Gamma matrices

This appendix reviews the properties of y-matrices. In 4 space-time dimensions we
have already given an explicit representation of these matrices in chapter 5. The set-
up of this appendix is kept more general; motivated by dimensional regularization
and by recent discussions of higher-dimensional theories in the context of Kaluza-
Klein supergravity and superstrings we summarize the properties of ~-matrices in
arbitrary space time dimension D. For this reason we adopt a notation which is
different from that used in the main text. In D-dimensional Minkowski space the
space components carry indices 1,2,...D — 1, and the purely imaginary time compo-
nent carries index D. Readers who are emotionally attached to 4-dimensional space
time can simply insert D = 4, or, if they only need a certain 4-dimensional formula,
they are advised to consult section E.3 and parts of the later sections where explicit
results for D = 4 are listed.

E.1. The Clifford algebra

We consider a representation of the D-dimensional Clifford algebra

Ya Vb + Vo Ya = 2041, a,b=1,...D. (E.1)
Repeated multiplication of the y-matrices leads to a set of 2° matrices I'*

I'* 1,9, Yab , Yabe -- - (E.2)
where

Yab = YaVb (a <b), Yabe = Ya Vb Ve (a<b<c) ,etc. (E.3)

In (E.2) we only include ordered strings of different y-matrices; products in which
the y-matrices appear in different order or the same ~y-matrix appears more than
once can be reduced to one of these by using the anticommutation relation (E.1). On
account of (E.1) the matrices Ya,...q,, are antisymmetric in the indices az, ..., an, so
they can also be defined as an antisymmetrized product of y-matrices

1
Yoroan == . (=) YarVaz - Yan - (E.4)

Tl
n. perm
lay...an]

As there are (g) different ways of selecting n different indices between 1 and D,

there are (g) matrices 7Ya;...a,, . Therefore the total number of matrices s

i <g> =27, (E.5)

n=0
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It is useful to define the degree of the matrices I'* as the number of ~y-matrices
contained in the products (E.4). Obviously the degree ranges between 0 and D: the
identity matrix has zero degree, and the product in which each y-matrix appears
once has degree D. Because the latter plays a special role in what follows we denote
it by 4; hence

¥ ="Y17v2Y3..-YD - (E.6)
The product of two matrices I' and I'® can be reduced to a simpler form by using
(E.1) to cancel all pairs of equal y-matrices. One is then left with a string of different

~-matrices, which constitutes a matrix I'?. As this operation involves an interchange
of y-matrices there may be a number of sign changes, so we write

rre = 4re. (E.7)
Note that the degree of I'C is equal to or less than the sum of the degrees of I'*
and I'®. By similar arguments one finds (no summation over B)

rerir® —4rt. (E.8)

We note two special examples of (E.7). First of all, I'“ =1 if and only if I'* = I'?;
the sign is related to the degree of I',

(I'? = oI, (E.9)

where a,, equals 1 or i in accordance with

1
o2 = (_)5”(”*1) ) (E.10)

Hence a, = 1 for n = 0,1 modulo 4 (i.e. n = 4N and n = 1 4+ 4N, where N is a
positive integer) and «, =i for n = 2,3 modulo 4. The sign factor in (E.10) arises
because reordering the indices in 7q,...q,, in opposite order an,an—1,...a1 induces
> (i — 1) = $n(n — 1) minus signs, so that

Yaras...an — aff}/anan,l...al 5 (Ell)

and obviously Ya,as...anYana,_1...a; = 1 (N0 summation over ai — an).
Secondly I'® = # if the sum of the degrees of I'* and I'? equals D, and if '
and I'® contain no identical y-matrices; explicitly

Yai...anYany1...ap = 5a1...aD5/7 (E12)

where €4, ...a,, is the D-dimensional Levi-Civita symbol (with normalization £123...p =
+1).

