrated how an archived collection is curated and browsed

in Archive-It.

In the next chapter, we discuss the prior research that we leverage into our research.

We also present and compare the related work of research that we conducted in the DSA

framework.
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CHAPTER 3

RELATED WORK

In this chapter, we provide an overview of the research that has been established in several

fields related to the problems we investigate in this dissertation. We provide an overview

of different methodology and techniques for handling collection understanding (Section

3.1). We present how the previous research handled telling stories with data through

summarizing the work of narrative visualizations and time series visualizations (Section

3.2). The related techniques of text analysis and usage mining that we adopted in the DSA

framework are presented in Section 3.3. Section 3.4 contains the related research of Web

archives usage and mining the past web. At the end, we present the different notions of

time (Section 3.5).

3.1 COLLECTION UNDERSTANDING

Collection understanding is the focus of gaining a comprehensive view of a collection

[70]. Collection understanding is different from the Information Retrieval (IR) focus, which

is about locating specific resources in the collection using a keyword or phrase [70]. In the

following sections, we overview the previously suggested solutions for collection understand-

ing. We overview document collections visualization, image collections summarization, and

video abstraction. We also contrast these solutions against the solution we introduce in

the DSA framework.

3.1.1 ENCODED ARCHIVAL DESCRIPTION

In order to preserve the evidentiary value of the collections and summarize their scope,

archivists typically create a document containing detailed information about a specific

collection of papers or records within an archive called a finding aid [106, 215]. A finding

aid provides a comprehensive overview of a collection. it also provides a description of a

collection’s components parts in details.

An Encoded Archival Description (EAD)1, a Document Type Definition (DTD) defined

in the Extensible Mark-up Language (XML), has been developed as a machine readable

encoding standard of finding aids created by archives, libraries, museums, and manuscript

repositories to support the use of their holdings. EAD is the de facto standard for describing

1http://www.loc.gov/ead/
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collections [258]. It has been developed mainly for supporting “collection understanding”

[70], facilitating the goals of a standardized description [188], and allowing for the emergence

of new archival descriptive practices [287]. The focus of EAD is on the structural content

of archival description, not on its presentation.

Francisco-Revilla et al. [106] investigated the quality of finding aids and their impact

on information visualization techniques by analyzing a set of 8729 finding aids aggregated

by the Texas Archival Repository Online2 (TARO) using VADA, a visual analytic tool for

finding aids. They also discussed the aggregations of finding aids to specific aspects of EAD,

EADs design and the actual encoding practices of EAD, and the problems associated with

the EAD standard. They provided recommendations for improving the quality of finding

aid data. They concluded that EAD allows great flexibility in the encoding of finding aids

and this is a positive factor for encoding legacy data and accommodating the practices of

multiple different archival repositories.

The potential of EAD is to enable finding aids to be encoded, searched, and displayed

online. We believe that increased textual metadata (e.g., EAD) added to the interface as

shown in Figure 1 is not a solution for getting the essence of the collection. Instead, we are

informed by emerging trends in social media storytelling, which focus on a small number

of exemplary pages (i.e., “high precision” in information retrieval terms) as chosen by a

human.

3.1.2 VISUALIZING DOCUMENT COLLECTIONS

Since the digitization process has started, most institutions, e.g., libraries and archives,

have focused on storing digital collections and making them accessible online [88]. Most

of the current digital collection interfaces are text-based search with very limited browsing

features. Much research has been dedicated to developing visualizations for viewing and

querying documents, and towards graphical querying and browsing of the results [130, 12,

336, 138, 137].

On of the earliest efforts in the description of visualizing data via a “starfield display”

was by Ahlberg and Shneiderman [12]. They presented multiple visualization techniques

for presenting a large volume of data. They introduced the key visual information seeking

concepts, which have been used in visualizing document collections: rapid filtering to

reduce result sets, progressive refinement of search parameters, continuous reformulation

of goals, and visual scanning to identify results. They added a number of new principles

for supporting visual search such as dynamic query filters, use of a starfield display, and

2https://www.lib.utexas.edu/taro/
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FIG. 32: ArchivesZ: First Level Search Results. Gives a full overview of years and top 10
subjects by total linear feet [188].

tight coupling. Many of the principles Ahlberg and Shneiderman introduced are the basis

for many of today’s visualizations [88].

Karmer-Smyth [188] developed ArchivesZ, an information visualization for archived

collections inspired by the availability of structured data in the EAD standard for encoding

finding aids. The ArchivesZ prototype interface help users explore the metadata that

describes archival collections through searching for content by year and subject in a tightly

coupled dual histogram interface. ArchivesZ uses linear feet as a unit of measurement

rather than the number of separate collections. A linear foot3 is a measure of shelf space

necessary to store documents. Therefore, ArchivesZ gives users a visual representation of

the total amount of content available in an archive on a given topic. It also visualizes the

overlapping assignment of subjects terms to archival collections. Therefore, all collections

about the same subject can be grouped together, rather than a single tagged collection

through leveraging the combination of key structured data elements of metadata about

3http://www2.archivists.org/glossary/terms/l/linear-foot
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FIG. 33: Various views (List View, Graph View, Scatter Plot View, and Text View) for
the visual analytic system, Jigsaw [305].
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FIG. 34: An example of Microsoft PivotViewer showing positions of NBA players from
the 2009/2010 season. Source: http://www.michaelmcclary.net/image.axd?picture=

image_12.png

archival collections. An example for a visualization of aggregate information about groups

of archival collections is shown in Figure 32. The figure shows the range of decades covered

by all collections, the top five subject terms based on the total linear feet worth of collections

associated with that subject term, and a list of collections returned by the search.

Hearst et al. [130] experimented with the use of hierarchical metadata and hyperlinked

images as results for the purpose of browsing and searching through information on the

Web. A usability study conducted by the authors suggested that about 50% of users used

images as a primary means of browsing and searching for information all the time. Their

finding indicates that users are more inclined towards visual methods of querying and

browsing rather than textual methods.

Many visual analytics tool were developed to visualize text documents [115, 305, 129].

Jigsaw [115] is a visual analytics system which provides a series of visual interfaces for

investigative analysis across text documents’ collections. Jigsaw is an important tool for

analysts, especially when it comes to large text corpora, by highlighting inter-connections

between entities across documents [305]. It provides multiple views (Figure 33):
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FIG. 35: A 3D wall visualization for collections in U.K. Web Archive. Source: http:

//takingaccountproject.wordpress.com/2012/03/14/uk-web-archive/

1. The List View, which contains multiple reorderable lists of entities, uses colors to

show connections between entities.

2. The Calendar View adds temporal context to the documents.

3. The Time Line View shows connections between entities and dates.

4. The Text View presents the actual reports with highlighting the entities.

5. The Scatter Plot View highlights pairwise relationships between any two entity types.

6. The Graph View shows the connection between entities and reports in a node-link

diagram.

Although Jigsaw provides multiple views for large text corpora, it does not preserve

hierarchies in a document collection. Furthermore, Jigsaw supports only text documents

and cannot be used to visualize multimedia documents such as Web pages containing images

and videos.
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For temporal visualization of large document collections, ThemeRiver [129] provides

contextual information through thematic changes within the documents over time. TIARA

(Text Insight via Automated Responsive Analytics) [334] applies the ThemeRiver metaphor

to visually summarize a text collection based on the topic content. It combines text an-

alytics and interactive visualization to help users explore and analyze large collections of

text.

PivotViewer [5, 86] is a Silverlight [4] application for exploring large datasets with a

flexible visual interactive manner. It was released by Microsoft Live Labs in 2009. Piv-

otViewer allows users to interact with massive amounts of data dynamically, uncovering

trends and patterns in a visual format. Pivot can load any form of data and represent it

as a deck of cards, with similar cards stacked together. By visualizing thousands of related

items at once, users can see trends and patterns that would be hidden when looking at one

item at a time [338]. Figure 34 has an example of Microsoft PivotViewer showing positions

for NBA players the in 2009/2010 season.

The UK Web Archive provides a visualization for the collections through a 3D wall of

sites allowing interaction through zooming (Figure 35).

Our initial attempt to browse Archive-It collections and highlight the collections’ un-

derlying characteristics was applying four alternate visualizations (Figure 36 and 37) for

the Archive-It interface [251, 252]:

• Bubble chart provides a quick summary of the collection by displaying each group in

the collection as a bubble, where the size of the bubble represents the number of sites

in each group.

• Image plot with histogram allows the user to explore the collection by representing

all sites in a collection in a graphical manner. Each screenshot is linked to a list of

archived versions in Archive-It.

• Wordle [330] appears when hovering over any image in the image plot.

• Timeline provides an insight about the development of the collection over time. In

this visualization, each site is represented as a single horizontal line, the length of

which denotes the duration over which its archived copies have been captured. Each

point on the line represents an archived copy of the site. Hovering over a point

displays a list of archives of other sites captured on that same day.

For those collections that lack a curator-defined grouping, we also provided a heuristic-

based categorization to make the new visualizations more meaningful. Figure 38(b) shows
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(a) Bubble chart.

(b) Timeline

FIG. 36: Different visualizations for exploring Human Rights collection at Archive-It.
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(a) Image plot with histogram, and wordle.

FIG. 37: Different visualizations for exploring Human Rights collection at Archive-It (con-
tinued).
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(a) “Pakistan Floods” collection without categorization

(b) “Pakistan Floods” collection with categorization

FIG. 38: “Pakistan Floods” collection after and before applying categorization.
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an example of “Pakistan Floods” collection before and after categorization in the image

plot with histogram visualization.

One problem with the above approaches is that there is often an implicit assumption

that everything in a collection is equally valuable and should be visualized. Some of the

Web pages change frequently, some are near-duplicates, and some go off-topic and no

longer contribute to the collection. Visualization techniques with an emphasis on recall

(i.e., “here’s everything in the collection”) do not scale. Instead, we are informed by

emerging trends in social media storytelling, which focus on a small number of exemplary

pages (i.e., high precision) as chosen by a human, to sample from the collection by choosing

representative pages that best exemplify the topic of the collection (Chapter 5).

3.1.3 IMAGE COLLECTION SUMMARIZATION

Because of the rapid growth of image collections, managing and understanding these

collections have become necessary and have been handled by many researchers [116, 204,

244, 76, 84, 294, 27].

Nguyen et al. [244] identified three requirements to efficiently dealing with visual large

collections: overview, visibility, and structure preservation. In their work, they provided

solutions for each requirement and proposed a visualization scheme for interacting with

large image collections. They used the structure of the collection as the main focus for

creating overview about the collection through dividing the collection into groups using

clustering techniques [147], then selecting a representative image from each group. They

used a distance matrix for finding the clusters.

Graham et al. [116] introduced different techniques for browsing collections with thou-

sands of time-stamped digital images: Calendar Browser and Hierarchical Browser. They

provided clustering techniques based on the timing information that is attached to images’

timestamps to structure the collections. They also provided summarization techniques, so

instead of displaying all the images the tool displays a set of representative images to be

presented to the users. They specified four rules for choosing good representative images

for the collection:

• One image from a sequence of images that have little time between one another.

• Images separated by largest difference between one another, so the photographs right

before or after a long time interval is a good candidate.

• Images with high contrast and resolution information.

• The image that best represents the visual characteristics of the cluster in cluster-wide

image analysis.
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At the end, Graham et al. conducted a study to evaluate their developed browser against

an unsummarized browser. The results showed that summarizing the collections led to a

significant improvement and users preferred the summarized collection.

In the DSA framework, we use the quality of replaying mementos and the quality of

the generated snippet from mementos to select the best representative mementos (Chapter

9).

In addition to using the timing information of digital photo collections, Jaffe et al. [146]

considered a multitude of spatial, social, and temporal metadata dimensions for clustering

and summarizing large collections. They used geo-referenced digital photographs, whereby

photos are connected to metadata describing the geographic location in which they were

taken [236], to create summarizations that can be used to assist in map-based browsing

of images. They also developed the Tag Maps visualization for large-scale geo-referenced

photo collections that exposed the textual topics which were tied to a specific location on

a map.

Li et al. [204] proposed a framework for automatic organization and summarization

of personal digital photos based on their creation timestamps and image contents. They

first applied photo sequence partitioning by time then by content, and then they applied

similarity on the color histogram of the images to observe the changes in the photos.

They used selection criteria for choosing representative images (e.g., face criterion, time

criterion).

Sinha [293, 294] proposed a framework for generating representative subset summaries

from photo collections hosted on Web archives or social networks to create an overview

summaries from large personal photo collections. They evaluated the framework using

40K personal photos of 16 different users collected from Flickr4, Picasa5 and other photo

archives. They claimed that an effective subset summary should satisfy these properties:

quality, diversity, and coverage. The results showed that summaries generated using their

models outperformed baselines considerably.

Chu et al. [76] utilized the near-duplicate detection concept for automatic selection of

representative photos. First, they applied time-based clustering technique, then they ap-

plied near-duplicate techniques (e.g., SVM-based determination model, orientation feature

extraction) for choosing representative images.

AlSum et al. [27] proposed various summarization techniques to optimize the thumb-

nail creation for TimeMap based on information retrieval techniques. They found that

SimHash similarity fingerprints have the best prediction for the visualization change. They

4https://www.flickr.com/
5http://picasa.google.com/
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proposed three algorithms, threshold grouping, K clustering, and time normalization. They

minimized the number of generated thumbnails by 9% - 27% on average.

Most of the image collections summarization techniques start with dividing the image

collection by time, then cluster the images by content, and lastly select a representative

image from each cluster. In our framework, we also slice the collection then cluster the

mementos of each slice, and then based on quality metrics we select a representative page

from each cluster (Chapter 9).

3.1.4 VIDEO ABSTRACTION

Multiple techniques of video abstraction have emerged to allow fast browsing of videos

[341, 298, 123, 166, 206, 260]. Video abstracting can be either a video summary (still-image

abstracts or keyframes) or video skimming (moving-image abstracts) [321, 205]. Numerous

works have handled generating video summaries [320, 120, 92, 326, 31, 237, 87, 229, 243, 242]

and video skimming [127, 313, 299, 75, 123].

There are different types of video summaries based on how the keyframes are extracted:

shot-based, perceptual feature-based, sampling-based, cluster-based, and others. Some of

these techniques are similar to the techniques we use in the DSA framework, for example

the perceptual feature-based keyframe selection. The perceptual feature-based summaries

depend on selecting the keyframes that differ from each others in terms of their features

[247]. Examples of these features are the color, shape, motion, etc. [346].

This is similar to the grouping methodology we used for eliminating duplicates in indi-

vidual TimeMaps (Chapter 9). We select the first memento of the TimeMap and compare

it to other subsequent mementos. If the most recent memento exceeds a specific threshold,

it is selected to be the current memento that we compare to the subsequent mementos. In

the DSA framework, we use the text similarity between the mementos.

Jung et al. [160, 161] proposed a narrative-based abstraction framework for story-

oriented videos (e.g., dramas) to understand the overall story of the video. To capture the

human understanding of a story they analyzed the scenario writing rules and movies edi-

torial techniques to establish the narrative structure. The model analyzes a story-oriented

video, captures the narrative structure, and annotates narrative components according to

their degree of progression to the overall story. They evaluated their framework through

running multiple experiments to test the viewer’s understanding and preference through

comparing their method against ground truth dataset.

Video abstraction techniques are similar to what we do to generate summaries from

archived collections. We slice the collection then we use the content as a feature to detect
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FIG. 39: Genres of narrative visualization [285].

the events based on similarity threshold between each cluster, then we select representa-

tive mementos based on selection metrics, and then arrange the selected mementos in a

chronological order to compose a summary that gives users an overview of the collection

(Chapter 9). We also were inspired by the work of Jung et al. [161] to capture how humans

create a story, so we build a baseline for the human-generated stories based on analyzing

a dataset of Storify stories.

3.2 TELLING STORIES WITH DATA

The definition of narrative in the Oxford English Dictionary is “an account of a series

of events, facts, etc., given in order and with the establishing of connections between

them.” Stories of this form often have a beginning, middle, and end [323, 226]. Storytelling

strategies vary among media and genre [285]. For example, the story in films is different in

the structure from the written story which may have more narrative structure. Jonathan

Harris defined “story” as follows: “I define ‘story’ quite loosely. To me, a story can be as

small as a gesture or as large as a life.”[285]. An event is defined as “an occurrence that

happens at a specific time and draws continuous attention” [15].

We briefly review the literature on time-based storytelling techniques highlighting nar-

rative visualizations and time series visualizations.
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FIG. 40: Storyline visualization of the movie The Matrix [311].

3.2.1 NARRATIVE VISUALIZATIONS

Recently, there has been increased interest in leveraging narrative visualizations [139,

285] and telling stories with data techniques [285, 281, 109, 210].

Segel and Heer [285] investigated the design of narrative visualizations and identified

techniques for telling stories with data graphics. They introduced seven genres of narrative

visualization (Figure 39): magazine style, annotated chart, partitioned poster, flow chart,

comic strip, slide show, and film/video/animation.

Hullman et al. [139] studied the effect of the sequences choices in the narrative visualiza-

tion on end-users perception, based on a qualitative analysis of 42 narrative visualizations

[140]. They studied the characteristics that made a visualization sequence successful. In

particular, they focused on how the effects of sequencing style on user perception and mes-

sage communication can be useful for linear and slideshow-style presentations. They also

had previous studies about framing effects in narrative visualization.

Multiple storyline visualizations have been developed to illustrate the dynamic rela-

tionships between entities in a story [311, 210]. For example, Figure 40 shows a storyline

visualization of the movie “The Matrix” that was developed by Tanahashi and Ma [311].

The main problem with storyline visualizations is the scalability and complexity [210].

Every story is made up of a sequence of events. In our framework, events are represented

by Web pages from Archive-It collections, automatically discovered, arranged in a narrative

structure ordered by time, and replayed through an appropriate visualization interface.
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FIG. 41: CNN news from Aug. 1 to 24, 2006 in EventRiver [129].

3.2.2 TIME SERIES VISUALIZATIONS

Many studies have been conducted recently in the visualization community for exploring

and visualizing online stories. Most of these studies have been devoted to summarizing text

and its evolution over time [94, 212, 189, 268, 190].

Dou et al. developed LeadLine, an interactive visual analytics system to automatically

identify meaningful events in the news and social media data and support exploration of

the event [94]. LeadLine summarizes and visualizes events over time based on the 4Ws

(who, what, when, where) of each event, then allows users to interactively explore these

events.

Luo et al. proposed EventRiver, a visual analytics approach for event-based automated

text analysis and visualization [212]. EventRiver allows users to browse, search, track,

associate, and investigate the events. It presents events in a river-like metaphor in which

the semantics and the temporal influences of the events are visually depicted in a temporal

context to reveal the narrative arcs of the long-term stories in a display that look like a river

of events flowing over time (see Figure 41). In EventRiver, Luo et al. used text clustering

to group the documents that are coherent in content and adjacent in time. EventRiver is

different from ThemeRiver [129], which we explained in Section 3.1.2. ThemeRiver does
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FIG. 42: An example of Story flow visualization [268].

not support event-related tasks which means the occurrence of an event at a specific time,

while EventRiver supports event browsing.

There is also a wide range of tools developed for visualizing time series event [189, 190,

268] for example, CloudLines, which is a visual analytics technique to visualize context

as a continuous flow [189]. CloudLines provides a compact visualization for time series

event data with a lens-based interaction for direct access to overlapping events. Another

example is CAST, a visual analytics system to identify and understand trends and changes

from streaming information over time and for linking essential content from information

streams over time [268]. In CAST, Rose et al. [268] used a clustering algorithm on extracted

keywords from the documents in the corpus and then captured temporal information for

tracking and adapting to evolving stories. CAST system uses node-link-based visualization

and depicts the topical change over time (Figure 42).

Most of the previous research divided the collections by time and content to reflect the

evolution of the corpus through time. In our framework, we slice the collection to predefind

number of slices then cluster the pages of each slice by content so each cluster represents a

specific event (Chapter 9). We provide an insight into the evolution of archived collections

through time through generating broad stories from these temporal collections. Further-

more, we support event-related tasks through allowing generating stories from different

URIs at the same time. Such a story is an important information source in a wide variety

of applications, such as social and cultural studies.
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3.3 INFORMATION RETRIEVAL MEASURES

As the volume of content swirling around the Web continues to grow, it is not easy

to specify the materials relevant to a specific topic. Information retrieval is finding the

relevant set of documents to a specific request based on the information need of users [59].

In the DSA framework, we adopt information retrieval techniques to specify the set of

resources that are central to what the story of the collection is about. We will compute

the “aboutness” of the individual pages within the collection to eliminate the non relevant

pages. Furthermore, we will adopt multiple techniques for clustering the pages based on

their content.

3.3.1 THE NOTION OF ABOUTNESS

The “aboutness” is the description of the intellectual content of documents for retrieval

purposes [61]. The aboutness of a document has long been central to Web science and

information retrieval (IR) systems, including Web search engines. The IR system’s goal is

determining how related a document is, in terms of its aboutness, to a user-specified query

[29].

Many studies [59, 108, 29, 167] have been performed on the key aspects of aboutness

such as the page’s titles [179], tags [177], key terms [342, 144, 254], lexical signatures [181],

or summaries [220]. A lexical signature (LS) is a small set of terms derived from a document

that captures the aboutness of that document [178]. LS has been used widely for finding

the missing pages (i.e., HTTP 404) on the Web [255, 181, 178]. Typically a lexical signature

of a Web page is the top n terms from the page, sorted by its TF-IDF values [181].

For calculating the aboutness of a collection, there are machine learning statistical

models, such as topic modeling and detection tools to discover the abstract topics that

occur in a collection of documents [47, 253].

Jatwot and Ishizuka [150] used statistical analysis among the text features for summa-

rizing the content of webpages through time. In a later study, Jatowt et al. [153] proposed

methods for detecting the degree of freshness of linked pages based on comparing the pages

with the previously viewed pages by users. That resulted in reducing the cost and time of

browsing by informing the users with what they have not yet viewed. They incorporated

the mechanism of the personalized freshness detection into the browser.

Paranjpe [254] concentrated on document’s aboutness using words and phrases pre-

sented in the document that best reflect the central topics of that document. She used

a machine learning approach to identify the rank of words and phrases in the document
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according to their relevancy to that document. Paranjpe also used the click data of a search

engine.

Another perspective on textual aboutness has been introduced by Kehoe and Gee [167,

29]. They examined social tagging from a corpus linguistic perspective to represent the

aboutness of pages, based on data from using from Delicious6 (a social bookmarking site

that allows users to add tags to their bookmarks).

3.3.2 TOPIC DETECTION AND TRACKING (TDT)

Topic Detection and Tracking (TDT) refers to automatic techniques for finding topically

related material in streams of data and organizing stories by the events that they discuss

[333, 200, 199]. One of the fundamental concepts that distinguishes TDT is the notion

of event or topic. In TDT, “a topic is a seminal event or activity along with all directly

related events and activities” and an event means something that happens at some specific

time and place. Fiscus et al. considered a story is on-topic when it discuss events that are

related to the topic’s events [104].

TDT evaluation tasks cover many of the topics we use in the DSA framework, such

as “link detection”, which means detecting clusters of stories that discuss the same topic.

There have been many models for link detection, such as statistical language model tech-

niques [202, 199] and vector space approaches [279, 340].

There are also intensive studies that have been conducted for investigating TDT for

news Web pages. Lavrenko et al. extended the relevance model from working with short

queries to work with stories for comparing two stories in link detection [200, 199]. For

measuring the similarity between the two models, they used the Kullback-Leibler divergence

[192, 279], which is a standard way to compare two probability distributions.

Mori et al. [235] proposed a new approach for topic tracking from the Web pages that

are returned by a search engine. They used the temporal information of the Web pages (the

Creation-Datetime and the Last-Modified) to cluster the Web pages and create temporal

clusters for the relative events.

We use a clustering algorithm to determine if two pages are about the same event. We

also use different similarity measures to detect the off-topic pages (Chapter 8).

3.3.3 SIMILARITY MEASURES

In archived collections, it is possible to find many Web pages about the same event. That

results in having many possible candidate pages that contain similar content [175, 340, 339].

According to estimates, as many as 40% of the Web pages are duplicates of other pages

6https://delicious.com/
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[217]. Similarity comparison should be applied on these pages to detect if they are (near-

)duplicates or they are talking about the same topic.

There are multiple techniques for measuring the similarity between pages. Cosine Simi-

larity is one of the most well-known and effective similarity measures in IR and text mining.

It is based on cosine correlation between two vectors where each vector contains one com-

ponent for each term in the document [292]. Cosine similarity is based on the vector space

model [280].

Other measures of similarity have been used, such as the Dice Coefficient [90], the

Levenshtein Edit Distance [203], and the Jaccard similarity coefficient [310].

There have been many studies for detecting (near-)duplicates between documents [132,

230, 318, 46, 216, 259, 193, 262]. SimHash [71] is a useful and efficient hash-based method

for detecting the near-duplicates between Web pages based on the difference of the pages’

fingerprints. SimHash maps high dimensional vector to an f -bit fingerprint where f is

very small, for example, 64. These fingerprints are then used for comparing documents.

SimHash is effective in comparing two documents because it is fast [132].

Singh Manku et al. [216] investigated detecting the near-duplicates in Web crawls by

comparing the crawled pages with their previous copies. In their work, they illustrated

that Simhash is appropriate for detecting near-duplicates from large repositories.

Other near-duplicate detection techniques have proposed, such as Locality Sensitive

Hashing (LSH) by Indyk and Motwani [143] and Shingling algorithm by Broder et al.

[51, 52].

In Chapter 8, we use multiple similarity measures for detecting off-topic pages in Web

archives. We evaluate the methods using multiple evaluation metrics that will be explained

in Section 3.3.5. We also use the SimHash method to detect the near-duplicates in indi-

vidual TimeMaps because of its time efficiency (Chapter 9).

3.3.4 TERM FREQUENCY - INVERSE DOCUMENT FREQUENCY

Term frequency (TF) refers to how often a term appears in a document. The probability

that a term that occurs very frequently in a document is likely to be more relevant for that

document than a term that occurs less frequently. Inverse Document Frequency (IDF),

which is first introduced by Sparck Jones [301], is the number of documents in the collection

that contain a specific term. Combined TF and IDF, TF-IDF, reflects how important a

word is to a document in a collection by providing an accurate measure of the terms local

(within the document) and global (within the entire corpus) importance [267].

The TF-IDF weighting developed for vector space retrieval has shown remarkable ef-

fectiveness [267]. We used the TF and TF-IDF weightings for creating Wordles [102, 330]



73

for the collections and the Web pages within the collections in our preliminary work [252]

to understand Archive-It collections. We calculate the TF-IDF for mementos then apply

the cosine similarity to compare the aboutness(URI-R@t0) with aboutness(URI-R@t) by

calculating the similarity between the mementos (Chapter 8).

3.3.5 PERFORMANCE MEASURES

There are multiple methods to evaluate a retrieval system’s performance: precision

and recall [83, 217], F-measure [217], Discounted Cumulative Gain (DCG) [148, 149], etc.

Precision is a measure of specificity, meaning the fraction of retrieved documents that are

relevant to the information need. For example, when searching for “Egyptian Revolution”,

the number of the correctly related documents to the “Egyptian Revolution” divided by

the number of all returned results is the precision. Recall is the fraction of the relevant

documents that are retrieved divided by all the relevant documents in the corpus (collec-

tion). In our previous example, recall will be the number of relevant documents to the

Egyptian Revolution divided by all the number of all the documents in the collection that

should be returned. F-measure is the harmonic mean of the precision and recall. The

DCG is a popular method that is often used in IR for measuring the usefulness or gain of

a document based on its rank in the result. The DCG is based on the assumptions that

highly relevant documents are more useful when they have higher ranks than less relevant

documents. The Normalized DCG (nDCG) is now popular for comparing lists that vary

in length and taking the average over multiple queries.

