
E

Gamma matrices

This appendix reviews the properties of γ-matrices. In 4 space-time dimensions we
have already given an explicit representation of these matrices in chapter 5. The set-
up of this appendix is kept more general; motivated by dimensional regularization
and by recent discussions of higher-dimensional theories in the context of Kaluza-
Klein supergravity and superstrings we summarize the properties of γ-matrices in
arbitrary space time dimension D. For this reason we adopt a notation which is
different from that used in the main text. In D-dimensional Minkowski space the
space components carry indices 1, 2, ...D−1, and the purely imaginary time compo-
nent carries index D. Readers who are emotionally attached to 4-dimensional space
time can simply insert D = 4, or, if they only need a certain 4-dimensional formula,
they are advised to consult section E.3 and parts of the later sections where explicit
results for D = 4 are listed.

E.1. The Clifford algebra

We consider a representation of the D-dimensional Clifford algebra

γaγb + γbγa = 2δabI , a, b = 1, ....D . (E.1)

Repeated multiplication of the γ-matrices leads to a set of 2D matrices ΓA

ΓA : I, γa , γab , γabc . . . , (E.2)

where

γab = γaγb (a < b) , γabc = γaγbγc (a < b < c) , etc . (E.3)

In (E.2) we only include ordered strings of different γ-matrices; products in which
the γ-matrices appear in different order or the same γ-matrix appears more than
once can be reduced to one of these by using the anticommutation relation (E.1). On
account of (E.1) the matrices γa1...an are antisymmetric in the indices a1, . . . , an, so
they can also be defined as an antisymmetrized product of γ-matrices

γa1...an =
1

n!

X

perm
[a1...an]

(−)P γa1γa2 . . . γan . (E.4)

As there are
`

n
D

´

different ways of selecting n different indices between 1 and D,

there are
`

n
D

´

matrices γa1...an . Therefore the total number of matrices ΓA is

D
X

n=0

 

D

n

!

= 2D . (E.5)
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It is useful to define the degree of the matrices ΓA as the number of γ-matrices
contained in the products (E.4). Obviously the degree ranges between 0 and D: the
identity matrix has zero degree, and the product in which each γ-matrix appears
once has degree D. Because the latter plays a special role in what follows we denote
it by γ̃; hence

γ̃ = γ1γ2γ3 . . . γD . (E.6)

The product of two matrices ΓA and ΓB can be reduced to a simpler form by using
(E.1) to cancel all pairs of equal γ-matrices. One is then left with a string of different
γ-matrices, which constitutes a matrix ΓC . As this operation involves an interchange
of γ-matrices there may be a number of sign changes, so we write

ΓAΓB = +ΓC . (E.7)

Note that the degree of ΓC is equal to or less than the sum of the degrees of ΓA

and ΓB . By similar arguments one finds (no summation over B)

ΓBΓAΓB = ±ΓA . (E.8)

We note two special examples of (E.7). First of all, ΓC = I if and only if ΓA = ΓB ;
the sign is related to the degree of ΓA,

(ΓA)2 = α2
nI , (E.9)

where αn equals 1 or i in accordance with

α2
n = (−)

1
2
n(n−1) . (E.10)

Hence αn = 1 for n = 0, 1 modulo 4 (i.e. n = 4N and n = 1 + 4N , where N is a
positive integer) and αn =i for n = 2, 3 modulo 4. The sign factor in (E.10) arises
because reordering the indices in γa1...an in opposite order an, an−1, . . . a1 induces
Pn
i=1(i− 1) = 1

2
n(n− 1) minus signs, so that

γa1a2...an = α2
nγanan−1...a1 , (E.11)

and obviously γa1a2...anγanan−1...a1 = I (no summation over a1 − an).

Secondly ΓC = γ̃ if the sum of the degrees of ΓA and ΓB equals D, and if ΓA

and ΓB contain no identical γ-matrices; explicitly

γa1...anγan+1...aD
= εa1...aD

γ̃ , (E.12)

where εa1...an is theD-dimensional Levi-Civita symbol (with normalization ε123...D =
+1).

