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Abstract. Some index structures have been redesigned to minimize the cache 
misses and improve their CPU cache performances. The Cache Sensitive B+-
Tree and recently developed Cache Sensitive T-Tree are the most well-known 
cache conscious index structures. Their performance evaluations, however, 
were made in single core CPU machines. Nowadays even the desktop com-
puters are equipped with multi-core CPU processors. In this paper, we present 
an experimental performance study to show how cache conscious trees perform 
on different types of CPU processors that are available in the market these days. 

1   Introduction 

Modern desktop computing environment has been in on-going evolution in terms of 
its architectural features. Two of the most noticeable features in last few years may be 
observed in areas of main memory and CPU. 

Random access memory becomes more condensed and cheaper. Nowadays it be-
comes common to equip a new PC even for home uses with 1 giga bytes or more of 
random access memory1. A recent launch of new PC operation system2 has acceler-
ated the minimal memory requirement for a system. Such a trend that PCs need and 
therefore are equipped with more amount of memory than ever before is expected to 
last for a while. 

As a hardware system contains larger amount memory, it becomes feasible to store 
and manage database within main memory. Researchers have paid attention to various 
aspects of main memory databases. The index structure for main memory is one area in 
which T-Trees were proposed as a prominent index structure for main memory [9]. In 
[12,13], Rao et al claimed that B-Trees may outperform T-Trees due to the increasing 
speed gap between cache access and main memory access. CPU clock speeds have  
                                                           
∗ Corresponding author. 
1 For example, Hewlett-Packard and Dell, two leading companies with respect to the world-

wide PC market shares, recommend their customers to have at least 1 GB memory for their 
middle-line home desktop computers. See http://www.shopping.hp.com/ or http://www.dell. 
com/.  

2 Windows Vista™, http://www.microsoft.com/windows/products/windowsvista 
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increased at a much faster rate than memory speeds [1,4,11]. The overall computation 
time becomes more dependent on cache misses than on disk buffer misses.  

In the past we considered the effect of buffer cache misses to develop an efficient 
disk-based index structure. The same applies to the effect of cache misses. A design of 
index structure with regard to its cache behavior may lead to the improvement in terms 
of cache hits. A most well-known cache optimized index structure for main memory 
database systems has been CSB+-Trees (Cache Sensitive B+-Trees) [13], a variant of 
B+-Trees. Recently, Lee et al [10] claimed that T-Trees index may be also redesigned 
to better utilize the cache, and they introduced a new index structure CST-Trees 
(Cache Sensitive T-Trees). In their experiment, CST-Trees outperform CSB+-Trees on 
searching performance and also show comparable performance on update operations. 

A feature in a contemporary CPU architecture comes along with the industry that 
has launched multi-core CPU microprocessors in the market. It has been only about 
one year since the first dual-core PC processor was introduced in the market. Very re-
cently, two leading manufacturers in the industry again announced that their upcoming 
processors will be redesigned to double the number of cores within a processor3,4. Ex-
perts expect that we will have eight-or 16-core microprocessors in a near feature [8,7]. 
The trend concurs in the industry that manufactures processors for workstations and 
server-levels as well5,6. What it has meant to the software research community is to in-
vestigate the performance impact that a multi-core processor may offer, and to change 
the software architecture to exploit a higher performance benefit of the design of new 
processor. The database community is one of the early birds which found the trend 
[2,8]. 

In this paper, we provide an experimental study to show how the traditional index 
structures and recently developed cache conscious versions actually perform in modern 
computer environments. We conduct the experiment to check the performances of T-
Trees, B+-Tress, CST-Trees, and CSB+-Trees, on contemporary available computer 
systems equipped with single-core and multi-core CPUs.  

In short, the experimental result shows that cache conscious designs for index struc-
tures may achieve the performance gain in hardware systems with multi-core CPUs as 
they do in hardware systems with single-core CPUs. The experiment is worthy not 
only because we show the empirical study in a real modern hardware system equipped 
with brand new CPU configuration, but also because the result may be used in future 
as an comparable source to an analytical model of cache index structure. 

