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Abstract: An extended set of Haar-like features for image sensors beyond the 
standard  vertically  and  horizontally  aligned  Haar-like  features  and  the  45o 

twisted  Haar-like  features  are  introduced.  The  extended  rotated  Haar-like 
features  are based on the standard Haar-like  features that  have been rotated 
based on whole integer pixel based rotations. These rotated feature values can 
also be calculated using rotated integral images which means that they can be 
fast and efficiently calculated with just 8 operations irrespective of the feature 
size.  The  integral  image  calculations  can  be  offloaded  to  the  graphical 
processing  unit  (GPU)  using  the  stream processing  paradigm.  The  integral 
image calculation on the GPU is seen to be faster than the traditional central 
processing unit (CPU) implementation of the algorithm, for large image sizes, 
allowing more complex clasifiers to be implemented in real-time.
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1 Introduction

Image sensors have become more significant in the information age with the advent of 
commodity multi-media capture devices such as digital cameras, webcams and camera 
phones. The data from these media sources (whether they are still images or video) is 
reaching the stage where manual processing and archiving is becoming impossible. It is 
now possible to process these images and videos for some applications in near real-time, 
using motion detection  and face  tracking for  security  systems  for  example.  However 
there are still  many challenges  including the ability to recognise and track objects at 
arbitrary rotations (Lozano and Otsuka, 2008).

Haar-like features have been used successfully in image sensors for face tracking and 
classification problems (Lai  et al.,  2001; Jones and Viola,  2003; Barreto et  al.,  2004; 
Huang and Lai, 2004), however other problems such as hand tracking (Barczak et al., 
2005; Micilotta and Bowden, 2004; Kölsch and Turk, 2004) have not been so successful. 
The main reason for this is the fact that Haar-like features are not invariant over rotation. 
This means that any object that rotates and is sensitive to angle changes (such as hands) 
will be difficult to solve using standard Haar-like features. The features that define faces 
tend to be insensitive to small angle variations and Haar-like features have been used to 
detect head rotations of as much as 15o from the vertical (Jones and Viola, 2003). When 
people are standing their head is naturally aligned vertically with respect to gravity and so 
this rotational sensitivity tends not to be a significant problem for faces. Other body parts 
such as hands, arms and legs are not normally alligned with the horizontal or vertical axes 
so are difficult to model with traditional Haar-like features. Researchers have tended to 
use edge detection or colour based tracking of these parts (Messom et al., 2007).

Figure 1 Standard Haar-like features
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Figure 2 45o twisted Haar-like features

Several researchers have studied the impact of in plane rotations for image sensors 
with the use of twisted Haar-like feature (45o) (Lienhart and Maydt, 2002; Lienhart et al., 
2003a; 2003b) or diagonal features (Viola and Jones, 2001b) fairly good performance has 
been achieved. These techniques will have little benefit for problems that are sensitive to 
rotations,  such  as  hand  identification  (Barczak  et  al.,  2005;  Kölsch  and  Turk,  2004; 
Antón-Canalís et al., 2005; Stenger et al, 2004; Wachs et al., 2005) which are not aligned 
to fixed angles (0o, 45o, 90o etc).

Real time image processing is starting to be feasible on commodity hardware however 
high  frame rates  for  high resolution image sensors  (greater  than 640x480) are  still  a 
challenge. Haar-like feature based classifiers like the Jones and Viola, (2003), (Viola and 
Jones, 2001a and 2001b) face detector work in almost real time using the integral image 
(or summed area table) data structure that allows features to be calculated at any scale 
with only 8 operations. However standard Haar-like features are strongly aligned to the 
vertical/ horizontal (Jones and Viola, 2003)(fig 1) or 45o  diagonal (Lienhart and Maydt, 
2002, Lienhart  et  al.,  2003a and 2003b) (fig 2) and so are most  suited to classifying 
objects that are strongly aligned as well, such as faces, buildings etc. 