In specific cases it is convenient to write (E.7) in covariant form. Most results
follow from repeated use of the products γaγb1...bn and γb1...bnγa. If a is different
from b1 − bn, this product equals γab1...bn or γb1...bna which have degree n+ 1; if a
is equal to one of the indices b1 − bn, say bi then the two equal γ-matrices gives I,
so that one is left with ±γb1...bn with the index bi deleted. Explicitly

γaγb1...bn = γab1...bn +

n
X

i=1

(−)i+1δabiγb1...b̂i...bn . (E.13)
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where b̂i indicates that the index bi has been deleted. Similarly

γb1...bnγa = γb1...bna +
n
X

i=1

(−)n−iδabiγb1...b̂i...bn . (E.14)

From (E.13) and (E.14) it follows that

[γa, γb1...bn ] = 2γab1...bn , (n odd) (E.15)

{γa, γb1...bn}] = 2γab1...bn , (n even) (E.16)

A similar relation is

γa1...an γ̃ =
α2
s

(D − n)!
εa1...anan+1...aD

γan+1...aD
. (E.17)

where we sum over the indices an+1 − aD on the right-hand side. This result is
derived by noting that the left-hand side contains the matrices γa1 − γan twice,
once in γa1...an and once in γ̃, so that one is left with a product of the D − n γ−
matrices that are not present in γa1...an We must divide by (D − n)! because there
are (D − n)! terms in the summation over an+1 − aD, each giving rise to the same
result; the sign can be verified by choosing particular values for the indices a1 − an.

Another important result is

γaΓ
Aγa = (−)n(D − 2n)ΓA , (E.18)

which follows from (no summation over a)

γaγb1...bnγa = (−)n−1γb1...bn a ∈ b1 . . . bn , (E.19)

γaγb1...bnγa = (−)nγb1...bn a 6= b1 . . . bn . (E.20)

As there are n index values in b1 − bn and D − n index values unequal to b1 − bn
summation over all index values leads directly to (E.18).

Equation (E.18) may now be used to obtain information about the trace of ΓA.
Using the cyclicity of the trace one derives

Tr(γaΓ
Aγa) = Tr(ΓAγaγa) = DTr(ΓA) ,

which according to (E.18) must also be equal to (−)n(D−2n)Tr(ΓA). Consequently
all matrices ΓA are traceless with the exception of the unit matrix and possibly γ̃
(if D is odd), viz.

Tr(ΓA) = 0 ΓA 6= I, γ̃ , (E.21)

Tr(γ̃) = 0 for D even . (E.22)
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E.2. A finite group

According to (E.7) the matrices ±ΓA form a finite group of 2D+1 elements. For
finite groups there are strong restrictions on the number and type of inequivalent
representations which we will exploit to determine a number of important properties
of γ-matrices. Let us start by describing the profile of the group. The order of the
group, defined as the number of elements, is equal to 2D+1. The group elements can
be divided in classes: two group elements g1 and g2 belong to the same class if there
is a group element g such that

gg1g
−1 = g2. (E.23)

According to (E.8) and (E.9) +ΓA and −ΓA constitute a class in general, unless
ΓA commutes with all group elements, in which case +ΓA and −ΓA are separate
classes. To determine the commuting elements one first determines the elements that
commute with all the γ-matrices; there are only two, namely the identity element
and (if D is odd) the element γ̃ (cf. E.15). Elements commuting with the γ-matrices
commute with all ΓA. Therefore + I and -I form separate classes and so do +γ̃ and
−γ̃ if D is odd. Consequently the number of classes is 2D +1 for even D and 2D +2
for odd D.

Finally the commutator subgroup, consisting of all elements g1g2g
−1
1 g−1

2 , has only
two elements, +I and -I (cf. E.8 and E.9). In what follows we only need the order of
the group, the number of classes and the order of the commutator subgroup. These
numbers are listed in table E.2. Now we summarize the following results of finite

Table E.1: Properties of the finite group consisting of the matrices ΓA defined in the text.

Property D even D odd

order of the group 2D+1 2D+1

number of classes 2D+1 + 1 2D+1 + 2

order of commutator subgroup 2 2

group theory:
(i) The number of inequivalent (i.e. not related by a similarity transformation γa →
SγaS

−1) irreducible representations equals the number of classes.
(ii) The number of inequivalent one-dimensional representations equals the order of
the group divided by the order of the commutator subgroup.
(iii) The sum of the squares of the dimension of the irreducible representations equals
the order of the group.
(iv) All representations of the group are equivalent (through a similarity transfor-
mation) to a unitary representation.
Using these results one straightforwardly derives that the group in question has 2D

one-dimensional representations (in such representations the ΓA are represented by

numbers). For even D there is only one other representation of dimension 2
1
2
D. For
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odd D there are two other representations with dimensions d1 and d2 satisfying

d2
1 + d2

2 = 2D . (E.24)

As we shall see below the two representations are both 2
1
2
(D−1) dimensional. Fur-

thermore, in all representations the ΓA can be chosen unitary. Because of (E.9) this
implies that the ΓA are either hermitean or antihermitean, viz.