The rest of this paper is structured as follows. In Section 2 we present the related 
work on cache conscious tree index. The cache conscious B+-Trees and the original T-
Trees are briefly introduced for explanation purpose. We also provide a structural 
sketch on cache conscious T-trees. In Section 3 we present a recent trend on CPU 
technology and illustrate an architectural view of multi-core CPU processor. In Section 
4 we present the experimental performance study of four competitors: T-Trees, B+-
Tress, CST-Trees, and CSB+-Trees. And finally, conclusions are drawn in Section 5. 
                                                           
3 Intel Ignites Quad-Core Era, http://www.intel.com/pressroom/archive/releases/20061114comp. htm 
4 AMD Details Native Quad-core Design Features, http://www.amd.com/us-en/Corporate/ 

VirtualPressRoom/0,,51_104_543_544~115794,00.html 
5 IBM PowerPC Microprocessor, http://www.chips.ibm.com/products/powerpc/ 
6 Sun Microsystems, Inc.: UltraSPARC Processors, http://www.sun.com/processors/ 
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2   Background 

2.1   Related Work on Index Structures 

Most widely used tree-based index structures may include B+-Trees, AVL-Trees, and 
T-Trees [9]. B-Trees are designed for disk-based database systems and need few node 
accesses to search for a data since trees are broad and not deep, i.e., multiple keys are 
used to search within a node and a small number of nodes are searched [6]. Most da-
tabase systems employ B+-Trees, a variant of the B-Tree.  

In [12,13], Rao et al showed that B+-Trees have a better cache behavior than T-
Trees, and suggested to fit a node size in a cache line, so that a cache load satisfy mul-
tiple comparisons. They introduced a cache sensitive search tree [12], which avoids 
storing pointers by employing the directory in an array. Although the proposed tree 
shows less cache miss ratio, it has a limitation of allowing only batch updates and re-
building the entire tree once in a while. They then introduced an index structure called 
CSB+-Tree (Cache-Sensitive B+-Tree) that support incremental updates and retain the 
good cache behavior of their previous tree index structure [13]. Similar to their previ-
ous tree structure, a CSB+-Tree employs an array to store the child nodes, and one 
pointer for the first child node. The location of other child nodes can be calculated by 
an offset to the pointer value. 

The AVL-Tree is a most classical index structure that was designed for main mem-
ory [6]. It is a binary search tree in which each node consists of one key field, two (left 
and right) pointers, and one control field to hold the balance of its subtree (Figure 1-
(a)). The left or right pointer points the left or right sub-trees of which nodes contain 
data smaller or larger than its parent node, respectively. The difference in height be-
tween the left and right sub-trees should be maintained smaller or equal to one.  

The major disadvantage of an AVL-Tree is its poor storage utilization. Each tree 
node holds only one key item, and therefore rotation operations are frequently per-
formed to balance the tree. T-Trees address this problem [9]. In a T-Tree, a node may 
contain n keys (Figure 1-(b)). Key values of a node are maintained in order. Similar to  
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Fig. 1. (a) AVL-Tree  (b) T-Tree : The node structure of AVL and T-Trees 
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an AVL-Tree, any key stored within a left and right sub-tree should be smaller or lar-
ger than the least and largest data of a node, respectively. The tree is kept balanced as 
for the AVL-Tree. 

2.2   Cache Sensitive T-Trees 

T-Trees are not so cache sensitive either as the following reasons [10]. First, cache 
misses are rather frequent in that a T-Tree has a deeper height than a B+-Tree, and that 
it does not align the node size with the cache line size. Secondly, a T-Tree uses only 
two keys (maximum and minimum keys) for comparison within the copied data in 
cache while a B+-Tree use |log2n| keys that are brought to the cache for comparison.  

In [10], Lee et al modified the original T-Tree to improve the cache behavior and in-
troduced a CST-Tree (Cache Sensitive T-Tree), which is a n-way search tree consisting 
of node groups and data nodes. Figure 2 shows a node structure of CST-Trees. 

