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Is forecasting a fool’s game?

“The British, he thought, must be gluttons for satire:
even the weather forecast seemed to be some kind of
spoof, predicting every possible combination of weather
for the next twenty-four hours without actually
committing itself to anything specific.”

David Lodge: Changing Places, 1975
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The outcome of poor weather forecasts?

When weather forecasters go awry,
they get a new super-computer;
when economists mis-forecast,
we get our budgets cut.

DFH, originally quoted in the UK Press following the 1987 storm.
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Why forecast in economics?

GDP growth projection CPI inflation projection

Source: Bank of England Source: Bank of England

Prerequisite for a forward-looking macroeconomic policy.
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Why forecast in economics?

GDP growth projection CPI inflation projection

Source: Bank of England Source: Bank of England

Prerequisite for a forward-looking macroeconomic policy.
A view of the future is fundamental to economic planning:

unavoidable – but hazardous!
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A long history

Ancient Egyptians foretold harvests from
the level reached by the Nile in the flood
season.

The Oracles of Delphi and Nostradamus
are early examples of often ambiguous
forecasters.

C17th: Sir William Petty discerned a seven-year
business cycle, suggesting a basis for
systematic economic forecasts.

A forecasting industry developed in the USA around 1910–1930, but
much of it was wiped out by the Great Depression—
which it failed to foresee!

Did we do any better in 2008?
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Bank of England forecasts

Chart shows Bank of England quarterly forecasts for annual changes
in UK GDP at February 2008 through end 2010:

Distinct slowdown envisaged–
but nothing like the unanticipated 6% fall that materialized.
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‘Mimic’ forecasts and outcomes

forecasts 
∆4log(GDP) 
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Massive forecast failure: forecasts up, while data down, then
excellent (!), as predicted by our theory of forecasting.
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Mis-firing forecasts

Almost no economic theories allow for unanticipated location shifts:
yet empirically occur intermittently.
Analogy: rocket to moon due
to land on 4th July, but hit by
meteor and knocked off course.

Forecast is badly wrong.

Outcome not due to poor forecasting models;
and does not refute Newtonian gravitation theory.

Example of location shift: change in previous mean.

Economic forecasting confronts non-stationary world

Explain main causes of forecast failure;
methods to insure against systematic forecast failure;
progress towards forecasting during breaks.
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Big misses

“Oddly, the industry that is the primary engine of this
incredible pace of change – the computer industry –
turns out to be rather bad at predicting the future itself.
There are two things in particular that it failed to see:

one was the coming of the Internet, ...;

the other was the end of the century.”

Douglas Adams, The Salmon of Doubt, 2002.
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Previous theory of economic forecasting

Well developed if
econometric model coincides with stationary data-generating
process (DGP).

Consider n× 1 vector xt ∼ Dxt(xt|Xt−1, θ) for θ ∈ Θ ⊆Rk,
where Xt−1 = (. . .x1 . . .xt−1).

Statistical forecast x̃T+h|T = fh (XT ) for T + h at T .
How to select fh?

Traditional answer–conditional expectation:
x̂T+h|T = E[xT+h | XT ] unbiased,

E[(xT+h − x̂T+h|T ) | XT ] = 0.

x̂T+h|T has smallest mean-square forecast-error matrix.

Caveat emptor as we will see!
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Reality includes unanticipated shifts

original distribution 
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Ten problems

First: problems learning DX1
T
(·) and θ:

(i) specification of the set of relevant variables {xt},
(ii) measurement of the xs,
(iii) formulation of DX1

T
(·),

(iv) modeling of the relationships,
(v) estimation of θ, and
(vi) properties of DX1

T
(·) determine ‘intrinsic’ uncertainty,

all of which introduce in-sample uncertainties.
Next, over the forecast horizon:
(vii) properties of DXT+1

T+H
(·) determine forecast uncertainty,

(viii) which grows as H increases,
(ix) especially for integrated data,
(x) increased by changes in DXT+1

T+H
(·) or θ.

These 10 issues structure analysis of forecasting.
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Autoregressive example

Stationary scalar AR(1) DGP with known exogenous {zt} ∼ IN[0, 1]:

xt = ρxt−1 + γzt + εt where εt ∼ IN
[
0,σ2ε

]
and |ρ| < 1. (1)

When ρ, γ known & constant, forecast from xT is:

x̂T+1|T = ρxT + γzT+1 (2)

DX1
T
(·) implies DXT+1

T+1
(·), producing unbiased forecast:

E
[(
xT+1 − x̂T+1|T

)
|xT , zT+1

]
= 0

with smallest possible variance determined by DX1
T
(·):

V
[(
xT+1 − x̂T+1|T

)]
= σ2ε.