In specific cases it is convenient to write (E.7) in covariant form. Most results
follow from repeated use of the products Yavs,...s, and Yu,...6,,Va- If @ is different
from b1 — by, this product equals Yap,...b, O Vb;...b,,a Which have degree n + 1; if a
is equal to one of the indices b1 — by, say b; then the two equal y-matrices gives I,
so that one is left with £s,..4, with the index b; deleted. Explicitly

n

n
VaVor-bn = Vabybn + D (=) Bab Yoy b - (E.13)
=1



§E.2] The Clifford algebra 677
where l;z indicates that the index b; has been deleted. Similarly
Vo1..bnYa = Voyi...bna + Z(—)"_i&zbi’yblm,;imb" . (E.14)
i=1

From (E.13) and (E.14) it follows that

[Yas Vb1...bn] = 2%aby ..., > (0 0dd) (E.15)

{YasVo1...6n }] = 2Yaby...b, » (N even) (E.16)
A similar relation is

. o?

Yai...anY = msal...ananJrlmaD7an+1.A4aD . (E17)

where we sum over the indices ant+1 — ap on the right-hand side. This result is

derived by noting that the left-hand side contains the matrices 4, — 7va, twice,

once in 7g,...a, and once in 7, so that one is left with a product of the D — n ~v—

matrices that are not present in va,...a,, We must divide by (D — n)! because there

are (D — n)! terms in the summation over a,+1 — ap, each giving rise to the same

result; the sign can be verified by choosing particular values for the indices a1 — an.
Another important result is

Yol *va = (=)"(D — 2n)I*, (E.18)
which follows from (no summation over a)

YaVby...bn Ya = (*)nil%l.“bn a€br...by, (E.19)
YaYor..bnYa = (=) Vor...bn aF#bi...by. (E.20)

As there are n index values in b1 — b, and D — n index values unequal to b1 — by,
summation over all index values leads directly to (E.18).

Equation (E.18) may now be used to obtain information about the trace of I'**.
Using the cyclicity of the trace one derives

Tr(val7) = Te(Iyara) = DTa(I),
which according to (E.18) must also be equal to (=)™ (D —2n)Tr(I"*). Consequently
all matrices I'* are traceless with the exception of the unit matrix and possibly %

(if D is odd), viz.

(=0 I*+#1L7, (E.21)
Tr(y) =0 for D even. (E.22)
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E.2. A finite group

2P+ ¢lements. For

According to (E.7) the matrices 1" form a finite group of
finite groups there are strong restrictions on the number and type of inequivalent
representations which we will exploit to determine a number of important properties
of v-matrices. Let us start by describing the profile of the group. The order of the
group, defined as the number of elements, is equal to 2°+1. The group elements can
be divided in classes: two group elements g1 and g2 belong to the same class if there

is a group element g such that

9919~" = ga. (E.23)

According to (E.8) and (E.9) +I'* and —I'* constitute a class in general, unless
I'* commutes with all group elements, in which case +I'* and —I'* are separate
classes. To determine the commuting elements one first determines the elements that
commute with all the y-matrices; there are only two, namely the identity element
and (if D is odd) the element 7 (cf. E.15). Elements commuting with the -matrices
commute with all ', Therefore + I and -I form separate classes and so do +% and
—7 if D is odd. Consequently the number of classes is 2° 41 for even D and 27 +2
for odd D.

Finally the commutator subgroup, consisting of all elements g1geg; ' g5 *, has only
two elements, +1I and -I (cf. E.8 and E.9). In what follows we only need the order of
the group, the number of classes and the order of the commutator subgroup. These
numbers are listed in table E.2. Now we summarize the following results of finite

Table E.1: Properties of the finite group consisting of the matrices I'* defined in the text.

Property D even D odd
order of the group ob+1 2D+1
number of classes 2D+1 41 2D+ 49
order of commutator subgroup 2 2

group theory:

(i) The number of inequivalent (i.e. not related by a similarity transformation v, —
SYaS _1) irreducible representations equals the number of classes.