(ΓA)† = (ΓA)−1 = α2
nΓ

A , (E.25)

so that the matrices αnΓ
A are always hermitean. In particular one can always choose

γa† = γa . (E.26)

Although the one-dimensional representations are genuine representations of the fi-
nite group, they do not correspond to representations of the Clifford algebra because
the ΓA are just numbers which cannot satisfy the anticommutation relation (E.1).

Hence only the higher-dimensional representations are relevant for our purpose.
From this we conclude that the γ-matrices are unique (i.e. up to a similarity trans-
formation) in even dimensions; for odd dimensions there are two inequivalent repre-
sentations. There are two ways of understanding the odd-dimensional case. The
first is to start from the observation that the group contains an element other
than the identity which commutes with all group elements, namely γ̃. Because γ̃
is (anti)hermitean (cf. E.25) it can be diagonalized with eigenvalues ±αD. Cor-
respondingly we may now decompose all matrices according to a subspace where
γ̃ = αDI, and a subspace where γ̃ = −αDI; because all ΓA commute with γ̃ there
are no matrix elements connecting these two subspaces. Consequently we can restrict
γ̃ to

γ̃ = ±αDI , (E.27)

each corresponding to an (inequivalent) representation of the odd-dimensional Clif-
ford algebra. The second approach starts from the even-dimensional algebra, which
one extends to the odd-dimensional case by making the identification

γD+1 = ±αDγ (α2
D = (−)

1
2
D(D−1) , D even) .

It is easy to verify that the set {γ1, γ2 . . . , γD, γD+1} now generates an odd-
dimensional Clifford algebra, with

γ1γ2 . . . γDγD−1 = ±αDI . (E.28)

Note that the sign in (E.27) and (E.28) cannot be changed by a similarity trans-
formation so that this condition characterizes truly inequivalent representations. As
both representations have the same dimension it follows from (E.21) that the two

inequivalent representations have dimension 2
1
2
(D−1) (D odd). The results obtained

so far are summarized in table E.2. a To show that, in odd dimensions, the matrices
γa1...an with 0 6 n 6 D, are overcomplete, one uses (E.17) and (E.27).
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Table E.2: Properties of γ-matrices in even and odd space time dimensionsa.

D even γa = γ†
a(a = I, ..., D) are 2D/2 × 2D/2 matrices, which are unique modulo a similarity transformation

all ΓA are linearly independent

all 2D/2 × 2D/2 matrices can be decomposed into γa1,...an (0 6 n 6 D)

D odd γa = γ†
a(a = I, ..., D) are 2(D−1)/2

× 2(D−1)/2 matrices, which are not unique; there are two representations distinguishable
not all ΓA are linearly independent

all 2(D−1)/2
× 2(D−1)/2 matrices can be decomposed into γa1,...an (0 6 n 6 (D − 1)/2)

E.3. Gamma matrices in D = 4 dimensions

For D = 4 the γ-matrices have already been defined in chapter where a particular
representation was written down. That representation had the advantage that γ4

was diagonal. Another useful representation is the one where γ5 is diagonal (chiral
representation) or the one where all γ-matrices are real (Majorana representation).
Since most of the calculations presented in this book are independent of the explicit
form of the γ-matrices we refer to other textbooks for explicit representations other
than that of chapter 5 (see, for instance, Itzykson and Zuber (1980); their convention
differs from ours in that their γ1, γ2 and γ3 contain an extra factor i and their γ0 is
our γ4; cf. appendix B).