Thus: DXT+1
T+1

(·) = IN
[
ρxT + γzT+1,σ

2
ε

]
.

Issues (i)–(x) ‘assumed away’.
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Potential problems

(i) Specification incomplete if (e.g.) vector xt not scalar.
(ii) Measurement incorrect if (e.g.) observe xt not xt.
(iii) Formulation inadequate if (e.g.) intercept needed.
(iv) Modeling wrong if (e.g.) selected ρxt−2.
(v) Estimating ρ adds bias, (ρ− E[ρ̂])xT , and variance V[ρ̂]x2T .
(vi) Properties of D(εt) = IN

[
0,σ2ε

]
determine V[xt].

(vii) Assumed εT+1 ∼ IN
[
0,σ2ε

]
, but V[εT+1] could differ.

(viii) Multi-step forecast error
∑H
h=1 ρ

h−1εT+h: V = 1−ρ2H

1−ρ2 σ
2
ε.

(ix) If ρ = 1 have trending forecast variance Hσ2ε.
(x) If ρ changes could experience forecast failure.

Must be prepared for risks from (i)–(x).

First ‘undo’ (v), estimating (ρ,γ) from sample t = 1, . . . , T
Then (iv) by omitting zt, then (x) by changing ρ plus (iii).

David F. Hendry (INET at OMS) Knowledge about Economic Forecasting CIRET: Vienna, 2012 16 / 62



Forecasts under correct specification

~xT+h |T+h−1 
xT+h |T+h−1 
x̂T+h |T+h−1 
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3 Correct specification

a~xT+h |T+h−1 
xT+h |T+h−1 
x̂T+h |T+h−1 

Panel a: forecasts from a draw of (1) when (ρ = 0.8,γ = 1) are
known and constant; (x̂T+h|T+h−1 from (2) with error bars of ±2σ̂)
and when estimating (ρ,γ) (x̃T+h|T+h−1 with bands).
Forecasts almost identical,with small increase in uncertainty.
So not problem (v), estimation uncertainty
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Forecasts under incorrect specification

x̂T+h |T+h−1 
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Incorrect specification

bx̂T+h |T+h−1 
xT+h |T+h−1 

Panel b: forecasts when zt omitted both in estimation and forecasting:
forecasts poorer, but well within ex ante forecast intervals.
So not problem (iv), incorrect specification, even with (v)
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Incorrect specification with changed ρ
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Incorrect specification+break: ρ=0.8 to ρ*=0.4, µ=0

c
~xT+h |T+h−1 
xT+h |T+h−1 

Panel c: shift in ρ at T = 41 to ρ = 0.4, then back to ρ = 0.8 at
T = 46, and omitted zt so all of (iv), (v) and (x) violated,
yet little noticeable impact from halving then doubling ρ.
So not problem (x), changed parameter, even with (iv) and (v)
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Incorrect specification,
µ = 10 & changed ρ
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Correct specification+break: ρ=0.8 to ρ*=0.4,  µ=10

d

~xT+h |T+h−1 
xT+h |T+h−1 

Panel d: same shift in ρ but:
xt = µ+ ρxt−1 + γzt + εt where µ = 10 (3)

Catastrophic impact from halving ρ, yet not from doubling again.
First 5 forecasts upward relative to previous outcome.
So is problem intercept–or mis-specification?
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Correct specification,
µ = 0 and changed ρ
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Correct specification+break: ρ=0.8 to ρ*=0.4,  κ=10

e

~xT+h |T+h−1 
xT+h |T+h−1 

Panel e: model correctly specified in-sample,
forecasts for same break, µ = 0, but E[zt] = κ = 10.
forecast failure is manifest–and essentially identical to d.
In-sample correct specification need not help
even with a zero intercept and known future zT+h.
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Incorrect specification,
µ = 10 & ρ changed twice

~xT+h |T+h−1 
xT+h |T+h−1 

30 35 40 45 50

92

94

96

98

100

102

104
Incorrect specification+break: ρ=0.8 to ρ*=0.4,  µ=10,µ*=50, κ=10

f~xT+h |T+h−1 
xT+h |T+h−1 

Panel f: model incorrectly specified, forecasts after same breaks in
ρ to ρ∗, & both µ = 10, κ = 10 with µ∗ = 50 at T = 41 then back to
µ = 10 at T = 46 so xT+h = µ∗ + ρ∗xT+h−1 + γzT+h + εT+h
yet no forecast failure when x̂T+h|T+h−1 = µ̂+ ρ̂xT+h−1.
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Understanding these forecast errors