(ii) The number of inequivalent one-dimensional representations equals the order of
the group divided by the order of the commutator subgroup.

(iii) The sum of the squares of the dimension of the irreducible representations equals
the order of the group.

(iv) All representations of the group are equivalent (through a similarity transfor-
mation) to a unitary representation.

Using these results one straightforwardly derives that the group in question has 27
one-dimensional representations (in such representations the I are represented by

1
numbers). For even D there is only one other representation of dimension 22P For
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odd D there are two other representations with dimensions d; and do satisfying

di +ds=2". (E.24)

1
As we shall see below the two representations are both 22~ dimensional. Fur-
thermore, in all representations the I'* can be chosen unitary. Because of (E.9) this
implies that the ' are either hermitean or antihermitean, viz.

" =@t =alr?, (E.25)
so that the matrices o, I'* are always hermitean. In particular one can always choose
LI (E.26)

Although the one-dimensional representations are genuine representations of the fi-
nite group, they do not correspond to representations of the Clifford algebra because
the I' are just numbers which cannot satisfy the anticommutation relation (E.1).
Hence only the higher-dimensional representations are relevant for our purpose.
From this we conclude that the y-matrices are unique (i.e. up to a similarity trans-
formation) in even dimensions; for odd dimensions there are two inequivalent repre-
sentations. There are two ways of understanding the odd-dimensional case. The
first is to start from the observation that the group contains an element other
than the identity which commutes with all group elements, namely 7. Because ¥
is (anti)hermitean (cf. E.25) it can be diagonalized with eigenvalues tap. Cor-
respondingly we may now decompose all matrices according to a subspace where
4 = apl, and a subspace where ¥ = —apl; because all I'* commute with 4 there
are no matrix elements connecting these two subspaces. Consequently we can restrict
7 to
¥ =+apl, (E.27)
each corresponding to an (inequivalent) representation of the odd-dimensional Clif-

ford algebra. The second approach starts from the even-dimensional algebra, which
one extends to the odd-dimensional case by making the identification

Lpp—
vpi1 = +apy (ah = (=)2PP7Y Deven).

It is easy to verify that the set {y1,72...,7D,Yp+1} now generates an odd-
dimensional Clifford algebra, with

Y1Y2...YDYD—-1 = :I:aDI . (EQS)

Note that the sign in (E.27) and (E.28) cannot be changed by a similarity trans-
formation so that this condition characterizes truly inequivalent representations. As
both representations have the same dimension it follows from (E.21) that the two

1
inequivalent representations have dimension 22 P~ (D odd). The results obtained
so far are summarized in table E.2. ® To show that, in odd dimensions, the matrices
Yaq...an With 0 < n < D, are overcomplete, one uses (E.17) and (E.27).
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Table E.2: Properties of y-matrices in even and odd space time dimensions®.

Deven ~4=nvi(a=1,..,D) are 2P/2 x 2P/2 matrices, which are unique modulo a similarity transformation
all I'4 are linearly independent
all 2P/2 x 2P/2 matrices can be decomposed into Yay ,...a, (0 < n < D)
D odd Ya = 'yl(a =1,..,D) are 2(P=1)/2  2(D=1)/2 matrices, which are not unique; there are two representations
not all T'4 are linearly independent
all 2(P=1)/2 5 2(P=1)/2 matrices can be decomposed into Yay,...a,, (0 < n < (D —1)/2)

E.3.  Gamma matrices in D =4 dimensions

For D = 4 the v-matrices have already been defined in chapter where a particular
representation was written down. That representation had the advantage that -4
was diagonal. Another useful representation is the one where s is diagonal (chiral
representation) or the one where all y-matrices are real (Majorana representation).
Since most of the calculations presented in this book are independent of the explicit
form of the y-matrices we refer to other textbooks for explicit representations other
than that of chapter 5 (see, for instance, Itzykson and Zuber (1980); their convention
differs from ours in that their 71,2 and 73 contain an extra factor i and their o is
our ~4; cf. appendix B).

