

Integer Sparse Distributed Memory

Javier Snaider, Stan Franklin
Computer Science Department & Institute for Intelligent Systems, The University of Memphis

FedEx Institute of Technology, 365 Innovation Dr., Memphis, TN 38152

jsnaider@memphis.edu, franklin@memphis.edu

Abstract
Sparse distributed memory is an auto associative memory
system that stores high dimensional Boolean vectors. Here
we present an extension of the original SDM, the Integer
SDM that uses modular arithmetic integer vectors rather
than binary vectors. This extension preserves many of the
desirable properties of the original SDM: auto associativity,
content addressability, distributed storage, and robustness
over noisy inputs. In addition, it improves the representation
capabilities of the memory and is more robust over normali
zation. It can also be extended to support forgetting and re
liable sequence storage.

 Introduction

Sparse distributed memory (SDM) (Kanerva, 1988) is
based on large binary vectors, and has several desirable
properties. It is distributed, auto-associative, content ad-
dressable, and noise robust. Moreover, this memory system
exhibits interesting psychological characteristics as well
(interference, knowing when it doesn’t know, the tip of the
tongue effect), that make it an attractive option with which
to model episodic memory (Baddeley, Conway & Aggle-
ton, 2001; Franklin et al, 2005). Implementations of SDM
are ongoing for various applications (e.g., Furber et al,
2004; Meng et al, 2009; Mendes, Coimbra & Crisostomo,
2009; Jockel, 2009). Several improvements and variations
have been proposed for SDM; for example Ramamurthy
and colleagues introduced forgetting as part of an unsuper-
vised learning mechanism (Ramamurthy, D'Mello &
Franklin, 2006). The same authors also proposed the use of
ternary vectors, introducing a “don’t care” symbol as a
third possible value for the dimensions of the vectors
(D'Mello, Ramamurthy & Franklin, 2005). Also Jaeckel
(1989a, 1989b) proposed two variations of the original
SDM, the selected coordinate design and the hyperplane
design. Both designs modify the way that hard locations
(see next section) are selected. These designs slightly im-
prove the signal to noise ratio of the memory. Furber and

Copyright © 2012, Association for the Advancement of Artificial Intelli
gence (www.aaai.org). All rights reserved.

colleagues (2004) created a combined version of the Jaeck-
el’s hyperplane design and a correlation matrix memory
using sparkling neurons.
 The original SDM uses binary vectors for both addresses
and data, i.e. words. This usage results in several limita-
tions. First, real data is not always Boolean, making repre-
sentations using more than two values desirable. A possi-
ble solution is to use several dimensions of the word vec-
tors to represent one feature, but this approach does not fit
very well with the structure of SDM. In the distance calcu-
lation, difference in any dimension weights the same as
any other dimension, but if several bits, i.e. dimensions, are
used to represent a single feature, the weight of the bits
should not be the same.
 Mendes and colleagues (Mendes, Coimbra & Crisosto-
mo, 2009) evaluated several binary encodings to use with
SDM in robot navigation tasks, and reported their difficul-
ties and limitations. Using Natural BC coding some transi-
tions have Hamming distances that incorrectly reflect the
difference between the features. For example, the Ham-
ming distance between seven (0111) and eight (1000) is 4
instead of 1, which is desired. They also reported the per-
formance of the Gray code, which only partially mitigates
this effect. The best solution that they proposed is to use a
sum code, that is a base one code where, for example, 3 is
represented as 111 and 5 as 11111. This coding substantial-
ly increases the dimensionality of the memory. Interesting-
ly, they report that grouping bits and processing them as
integers produces excellent performance. However, their
implementation diminishes some of the desirable proper-
ties of SDM. The extension proposed in this paper directly
uses integers vectors, achieving similar performance but
without the disadvantages reported by Mendes.
 Another disadvantage of binary vectors is the loss of in-
formation due to the noise introduced into the representa-
tion by the normalization used in combining vectors. Vec-
tors can be summed up dimension by dimension (for this
operation, vectors belonging to {-1; +1}n are used). This
operation produces a vector belonging to ℤn. The normali-
zation process reduces the resultant to a vector that is also
in {-1; +1}n but with significant loss of information. See
for example (Kanerva, 2009; Snaider & Franklin, 2011).