3.3.6 WEB USAGE MINING

The breadth and depth of research in the area of Web usage mining is massive and

increasing [35, 194, 295, 66, 221]. Web usage mining involves discovering usage patterns

from Web data using data mining [303]. The results obtained from Web usage mining can

be used in different applications, such as Web traffic analysis, site modification, system

improvement, personalization, business intelligence, and usage characterization. We use

Web usage mining techniques to provide traffic analysis and usage characterization for

Web archives and extract the abstract models for accessing Web archives (Chapter 4). In

this section, we briefly review the related work of Web usage mining. We will highlight the

work of usage mining on Web archives data in Section 3.4.1.

Adams et al. [11] explored the usage patterns of scientific and historical data reposito-

ries. However, their study focused on a variety of archive types (e.g., public vs. private,

digital but non-web resources) and does not directly address the issue of archiving the Web.
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A challenge that faces Web usage mining is detecting the robots who camouflage their

identity and pretend to be humans. The robot detection problem has been examined in

several studies [309, 91, 196, 117]. Doran et al. [93] characterized robot detection techniques

into four categories: syntactical log analysis, traffic pattern analysis, analytical learning

techniques, and Turing test systems. In our study of Web archiving usage (Chapter 8), we

used syntactical log analysis (simple processing by finding the self-identified robots) and

traffic pattern analysis (specifying features for contrasting robots with humans).

3.4 TRENDS IN WEB ARCHIVING

In this section, we highlight the research that has been conducted on mining the past

Web.

3.4.1 THE USAGE OF WEB ARCHIVES

Understanding the current demand for access to Web archives can provide insights into

how to make the best use of limited archiving and access resources. In our prior work that

formed the foundation of the DSA framework, we provided the first analysis of user access

to a large Web archive [18]. We analyzed the Web server logs from the Internet Archive’s

Wayback Machine to extract the user access patterns in Web archives and study why and

how people come to Web archives (Chapter 4).

Costa et al. studied the search behavior characterization of Web archives based on a

quantitative analysis of the Portuguese Web Archive (PWA) search logs [82, 81]. Costa

et al. compared between the search patterns of Web archives and Web search engines.

Despite the different information needs of Web archives and Web search engine users, the

search patterns for Web archives had shown adoption of Web search engine technologies.

They found that most Web archive users conducted short sessions. In our study, the most

frequent sessions are composed of one request. One important finding from analyzing the

search interactions of the PWA logs is that the users prefer older documents. This is in

contrast to what we found, that Web archive users have significant repetitions for requests

in 2011 (the year prior to our sample) [18].

What is missing from digital libraries and Web archives and the effect of this on the

satisfaction of users’ needs and expectations has been widely investigated [317, 63, 348, 291].

Thelwall and Vaughan [317] studied the coverage of the Internet Archive for the Web.

The results showed an unintentional international bias in the archive coverage through

an uneven representation of different countries in the archive. The reason for unbalanced

representation of countries is the visibility of the websites (i.e., the number of inlinks of
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websites). The results also showed that the language of the websites does not have an effect

on how the Internet Archive indexes the websites.

Carmel et al. [63] suggest a tool to dynamically analyze the query logs of the digital

library system, identify the missing content queries, and then direct the system to obtain

the missing data.

AlSum et al. studied the coverage of twelve Web archives using three datasets from

the live Web, Web server access logs of the archives, and full-text search of the archives

to create profiles for the twelve archives [28]. They discovered that IA has the largest and

widest coverage of all the archives, which matches our results of checking the coverage of

other archives in a previous study [16].

3.4.2 MINING THE PAST WEB

Web archives are becoming commonly used in social science and humanities research.

Archiving the political process has become popular, both in terms of Web pages [284,

264, 105], and YouTube and blogs [62, 219]. Mining the past Web is different from Web

content mining because of the temporal dimension of the archived content [157, 186]. The

benefit of utilizing the Web archives for knowledge discovery has been discussed many times

[32, 157, 154]. Below, we outline some of the approaches that have been used for mining

the past Web using Web archives data.

Jatowt and Tanaka [157] discussed the benefits of utilizing the content of the past Web

for knowledge discovery. They discussed two mining tasks on Web archive data: temporal

summarization and object history detection. They also presented different measures for

analyzing the historical content of pages over a long time frame for choosing the important

versions to be mined. They used a vector representation for the textual content of page

versions using a weighting method, e.g., term frequency. They presented a change-detection

algorithm for detecting the change in the past versions of a page through time.

In a later study, Jatowt et al. [156] proposed an interactive visualization system called

Page History Explorer (PHE), an application for providing overviews of the historical

content of pages and also exploring their histories. They used change detection algorithms

based on the content of archived pages for summarizing the historical content of the page

to present only the active content to users. They also extended the usage of term clouds

for representing the content of the archived pages.

Figure 43 displays the history view of the BBC Homepage7 in PHE. This visualization

displays clouds of top 20 terms over the specified time period in the top frame. Additionally,

tag clouds consisting of up to 20 terms, for smaller time periods, are shown below the top

7BBC homepage: http://www.bbc.co.uk/
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FIG. 43: The history view of BBC homepage (www.bbc.co.uk) in Page History Explorer
[155].

frame. Each snapshot on the timeline represents the view of a Web page as it existed during

that period. This visualization system can be used to visualize how a single Web page in

a collection changes over time by representing its various mementos over the timeline.

To help people in understanding Web content change, Teevan et al. [316] introduced

DiffIE, a browser plug-in that caches the page a user visits, and then detects and highlights

any changes to that page since user’s last visit. They compared the Document Object

Model representation of page’s text to highlight the differences.

Tools like PHE and DiffIE are a good way to understand the changes of Web pages

through time. In our work of detecting off-topic pages in Web archives (Chapter 8), we

are not looking for a deep reading between versions, but rather flagging off-topic pages for

non-consideration for other processes (e.g., thumbnail generation [27]).

Spaniol and Weikum [300] used Web archives data to track the evolution of entities

(e.g., people, places, things) through time and visualize them. This work is a part of the

LAWA project (Longitudinal Analytics of Web Archive data), a focused research project

for managing Web archive data and performing large-scale data analytics on Web archive

collections. Jatowt et al. [154] also utilized the public archival repositories for automatically

detecting the age of Web content through the past snapshots of pages.

Web archiving research has focused on the selection, storage, and preservation of Web

content and solving the challenges that face them [225]. Despite the existence of crawl

quality tools that focus on directly measurable things like MIME types, response codes,

etc., there are no tools to assess if a page has stayed on-topic through time. One of the
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FIG. 44: A memento from the “Egypt Revolution and Politics” collection in Archive-It has
different notions of times.

parts of the framework in this dissertation is assisting curators in identifying the pages that

are off-topic in a TimeMap.

In Chapter 4, we provide the first analysis of user access to a large Web archive. We

investigated multiple questions that help us in shaping the problem of the dissertation such

as how Web archives are being used and by who, why people come to Web archives, where

do people come from, etc.

3.5 DETERMINING DATETIME OF WEB PAGES

Each Web page can have four notions of time [239]:

• Creation-Datetime (CD) is the datetime the resource was created

• Last-Modified (LM) is the datetime the resource last changed

• Memento-Datetime (MD) is the datetime the resource was crawled

• Aboutness Time (AT) is the datetime of an event that the page contains.

An example of the AT is a page published today about events in the past or future.

The different notions of time are best exemplified in the example in Figure 44 that shows

different times for a page in the “Egypt Revolution and Politics” collection in Archive-It.
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FIG. 45: The timeline of a shared resource and the proposed process of carbon dating [277].

The figure shows a homepage of a blog that was last modified on Jan. 27, 2011 with a post

about an event on Jan. 25, 2011. The page was crawled on Feb. 1, 2011, but we do not

know exactly when it was created. The times of this page are different from each other

(the page is created at t1, about an event that happened at t2, modified at t3, crawled at

t4), which illustrates the need for identifying the different datetimes of the pages in the

collection.

There has been research in the area of automatically estimating the creation dates of

content elements of pages [152, 154, 157]. Most of these studies were browsing applications

for Web archives. Estimating the date of a Web page by looking at the pages that link to

it has been done by Jatowt et al. [151] and Nunes et al. [246].

SalahEldeen et al. [277] also presented “Carbon Date”, a simple Web application that

estimates the creation date of a URI by polling a number of sources of evidence and

returning a machine-readable structure with their respective values. They illustrated a

timeline of resources along with how they estimated the age of the resource in Figure 45.

Defining the different notions of a Web page is important. In the DSA framework,

we define the different notions of time for the best representative mementos, then we sort

them chronologically to be visualized. We will provide more details on how we extract the

notions of time of the mementos in Chapter 9.

3.6 SUMMARY

In this chapter, we presented an overview of the research that has been established

to summarize different kinds of collections: image collections, document collections, and

videos (Section 3.1). We presented how the archival community has attempted to solve

the problem of collection understanding through the development of new standards. Then,

we provided an overview of the techniques for exploring and understanding the document

and image collections. We also presented the related research of telling stories with data
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focusing on the work of narrative visualizations and time series visualizations (Section

3.2). The principles upon which we build the following chapters, such as the techniques of

Information retrieval, document similarity, and Web usage mining are presented in Section

3.3 and Section 3.4. We also presented the related research of Web archives usage and

mining the past web. At the end, we present the different notions of time (Section 3.5).

With the knowledge we have gained about the problem of collection understanding

and how the previous solutions focused on visualizing everything in the collection without

scaling, we proceed in the next chapters with our proposed solution that depend on selecting

the best representative pages to summarize an archived collections.
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CHAPTER 4

HOW PEOPLE USE WEB ARCHIVES

In this chapter, we present our preliminary work in gaining an understanding about how

people use Web archives. We answer these questions: How do people use Web archives?

Why do users come to Web archives? Where do Web archive users come from? Why do

sites link to the past? Does the destination affect the number of pages the users browse,

or does it affect the duration that the users spend on the archive?

Section 4.1 handles how people access the Wayback Machine to understand the user

access models of Web archives through analyzing user access logs of the IA’s Wayback

Machine [18]. We also studied the linking to Web archives and why people come to Web

archives (Section 4.2). In the next sections, we examine each of these aspects and explain

how they are shaping our understanding of the problem that we are studying [17, 16].

4.1 USER ACCESS PATTERNS IN WEB ARCHIVES

In our desire to provide better archive interfaces, we first begin by examining how

archives are used in the absence of interface tools. We also planned to look for any corre-

lation between archival usage and current events but we did not find promising results to

complete this study.

User navigation patterns provide useful information on how users satisfy their needs.

Understanding the current demand for access to Web archives can provide insight into how

to make the best use of limited archiving and access resources. We had multiple questions

regarding user access in Web archives, such as:

• How do users browse Web archives?

• Do they have extended browsing sessions, going from URI-R1 to URI-R2?

• Do they browse broadly from URI-M1 to URI-M2 for the same URI-R?

• Do they use a combination of the previous two patterns?

• Are robot accesses similar to human accesses?
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0.247.222.86 - - [02/Feb/2012:07:03:46 +0000] "GET

http://wayback.archive.org/web/*/http://www.cnn.com HTTP/1.1"

200 96433 "http://www.archive.org/web/web.php" "Mozilla/5.0

(Macintosh; Intel Mac OS X 10_6_8) AppleWebKit/535.7 (KHTML, like Gecko)

Chrome/16.0.912.77 Safari/535.7"

0.247.222.86 - - [02/Feb/2012:07:03:55 +0000] "GET

http://web.archive.org/web/20130318135600/http://www.cnn.com/ HTTP/1.1"

200 18875 "http://wayback.archive.org/web/*/http://www.cnn.com"

"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_8) AppleWebKit/535.7

(KHTML, like Gecko) Chrome/16.0.912.77 Safari/535.7"}

0.179.81.310_0 - - [02/Feb/2012:13:46:16 +0000] "GET

http://wayback.archive.org/web/20071015000000*/http://9gag.com HTTP/1.1"

200 118819 "http://fr.wikipedia.org/wiki/9gag" "Mozilla/5.0

(Windows NT 5.1; rv:9.0.1) Gecko/20100101 Firefox/9.0.1"

0.251.197.1210_0 - - [02/Feb/2012:18:40:57 +0000] "GET

http://web.archive.org/web/20071008113630/http://www.filg.uj.edu.pl/

ifa/przeklad/przeklad2/poezja2.html HTTP/1.1" 200 25335

"http://info-poland.buffalo.edu/web/arts_culture/literature/poetry/

szymborska/poems/link.shtml" "Mozilla/4.0 (compatible; MSIE 8.0;

Windows NT 5.1; Trident/4.0; .NET CLR 1.1.4322; .NET CLR 2.0.50727)"

0.83.5.950_0 - - [02/Feb/2012:03:18:56 +0000] "GET

http://web.archive.org/ HTTP/1.1" 302 0

"http://www.google.co.uk/search?gcx=c&sourceid=chrome&ie=UTF-8

&q=website+archiver" "Mozilla/5.0 (X11; Linux i686)

AppleWebKit/535.1 (KHTML, like Gecko) Chrome/14.0.835.186 Safari/535.1"

FIG. 46: Sample of the Wayback Machine access log (line breaks and new lines added for
readability).
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4.1.1 WAYBACK MACHINE ACCESS LOGS

A web server log file is a plain text file that records the activity of the submitted

requests from users of the web server. The Wayback Machine access logs contain the

following fields1: client IP address, access time, HTTP request method (GET or HEAD),

URI, the protocol (HTTP), HTTP status code (200, 404, etc.), bytes sent, referring URI,

and User-Agent. A segment of five requests from the Wayback Machine server log is shown

in Figure 46. The first example is a request for a TimeMap, while the second one is a

request for a memento. The last three examples are different cases for how the users linked

to the Wayback Machine. In the third example, the referrer is Wikipedia, which links to a

partial TimeMap (TimeMap for a year only). The fourth example shows an example of an

external referrer. The fifth request shows an example of a Google referrer.

4.1.2 METHODOLOGY

The Wayback access logs were sampled using two probability techniques [315, 171]:

cluster sampling, which is choosing a cluster of data randomly, and random sampling,

where each sampling unit has an equal chance of being included. We performed cluster

sampling by choosing a week (Feb. 2-8, 2012) and random sampling by taking a random

slice from each day of that week. Each sample comprised a slice of 2M requests to the

Wayback Machine Web server.

Then, we applied Web usage mining techniques [35, 194, 295, 66, 303, 232, 159] on

the logs to extract user access patterns for Web archives from the Wayback access logs.

We first applied data preprocessing techniques (data cleaning, user identification, session

identification) to determine the server sessions from the log file [79]. Then, we performed

feature extraction, robot detection [309, 91, 196, 117, 93], and user access pattern detection.

4.1.3 ABSTRACT MODELS FOR ACCESSING WEB ARCHIVES

Based on analyzing samples from the Web server logs of the Internet Archive’s Wayback

Machine (Figure 46), we provided answers for the previous questions [18]. Through our

analysis, we discovered four major patterns for Web archive access (Figure 47).

1Apache Combined Log File Format: https://httpd.apache.org/docs/1.3/logs.html#combined
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FIG. 47: User access patterns in Web archives (Dip, Dive, Slide, and Skim).
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Pattern 1: Dip

Dip is the pattern where a user accesses only one URI. The request can be for a URI-T or

a URI-M.

Dip = {URI-Xi| i = 1 and URI-X ∈ {URI-T, URI-M}} (1)

Pattern 2: Slide

Slide is the pattern in which a user accesses the same URI-R at different Memento-

Datetimes. In this pattern, the user requests a URI-R and walks through time browsing

its different copies.

Slide = {URI-Xi| i > 1, URI-X ∈ {URI-T, URI-M} and

URI-R(URI-Xi) = URI-R(URI-Xi−1)} (2)

Navigation between different URI-Ms can be done in many ways, e.g., directly from URI-

M1 to URI-M2 (URI-R@t1 ⇒ URI-R@t2) or from URI-M1 to URI-M2, but in the middle

the user returns to the TM URI-R to choose between the available datetimes (URI-R@t1 ⇒
URI-T ⇒ URI-R@t2).

Pattern 3: Dive

Dive is when a user accesses different URI-Rs at nearly the same datetime. In this pattern,

the user accesses one URI-R at a specific time, URI-R1@t0, then navigates to different

hyperlink(s) of URI-R1’s page (e.g., URI-R2@t0) and so on.

Dive = {URI-Xi| i > 1, URI-X ∈ {URI-T, URI-M} and

URI-R(URI-Mi) 6= URI-R(URI-Mi−1)} (3)

Pattern 4: Skim

Skim is when a user accesses a number of different TimeMaps for different URI-Rs. Skim

does not include any access for mementos.

Skim = {URI-Xi| i > 1 and URI-X ∈ {URI-T}} (4)
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FIG. 48: Robots and humans exhibit different access patterns.

4.1.4 ROBOT VS. HUMAN ACCESS PATTERNS

Because of the increasing numbers of Web crawlers that are engaged in Web harvesting,

many studies have been conducted for investigating the robot detection problem [309, 196].

We used different types of robot detection techniques [245, 312, 263, 64, 306, 93]. First,

we applied syntactical log analysis by checking the User-Agent field to identify the self-

identified robots. Second, we applied traffic pattern analysis techniques to distinguish

humans from robots based on their navigational behavior.

We found that robots outnumber humans 10:1 in terms of sessions, 5:4 in terms of raw

HTTP accesses, and 4:1 in terms of megabytes transferred. Robots almost always access

TimeMaps (95% of accesses), but humans predominately access the archived Web pages

themselves (82% of accesses). Robot accesses can be improved via APIs [26, 25, 36, 38],

and the low number of human accesses suggests that better discovery tools are needed.

4.1.5 QUANTIFICATION OF THE WEB ARCHIVE USER ACCESS PAT-

TERNS

We used the Web access logs we described in Section 4.1.2 to quantify the user access

patterns for Web archives. We extracted the requested URIs for each session then we

identified them based on their type, URI-M or URI-T. We also extracted the URI-R of

each requested URI to compare it with the other URI-Rs from the same session. Because
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of the existence of different forms of URIs which refer to the same Web site [228], we

applied URI canonicalization for the URI-Rs to normalize them under one host [85]. The

percentages of each of the four patterns exhibited in robot and human sessions are shown in

Figures 48(a) and 48(b) along with the percentages of requests to TimeMaps and mementos

for each pattern.

Dip

Dip represents the most repeated pattern for humans (33% of all sessions) and robots (49%

of all sessions). URI-Ms contribute to 83% of human sessions that exhibit the Dip pattern,

although 94% of the robot Dips are requests for URI-Ts.

Slide

There are only a few humans who access the Web archives broadly then navigate away

(4.2% of all sessions). Robot sessions do not have this pattern with a noticeable percentage

(0.1% of all sessions).

Dive

Dive represents the second highest percentage of human sessions, 29.7%. The robot sessions

which were composed of this pattern crawl the Web sites deeply, but they are not a signif-

icant number of sessions. Ainsworth et al. looked at the temporal coherence of mementos

and the temporal drift (i.e., the difference between the target datetime originally required

and the Memento-Datetime returned by an archive) in the browsing Web the archives [14].

They found that embedded resources have Memento-Datetimes that are different from the

datetimes of the embedding HTML mementos. We suggest that using actual user walks

within the Web archives (Dives) will guide the study of temporal drift in Web archives

through analyzing actual user experience.

Skim

Robot sessions exhibit this pattern 48.7% of the time.

Slide and Dive

A large number of human sessions consist of at least two occurrences of the Dive and Slide

patterns. In these sessions, the users request URI-R1 and browse its different copies at

different times (URI-R1@t1 ⇒ URI-R1@t2 ⇒ URI-R1@t3), then dive through a hyperlink

(URI-R2@t3) from URI-R1@t3, then repeat Dive or Slide. In contrast, users may start
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TABLE 2: The length of all Slides, Dives, and Skims
User Pattern Median Mean SD

Slide 3 3 1.4
Robots Dive 3 15 53.2

Skim 3 21 267.0

Slide 3 4 3.4
Humans Dive 4 8 14.3

Skim 3 6 7.2

by going deeply through different mementos for different URI-Rs (Dive pattern), then

go broadly through one of these mementos to browse other captures at different times

(Slide pattern) (e.g., URI-R1@t1 ⇒ URI-R2@t1 ⇒ URI-R3@t1 ⇒ URI-R3@t2, etc.). The

percentage of human sessions that were composed of a combination of these two patterns

is 17.2%. We calculated the number of Slides and Dives for these sessions and found 1167

Slides and 1942 Dives. For robot sessions that were composed of Slide and Dive, we found

328 Slides and 571 Dives.

Pattern Length

Each pattern is made up of a number of requests, which we call the pattern length. We

calculated the pattern length for all sessions. The median, mean, and standard deviation

of the lengths of each pattern for robots and humans are summarized in Table 2. Humans

do longer Dives than Slides and Skims, while robots do longer Skims than Dives and Slides.

4.1.6 TEMPORAL ANALYSIS

Figure 49 shows both the unique and total number of mementos referenced grouped by

the year of their Memento-Datetime. Although there is no clear temporal preference for

any one year of the unique mementos, there were a significant number of repeated requests

for mementos from 2011. This locality of reference suggests that there is an important

benefit to be gained by caching the mementos from the recent past. Figure 50 shows that

the total number of mementos available for 2011 was similar to previous years. In both

Figures 49 and 50, pre-2001 data is included although in those years the archives are too

sparse for meaningful comparison with later years.
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FIG. 51: The dataset of 6M HTTP requests is constructed from slices of 2M each from
03:00, 13:00, and 18:00 UTC on February 2, 2012. The peak hours in NY, LA, Tokyo,
Moscow, and Berlin are indicated by arcs.

4.2 LINKING TO WEB ARCHIVES

After discovering the user access patterns in Web archives for robots and humans, we

wanted to study new research questions related to linking to Web archives [16, 17]:

• What content languages are Web archive users looking for?

• Why do users come to Web archives?

• Where do Web archive users come from?

• Who links to Web archives?

• How do sites link to Web archives?

• Why do sites link to the past?

• Does the referrer affect the length of the sessions?
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4.2.1 METHODOLOGY

Because we checked the language of the content of requested pages, we picked samples

from the Wayback Machine access logs that are representative for the peak times of major

cities around the world, as shown in Figure 51. These samples covered the peak times of

Internet traffic for many countries with speakers of different languages to avoid biasing the

results. According to previous studies, the hours between 6 p.m. to 12 a.m. (i.e., midnight)

are considered to be peak times for Internet traffic [265, 107, 332]. Home internet use has

been well-studied, at least in the United States, and reveals that people engage in a wide

range of activities, including commerce, entertainment, job and career enrichment, classes,

and news [135, 297]. Note that even though we focused on choosing samples that cover

the peak times in multiple cities, each sample also covers work hours for other cities of the

world. For example, the 13:00 UTC sample that covers the peak time of Moscow, Berlin,

etc., will also cover the work hours for New York City (8am Eastern Time). Note that the IA

anonymized the client IP addresses, so it is not possible to geolocate the incoming requests.

Furthermore, in the interest of further protecting the anonymity of their users, the Internet

Archive recently announced they are encrypting all traffic to their site [50, 163, 307].

4.2.2 LANGUAGES USED IN THE WAYBACK MACHINE

Upon analyzing the user access logs, we identified 52 different languages from the suc-

cessful requests [17]. We found that English is the most used language on the Wayback

Machine, followed by many European languages. We noticed that despite the existence

of Web archives in Europe, the requests to the IA from speakers of European languages

represent 13% of the top 10 list for human requested pages and 18.5% of the top 10 list

for the robot requests. We assume that this is because of the popularity of the Internet

Archive, so most of the people who know about Web archiving may only know about the

IA.

4.2.3 TEMPORAL DISTRIBUTION OF THE REFERRED URI-MS

Figure 52(a) shows the total number of mementos which were pointed to by the referrers,

grouped by the year of their Memento-Datetime. There is a significant bias toward 2008,

then 2007, and then a bias against the more distant past. We found 14 URI-Ms all from

a single Web site that link to a datetime in 2099. We assume that the referrer wants to

redirect the site’s visitors to the most recent copy of the linked Web page.
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FIG. 52: (a) The temporal distribution of URI-Ms pointed to by the referrers and the
number of relative URI-Rs of these URI-Ms that are currently available on the live Web.
(b) The percentage of unavailable URI-Rs of these URI-Ms on the live Web.

4.2.4 WHY DO WEB SITES LINK TO THE WAYBACK MACHINE?

Because the Web is ephemeral and the expected lifetime of a Web page is short, Web

archives are important to webmasters and third parties for preserving and saving many

Web sites. Figure 52(b) clarifies that most people link to the Wayback Machine because

they did not find the pages on the live Web. The figure shows that for most of the years,

more than 70% of the referred pages in the archive no longer exist on the live Web. About

83% of all referred-to URI-Rs do not currently exist on the live Web.

4.2.5 DOES THE REFERRER AFFECT THE SESSION LENGTH AND DU-

RATION?

When we started to analyze the Wayback machine access logs we expected to see long

browsing sessions that may have a story. However, we found that of all the sessions, 50%

were composed of one request only (Dips). We investigated if the type of the referrer could

be a reason for these Dips.

In this section, we give an analysis of the sessions after dividing them based on their

destination (i.e., the referrer field) into four categories: sessions from external Web sites,

sessions from search engines, sessions from the archive homepage, sessions with no referrer

(e.g., sessions that came from direct address such as a link in an email, etc.). For sessions

with no referrer, which we call “direct address”, there is not much information about how

they link to the archive (e.g., link in an email or bookmarking) from the logs.
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TABLE 3: The median and the mean of session length and session duration of the sessions
that were divided based on the referrer.

Session Length Session Duration
in seconds

Empirically Enhanced
Session Duration in
seconds

Referrer Median Mean Median Mean Median Mean
External Sites 1 2.9 74 171.2 71 99.3
Search Engines 6 11.4 92 190.3 79 176.8
Archive Home-
Page

6 11.3 95 199.9 73 177.6

Direct Address 2 7.2 136 326.2 61 215.8

Session Length

We found that 77% of the Dips sessions came from external Web sites. Table 3 shows

a summary of median and mean values for the session lengths and durations of the four

categories of sessions. Note that session duration in the middle do not include the one

request sessions, and the last two columns represent the session duration with estimating

the one request session using the mean value of the inter-request time of the two-requests

sessions. The mean of each group of sessions are: 71 seconds for the sessions from external

Web site, 16 seconds for the sessions from search engines, 10 seconds for the sessions from

the archive homepage, and 77 seconds for the sessions from direct address.

The left two columns of Table 3 show that the median and mean values of session length

for the sessions that came from search engines and the archive homepage are much larger

than the median and mean values that came from the external Web sites. That means

the people who know about the archive browse more pages than the users who come from

external Web sites. The sessions that come from direct address also have longer session

lengths than the sessions from the external Web sites.

It is rare to have a long session length when referred by an external Web site. However,

the three-request sessions represent the highest percentage, with 12% of the sessions that

came by the search engines. The Dips represent only 7% of all the sessions that came

through the search engines. Of the sessions that started on the archive homepage, 11% are

Dips.

Session Duration

Table 3 shows a summary of the effect of the destination on the session duration. The

two columns in the middle contain the medians and the means for each group of sessions,

excluding the sessions that were composed of one request only. We notice that the sessions
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that came from direct address had longer durations than the rest of the groups, furthermore,

the smallest median and mean are for the sessions that came from the external referrers.

Since the one-request sessions represented a large portion of the sessions that came from

external Web sites (64%), we did not want to totally disregard them. Thus, we estimated a

value for the duration of the session that were composed of one-request based on the inter-

request time between the two requests of the two-request sessions. We calculated the mean

of the two-request sessions of each group and assigned this value to the one request sessions,

then recalculated the median and the mean of the sessions, which we named “Empirically

Enhanced Session Duration”. The mean of inter-request time of the two-request sessions

of the four groups of sessions are: 71 seconds for the sessions from external Web sites, 16

seconds for the sessions from the search engine, 10 seconds for the sessions from the archive

homepage, and 77 seconds for the sessions from direct address. The results are shown in

the rightmost columns of Table 3. There is a significant difference between the values of the

mean before and after adding the estimated duration of the one-request sessions, especially

for the sessions from the external Web sites.