The notation in chapter 5 differs from the one used in this appendix so far. One
easily verifies the correspondence

γa → γµ , (E.29)

γab → γµν = iσµν = 1
2
(γµγν − γνγµ) , (E.30)

γabc → γµνρ = 1
2
i(σµνγρ + γρσµν) = −εµνρσγσγ5 , (E.31)

γabcd → γµνρσ = εµνρσγ5 , (E.32)

γ̃5 → γ5 = γ1γ2γ3γ4 , (E.33)

(cf. 5.8-5.9), where we have used the defining expressions for γa1...an and γ̃ and
relations such as (E.16-E.17). Choosing I , γµ , σµν and γ5 as an independent set of
(hermitean) 4 × 4 matrices one derives from section E.l

γργρ = 4 , γργµγρ = −2γµ , γρσµνγρ = 0 , (E.34)

γρσµν = −i(δµργν − δνργµ − εµνρσγσγ5) , (E.35)

σµνγρ = −i(δµργν + δνργµ − εµνρσγσγ5) , (E.36)

σµν = − 1
2
εµνρσσρσγ5 , (E.37)

[σµν , σρσ] = 2i(δµρσνσ − δνρσµσ − δµσσνρ + δνσσµρ) , (E.38)

{σµν , σρσ} = 2i(δµρσνσ − δµσσνρ − εµνρσγ5) . (E.39)
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Contraction of γ-matrices with four-vectors Aµ , Bµ, etc. leads to identities such as

A/B/+B/A/= 2A ·B , (E.40)

γµA/+A/γµ = 2Aµ , γµA/γµ = −2A/, (E.41)

γµA/B/γµ = 4A ·B , γµA/B/C/γµ = −2C/B/A/. (E.42)

Furthermore there is a hermiticity relation

γ4A/
†γ4 = −Ā/, (E.43)

where Ā/= Āµγµ.

E.4. The trace over products of gamma matrices

Motivated by dimensional regularization we first discuss the trace over products
of γ-matrices in arbitrary dimension D. From section E.1 the general strategy is
clear: one decomposes products of γ-matrices in terms of the γa1...an by means of
repeated use of (E.13) and (E.14). The coefficients of the γa1...an do not depend on
the value of D as long as one does not consider products of γ̃ (the analogue of γ5 in
4 dimensions). Subsequently one performs the trace, which according to (E.21) picks
out the coefficient of the identity matrix and (if D is odd) of the matrix γ̃. As the
definition of γ̃ itself depends on D) the trace for odd D will be dimension-dependent.
For instance,

Tr(γaγbγc) 6= 0, if D = 1, 3 , (E.44)

Tr(γaγbγcγdγe) 6= 0, if D = 1, 3, 5 , etc . (E.45)

However, for even dimensions only the coefficient of the identity matrix is relevant,
so let us concentrate on even values of D. To demonstrate a typical example, take
the product of two and four γ-matrices, which we evaluate by using (E.13):

γaγb = γab + δab , (E.46)

γaγbγcγd = γaγb(γcd + δcd) (E.47)

= γa(γbcd + δbcγd − δbdγc + δcdγb) (E.48)

= γabcd + δabγcd − δacγbd + δadγbc + δbcγad − δbdγac (E.49)

+ δcdγab + δadδbc − δacδbd + δadδbc . (E.50)

Taking the trace and using (E.21) leads to

Tr(γaγb) = δabTr(I) , (E.51)

Tr(γaγbγcγd) = (δadδbc − δacδbd + δabδcd)Tr(I) . (E.52)

Along the same lines one finds

Tr(γaγbγcγdγeγf ) = (δabδcdδef − δabδceδdf − δacδbfδde + δacδbeδdf (E.53)

+ δadδbfδce − δadδbeδcf + δbcδafδde − δbcδaeδdf (E.54)

− δbdδafδce + δbdδafδbe − δcdδafδbe + δcdδaeδbf (E.55)

+ δadδbcδef − δacδbdδef + δabδcdδefTr(I) . (E.56)
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The D-dependence now resides entirely in Tr(I) which equals (for the irreducible
representation)

Tr(I) = 2
1
2
D . (E.57)

This number just represents the fact that in different dimensions a spinor field has
a different number of components, just as the components of a vector field depend
on D. In the context of dimensional regularization the D-dependence of (E.51)
and (E.53) is not crucial, as follows from the observation that the trace is always
associated with a fermion loop. Changing the number of fermions when moving away
from 4 dimensions therefore changes the weight of the diagram, and since we are
making an analytic continuation from D = 4 we are allowed to change the number
of fermions in some continuous fashion, such that the D-dependence of (E.57) is
cancelled. Consequently we may use (E.51) and (E.53) for D = 4 when applying
dimensional regularization.