Rotated  Haar-like  features  have  to  be  calculated  on  a  “rotated”  integral  image, 
meaning that a set of parallel classifiers that identify objects at different rotations require 
multiple integral images (Messom and Barczak, 2008). The calculation of these integral 
images  have  become  one  of  the  computationally  significant  parts  of  the  classifier 
algorithms. Parallel  hardware such as cluster computers (Messom and Barczak, 2008) 
have  been used to  implement  parallel  classifiers  in  real-time,  however  these  systems 
suffer  from  being  large  and  require  a  suitable  high  bandwidth  low  latency  network 
between the nodes.

Recent GPUs from ATI and NVIDIA have been designed so that the computational 
elements can be programmed via programmable shaders. This means that arbitrary code 
(with some restrictions) can be offloaded to the GPU rather than the CPU. The main 
performance issue is that the code should be parallel and able to exploit a large number of 
processors,  the  current  generation  of  GPUs being  able  to  process  800  floating  point 
operations simultaneously. At the machine level the GPU and CPU do not share the same 
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instruction set so a higher level interface is provided (Tardi et al., 2006, Yamagiwa and 
Sousa, 2007, Gordon et al., 2006, Kuo et al., 2005). NVIDIA provides CUDA, while ATI 
provides  Brook+  (Buck  et  al.,  2004)  as  the  C/C++  programming  interface  to  their 
respective GPU cards. Additional standard lower level interfaces such as OpenGL and 
DirectX are also available while ATI also has a proprietary interface called CAL. 

The latest GPUs from ATI (HD4850, HD4870 and HD4870X2) have more than 1 
Tflop (2 Tflop for HD4870X2) of theoretical single precision floating point performance 
compared  to  a  modern  quad  core  cpu  that  has  about  60Gflops  of  single  precision 
performance,  so  significant  speedup  can  be  obtained  for  algorithms  with  appropriate 
characteristics.  Algorithms  that  have  already  been  implemented  on  the  GPU include 
protein  folding  (Elsen  et  al.,  2006),  particle  filter  based  face  tracking  (Lozano  and 
Otsuka, 2008), sequence alignment (Schatz et al., 2007), forensic analysis (Marziale et 
al.,  2007),  histogram  generation  (Scheuermann  et  al.,  2007)  and  various  vector  and 
matrix operations (Buck et al., 2004, Liao et al., 2006, Fan et al., 2004, Govindaraju and 
Manocha, 2007).

2 Standard Haar-Like Features

Standard Haar-like features  consist  of  a  class of  local  features  that  are calculated  by 
subtracting the sum of a subregion of the feature from the sum of the remaining region of 
the feature. This is illustrated by figure 1. These features are characterised by the fact that 
they  are  easy  to  calculate  and  with  the  use  of  an  integral  image,  very  efficient  to 
calculate.  Lienhart  and Maydt  (2002) introduced an extended set of twisted Haar-like 
feature, illustrated in figure 2. These are the standard Haar-like features that have been 
twisted by 45o. 
Figure 3 Opposite Corners of 45o twisted Haar-like feature on identical diagonal

These twisted Haar-like features can also be fast and efficiently calculated using an 

integral  image  that  has  been  twisted  45o.  The  only  implementation  issue  is  that  the 
twisted features must be rounded to integer values so that they are aligned with pixel 
boundaries. This process is similar to the rounding used when scaling a Haar-like feature 
for larger or smaller windows, however one difference is that for a 45o twisted feature, the 
integer  number of  pixels  used for  the  height  and width of  the feature  mean that  the 
diagonal coordinates of the pixel will be always on the same diagonal set of pixels, see 

Illegal 
Coordinat

Valid
Coordinat

Width

Height



Stream Processing for Fast and Efficient Rotated Haar-like Features using 
Rotated Integral Images

figure 3. This means that the number of different sized 45o  twisted features available is 
significantly  reduced  as  compared  to  the  standard  vertically  and  horizontally  aligned 
features. 