DGP is:
xt = θ+ ρ (xt−1 − θ) + γ (zt − κ) + εt (4)

εt ∼ IN[0,σ2ε], E[xt] = θ and E[zt] = κ with γ 6= 0.
Mis-specified forecasting model:

x̂T+1|T = θ̂+ ρ̂
(
x̂T − θ̂

)
(5)

estimated over t = 1, . . . , T , with parameter estimates (θ̂, ρ̂) where
E[θ̂] = θe and E[ρ̂] = ρe, from estimated x̂T at forecast origin.

Forecast error is ε̂T+1|T = xT+1 − x̂T+1|T .

Break occurs at T , with post-break DGP, t = T + 1, . . .:

xt = θ
∗ + ρ∗ (xt−1 − θ

∗) + γ∗ (zt − κ
∗) + εt (6)
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Problem is long-run mean shift

Problems due to effects on E[xt] = (µ+ γκ)/(1− ρ) = θ:
∆xt = (ρ− 1) (xt−1 − θ) + γ(zt − κ) + εt (7)

No forecast failure if E[xt] = θ before and after shift in ρ.

Forecast failure if E[xT+h] = θ∗ 6= θ changes.

E[xT+h] shifts from θ = 50 to θ∗ = 17 in both cases d and e
but θ = θ∗ in f.

All models in this class are equilibrium correction:
fail systematically if E[·] changes to θ∗, as forecasts converge back to
θ, irrespective of new parameter values.

Huge class of equilibrium-correction models (EqCMS):
regressions; dynamic systems; VARs; DSGEs;
ARCH; GARCH; some other volatility models.

Pervasive and pernicious problem affecting all members.
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Forecast-error sources

All main sources of forecast errors occur using (5) when (6) is
DGP:

ε̂T+1|T = θ∗−θ̂+ρ∗ (xT − θ∗)−ρ̂
(
x̂T − θ̂

)
+γ∗ (zT+1 − κ

∗)+εT+1

(8)
(ia) deterministic shifts: (θ, κ) to (θ∗, κ∗);
(ib) stochastic breaks: (ρ, γ) to (ρ∗, γ∗);
(iia,b) inconsistent parameter estimates: θe 6= θ, ρe 6= ρ;
(iii) forecast origin uncertainty: x̂T ;
(iva,b) estimation uncertainty: V[ρ̂, θ̂];
(v) omitted variables: zT+1;
(vi) innovation errors: εT+1.
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Forecast-error taxonomy

Addressing mistakes in reverse order:
(vi): innovation error E[εT+1] = 0 and V[εT+1] = σ

2
ε so no bias, and

Op(1) variance (irreducible if {εt} an innovation).

(v): omitted variable E[zT+1 − κ
∗] = 0 and V[(zT+1 − κ

∗)] = σ2z, so
no bias despite omission and change in parameter values, and Op(1)
variance, reducible by including {zt}, with estimation variance of
Op(T

−1).

(ivb): slope estimation E[ρ̂− ρe] = 0, plus estimation variance of
Op(T

−1).

(iva): equilibrium-mean estimation E[θ̂− θe] = 0 with an estimation
variance of Op(T

−1).
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Commentary on (iii) to (i)

(iii): forecast-origin uncertainty E[x̂T − xT ] = 0 only if forecast
origin unbiasedly estimated, with variance Op(1).

(iib) slope mis-specification E[(ρ− ρe)(xT − θ)] = 0 as
E[xT − θ] = 0, and an Op(1) variance unconditionally.

(iia) equilibrium-mean mis-specification: θ 6= θe possible if
in-sample location shifts not modelled.

(ib) slope change E[(ρ∗ − ρ) (xT − θ)] = 0 irrespective of ρ∗ 6= ρ.

(ia) equilibrium-mean change–fundamental problem: θ∗ 6= θ
induces forecast failure.
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Implications

Once in-sample breaks removed, from good forecast origin estimates,
irrespective of model mis-specification, still have:

E[ε̂T+1|T ] ' (1− ρ∗) (θ∗ − θ) (9)
and that bias persists at ε̂T+2|T+1 etc., so long as (5) is used,
even though no further breaks ensue.