136

Proceedings of the Twenty-Fifth International Florida Artificial Intelligence Research Society Conference

 Here we propose a new version of SDM, the Integer
Sparse Distributed Memory (Integer SDM). This version is
based on large vectors where each dimension has a range
of possible integer values. The memory has properties sim-
ilar to the original one, noise robustness, auto-associativity
and being distributed. In addition, this memory avoids the
limitations imposed by binary representation, as described
above.

Sparse Distributed Memory

Being based in the structure and behavior of the original
SDM, it is better to describe Integer SDM using concepts
from that original. In this section, we first briefly describe
the components of SDM that are similar to those used in
Integer SDM. For more information about SDM, both lei-
surely descriptions (Franklin, 1995, pp. 329-344) and high-
ly detailed descriptions (Kanerva 1988) are available.
 SDM implements a content addressable random access
memory. Its address space is of the order of 21000 or even
more. Both addresses and words are binary vectors whose
length equals the number of dimensions of the space. An
important property of such high dimensional spaces is that
two randomly chosen vectors are relatively far away from
each other, meaning that they are uncorrelated. In our ex-
ample, we will think of bit vectors of 1,000 dimensions. To
calculate distances between two vectors in this space, the
Hamming distance is used. To construct the memory, a
sparse uniformly distributed sample of addresses, on the
order of 220 of them, is chosen. The number of addresses
selected to construct the memory is denoted by m. These
addresses are called hard locations. Hard locations are the
units of storage of the memory. Only hard locations can
store data. For this purpose, each hard location has coun-
ters, one for each dimension. To write a word vector in a
hard location, for each dimension, if the bit of this dimen-
sion in the word is 1, the corresponding counter is incre-
mented. If it is 0, the counter is decremented. To read a
word vector from a hard location, we compute a vector
such that, for each dimension, if the corresponding counter
in the hard location is positive, 1 is assigned to this dimen-
sion in the vector being read, otherwise 0 is assigned.
 A hard location can store several words but as a combi-
nation of them. In order to be able to reconstruct the origi-
nal word, many hard locations participate in the storing and
retrieving of any single word of data. To read from an ad-
dress in SDM, the output vector is a composite of the read-
ings of several hard locations. To determine which hard lo-
cations are used to read or write, an access sphere is de-
fined. The access sphere for an address vector is a sphere
with center at this address, enclosing, on average, a propor-
tion p of the memory’s hard locations; in our example
0.1% is used. To write a word vector in any address of the
memory, the word is written to all hard locations inside the
access sphere of the address. To read from any address, all
hard locations in the access sphere of the address vector are
read, and a majority rule for each dimension is applied.

 In general, the SDM is used as an auto-associative
memory, so the address vector is the same as the word vec-
tor (but see Snaider & Franklin, 2011). In this case, after
writing a word in the memory, the vector can be retrieved
using partial or noisy data. If the partial vector is inside a
critical distance from the original one, and it is used as ad-
dress with which to cue the memory, the output vector will
be close to the original one. This critical distance depends
on the number of vectors already stored in the memory. If
the process is repeated, using the first recovered vector as
address, the new reading will be even closer to the original.
After a few iterations, typically less than ten, the readings
converge to the original vector. If the partial or noisy vec-
tor is farther than the critical distance away from the origi-
nal one, the successive readings from the iterations will
rapidly diverge.