This is not true if the trace contains the matrix γ̃ (or γ5 in D = 4), because γ̃
itself depends on D, and just as demonstrated for odd D in (E.44) the trace will
sensitively depend on D. Hence we just list some results for D = 4, which can be
found by using the same procedure as above.

Tr(γ5) = Tr(γ5γµγν) = 0 , (E.58)

Tr(γ5γµγνγργσ) = 4εµνρσ , (E.59)

Tr(γ5γµγνγργσγλγτ ) = 4δµν ερσλτ − 4δµρ ενσλτ + 4δνρ εµσλτ (E.60)

+ 4δσλ εµνρτ − 4δστ εµνρλ + 4δλτ εµνρσ , (E.61)

where we substituted Tr(I) = 4. The last equation can be written in a variety of
ways by exploiting the Schouten identity (A.17).

E.5. Lorentz transformations and chirality

Lorentz transformations act on spinors as

ψ → ψ′ = exp( 1
4
θabγab)ψ , (E.62)

where θab = θ̄ab = −θba are the parameters of the D-dimensional Lorentz group.
Note that (E.62) coincides with the four-dimensional result given in (5.11). To show
that (E.62) represents the action of the Lorentz group, it suffices to verify that the
commutation relations of − 1

2
iγab and + 1

2
iγab coincide with those of the Lorentz

group generators Mab and Mcd [which take the same form as in D = 4; cf. (A.43)].
Just as in D = 4 Minkowski space one defines a conjugate spinor

ψ̄ ≡ ψ⋆T γD , (E.63)

(where γD is the analogue of γ4 and T denotes that ψ∗ is regarded as a row spinor)
transforming under Lorentz transformations as

ψ̄ → ψ̄′ = ψ̄ exp(− 1
4
θabγab) . (E.64)
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If D is even one can define chiral spinors by

ψ± =
1 ± αDγ̃

2
ψ , (E.65)

such that ψ± are eigenspinors of αDγ̃ with eigenvalues ±1, viz.

αDγ̃ψ± =
αDγ̃ ± α2

Dγ̃
2

2
ψ = ±1 ± αDγ̃

2
ψ = ±ψ± . (E.66)

As γ̃ commutes with γab, the chiral spinors transform identically under Lorentz
transformations according to (E.62). Furthermore we note that

ψ̄±(αDγ̃) = ∓ψ̄± , (E.67)

as follows from ψ∗T γDαDγ̃ = −ψ∗T
± αDγ̃γD = −((αDγ̃)

†ψ±)∗T γD = ∓ψ̄±. The
above properties are true for arbitrary even dimension. Now we concentrate on
Lorentz transformations in four dimensions. Using σµν = − 1

2
εµνρσσρσγ5, we write

θµνσµν = θijσij + 2θk4σj4 , (E.68)

= (θij − θk4εk4ijγ5)σij , (E.69)

= ξijσij
1 + γ5

2
+ ξ∗ijσij

1 − γ5

2
, (E.70)

where ξij = θij − θk4εk4ij , or explicitly using θk4 = iθk0 with θk0 real

ξ12 = θ12 − iθ30 ξ31 = θ31 − iθ20 ξ23 = θ23 − iθ10 . (E.71)

This shows that chiral spinors transform under Lorentz transformations as

ψ+ → ψ′
+ = exp( 1

4
ξijσij)ψ+ , ψ− → ψ′

− = exp( 1
4
ξ∗ijσij)ψ− , (E.72)

or in other words, as under ordinary spatial rotations with complex rather than real
angles. We leave it to the reader to substitute (5.10) for exp( 1

4
ξijσij) to see that it

decomposes as

exp( 1
4
ξijσij) =

„

U 0
0 U

«

, (E.73)

with U a complex 2 × 2 matrix with unit determinant. Such matrices generate the
group Sl(2,C), so we have established the equivalence of this group with the four-
dimensional Lorentz group (the equivalence holds only locally; see appendix C). The
above observations form the basis for the 2-component spinor notation.