Power of insight exemplified by:
(a) change both µ and ρ by large magnitudes with θ = θ∗:
outcome is isomorphic to µ = µ∗ = 0, so no break is detected;
(b) even if µ = µ∗ = 0 & zt correctly included but needs forecast, get
8 more problems: ρ 6= ρ∗ still induces forecast failure by shifting θ;
(c) benefit from including zt primarily if κ alone shifts to κ∗ which
induces a shift in θ to θ∗ that is captured; and
(d) if zT+1 has to be forecast, must be closer to κ∗ than κ for a smaller
forecast-error bias than omission.

Result applies to all EqCMs: they fail systematically when E[x]
changes as models’ forecasts converge to θ irrespective of value of θ∗.
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Many parameters shift
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µ∗  =−2.95; γ∗=7; κ=2; ρ∗=0.35

Can essentially replicate break by changing µ, γ and ρ in many
combinations: economic agents could not tell what had shifted till
long afterwards.
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Stop and think!

“Here is Edward Bear, coming downstairs now,
bump, bump, bump, on the back of his head,
behind Christopher Robin. It is, as far as he knows, the
only way of coming downstairs, but sometime he feels
there really is another way, if only he could stop
bumping for a moment and think of it.”
A.A. Milne, Winnie-the-Pooh, 1926.

That is how forecasters must often feel!
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In-sample location shifts

(iia) showed need to remove in-sample location shifts
or have systematic mis-forecasting.
Numbers, timings and magnitudes of breaks in models usually
unknown: ‘portmanteau’ approach required to detect location shifts
anywhere in sample, while also selecting over other variables.

To check the null of no outliers or location shifts in a model,
impulse-indicator saturation (IIS) creates complete set of indicator
variables:

{
1{j=t}

}
= 1 when j = t and 0 otherwise for j = 1, . . . , T

observations, then adds T impulse indicators during model selection.
Many well-known procedures are variants of IIS.
Chow (1960) test is sub-sample IIS over T − k+ 1 to T .
Salkever (1976) tests parameter constancy by indicators.
Recursive estimation equivalent to IIS over future sample,
reducing indicators one at a time.
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Impulse-indicator saturation

Feasible ‘split-sample’ IIS algorithm in Hendry, Johansen, and
Santos (2008). First, include half of indicators, record significant:
just ‘dummying out’ T/2 observations.
Then omit, include other half, record again.
Combine sub-sample indicators, & select significant.
αT indicators selected on average under null at significance level α,
so (e.g.) 99% ‘efficient’ at, say, T = 100 when α = 1/T = 0.01.
Next Figure shows IIS in action for null:
following Figure records IIS for 10σ shift occurring at 0.75T = 75.
Rows show first half; second half; final combination:
columns show the dummies entered; retained; and the data outcome.
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‘Split-sample’ search under null
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‘Split-sample’ search under alternative
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How IIS works for a location shift

Initially, many indicators now retained (top row),
considerable discrepancy between the first-half and second-half
means.

When second set entered, all indicators for location shift period are
retained.

Once combined set entered, despite large number of dummies,
selection reverts to just those for break period.

Under null, indicators significant in sub-sample would remain so
overall.
For non-null, sub-sample significance can be transient, due to
unmodeled features that occur elsewhere in data.

Castle, Doornik, and Hendry (2012) show IIS can detect multiple
location shifts and outliers,
including breaks close to start and end of sample,
as well as correcting for non-normality.
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IIS algorithm

Hendry, Johansen, and Santos (2008) split-sample algorithm

Impulse indicators ordered I1, ..., IT . For k = 2 blocks:
1 Partition as B1 = {I1, ..., IT/2} & B2 = {IT/2+1, ..., IT }

2 Estimate parameters in two sub-samples of T/2
3 Run model selection with each block to get B∗

1 & B∗
2

4 Form union S = B∗
1 ∪B∗

2

5 Run model selection on S for S∗

Distribution of IIS under null known for several, and unequal, splits.
Johansen and Nielsen (2009) extend to stationary and unit-root
autoregressive-distributed lag models.
Autometrics handles model selection with more variables than
observations, tackling multiple breaks by IIS: see Doornik (2009).
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There is a robust way to forecast

When ρ was changed back to ρ = 0.8, the old equilibruim was
restored, and forecasts rapidly converged back to E[x].
Suggests original model ‘recovers’ when DGP reverts.

Even so robust forecasts may do better.

Difference the mis-specified model (5) after estimation:

∆x̃T+h|T+h−1 = ρ̂∆xT+h−1 so:

x̃T+h|T+h−1 = xT+h−1 + ρ̂∆xT+h−1 (10)

Uses ‘wrong’ ρ̂ for first 5 forecasts;
incorrectly differenced;
and omits relevant variable.