A CST-Tree consists of data nodes and node groups. A data node contains keys 
while a node group consists of maximal keys of data nodes. Each node group is a bi-
nary search tree represented in an array. It works as a directory structure to locate a 
data node that contains an actual key. The size of the binary search tree is not big and 
great portion of it may be cached. More importantly, the cache utilization can be high 
since every search needs to explore the tree. The child node groups of a node group are 
stored contiguously as well. A CST-Tree is balanced by itself, and a binary search tree 
of any node group is also balanced. As recommended in [3,5,12], in a CST-Tree  the 
size of each node group is aligned with cache line size, so that there will be no cache 
miss when accessing data within a node group. 
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node1
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Parent

...
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Fig. 2. The node structure of CST-Trees 

3   Trends in CPU Processor Technology 

Over the past decade, processor speeds have drastically increased according to 
Moore’s law, while DRAM speeds have not. Memory latency tends to decrease by  
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half every six years [2]. This incurs a so-called memory wall problem that causes a 
processor to keep waiting more time for the completion of main memory access. The 
processor utilization becomes much less as it runs a program with lower memory or 
cache locality. A noticeable change appears in a processor design. The clock speed 
growth is no longer high, i.e., it hits a wall two years ago [14], while the number of 
transistors on a processor continues to climb, i.e., it doubles every 18 months [2].  
Another trend is to let a processor enable higher level of parallelism without compen-
sating power constraints. Then major CPU manufactures have shifted their processor 
designs toward chip multiprocessors (CMPs). 

While some early CMPs employed private per-core cache designs, more recent ones 
employed shared last-level on-chip caches [7]. Sharing a cache may provide the multi-
ple threads with more flexible allocation of the cache space, and is also expected to 
achieve higher performance when cores share data. Figure 3 illustrates an architectural 
view of a multi-core processor which shares a cache located outside the cores yet on 
the processor chip. Note that a processor in the figure is dual-core, i.e., the number of 
cores in a processor chip is 2, and the last-level on-chip cache is L2. As mentioned in 
Introduction, the industry recently began to deliver 4-core processors and also proces-
sors with L3 shared. 

Database research community has already begun to explore higher performance 
that might be offered by new multi-core processors. Ailamaki et al’s tutorial [2]  
provides a good survey on the modern architecture of commodity processors and  
related issues on database systems. In their previous work [1], they perform the ex-
periment to analyze the query execution time by several commercial DBMSs. From  
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Fig. 3. Architectural view of a multi-core processor (dual-core in this figure)  and its memory 
hierarchy7 

 

                                                           
7  Actual memory speeds and capacities vary from a processor to another. We referenced 

Ailamaki et al’s report [2], and two recent dual-core microprocessor product lines: Intel® 
Core™2 Duo Processors and AMD Opteron™ Processors.  
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the results they suggest that database developers need to pay more attention to  
optimize data placement for L2 cache, rather than L1, because L2 data stalls are a  
major component of the query execution time. The hardware systems that they per-
formed the experiment all contain single-core processors, although they are the most 
up-to-date by then. Their suggestion is still valid by now or becomes more important 
in a sense that we now have larger speed gaps between processor clock and memory 
in most hardware systems. 

4   Performance Evaluation 

4.1   Experimental Environment 

We performed an experimental comparison of the B+-Trees, T-Trees, and their cache 
conscious versions CSB+-Trees and CST-Trees. For the performance comparison, we 
implemented all the methods. For the implementation of CSB+-Trees and T-Trees, we 
referred to the sources [9, 13] that are proposed by the original authors. For the im-
plementation of CST-Trees, we referred to the source [10] that we previously built. 
Originally, the source codes were built and tested on Sparc machines, and therefore 
we should modify some codes accordingly to the hardware platforms that were 
equipped with multi-core CPUs.  