E.6. Charge conjugation matrix and Majorana spinors

Observing that the matrices ±γT
a (where the superscript T denotes the transpose)

also satisfy the defining relation (E.1) of the Clifford algebra, one concludes that
±γT

a must be related to γa by a similarity transformation in view of the uniqueness
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property of the Clifford algebra (cf. table E.2). Hence matrices C± must exist such
that

±γT
a = C±γaC

−1
± . (E.74)

The matrices C± are called “charge-conjugation” matrices for reasons mentioned at
the end of this section. For even D both C+ and C− should exist; however, for odd
D there are two inequivalent representations, and one must ensure that the ±γT

a do
not actually constitute the other representation. To examine this we first show that
the matrices ΓA, defined by (E.4), satisfy

(ΓA)T = (±)nα2
nC±Γ

AC−1
± , (E.75)

where n is the degree of ΓA, as follows directly from (E.74) and (E.11). Consequently

γ̃T = (±)Dα2
DC±γ̃C

−1
± ,

from which one deduces that in odd dimensions, where γ̃ is proportional to the
identity (cf. E.27), so that C±γ̃C

−1
± = γ̃, either C+ exists (for α2

D = 1, so D = 1
modulo 4), or C− exists (for α2

D = −1 , so D = 3, modulo 4).
Subsequently by applying (E.74) twice one proves

(C−1CT)γa = γa(C
−1CT) . (E.76)

However, matrices commuting with γa commute with all the matrices ΓA, so they
must be proportional to the unit matrix; therefore CT = λC. Substituting this result
back into (E.74) shows that λ2 = 1, so that C must be symmetric or antisymmetric

CT = λC, λ = ±1 . (E.77)

By similar arguments one shows that

(C†C)γa = γa(C
†C) (E.78)

in representations where the γa are hermitean, from which one concludes that C†C
is proportional to the unit matrix. Again the square of the proportionality constant
equals 1, and because C†C is positive we must have

C† = C−1 . (E.79)

Using (E.74) and (E.75) it follows that also the matrices CγA must be symmetric
or antisymmetric

(C±γ
A)T = (±)nα2

nλ(C±Γ
A) , (E.80)

where n is the degree of ΓA. This implies that the matrices C+Γ
A with degree

n = 0 or 1 modulo 4 have the same symmetry as C+, while the others have opposite
symmetry; likewise the matrices C−Γ

A with degree n = 0 or 3 modulo 4 have the
same symmetry as C−, while the others have opposite symmetry.

The above arguments suffice to determine the value of λ. One first observes that
the complete (sub)set of matrices γA (i.e. all ΓA for even D and all ΓA with degree
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n 6 1
2
D−1 for odd D; see table E.2) leads to a corresponding independent set CΓA.

Knowing the dimension of the matrices (i.e. 2
1
2
D or 2

1
2
(D−1) ) one knows the number

of independent symmetric and antisymmetric matrices which can be compared to
the total number of symmetric or antisymmetric matrices defined in terms of the
CΓA. Only for one value of λ will these numbers match. Rather than demonstrate
how this is done we present the results in table E.3. So far we have been describing

Table E.3: Symmetry properties of the charge conjugation matrices C+ and C− in various
dimensions. An S indicates that the matrix is symmetric, an A that it is antisymmetric,
corresponding to A = +1 and λ = −1 in (E.77) respectively. Entries repeat themselves
every eight columns (i.e., the result for D = 2 coincides with that for D = 10, etc.).

D 2 3 4 5 6 7 8 9 10 11 12

C+ S - A A A - S S S - A

C− A A A - S S S - A A A

abstract properties of the Clifford algebra. Let us now consider spinors ψ and define

ψc ≡ C−1
± ψ̄T , (E.81)

(sometimes called the Majorana conjugate) where the notation ψ̄T implies that
we write the conjugate field ψ̄ as a row spinor. Under Lorentz transformations ψc

transforms just as the original field ψ, i.e.

ψc → (ψc)′ = exp( 1
4
θabγab)ψ

c , (E.82)

as follows from C−1
± γT

ab = −γabC−1
± (cf. E.75). For even D one may consider chiral

projections of ψ. In that case ψc and ψ have equal chirality whenever α2
D = −1, i.e.

for D = 2 modulo 4.
For eigenspinors u(P) and v(P) of the Dirac equation one can define corresponding