The notation in chapter 5 differs from the one used in this appendix so far. One
easily verifies the correspondence

Ya = Vs (E.29)
Yab = Vv = 0 = 5 (VYo — Vo Tu) (E.30)
Yabe =7 Yuvp = %i(UuV’YP +YpOur) = —EpvpaVo Vs (E.31)
Yabed = Ypvpo = EpvpcVs (E.32)
Y5 — Y5 = Y1727V374 (E.33)
(cf. 5.8-5.9), where we have used the defining expressions for ve,...q,, and 4 and

relations such as (E.16-E.17). Choosing 1,7, ,0., and 75 as an independent set of
(hermitean) 4 x 4 matrices one derives from section E.]l

VoYp = 4, Vo VYo = =2, YpOuYp =0,
YoOuv = —i(OupYv — OvpYu — EpvpoYoVs)

T Yp = —i(0upYv + OvpYu — EpvpoVoVs) s

Opv = *%EWPGUPU'VS»

[Ouv, Opo] = 21(5MPOW’ — 6upOuo = OpoOup + OvaTpp)

{Ouv; 0po} = 2i(0up0vo — SuoOup — Epvpos) -
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Contraction of y-matrices with four-vectors A, , B, etc. leads to identities such as

ABA BA/=2A-B, (E.40)

VAL Ay =24, 7 Af = —24/ (E.41)

WAB =1A-B, 1, ABEA, = —2CBA/ (E.42)
Furthermore there is a hermiticity relation

Ay = -4/ (E.43)

where A= A5,

E.4. The trace over products of gamma matrices

Motivated by dimensional regularization we first discuss the trace over products
of ~-matrices in arbitrary dimension D. From section E.1 the general strategy is
clear: one decomposes products of y-matrices in terms of the v4,.. 4, by means of
repeated use of (E.13) and (E.14). The coefficients of the vq;...a,, do not depend on
the value of D as long as one does not consider products of 4 (the analogue of s in
4 dimensions). Subsequently one performs the trace, which according to (E.21) picks
out the coefficient of the identity matrix and (if D is odd) of the matrix 4. As the
definition of ¥ itself depends on D) the trace for odd D will be dimension-dependent.
For instance,

Te(yame) #0,  if D=1,3, (B44)
Tr(YayoYeyaye) # O, if D=1,3,5, etc. (E.45)
However, for even dimensions only the coefficient of the identity matrix is relevant,

so let us concentrate on even values of D. To demonstrate a typical example, take
the product of two and four y-matrices, which we evaluate by using (E.13):

YaVo = Yab + Oab , (E.46)
YaYoYeYd = YaVo(Ved + dcd) (E.47)
= Ya(Vbed + ObcYd — ObdYe + dedVb) (E.48)
= Yabed + abVed — OacYbd + OadVbe + ObeVad — ObdYac (E.49)
+ dcaVab + 6addbc — dacObd + Sadlbe - (E.50)
Taking the trace and using (E.21) leads to
Tr(Yays) = 0ap Tr(I), (E.51)
Tr(YavYeYd) = (6addbe — dacObd + dabdea) Tr(I) . (E.52)
Along the same lines one finds
Tr(YayoYeYaYeVf) = (OabOcddef — dabdceddf — 0acObfdde + dacObedar (E.53)
+ 0addbfce — GadObedef + Obebafdde — Obcdaelds (E.54)
— Obddaflce + ObddafObe — Gcddafdve + Ocadaclbs (E.55)
+ daddvcles — OacObades + dapdeades Tr(I). (E.56)
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The D-dependence now resides entirely in Tr(I) which equals (for the irreducible
representation)

Tr(I) = 227 (E.57)

This number just represents the fact that in different dimensions a spinor field has
a different number of components, just as the components of a vector field depend
on D. In the context of dimensional regularization the D-dependence of (E.51)
and (E.53) is not crucial, as follows from the observation that the trace is always
associated with a fermion loop. Changing the number of fermions when moving away
from 4 dimensions therefore changes the weight of the diagram, and since we are
making an analytic continuation from D = 4 we are allowed to change the number
of fermions in some continuous fashion, such that the D-dependence of (E.57) is
cancelled. Consequently we may use (E.51) and (E.53) for D = 4 when applying
dimensional regularization.