But avoids systematic forecast failure once h > 2.
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Differenced wrong model with changed ρ

~xT+h |T+h−1 
xT+h |T+h−1 

30 35 40 45 50
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50

Robust forecasts

~xT+h |T+h−1 
xT+h |T+h−1 

Robust forecasting device (10) for DGP in Panel c:
avoids most of last 9 forecast errors.
RMSFE of Panel d is 6.6 versus 5.5 here; but 3.8 versus 2.0 over last
9 forecasts.
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Generic ‘solution’

Apply to ‘all parameters change’ DGP.

~xT+h |T+h−1 
xT+h 

30 35 40 45 50

20

25

30

35

40

45

50

µ=5; γ=1; κ=5; ρ=0.8; changed to µ∗  =2.5; γ∗=0.86; κ=5; ρ∗=0.6

~xT+h |T+h−1 
xT+h 

Robust device avoids almost all but first forecast error.
Stark contrast to in-sample DGP forecasts.....
David F. Hendry (INET at OMS) Knowledge about Economic Forecasting CIRET: Vienna, 2012 40 / 62



Why does the robust method work?

At h > 2-periods after the break, using:

x̃T+h|T+h−1 = xT+h−1 + ρ̂∆xT+h−1 (11)

so:
ε̃T+h|T+h−1 = (1− ρ̂)∆xT+h−1 (12)

where from equation (7):

∆xT+h−1 = (ρ∗ − 1) (xT+h−2 − θ
∗) + γ∗(zT+h−1 − κ

∗) + εT+h−1

(13)
so (11) contains everything you ever wanted to know when forecasting:
a] corrects to the new equilibrium through (xT+h−2 − θ

∗);
b] includes the effect from zT+h−1 even though that is omitted from
the forecasting device;
c] has the correct adjustment speed (ρ∗ − 1);
d] has the correct parameters γ∗ and κ∗;
e] uses the in-sample well-determined estimate ρ̂, albeit that ρ has
shifted.
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Interpreting the forecast outcomes

Taxonomy explains outcomes of all six forecast scenarios:

a model matches DGP: only (iv) and (vi) matter;
b model mis-specified: but (v) only adds to variance;
c model non-constant & mis-specified, but zero long-run mean;
d shift in non-zero long-run mean induces forecast failure;
e even if model matches DGP in-sample;
f model non-constant & mis-specified, but long-run mean constant
despite changes in intercepts and means–no failure.

Conclude: location shifts are primary cause of forecast failure.
Implies models robust after location shifts should avoid systematic
mis-forecasting.
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Never judge a model by its forecasts

a shows that a model which matches the DGP can forecast well;
b shows that a mis-specified model can forecast quite well;
c shows that a non-constant, mis-specified model can still forecast
quite well;
d or very badly depending on a non-zero long-run mean;
e as can a model which matches the DGP in-sample;
f whereas a non-constant, mis-specified model with a non-zero
long-run mean can also forecast quite well, absent a location shift;
and a few periods after a location shift, a differenced model with no
economic content, can forecast well.

No connection between in-sample verisimilitude and later
presence or absence of forecast failure.
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Changing equilibrium
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Forecasting UK GDP across 2008–2011

Selected autoregressive model by Autometrics 1989(2)–2007(4):

ŷt = 0.93
(0.04)

yt−1 + 0.002
(0.001)

− 0.014
(0.005)

11990(3)

σ̂ = 0.0047 χ2 (2) = 2.27 Far(5, 67) = 2.60∗ R2 = 0.89

Fhet(2, 71) = 2.73 Farch(5, 67) = 2.33 Freset(2, 70) = 1.03

11990(3) is indicator for 1990(3) selected by IIS.

Corresponding robust device, therefore, was:

ỹt = yt−1 + 0.93∆yt−1 σ̃ = 0.0057

Their respective forecasts follow.
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Data, forecasts and squared forecast errors

yt=∆4log(GDP)t 

2000 2005 2010
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RMSFEs over first 5 of 0.122 v. 0.062 so nearly halved.
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Forecasts over an earlier debacle

ŷT+h |T+h−1 
yT+h 

1985 1990 1995
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0.0005
û2

T+h |T+h−1 
~u2

T+h |T+h−1 

HM Treasury badly mis-forecast earlier recession 1989(1)–1993(4):
similar to AR forecasts here: but robust again performs well.
Can wait to use robust after forecast failure has occurred:
but should always calculate. Even better–forecast the break.
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Forecasting breaks

Essentially require a crystal ball to foresee shifts:
but worth investigating what would be required.
First must analyze ‘unpredictability’: especially breaks.