Integral images or summed area tables (Crow, 1984) are a data structure that contains 
the sum of all the pixels above and to the left of the current pixel. The time complexity of 
the algorithm is 2MN (where M and N are the height and width of the image) since each 
pixel in the integral image requires two addition operations (see eqn 1).

II(i, j)= II(i-1, j)+ II(i, j-1)-II(i-1,j-1)+ I(i, j) (1)

where I(i, j) is the pixel value at position (i, j), II(i, j) is the integral image value at 
position (i, j).

Integral images are important as they allow the sum of a rectangular area of pixels of 
any size to be calculated with only 4 look ups in the Integral image data structure:

b
i=a,d

i=c I(i, j)=II(a, c)- II(a, d)- II(b, c)+ II(b, d) (2)

where I(i, j) is the pixel value at position (i, j), II(i, j) is the integral image value at 
position (i, j), (a, c) is the coordinate of the top left pixel and (b, d) is the coordinate of 
the bottom right pixel of the rectangular region that is being summed.

Standard Haar-like features consist of a class of local features that are calculated by 
subtracting the sum of a subregion of the feature from the sum of the remaining region of 
the feature.

3 Integer Rotated Haar-LikeFeatures

General  rotations  of  Haar-like  features  can  not  be  easily  implemented  efficiently, 
therefore we define a restricted set of rotations called integer rotations that can be easily 
and efficiently implemented. An integer  rotated Haar-like feature is a feature that has 
been rotated by an angle arctan(A/B) where A and B are integers. This means that an 
integer rotated line consists of all angles that have a rational tangent. A 45o rotated Haar-
like feature is a special  case of a feature which has been 1-1 integer rotated. A unit-
integer rotated Haar-like feature is a feature that has been rotated by an angle arctan(A/B) 
where A and B are integers and either A or B is 1. A 45o  rotated Haar-like feature is a 
special case of a feature which has been 1-1 unit-integer rotated. Figure 4 illustrates a set 
of 1-2 rotated Haar-like features.
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Figure 4 1-2 Rotated (26.57o) Haar-like features

This  paper  will  discuss  unit-integer  rotated  features,  which  restricts  the  angles 
available to those listed in table 1. The table shows that a large number of unit-integer 
rotations are available near the horizontal or vertical while only a few are available near 
45o.  In  practise depending on the coverage  required,  a  selection of  these unit-integer 
rotations will be chosen, for example if rotations of about 10o to 20o degree increments are 
needed for a particular problem then 1-1, 1-2, 2-1, 1-4 and 4-1 will be used as well as the 
standard horizontal and vertically aligned features giving 0o, 14o, 26.5o, 45o, 63.5o, 76o, 
90o. The rotations in the other three quadrants are given by simple reflections in the x and 
y axes. If a higher precision and accuracy are required, rotations of less than 10o  would 
need a non unit-integer rotations such as 2-3 and 3-2 rotations giving angles of 37o  and 
53o.

The  availability  of  rotated  features  means  that  a  fully  trained  classifier  using the 
standard features can be transformed to a rotated version. For example a face tracking 
system that is reliable for vertically aligned faces within a range of 20o will be rotated so 
that it can classify faces aligned within 20o of  any of the unit-integer rotated axes such 
as 45o  20o, 26.5o  20o  etc, effectively producing a parallel classifier (similar to that of 
Rowley (1998) that can cover all possible rotations.)

Table 1 Unit-Integer rotation angles

N-1 Angle 1-N Angle
1-1 45o 1-1 45o

2-1 63.43o 1-2 26.57o

3-1 71.57o 1-3 18.43o

4-1 75.96o 1-4 14.04o

5-1 78.69o 1-5 11.31o

6-1 80.54o 1-6 9.46o

7-1 81.87o 1-7 8.13o

8-1 82.87o 1-8 7.13o

9-1 83.66o 1-9 6.34o

10-1 84.29o 1-10 5.71o

etc .. etc ..
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4 Implementation Issues for Integer Rotate Haar-Like Features

When a feature is rotated the position of the top left corner of the feature will be defined 
by the rotation angle and the position of the feature in the kernel. The height and width of 
the feature then determines which pixels form the feature itself. Rounding will cause the 
height  and  width  of  the  feature  to  be  aligned  with  the  pixel  boundaries.  Since  the 
pixelation of raster lines are not unique we need to choose a standard rasterisation so that 
the features provide consistent values. In this paper we rasterise based on the position of 
the starting point of the feature in the image. 