This is not true if the trace contains the matrix 4 (or s in D = 4), because ¥
itself depends on D, and just as demonstrated for odd D in (E.44) the trace will
sensitively depend on D. Hence we just list some results for D = 4, which can be
found by using the same procedure as above.

Tr(ys) = Tr(vsyuw) =0, (

Tr(vsVu VYo Vo) = 4€pvp0 (

Tr(VsVu Yo Yo Yo VAVr) = 460 €porr — 40up Evarr + 40up Epors (E.60
+ 4057 €pvpr — 400r Epvpr + 4007 Epvpo (

where we substituted Tr(I) = 4. The last equation can be written in a variety of
ways by exploiting the Schouten identity (A.17).

E.5.  Lorentz transformations and chirality

Lorentz transformations act on spinors as

d) - wl - exp(ieab’yab)wa (E62)

where a5 = 0ap = —0p, are the parameters of the D-dimensional Lorentz group.
Note that (E.62) coincides with the four-dimensional result given in (5.11). To show
that (E.62) represents the action of the Lorentz group, it suffices to verify that the
commutation relations of f%i'yab and +%i'yab coincide with those of the Lorentz
group generators Mo, and M.q [which take the same form as in D = 4; cf. (A.43)].
Just as in D = 4 Minkowski space one defines a conjugate spinor

QZ) = 1/J*T’YD ) (E63)

(where vp is the analogue of 74 and T denotes that ¢* is regarded as a row spinor)
transforming under Lorentz transformations as

¢ — )" =t exp(—F0abvab) - (E.64)
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If D is even one can define chiral spinors by

_1+apd

(I 5

¥, (E.65)

such that 14 are eigenspinors of ap% with eigenvalues +1, viz.

1+ apy

apd £ apy?
2

;. V=

apyYs = Y =%Ys. (E.66)
As 4 commutes with %°, the chiral spinors transform identically under Lorentz

transformations according to (E.62). Furthermore we note that

Yi(apd) = Fx (E.67)
as follows from ¢¥*Typapy = - apiyp = —((ap?) v+)*Typ = Fp+. The
above properties are true for arbitrary even dimension. Now we concentrate on
Lorentz transformations in four dimensions. Using o, = —%ewpaa,m%, we write

GHVGHV = Gijo'i]' + 29k40'j4 s (E.68)

= (05 — OkaCraij¥s)0ij » (E.69)
1+ . 1-—
= G0 —g oy (E.70)

where &;; = 6;j — Oracraij, or explicitly using Ors4 = 10k with O real

&12 = 012 — 030 &31 = 031 —ifao £23 = 023 — if10 . (E.71)
This shows that chiral spinors transform under Lorentz transformations as

vy — 1/)/+ = eXP(iﬁijUij)iﬁ ) P — ’lﬁ: = eXP(ifijij)d)f ) (E.72)

or in other words, as under ordinary spatial rotations with complex rather than real
angles. We leave it to the reader to substitute (5.10) for exp(1&;;0i;) to see that it
decomposes as

exp(3&ijois) = (g 3) ; (E.73)

with U a complex 2 X 2 matrix with unit determinant. Such matrices generate the
group Sl(2,C), so we have established the equivalence of this group with the four-
dimensional Lorentz group (the equivalence holds only locally; see appendix C). The
above observations form the basis for the 2-component spinor notation.