4.3 SUMMARY

One of the concerns in the Web archiving world is how to generate more interest in

and use of Web archives. We studied how and why people browse Web archives to gain

insight about the user access patterns in Web archives based on samples from the Internet

Archive’s public Wayback Machine. In our studies, we noticed that Web archives are not

well-known by the general Web population, and those who do know about Web archives

consider them difficult to use. We found that although the Internet Archive’s Wayback

Machine receives more than 82 million requests per day, based on our dataset, robots

outnumber humans 10:1 [18]. Furthermore, the humans that visit the Internet Archive’s

Wayback Machine typically visit a single page and then leave; depending on the source

this can be as often as 64% of the time (in Web analytics terminology, this is known as

an undesirably high “bounce rate”) [16, 17]. These results indicate the need for tools that

support increased archive exploration by humans.

We identified four major Web archive access patterns: Dip (a single access), Slide (the

same page at different archive times), Dive (different pages at approximately the same

archive time), and Skim (lists of what pages are archived, i.e., TimeMaps) [18]. Robots are

limited almost exclusively to Dips and Skims, but human accesses are more varied between

all four types. We also uncovered the temporal preference of unique archived Web pages

and found that no overall preference for a particular time, but the recent past (within the

last year) shows significant repeat accesses.
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We also found that most human users come to Web archives because they do not find

the requested pages on the live Web [16]. About 65% of the requested archived pages no

longer exist on the live Web. We find that more than 82% of human sessions connect to

the Wayback Machine via referrals from other Web sites, while only 15% of robots have

referrers. Most of the links (86%) from Web sites are to individual archived pages at specific

points in time, and of those, 83% no longer exist on the live Web. Finally, we find that

users who come from search engines browse more pages than users who come from external

Web sites.

To help users in understanding the holdings of the archived collections, we provide a

new framework that generate summaries of those collections (semi-)automatically in the

next chapters. We also provide tools to assist the curators for detecting the off-topic pages

in Web archives and increase the quality of these collections for utilizing their content for

knowledge-discovery.
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CHAPTER 5

THE DSA FRAMEWORK: GENERATING STORIES FROM

ARCHIVED COLLECTIONS

This chapter describes the abstract model for generating stories from archived collections,

along with the terminology and definitions that represent the basics of the Dark and Stormy

Archives1 (DSA) framework. Storytelling has become a popular technique in social media

for selecting resources (e.g., tweets, videos, Web pages) and arranging them to create a

narrative or a story of a particular topic of interest. Every story is made up of a sequence

of events. In the DSA framework, events are exemplified by corresponding Web pages

from Archive-It collections, automatically discovered, arranged in a narrative structure

ordered by time, and replayed through an appropriate visualization interface. The DSA

framework also provides tools for computing the “aboutness” of the pages in the collection,

and then detecting the off-topic archived pages. Our plan of work is motivated by a likely

usage scenario of trying to discover and browse the mementos that represent a story, such

as those mementos in Figures 12 - 20 of Chapter 1, and then pushing them to existing

tools, such as Storify (Figures 53 and 54). A usage scenario for generating a story from

an archived collection is presented in Section 5.1. Section 5.2 contains the definitions

and terminology of the DSA framework that will be adopted in the rest of dissertation.

Section 5.3 describes different possible types of stories that can be extracted from archived

collections. The methodology to achieve the usage scenario will be summarized in Section

5.4, then detailed in the following chapters.

5.1 USAGE SCENARIO

Our research goal can be summarized with the following scenario. Lori wants to have

the story of the Egyptian Revolution to show to her children when they grow, as narrated

by Figures 12, 14, and 16 of Chapter 1. She knows that many of the Web pages that make

up the story will not survive long enough to show her children, so she uses Web archives.

She knows about Archive-It collections, but it is not easy to browse the collection to create

an overview from the seed URIs in the collection. Through a Web-based interface that

is integrated with Archive-It, as an output of the DSA framework, she will easily create

stories automatically. Those stories will provide different perspectives about the collection

1Inspired by “It was a dark and stormy night”, a well-known storytelling trope: https://en.wikipedia.
org/wiki/It_was_a_dark_and_stormy_night/
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with the flexibility to specify different parameters, such as the source type, the periods of

the story, etc.

The first step will be building a baseline for the characteristics of human-generated

stories and for what we can sample from the archived collections. The next step is com-

puting the “aboutness” of the pages to exclude the non-relevant pages and eliminate the

duplicates. The last step will be dynamically finding the set of relevant Web pages that

best represent the collection based on the kind of story Lori wants to create. In this step,

the datetimes of the Web pages should be determined. Suppose the software finds more

than one related page for each event of the story, then the software would choose the best

candidates for each event of the story and then visualize these candidates using Storify,

with which Lori is already familiar (Figures 53 and 54). The software will also provide

other visualizations for the story. Lori has the ability to generate different stories, and she

is also able to specify the boundary times of the story. After creating the story, Lori can

save and share the story with her friends.

5.2 CONVENTIONS AND DEFINITIONS OF THE DSA FRAMEWORK

In this section, we give the notions and the conventions we will use for defining the

DSA framework. It is possible for a collection to be summarized with more than one kind

of story (depending on the nature of the collection as well as curator or user preferences).

Before specifying the possible types of stories (Section 5.3), we first define the archived

collections.

An Archive-It collection (C) is a set of seed URIs collected by the users from the Web

(W ), where C ⊂W . Each seed URI has mementos.

A collection C can be formally defined as following:

C = {URI-T1, URI-T2, ..., URI-Tn} where

URI-T = {URI-M1, URI-M2, ..., URI-Mx}

and URI-Mi is URI-R@ti (5)

In the DSA framework, we apply IR and machine learning techniques to identify and

select different sets of k mementos that compose stories, in which each story (S) provides

an overview about the collection (Figure 55). So, we extract stories from a collection,

C → S, where C ⊂ S.
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(a) Different URIs, same time

(b) Different URIs, different times

FIG. 53: Different kinds of stories created manually by selecting URIs from “Egypt Revo-
lution and Politics” collection
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(a) Different URIs, same time

(b) Different URIs, different times

FIG. 54: Different kinds of stories created manually by selecting URIs from “2013 Boston
Marathon Bombing” collection
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FIG. 55: Collections in Archive-It can be thought of as thematic samples from the live
Web. In the DSA framework, we sample k mementos from the pages of the collection to
create a summary story.

FIG. 56: The archived collection has two dimensions: URI and time
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(a) Fixed-Fixed: Same URI, Same time

(b) Sliding-Sliding: Different URIs, different times

(c) Fixed-Sliding: Same URI-R, different times

(d) Sliding-Fixed: Different URIs, same time.

FIG. 57: There are different models for the story that can be created from the collection.
The color maps to the unique URI-R.
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(a) The cnn.com memento when crawled with a
desktop Mozilla user-agent accessed from a Mac.

(b) The cnn.com memento when crawled with an
iPhone mozilla user-agent accessed from a Mac.

FIG. 58: Mementos differ based on the parameters influencing the representations at
crawl/capture time and the devices used to access the mementos [168].

5.3 TYPES OF STORIES GENERATED FROM ARCHIVED

COLLECTIONS

An archived collection has two dimensions. As we mentioned before, the collection is

composed of a set of seed URIs and each seed has many copies through time (Figure 56).

There may be multiple stories that convey different perspectives of the collection, such as

the examples of Figures 12 - 20 of Chapter 1. We list four possible kinds of stories in Table

4. We name each story according to the change that happens to the URI and time. It

is also possible that there are additional types of stories beyond those in Table 4, and we

plan to investigate this in future work.

TABLE 4: Four basic story types (others may be possible).
Time:

fixed sliding

URIs:
fixed differences in GeoIP, evolution of a single page

mobile, etc. (or domain) through time
sliding different perspectives broadest possible coverage

at a point in time of a collection

We present the definition for each story below, along with a model in Figure 57. The

different colors in Figure 57 map to different URI-Rs. We use Memento terminology (URI-

T, URI-M, and URI-R) in the definitions.
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5.3.1 FIXED PAGE, FIXED TIME

Fixed Page, Fixed Time (FPFT) is defined as a different representation for the same

Web site because of GeoIP, mobile, and other environmental factors (e.g., Figure 58) [168].

It is generated using the same URI at a specific point of time with differences in the

representation. The model for this story is shown in Figure 57(a).

Fixed Page, Fixed Time = (URI-Mi, URI-Mi, ..., URI-Mi), where

URI-Mi = URI-R@ti (6)

5.3.2 SLIDING PAGE, SLIDING TIME

Sliding Page, Sliding Time (SPST) is defined as the broadest possible coverage of a

collection. It is generated using different URIs at different times.

Sliding Page, Sliding Time = (URI-M1, URI-M2, ..., URI-Mk), where

URI-Mi = URI-R@ti and ti 6= tj (7)

5.3.3 FIXED PAGE, SLIDING TIME

Fixed Page, Sliding Time (FPST) is defined as the evolution of a single page (or domain)

through time Figure (57(d)). The possible scenario of this story is when a user wants to

see how the story evolved over time from a specific Web site, e.g., cnn.com.

Fixed Page, Sliding Time = (URI-M1, URI-M2, ..., URI-Mk), where

URI-R(URI-Mi) = URI-R(URI-Mj) and

URI-Mi = URI-R@ti (8)

5.3.4 SLIDING PAGE, FIXED TIME

Sliding Page, Fixed Time (SPFT) is defined as different perspectives at a point in time.

It is generated using different URI-Rs at nearly the same datetime.
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Sliding Page, Fixed Time = (URI-M1, URI-M2, ..., URI-Mk), where

URI-R(URI-Mi) 6= URI-R(URI-Mj) and

URI-Mi = URI-R@ti (9)

Note that the Fixed-Fixed story can not be supported by the current capabilities of Web

archives [168]. While Heritrix provides archivists the ability to modify the user-agent string

to crawl different representations, such as mobile Web, archives currently do not provide

users the ability to navigate representations by their environmental influences. Kelly et

al. [168] proposed a method for identifying personalized representations in Web archives

through a modified Wayback Machine to add environmental dimensions to browsing the

past Web.

5.4 THE DARK AND STORMY ARCHIVES (DSA) FRAMEWORK

In this section, we describe the general methodology for addressing the research ques-

tions and constructing k archived pages that represent an extracted story from an Archive-It

collection, arranging them in a narrative structure ordered by time (or any other type of

story), then pulling them into existing storytelling tools or other visualizations, such as the

examples in Figures 53 and 54.

The DSA framework can be divided into three main components (Figure 59):

1. Establish a baseline for the structure of human-generated stories (focusing on the

popular ones with the most views) and the makeup of archived collections.

• Determine the characteristics of the user-curated stories based on a user study

of stories from Storify (Chapter 6).

• Determine the characteristics of Archive-It collections by measuring the statistics

of the collections such as the number of URIs, the number of mementos, the most

used domains, etc. (Chapter 7).

• Compare the created descriptive models of the created stories on social media

and the collections in Archive-It (Chapter 7).

2. Reduce the candidate pool of archived pages.

• Exclude the off-topic pages from the collection (Chapter 8).

– Model TimeMap behavior in Web archives based on how the page’s about-

ness changes through time.
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FIG. 59: The main components of the Dark and Stormy Archives (DSA) framework.

– Investigate different methods for determining when the page goes off-topic

in individual TimeMaps.

– Based on the best performing method, eliminate the off-topic pages.

• Exclude the (near-)duplicate mementos of each TimeMap (Chapter 9).

• Exclude the non-English language mementos (Chapter 9).

3. Select good representative pages for each story (Chapter 9).

• Slice the collection dynamically.

• Cluster the pages in each time slice.

• Evaluate and select the best representative page from each cluster based on

multiple quality metrics.

• Identify the different notions of time for each page.
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• Put the selected pages in chronological order.

• Extract the metadata of the selected pages.

• Visualize the pages by leveraging storytelling tools, such as Storify.

5.5 SUMMARY

The output of our work is a framework that automatically creates stories out of Archive-

It collections. Our goal is to provide users with a tool that allows them to get many

perspectives about the collection and also how the story of the collection has evolved over

time. We leverage narrative visualizations and storytelling tools, such as Storify, to visualize

the created stories and demonstrate how they have evolved over time. Furthermore, we

provide collection curators with tools that allow the detection of the off-topic Web pages

in the collection, as specified in Chapter 8.

In this chapter, we provided a conceptual model for the framework of automatically

generating stories out of archived collections along with the definitions of the types of

stories that can be generated. The following chapters handle each step of the framework

starting from establishing a baseline (Chapters 6 and 7) until applying the characteristics

of human-generated stories on the stories and selecting the best representative pages to

leverage them with Storify (Chapter 9). We will evaluate the automatically generated

stories in Chapter 9.
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CHAPTER 6

CHARACTERISTICS OF SOCIAL MEDIA STORIES

Since the stories in Storify are created by humans, we model the structural characteristics

of these stories, with particular emphasis on “popular” stories (i.e., the top 25% of views,

normalized by time available on the Web) [19, 21]. In this chapter, we answer the following

questions:

• What is the length of the human-generated stories?

• What are the types of resources used in these stories?

• What are the most frequently used domains in the stories?

• What is the editing time of the stories?

• Is there a relationship between the timespan and the features of the story?

• Is there a relationship between the popularity of the stories and the number of ele-

ments?

• What differentiates the popular stories?

• How many of the resources in these stories disappear every year?

• Can we find these missing resources in the archives?

To answer these questions, we investigated 14,568 stories from Storify, comprising 1,251,160

individual resources.

6.1 CONSTRUCTING THE DATASET

As we mentioned earlier, Storify provides a graphical interface for selecting URIs of

Web resources and arranging the resulting snippets and previews (see Figure 60), with

a special emphasis on social media (e.g., Twitter, Facebook, YouTube, Instagram). We

name these previews of Web resources “Web elements”, and the annotations Storify allows

on these previews we name “text elements”. To investigate the characteristics of human

created stories, we created the dataset by querying the Storify Search API1 with the most

1http://dev.storify.com/api/
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FIG. 60: An example of creating a story on Storify shows the Storify-defined categories for
resources of the stories.

frequent 1000 English keywords issued to Yahoo2. This set of available search keywords

allowed us to gather sets of stories about many different topics. This was especially useful

since we do not know the ranking algorithm used by Storify search.

We retrieved 400 results for each keyword, resulting in a total of 145,682 stories down-

loaded in the JavaScript Object Notation (JSON) format [48]. We created the dataset in

February 2015 and only considered stories authored in 2014 or earlier, resulting in 37,486

stories. We eliminated stories with zero or one elements or zero views, resulting in 14,568

unique stories authored by 10,199 unique users and containing a total of 1,251,160 Web

and text elements.

6.2 GENERAL CHARACTERISTICS OF HUMAN-GENERATED

STORIES

Figure 61 contains the distribution of the number of views of the stories, the number

of Web elements, the number of text elements, and the number of subscribers. We notice

2http://webscope.sandbox.yahoo.com/catalog.php?datatype=l



108

0.00

0.25

0.50

0.75

1.00

100 100000 100000000
Number of Characteristics per Story

C
um

ul
at

iv
e 

Pr
ob

ab
ilit

y

Views
Web Elements
Subscribers
Text Elements

FIG. 61: Distribution of the characteristics of the 14,568 Storify stories analyzed.

that around 48% of the stories do not have any text elements. This indicates that only

about half of the stories are annotated with descriptive text.

For a closer look at the features of the stories, we present the distribution percentiles

along with means of story views, Web and text elements, and number of subscribers for the

story authors in Table 5. We show the distribution percentiles along with means because

the distribution of the data is long-tailed. The editing time is the time interval (in hours)

in which users edit their stories and is calculated by taking the difference between the story

creation-date and last-modified date. The median for all stories is 23 Web elements and 1

text element, and 44% of the stories have no text elements at all. Due to the large range

of values, we believe median is a better indicator of typical values.

6.2.1 WHAT KIND OF RESOURCES ARE IN STORIES?

Using the Storify-defined categories reflected in the Storify user interface (Figure 60),

the 1,251,160 elements consist of 70.8% links, 18.4% images, 8.1% text, 2.0% videos, and

0.7% quotes. Text elements are relatively rare, meaning that few users choose to annotate

the Web elements in their story.
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TABLE 5: Distribution of features of the stories in the dataset. Editing time is measured
in hours.
Features Views Web

elements
Text
elements

Subscribers Editing Time

25th percentile 14 10 0 0 0.18

50th percentile 51 23 1 4 3

75th percentile 268 69 9 21 120

90th percentile 1949 210 19 85 1,747

Maximum 11,284,896 2,216 559 1,726,143 36,111

Mean 3,790 80 8 286 855

Std. Dev. 99,226 158 18 20,220 2,982

6.2.2 WHAT DOMAINS ARE USED IN STORIES?

The Web elements in Storify stories represent 91.95% (1,150,399 out of 1,251,160) of

all the resources. To analyze the distribution of domains in stories, we canonicalized the

domains (e.g., www.cnn.com → cnn.com) and dereferenced all shortened URIs (e.g., t.co,

bit.ly) to the URIs of the final locations. This resulted in 25,947 unique domains in the

14,568 unique stories.

Figure 62 shows the relationship between the frequency of the domains and the number

of stories they appeared in. For example, the rightmost dot at the top of the graph

represents the most frequent domain in the stories (twitter.com), which also appeared in

the largest number of stories. This domain appears almost 1,000,000 times in over 10,000

different stories. We conclude from the graph that the most frequent domains are often

used in the majority of stories.

Table 6 contains the top 25 domains of the resources ordered by their frequency. The

list of top 25 domains represents 92.3% of all resources. The table also contains the global

rank of the domains according to Alexa3 as of March 2015. We see from the table that Web

elements from twitter.com appeared 943,859 times in 10,914 stories, comprising over 82%

of all Web elements. Note that plus.google.com has rank one because Alexa does not

differentiate plus.google.com from google.com. We manually categorized these domains

in a more fine-grained manner than Storify provides with its “links, images, text, videos,

quotes” descriptions.

3http://www.alexa.com/
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FIG. 62: The relationship between the frequency of the domains in Storify stories and the
number of stories in which those domains appear.

Although the top 25 list of domains appearing in the stories is dominated by globally

popular Web sites (e.g., Twitter, Instagram, YouTube, Facebook), the long-tailed distri-

bution results in the presence of many globally lesser known sites. In Section 6.2.3, we

investigate the correlation between Alexa global rank and rank within Storify.

We also presented the list of top domains based on the count of stories in which they

were used (Table 7). We notice that the two lists are similar. We also can see from Table 7

that storify.com appeared in the highly ranked domains across the stories, which means

many stories refer to other stories in Storify.

The Embedded Resources of twitter.com

Since Twitter is the most popular domain (> 82% of Web elements), we investigate if

the tweets have embedded resources of their own. For example, Figure 63 shows a tweet

in a Storify story that contains an image from Twitter. Furthermore, other tweets may
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TABLE 6: The top 25 domains based on the frequency of appearance in Storify stories.
Alexa global rank was retrieved in 2015-03.

Domain Frequency Percentage
of Domains

Story
Count

Alexa
Global

Rank

Category

twitter.com 943,859 82.05% 10,914 8 Social media
instagram.com 45,188 3.93% 1,841 25 Photos
youtube.com 22,076 1.92% 4,238 3 Videos
facebook.com 13,930 1.21% 1,802 2 Social media
flickr.com 7,317 0.64% 1,079 126 Photos
patch.com 5,783 0.50% 231 2,096 News
plus.google.com 3,413 0.30% 537 1 Social media
tumblr.com 3,066 0.27% 590 31 Blogs
blogspot.com 1,857 0.16% 713 18 Blogs
imgur.com 1,756 0.15% 215 36 Photos
coolpile.com 1,706 0.15% 8 149,281 Entertainment
wordpress.com 1,615 0.14% 859 33 Blogs
giphy.com 1,055 0.09% 365 1,604 Photos
bbc.com 966 0.08% 288 156 News
lastampa.it 927 0.08% 45 2,440 News
pinterest.com 892 0.08% 170 32 Photos
softandapps.info 861 0.07% 2 160,980 News
photobucket.com 768 0.07% 348 341 Photos
nytimes.com 744 0.06% 383 97 News
soundcloud.com 736 0.06% 201 167 Audio
wikipedia.org 736 0.06% 376 7 Encyclopedia
repubblica.it 682 0.06% 49 439 News
theguardian.com 588 0.05% 282 157 News
huffingtonpost.com 572 0.05% 329 93 News
punto-informatico.it 570 0.05% 29 42,955 News
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TABLE 7: The top 25 domains based on the number of stories they appear in (Story
Count). The percentage of stories is out of 14,568. Alexa global rank was retrieved in
2015-03.

Domain Story
Count

Percentage
of Stories

Frequency Alexa
Global

Rank

Category

twitter.com 10,914 74.92% 943,859 8 Social media
youtube.com 4,238 29.09% 22,076 3 Videos
instagram.com 1,841 12.64% 45,188 25 Photos
facebook.com 1,802 12.37% 13,930 2 Social media
flickr.com 1,079 7.41% 7,317 126 Photos
wordpress.com 859 5.90% 1,615 33 Blogs
blogspot.com 713 4.89% 1,857 18 Blogs
tumblr.com 590 4.05% 3,066 31 Blogs
plus.google.com 537 3.69% 3,413 1 Social media
nytimes.com 383 2.63% 744 97 News
wikipedia.org 376 2.58% 736 7 Encyclopedia
giphy.com 365 2.51% 1,055 1,604 Photos
photobucket.com 348 2.39% 768 341 Photos
upload.wikimedia.org 345 2.37% 564 200 Encyclopedia
huffingtonpost.com 329 2.26% 572 93 News
cnn.com 303 2.08% 480 76 News
bbc.com 288 1.98% 966 156 News
theguardian.com 282 1.94% 588 157 News
google.com 236 1.62% 547 1 Search
patch.com 231 1.59% 5,783 2,096 News
washingtonpost.com 225 1.54% 432 218 News
imgur.com 215 1.48% 1,756 36 Photos
foxnews.com 210 1.44% 271 215 News
storify.com 209 1.43% 509 3,237 Social network
forbes.com 207 1.42% 304 164 News

TABLE 8: The 10 most frequent domains in the embedded resources of the tweets.
Domain Percentage Category

twimg.com 46.17% Images

instagram.com 4.28% Images

youtube.com 2.82% Videos

linkis.com 2.04% Media sharing

facebook.com 1.40% Social Media

wordpress.com 0.61% Blogs

vine.co 0.53% Videos

blogspot.com 0.52% Blogs

storify.com 0.49% Social Network

bbc.com 0.44% News
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FIG. 63: A tweet in Storify has an image as an embedded resource. Note that the text of
the tweet includes the URI of the image.

contain links or videos. This captures the behavior of users including tweets in the stories

because the tweets are surrogates for embedded content. We randomly sampled 5% of the

Twitter resources (47,512 URIs). Of the sampled tweets in the stories, 32% (15,217) have

embedded resources, of which there are 14,616 unique URIs. Of the 15,217, 46% are photos

from twitter.com (hosted at twimg.com). Table 8 contains the 10 most frequent domains

for the embedded resources, which represent 61.6% of all the URIs embedded in tweets.

Again, we see that some Storify stories (0.49%) point to other stories in Storify.

6.2.3 CLASSIFICATION OF THE RESOURCES BASED ON THE TLD

Table 9 presents the distribution of Top Level Domains (TLDs) for the URIs that were

used in Storify stories (only the top 10 are shown). The table shows that the most used TLD

is .com by far. Note that .cat is the TLD for a Catalan site (http://www.aragirona.cat/).

The top 10 list represents 98.92% of all resources in Storify stories.

We calculate the Kendall’s Tau correlation (τsf ) between the top n domains in Storify

stories based on their frequency (for example, the list of the top 25 domains in Table 6) and

their Alexa global rank. We also checked the Kendall’s Tau correlation (τsc) between the

top n domains used in the most number of stories (for example, the list of top 25 domains

in Table 7) and their Alexa global rank.
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TABLE 9: The top 10 TLDs of the resources.
TLD Percentage

.com 96.48%

.org 0.64%

.it 0.52%

.uk 0.34%

.net 0.32%

.de 0.21%

.es 0.11%

.info 0.11%

.fr 0.10%

.cat 0.09%

TABLE 10: The Kendall’s Tau correlation between the n most frequent domains in the
stories and their Alexa global Rank (τsf ) and between the top n domains that have the
most number of stories and Alexa global rank (τsc).

n 10 15 25 50 100

τsf 0.1555 0.4476 0.3372 0.3194 0.2485

τsc 0.1556 0.3524 0.4107 0.4260 0.4639

The results are shown in Table 10. Statistically significant (p ≤ 0.05) correlations are

bolded. The highest correlation we found between Alexa global rank and top domains

based on frequency was 0.45 for the top 15 domains. The highest correlation between

Alexa global rank and top domains based on number of stories was 0.46 for the top 100

domains. From the results, we notice that most of the time the highly ranked real-world

resources, such as twitter.com, are correspondingly the most used in human-generated

stories.

This is interestingly in contrast with Zhong et al. [347], which found that the most

frequent sites on Pinterest had low Alexa global ranks. This is possibly due to the different

nature of the usage of both sites. In Pinterest, users pin photos or videos of interest to

create theme-based image/video collections such as hobbies, fashion, and events. The most

used subject areas by Pinterest users are food and drinks, décor and design, and apparel

and accessories [118]. Most of the pins on Pinterest come from blogs or are uploaded

by users. In Storify, people tend to use social media and Web resources to create their

narratives about events or news.
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TABLE 11: The percentage of the stories based on the editing interval along with the
median of Web elements, text elements, and views. The percentage is out of 15,568 stories.

Intervals Percentage Median
Web

elements

Median
text

elements

Median views

0-60 seconds 14.0% 15 0 23

1-60 minutes 26.7% 19 0 53

1-24 hours 23.4% 25 5 110

1-7 days 13.5% 26 7 78

1-4 weeks 8.4% 26 9 80

1-12 months 10.9% 38 2 129

1-4 years 3.1% 56 15 156

6.2.4 WHAT IS THE MEAN EDITING TIME FOR STORIES?

Table 11 shows the percentage of the stories with editing times in various time intervals.

The table also shows the corresponding features of the stories, divided by their editing time.

We normalized the number of views by the age of the story (dataset collection date − story

creation date). The first two intervals (< 1 hour) represent stories that were created,

modified, and then published with no continuing edits.

We see that the majority of the stories in the dataset were created and edited in the

span of one day. There are 14% of stories that have been updated over a long period

of time, with the longest editing time in our dataset covering more than four years and

with more than 13,000 views. Curiously, this story had only 33 Web elements and 51 total

elements. Although the story with the longest editing time did not have the largest number

of elements, from Table 11 we can see that based on the median number of elements in

each interval there is a nearly linear relationship between the editing time length of the

story and the number of elements.

6.2.5 DECAY OF WEB ELEMENTS

In this section, we investigate how many resources in the stories are missing from the

live Web and how many are available in public Web archives. We used Memento to check

the existence in the archives. We checked the live Web and public Web archives for 265,181

URIs (202,452 URIs from the Web elements of stories + 47,512 randomly sampled tweet

URIs + 15,217 URIs of embedded resources in those tweets), in which there are 253,978

unique URIs. Here we further examine the results for the most frequent five domains in the

stories: twitter.com, instagram.com, youtube.com, facebook.com, and flickr.com.
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TABLE 12: The existence of the resources on the live Web (on the left) and in the archives
(on the right). Available represents the requests which ultimately return HTTP 200, while
missing represents the requests that return HTTP 4xx, HTTP 5xx, HTTP 3xx to others
except 200, timeouts, and soft 404s. Total is the total unique URIs from each domain.