A standard rasterisation is chosen so that a change in horizontal pixel position occurs 
every n vertical  pixels  for  1-n rotated vertical  lines,  while  a  change in  vertical  pixel 
position  occurs  every  n  horizontal  pixels  for  1-n  rotated  horizontal  lines.  This  is 
calculated using equations 3 and illustrated in figure 5.

Figure 5 Calculation of feature coordinates in Integral Image

 (x,y) = O(x,y)+[w*cos , -(w*cos )/n-((w*cos )/n+x)mod n]

(x,y) = O(x,y)+[(h*sin )/n + ((h*sin )/n+y) mod n, h*sin ]

(x,y) = H((x,y))  V((x,y)) (3)

where O(x,y) are the coordinates of the start of the feature,  (x,y),  (x,y) and (x,y) 
are the calculated coordinates of the top right, bottom left and bottom right of the feature 
based on the height h and width w of the feature,  is the 1-n unit-integer rotation angle, 
H()  and V(),  represents  the “horizontal”  and “vertical”  lines through   in  the unit-
integer rotated image,   represents the intersection operator of two lines, * is integer 
multiplication and mod is the integer modulo operator.

O(x,y)

(x,
(x,y

(x,
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Figure 6 A 1-2 rotated feature of height 5 and width 4 starting from a different positions

Figure 6 shows two features of height 5 and width 4 that has been 1-2 rotated. The 
figure also shows that a general unit-integer rotation (other than 1-1 rotations) in a digital 
image result in raster lines that are pixelated. The pixelation between two points depends 
on the position in which the line begins as illustrated by the second example in figure 6. 
Large feature sizes as compared to the integer rotation size (n for 1-n and n-1 integer 
rotations) will result in similar raster lines, but will still provide different feature values 
when evaluated as they consist of different pixels. Using a standard rasterization a single 
integral image can be used to evaluate the feature, whatever the size and starting position 
of  the  feature.  For  some values  of  h  and  w and  and  angle   the  lines  ((x,y))  and 
V((x,y)) will not interect. To overcome this problem, h, w or both h and w may need to 
be modified ( ±1 pixel), so that the do intersect. This is the similar problem to the 45o 

twisted features where h and w must be modified so that opposite corners are on a valid 
coordinate (see figure 3).

4.1 Rotated Integral Image

The rotated integral  image for  a  given  integer  rotation is  calculated  by summing the 
pixels  in  the relevant  aligned  quadrant  above the  given  pixel  (see  figure  7).  For  the 
normal integral image with no rotation this is the quadrant above and to the left of the 
current  pixel  (figure  7a).  (Lienhart  and  Maydt,  2002)  extended  this  algorithm to the 
twisted integral image (which is equivalent to the 45o  rotated integral image, or the 1-1 
integer rotated image). 

Figure 7 Buffering of lines for a)  normal integral image, b) >45o rotated integral image c) <45 o 
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The  algorithm  to  calculate  the  integer  rotated  integral  images  is  also  efficiently 
implemented.  For  simplicity,  rotated  integral  images  that  are  greater  than  45o are 
processed left to right while rotated integral image that are less than 45o are processed 
right to left. This is done because the only quadrant that depends only on the pixels above 
the current point in the integral image is the “top right” quadrant for angles less that 45o 

(figure 7c) and the “top left” quadrant for angles greater that 45o (figure 7c). 