Majorana conjugates uc(P) and vc(P). Using (E.74) it is easy to show that

iP /u(P) = −mu(P) , iP /v(P) = mv(P) ,

implies

iP /uc(P) = ±muc(P) , iP /vc(P) = ±mvc(P) , (E.83)

where the upper (lower) sign refers to a Majorana conjugate defined with respect
to C+(C−). If we use C− then (E.83) shows that the Majorana conjugate spinors
uc(P) and vc(P) are linearly related to v(P) and u(P), respectively (note that this
relationship does not exist in dimensions D = 5 modulo 4, as C− cannot be defined).
For D = 4 this was shown explicitly in chapter 5, and C− was defined in (5.54).
Because C relates a spinor field to its complex conjugate, which for electrically
charged fermions is associated with particles of opposite charge, it is conventionally
called the charge conjugation matrix.
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As ψ and ψc transform identically under Lorentz transformations it is relevant to
investigate if one can impose a reality condition

ψc = βψ , or ψ̄T = βCψ . (E.84)

Fields that satisfy (E.84) are called Majorana spinors. Multiplying the second equa-
tion in (E.84) with the transpose of γD and taking the complex conjugate yields

ψ =(βγT
DC)∗ψ∗ (E.85)

= β∗γ†
DC

∗γT
Dψ̄

T (E.86)

= β∗γ†C∗γT
DβCψ , (E.87)

where we again used (E.84). Consequently the following restriction must be satisfied
in order that Majorana spinors exist.

|β|2γ†
DC

∗
±γ

T
DC± = I (E.88)

or, using (E.26), (E.74), (E.77) and (E.78),

|β|2 = ±λ . (E.89)

Because the left-hand side of this equation is positive, Majorana spinors exist only
for those dimensions where C+ is symmetric or C− is antisymmetric. Those cases
can be read off directly from table E.3 (note the analogy of (E.88) with the reality
condition for scalar fields, ψ∗ = βφ, which requires |β|2 = 1). For D = 2 modulo 4 it
is possible to restrict Majorana spinors to be chiral (see comments following (E.82).
Such spinors are called Majorana-Weyl spinors.

E.7. Fierz reordering

In section E.2 we found that the 2D matrices ΓA form a complete set of 2
1
2
D×2

1
2
D

matrices for even D. For odd D the 2D−1 matrices ΓA of degree less than or equal

to 2(D − I) are also a complete set of 2
1
2
(D−1) × 2

1
2
(D−1) matrices (cf. table E.2).

Consequently any matrix of the corresponding dimensionality can be decomposed
in terms of the ΓA:

Mαβ = 2−
1
2
D

D
X

n=0

1

n!
Tr(Mγan...a1)(γa1...an)αβ , D even , (E.90)

Mαβ = 2−
1
2
(D−1)

1
2
(D−1)
X

n=0

1

n!
Tr(Mγan...a1)(γa1...an)αβ , D odd . (E.91)

The right-hand side is divided by factors 2
1
2
D and

1
2
(D−1), which represent the trace

of the unit matrix for even and odd D, respectively; the factor 1/n! is included to
avoid summing n! times over the same matrix γa1...an . Observe also that the indices
a1 . . . an appear twice but in opposite order to avoid extra minus signs (cf. E.11).
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The completeness relation (E.90) can now be used to reorder spinors in expressions
such as (ψ̄ΓAχ)(ξ̄ΓBζ) For instance in even D one derives directly

(ψ̄ΓAχ)(ξ̄ΓBζ) = 2−
1
2
D

D
X

n=0

1

n!
(ψ̄ΓAγan...a1Γ

Bζ)(ξ̄γa1...anχ) (E.92)

for commuting spinors (for anticommuting spinors there is an extra factor −1.) An
example of (E.92)in D = 4 is

(ψ̄γµχ)(ξ̄γµζ) = 1
4
(ψ̄ζ)(ξ̄χ) − (ψ̄γ5ζ)(ξ̄γ5χ) − 1

2
(ψ̄γµζ)(ξ̄γµχ) (E.93)

− 1
2
(ψ̄γµγ5ζ)(ξ̄γµγ5χ) , (E.94)

where we used the notation of section E.3. This result simplifies if two of the fields
are chiral. For instance replacing χ and ζ by (1 + γ5)χ and (1 + γ5)ζ gives

(ψ̄γµ(1 + γ5)χ)(ξ̄γµ(1 + γ5)ζ) = −(ψ̄γµ(1 + γ5)ζ)(ξ̄γµ(1 + γ5)χ) (E.95)

for commuting spinors.