Existence on live Web Found in archives

Resources Available Missing Total Of the available Of the missing Total

Twitter 95.5% 4.5% 47,385 0.9% 3.4% 477

Instagram 86.6% 13.4% 43,396 0.3% 0.07% 103

Youtube 99.3% 0.7% 19,809 16.0% 0.75% 3,140

Facebook 95.2% 4.8% 12,793 0.6% 0.49% 80

Flickr 95.6% 4.4% 6,859 0.4% 0.0% 25

others 82.1% 17.9% 109,120 26.8% 15.5% 27,033

Twitter
resources

90.1% 9.9% 14,616 8.0% 14.1% 1,257

Existence on the Live Web

We checked the existence of the 253,978 unique URIs on the live Web. We also checked the

pages that give “soft 404s”, which return HTTP 200, but do not actually exist [40]. The

left two columns of Table 12 contain the results of checking the status of the Web pages

on the live Web. Of all the unique URIs, 11.8% are missing on the live Web. The table

also contains the results of the five most frequent domains and all other URIs. We also

included the results of checking the existence of Twitter embedded resources at the bottom

of the table. From the table, we conclude that the decay rate of social media content is

lower than the decay rate of the regular Web content and Web sites.

Existence on the Live Web as a Function of Time

We measured the decay of the resources of Storify stories in time by measuring the per-

centage of the missing resources in the stories over time. For this experiment, we used the

249,964 (all the URIs excluding twitter embedded resources) resources in 14,513 stories to

check the rate of the decay in the stories.

We found that 40.8% of the stories contain missing resources with a mean value of 10.3%

of the elements missing per story. Figure 64 contains the distribution of the creation date

of stories in our dataset in each year and the percentage of the missing resources in each

corresponding year. From the graph, we can infer a nearly linear decay rate of resources

through time: the resources disappear at rate of 30% the first year, 20% the second year,

then the rate decreases steadily the last three years until it reaches 9.6% for the last year.

This finding is close to the findings by SalahEldeen and Nelson [276], in which they found
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FIG. 64: The distribution of the stories per year and the decay rate of the resources in
these stories through time.

that there is a nearly linear relationship between time of sharing the resources and the

percentage of resources lost from the live Web, with a rate of 11% the first year and 7%

for each following year.

Existence in the Archives

We checked the 253,978 resources for existence in general Web archives in March 2015.

The existence in the Web archives was tested by querying a Memento Aggregator4.

The right-most columns of Table 12 contain the percentage of the URIs found in the

Web archives out of the missing and the available URIs on the live Web. In total, 12.6% of

the URIs were found in the public Web archives. Of the missing resources (29,964), 11%

were found in public Web archives. From Table 12, we notice that social media is not as

well-archived as the regular Web. Facebook uses robots.txt to block Web archiving by the

Internet Archive5, but the other sites do not have this restriction.

4http://timetravel.mementoweb.org/guide/api/, which provided results from 12 different public
Web archives.

5See: https://archive.org/about/faqs.php#14
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FIG. 65: Characteristics of popular and unpopular stories.
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6.3 WHAT DOES A POPULAR STORY LOOK LIKE?

In this section, we establish structural features for what differentiates popular stories

from normal stories for building a baseline for the stories we will automatically create from

the archives. We divided the stories into popular and unpopular stories based on their

number of views, normalized by the amount of time they were available on the Web. We

consider as popular the top 25% of stories (3,642 stories) based on the number of views

(over 377 views/year).

6.3.1 FEATURES OF THE STORIES

We considered the distributions of several features of the stories: number of Web ele-

ments, the number of text elements, and the editing time. We also check if there is a rela-

tionship between the popular stories and the relative number of subscribers. Furthermore,

we test if popular stories are different from the unpopular stories using the Kruskal-Wallis

test [191], which allows comparing two or more samples that are independent and have

different sample sizes.

We found that at the p ≤ 0.05 significance level, the popular and the unpopular stories

are different in terms of the following features: number of Web elements, text elements,

editing time, and subscribers. Figure 65(a) shows that popular stories tend to have more

Web elements (medians of 28 vs. 21) and a longer editing time (5 hours vs. 2 hours) than

the unpopular stories. The number of elements in the popular stories is between 2 to 1950

Web elements with median = 28 and mode = 10, and the number of text elements ranges

from 0 to 559 with median = 1 and mode = 0. The popular stories tend to have longer

editing time intervals than the unpopular stories. For the popular stories, 38% have an

editing time of at least one day, while only 35% of the unpopular stories have this feature.

The maximum editing time in the popular stories is 4.1 years, while it is 3.5 years for

unpopular stories.

There is a large difference between the number of subscribers for authors of popular

stories than for those of unpopular stories. The authors of popular stories have min/medi-

an/max values of 0/16/1,726,143 subscribers, while the authors of unpopular stories have

0/2/2,469 subscribers.

6.3.2 THE TYPE OF ELEMENTS

Figure 65(b) shows the distributions for the popular and the unpopular stories for each

element type. The popular stories tend to have more images than the unpopular stories.

The median number of images in popular stories is 10, while it is 5 in the unpopular stories.
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For videos, the median is 2 for both popular and unpopular. We found that the median

number of the links in popular stories (20 links) is higher than the unpopular stories (16

links). We also test if the types of elements used in popular stories are different from the

unpopular stories using the Kruskal-Wallis test and found that p ≤ 0.05 for the distributions

of each of the elements (images, videos, links, and quotes).

6.3.3 DO POPULAR STORIES HAVE A LOWER DECAY RATE?

We checked the decay rate of the popular and the unpopular stories to investigate if

there is a relationship between popularity and lower decay rate. We found that for the

popular stories, 11.0% of the resources were missing, while 12.8% of the resources were

missing for unpopular stories. Figure 65(a) contains the distribution of the percentage of

missing resources per story in popular and unpopular stories. It shows that the resources

of the popular stories have lower decay than the resources of the unpopular. A reason

could be that the popular stories are edited, and edits could be fixing broken links. The

75th percentile of the decay rate per popular story is 10% of the resources, while it is 15%

in the unpopular stories.

6.4 SUMMARY

We presented the structural characteristics of human-generated stories on Storify, with

particular emphasis on “popular” stories (i.e., the top 25% of views, normalized by time

available on the Web) [19, 21]. To answer the research questions that were listed earlier, we

analyzed 14,568 stories from Storify comprising 1,251,160 elements. We found that popular

stories have a min/median/max values of 2/28/1,950 elements, with the unpopular stories

having 2/21/2,216 elements. Popular stories have a median of 12 multimedia resources

(the unpopular stories have a median of 7), 38% receiving continuing edits (as opposed to

35%), and only 11% of Web elements are missing on the live Web (as opposed to 13%).

The authors of popular stories have min/median/max values of 0/16/1,726,143 subscribers,

while the authors of unpopular stories have 0/2/2,469 subscribers. We found that there is

a nearly linear relationship between the editing time of the story and the number of Web

elements. We found that twitter.com dominates the Web resources of Storify stories. We

also found that only 11% of the missing resources could be found in public Web archives.

Studying human-generated stories in Storify helped us to profile different kinds of stories

by examining the typical length (in terms of the number of resources included), time

frames covered, structural metadata (e.g., PageRank, images and video, social media vs.

news) and other features. We model the structural characteristics of these stories, with

particular emphasis on “popular” stories. For example, we generate stories automatically
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from archived collections with a typical length close to 28 (more or less based on the

collection size).

In Chapter 7, we will investigate the characteristics of the archived collections using

a dataset from Archive-It for specifying what can be applied in the DSA framework for

generating stories from these collections. The structural characteristics of human-generated

stories, such as the number of elements and the distribution of domains, will provide us

with a template with which to evaluate our automatically generated stories.
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CHAPTER 7

CHARACTERISTICS OF ARCHIVE-IT COLLECTIONS

Since archived collections will be our source for creating stories, we want to understand the

characteristics of these collections and determine the most used resources in the archived

collections. We quantified the collections in terms of the mean and median number of URIs

in a collection, the typical crawl depth and breadth, etc. [21]. We built a baseline of what

is inside the archived collections, based on the analysis of 3,109 collections with 305,522

seed URIs, for clarifying the intended framework of our archival summaries characteristics.

In this chapter, we investigate the following questions:

• What is the mean and median number of URI-Rs in a collection?

• What is the mean number of mementos per seed URI in a collection?

• What are the types of resources used in these collections?

• What are the most frequent domains in the collections?

• What is the timespan of the collections?

• What are the similarities and differences between the Storify stories and Archive-It

collections?

7.1 CHARACTERISTICS OF ARCHIVED COLLECTIONS

In this section, we check the population of Archive-It collections for better understand-

ing the characteristics of the collections we intend to summarize.

7.1.1 ARCHIVE-IT COLLECTIONS

As of November 2015, we obtained the IDs of the whole population of Archive-It collec-

tions from the front-end interface of Archive-It. We excluded the collections that we knew

were created automatically (the seed URIs have been extracted automatically from the

Web), and also collections with no data. We kept collections with one URI because they

have mementos. The number of remaining collections is 3,109, comprising 305,522 seed

URIs. The total number of mementos for all the collections is 2,385,397. We downloaded
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FIG. 66: The distribution of the number of seed URIs and the mean number of mementos
per seed in Archive-It collections.

the metadata of all seed URIs in November 2015. For each seed URI, we obtained its first

crawling date, last crawling date, and number of mementos.

7.1.2 GENERAL CHARACTERISTICS

Table 13 shows the characteristics of Archive-It collections in terms of the number of

seed URIs, the mean number of the mementos per seed, and timespan, which is the range

of time period over which the Web pages have been archived. The mean number of seed

URIs in Archive-It collections is 98 URIs, and the median is 5 URIs. The mean number of

mementos is 17 mementos per seed URI, and the mean timespan is 21 months. Figure 66

contains the distribution of the number of seed URIs and the mean number of mementos

per seed in each collection.

The largest collection in terms of the number of seed URIs is the “Government of

Canada Publications”1 collection that archives Canadian governmental pages, created by

1https://archive-it.org/collections/3572/
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TABLE 13: Distribution of features of Archive-It collections. Timespan is measured in
days.

Features Seed URIs Mementos Timespan

25th percentile 1 1 0

50th percentile 5 3 154

75th percentile 21 9 973

90th percentile 73 26 1,791

Maximum 123,600 3,848 6,945

Mean 98 17 628

Std. Dev. 2,260 106 921

the Canadian Government Information PLN Web Archive2. It contains 123,647 URIs with

a span of 2 years (2013-2015) and a mean of 2 mementos for each URI. The largest timespan

in the collections is 19 years (from 1996 until 2015) for only 21 seed URIs. The start date

of crawling for multiple collections is before the existence of Archive-It in 2006. This is

possible because some organizations imported previously archived pages to initialize their

collections.

7.1.3 WHAT DOMAINS ARE USED IN COLLECTIONS?

Canonicalizing the domains of 305,522 URIs resulted in 57,640 unique domains in the

3,109 collections. Figure 67 shows the relationship between the frequency of domains

and the number of collections they appeared in. For example, the dot at the top of the

graph represents the most frequent domain, which appears over 100,000 times in only 4

different collections. We notice that multiple domains in Archive-It collections have a high

frequency, but appear in only a few collections. This is because some collections are devoted

to archiving specific domains.

Table 14 contains the top 25 domains of the resources ordered by their frequency.

The list of top 25 domains represents 66.1% of all the resources. The table also contains

the global rank of the domains according to Alexa as of March 2015. We also added

our manual categorization for the domains. We notice that the most used domain is

publications.gc.ca from the “Government of Canada Publications” collection, which

contains the largest number of URI-Rs. We added the collection counts to the table to

reflect the global rank of the domains across the collections. We notice that the first ranked

domain based on the frequency of the domains appeared in only four collections. The table

also shows that most of domains in the top list are for government and education Web sites.

2https://archive-it.org/organizations/700/
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TABLE 14: The top 25 domains based on the frequency of appearance in Archive-It. The
percentage is the frequency of the domain out of 305,522. Alexa global rank was retrieved
in 2015-11.

Domain Frequency Percentage Collection
Count

Alexa
Global
Rank

Category

publications.gc.ca 123,604 40.46% 4 192,814 Government
youtube.com 21,838 7.15% 337 3 Videos
mtholyoke.edu 7,632 2.50% 3 34,718 Education
nsa.gov 7,625 2.50% 5 49,313 Government
blogspot.com 6,072 1.99% 305 38 Blogs
nsf.gov 5,312 1.74% 3 15,613 Government
facebook.com 5,268 1.72% 480 2 Social media
hem.bredband.net 4,582 1.50% 1 367,103 Company
wikipedia.org 4,405 1.44% 93 7 Encyclopedia
twitter.com 3,089 1.01% 460 9 Social media
nlm.nih.gov 2,030 0.66% 20 196 Government
wayback.archive-it.org 1,791 0.59% 4 133,005 Archive
wordpress.com 1,471 0.48% 276 36 Blogs
vimeo.com 1,354 0.44% 44 186 Blogs
uwrf.edu 1,218 0.40% 2 157,000 Education
pubs.pembina.org 1,196 0.39% 1 709,328 Education
hhs.gov 579 0.19% 15 8,641 Government
globe.gov 462 0.15% 2 559,353 Government
flickr.com 460 0.15% 132 159 Education
netfiles.uiuc.edu 429 0.14% 2 17,442 Education
orgsync.com 356 0.12% 6 12,450 Company
nytimes.com 330 0.11% 69 97 News
tumblr.com 328 0.11% 102 43 Blogs
baylor.edu 274 0.09% 12 17,643 Education
rochester.edu 254 0.08% 12 9,093 Education
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TABLE 15: The top 25 domains based on the number of Archive-It collections they appear
in. The percentage is the number of collections the domain appeared in out of 3,109. Alexa
global rank was retrieved in 2015-11.

Domain Collection
Count

Percentage Frequency Alexa
Global
Rank

Category

facebook.com 480 15.44% 5,268 2 Social media
twitter.com 460 14.80% 3,089 9 Social media
youtube.com 337 10.84% 21,838 3 Videos
blogspot.com 305 9.81% 6,072 38 Blogs
wordpress.com 276 8.88% 1,471 36 Blogs
flickr.com 132 4.25% 460 159 Photos
tumblr.com 102 3.28% 328 43 Blogs
wikipedia.org 93 2.99% 4,405 7 Encyclopedia
ok.gov 92 2.96% 141 24,315 Government
instagram.com 78 2.51% 203 24 Photos
nytimes.com 69 2.22% 330 97 News
sites.google.com 69 2.22% 194 1 Wikipedia
tn.gov 53 1.70% 153 13,494 Government
bbc.com 52 1.67% 183 100 News
slco.org 52 1.67% 74 100,152 Government
cnn.com 51 1.64% 147 75 News
sfgov.org 50 1.61% 61 101,777 Government
huffingtonpost.com 47 1.51% 149 122 News
tennessee.gov 46 1.48% 57 175,859 Government
yahoo.com 45 1.45% 85 5 Search
vimeo.com 44 1.42% 1,354 186 Videos
weebly.com 43 1.38% 142 252 Company
typepad.com 39 1.25% 70 1,126 Blogs
washingtonpost.com 36 1.16% 180 198 News
pinterest.com 36 1.16% 55 30 Photos
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FIG. 67: The relationship between the frequency of the domains in Archive-It collections
and the number of collections in which those domains appear.

There are also blogs and social media Web sites, such as facebook.com and twitter.com.

Table 14 also shows that some collections use archived URIs in their seed list. The domain

wayback.archive-it.org is ranked 12th based on its frequency and appeared in four

collections.

Table 15 shows the top 25 domains based on the number of collections that they ap-

peared in. It is clear from the table that the top list of domains based on the num-

ber of collections they appeared in is different from the top domains based on the fre-

quency. Note that sites.google.com has rank one because Alexa does not differentiate

sites.google.com from google.com. In Section 7.1.5, we investigate the correlation be-

tween the rank of the domains within Archive-It collections and their Alexa global rank.

7.1.4 CLASSIFICATION OF SEED URIS BASED ON THE TLD



128

TABLE 16: The top 10 TLDs of the resources.
TLD Percentage

.ca 41.96%

.com 23.73%

.edu 9.77%

.org 8.50%

.gov 8.21%

.net 2.24%

.us 0.70%

.uk 0.61%

.de 0.38%

.fr 0.31%

TABLE 17: The Kendall’s Tau between the most frequent n domains in the stories and
their Alexa global rank (τaf ) and between the top n domains that have the most number
of collections and Alexa global rank (τac).

n 10 15 25 50 100

τaf -0.2000 0.0286 -0.0467 0.0008 0.1741

τac 0.4222 0.4857 0.4174 0.4399 0.3180

Table 16 presents the distribution of TLDs for the seed URIs in Archive-It collections

(only the top 10 are shown). The top 10 list represents 97.8% of the TLDs in the collections.

It can be noticed that most of the URIs are for the .ca, .com, .edu, .org, .gov, .net, .us, .uk,

and .de domains. The .ca comes from the publications.gc.ca, which dominates the top

25 most frequent domains. We notice that there are many governmental, organizational,

and educational sites in the collections.

7.1.5 CORRELATION OF GLOBAL AND ARCHIVE-IT POPULARITY

Table 17 shows Kendall’s Tau correlation τaf for the most frequent n domains in

Archive-It collections and their Alexa global rank. It also shows Kendall’s Tau correla-

tion τac for the top n domains based on the largest number of collections and their Alexa

global rank. Statistically significant (p ≤ 0.05) correlations are bolded. The table shows

that the correlation between the most frequent n domains and their Alexa global rank is

very low. The highest correlation between the most frequent n domains and the Alexa

global rank is 0.17 for the list of the 100 domains. This may be due to the nature of

the collections and the purpose for which they are created. Most of the collections are
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TABLE 18: The distributions of the number of collections in each time interval.
Seed URIs Ave. no. of

URI-Ms/Seed

Intervals Percentage Mean Median Max. Mean Median Max.

URI with
no captures

6.80% 7 1 412 0 0 0

< 1 day 21.00% 24 1 7,619 1.1 1 4.8

1-7 days 4.90% 101 5 7,590 2.6 2 10.1

1-4 weeks 4.60% 28 12 495 3.7 2.7 29.8

1-12
months

19.90% 66 10 5,309 10.9 3.4 277.6

1-4 years 25.40% 242 6 123,648 16.6 5 594.5

> 4 years 17.30% 69 10 2,365 59.5 13.7 3848

explicitly centered around topics. Furthermore, some collections archive specific domains

(e.g., publications.gc.ca). Many of these domains are not high ranked globally, but

the collections they appeared in have a large number of seed URIs, which results in high

frequency for these domains.

Although the frequency of domains does not correlate with the globally high ranked

domains, the top list of the domains based on the number of collections they appeared in

highly correlates with the global rank of these domains. For most of the top n domains

across Archive-It collections τac > 0.4. The highest correlation is 0.49 for the list of 15

domains.

7.1.6 WHAT IS THE MEAN TIMESPAN FOR DIGITAL COLLECTIONS?

Table 18 shows the percentage of the collections that have been crawled in each time

interval. The table also shows the corresponding features of the collection in terms of the

number of seed URIs and the mean number of mementos per seed. Note that the timespan

of the collection is different from the editing time of Storify stories.

The first row contains collections with 0 mementos as of November 2015. About 20%

of these collections have been created recently and their crawling date started after we

captured the metadata of the collections. Among these collections, the collection with the

largest number of URIs in this category (“Cal Poly University Web Archive”3) has 412

seed URIs.

We see that the majority of the collections have a long timespan, meaning that they

have been crawled over the span of years. There are 17% of the collections with a span of

3https://archive-it.org/collections/6191/
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more than four years. The collection with the longest timespan of 19 years has URIs that

were crawled before Archive-It existed.

From Table 18, we notice that there is a linear relationship between the mean number of

mementos per seed in the collection and the timespan of the collection. The mean number

of mementos per seed URIs increases with an increase in the timespan of the collection.

The mean number of mementos in the span of 4 years (or more) is 60 mementos per seed,

and goes down 70% to be 17 mementos per seed in the span of 1-4 years.

7.1.7 THE DECAY RATE IN ARCHIVE-IT COLLECTIONS

In Chapter 4, we found that most people come to the Web archives because they did not

find the pages on the live Web [17]. We extracted 293,883 unique seed URIs from Archive-It

collections and checked their existence on the live Web. We found that 8.3% (24,521 out of

293,883) of the seed URIs in Archive-It collections are missing from the live Web. Missing

represents the requests that return HTTP 4xx, HTTP 5xx, HTTP 3xx to others except

200, timeouts, and soft 404s. Note that 42% of the seed URIs belong to the “Government

of Canada Publications” collection, which is devoted to archiving governmental publication

documents that are well preserved by the Canadian government. We measured the loss

for this collection and found that only 0.1% (102 URIs out of 122,948 unique URIs) of the

documents are missing. For these kind of collections, we expect that if the domain is lost

or unavailable for any reason [40, 222], all the 122,948 URIs might disappear. Excluding

the “Government of Canada Publications” collection, the decay rate for the rest of the

collections is 14.3% (24,419 out of 170,935 unique URIs).

We also found that 58.7% (1825 out of 3109) of the collections contain seed URIs that

had disappeared from the live Web. Of these, 22.5% (410 out of 1825) have 100% loss of

their seed URIs from the live Web.

7.2 ARCHIVE-IT COLLECTIONS VERSUS STORIFY STORIES

In this section, we contrast the general characteristics of human-generated stories from

Storify that were presented in Chapter 6 and human-curated collections from Archive-It.

Figures 62 in Chapter 6 and Figure 67 show that the most frequent domains in Storify

appeared in the majority of stories, while many of the most frequent domains in Archive-It

appeared in few collections. For example, the most frequent domain in Storify (twitter.

com), which is represented in Figure 62 by the rightmost dot, appeared almost 1,000,000

times in the largest number of stories (over 10,000 stories). On the other hand, the most

frequent domain in Archive-It collections (publications.gc.ca), which is represented by

the dot on the top left of Figure 67, appeared over 100,000 times in only four collections.
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The difference in the nature of the domains could be due to the difference of who is creating

the collection: regular users (Storify), or librarians employed by government, museums, etc.

(Archive-It).

Also, the most frequent domains in the stories have a higher correlation with the Alexa

global rank than the most frequent domains in the archived collection as shown in Tables

10 and 17. For most of the n values in Table 10 in Chapter 6, there is a high correlation

between the most frequent n domains in the stories and their Alexa global Rank (τsf )

The τsf at n = 15 is 0.45, while in Archive-It collections, the list of the most frequent 15

domains and their Alexa global rank (τaf ) are statistically independent (Table 17). The

largest value of the τaf is 0.17 at n = 100.

Additionally, Tables 9 and 16 show that the list of TLDs in Storify is dominated by

.com, which represents 96.5% of the resources, while it represents only 23% in Archive-

It collections. The list of TLDs in Archive-It collections contains a significant existence

for .gov and .edu domains. That is because many collections are devoted to archiving

governmental pages (e.g., all Web pages published by the state of California) and memory

organizations like libraries and museums, but many of the collections are explicitly centered

around topics in arts and humanities, politics, spontaneous events, and blogs and social

media.

For the decay rate, 11.8% of Storify resources do not exist on the live Web, while 8.3%

of Archive-It URIs are missing. Although the decay rate in Storify stories is larger than

the decay rate of Archive-It collections, the percentage of the affected collections (58.7%)

is larger than the percentage of the affected stories (40.8%). Furthermore, the mean value

of the missing elements per story is 10.3%, although the mean value of the missing seed

URIs per collection is 42%.

To conclude, the resources that are used in Storify stories are different from the resources

in Archive-It collections. In summarizing a collection, we can only choose from what is

archived. So if there are no tweets in the collection, twitter.com will not be the most

common domain in the generated stories. Although some content in Storify stories will not

be applicable (e.g., twitter.com is popular in Storify, but mostly missing in Archive-It

collections), some other characteristics will be applicable, such as the number of resources.

Accordingly, our choices of what to select from the collection needs to be informed by what

constitutes a “popular” story.

7.3 SUMMARY

We presented a baseline for the characteristics of archived collections based on qualifying

the whole population of Archive-It collections [21]. We checked the resources in these



132

collection, the timespan of the collections, the average number of URI-Ms per seed, and

so on. The most frequent domain in Archive-It collections is publications.gc.ca, which

appeared over 100,000 times in only four collections. Furthermore, the most frequent

domains in the Archive-It collections have very low correlation with the Alexa global rank.

The list of TLDs in Archive-It collections contains a significant existence for .gov and .edu

domains. For the decay rate, 8.3% of Archive-It URIs are missing from the live Web with

42% mean value of the missing elements per collection.

We found that some characteristics of human-generated stories may not be possible to

apply because the nature of the resources in the stories is different from what compose

the collections. For example, we found that twitter.com is popular in Storify, but mostly

is missing in Archive-It. Our choices of what to select from the collection needs will be

informed by what constitutes a “popular” story. For example, we will use the median

number of resources in the popular stories (k = 28) as a default value for the number of

resources in the automatically generated stories, as will be explained in Chapter 9.
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CHAPTER 8

DETECTING OFF-TOPIC PAGES IN WEB ARCHIVES

As we declared in Chapter 2, Archive-It provides their partners with tools that allow them

to build themed collections of archived Web pages hosted on Archive-It’s machines. This is

done by the user manually specifying a set of seed URIs that should be crawled periodically.

Archive-It has deployed tools that allow a collection’s curators to perform quality control

on their crawls, as shown in Figure 24(b) of Chapter 2. However, the tools are currently

focused on issues such as the mechanics of HTTP (e.g., how many HTML files vs. PDFs,

how many HTTP 404 responses) and domain information (e.g., how many .uk sites vs.

.com sites). Currently, there are no content-based tools that allow curators to detect when

seed URIs go off-topic.

In this chapter, we introduce different approaches for detecting off-topic pages in indi-

vidual TimeMaps (Section 8.4.2). Those predicted off-topic pages will be presented to the

collection’s curator for possible elimination from the collection or cessation of crawling. For

evaluating the proposed methods, we built our gold standard dataset from three Archive-It

collections, then we employ the following performance measurements: accuracy, F1 score

values, and area under the ROC curve (AUC) (Sections 8.5). We evaluate the performance

of the best performed method on several Archive-It collections (Section 8.6).

8.1 MOTIVATING EXAMPLES

We can define off-topic pages as the Web pages that have changed through time to

move away from the initial scope of the page. There are multiple reasons for pages to go

off-topic, such as hacking, loss of account, domain expiration, owner deletion, or server/ser-

vice discontinued [222]. Expired domains should return a 404 HTTP status that will be

caught by Archive-It quality control methods. However, some expired domains may be

purchased by spammers who desire all the incoming traffic that the site accrued while it

was “legitimate” (see Figure 68). In this case, the Web page returns a 200 HTTP response

but with unwanted content [40].

There are also many cases in which the archived page redirects to another page which

is not relevant but still not spam. In Figure, 69 the Facebook page contained relevant

content in the beginning (Figure 69(a)), then later redirects to the homepage of Facebook

as shown in Figure 69(b). The example in Figure 69 shows how a page in a collection goes

off-topic, even though the particular Web site has not been lost.
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(a) Sept. 24, 2003: johnbeard4gov.com was for a
California gubernatorial candidate.

(b) Dec. 12, 2003: johnbeard4gov.com became
spam.

FIG. 68: Example of johnbeard4gov.com in the 2003 California Recall Election collection
that went off-topic.

(a) Dec. 22, 2011: Facebook page was relevant to
the Occupy collection.

(b) Aug. 10, 2012: URI redirects to
www.facebook.com.

FIG. 69: Example of a Facebook page from the Occupy Movement collection that went
off-topic.
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TABLE 19: Description of the Archive-It collections.
Collection
Name

Occupy Movement
2011/2012

Egypt Revolution
and Politics

Human Rights

Collection ID 2950 2358 1068

Curator Internet Archive
Global Events

American Univer-
sity in Cairo

Columbia Univer-
sity Libraries

Timespan 2011/12/03 -
2012/10/09

2011/02/01 -
2013/04/18

2008/05/15 -
2013/03/21

Total URI-Rs 728 182 560

Total URI-Ms 21,268 18,434 6,341

Figure 70 shows a scenario of a page that goes off-topic for many different reasons.