4.2 Scaling correction factors

When the Haar  features  are  scaled  for  use in  a  classifier  the  feature  values  must  be 
corrected based on distortions due to uneven scaling of the different areas of the features. 
This is achieved by using an identity integral image to count the number of pixels in each 
feature area and scaling the areas appropriately. The corrected feature values are given by 
equation 4.

F = [A * f/ A ] – f (4)
where  A and  A are  the  areas  of  the  feature  and  the  sub-features  respectively 

(obtained from a rotated identity integral image) and f and f are the values of the sum of 
the pixels in the feature and sub-features respectively (obtained from a rotated integral 
image).

Table 2 was compiled from running the normal, twisted and rotated integral image 
algorithm on an opteron 250 processor (2.4GHz with 1MB cache). It can be seen from 
table 2 (shaded columns) that over a range of image sizes the integer-rotated integral 
images are slower to calculate than the normal integral images by an order of magnitude 
(between 8.5 and 14 times slower), but they are not significantly slower to calculate than 
the twisted integral image. These results show that the integer-rotated integral image can 
be used in real time image processing systems if only one classifier is implemented. For 
multiple classifiers for various different angle offsets are required then a multiprocessor 
or GPU implementation must be adopted.

Table 2 Time complexity of Integral Image calculation including ratio of twisted and rotated 
features versus normal features

Image 
Size

Normal/ 
ms

Twisted/ 
ms

Twisted/
Normal

Rotated
/ ms

Rotated/ 
Normal

320x240 0.3 4.2 14 4.2 14
640x480 1.6 4.4 2.75 17.2 10.75
1280 x 960 8 22 2.75 68 8.5

5 Stream Processing

Stream processing is a programming model for highly parallel systems which can have 
hundreds of processors and thousands of threads in flight. Modern GPUs have adopted 
this programming model and it has been implemented via the Brook language extensions 
to C/C++ (Buck et al., 2004). The key concept of stream processing is that a stream needs 
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to be created and a kernel implemented that acts on each stream element independently, 
so that processing can occur in parallel. For an image processing system the image is a 2 
dimensional stream and the kernel must operate on each pixel independently. Due to the 
limitations of the GPU hardware, the kernels can only access stream inputs and outputs 
and other constant parameters. This does restrict the type of code that may benefit from 
stream  computing,  but  massively  parallel  algorithms  such  as  image  processing  can 
benefit greatly.

Figure 8 Prefix sum applied to a give input list

Efficient  execution  in  stream  processing  requires  each  pixel  to  be  processed 
independently,  so that processing can occur in parallel. This means that the traditional 
serial  algorithm for  integral  images is  not  suitable.  However  a similar  algorithm, the 
prefix sum has been extensively studied on massively parallel architectures. The prefix 
sum algorithm calculates a running sum of the values in a list of data so that the result is a 
list that includes the sum of all values in the input list up to the current position in the list 
(see fig 8 for an example).

Figure 9 Stream Processing Prefix sum applied to a give input list, required log2N steps where N is 
the length of the list
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5.1 Stream Processing Prefix Sum Algorithm

The standard stream processing prefix sum algorithm follows a logarithmic number of 
passes through the data summing the current data with its prior neighbour on the first 
pass, then on the second pass sums the current data with the data a distance 2 before, then 
on the third pass sums the current data with the data a distance 4 before etc. (see Figure 9 
for an illustration) until there are no more passes left to process. It is important to note 
that these operations occur for all elements of the stream simultaneously (or effectively 
simultaneously).

This  algorithm requires  a  total  of  log2N passes  where  there  are  N  data  items  to 
process.  However each pass requires  N operations as each data item in the stream is 
processed.  This  algorithm  if  run  serially  is  very  inefficient  as  a  total  of  N  log2N 
operations are required while the traditional serial prefix sum requires only N operations. 
However  the  stream  processing  algorithm  can  operate  on  P  simultaneous  processors 
which means that the total number of cycles is (N log2N)/P, where it is assumed that 
P<N, that is the number of processing elements is less that the number of items in the 
stream. For large P the value log2N is significantly smaller than P so there is a large 
speedup associated with the algorithm.