The hardware platforms that we chose for experiment are listed in Figure 48. Both 
machine A and B are equipped with one dual-core CPU microprocessors of which ar-
chitectures are different and manufactured by different corporations. The CPU proces-
sor contained in machine-A employs a shared L2 cache while one in machine-B em-
ploys separate L2 caches per core. Note that for comparative study we performed our 
experiment on hardware machines with single-core CPU as well. Both machine C and 
D are equipped with single-core CPU processors. Machine-C has one processor while 
machine-D has two processors. 

We implemented all the codes in C, and the programs were compiled and built by 
GNU cc compiler, which are available for every platform that we used in the experi-
ment. For the performance comparison, we implemented all the methods including T-
Trees, CST-Trees, B+-Trees, and CSB+-Trees. All the methods are implemented to 
support search, insertion, and deletion.  

In the original CSB+-Tree, node groups are allocated dynamically upon node split. 
Memory allocation calls can be saved if we pre-allocate the space for a full node group 
whenever a node group is created. CST-Trees also adopt a scheme to pre-allocate the 
whole space for a node group. In order to conduct a fair performance comparison, we 
also implemented a variant of CSB+-Trees in which the whole space of a node group is 
pre-allocated when keys are inserted. In our insertion experiment, we call it CSB+-
(full), while we call the original CSB+-Tree as CSB+-(org). For deletion, we used 
“lazy” policy as it is practically used [13,10].  

                                                           
8 We used a free-software to check the details of chipsets employed in machine A, B, and C. 

The program is available at http://www.cpuid.com/, and the version we used is v1.39. 
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 Machine-A Machine-B Machine-C Machine-D 
No. of CPU 
processors 

1 1 1 2 

Multi-Core? 
(No. of cores 
per processor)

Yes (2) Yes (2) No (1) No (1) 

Cache struc-
ture 

Shared L2 
cache across 
dual cores 

Separate L2 
cache per core 

Separate cache 
per processor 

Separate cache 
per processor 

CPU clock 
speed 

2.66GHz 2.0GHz 2.40GHz 1.20GHz 

L1 cache 
<cache size, 
cache line 
size>

2 <32K bytes, 
64bytes> (Data)
2 <32K bytes, 
64bytes> 
(Code) 

2 <64K bytes, 
64bytes> (Data)
2 <64K bytes, 
64bytes> 
(Code) 

<8K bytes, 
64bytes> 
(Data)
<12 Koups> 
(Trace) 

<64 Kbytes, 
64bytes> (Data) 
per chip  
<32 Kbytes, 
64bytes> (Code) 
per chip 

L2 cache 
<cache size, 
cache line 
size>

<4096K bytes, 
64bytes> 

2 <512K 
bytes, 64bytes>

<512K bytes, 
64bytes> 

2 <8M bytes, 
64 bytes> 

RAM 2G bytes 
DDR2 

1G bytes DDR2 1.5G bytes 
DDR

2G bytes DDR 

Operating 
system 

Redhat Enter-
prise Linux ES 
v3

Redhat Enter-
prise Linux ES 
v3

Redhat Enter-
prise Linux ES 
v3

SunOS 5.9 

 

Fig. 4. The CPUs and their cache specifications of four different machines that are used in the 
experiment9 

In order to measure the number of CPU cache misses, we used the Valgrind de-
bugging and profiling tool for Linux operating system and the Performance Analysis 
Tool for Sun operating system.10 We only considered the L2 level cache misses as in 
[13,10].  

In all experiments we set the keys and each pointer to be 4 bytes integers and 4 
bytes. All keys are randomly chosen as integer values of which ranges are from 1 to 10 
million. The keys are generated in advance before the actual experiments in order to 
prevent the key generating time from affecting the measurements. The node sizes of all 
the methods are chosen to 64 bytes, same to the cache line size of each machine, since 
choosing the cache line size to be the node size was shown close to optimal [12, 13, 
10]. We repeated each test three times and report the average measurements.  