In May 2012, hamdeensabahy.com Web page, which belonged to a famous politician and

a candidate in Egypt’s 2012 presidential election, was originally relevant to the “Egypt

Revolution and Politics” collection (Figure 70(a)). Then, the page went back and forth

between on-topic and off-topic many times for different reasons. Note that there are on-

topic pages between the off-topic ones in Figure 70. In the example, the page went off-topic

because of a database error on May 24, 2012 (Figure 70(b)), then it returned on-topic

again. After that, the page went off-topic because of financial issues (Figure 70(c)). The

page continued off-topic for a long period (from March 27, 2013 until July 2, 2013) because

the site was under construction (Figure 70(d)). The page went on-topic again for a period

of time, then the site was hacked (Figure 70(e)), and then the domain was lost by late 2014

(Figure 70(f)).

The Web page hamdeensabahy.com has 266 mementos. Of these, over 60% are off-

topic. While it might be useful for historians to track the change of the page in Web

archives (possibly the hacked version is a good candidate for historians), the 60% off-

topic mementos such as the ones in Figures 70(b) - 70(f) do not contribute to the Egypt

Revolution collection in the same way that the on-topic archived Web site in Figure 70(a)

does.

Although the former can be kept in the IA’s general Web archive, they are candidates

to be purged from the Egyptian Revolution collection. Even if the pages are kept in the

collection, we exclude them from consideration for generating stories (Chapter 9).
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(a) May 13, 2012: The page started as on-topic. (b) May 24, 2012: Off-topic due to a database
error.

(c) Mar. 21, 2013: Not working because of fi-
nancial problems.

(d) July 2, 2013: Under Construction.

(e) June 5, 2014: The site has been hacked. (f) Oct. 10, 2014: The domain has expired.

FIG. 70: A site for one of the candidates for Egypt’s 2012 presidential election. Many of
the captures of hamdeensabhay.com are not about the Egyptian Revolution. Later versions
show an expired domain (as does the live Web version).



137

TABLE 20: The results of manually labeling the collections.
Collection Occupy Movement

2011/2012
Egypt Revolu-
tion and Politics

Human Rights

Sampled URI-Rs 255 (35%) 136 (75%) 198 (35%)

Sampled URI-Ms 6,570 6,886 2,304

Off-topic URI-Ms 458 (7%) 384 (9%) 94 (4%)

URI-Rs with off-
topic URI-Ms

67 (26%) 34 (25%) 33 (17%)

8.2 DATASET

In this section we describe our gold standard dataset. We evaluate our techniques

using the ODU mirror of Archive-It’s collections. ODU has received a copy of the Archive-

It collections (in the form of WARC files) through April 2013. The three collections in our

dataset differ in terms of the number of URI-Rs, number of URI-Ms, and timespan, which

is the range of time over which the Web pages have been archived. Next, we will describe

the three collections that we constructed our samples from, then we will present the results

of manually labeling the samples.

The “Occupy Movement 2011/2012” collection was built over a period of 10

months between Dec. 2011 - Oct. 2012 by Archive-It. This collection covers the Occupy

Movement protests and the international branches of the Occupy Wall Street movement

around the world. This collection contained 728 seed URIs and a total of 21,268 mementos.

The “Egypt Revolution and Politics” collection was started in Feb. 2011 and is

still ongoing. This collection covers the January 25th Egyptian Revolution and Egyptian

politics. It contains different kinds of Web sites (e.g., social media, blogs, news, etc.) that

have been collected by the American University in Cairo. As of April 2013, this collection

contained 182 seed URIs and a total of 18,434 mementos.

The “Human Rights” collection was started in May 2008 by Columbia Univer-

sity Libraries and is still ongoing. The Human Rights collection covers documentation

and research about human rights that have been created by non-governmental organiza-

tions, national human rights institutions, and individuals. As of April 2013, this collection

contained 560 seed URIs and a total of 6,341 mementos.

Table 19 provides the details of the three collections. The timespan in the table repre-

sents the range of the crawls for the ODU mirror which ends in April 2013. The collections

contain pages in different languages, including English, Arabic, French, Russian, and Span-

ish.
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(a) Always On

http://wayback.archive-it.org/2950/*/http://occupypsl.org

(b) Step Function On

http://wayback.archive-it.org/2950/*/http://occupygso.tumblr.com

(c) Step Function Off

http://wayback.archive-it.org/2950/*/http://occupyashland.com

(d) Oscillating

http://wayback.archive-it.org/2950/*/http://www.indyows.org

(e) Always Off

http://wayback.archive-it.org/2950/*/http://occupy605.com

FIG. 71: Example showing different behaviors for TimeMaps (green=on-topic, red=off-
topic).

We randomly sampled 589 URI-Rs from the three collections (excluding URI-Rs with

only one memento). Together, the sampled URI-Rs had over 18,000 URI-Ms, so for each

of the sampled URI-Rs, we randomly sampled from their URI-Ms. This resulted in our

manually labeling 15,760 mementos as on-topic or off-topic. We labeled the URI-M as off-

topic if the content in the URI-M was no longer relevant to the content in the URI-R@t0,

which is assumed to be relevant to the topic of the collection.

Table 20 contains the results of manually labeling the sampled data of each collection.

We sampled from 35% of the seed URIs of each collection, except for the Egypt Revolution

collection; it has fewer URIs than the other two collections, so we sampled from 75% of its

URIs. The labeled gold standard dataset is available for download at https://github.

com/yasmina85/OffTopic-Detection.

We found that 24% of the TimeMaps we sampled contain off-topic pages. Detecting

these pages automatically for the collection curator will not only avoid diluting the value
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TABLE 21: The statistics of TimeMap behaviors in archived collections.
TimeMap
Behavior

Occupy Movement
2011/2012

Egypt Revolution
and Politics

Human Rights

Always On 73.7% 75.0% 83.3%

Step Function On 11.4% 11.0% 7.6%

Step Function Off 1.2% 0.7% 0.0%

Oscillating 13.3% 12.5% 9.1%

Always Off 0.4% 0.7% 0.0%

of their collections, but also will save the time required for a manual check of the relevance

of the URIs and save the storage required for these pages.

8.3 TIMEMAP BEHAVIOR

Many studies have been performed on the key aspects of document “aboutness”, such

as the page’s title [179], tags [177], lexical signatures [181], etc. Section 8.4.2 enumerates

different methods we explored to distill a page’s aboutness and quantify how this aboutness

changes through time. Here, we define five general classes of TimeMaps based on how a

page’s aboutness changes through time. Table 21 shows the percentage of each type of

TimeMap present in our three manually labeled collections.

As defined in Chapter 5, an Archive-It collection (C) is a set of seed URIs collected by

the users from the Web (W ), where C ⊂ W (Equation 5). Each seed URI (URI-Rs) has

many different mementos (URI-Ms), and a set of mementos for a seed URI composes a

TimeMap (URI-T ).

We define URI-R@t to be: on-topic, if aboutness(URI-R@t) ≈ aboutness(URI-R@t0)

and off-topic, if aboutness(URI-R@t) 6≈ aboutness(URI-R@t0), where

URI-R@t0 is relevant to C.

For the gold standard dataset (Section 8.1), we manually assess if a memento is relevant

to C. We empirically observed five classes of TimeMaps based on the page’s aboutness.

Always On: This is the ideal case, in which the page does not go off-topic (Figure

71(a)):

∀t aboutness(URI-R@t) ≈ aboutness(URI-R@t0), and URI-R@t0 is relevant to C.

This is the majority case in the gold standard dataset, with at least 74% of the

TimeMaps always on-topic (Table 21).

Step Function On: URI-R@t0 is on-topic, but then at some t goes off-topic and

continues ∀t (Figure 71(b)):
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∀t ≥ i, where i ≥ 1, and i is an integer, aboutness(URI-R@t) 6≈ aboutness(URI-R@t0),

where URI-R@t0 is relevant to C.

We found that 8-11% of the TimeMaps are Step Function On.

Step Function Off: URI-R@t0 is off-topic, but then at some t goes on-topic and

continues ∀t (Figure 71(c)):

∀t ≥ i, where i ≥ 1, and i is an integer, aboutness(URI-R@t) 6≈ aboutness(URI-R@t0),

where URI-R@t0 is not relevant to C.

The case when the TimeMap starts with an off-topic memento then goes on-topic is

very rare. We found that only 0-1% TimeMaps are Step Function Off. This case violates

our assumption that the URI-R@t0 is relevant to C. In our gold standard dataset, we

manually shifted the first memento to be the first memento relevant to the collection.

Oscillating: The aboutness of pages changes between on-topic and off-topic more than

once (Figure 71(d)):

∃t where(URI-R@t) 6≈ aboutness(URI-R@t+ i) and aboutness(URI-R@t) ≈
aboutness(URI-R@t− j) where i, j ≥ 0 and i, j are integers.

We found that 9-13% of the TimeMaps are Oscillating between on-topic and off-topic.

Always Off: This is the most challenging case, where all the mementos are off-topic

(Figure 71(e)):

∀ t, URI-R@t is not relevant to C.

We manually identified these cases (totaling 3 seed URIs) and excluded these from the

gold standard dataset. This situation can arise if seed URIs were included by accident, or

if their content changed (e.g., site shutdown) in the interval between when the seed URI

was identified and when the crawling began.

8.4 RESEARCH APPROACH

In this section, we explain the methodology for preparing the dataset and then the

methodology for applying different measures to detect the off-topic pages.

8.4.1 DATASET PREPROCESSING

We applied the following steps to prepare the gold standard dataset:

1. Obtain the seed list of URIs from the front-end interface of Archive-It.

2. Obtain the TimeMaps of the seed URIs from the CDX file1.

3. Extract the HTML of the mementos from the WARC files (locally hosted at ODU).

1http://archive.org/web/researcher/cdx_file_format.php
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4. Extract the text of the page using the Boilerpipe library [184].

5. Extract terms from the page, using scikit-learn [257] to tokenize, remove stop words,

and apply stemming.

8.4.2 METHODS FOR DETECTING OFF-TOPIC PAGES

In this section, we use different similarity measures between pages to detect when the

aboutness(URI-R) over time changes and to define a threshold that separates the on-topic

and the off-topic pages.

Cosine similarity

Cosine similarity [217] is one of the most commonly used similarity measures to solve

different problems in IR and text mining, such as text classification and categorization,

question answering, document filtering, etc. Cosine similarity measures the cosine of the

angle between two vectors (d1 and d2) by taking the dot product between them [292, 280]:

cos(d1, d2) =
d1 · d2

‖ d1 ‖‖ d2 ‖
(10)

After text preprocessing, we calculated the TF-IDF for mementos, then we applied

cosine similarity to compare the aboutness(URI-R@t0) with aboutness(URI-R@t) by cal-

culating the similarity between the mementos.

Jaccard similarity coefficient

The Jaccard similarity coefficient measure is the size of the intersection of two sets divided

by the size of their union [217]. The Jaccard between set A and set B is formulated as

following:

J(A,B) =
A ∩B
A ∪B

(11)

After preprocessing the text (result from step 5), we apply the Jaccard coefficient on the

resulting terms to specify the similarity between the URI-R@t and URI-R@t0.

Intersection of the most frequent terms

Term frequency (TF) refers to how often a term appears in a document. The aboutness of

a document can be represented using the top-k most frequent terms. After text extraction,

we calculated the TF of the text URI-R@t, and then compared the top 20 most frequent

terms of the URI-R@t with the top 20 most frequent terms of the URI-R@t0. The size
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FIG. 72: An example for increasing the semantic context by the Web based kernel function
using a search engine (SE).

of the intersection between the top 20 terms of URI-R@t and URI-R@t0 represents the

similarity between the mementos. We name this method TF-Intersection.

Web-based kernel function

The previous methods are term-wise similarity measures, i.e., they use lexicographic term

matching. But these methods may not suitable for archived collections with a large time

span or pages that contain a small amount of text. For example, the Egyptian Revolution

collection is from February 2011 until April 2013. Suppose a page in February 2011 has

terms like “Mubarak, Tahrir, Square, violence, army” and a page in April 2013 has terms

like “Egypt, protests, Morsi, Cairo, president”. The two pages are semantically relevant to

each other, but term-wise the previous methods might not detect them as relevant. With

a large evolution of pages through a long period of time, we need a method that focuses

on the semantic context of the documents.

The work by Sahami and Heilman [274] inspired us to augment the text of URI-R@t0

with additional terms from the Web using a search engine to increase its semantic context.

This approach is based on query expansion techniques [60], which have been well-studied in
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the Information Retrieval field. We used the contextually descriptive snippet text that was

returned with search engine results, which we call “SEKernel”. Snippet text has been shown

to be a good source for query expansion terms [343]. Snippet text has shown effectiveness

in representing the documents. We used the returned results from the Bing Search API.

We augment the terms of URI-R@t0 with semantic context from the search engine as

follows:

1. Format a query q from the top five words x of the first memento (URI-R@t0).

2. Issue q(x) to the search engine SE.

3. Extract the terms p from the top 10 snippets returned for q(x).

4. Add the terms of the snippets p to the terms of the original text of the first memento

d to have a new list of terms, ST = p ∪ d.

5. ∀t, calculate the Jaccard coefficient between ST (the expanded aboutness of the

URI-R@t0) and the terms of URI-R@t, where t ≥ 1.

Figure 72 shows an example of how we apply the Web-based kernel function on a

memento from the Egyptian Revolution collection. As the figure illustrate, we use terms

“Mubarak, Tahrir, Square, violence, army” of the first memento as search keywords to gen-

erate semantic context. The resulting snippet will have new terms like “Egypt, President,

Cairo, protests”, which term-wise overlaps with the page that contains “Egypt, protests,

Morsi, Cairo, president”. The resulting similarity between the two mementos in Figure 72

after extending the terms of the first memento is 0.4.

Change in size

We noticed that the sizes of off-topic mementos are often much smaller in size than the

on-topic mementos. We used the relative change in size to detect when the page goes off-

topic. The relative change of the page size can be represented by the content length or the

total number of words (e.g., egypt, egypt, tahrir, the, square) in the page. For example,

assume URI-R@t0 contains 100 words and URI-R@t contains 5 words. This represents a

95% decrease in the number of words between URI-R@t0 and URI-R@t. The change in

size, denoted d(A,B), can be defined formally as following:

d(A,B) = 1− s(A)

s(B)
,

where s is the size of document. (12)
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(a) Occupy the U.P. on Jan. 10, 2012.

(b) Expired on August 14, 2012, but no textual content.

FIG. 73: Later versions of occupytheup.org are off-topic.
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TABLE 22: The results of evaluating the similarity approaches averaged on three collec-
tions.

Similarity Measure Threshold FP FN FP+FN ACC F1 AUC

Cosine 0.15 31 22 53 0.983 0.881 0.961

WordCount −0.85 6 44 50 0.982 0.806 0.870

SEKernel 0.05 64 83 147 0.965 0.683 0.865

Bytes −0.65 28 133 161 0.962 0.584 0.746

Jaccard 0.05 74 86 159 0.962 0.538 0.809

TF-Intersection 0.00 49 104 153 0.967 0.537 0.740

TABLE 23: The results of the best three combined methods approaches averaged on three
collections.

Similarity
Measure

Threshold FP FN FP+FN ACC F1 AUC

(Cosine,
WordCount)

(0.10, −0.85) 24 10 34 0.987 0.906 0.968

(Cosine,
SEKernel)

(0.10, 0.00) 6 35 40 0.990 0.901 0.934

(WordCount,
SEKernel)

(−0.80, 0.00) 14 27 42 0.985 0.818 0.885

We tried two methods for measuring the change in size: the content length (bytes)

and the number of words (WordCount). Although using the content length, which can be

extracted directly from the headers of the WARC files, saves the steps of extracting the

text and tokenization, it fails to detect when the page goes off-topic in the case when the

page has little to no textual content but the page template is still large. For example, the

Facebook page in Figure 69 went off-topic in Figure 69(b) and has 62KB, but the on-topic

page in Figure 69(a) is nearly similarly sized with 84KB. Using a significant decrease in

byte size allows for rapid detection of potential off-topic pages.

There are many cases where the page goes off-topic and the size of the page decreases or

in some cases reaches 0 bytes, e.g., the account is suspended, transient errors, or no content

in the page. One of the advantages of using the structural-based methods over the textual-

based methods is that structural-based methods are language independent. Many of the

collections are multi-lingual, and each language needs special processing. The structural

methods are suitable for those collections. Figure 73 has an example where the account is

suspended and the size of the page is almost 0 bytes.
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8.5 EVALUATION

In this section, we define how we evaluate the methods presented in Section 8.4.2 on our

gold standard dataset. Based on these results, we define a threshold th for each method

for when a memento becomes off-topic.

8.5.1 EVALUATION METRICS

We used multiple metrics to evaluate the performance of the similarity measures:

• False positives (FP), the number of on-topic pages that are predicted as off-topic.

• False negatives (FN), the number of off-topic pages that are predicted as on-topic.

• Accuracy (ACC), the fraction of the classifications that are correct.

Accuracy =
(TP + TN)

(TP + FP + FN + TN)
(13)

TP is the number of True Positives (off-topic pages that are predicted as off-topic) and

TN is the number of True Negatives (on-topic pages that are predicted as on-topic).

• F1 score (also known as F-measure or the harmonic mean), the weighted average of

precision and recall.

F1 =
2TP

(2TP + FP + FN)
(14)

• The ROC AUC score, a single number that computes the area under the receiver

operating characteristic (ROC) [101] curve, which is also denoted as AUC.

8.5.2 RESULTS

We tested each method with 21 thresholds (378 tests for three collections) on our gold

standard dataset to estimate which threshold for each method is able to separate the off-

topic from the on-topic pages. In order to determine the best threshold, we used the

evaluation metrics described in the previous section, and averaged the results based on the

F1 of the three collections at different thresholds. To say that URI-R@t is off-topic at

th = 0.15 means that the similarity between URI-R@t and URI-R@t0 is < 0.15. On-topic

means the similarity between URI-R@t and URI-R@t0 is ≥ 0.15.

For each similarity measure, there is an upper bound and lower bound for the value

of similarity. For Cosine, TF-Intersection, Jaccard, and SEKernel, the highest value is

at 1 and the lowest value is at 0. A similarity of 1 represents a perfect similarity, and 0
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(a) Occupy Movement Collection (b) Egypt Revolution Collection

(c) Human Rights Collection

FIG. 74: How cosine similarity separates the off-topic from the on-topic pages.
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(a) Occupy Movement Collection (b) Egypt Revolution Collection

(c) Human Rights Collection

FIG. 75: How change of page size (based on word count) separates the off-topic from the
on-topic pages.
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similarity represents that there is no similarity between the pages. The word count and

content length measures can be from −1 to +1. The negative values in the change of size

measures represent the decrease in size, so −1 means the page has a 100% decrease from

URI-R@t0. When the change in size is 0 that means there is no change in the size of the

page. We assume that a large decrease in size between URI-R@t and URI-R@t0 indicates

that the page might be off-topic. Therefore, if the change in size between URI-R@t and

URI-R@t0 is a 95% decrease in the size, that means URI-R@t is off-topic at th = −0.95.

Table 22 contains the summary of running the similarity approaches on the three col-

lections. The table shows the best result based on the F1 score at the underlying threshold

measures averaged on all three collections. From the table, the best performing measure is

Cosine with average ACC = 0.983, F1 = 0.881, and AUC = 0.961, followed by WordCount.

Using SEKernel performs better than TF-Intersection and Jaccard. Based on the F1 score,

we notice that TF-Intersection and Jaccard similarity are the least effective methods.

Figure 74 shows how Cosine separates the off-topic from the on-topic pages for each

collection. It shows that that the off-topic pages are concentrated near 0.0-0.2 similarity

and there is no FNs past th = 0.4. Figure 75 shows how WordCount identifies on-topic

and off-topic mementos at different thresholds. We see from the figure that there are no

on-topic pages near 100% decrease (i.e., −100% change), while the majority of the off-topic

mementos are concentrated near the 80-100% decrease (i.e., −(80-100)% change).

There was consistency among the best-performing values for TF-Intersection, Jaccard,

and SEKernel methods over the three collections. For example, for all collections the best

performance of the SEKernel method is at th = 0.05. However, there was inconsistency

among the values of th with the best performance for each collection for Cosine, WordCount,

and Bytes measures. For the methods with inconsistent threshold values, we averaged the

best thresholds of each collection. For example, the best th values of Cosine for the Occupy

Movement collection, Egypt Revolution collection, and Human Rights collection are 0.2,

0.15, 0.1 respectively.

We took the average of the three collections at th = 0.2, th = 0.15, and th = 0.1,

then based on the best F1 score, we specified the threshold that has the best average

performance, which is th = 0.15. Specifying a threshold for detecting the off-topic pages

from archived pages is not easy with the differences in the nature of the collections. For

example, long-running collections such as the Human Rights collection (2009-present) have

more opportunities for some pages to change dramatically, while staying relevant to the

collection. There is more research to be done in exploring the thresholds and methods. We

plan to investigate different methods on larger sets of labeled collections, so that we can

specify the features that affect choosing the value of the threshold.
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TABLE 24: The results of evaluating Archive-It collections through the assessment of
the detected off-topic pages using (Cosine, WordCount) methods at th = (0.10, −0.85).
Numbers in parenthesis are the total URI-Ms and URI-Rs for the collection.
Collection ID Timespan Off-topic

URI-Ms
Affected
URI-Rs

TP FP P

Global Food Crisis 2893 2011/10/19-
2012/10/24

22(3,063) 7(65) 22 0 1.00

Government in Alaska 1084 2006/12/01-
2013/04/13

16(506) 4(68) 16 0 1.00

Virginia Tech Shootings 2966 2011/12/08-
2012/01/03

24(1,670) 2(239) 24 0 1.00

Wikileaks 2010
Document Release
Collection

2017 2010/07/27-
2012/08/27

107(2,360) 8(35) 107 0 1.00

DIBAM 1019 2008/02/22-
2008/03/24

4(106) 1(25) 4 0 1.00

Global Health Events 4887 2014/10/01-
2015/10/21

56(3,518) 8(165) 53 3 0.95

2003 California
Recall Election

5947 2003/09/24-
2003/12/12

270(2,312) 36(178) 254 16 0.94

Jasmine Revolution
- Tunisia 2011

2323 2011/01/19-
2012/12/24

114(4,076) 31(231) 107 7 0.94

Academics at Baylor 3497 2013/01/28-
2016/04/26

26(414) 13(232) 20 6 0.77

IT Historical
Resource Sites

1827 2010/02/23-
2012/10/04

59(10,283) 34(1,459) 45 14 0.76

Human Rights
Documentation Initiative

1475 2009/04/29-
2011/10/31

54(1,530) 20(147) 39 15 0.72

2007 Southern California
Wildfires Web Archive

5810 2007/10/23-
2007/11/02

335(2,416) 68(156) 215 120 0.64

Maryland State
Document Collection

1826 2010/03/04-
2012/12/03

0(184) 0(69) - - -

April 16 Archive 694 2007/05/23-
2008/04/28

0(118) 0(35) - - -

Brazilian School
Shooting

2535 2011/04/09-
2011/04/14

0(1,092) 0(476) - - -

Russia Plane Crash
Sept 7,2011

2823 2011/09/08-
2011/09/15

0(447) 0(65) - - -

Burke Library New
York City Religions 340

1945 2011/11/16-
2013/02/11

0(208) 0(107) - - -

Hurricane Irene
(Aug 2011)

2816 2011/09/02-
2011/09/26

0(102) 0(71) - - -
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8.5.3 COMBINING THE SIMILARITY MEASURES

We tested 6,615 pairwise combinations (15 method combinations × 21 × 21 threshold

values). A page was considered off-topic if either of the two methods declared it off-topic.

Performance results of combining the similarity approaches are presented in Table 23. We

present the three best average combinations of the similarity measures based on the F1 score

and the AUC. The performance increases with combining Cosine and WordCount (Cosine,

WordCount) at th = (0.1, −0.85). There is a 36% decrease in errors (FP+FN) as compared

to the best performing single measure, Cosine. Furthermore, (Cosine, WordCount) has a

3% increase in the F1 score over Cosine. (Cosine, SEKernel) at th = (0.1, 0.0) has 2%

increase in F1 over Cosine. (WordCount, SEKernel) at th = (−0.80, 0.00) has lower

performance than Cosine.

In summary, (Cosine, WordCount) gives the best performance at th = (0.1, −0.85)

across all the single and combined methods. Moreover, combining WordCount with Cosine

does not cause much overhead in processing because WordCount uses tokenized words and

needs no extra text processing.

8.6 EVALUATING ARCHIVE-IT COLLECTIONS

We used the best performing method (Cosine, WordCount) on the labeled dataset with

the suggested thresholds (0.10, −0.85) and applied them on unlabeled Archive-It collec-

tions. We chose different types of collections, e.g., governmental collections (Maryland

State Document Collection, Government in Alaska), event-based collections (Jasmine Rev-

olution - Tunisia 2011, Virginia Tech Shootings, Global Health Events (the 2014 Ebola

Outbreak)), and theme-based collections (Wikileaks 2010 Document Release Collection,

Human Rights Documentation Initiative, Burke Library New York City Religions). Table

24 contains the details of the 18 tested collections, such as the collection’s ID, timespan,

etc. that comprise 4,019 URI-Rs and 36,785 URI-Ms. We extracted the tested collections

from the ODU mirror of Archive-It’s collections, except for the Global Health Events Col-

lection2, the 2007 Southern California Wildfires Web Archive3, the Academics at Baylor4,

and the 2003 California Recall Election5, which we recently obtained from Archive-It.

The results of evaluating (Cosine, WordCount) at th = (0.10, −0.85) are shown in Table

24. The table contains the number of affected URI-Rs in each collection. For the reported

results, we manually assessed the FP and TP of each TimeMap and then calculated the

2https://archive-it.org/collections/4887/
3https://archive-it.org/collections/5810/
4https://archive-it.org/collections/3497/
5https://archive-it.org/collections/5947/
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(a) cbs8.com on Oct. 24, 2007.

(b) cbs8.com on Oct. 31, 2007.

FIG. 76: Example of a significant change in cbs8.com: from Oct. 24, 2007 to Oct. 31,
2007.
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(a) 760kfmb.com on Oct. 23, 2007.

(b) 760kfmb.com on Oct. 31, 2007.

FIG. 77: Example of a significant change in 760kfmb.com: from Oct. 23, 2007 to Oct. 31,
2007.
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precision P = TP/(TP + FP ) for each collection. We cannot compute recall since we

cannot know how many off-topic mementos were not detected (FN). The precision is near

1.0 for eight collections. P = 0.72 for the “Human Rights Documentation” collection, with

15 FPs. Those 15 URI-Ms affected three TimeMaps. An example of an affected TimeMap

(https://wayback.archive-it.org/1475/*/http://www.fafg.org/) contains 12 FPs.

The reason is that the home page of the site changed and the new versions use Adobe

Flash. The 14 FPs from the “IT Historical Resource Sites” collection affected 5 URI-Ts.

The content of these 5 pages changed dramatically through time, resulting in FPs. The

2007 Southern California Wildfires Web Archive has 44% (68 out of 156) of its TimeMaps

affected with off-topic pages. By assessing the detected off-topic pages from this collection,

we found that P = 0.64, with 120 FPs that affected only 5 URI-Ts because of a significant

change in the content of these pages through time. The two pages that dominated the FPs

with 88% are shown in Figures 76 and 77.

There are six collections that have no reported off-topic pages. Two of these collections,

the Brazilian School Shooting and the Russia Plane Crash, span less than a week, which is

typically not enough time for pages to go off-topic. The other collections with no detected

off-topic mementos are the Maryland State Document, the April 16 Archive, the Hurricane

Irene, and the Burke Library New York City Religions. Perhaps these collections simply

had well-behaved URIs.