5.2 Prefix Sum Kernel

The prefix  sum kernel  is  very simple using a single  kernel  call  for  each step of  the 
algorithm (see fig 10). At each step the current pixel value is added with a pixel from a 
given offset.  The kernel  must  be called with the relevant horizontal  or vertical  offset 
( (-1,0), (-2,0), (-4,0) etc for the horizontal prefix sum, (0,-1), (0,-2), (0, -4) etc for the 
vertical  prefix  sum. The two dimensional  offset  is  required  as the streams for  image 
processing applications are two dimensional. This is the default for GPUs that have a two 
dimensional frame buffer. The prefix sum kernel is inefficient in that each stream element 
that is processed is a single floating point value which can result in multiple memory 
reads as the floating point values are read into the kernel. 

Figure 10 Kernel for the prefix sum algorithm
kernel void prefixsum_scan(
float input[][], out float output<>, float2 twoDoffset)
{
 float2 i = indexof(output);
 float2 index;
 index=i+twoDoffset;
 if (index.x < 0.0f || index.y < 0.0f)
 {
  output = input[i];
 }
 else
 {
  output = input[i] + input[index];
 }
}
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Figure 11 Calculating the Integral Image with a horizontal prefix sum followed by a vertical prefix 
sum

Modern GPUs have a native float vector type called float4 that can load 4 floating 
point values in a single memory access. This data type will improve the memory access 
performance at the expense of additional code complexity. When each kernel element is a 
float4 type, it essentially contains 4 pixels and so when the prefix_sum kernel needs to 
access the neighbouring pixel, it doesn’t access the neighbouring stream element, but the 
neighbouring pixel in the float4 data (except for the first element in the float4 data). 

The ATI GPU additionally can output 8 streams simultaneously. What this means is 
that the kernel can be modified to process an image that has been split into 8 different 
streams.  This  additional  processing  that  takes  place  in  the  kernel  increases  the 
computational  intensity of the kernel,  again  improving the potential  efficiency of  the 
implementation. The prefix_sum kernel that uses the float4 data type and 8 simultaneous 
output streams has been implemented and is available online.
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Table 3 Performance of the Integral Image stream calculation natively on the GPU

Image Shape 64x64 128x128 256x256 512x512 1024x1024 1024x2048
Image Size (pixels) 4096 16384 65536 262144 1048576 2097152
Time, 1 cycle (s) 0.0259 0.0262 0.0268 0.0299 0.0445 0.0646
Time, 2 cycles (s) 0.0268 0.0272 0.028 0.0314 0.0484 0.0735
Time, 10 cycles (s) 0.0327 0.0342 0.0359 0.0445 0.087 0.1498
Time, average cycle 
(not including initial 
cycle) (s)

7.6E-04 8.9E-04 1.0E-03 1.6E-03 4.7E-03 9.5E-03

Average cycle/ Image 
Size (s/pixels)

1.8E-07 5.4E-08 1.5E-08 6.2E-09 4.5E-09 4.5E-09
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5.3 Stream Processing Integral Image Algorithm

The stream processing Integral Image algorithm uses the same kernel as the prefix sum. 
However the prefix sum kernel is used to calculate the prefix sum of all pixels in the 
horizontal direction followed by the prefix sum in the vertical direction (see fig 11 for an 
example).  This  means  that  the  prefix  sum kernel  must  be called  log2N times  for  the 
horizontal prefix sum and log2M times for the vertical  prefix  sum resulting in a time 
complexity  of  MN(log2N + log2M)/P  which  is  significantly  less  than  2MN the  time 
complexity for the serial integral image algorithm when P is large, that is P>(log2N + 
log2M)/2.