Integer Sparse Distributed Memory

The structure of Integer SDM is similar to that of SDM.
The words and addresses used by Integer SDM are large
vectors of integers, i.e. vectors with a large number of di-
mensions. The possible values for each dimension are in a
defined integer range. For example, the range of values can
be [-8, 7] or [0, 15]. Any range of values is possible. For
simplicity, we will work with ranges with 0 as lower bound
and r - 1 as upper bound. There is no limit for the size of
the range. However, the storage requirement increases pro-
portionally with the size of the range. More formally, Inte-
ger SDM works within multidimensional space with vec-
tors 𝑣 ∈ ℤ𝑟𝑛, where n is the number of dimensions of the
space and r is the size of the range of values for each di-
mension. The dimensions of the space follow modular
arithmetic, i.e. the values wrap around after r. The greatest
possible value for a dimension is r - 1 and the next value
after r - 1 is 0.
 Integer SDM is composed of hard locations. As in SDM,
a small, uniformly distributed, fraction of all possible ad-
dresses 𝑎 ∈ ℤ𝑟𝑛 are chosen for the addresses of the hard lo-
cations. Each hard location has a fixed address and coun-
ters, resembling the structure of SDM. However, Integer
SDM has a different arrangement of counters: each dimen-
sion has r counters, one for each possible value in that di-
mension. We define ci as the group of counters correspond-
ing to the dimension i, and ci

(v) as the counter correspond-
ing to dimension i and value 𝑣 ∈ {0, … , 𝑟 − 1}. The pro-
cedures to read from or write to the memory are similar to
the ones used for SDM.
 To read or write a word w, first the access sphere of the
address is determined. The distance used here is an exten-
sion of the Euclidean metric. The distance between two
vectors is defined as:

𝑑(𝑢, 𝑣) = √∑(∆𝑖)2
𝑖

where: ∆𝑖= min(𝑚𝑜𝑑𝑟(𝑢𝑖 − 𝑣𝑖), 𝑚𝑜𝑑𝑟(𝑣𝑖 − 𝑢𝑖))

137

 Since each dimension in the space follows modular
arithmetic, each dimension is like a circle and there are two
possible paths in dimension i between the values ui and vi.
Notice that �i is the smaller length of these two paths.
 The radius of the access sphere is defined in such a way
that on average it encloses a small proportion p of the total
number of hard locations m. The access sphere encloses pm
hard locations. This value p is also the probability of acti-
vation of one hard location, i.e. the probability of one hard
location participates in one particular reading or writing
operation. For writing the word w in the memory, the coun-
ters of every dimension of each hard location in the access
sphere are updated using the following rule:

𝑐𝑖(𝑣) 𝑖𝑠 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑒𝑑 ⇔ 𝑣 = 𝑤𝑖

where wi is the value of the dimension i of the word w. No-
tice that only one counter out of r of each dimension of
each hard location in the access sphere is incremented.
 To read from the memory, first the hard locations in the
access sphere are determined. Then the counters of each
value of each dimension of all hard locations in the access
sphere are summed up:

𝑠𝑖(𝑣) = ∑ 𝑐𝑖(𝑣)
𝐻𝐿 ∈ 𝐴.𝑆.

where si

(v) is the sum of the counters for dimension i and
value v. Finally, for each dimension a majority rule is ap-
plied among the values:

𝑧𝑖 = 𝑖𝑑𝑥(𝑣) 𝑜𝑓 max(𝑠𝑖(0). . 𝑠𝑖(𝑟−1))

where zi is the value of dimension i of the output vector.
This vector z can be used as an address to read again from
the memory, iterating in the same way that was described
for the original SDM.
 The fidelity of the memory, i.e. the probability of re-
trieving a written word, is better than the original SDM.
This improvement in the fidelity is due to the more precise
storage in each hard location. Suppose the stored value for
dimension i of word w is k, that is wi = k. To incorrectly
read wi from memory, at least one of the sums si

(v) for the
incorrect values (v � k), must be greater than si

(k). The val-
ue of the sums for incorrect values is due to the contribu-
tion of other words written in the memory that share some
of the same hard locations used to store w. Assuming the
other words written in the memory are uniformly distribut-
ed in the space1, the noise produced by the interference of
these written words is distributed in r possible values. This
diminishes the expected value and variance of the si

(v) for v
� k. Then the probability of having at least one si

(v) > si
(k) is

1This assumption is reasonable to give an estimation of the capacity of the
memory. However, the memory can store vectors even if they are not uni
form distributed, but the capacity will be diminished. See (Kanerva, 1988)
for a similar analysis for SDM.