8.7 SUMMARY

We presented different approaches for assisting curators in identifying off-topic memen-

tos in the archive [20, 22]. We investigated six methods for measuring similarity between

pages: cosine similarity, Jaccard similarity, intersection of the most 20 frequent terms,

Web-based kernel function, change in number of words, and change in content length. We

tested the approaches on three different labeled subsets of collections from Archive-It. We

found that of the single methods, the cosine similarity measure is the most effective method

for detecting the off-topic pages at th = 0.15. The change in size based on the word count

comes next at th = −0.85. We combined the suggested methods and found that, based

on the F1 score and the AUC, (Cosine, WordCount) at th = (0.1, −0.85) enhances the

performance to have the highest F1 score at 0.9 and the highest AUC at 0.9.

We tested the performance of (Cosine, WordCount) at th = (0.1, −0.85) by applying

them on 18 Archive-It collections. We manually assessed the relevancy of the detected

off-topic pages. In summary, the suggested approach, (Cosine, WordCount) at th = (0.1,

−0.85), has shown good results at detecting the off-topic pages with 0.9 precision. The

presented approaches will help curators to judge their crawls and also will prevent users
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from getting unexpected content when they access archived pages. Besides optimizing the

quality of the archived collections, detecting the off-topic pages automatically will help

in optimizing storage space and the time required for manual off-topic detection. Fur-

thermore, flagging the off-topic pages will be useful for the quality of the automatically

generated stories in the DSA framework and other applications such as thumbnail gen-

eration. We generated a gold standard dataset of labeled mementos that is available at

https://github.com/yasmina85/OffTopic-Detection along with the off-topic detection

source code. We are contributing this manually labeled gold standard set to the community

for use in future research.

We also identified five different behaviors of changing the aboutness of TimeMaps:

Always On, Step Function On, Step Function Off, Oscillating, and Always Off. The ideal

behavior for curators is “Always On”, in which the pages do not deviate from the theme of

the collection. We found that 24% of the TimeMaps in our manually labeled sample had

off-topic mementos. The majority of the affected TimeMaps are “Step Function On” and

“Oscillating” with 8-13% of the TimeMaps. We found small number of TimeMaps that

were “Always Off” or “Step Function Off”. These behaviors will inform curators of the

different cases of TimeMaps they may have in their collections. Furthermore, they inform

us on the challenges of detecting the off-topic pages.

As the results of evaluating the presented approaches in this chapter suggest, (Cosine,

WordCount) at th = (0.1, −0.85) are the best performed methods combined. We adopt the

two methods for excluding the off-topic pages from the pool of archived pages in Archive-

It collections. In the next chapter, we will continue the other steps of selecting the best

representative pages for generating a story.
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CHAPTER 9

SELECTING REPRESENTATIVE PAGES FOR THE STORIES

The main research question we investigate in this chapter is: How to select k mementos

that represent a story? The key element of this task is to evaluate and select the “best”

representative k mementos, where k is much smaller than the number of mementos in

the collection. Suggested values of k are determined by the results of the study in Chap-

ter 6, and other tunable parameters will include the timeline of the desired story (which

may exclude some portions of the collection), the percentage of damage of the memento

(incomplete pages are not desirable candidates), the story type (cf. Table 4), etc.

To address our research question, we apply the following steps on an archived collection

to reduce the candidate pool of mementos and then select representative mementos for the

story (see Figure 59 in Chapter 5):

1. Eliminating the (near-)duplicate mementos: We exclude duplication in TimeMaps

based on the duplicate elimination algorithm proposed in Section 9.1.

2. Excluding non-English language pages: We keep only mementos with English lan-

guage content (Section 9.2).

3. Dynamic time slicing: Based on the dynamic slicing algorithm described in Section

9.3, we divide all the mementos in the collection into a dynamic number of slices that

grows slowly based on the collection size.

4. Clustering mementos of each slice: Based on the content, we cluster the mementos

of each slice (Section 9.4).

5. Selecting the best representative memento: We evaluate and select a memento from

each cluster based on a set of quality metrics we proposed in Section 9.5

6. Chronological ordering: We specify the notions of time for the chosen mementos and

extract their metadata to put them in chronological order for visualization (Section

9.6).

7. Visualizing the selected mementos: At the end, we use Storify for visualizing the

generated story (Section 9.7).
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FIG. 78: Snapshots of mementos of news.egypt.com from the Egyptian Revolution collec-
tion that have duplication. Each group of similar mementos are grouped and annotated
with the same color.
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9.1 ELIMINATING (NEAR-)DUPLICATES IN WEB ARCHIVES

Archive-It crawlers grab periodic snapshots of the seed URI based on a predefined

frequency set by the collection curator. This frequency may be daily, weekly, or even

yearly. Due to the nature of Web evolution, some of these snapshots may change little or

not at all.

Algorithm 1 Eliminating (near-)duplicates in an individual TimeMap

1: URI-T has n URI-Ms
2: URI-Treduced = {}
3: current = 0
4: next = 1
5: Calculate the SimHash S(URI-Mcurrent)
6: while next < n do
7: Calculate the SimHash S(URI-Mnext)
8: Compute Hamming Distance HD between S(URI-Mcurrent), S(URI-Mnext)
9: if HD(S(URI-Mcurrent), S(URI-Mnext)) > α then

10: URI-Treduced = URI-Treduced ∪ URI −Mnext

11: current = next
12: end if
13: next = next+ 1
14: end while

Figure 78 shows part of a TimeMap for an Egyptian news Web site (http://news.

egypt.com/en/) in the “Egypt Revolution and Politics” collection. The figure illustrates

that there are duplicates in this TimeMap. Each group of similar mementos are grouped and

annotated with the same color. Different colors reflect different clusters. The first memento,

annotated by green, has four duplicates that are exactly the same. The sixth memento,

annotated by purple, has no duplicates. The following two mementos are duplicates.

Figure 79(a) shows an example of near-duplication in a TimeMap1 of a National Post

article from Feb. 1, 2011 to Mar. 2, 2016 in the Egyptian Revolution collection. The

mementos of Feb. 2, 2011 and Mar. 24, 2015 are annotated in red and shown in Figures

79(b) and 79(c). The two copies contain the same content except for the content of the

sidebar on the right of the page, which contains recent news on the National Post. The

article shown in Figure 79 is a good candidate for a story about the Egyptian Revolution,

but it should only be considered once. The first memento (shown in Figure 79) will be

considered because its Memento-Datetime is the closest to the publication date of the

article (Jan. 28, 2011).

1https://wayback.archive-it.org/2358/*/http://news.nationalpost.com/2011/01/28/

graphic-a-closer-look-at-the-protests-in-egypt/
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(a) TimeMap of an article from National Post from
Feb. 1, 2011 to Mar. 24, 2016.

(b) Feb. 1, 2011 version. (c) Mar. 24, 2015 version.

FIG. 79: Example of duplicate in a TimeMap.
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There have been several methods for calculating the similarity between Web pages [52,

216, 259, 193, 262]. We used 64-bit SimHash fingerprints with k = 4 to calculate the (near-

)duplicates between Web pages in individual TimeMaps after excluding the text from the

HTML. We propose Algorithm alg:duplicates for eliminating (near-)duplicates of mementos

of the same TimeMap URI-T if the mementos exceed a specific threshold α, which was

determined empirically. The goal is to generate a reduced TimeMap URI-Treduced that

contains only unique mementos of the URI. This process is called de-duplication.

Another example of (near-)duplication that might occur within the collection is when

two different sites have the same news story [259, 193, 262]. We select between the repeated

news stories based on quality metrics that evaluate the mementos that are close to each

others in terms of their content (see Section 9.4).

9.2 EXCLUDING THE NON-ENGLISH LANGUAGE PAGES

We detect the language of the content using the language detection library created by

Shuyo [289] with precision ≥ 99% [289, 54]. We select the English mementos and exclude

other languages. The DSA framework can be applied on pages with other languages, but

currently, we evaluate English language pages only.

9.3 SLICING THE COLLECTIONS

In the story generation process, we divide the collection into slices. The main challenge

is how to determine the window size of each slice. For understanding the nature of the

archived collections in terms of the crawl frequency of the seed URIs, we picked nine

different collections in Archive-It that cover a wide range of topics, such as politics, crisis,

health, etc. to tackle the following research questions: Is the crawling frequency similar for

all the URIs in the collections?, Do curators take snapshots from the URIs at regular time

intervals?, Do the crawls of URIs contains gaps? We extracted the TimeMaps for the seed

URIs in each of the nine collections and visualized them. Figure 80 shows the visualizations

for the Memento-Datetimes of multiple archived collections. The x-axis represents the

Memento-Datetimes and the y-axis represents the seed URI. We expected to see more like

Figure 80(a), in which the collection starts with a list of seeds that may increase through

time, and the capture of these URIs continues at regular intervals. However, we found that

in most cases, the crawl of the pages is not frequent. Furthermore, the crawl of a URI

may not start at the same time as other URIs because the collection grows over time as

new seed URIs are added, especially for long-running collections. For example, Figures

80(d) and 80(f) show that their seeds have different start dates and end dates. The Egypt

Revolution collection (Figure 80(c)) has pages that were crawled starting in 2011 and other
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(a) Global Food Crisis (2893).
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(d) Occupy Movement
2011/2012 (2950).
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(e) April 16 Archive (694).

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●● ●● ●● ●● ●● ●● ●● ●● ● ●● ●● ●● ●● ●● ●● ●●

●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●

●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●●●●●●●●●●●●●●● ● ● ●● ● ● ● ● ● ● ●● ●● ●●● ●●● ●● ●● ●● ●● ●● ●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●● ● ● ● ● ● ● ● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●

●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●●●●● ●

●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●●●●●●●●●●●●●●●●● ● ● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ●

●●● ●●

●●● ●●●●●● ● ● ● ● ● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ● ●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ● ●

●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●●●● ● ● ●● ●● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ●● ● ● ●

●●●●●● ●●●●●●●●●●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●● ● ●●●● ●●●●● ●● ● ● ●● ●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●● ●● ●●●● ●●●● ●●●

●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ●

2011 2012

0
10

20
30

40

Memento−Datetime

U
R

Is

(f) Wikileaks Document Release
(2017).
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(g) Brazilian School Shooting
(2535).
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FIG. 80: Visualizations for the Memento-Datetimes of Archive-It collections.
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Algorithm 2 Slicing the collection dynamically.

1: Input: N is a reduced set of all mementos after excluding the off-topic (Chapter 8),
duplicates (Section 9.1), non-English language mementos (Section 9.2)

2: Sort all the mementos in N by their Memento-Datetimes
3: Define Sr as the recommended number of slices
4: Define Sa as the actual number of slices
5: if |N | > 28 then
6:

Sr = d28 + log10|N |e (15)

7: else
8:

Sr = |N | (16)

9: end if
10: Y = d|N |/Sre
11: Sa = d|N |/Y e
12: i = 1
13: while i < Sa do
14: Move the next Y mementos from N into slice i
15: i = i+ 1
16: end while
17: Move the remaining mementos from N into slice Sa

pages starting in 2013. There are collections with URIs whose crawling date is before the

ending crawling date of the collection (for example, Figure 80(f)). Therefore, there are

seed URIs that have 1000 mementos, while other seed URIs have just 20 mementos.

One of the reasons for stopping the crawling of a page may be the change of the page’s

topic through time. For example, the crawl of hamdeensabahy.com stopped after it went

off-topic for a long time. This can be discovered if the curator checks the relevancy of the

page manually. Another reason for ceasing the crawl of a URI is the change of the page’s

status from HTTP 200 to HTTP 404.

Slicing the collection can be done in two ways: dividing the collection into slices that

have equal time intervals or dividing the collection into slices with an equal number of

mementos. Slicing by time interval will not be appropriate for collections that have gaps in

the middle. For example, the crawl frequency of Figure 80(e), where there is a large gap in

crawling, will result in some slice having a large number of mementos and other slices do

not have mementos at all. Therefore, we proposed a slicing algorithm that will distribute

the mementos equally in a predefined number of slices that will be specified dynamically

based on the number of mementos N in the collection after excluding the off-topic pages,

non-English language pages, and the (near-)duplicates. The total number of resulted slices
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should be close to 28, which is suggested based on our study of the popular stories in Storify

(Chapter 6).

Algorithm 2 defines the number of slices and the number of mementos per slice (Y =

dN/Se). This algorithm will secure a uniform representation of the mementos based on

the density of the mementos through time. Note that, the actual number of slices Sa will

be less than the recommended Sr in some cases. For example, assume N = 50. Based on

the equation 15, the recommended number of slices Sr will be 29 (Sr = 29), so Y = 2.

Distributing 50 mementos equally by 2 mementos in each slice will result in 25 slices, so

Sa = 25.

9.4 CLUSTERING THE MEMENTOS OF EACH SLICE

After dividing the collection into Sa slices, we cluster the Y mementos in each slice. The

output of this step is a set of k clusters, where k ≥ Sa. We used the Density-Based Spatial

Clustering of Applications with Noise (DBSCAN) algorithm [97] to cluster the mementos

in each slice based on their textual contents. DBSCAN does not require the specification of

the number of clusters a priori, as opposed to k-means clustering [125]. DBSCAN needs two

parameters: minPts, the minimum number of points in each cluster; ε, the radius of the

cluster. There is no standard similarity cut (ε) that represents if two topics are similar. We

found empirically that ε = 0.4 is a good value for increasing the novelty between clusters

and producing stories that have the desired number of resources, which is close to 28.

A resulting cluster from this step contains one or more mementos that are close to one

another. For example, the two mementos in Figures 81(a) and 81(b) should be in the same

cluster. The choice between them will be based on the quality metrics we specify in the

following section.

9.5 SELECT THE BEST REPRESENTATIVE MEMENTOS

The previous steps produce a set of k clusters, in which each cluster contains the

mementos that are close to each others in terms of content. In this step, we will select only

one memento from each cluster. So the output of this step is k mementos. Choosing the

best candidates for each event of the story will tremendously affect the quality of the created

story. We specify the memento quality based on the amount of damage for the memento

[56] and if the memento generates a visually attractive link preview when inserting to a

tool like Storify.
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(a) Feb 01, 2011: CNN covering Mubarak’s speech.

(b) Feb 01, 2011: BBC covering Mubarak Speech.

FIG. 81: The coverage of the same news from two popular Web sites, but the archived
version of the BBC page is missing style sheets.
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(a) All three of the embedded im-
ages are included and identified by
the red arrows. Missing resources
represent 17%.

(b) The large, central image (that
is the main content of the page)
was removed, identified by the red
arrow. Missing resources repre-
sent 24%.

(c) The XKCD logo was removed
and banner of comics, identified
by the red arrows. Missing re-
sources represent 29%.

FIG. 82: The XKCD example demonstrates that embedded resources have varying human-
perceived importance to their page [55].

We weight each memento with quality measure Mq which represents the total quality

of each memento. Mq is calculated as follows:

Mq = (1− wd ∗Dm) + wl ∗Ml + wc ∗Mc (17)

where Dm is the value of memento damage (Section 9.5.1), Ml is URI level (Section 9.5.2),

and Mc is the URI category (Section 9.5.2).

We explain each metric in Equation 17 in detail in the following sections. We tune the

system using different weights for each of the quality metrics as shown in Equation 17. We

set level weight (wl = 0.45), memento damage weight (wd = 0.40), and category weight

(wc = 0.15). Setting these weights needs further testing with multiple collections. In the

following subsections, we will explain how we calculate each metric.

9.5.1 MEMENTO DAMAGE

When Web crawlers attempt to capture Web pages, they may not capture every resource

on every page, which can result in missing a portion of the embedded resources of the

pages (e.g., images and style sheets) [39]. Some of the embedded resources are more

important to the user than others [56]. Brunelle et al. [56, 57] used the example in

Figure 82 to demonstrate that the proportion of the missing resources of the page is not

an accurate representation of the memento damage. Figure 82(a) shows the live Web
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version of the XKCD2 page, which is missing two embedded stylesheets that represent

17% of all the embedded resources. They manually removed the main image of the page

(the central image is most important to the utility of the page) that resulted in 24% of

the embedded resources being missing (Figure 82(b)). Figure 82(c) shows the same page

after they manually removed the logo and banner, which are not essential to the user’s

understanding of the XKCD content. With missing the logo and the banner, the missing

resources represent 29% of the total resources. Therefore, the importance of the missing

resources is an essential factor in assessing the damage of mementos.

Many approaches have been proposed for measuring memento damage [56, 55, 169]. In

the DSA framework, we adopt Brunelle’s algorithm for assessing memento damage [56, 57].

The main idea of Brunelle’s approach is generating a damage metric that is close to the

perception of Web users. They first measure the importance of the embedded resources to

rate the damage of the memento. Their proposed algorithm is based on the MIME type,

size, and location of the embedded resource to calculate the importance of the embedded

resources. They defined Dm as the damage rating, or cumulative damage, which is a

normalized value ranging from [0, 1].

Dm is calculated as follows [57]:

Dm =
Dmactual

Dmpotential

(18)

They define the set of all embedded resources R and the set of all missing resources Rr

in Equation 19 to determine potential Dmpotential
and actual damage Dmactual

.

R = {All embedded resources requested}

Rr = {All missing embedded resources}

Rr ⊆ R

(19)

Calculating Dm starts with loading the URI-M with PhantomJS, then finding the po-

tential damage Dmpotential
by determining the importance of CSS, multimedia, and images,

and then determining proportion of unsuccessfully dereferenced embedded resources and

finding the actual damage Dmactual
(same as the last step but with only those URI-Ms

unsuccessfully dereferenced). The last step is determining the total damage Dm, which we

use in the DSA framework (Equation 17) as our indicator for the memento damage.

2http://www.xkcd.com/
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(a) Feb. 11, 2011: a memento of the homepage of BBC on Storify

(b) Feb. 11, 2011: a memento of the homepage of BBC Middle East section on Storify

(c) Feb. 11, 2011: a memento of the BBC article page on Storify

FIG. 83: Storify creates better snippets from a specific article (i.e., deep links) than a
homepage about the same event.

9.5.2 SNIPPET QUALITY

As we declared earlier, we use social media to visualize the generated stories. When a

user posts a link on social media networks, e.g., Facebook and Storify, a visual snippet with

a title, a summary of the content, and an image is extracted from that link. These visual

snippets are created from the HTML tags of the Web page. The type and the level of the

URI affect the quality of the snippet. In the following subsections, we will illustrate how

the level and category of a Web page affect the quality of the snippet and our weighting

algorithms for the pages.

URI level-based quality

We experimented with the generation of visual snippets for many different kinds of URIs.

We discovered that social media can generate better snippets from articles that focus on

only one topic (these articles also often have a long URI path length, e.g., cnn.com/a/b/c/

2011/4/2), while it does not extract nice snippets from homepages that have an overview
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of multiple topics (these pages often have a short URI path length, e.g., cnn.com). For

instance, Figure 83 shows three different snippets on Storify for three different URIs with

the same domain (bbc.com) in the Egypt Revolution collection. Each of the three URIs

covers the same event, Mubarak’s stepping down. The snippet that is created from a URI3

of a “deep link”4 (Figure 83(c)) is better in terms of the title, image, and the summary

text than the snippet that is created from a high-level URI (Figure 83(a) and 83(b)). The

second best snippet is the one that is generated from the homepage of the Middle East

section5 (Figure 83(b)) and the one with the least quality is the one that is generated from

the BBC homepage6 (Figure 83(a)).

Therefore, if aboutness(URI-Ri@tx) ≈ aboutness(URI-Rj@tx), where URI-Ri is a

deep URI and URI-Rj is high level URI (Ml(URI-Ri) > Ml(URI-Rj)), then URI-Ri@tx

is preferred over URI-Rj@tx. In the DSA framework, the deeper the URI-R, the higher

weight we assign to this URI-R based on its level. The value of Ml is normalized in the

range of [0, 1]. For example, the Ml of cnn.com/a/b/c/2011/4/2 will be assigned 0.6 and

Ml = 0.1 for cnn.com/.

URI category-based quality

By testing Storify, we found that the page category may affect the quality of the extracted

snippets. Moreover, there are different kinds of URIs in which the extraction fails to capture

information related to the topic of the collection such as URIs for pages on Facebook,

Facebook accounts, Twitter accounts, Google groups, etc. When these pages are posted

on Storify, the text of the snippet is extracted from the description of the profiles or pages.

For example, Figure 84 shows the snippet representation of the memento of the @Haitifeed

Twitter account7 in the “Haiti Earthquake”8 collection. The text of the snippet in Figure

84(b) shows the description of the Twitter page which does not represent the topic of the

collection.

Figure 85 contains a memento of the “We are all Khaled Said” page on Facebook, which

started the Egyptian Revolution events on Facebook in January 2011. As we mentioned in

Chapter 1, the page was created in June 2010 for bringing the attention to a young man

named Khaled Said who was beaten to death by Egyptian security forces in Alexandria,

Egypt. Although the page is important to the Egyptian Revolution events, the page is

3https://wayback.archive-it.org/2358/20110211192204/http://www.bbc.co.uk/news/

world-middle-east-12433045
4https://en.wikipedia.org/wiki/Deep_linking
5https://wayback.archive-it.org/2358/20110211191942/http://www.bbc.co.uk/news/world/

middle_east/
6https://wayback.archive-it.org/2358/20110211191429/http://www.bbc.co.uk/
7http://twitter.com/Haitifeed/
8https://archive-it.org/collections/1784/
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(a) The Twitter account @Haitifeed in the “Earthquake in Haiti” collection

(b) The snippet of Twitter account @Haitifeed on Storify

FIG. 84: Frequently a memento of a Twitter account does not produce good represen-
tative snippet. Link: http://wayback.archive-it.org/1784/20100131023240/http:

/twitter.com/Haitifeed/

not a good candidate to be included in the story. That is because the extracted snippet

contains the description of the page, which does not have anything relevant to the Egyptian

Revolution. Including such pages may not be a good selection for generating an attractive

story on Storify.

Another example that shows how the type of the Web site affects the quality of the

snippet is illustrated in Figure 86. The figure shows Web pages from two different domains

(cnn.com and news.blogs.cnn.com) describing the same event for one of the Egyptian Rev-

olution figures who was arrested then released in the 14 days of the Egyptian Revolution.

The snippet produced from a news article (Figure 86(c)) is better than the snippet gener-

ated from a blog post (Figure 86(d).
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(a) A Facebook page in the “Egyptian Revolution” collection

(b) The snippet of the Facebook page on Storify

FIG. 85: Frequently a memento of a Facebook page does not produce a good representative
snippet. Link: http://wayback.archive-it.org/2358/20141225080305/https:/www.

facebook.com/elshaheeed.co.uk
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(a) Google executive release on
news.blogs.cnn.com

(b) Google executive release on cnn.com

(c) The snippet of news.blogs.cnn.com on Storify (d) The snippet of cnn.com on Storify

FIG. 86: The snippet of cnn.com on Storify.

When creating a collection at Archive-It, curators may group Web pages into categories

to allow easier filtering and browsing. However, many collections lack such grouping,

making it cumbersome to find related Web pages based on the categories. Furthermore,

several Archive-It collections do not have the sites of the collection organized into groups

(e.g., Pakistan floods collection9). Thus, we used our previously proposed heuristic-based

categorization [252], which classifies the URI based on its domain component, then assigns

each category a weight based on how the category affects the snippet quality. Examples

for how we categorized the URIs include the following:

• Social Media: Facebook, Twitter, Google Plus, or Reddit.

• News: News sites, such as BBC, CNN, NYTimes.

• Blogs: Blogs or WordPress sites.

• Videos: YouTube or Dailymotion.

• Others: all sites that do not match the previous rules.

9https://archive-it.org/collections/2836/
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1 {

2 "title ": "Egypt Revolution - different URIs through time"

3 ,"slug": "egypt -revolution -story"

4 ,"description ": "This is an automatically generated story from

the Egypt Revolution and Politics collection in Archive -It."

5 ,"thumbnail ": "https :// storify.com/public/img/default -thumb.gif"

6 ,"elements ": [

7 {"type ":" link",

8 "permalink ":" http :// wayback.archive -it.org

/2358/20110211072257/ http :// news.blogs.cnn.com/

category/world/egypt -world -latest -news/",

9 "data ":{

10 "link ":{

11 "title ":" Egypt This Just In",

12 "description ":" Egyptian opposition leader

Mohamed ElBaradei said that ...",

13 "thumbnail ":" http :// wayback.archive -it.org

/2358/20110211072257 im_/http ://i2.cdn.turner

.com/cnn /2011/ images /02/08/

t1larg_assange_gi_afp.jpg"}},

14 "source ":{

15 "name ":" news.blogs.cnn.com",

16 "href ":" http :// news.blogs.cnn.com"},

17 "attribution ":{

18 "name ":" news.blogs.cnn.com",

19 "href ":" http :// news.blogs.cnn.com"}},

20 {"type ":" link",

21 "permalink ":" http :// wayback.archive -it.org

/2358/20110814100103/ http :// news.egypt.com/en/",

22 "data ":{

23 "link ":{

24 "title ":" Egypt News",

25 "description ":" Telecom Egypt upgrades network

cable system ...",

26 "thumbnail ":" http :// wayback.archive -it.org

/2358/20110814100103 im_/http :// news.egypt.

com/english/thumbnail.php?file=

Mohamed_elBaradei_249905761.jpg&size=

article_large "}

27 },

28 "source ":{

29 "name ":" news.egypt.com",

30 "href ":" http :// news.egypt.com"},

31 "attribution ":{

32 "name ":" news.egypt.com",

33 "href ":" http :// news.egypt.com"}},

34 ...

35 ]

36 }

FIG. 87: The JSON object of a generated story from the Egypt Revolution collection in
Archive-It by our implementation of the DSA framework.



173

We assigned each page a weight 0 ≤ Mc ≤ 1 based on its category. We give higher

weights to news Web sites, video, social media posts then blogs come next and the lowest

weight goes to Facebook pages, Twitter accounts, Google groups, etc.

9.6 ORDER THE SELECTED MEMENTOS CHRONOLOGICALLY

The previous step results in k mementos. In this step, we order the k mementos

chronologically. As we discussed in Section 3.5, there are multiple notions of time for

an archived Web page: Creation-Datetime (CD), Last-Modified (LM), Memento-Datetime

(MD), and Aboutness-Time (AT). The temporal order of the events is important to create

a good narrative that the user perceives as it appeared in the past, especially with the

broad summary story. We use the “Newspaper: Article scraping and curation” Python

library [249] to extract the publishing date of the Web page. It applies multiple strategies

such as extracting the date from a URI or from the Web page metadata. If neither of

these strategies succeed, we use the Memento-Datetime as the estimated publishing date.

Finally, we order the mementos chronologically based on their dates.

9.7 VISUALIZING THE STORIES USING STORIFY

The goal of the DSA framework is to find the k ≈ 28 samples that best summarize

the collection, and then to insert those k ≈ 28 samples into any visualization tool. In our

implementation, we used Storify, a popular platform for storytelling, to visualize the set of

k ≈ 28 mementos that represent the extracted story from the collection. Storify provides

an API10 that allows users to create and publish stories by sending objects of the elements

of the stories in JSON format. Once a story is created and pushed to Storify, it can be

edited and shared.

Figure 87 shows an example of a Storify story11 that was generated automatically by

our implementation from the Egypt Revolution collection in Archive-It. After we selected

k ≈ 28 mementos that represent the collection, we generated the story elements for the

mementos. Each story in a JSON object contains the metadata of the story, such as the

story name and description, then the details of each element such as the hyperlink, the

extracted title, etc. We use two different methods for creating a snippet on Storify.

1. Storify extraction: We send the links of the mementos to Storify and let the snippet

extraction be generated by Storify. In this method, we override the favicon of the

resource that is created by Storify (see Figure 88), because Storify uses the Archive-It

10http://dev.storify.com/api/
11https://storify.com/yasmina_anwar/egypt-revolution-story
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(a) Storify extraction of CNN page.

(b) We override favicon that Storify extracts.