Figure 12 Integral Image Stream Processing time versus Image Size on the GPU

The rotated integral image (say for the 45o rotated features) can also be calculated on 
the GPU. Rather than the horizontal and vertical offsets of  (-1,0), (-2,0), (-4,0) etc and 
(0,-1), (0,-2), (0, -4) etc, the two diagonal offsets are passed to the prefix_sum kernel. 
These are (-1,-1), (-2,-2), (-4,-4) etc and (1,-1), (2,-2), (-4, -4) etc. These offsets result in 
two sets of integral images that have been calculated since neighbouring diagonal lines 
do not intersect (this is similar to the black and white squares on the chess or checker 
board). In addition a final pass that adds the integral image from the pixel above (offset 
(0,-1))  must  be  applied  so  that  the  total  integral  image  (not  just  for  black  or  white 
squares) are calculated. Integer rotated integral images can also be similarly calculated 
using the prefix_sum kernel.

6 Performance Results

The integral image algorithm was tested using two different programming models and 
hardware platform. It was tested on the GPU (ATI HD4850) using the stream processing 
model, tested on the CPU (2.66GHz Intel quad core processor) using a simulated stream 
processing model, and tested on the CPU using a best available serial algorithm.
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Figure 13 Integral Image Stream Processing time versus Image Size on the CPU

6.1 Stream Processing Integral Image on GPU

Table  3  shows  the  performance  of  the  stream  processing  integral  image  algorithm 
running on an ATI HD4850 using the Radeon 8.5 driver. The results in table 1 show that 
the initialization of the GPU with the kernel requires a significant amount of time. This 
means that the first pass through the kernel takes a large amount of time. Subsequent 
passes, as shown by the timing when run twice and ten times shows that each individual 
pass of the stream programming integral image algorithm is relatively efficient. As the 
size  of  the  image  to  process  increases  the  execution  time increases  (fig  12)  but  the 
efficiency of the algorithm improves. The efficiency improves as the size of the image 
increases, as can be seen by comparing the average time to process each pixel in the last 
line of the table 3.

6.2 Stream Processing Integral Image simulated on CPU

Table  4  shows  the  performance  of  the  simulated  stream  processing  integral  image 
algorithm running on the CPU. This executes  code that  simulates running on a GPU 
having  the  same  number  of  function  calls,  except  the  code  is  running  on  a  single 
processing core of the CPU. The performance is poor in comparison to the algorithm 
running on dedicated  GPU hardware,  but  this is  also a  reflection of the fact  that  the 
algorithm is running the inefficient stream processing algorithm with a time complexity 
of MN(log2N + log2M)/P where P is 1. 
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Figure 13 shows that the algorithm scales linearly as the number of pixels processed 
increases  and this is  reflected in the average  time to process 1 pixel  which is almost 
constant over the different image size range (Table 4). The results (table 4) also show that 
the float4 stream implementation is more efficient that the float implementation, while 
the float4 implementation with 8 output streams is the most efficient. This is due to the 
reduced  number of  “threads”  or  function calls  in  this  serial  simulation resulting in a 
higher computational intensity of these implementations.

6.3 Serial Integral Image on CPU

Table 5 shows the performance of the serial  integral  image algorithm running on the 
CPU. This executes a best available serial integral image algorithm running on the CPU. 
This code has time complexity of 2MN and does not include the overhead of multiple 
function calls to the kernel and so is significantly better performing that the simulated 
stream processing integral image algorithm as presented in table 4. Figure 14 shows that 
as the image size increases there is not a linear improvement in performance and this is 
illustrated by the average time to process a pixel (table 5). This is due to the cache effects 
of  the  CPU,  as  the  problem size  exceeds  the  caches  the  time to  process  each  pixel 
increases.

Overall the time to process each pixel is very good across the range of input image 
sizes.  For  large  image  sizes  the  CPU  implementation  is  slower  than  the  GPU 
implementation, however it was using a single processor core. Efficient use of multiple 
cores will have the CPU performing better, however even in these scenarios offloading 
the  CPU  from  the  integral  image  calculations  so  that  the  CPU  can  continue  other 
processing may be a viable option.