E.6. Charge conjugation matriz and Majorana spinors

Observing that the matrices +v, (where the superscript T denotes the transpose)
also satisfy the defining relation (E.1) of the Clifford algebra, one concludes that
+~T must be related to 7, by a similarity transformation in view of the uniqueness



684 Gamma matrices [Ch.E

property of the Clifford algebra (cf. table E.2). Hence matrices C'+ must exist such
that

) = Cx7aCE" (E.74)

The matrices C are called “charge-conjugation” matrices for reasons mentioned at
the end of this section. For even D both C; and C_ should exist; however, for odd
D there are two inequivalent representations, and one must ensure that the +vT do
not actually constitute the other representation. To examine this we first show that
the matrices I'*, defined by (E.4), satisfy

IrH' = (H)"eior*cst, (E.75)
where 7 is the degree of I'*, as follows directly from (E.74) and (E.11). Consequently
7' = (#)"abCeiCy,

from which one deduces that in odd dimensions, where 4 is proportional to the
identity (cf. E.27), so that C+7CL"' = 7, either Cy exists (for a3 = 1,50 D = 1
modulo 4), or C_ exists (for a3, = —1 , so D = 3, modulo 4).

Subsequently by applying (E.74) twice one proves

(CT'CM ) va = va(C7HCT). (E.76)

However, matrices commuting with v, commute with all the matrices I'*, so they
must be proportional to the unit matrix; therefore CT = AC. Substituting this result
back into (E.74) shows that A% = 1, so that C' must be symmetric or antisymmetric

cT =)0,  A=41. (E.77)
By similar arguments one shows that
(CTCha = 74(CTC) (E.78)

in representations where the «y, are hermitean, from which one concludes that CTC'
is proportional to the unit matrix. Again the square of the proportionality constant
equals 1, and because CTC' is positive we must have

ct=c'. (E.79)

Using (E.74) and (E.75) it follows that also the matrices Cy* must be symmetric
or antisymmetric

(Cer™)T = (B)"an M (CLT?), (E.80)

where n is the degree of I'*. This implies that the matrices C4 1™ with degree
n = 0 or 1 modulo 4 have the same symmetry as C;, while the others have opposite
symmetry; likewise the matrices C_I'* with degree n = 0 or 3 modulo 4 have the
same symmetry as C_, while the others have opposite symmetry.

The above arguments suffice to determine the value of A. One first observes that
the complete (sub)set of matrices v (i.e. all I'* for even D and all I'* with degree
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n < %D—l for odd D; see table E.2) leads to a corresponding independent set Cr4.

Knowing the dimension of the matrices (i.e. 2%[) or 2%<D71) ) one knows the number
of independent symmetric and antisymmetric matrices which can be compared to
the total number of symmetric or antisymmetric matrices defined in terms of the
CT#. Only for one value of A will these numbers match. Rather than demonstrate
how this is done we present the results in table E.3. So far we have been describing

Table E.3: Symmetry properties of the charge conjugation matrices C4+ and C_ in various
dimensions. An S indicates that the matrix is symmetric, an A that it is antisymmetric,
corresponding to A = +1 and A = —1 in (E.77) respectively. Entries repeat themselves
every eight columns (i.e., the result for D = 2 coincides with that for D = 10, etc.).

D 2 3 4 5 6 7 8 9 10 11 12
[om S - A A A - S S S - A
C_ A A A - S S S - A A A

abstract properties of the Clifford algebra. Let us now consider spinors 1 and define
o = 1T, (E.81)

(sometimes called the Majorana conjugate) where the notation T implies that
we write the conjugate field 1) as a row spinor. Under Lorentz transformations )°
transforms just as the original field v, i.e.