(c) Storify extraction of BBC page.

(d) We override favicon that Storify extracts.

FIG. 88: Example for how we override Storify’s extracted favicon to generate more visually
attractive snippets.
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favicon for all the pages regardless of the original source of the page (Figures 88(a)

and 88(c)).

2. Newspaper extraction: We use the “Newspaper” Python library for extracting and

curating articles to extract the metadata of the mementos (the page title, descriptive

text, the main image, and the Creation-Datetime or Last-Modified). We put the

metadata of the elements in the story’s structure in JSON format, then post the

story on Storify.

Each extraction method has its advantages and disadvantages. The Newspaper extraction

allows us to attach the date to the title and to control the length of the snippet. This

gives the story a more organized look (Figure 89). On the other hand, Storify detects

the image and the title in most of the pages better than Newspaper extractor (Figure

90). Furthermore, the Storify extractor is much faster because it runs on the server side.

Storify takes a fraction of second for publishing k ≈ 28 mementos, while Newspaper takes

≈ 2 minutes to extract the metadata from the same number of mementos.

9.8 REVISITING THE EGYPTIAN REVOLUTION EXAMPLE IN

CHAPTER 1

As illustrated in Figure 5, there are three collections that include the Egyptian Revo-

lution and the user may not immediately understand the subtle differences between them.

In Section 3.1, we described the problem of understanding each of the three collections and

illustrated how it is difficult to browse all the URIs and the mementos in each collection.

We revisit the example of the Egyptian Revolution introduced in Section 3.1 to show

the effectiveness of the DSA framework in helping the user to understand each of the three

collections. We extracted three broad summaries12,13,14 from each of the three collections.

The resulting generated stories from the DSA framework are shown in Figures 91, 92, and

93. The user can gain an understanding about the holdings of each collection from the

snippets of the k ≈ 28 pages chosen from each collection. We notice from the figure that

the resources in the “2011 North Africa and Middle East” collection are about different

countries in the Middle East, not only Egypt, while the holdings of the “Egypt Revolution

and Politics” collection are only about Egypt. The “2011 Arab Spring” story contains only

one element because the “2011 Arab Spring” collection has only five seed URIs. Of those,

one seed URI had only two mementos, which were similar to each other, and the remaining

four seed URIs were off-topic of the collection.

12
https://storify.com/yasmina85/auto-stories-from-archived-collections-56fbc3d1b8d27c6f6571c647

13
https://storify.com/yasmina85/auto-stories-from-archived-collections-5702ff8f228eede273d49c21

14
https://storify.com/yasmina85/auto-stories-from-archived-collections-5702c7f1228eede273d48ddf
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(a) The story of the Wikileaks collection as extracted by Storify.

(b) The story of the Wikileaks collection as extracted by News-
paper.

FIG. 89: Example for Storify and and Newspaper extraction.
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(a) The story of the Russia Plane Crash collection as extracted
by Storify.

(b) The story of the Russia Plane Crash collection as extracted
by Newspaper.

FIG. 90: Storify extracts images better than the Newspaper library.
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FIG. 91: The story of the Egyptian Revolution and politics collection.
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FIG. 92: The story of the North Africa & the Middle East 2011-2013.
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FIG. 93: The story of the 2010-2011 Arab Spring collection.
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TABLE 25: The characteristics of the collections used for the evaluation.
Collection ID Timespan URI-Rs URI-Ms

2013 Boston
Marathon Bombing

3649 2013/04/19 - 2015/03/03 318 1,907

Occupy Movement
2011/2012

2950 2011/12/03 - 2012/10/09 955 30,581

Egypt Revolution
and Politics

2358 2011/02/01 - 2013/04/18 1,112 42,740

April 16 Archive 694 2007/05/23 - 2008/04/28 88 362

2013 Government
Shutdown

3936 2013/10/22 - 2013/10/22 186 246

Russia Plane Crash
Sept 2011

2823 2011/09/08 - 2011/09/15 104 558

Wikileaks 2010
Document Release
Collection

2017 2010/07/27 - 2013/08/26 41 1,126

Earthquake in Haiti 1784 2010/01/20 - 2011/02/27 132 967

Brazilian School
Shooting

2535 2011/04/09 - 2011/04/14 650 1,492

Global Health
Events

4887 2014/10/01 - 2015/12/21 169 3,026

9.9 EVALUATING THE DARK AND STORMY ARCHIVE

FRAMEWORK

In this section, we evaluate the automatically generated stories from archived collec-

tions. What makes a good story is a matter of human judgment and is difficult to evaluate.

Inspired by the Turing Test [324], we use ground truth dataset of hand-crafted stories from

Archive-It collections and let humans select between the human-generated stories and the

automatically generated stories. We consider our method to be a success if humans are as

likely to choose the automatically generated story as they do the human-generated story.

We asked expert archivists to generate hand-crafted stories from Archive-It collections,

then used Amazon’s Mechanical Turk15 (MT) to evaluate the automatically generated

stories against the stories that were created by experts. In the following sections, we will

present the methodology and the results of evaluating the automatically generated stories

from archived collections.

15https://www.mturk.com/
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9.9.1 HAND-CRAFTED STORIES FROM ARCHIVED COLLECTIONS

We group Archive-It’s collections into three main categories [22]. First, there are collec-

tions that are devoted to archiving governmental pages (e.g., all Web pages published by the

State of South Dakota16). Second, there are collections that are event-based (e.g., Occupy

Movement collection17 and SOPA Blackout collection18). Third, there are theme-based

collections (e.g., the Columbia Human Rights collection19).

We tested the DSA framework against event-based collections, which represent a sig-

nificant portion of Archive-It collections. We asked expert archivists, with the help of the

Archive-It team and Archive-It partners, to generate hand-crafted stories from Archive-

It collections. We provided them with guideline documents that contained instructions

for generating stories from Archive-It collections by selecting 28 representative mementos

(more or less based on the collection size) that best represent each collection. We showed

them the type of stories that can be generated. We also provided them the criteria for

selecting the mementos. They suggested 10 different collections to generate stories from

(see Table 25).

Criteria of the generated stories

The following is the list of the guidelines that we provided to the expert archivists for

generating the stories:

• The representative mementos should be selected from within the collection. There

should not be any memento from outside the collection.

• The default value for the number of selected mementos is k ≈ 28. This value can be

more or less based on the nature and size of each collection.

• We expect to have three generated stories out of each collection. Depending on

the nature of the collection, some kind of stories may not be applicable. For those

collections, please specify if any of the previous kinds of stories cannot be created.

• You can choose a specific time period for generating the story. If the collection spans

many years, you can choose a subset of the timespan of the collection. For example,

if you want to know the key events of the 25 Jan Egyptian Revolution during the

18 days of the protests in Egypt until Mubarak stepped down, you can choose pages

from within the time range 2011/02/01-2011/02/14.

16https://archive-it.org/collections/192/
17https://archive-it.org/collections/2950/
18https://archive-it.org/collections/3010/
19https://archive-it.org/collections/1068/
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We also put criteria for selecting the mementos:

• The language of the memento should be in English.

• The memento should be on-topic (the content is related to the topic of the collection).

• The memento should produce a visually attractive snippet on Storify, an article (cnn.

com/a/b/12/2015) is more preferred than a homepage (cnn.com).

• The memento should not be a (near-)duplicate of another memento in the list.

• A better quality memento in terms of the missing resources is a better choice than a

memento that is missing resources.

Methodology for Manually Generating a Story from Archived Collections

Along with the criteria of the stories and the selected mementos within each story, we illus-

trated to the Archive-It team the suggested possible types of stories that can be generated

from each collection:

1. Sliding Pages, Sliding Time (SPST): broad summary of different URIs through time

that provides an overview of the collection from different Web sites.

2. Sliding Page, Fixed Time (SPFT): different URIs at nearly the same time (for exam-

ple, how the news covered Feb 11, 2011, when Mubarak stepped down) that provide

different perspectives at a point in time.

3. Fixed Page, Sliding Time (FPST): same Web site at different times that provides an

evolution of a single page (or domain) through time.

Note that in Chapter 5, we introduced four possible types of stories. However, with

the current capabilities of Web archives, the Fixed Page, Fixed Time (FPFT) story cannot

be supported because archives currently do not provide users with the ability to navigate

representations by their environmental influences [168]. The domain experts provided us

with lists of mementos for 23 different stories from the 10 different collections (see Table

26).

An example of a manually generated story by archivists from the Boston Marathon

Bombing collection is shown in Figure 94. There were some collections that spanned a

short period of time, so the archivists did not provide the FPST stories for these collections

(for example, the “Brazilian School Shooting”, which spans over three days only). Another

reason for not generating the FPST story is that none of the seeds of the collection change
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TABLE 26: The breakdown of the stories that we received from domain experts.
Collection Name SPST SPFT FPST No. of

stories

2013 Boston Marathon Bombing X X X 3

Occupy Movement 2011/2012 X X X 3

Egypt Revolution and Politics X X X 3

April 16 Archive X X X 3

2013 Government Shutdown X X - 2

Russia Plane Crash Sept 2011 X X - 2

Wikileaks 2010 Document Release Collection X - X 2

Earthquake in Haiti X - X 2

Brazilian School Shooting X - X 2

Global Health Events X - - 1

Total no. of stories 10 6 7 23

over time (e.g., news articles). For example, the seed URIs of “Russia Plane Crash Sept

2011” collection are all news articles which do not evolve over time.

Table 27 shows the number of resources per story that were generated by experts and

by the DSA framework (see Section 9.9.2).

9.9.2 AUTOMATICALLY GENERATED STORIES FROM ARCHIVED COL-

LECTIONS

We applied the steps of the DSA framework that were introduced in Chapter 5 on the

set of suggested collections in Table 25. We generated 23 stories from the collections. The

SPST stories do not require any parameters because they represent a broad summary for

the whole collection from all the seed URIs at different times. The FPST story and the

SPFT story require input parameters such as URI-T for FPST stories and time frame for

SPFT stories. In these stories, we feed DSA with the same parameters that were used in

the human-generated stories (Table 26).

Dataset Preprocessing

We applied the following steps to generate stories from the Archive-It collections:

1. Obtain the seed list and the TimeMap of URIs from the front-end interface of Archive-

It.

2. Extract the HTML of the mementos from the WARC files (locally hosted at ODU)

and download the collections that we do not have in the ODU mirror from Archive-It.
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FIG. 94: An example of a Sliding Page, Sliding Time story from the Boston Marathon
Bombing collection that was generated by domain experts. Link: https://storify.com/
mturk_exp/3649b1s-57218803f5db94d11030f90b



186

FIG. 95: An example of a Sliding Page, Sliding Time story from the Boston Marathon
Bombing collection that was generated automatically. Link: https://storify.com/

mturk_exp/3649b0s
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FIG. 96: An example of a Sliding Page, Sliding Time story from the Boston Marathon
Bombing collection that was generated randomly. Link: https://storify.com/mturk_

exp/3649b2s-57227227bb79048c2d0388dc
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TABLE 27: The number of resources in the stories generated by domain experts and from
the DSA framework.

SPST SPFT FPST
Collection Human Automatic Human Automatic Human Automatic

3649 28 29 28 25 7 5

2950 16 45 9 20 9 7

2358 16 20 11 17 12 7

694 17 32 14 19 5 4

3936 17 27 14 15 - -

2823 28 25 27 23 - -

2017 25 32 - - 7 10

1784 28 34 - - 11 14

2535 26 24 - - 23 20

4887 36 34 - - - -

3. Extract the text of the page using the Boilerpipe library [184].

4. Eliminate the off-topic pages based on the best-performing method ((Cosine, Word-

Count) with the suggested thresholds (0.1, −0.85)), introduced in Chapter 8.

5. Exclude the duplicates of each TimeMap using the algorithm presented in Chapter

9.

6. Detect the language of the content using the language detection library created by

Shuyo [289] and then eliminate the non-English language pages.

7. Slice the collection dynamically and then cluster the mementos of each slice using

DBSCAN algorithm.

8. Apply the quality metrics introduced in Chapter 9 to select the best representative

pages.

9. Sort the selected mementos chronologically then put them and their metadata in a

JSON object (see Figure 87).

The number of the resources in the generated stories are presented in Table 27. Note

that although the Egypt Revolution and Politics collection is the largest collection in the

dataset, the resulting number of the resources for the Sliding Pages, Sliding Time story from

this collection is just 20 mementos. That is because we selected the pages from within the

same time frame (2011/02/01-2011/02/14) that was used for the human-generated story.

An example of an automatically generated story by the DSA framework is illustrated in

Figure 95.
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FIG. 97: An example of a poorly generated story from the Boston Marathon Bombing
collection to judge the selection of the turkers. Link: https://storify.com/mturk_exp/

3649bads
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9.9.3 RANDOM STORIES AND POOR STORIES

We selected k ≈ 28 mementos randomly from the TimeMap of each collection as a

baseline for evaluating the automatically generated stories (see Figure 96). The selection

was done on the mementos in the collection before excluding the off-topic or the duplicates.

The selected mementos were not sorted chronologically in the generated stories.

We use randomly generated stories to be compared against the human-generated stories

and the automatically generated stories as a baseline for the generated stories by the DSA

framework. In other words, we expect that the automatically generated stories will perform

better than random stories against human-generated stories.

We generated poor stories by randomly selecting a memento from collection’s TimeMap

and repeated this memento 28 times. This story represents a control to ensure that the

turkers do not choose randomly between the stories.

9.9.4 EXPERIMENT SETUP

We used the same extraction methods for visualizing the human-generated stories (Fig-

ure 94), automatically generated stories (Figure 95), randomly generated stories (Figure

96), and poorly generated stories (Figure 97) on Storify.

Amazon’s Mechanical Turk has been widely used for conducting user studies in a cost

effective way in the context of time and money [187, 234, 331, 176, 131]. We use Me-

chanical Turk to compare four types of stories (human-generated, automatically generated,

randomly generated, poorly generated), asking Mechanical Turk workers (or turkers) to

choose between two stories at a time.

Our goal is to assess if the automatically generated stories by the DSA framework are

indistinguishable from the human-generated stories. We provided turkers a description of

a simple task to perform (a Human Intelligence Task, or HIT), choosing their preferred

story (see Figure 98). We provided a simple generic description for the task as follows:

Storify is a service that allows users to organize news stories, tweets, etc. to

tell a story about a particular topic. We show two different stories for the same

topic below. The goal of the stories is to provide an overview of the topic. This

HIT contains two sets of comparisons to complete. Of the two stories shown in

each comparison, choose the one you prefer.

Each HIT consists of two comparisons, in which one of the two comparisons was a

control, a comparison between one of the stories and a poorly generated story. We reject

the HITs where users selected a poorly generated story (i.e., a false positive selection).
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FIG. 98: A sample HIT that shows two stories that turkers evaluate and select their
preferred story. Each HIT contains two comparisons.
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FIG. 99: A plot of the time taken by the turkers for submitting the HITs.

To reduce the cognitive load of the task, we assigned one comparison for each HIT along

with the comparison that includes the poor story. Therefore, for evaluating one story, we

have three HITs as follows:

HIT1 : human vs. automatic, human vs. poor

HIT2 : human vs. random, human vs. poor

HIT3 : random vs. automatic, automatic vs. poor

We ensured that the position of each pair of composites was reversed among different

stories to ensure there was not a bias in the HIT layout. We posted 69 HITs to evaluate 23

different stories. For each HIT, we required 15 turkers with “master” qualification require-

ments20. Based on many studies for deciding the number of participants in user studies,

group sizes between eight and 25 are typically good numbers for conducting comparative

studies [214, 296]. We chose to use 15 participants for each HIT in our experiment. We

20https://www.mturk.com/mturk/help?helpPage=worker#what_is_master_worker
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FIG. 100: The summary results of MT evaluation.
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TABLE 28: The results of comparing human-generated stories versus automatically gen-
erated stories.

Selections Human Automatic

SPST 142 50.7% 49.3%

SPFT 87 46.0% 54.0%

FPST 103 51.5% 48.5%

rejected the HITs in which the submissions contained poorly generated stories and the

HITs that were completed in less than 10 seconds. TWe rejected a total of 46 HITs. In

total, we had 989 out of 1,035 (69×15) valid HITs. These HITs were performed by 30

unique Master level turkers. We awarded the turker $0.50 per HIT. The turkers took seven

minutes on average to complete the selections of the two comparisons. Figure 99 shows a

plot of the time taken for submitting each HIT.

9.9.5 RESULTS

Figure 100 shows a summary of the results of the turkers selections for the three compar-

isons: human vs. automatic, random vs. automatic, and human vs. random. The results in

Figure 100 shows that both the automatically generated stories and the human-generated

were selected ≈ 50% of the time. The figure also shows that the automatic stories are bet-

ter than the randomly generated stories. Based on the results of the two-tailed t-test, we

found that at confidence level 95% the automatically generated stories with mean = 7.17

of the votes are indistinguishable from the human-generated stories with mean = 7.26

(p = 0.9134, t = 0.1094, df = 43.9). However, at confidence level 95%, the automatically

generated stories with mean = 12.04 and the human-generated stories with mean = 12.65

are significantly different from the random-generated stories with mean ≈ 2 (p < 2.2e−16).

We zoom in on the results of the human-generated stories versus the automatically

generated stories to interpret the results based on the different types of stories (SPST,

SPFT, FPST). Table 28 shows that for all types of stories, the percentages of the turkers

preferences to human and automatic stories are close. We applied a two-sided paired t-test

on the samples based on the story type. We found that at confidence level 95% there is no

significant difference (p > 0.5) between the human-generated stories and the automatically

generated stories for all the types of the stories.

Figure 101 shows the breakdown results of the three comparisons based on the story

type. Based on the t-test, we found that at confidence level 95%, for each of the three types

stories, the results proved that automatically generated stories are significantly similar

to the human-generated stories (p > 0.5) for all the types of the stories. However, the
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FIG. 101: The results of MT evaluation for each type of story.
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difference between the automatically generated stories and the random-generated story is

statistically significant (p < 0.001) for all the types of stories at 95% confidence level.

There is also a significance difference between the randomly generated stories and the

human-generated stories (p < 0.001) at 95% confidence level.

We show the results of the turkers’ preferences for the three selections for each collection

in Figures 102 and 103. Figure 102(a) shows that for most of the collections, the automat-

ically generated stories are indistinguishable from the human-generated stories. There are

two collections that human-generated stories were selected more than the automatically

generated stories: the “Wikileaks Document Release (2017)” and “Global Health Events”.

The automatically generated stories for the “Earthquake in Haiti” were preferred by turk-

ers. Further investigation with more collections is required to test if the type of collections

affects a human’s selection.

9.10 SUMMARY

In this chapter, we described the general methodology for addressing the research ques-

tion “How to select k mementos that represent a story?”. We started with an algorithm for

eliminating the (near-)duplicates in Web archives. Then, we provided an algorithm that

dynamically slices the collection and divides the pages equally on the number of slices. We

introduced a slowly-growing function to specify the number of the pages in the story to

be close to 28 mementos (more or less based on the collection size). We also introduced

multiple quality metrics for selecting the pages that compose a story, then we put the se-

lected pages into chronological order and generated a JSON object to visualize them using

Storify.

We evaluated the stories generated by the DSA framework in the rest of the chapter. We

obtained a ground truth dataset of 23 stories that were generated manually from 10 Archive-

It collections by expert archivists. We used Amazon’s MT to compare the automatically

generated stories with the human-generated stories. Based on 332 comparisons by 30 unique

turkers between human-generated stories and automatic stories, the results showed that

at confidence level 95%, the automatically generated stories are indistinguishable from the

human-generated stories (p > 0.5). We also created random stories as a baseline for the

automatic stories. The results show that the turkers were able to distinguish the random

stories from the automatic and the human stories (p < 0.001).
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FIG. 102: The results of MT evaluation for each collection.
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FIG. 103: The results of MT evaluation for each collection (continued).
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CHAPTER 10

CONTRIBUTIONS, FUTURE WORK, AND CONCLUSIONS

In this chapter, we revisit the research questions with the work that has been done for

investigating each question. We will also present the contributions, the future work, and

conclusions of this research.

10.1 RESEARCH QUESTIONS REVISITED

RQ1. How do people browse the past Web? One of the concerns in the Web

archiving world is how to generate more interest in and use of Web archives. To form

our foundation in using the archives, we investigated how users access Web archives based

on analyzing the user access logs of the IA’s Wayback Machine [18]. We investigated

the differences between human and robot accesses of the Wayback Machine, identified

four major Web archive access patterns (Dip, Slide, Dive, and Skim), and uncovered the

temporal preference for Web archive access (Chapter 4). We found that people come to

Web archives because they did not find the pages on the live Web, and likely not because of

lengthy browsing sessions of the past Web. Although the IA’s Wayback Machine receives

a significant amount of traffic, we found that robots outnumber humans 10:1 in terms of

sessions.

We checked what users are looking for, why they come to Web archives, where they

come from, and how pages link to Web archives [16, 17]. Based on the analysis of referring

pages of human users we investigated how humans discover the Wayback Machine, why

the referrers link to Web archives, and how they link to Web archives. We found that

most human users come to the Wayback Machine via links or direct address presumably

because they did not find the requested pages on the live Web. Of the requested archived

pages, 65% do not currently exist on the live Web. From analyzing the referrers, we found

that more than 82% of human sessions have referrers while only 15% of robot sessions have

referrers.

RQ2. Can we automatically generate stories that convey different perspectives

of the collection? The culmination of this body of work is the framework for generating

stories from the archived collection automatically. It may be possible for a collection to be

summarized with more than one kind of story (depending on the nature of the collection

as well as the curators’ preference), for example, a broadly defined story that samples from
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different URIs and different times, different URIs at approximately the same time, the

same URI at different times, and the same URI at the same time.

We presented the abstract model and the components of the framework along with

the definitions in Chapter 5. The framework has three main components: establishing

a baseline by quantifying stories in Storify and collections in Archive-It to understand

the measurables of both stories and collections, as generated by humans; reducing the

candidate pool of archived pages by excluding the irrelevant pages to the topic of the

collection, excluding the (near-)duplicates, and excluding the non-English language pages;

selecting and evaluating good representative pages by slicing the collection dynamically,

clustering the pages of each slice, selecting the best representative page from each cluster

based on quality metrics we proposed, and then placing the selected pages in chronological

order to be visualized by Storify.

RQ3. How do we build quantitative, descriptive models of human-generated

stories and collections in Archive-It? To support automatic story creation, we needed

to understand the structural characteristics of popular human-generated stories. We de-

termined the characteristics of the human-generated stories based on a study of stories

from Storify. The characteristics we identified included the mean and median length of

resources in the stories, the nature of the resources, how quickly do the resources linked to

from stories become unavailable (HTTP 404), and the popularity of the resources linked to

from stories to (e.g., popular like cnn.com or little-known outlets, blogs, and other sites)

[19, 21]. We established structural features for what differentiates popular stories from

normal stories for building a baseline for the stories we will automatically generate from

the archives (Chapter 6). We found that the popular stories have a median value of 28

elements, which will inform our framework for generating stories from archived collections

that will be composed of a number of resources that is close to 28.

We also determine the characteristics of Archive-It collections by providing measure-

ments for the statistics of all Archive-It collections such as the number of URIs, the number

of mementos, the most used resources in these collections, the average timespan of the col-

lections, etc. (Chapter 7). In summarizing a collection, we can only choose from what is

archived. Although some content in Storify stories will not be applicable (e.g., twitter.com

is popular in Storify, but mostly missing in Archive-It collections), some other characteris-

tics will be applicable, such as the number of resources. Accordingly, our choices of what

to select from the collection are informed by what constitutes a popular story.

We contrasted the created descriptive models of the created stories on social media

storytelling service and the collections in Archive-It explaining the similarities and the

differences between the human-generated stories and the archived collections.
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RQ4. How to detect the off-topic Web pages in the archives? Our work toward

establishing a framework to create stories from archived collections then combine them with

social media begins with filtering the Web archive collections from the off-topic pages. We

proposed and evaluated different methods (Cosine similarity, Jaccard similarity, intersection

of the 20 most frequent terms, Web-based kernel function, and the change in size using a

number of words and content length) at different thresholds to detect when the page has

gone off-topic through the subsequent captures [20, 22]. We built a gold standard dataset

from three different collections to evaluate the proposed methods. Those predicted off-

topic pages will be presented to the collection’s curator for possible elimination from the

collection or cessation of crawling and not considered for inclusion in stories. We found

that combining cosine similarity at threshold 0.10 and change in size using word count at

threshold −0.85 performs the best with accuracy = 0.987, F1 score = 0.906, and AUC

= 0.968 (Chapter 8). We evaluated the performance of the proposed method on several

Archive-It collections. The average precision of detecting off-topic pages in the collections

is 0.92.

We also identified five different behaviors of changing the aboutness of TimeMaps: Al-

ways On, Step Function On, Step Function Off, Oscillating, and Always Off. We quantified

each behavior based on a gold standard dataset. These behaviors will inform curators of

the different cases of TimeMaps they may have in their collections. Furthermore, they

inform us on the challenges of detecting the off-topic pages.

RQ5. How do we identify, evaluate, and select candidate (archived) Web pages

to support the story? After we built a baseline and decreased the candidate pool of

archived pages, we applied several steps on the rest of the mementos to select the best

representative set of mementos. We provided a dynamic slicing algorithm to select from all

the parts of the collections equally. Then, we clustered the mementos in each slice based

on their contents (Chapter 9).

We proposed several metrics to measure memento quality Mq. Based on studying how

Storify visualizes different kinds of pages, we defined two metrics that affect the snippet

quality: the URI level (deep URI or high-level URI) and the type of the page (e.g., social

media, news article, etc). We adopt Brunelle’s algorithm [58] for assessing memento damage

as another criteria for choosing the page. We also defined different methods for extracting

the metadata of the pages to be visualized by Storify.
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10.2 CONTRIBUTIONS

We developed techniques to automatically (with optional human review and “steering”)

sample pages from a collection that summarize and describe the collection. For example,

given a collection of thousands of pages, the DSA framework will automatically select

k ≈ 28 representative pages that will then be linked in storytelling Web services, such

as Storify. This dissertation makes ten significant contributions to the field of digital

preservation:

1. The basic building blocks (Dip, Slide, Dive, and Skim) of user access patterns in

Web archives were introduced through an analysis of the Internet Archive’s Wayback

Machine access logs [18]. We also quantified the patterns differentiating robot from

human accesses (Chapter 4).

2. We studied of the requests of Web archive users, both humans and robots, to gain

insight into what users look for, in the context of the language of the requested pages

[16, 17]. We provided an analysis of referring pages of human users to investigate

how humans discover the Wayback Machine, why the referrers link to Web archives,

and how they link to Web archives (Chapter 4).

3. We proposed different methods to detect when the page has gone off-topic through

the subsequent captures [20, 22]. Those predicted off-topic pages will be presented

to the collection’s curator for possible elimination from the collection or cessation of

crawling (Chapter 8).

4. A gold standard dataset from three different Archive-It collections was created by

labeling thousands of archived pages to test different methods for detecting the off-

topic pages in Web archives (Chapter 8).

5. We created a command line service that helps curators to detect the off-topic pages

then present them to the curator to decide about their relevancy (Chapter 8). The

code and gold standard dataset are available at https://github.com/yasmina85/

OffTopic-Detection.

6. Five different behaviors of changing the aboutness of TimeMaps in Web archives were

identified [22]: Always On, Step Function On, Step Function Off, Oscillating, and

Always Off (Chapter 8).

7. To support automatic story creation, we built a quantitative, descriptive model of

stories that were created manually by Storify users and focusing on the structural

characteristics of popular (i.e., receiving the most views) stories [19] (Chapter 6).
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8. A baseline for the characteristics of archived collections was presented based on an-

alyzing the whole population of Archive-It collections [21] (Chapter 7).

9. We presented the DSA framework, in which we identify, evaluate, and select candidate

mementos to support the events of the stories (Chapter 5).

10. We introduced a ground truth dataset for the human-generated stories, which we

evaluate the automatic stories against using human evaluation (Chapter 9).