Figure 14 Integral Image Serial Processing time versus Image Size on the CPU

Table 4 Performance of the Integral Image stream calculation on the CPU

Image Shape (MxN) 64x64 128x128 256x256 512x512 1024x1024 1024x2048
log2M+log2N 12 14 16 18 20 21
Image Size (pixels) 4096 16384 65536 262144 1048576 2097152
Time, float data type, 10 
cycle (s)

0.819 3.832 17.47 79.44 354.76 744.50

Time, float4 data type, 
10 cycles (s)

0.318 1.487 6.81 30.71 136.7 387.37

Time, 8 streams, float4 
data, type 10 cycles s)

0.1552 0.709 3.243 14.82 65.42 137.44

Time, average cycle(s) 0.01552 0.0709 0.3243 1.482 6.542 13.744
Serial Time, average 
cycle/ log2M+log2N (s)

0.00129 0.005 0.020 0.082 0.327 0.654

Average cycle/ Image 
Size (s/pixels)

3.8E-06 4.3E-06 4.9E-06 5.6E-06 6.2E-06 6.5E-06

Average serial cycle/ 
Image Size (s/pixels)

3.2E-07 3.1E-07 3.1E-07 3.1E-07 3.1E-07 3.1E-07

Table 5 Performance of the Integral Image calculation on the CPU

Image Shape 64x64 128x128 256x256 512x512 1024x1024 1024x2048
Image Size (pixels) 4096 16384 65536 262144 1048576 2097152
Time, 10 cycles (s) 0.00007 0.0003 0.001 0.005 0.080 0.186
Time, average 
cycle(s)

7.0E-06 2.8E-05 1.1E-04 5.0E-04 8.1E-03 1.9E-02

Average cycle/ Image 
Size (s/pixels)

1.7E-09 1.7E-09 1.6E-09 1.9E-09 7.7E-09 8.9E-09
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7 Conclusions

This paper has presented novel rotated Haar-like features for image sensors that can be 
used to produce rotationally invariant classifiers. The unit-integer rotated integral image 
can be calculated at a speed similar to twisted features on the CPU or the GPU, with 
similar constant time calculation of feature values, independent of feature size. 

This paper has shown that the execution time of the integral image algorithm for large 
input images from high resolution image sensors can be significantly improved by using 
a stream programming implementation running on the GPU. With the improvements of 
hardware and the addition of more stream processors in future commodity hardware, this 
technique  represents  a  method to  achieve  real  time performance  while  maintaining a 
reduced power budget as compared to modern CPUs.

Using the GPU for a full classifier (for example a face detector) requires additional 
processing. The integral image calculation represents just the first stage of the classifier. 
The cascade classifier of Jones and Viola, 2003 works by rejecting regions at each stage 
of the classifier that are not the object of interest. If a region passes all the stages then it  
represents an object of interest (for example a face). The cascade classifier algorithm has 
multiple code paths depending on the image in the region being processed and so is 
expected  not  to  scale  well  on  the  GPU,  however  the  computational  intensity  of  the 

Table 5 Performance of the Integral Image calculation on the CPU

Image Shape 64x64 128x128 256x256 512x512 1024x1024 1024x2048
Image Size (pixels) 4096 16384 65536 262144 1048576 2097152
Time, 10 cycles (s) 0.00007 0.0003 0.001 0.005 0.080 0.186
Time, average 
cycle(s)

7.0E-06 2.8E-05 1.1E-04 5.0E-04 8.1E-03 1.9E-02

Average cycle/ Image 
Size (s/pixels)

1.7E-09 1.7E-09 1.6E-09 1.9E-09 7.7E-09 8.9E-09
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cascade classifier is relatively high. This may mean that offloading the classifier to the 
GPU, though not very efficient may be worth while since it will free the CPU for other 
tasks.

Alternative classifier approaches such as moment invariant approaches (Barczak et 
al., 2007) also can make use of integral images and have the additional advantage that 
they have limited code paths through the classifiers. We are currently investigating this 
approach and are optimistic about the potential performance benefits.
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