P° — () = exp(§0abvan)¥° (E.82)
as follows from CL I = —YabCL ! (cf. E.75). For even D one may consider chiral
projections of . In that case ¥ and v have equal chirality whenever o = —1, i.e.

for D = 2 modulo 4.
For eigenspinors u(P) and v(P) of the Dirac equation one can define corresponding
Majorana conjugates u°(P) and v°(P). Using (E.74) it is easy to show that

iPy(P) = —mu(P), iPY(P) = mou(P),
implies
iPy°(P) = +mu’(P), iPy°(P) = £mov°(P), (E.83)

where the upper (lower) sign refers to a Majorana conjugate defined with respect
to C(C-). If we use C_ then (E.83) shows that the Majorana conjugate spinors
u®(P) and v°(P) are linearly related to v(P) and u(P), respectively (note that this
relationship does not exist in dimensions D = 5 modulo 4, as C_ cannot be defined).
For D = 4 this was shown explicitly in chapter 5, and C_ was defined in (5.54).
Because C' relates a spinor field to its complex conjugate, which for electrically
charged fermions is associated with particles of opposite charge, it is conventionally
called the charge conjugation matrix.
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As 1) and ¥° transform identically under Lorentz transformations it is relevant to
investigate if one can impose a reality condition

VO=py, o P =pCY. (E.84)

Fields that satisfy (E.84) are called Majorana spinors. Multiplying the second equa-
tion in (E.84) with the transpose of vp and taking the complex conjugate yields

¢ =(BypC) " (E.85)
= B LC YT (E.86)
= By C*ypACY, (E.87)

where we again used (E.84). Consequently the following restriction must be satisfied
in order that Majorana spinors exist.

18]*7hCErpCs =1 (E.88)
or, using (E.26), (E.74), (E.77) and (E.78),
18> = . (E.89)

Because the left-hand side of this equation is positive, Majorana spinors exist only
for those dimensions where Cy is symmetric or C_ is antisymmetric. Those cases
can be read off directly from table E.3 (note the analogy of (E.88) with the reality
condition for scalar fields, ¢* = B¢, which requires |8|?> = 1). For D = 2 modulo 4 it
is possible to restrict Majorana spinors to be chiral (see comments following (E.82).
Such spinors are called Majorana-Weyl spinors.

E.7. Fierz reordering

1 1

In section E.2 we found that the 2° matrices I'* form a complete set of 22° x22P

matrices for even D. For odd D the 2P~ matrices I'* of degree less than or equal
1 1

to 2(D — I) are also a complete set of 22 P~ x 22(P~1 matrices (cf. table E.2).

Consequently any matrix of the corresponding dimensionality can be decomposed
in terms of the I':

1.1
Mo =272" % —Tr(May o) Yoy an)ag, D even, (E-90)
n=0
5(D-1)
Lpoy? 1
Map =272 Z:; T (Ma..a1) (Yo can)ap, D odd. (E.91)

The right-hand side is divided by factors 2%D and %(D _1), which represent the trace
of the unit matrix for even and odd D, respectively; the factor 1/n! is included to
avoid summing n! times over the same matrix vq,...q,, - Observe also that the indices
a1 ...an appear twice but in opposite order to avoid extra minus signs (cf. E.11).
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The completeness relation (E.90) can now be used to reorder spinors in expressions
such as (I x)(€1'B¢) For instance in even D one derives directly

D
(BIA)(EMP¢) = 2737 Zni BT a0 720 Ear o X) (E.92)

for commuting spinors (for anticommuting spinors there is an extra factor —1.) An
example of (E.92)in D =4 is

(Wyux) (E7uC) = (@O (€x) — (154 (Er5X) — 3 (W7 (Evux) (E.93)
— $@775¢) (€5 X) (B.94)

where we used the notation of section E.3. This result simplifies if two of the fields
are chiral. For instance replacing x and ¢ by (14 vs5)x and (1 + 5)¢ gives

(W (1 +75)X) (676 (1 +75)¢) = = (7 (1 +75)C) (E7u (1 + 75)x) (E.95)

for commuting spinors.