less than in the original SDM for the same number of
words stored in the memory. This increment in the fidelity
of the memory also increments its capacity: more words
can be stored before the effect of interference is noticed.
This compensates for the additional requirements of
memory storage of this memory compared to SDM.
 The complexity of the reading (or writing) operation of
the memory is O(mn + prmn). The first term corresponds
to the calculation of the distance from w to each hard loca-
tion, and the second term corresponds to the reading (or
writing) of the counters in the hard locations. Since pr <<
1, the first term dominates. Since the number of hard loca-
tions m can be large, the implementation could be slow.
However, the algorithm is easily parallelizable to be exe-
cuted in multithreading or SIMD (e.g. using GPUs) archi-
tectures. Moreover, other methods to activate the hard lo-
cations, instead of the access sphere, were studied for
SDM, and can be used with Integer SDM also. See for ex-
ample (Jaeckel, 1989a, 1989b). These alternatives would
greatly reduce the time complexity of the algorithm.

Experiments and Results

 Several simulations were performed to test the percent-
age of errors in the output words. We used an Integer SDM
with 100,000 hard locations and a word length of 1,000
dimensions, where r = 16 (i.e. range: [0 15].) We used a
probability of activation p = 0.001, that corresponds to a
radius of the access sphere of 188. The size of the memory
(i.e. number of hard locations) was chosen to have enough
hard locations in the access sphere for each read or write to
support the desired properties of the Integer SDM, but to
be as small as possible so as to limit the number of reads
and writes required to perceive the effects of loading the
memory. A total of 5,000 random vectors were stored in
the Integer SDM. The vectors were also preserved in a
separate database so they could be used as cues or com-
pared with the retrievals from the Integer SDM.
 The simulation was performed in four stages. In each
stage, one hundred vectors were randomly selected from
the set of 5,000 stored vectors, and the memory was cued
using these vectors with some amount of noise, that is with
some number of randomly selected dimensions that were
changed from the original. The amount of noise changed in
each stage was: 5, 10, 20, and 30 percent respectively. In
stages 1 and 2, 100% of the vectors were retrieved. Stage 3
had only one retrieval error, and stage 4 produced 65%
correct retrievals. The same experiment using the Manhat-
tan distance had similar results: 100% of the vectors cor-
rectly retrieved in stages 1, 2, and 3, and 65% in stage 4.
The graceful degradation in the performance shown in the-
se experiments is similar to the one observed in the original
SDM (Kanerva, 1988).
 Another experiment demonstrated the generalization
characteristics of the memory. Figure 1a. depicts twelve
gray scale (16 levels) images of 33 x 33 pixels each. For
each image, one vector of 1,089 dimensions representing
the information of the image was stored in the memory.

138

Each of these vectors was saved in the memory only once.
The memory used for this experiment is similar to that
used in the previous experiment. It has 100,000 hard loca-
tions with addresses of 1,089 dimensions, r = 16 and p =
0.001. The memory was then cued using the new vector
corresponding to figure 1b. The image of the output vector
displayed in figure 1c, which is not in the training set ei-
ther, is the result of the interference of the stored vectors.
Based on this and other characteristics of the memory, In-
teger SDM is a good candidate to model various memories
in cognitive architectures (Ramamurthy & Franklin, 2011).

Conclusions

Here we have presented a new version of SDM, the Integer
SDM, that overcomes the limitations of the original SDM
resulting from its use of binary vectors. This memory pre-
serves the desirable, biologically inspired, properties of the
original. It is also noise robust, auto-associative and dis-
tributed. It degrades gracefully when the memory ap-
proaches its maximum capacity. It is also able to generalize
patterns due to interference of several similar vectors. The-
se properties make Integer SDM a good candidate for
modeling episodic memory in autonomous agents.
 The integer representation has several advantages over
the binary one. The encoding of values is simpler, avoiding
undesirable effects of other encodings (Mendes, Coimbra
& Crisostomo, 2009; Jockel, 2009), and it diminishes the
effect of normalization when several vectors are combined,
for example in the storing and retrieval of sequences
(Snaider & Franklin, 2011).
 Integer SDM is compatible with other improvements al-
ready studied for SDM, such as the forgetting mechanism
(Ramamurthy, D'Mello & Franklin 2006). Other designs of
activation of hard locations, like Jaeckel’s selected coordi-
nate design (1989a), can also be implemented with this
memory. Another extension, which we have already im-
plemented, applies the same concepts as in Extended SDM
(Snaider & Franklin, 2011; Snaider & Franklin, in press)

that dramatically improve the capability for storing se-
quences.