Type of unpredictable break matters
‘Internal’ break changes the model in use.

‘External’ shift alters ‘forecast conditions’,
leaving model unchanged.

Both can cause forecast failure.

Potential role for many different information sources,
including surveys, Google Trends & volatility measures.
If fail to forecast break, could model the change process:
predict impact of an ‘internal’ break during its progress.
Can also mitigate forecast failure by robust devices.
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Three aspects of unpredictability

Types of unpredictability
Intrinsic unpredictability in a known distribution:
chance distribution sampling, ‘random errors’, etc.;

Instance unpredictability (known unknowns):
outliers at unanticipated times from fat-tailed distributions;

Extrinsic unpredictability (unknown unknowns):
unanticipated shifts of distributions.
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Unknown unknowns

Change is endemic:
The world is vastly different today compared to yesterday.
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Future will see more large, unanticipated shocks;
New thinking to adapt to such challenges
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Impacts of unpredictability

Each type of unpredictability has different effects on:
economic analyses;

forecasting;

empirical modeling.

First two go awry from extrinsic unpredictability as:
(a) conditional expectations today are then biased for outcomes
tomorrow, and are not minimum variance predictors,
so mathematical basis of inter-temporal economics is invalid
after shifts–major risks from using models based on such derivations;
(b) forecast failure occurs–major risks from not using robust devices;
(c) yet, those outcomes are susceptible to modeling ex post–
major risks from not doing so.
Analyzed in Clements and Hendry (2005)
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What can be achieved?

Develop methods for forecasting breaks, with
robust strategies if breaks incorrectly predicted

First requires that:
(1) breaks are predictable

(2) there is information relevant to that predictability

(3) such information is available at forecast origin

(4) we have a forecasting model that embodies it

(5) we have a method for selecting that model

(6) resulting forecasts are usefully accurate

Analyzed in Castle, Fawcett, and Hendry (2011)

David F. Hendry (INET at OMS) Knowledge about Economic Forecasting CIRET: Vienna, 2012 54 / 62



(Un)predictability of breaks

2004 Indian Ocean Boxing Day tsunami

(1) Failure to predict undersea earthquake off Sumatra:
potentially predictable, with wide margin of timing–
see Stein, Barka, and Dieterich (1997) for predictions of 1999
earthquake at İzmit;

(2) no relevant information at time to predict earthquake,
but once tsunami started, advance warning feasible:
Holliday, Rundle, Tiampo, and Turcotte (2006) show stress
tension and its release were measured;

(3) but unfortunately, not noted at time;

(4) forecasting models for tsunamis make timings and
locations of impacts predictable;

(5) selecting appropriate model based on physical theory,
calibrated once tsunami warning system in place;

(6) then uncertainty lies within fairly small intervals.
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Available information
for economic forecasting

Several possibilities:

‘leading indicators’–but historical record unimpressive;

non-linear functions of variables already in models–same.

Surveys can offer timely, and sometimes advance, information.

Also consider information outside usual subject matter:
Castle, Fawcett, and Hendry (2011) discuss survey data, Google
Trends: see Choi and Varian (2009) & prediction markets (Iowa).

Software like Autometrics can handle hundreds of candidate variables,
non-linear functions and multiple location shifts: see Doornik (2009)

Rapid information updates at forecast origin using high-frequency
data should help.

May detect breaks sooner, so adapt better
But higher-frequency data can be noisier...
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Conclusions on model-based forecasting

In non-stationary economies subject to unanticipated structural
breaks, where models differ from DGPs in unknown ways, selected
from unreliable data,
forecasting implications differ considerably from
model = DGP in a constant mechanism.

Unanticipated location shifts pernicious for forecasting:
systematic mis-forecasting in all forms of equilibrium-correction
models.

Yet every DGP parameter shifted without any noticeable effect if no
location shift.
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Conclusions on location shifts

Many risks from not forecasting location shifts

forecasting–
failure primarily due to location shifts;

black swans cease to be ‘independent’–
so flocks occur;

difficult to predict location shifts–
worth trying;

difficulties of prediction remain during breaks–
even if known form;

but can mitigate failure after location shifts–
by robust devices.

economic analyses–
mathematical basis is invalid after location shifts;

verisimilitude of a model not checked by forecasting
success–or failure.
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