11. A command line service was created to automatically generate different kinds of

stories from archived collections. The code and gold standard dataset are available

at https://github.com/yasmina85/DSA-stories.

10.3 FUTURE WORK

We believe that Web archives need services to help users and researchers understand

the tremendous amount of cultural heritage that Web archives hold. Adopting the DSA

framework will help users to understand the important resources of the archived collections.

Our future work will focus on helping archivists to integrate our DSA framework into

Archive-It to help the curators to discover the non-relevant materials in their collections

and generate summaries from these collections. These summaries may attract Web users

and help them understand the holding of these collections.

Our future work will continue to improve the framework by integrating a component

to recommend to collection curators’ new seed URIs that are relevant to the aboutness of

the collections. Because different sources provide different URIs for the story with different

perspectives, we plan to use different sources for detecting new seed URIs, such as Google

search, social media, and the list of references on Wikipedia pages.

We also provided a preliminary investigation of automatically detecting off-topic pages

in Web archives. The off-topic detection methods presented in the DSA were able to detect

off-topic pages within the context of a single TimeMap. We generated our framework

with the assumption that the first memento is on-topic. The next step is to compute

the aboutness of the whole collection and compare the aboutness of the mementos to the

aboutness of the collection, in part to more easily detect the off-topic pages in the “Always

Off” and “Step Function Off” TimeMaps.

We provided preliminary evaluation for the stories generated by the DSA framework.

Although the humans were not able to distinguish the automatically generated stories from

the human-generated stories, future research should investigate the usefulness of the gen-

erated stories and evaluate the discovery tasks for people given the summarized stories.
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For example, if we generate 17 stories from the 17 human rights collections that exist in

Archive-It, we need to conduct user studies to evaluate if a user can tell which collection

is about women’s human rights, or which collection is about human rights in Africa. Fur-

thermore, we plan also to collaborate with humanities researchers to conduct user studies

on important events, e.g., the Arab Spring, and check if a specific kind of story provides

the best insight into the events and the corresponding collections. For example, how do the

Sliding Page, Fixed Time stories help humanities researchers to get different perspectives

about news coverage and how much time is saved from manual search by providing them

this kind of story.

10.4 CONCLUSIONS

Many conversations and important events now start on the Web. The growth rate of

content creation in the digital world is exploding incredibly. Unfortunately, the nature of

the Web is ephemeral, and the expected lifetime of a Web page is short. This can cause

access to the information about an event to decay rapidly after a while and make it difficult

to retrieve how the story of an important event evolved over time. The evolution of the

story and the context in which it was reported are important for preserving our cultural

heritage. Because of this, Web archives have become a significant resource for preserving

our recent history. Additionally, archiving Web pages into themed collections is a method

for ensuring these resources are available for posterity. Many institutions archive the Web,

resulting in tremendous amount of archive pages that have thousands of mementos.

Even though the existence of Web archives can fulfill this important function, we saw

from our analysis of user access logs of the largest and oldest Web archive, the IA’s Wayback

Machine, that Web archives are underutilized by human users. We found that although the

Internet Archive receives a lot of traffic, robots outnumber humans 10:1 in the Wayback

Machine. Furthermore, the humans that visit the Internet Archive’s Wayback Machine

typically visit a single page and then leave; depending on the source this can be as often as

64% of the time. In short, Web archives are not well-known by the general Web population

(and are not indexed by search engines), and those who do know about Web archives

consider them difficult to use.

Our objective is to provide creative and easy approaches to the normal users to browse,

explore, and understand the born-digital materials. Furthermore, the curator will have

assistance for summarizing the holdings of the archived collections automatically by iden-

tifying, evaluating, and selecting candidate Web pages from archived collections. The

candidate pages then are used for generating stories that summarize the holdings of the

archived collections collection, then arrange these pages in a narrative structure ordered
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by time and visualize these stories using Storify. Curators will have the option to update

the generated stories based on their preference. For example, if there are specific URIs the

curators prefer to exclude from the generated story, they can do this. These stories will

be a bridge between the current and past Web. They will provide people with multiple

perspectives about important events using tools they are already familiar with, such as

Storify, and the resources of the generated stories will be persistent.

Using the DSA framework, my son can easily find what he needs to know about the

Egyptian Revolution as it happened in the past, in addition to being able to define where to

start and which collection will give an insight about the Egyptian Revolution. For example,

the resulting stories in Figures 91, 92, and 93 will give him an idea about the holdings of

each collection in which each story summarizes and he can decide on the collection that is

only about the Egyptian Revolution. In addition to that, the generated story will give him

insight into the key events of the Egyptian Revolution.
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[42] Ben Saad, M., Gançarski, S.: Archiving the Web using Page Changes Patterns: A

Case Study. In: Proceedings of the 11th ACM/IEEE-CS Joint Conference on Digital

Libraries, JCDL ’11, pp. 113–122 (2012)

[43] Bergmark, D., Lagoze, C., Sbityakov, A.: Focused crawls, tunneling, and digital

libraries. In: Proceedings of the 6th European Conference on Research and Advanced

Technology for Digital Libraries, ECDL ’02, pp. 91–106. Springer-Verlag (2002)

[44] Berners-Lee, T.: Information Management: A Proposal. https://www.w3.org/

History/1989/proposal.html (1990)

[45] Berners-Lee, T., Fielding, R., Masinter, L.: RFC 2396 - Uniform Resource Identifiers

(URI): Generic Syntax. http://www.ietf.org/rfc/rfc2396.txt (1998)

[46] Bilenko, M., Mooney, R.J.: Adaptive duplicate detection using learnable string simi-

larity measures. In: Proceedings of the ninth ACM SIGKDD international conference



210

on Knowledge discovery and data mining - KDD ’03, p. 39. ACM Press (2003). DOI

10.1145/956750.956759

[47] Blei, D., Ng, A., Jordan, M.: Latent Dirichlet allocation. The Journal of Machine

Learning Research 3, 993–1022 (2003)

[48] Bray, T.: The JavaScript Object Notation (JSON) Data Interchange Format. https:

//tools.ietf.org/html/rfc7159 (2014)

[49] Brewington, B., Cybenko, G.: Keeping up with the changing Web. Computer 33(5),

52–58 (2000). DOI 10.1109/2.841784

[50] Broache, A.: FBI rescinds secret order for Internet Archive records. CNET, http:

//news.cnet.com/8301-10784_3-9938603-7.html (2008)

[51] Broder, A.: On the Resemblance and Containment of Documents. In: Proceedings

of Compression and Complexity of Sequences., pp. 21–29. IEEE Computer Society

(1997). DOI 10.1109/SEQUEN.1997.666900

[52] Broder, A.Z., Glassman, S.C., Manasse, M.S., Zweig, G.: Syntactic clustering of the

Web. Computer Networks and ISDN Systems 29(8-13), 1157–1166 (1997). DOI

10.1016/S0169-7552(97)00031-7

[53] Brown, A.: Archiving websites: a practical guide for information management pro-

fessionals. Facet (2006)

[54] Brown, R.: Selecting and Weighting N-Grams to Identify 1100 Languages. In: Text,

Speech, and Dialogue, Lecture Notes in Computer Science, vol. 8082, pp. 475–483.

Springer Berlin Heidelberg (2013)

[55] Brunelle, J.F.: Scripts in a frame: A framework for archiving deferred representations.

Dissertation, Old Dominion University (2016)

[56] Brunelle, J.F., Kelly, M., SalahEldeen, H., Weigle, M.C., Nelson, M.L.: Not All

Mementos Are Created Equal: Measuring The Impact Of Missing Resources. In:

Proceedings of the 14th ACM/IEEE Joint Conference on Digital Libraries, JCDL

’14, pp. 321 – 330 (2014). DOI 10.1109/JCDL.2014.6970187

[57] Brunelle, J.F., Kelly, M., SalahEldeen, H., Weigle, M.C., Nelson, M.L.: Not All

Mementos Are Created Equal: Measuring The Impact Of Missing Resources. In-

ternational Journal of Digital Libraries 16(3), 283–301 (2015). DOI 10.1007/

s00799-015-0150-6



211

[58] Brunelle, J.F., Kelly, M., Weigle, M.C., Nelson, M.L.: The Impact of JavaScript

on Archivability. International Journal on Digital Libraries 17(2), 95–117 (2016).

DOI 10.1007/s00799-015-0140-8

[59] Bruza, P., Huibers, T., P. D. Bruza, T.W.C.H.: A Study of Aboutness in Information

Retrieva. Artificial Intelligence Review 10, 1–27 (1996)

[60] Buckley, C., Salton, G., Allan, J., Singhal, A.: Automatic Query Expansion Using

SMART: TREC 3. Overview of the Third Text REtrieval Conference (TREC-3) pp.

69–80 (1995)

[61] Campbell, G.: Aboutness and Meaning: How a Paradigm of Subject Analysis Can Il-

luminate Queer Theory in Literary Studies. In: Canadian Association for Information

Science (CAIS) (2000)

[62] Capra, R.G., Lee, C.A., Marchionini, G., Russell, T., Shah, C., Stutzman, F.: Se-

lection and context scoping for digital video collections: an investigation of youtube

and blogs. In: Proceedings of the 8th ACM/IEEE-CS Joint Conference on Digital

Libraries, JCDL ’08, pp. 211–220. ACM (2008). DOI 10.1145/1378889.1378925

[63] Carmel, D., Yom-Tov, E., Roitman, H.: Enhancing Digital Libraries Using Missing

Content Analysis. In: Proceedings of the 8th ACM/IEEE-CS Joint Conference on

Digital Libraries, JCDL ’08, pp. 1–10. ACM (2008)

[64] Castellano, G., Fanelli, A.M., Torsello, M.A.: LODAP: a log data preprocessor for

mining web browsing patterns. In: Proceedings of the 6th Conference on Artificial

Intelligence, Knowledge Engineering and Data Bases, AIKED ’07, pp. 12–17 (2007)

[65] Cathro, W., Webb, C., Whiting, J.: Archiving the Web: The PANDORA Archive

at the National Library of Australia (2001). URL http://www.nla.gov.au/

openpublish/index.php/nlasp/article/viewArticle/1314

[66] Catledge, L.D., Pitkow, J.E.: Characterizing browsing strategies in the World-Wide

web. Computer Networks and ISDN Systems 27(6), 1065–1073 (1995). DOI 10.1016/

0169-7552(95)00043-7

[67] Chakrabarti, S., Van den Berg, M., Dom, B.: Focused crawling: a new approach to

topic-specific web resource discovery. Computer Networks 31(11), 1623–1640 (1999).

DOI 10.1016/S1389-1286(99)00052-3



212

[68] Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chan-

dra, T., Fikes, A., Gruber, R.E.: Bigtable: A distributed storage system for struc-

tured data. In: Proceedings of the 7th USENIX Symposium on Operating Systems

Design and Implementation, OSDI ’06, pp. 15–15. USENIX Association (2006)

[69] Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chan-

dra, T., Fikes, A., Gruber, R.E.: Bigtable: A distributed storage system for struc-

tured data. ACM Transactions on Computer Systems (TOCS) 26(2), 4 (2008)

[70] Chang, M., Leggett, J.J., Furuta, R., Kerne, A., Williams, J.P., Burns, S.A., Bias,

R.G.: Collection Understanding. In: Proceedings of the 4th ACM/IEEE-CS Joint

Conference on Digital Libraries, JCDL ’04, p. 334. ACM Press (2004). DOI 10.1145/

996350.996426

[71] Charikar, M.S.: Similarity Estimation Techniques from Rounding Algorithms. In:

Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of Computing,

STOC ’02, pp. 380–388. ACM (2002). DOI 10.1145/509907.509965

[72] Cho, J., Garcia-Molina, H.: Estimating frequency of change. ACM Transactions on

Internet Technology 3(3), 256–290 (2003). DOI 10.1145/857166.857170

[73] Cho, J., Garcia-Molina, H., Haveliwala, T., Lam, W., Paepcke, A., Raghavan, S.,

Wesley, G.: Stanford WebBase components and applications. ACM Transactions on

Internet Technology (TOIT) 6(2), 153–186 (2006)

[74] Cho, J., Garcia-Molina, H., Page, L.: Efficient crawling through URL order-

ing. Computer Networks and ISDN Systems 30(1-7), 161–172 (1998). DOI

10.1016/S0169-7552(98)00108-1

[75] Christel, M.G., Smith, M.A., Taylor, C.R., Winkler, D.B.: Evolving video skims into

useful multimedia abstractions. In: Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, CHI ’98, pp. 171–178. ACM Press/Addison-Wesley

Publishing Co. (1998). DOI 10.1145/274644.274670

[76] Chu, W.T., Lin, C.H.: Automatic Selection of Representative Photo and Smart

Thumbnailing Using Near-duplicate Detection. In: Proceedings of the 16th ACM

International Conference on Multimedia, MM ’08, pp. 829–832. ACM Press (2008).

DOI 10.1145/1459359.1459498

[77] Cohen, E.L., Willis, C.: One nation under radio: Digital and public memory after

september 11. New Media & Society 6(5), 591–610 (2004)



213

[78] Cohen, J., Mihailidis, P.: Storify and News Curation: Teaching and Learning about

Digital Storytelling. In: Second Annual Social Media Technology Conference & Work-

shop, vol. 1, pp. 27–31 (2012)

[79] Cooley, R., Mobasher, B., Srivastava, J.: Data Preparation for Mining World Wide

Web Browsing Patterns. Knowledge and Information Systems 1, 5–32 (1999)

[80] Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297

(1995). DOI 10.1007/BF00994018

[81] Costa, M., J. Silva, M.: Characterizing Search Behavior in Web Archives.

In: Proceedings of Temporal Web Analytics Workshop, TWAW 2011, pp.

33–40 (2011). URL http://xldb.fc.ul.pt/xldb/publications/Costa.etal:

CharacterizingSearchBehavior:2011_document.pdf

[82] Costa, M., Silva, M.J.: Understanding the Information Needs of Web Archive Users.

In: Proceedings of the 10th International Web Archiving Workshop, pp. 9–16 (2010)

[83] Croft, B., Metzler, D., Strohman, T.: Search Engines: Information Retrieval in

Practice. Addison-Wesley Publishing Company (2009)

[84] Cunningham, S.J., Bennett, E.: Understanding collection understanding with collage.

In: Proceeding of 11th International Conference on Asian digital Libraries, ICADL

2008, pp. 367–370. Springer (2008). DOI 10.1007/978-3-540-89533-6 46

[85] Cutts, M.: SEO advice: URL canonicalization. http://www.mattcutts.com/blog/

seo-advice-url-canonicalization/ (2006)

[86] Czernicki, B.: Silverlight 4 Business Intelligence Software. Apress (2010). DOI

10.1007/978-1-4302-3061-8

[87] Damnjanovic, U., Izquierdo, E., Grzegorzek, M.: Shot boundary detection using spec-

tral clustering. In: Proceedings of the 15th European Signal Processing Conference,

pp. 1779–1783. IEEE (2007)

[88] Deal, L.: Visualizing digital collections. Technical Services Quarterly 32(1), 14–34

(2015). DOI 10.1080/07317131.2015.972871

[89] Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.

Communications of the ACM 51(1), 107–113 (2008). DOI 10.1145/1327452.1327492

[90] Dice, L.R.: Measures of the Amount of Ecologic Association Between Species. Ecol-

ogy 26(3), 297–302 (1945). DOI 10.2307/1932409



214

[91] Dikaiakos, M.D., Stassopoulou, A., Papageorgiou, L.: An investigation of web crawler

behavior: characterization and metrics. Computer Communications 28(8), 880–897

(2005)

[92] Dirfaux, F.: Key frame selection to represent a video. In: Proceedings of IEEE 2000

International Conference on Image Processing, vol. 2, pp. 275–278. IEEE (2000)

[93] Doran, D., Gokhale, S.S.: Web robot detection techniques: overview and limi-

tations. Data Mining and Knowledge Discovery 22(1-2), 183–210 (2010). DOI

10.1007/s10618-010-0180-z

[94] Dou, W., Wang, X., Skau, D., Ribarsky, W., Zhou, M.X.: LeadLine: Interactive

Visual Analysis of Text Data through Event Identifcation and Exploration. In: Pro-

ceedings of the 2012 IEEE Conference on Visual Analytics Science and Technology

(VAST), VAST ’12, pp. 93–102. IEEE Computer Society (2012)

[95] Dougherty, R.L.: Documenting Revolution in the Middle East. Center for Research

Libraries (CRL) 31, 5–7 (2011). URL https://www.crl.edu/focus/article/7437

[96] Duh, K., Hirao, T., Kimura, A., Ishiguro, K., Iwata, T., Yeung, C.M.A.: Creating

stories: Social curation of twitter messages. In: Proceedings of the 6th International

AAAI Conference on Weblogs and Social Media (ICWSM) (2012)

[97] Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering

clusters in large spatial databases with noise. In: Proceedings of 2nd International

Conference on Knowledge Discovery and Data Mining (KDD-96), pp. 226–231. AAAI

Press (1996)

[98] Evans, A., Martin, K., Poatsy, M.A.: Technology In Action, Complete Version, 7th

edn. Prentice Hall Press, Upper Saddle River, NJ, USA (2010)

[99] Eysenbach, G., Trudel, M.: Going, going, still there: using the WebCite service to

permanently archive cited web pages. Journal of Medical Internet Research 7(5), 919

(2005). DOI 10.2196/jmir.7.5.e60

[100] Farag, M.M.G., Fox, E.A.: Intelligent Event Focused Crawling. In: Proceedings of

the 11th International ISCRAM Conference, pp. 18–21 (2014)

[101] Fawcett, T.: An Introduction to ROC Analysis. Pattern Recognition Letters 27(8),

861–874 (2006). DOI 10.1016/j.patrec.2005.10.010

[102] Feinberg, J.: Wordle - Beautiful Word Clouds. http://www.wordle.net/



215

[103] Fielding, R.T., Gettys, J., Mogul, J.C., Frystyk, H., Masinter, L., Leach, P.J.,

Berners-Lee, T.: RFC 2616 - Hypertext Transfer Protocol. http://www.ietf.org/

rfc/rfc2616.txt (1999)

[104] Fiscus, J., Doddington, G.: Topic Detection and Tracking Evaluation Overview .

Topic detection and tracking 12, 17–31 (2002). DOI 10.1007/978-1-4615-0933-2 2

[105] Foot, K., Schneider, S.: Web Campaigning. MIT press Cambridge, MA (2006)

[106] Francisco-Revilla, L., Trace, C.B., Li, H., Buchanan, S.A.: Encoded archival descrip-

tion: Data quality and analysis. Proceedings of the American Society for Information

Science and Technology 51(1), 1–10 (2014). DOI 10.1002/meet.2014.14505101043

[107] Fukuda, K., Cho, K., Esaki, H.: The Impact of Residential Broadband Traffic

on Japanese ISP Backbones. ACM SIGCOMM Computer Communication Review

35(1), 15–22 (2005)

[108] Gamon, M., Yano, T., Song, X., Apacible, J., Pantel, P.: Understanding Document

Aboutness-Step One: Identifying Salient Entities. Tech. Rep. MSR-TR-201 (2013).

URL http://research.microsoft.com/pubs/198455/msrtr13.pdf

[109] Gershon, N., Page, W.: What storytelling can do for information visualization. Com-

munications of the ACM 44(8), 31–37 (2001). DOI 10.1145/381641.381653

[110] Ghobrial, B.G., Wilkins, K.G.: The politics of political communication: Competing

news discourses of the 2011 Egyptian protests. International Communication Gazette

pp. 1–22 (2014). DOI 10.1177/1748048514564027

[111] Giaretta, D.: DCC approach to digital curation. http://twiki.dcc.rl.ac.uk/bin/

view/OLD/DCCApproachToCuration (2005)

[112] Gilbert, E., Bakhshi, S., Chang, S., Terveen, L.: “I Need to Try This”?: A Statistical

Overview of Pinterest. In: Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, CHI ’13, pp. 2427–2436. ACM (2013). DOI 10.1145/2470654.

2481336

[113] Gomes, D., Miranda, J., Costa, M.: A Survey on Web Archiving Initiatives. In:

Proceedings of the 15th International Conference on Theory and Practice of Digital

Libraries, TPDL ’11, pp. 408–420. Springer International Publishing (2011). DOI

10.1007/978-3-642-24469-8 41

[114] Good, R.: The Future Of Content Curation Tools - Part II. http://www.

masternewmedia.org/content-curation-tools-future-part2/ (2013)



216

[115] Gorg, C., Liu, Z., Parekh, N., Singhal, K., Stasko, J.: Visual Analytics with Jigsaw.

In: 2007 IEEE Symposium on Visual Analytics Science and Technology, pp. 201–202.

IEEE (2007). DOI 10.1109/VAST.2007.4389017

[116] Graham, A., Garcia-Molina, H., Paepcke, A., Winograd, T.: Time As Essence for

Photo Browsing Through Personal Digital Libraries. In: Proceedings of the 2nd

ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL ’02, pp. 326–335. ACM

Press (2002). DOI 10.1145/544220.544301

[117] Guo, W., Zhong, Y., Xie, J.: A Web Crawler Detection Algorithm Based on Web Page

Member List. In: 2012 4th International Conference on Intelligent Human-Machine

Systems and Cybernetics, pp. 189–192. IEEE (2012). DOI 10.1109/IHMSC.2012.54

[118] Hall, C., Zarro, M.: Social curation on the website Pinterest.com. Proceedings of the

American Society for Information Science and Technology 49(1), 1–9 (2012)

[119] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The

WEKA data mining software. ACM SIGKDD Explorations Newsletter 11(1), 10

(2009). DOI 10.1145/1656274.1656278

[120] Hammoud, R., Mohr, R.: A probabilistic framework of selecting effective key frames

for video browsing and indexing. In: Proceedings of International Workshop on

Real-Time Image Sequence Analysis, RISA’00, pp. 79–88 (2000)

[121] Han, J., Choi, D., Choi, A.Y., Choi, J., Chung, T., Kwon, T.T., Rha, J.Y., Chuah,

C.N.: Sharing topics in pinterest: Understanding content creation and diffusion be-

haviors. In: Proceedings of the 2015 ACM on Conference on Online Social Networks,

COSN ’15, pp. 245–255. ACM (2015). DOI 10.1145/2817946.2817961

[122] Handley, A.: Content Curation Definitions & Context for Content Marketing. http:

//www.toprankblog.com/2010/06/content-marketing-curation-context/

(2010)

[123] Hanjalic, A., Zhang, H.: An integrated scheme for automated video abstraction based

on unsupervised cluster-validity analysis. IEEE Transactions on Circuits and Systems

for Video Technology 9(8), 1280–1289 (1999). DOI 10.1109/76.809162

[124] Harrison, T.L., Nelson, M.L.: Just-In-Time Recovery of Missing Web Pages. In:

Proceedings of the 17th Conference on Hypertext and Hypermedia, HT ’06, pp. 145–

156. ACM (2006)



217

[125] Hartigan, J.A., Wong, M.A.: Algorithm as 136: A k-means clustering algorithm.

Journal of the Royal Statistical Society. Series C (Applied Statistics) 28(1), 100–108

(1979)

[126] Hatcher, E., Gospodnetic, O.: Lucene in Action (In Action series). Manning Publi-

cations Co. (2004)

[127] Hauptmann, A.G., Witbrock, M.J.: Intelligent multimedia information retrieval.

chap. Informedia: News-on-demand Multimedia Information Acquisition and Re-

trieval, pp. 215–239. MIT Press (1997)

[128] Hauslohner, A.: Egyptians, Inspired by Tunisia, Use Facebook to Set Up Protest

March. http://content.time.com/time/world/article/0,8599,2044142,00.

html (2011)

[129] Havre, S., Hetzler, B., Nowell, L.: ThemeRiver: Visualizing Theme Changes over

Time. In: Proceedings of the IEEE Symposium on Information Vizualization 2000,

INFOVIS ’00, pp. 115–123. IEEE Computer Society (2000). DOI 10.1109/INFVIS.

2000.885098

[130] Hearst, M., Elliott, A., English, J., Sinha, R., Swearingen, K., Yee, K.P.: Finding

the flow in web site search. Communications of the ACM 45(9), 42–49 (2002)

[131] Heer, J., Bostock, M.: Crowdsourcing Graphical Perception: Using Mechanical Turk

to Assess Visualization Design. In: Proceedings of the 26th SIGCHI Conference on

Human Factors in Computing Systems, CHI ’10, pp. 203–212. ACM (2010). DOI

10.1145/1753326.1753357

[132] Henzinger, M.: Finding near-duplicate web pages: a large-scale evaluation of algo-

rithms. In: Proceedings of the 29th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, SIGIR ’06, pp. 284–291. ACM

Press (2006). DOI 10.1145/1148170.1148222

[133] Hockx-Yu, H.: The Past Issue of the Web. In: Proceedings of the 3rd International

Web Science Conference, WebSci’11, pp. 1–8. ACM (2011)

[134] Holton, A.E., Chyi, H.I.: News and the Overloaded Consumer: Factors Influencing

Information Overload Among News Consumers. Cyberpsychology, Behavior, and

Social Networking 15(11), 619–624 (2012)



218

[135] Horrigan, J.: Broadband adoption and use in America. Federal Communications

Commission (2010). URL https://apps.fcc.gov/edocs_public/attachmatch/

DOC-296442A1.pdf

[136] Howard, P.N., Duffy, A., Freelon, D., Hussain, M.M., Mari, W., Mazaid, M.: Opening

closed regimes: what was the role of social media during the Arab Spring? Social

Science Research Network (SSRN) (2011). DOI 10.2139/ssrn.2595096

[137] Hu, K.: Visarchive: A time and relevance based visual interface for searching, brows-

ing, and exploring project archives (with timeline and relevance visualization). Dis-

sertation, University of Victoria (2014)

[138] Hu, K., Tory, M., Staub-French, S., Nepal, M.P.: Visarchive: a time and relevance

based visual interface for searching, browsing and exploring project archives. Visu-

alization in Engineering (2016). URL http://eprints.qut.edu.au/93193/

[139] Hullman, J., Diakopoulos, N.: Visualization rhetoric: Framing effects in narrative

visualization. Visualization and Computer Graphics, IEEE Transactions on 17(12),

2231–2240 (2011)

[140] Hullman, J., Drucker, S., Henry Riche, N., Lee, B., Fisher, D., Adar, E.: A deeper

understanding of sequence in narrative visualization. Visualization and Computer

Graphics, IEEE Transactions on 19(12), 2406–2415 (2013)

[141] Hungerford, K.: Keep the Presses Rolling! http://blog.paper.li/2011/03/

keep-presses-rolling.html (2011)

[142] Hwang, E.: 100 million of the most interesting people we know. https://blog.

pinterest.com/en/100-million-most-interesting-people-we-know (2015)

[143] Indyk, P., Motwani, R.: Approximate nearest neighbors: Towards removing the curse

of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium on

Theory of Computing, STOC ’98, pp. 604–613. ACM (1998). DOI 10.1145/276698.

276876

[144] Irmak, U., von Brzeski, V., Kraft, R.: Contextual Ranking of Keywords Using Click

Data. In: Proceedings of the 2009 IEEE International Conference on Data Engineer-

ing - ICDE ’09, pp. 457–468. IEEE (2009). DOI 10.1109/ICDE.2009.76

[145] Jacobs, I., Walsh, N.: Architecture of the World Wide Web, Volume One. Tech. Rep.

W3C Recommendation 15 December 2004, W3C (2004). URL http://www.w3.org/

TR/webarch/



219

[146] Jaffe, A., Naaman, M., Tassa, T., Davis, M.: Generating summaries and visualization

for large collections of geo-referenced photographs. In: Proceedings of the 8th ACM

international workshop on Multimedia information retrieval, pp. 89–98. ACM (2006)

[147] Jain, A., Murty, M., Flynn, P.: Data clustering: a review. ACM computing surveys

(CSUR) 31(3), 264–323 (1999). DOI 10.1145/331499.331504
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