References
Baddeley, A., Conway, M., & Aggleton, J. 2001. Episodic Memory. Ox
ford: Oxford University Press.

D'Mello, Sidney K., Ramamurthy, U., & Franklin, S. 2005. Encoding and
Retrieval Efficiency of Episodic Data in a Modified Sparse Distributed
Memory System. In Proceedings of the 27th Annual Meeting of the Cog
nitive Science Society. Stresa, Italy.

Franklin, S. 1995. Artificial Minds. Cambridge MA: MIT Press.

Franklin, S., Baars, B. J., Ramamurthy, U., & Ventura, M. 2005. The Role
of Consciousness in Memory. Brains, Minds and Media, 1: 1 38.

Furber, S. B., Bainbridge, W. J., J M., C., & Temple, S. 2004. A Sparse
Distributed Memory based upon N of M Codes. Neural Networks,
17(10): 1437 1451.

Jaeckel, L. A. 1989a. An Alternative Design for a Sparse Distributed
Memory. (No. Report RIACS TR 89.28): Research Institute for Advanced
Computer Science, NASA Ames Research Center.

Jaeckel, L. A. 1989b. A Class of Designs for a Sparse Distributed
Memory. (No. Report RIACS TR 89.30): Research Institute for Advanced
Computer Science, NASA Ames Research Center.

Jockel, S. 2009. Crossmodal Learning and Prediction of Autobiograph
ical Episodic Experiences using a Sparse Distributed Memory. Doctoral
Thesis, University of Hamburg, Hamburg.

Kanerva, P. 1988. Sparse Distributed Memory. Cambridge MA: The MIT
Press.

Kanerva, P. 2009. Hyperdimensional Computing: An Introduction to
computing in distributed representation with high dimensional random
vectors. Cognitive Computation, 1(2): 139 159.

Mendes, M., Coimbra, A., & Crisostomo, M. 2009. Assessing a Sparse
Distributed Memory Using Different Encoding Methods. Proceedings of
the World Congress on Engineering, 1: 1 6.

Meng, H., Appiah, K., Hunter, A., Yue, S., Hobden, M., Priestley, N., et
al. 2009. A modified sparse distributed memory model for extracting
clean patterns from noisy inputs. Paper presented at the International Joint
Conference on Neural Networks (IJCNN), Atlanta, GA, USA.

Ramamurthy, U., D’Mello, S. K., & Franklin, S. 2006. Realizing Forget
ting in a Modified Sparse Distributed Memory System. In C. Schunn & S.
Lane (Eds.), Proceedings of the 28th Annual Conference of the Cognitive
Science Society, 1992 1997. Mahwah, NJ: Lawrence Erlbaum Associates.

Ramamurthy, U., & Franklin, S. 2011. Memory Systems for Cognitive
Agents. In Proceedings of Human Memory for Artificial Agents Sympo
sium at the Artificial Intelligence and Simulation of Behavior Convention
(AISB'11).

Snaider, J., & Franklin, S. 2011. Extended Sparse Distributed Memory.
Paper presented at the Biological Inspired Cognitive Architectures 2011,
Washington D.C. USA.

Snaider, J., & Franklin, S. in press. Extended Sparse Distributed Memory
and Sequence Storage. Cognitive Computation.

Figure 1. Generalization and pattern formation. a: Images corre
sponding to the training set vectors. b: Image of the vector used
as a cue. c: Image corresponding to the output vector using (b) as
cue. Vectors of images (b) and (c) are not in the training set (a).

139