                                                           
9 Note that we do not include the actual model names of the microprocessors, since the pur-

pose of our experiment is not to reveal the precise benchmark of each microprocessor. 
10 The versions that we used are the Valgrind 3.2.3 and the Sun ONE Studio 8. The Valgrind is 

freely available under GNU license at http://www.valgrind.org. 
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4.2   Results 

Searching 
In the first experiment, we compared the search performance of each index structure. 
We generated the different number of keys and insert all the keys into each index, and 
then measured the time and the number of cache miss that were taken by 200,000 
searches. All search key values were randomly chosen among the generated keys. 
Figure 5 to 8 show the results11.  

In general, CST-Trees show the best both in terms of speed and cache miss rate. 
CSB+-Trees, B+-Trees, and T-Trees follow the next in order. In a machine-A (1CPU, 
dual-cores, separate L2 cache), CST-Trees are on average 79.8%, 83.3%, and 88.3% 
faster12 than CSB+-Trees, B+-Trees, and T-Trees (Figure 5-(a)). CST-Trees also show 
the least number of cache misses among the methods, i.e., on average 20.5%, 25.0%, 
35.4% less13 than CSB+-Trees, B+-Trees, and T-Trees, respectively (Figure 5-(b)). 
CSB+-Trees also outperform the original B+-Trees in terms of both speed and cache 
misses. In another machine-B that is equipped with a dual-core processor yet separate 
L2 cache, CST-Trees also show the fastest in speed and the least in number of cache 
misses, while CSB+-Trees, B+-Trees and T-Trees follow the next in order (Figure 6). 
In other machine-C and D, each method shows a similar pattern in their performance 
ranks (Figure 7 and 8).  

We may observe two particular interesting results in these experiments. Firstly, as 
the number of searches becomes larger, the difference between CST-Trees and other 
methods in their cache miss numbers becomes larger too. Then among the methods, T-
Tree shows steeper slope than others in its cache miss graphs, although the number of 
cache misses are linearly incremented as others. Secondly, the number of cache misses 
may greatly vary with the machine architectures. For example, in Figure 5-(b), the av-
erage cache miss numbers of four trees on machine-A with 500K search keys is about  
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Fig. 5. Search performances in machine-A (1CPU, dual-cores, and shared L2 cache) 

                                                           
11 As mentioned before, we do not attempt to directly compare the performances of four micro-

processors by drawing all graphs in a chart, since it may misguide some readers to directly 
consider the results as the performance benchmark of each microprocessor. Note that for 
comparative study we also include the results of our experiment on machine-D of which re-
sult data previously appeared in [10] in part. 

12 We use a relative performance ratio, i.e., (A-B)/A. For example, (elapsed_time by CSB+ - 
elapsed_time by CST) / elapsed_time by CSB+. 

13 Here again, we use a relative performance ratio, i.e., (A-B)/A. 
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782K, while it is 2,278K and 2,276K on machine-B and C with same search keys, re-
spectively. Note that the total L2 cache size of machine-A is 4 times bigger than B, and 
8 times bigger than C, although their cache line sizes are same to 64bytes. The ma-
chine-D that has a much larger L2 cache size significantly decreases the average num-
ber of cache misses for all cases. According to the result that both machine-B and C 
show a similar number of cache misses; just to have a double-cores without sharing the 
L2 cache may not affect the number of cache misses. 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

300K 400K 500K

# of keys

e
la
p
s
e
d
 t
im
e
(s
e
c
.)

T

B+

CSB+

CST

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

300K 400K 500K

# of keys

L
2
 c
a
c
h
e
 m
is
s
e
s
(ⅹ

1
0
0
0
)

T

B+

CSB+

CST

 
 (a) CPU elapsed time   (b) Cache misses 

Fig. 6. Search performances in machine-B (1CPU, dual-cores, and separate L2 caches) 
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Fig. 7. Search performances in machine-C (1CPU, single-core) 
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Fig. 8. Search performances in machine-D (2CPUs, separate caches) 

Insertion and Deletion 
In the next experiment, we tested the performance of insertion and deletion. Before test-
ing, we first stabilized the index structure by bulk-loading 1 million keys, same as in 
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[13,10]. Then we performed up to 20K operations of insertion and deletion and measure 
the time that were taken for the given number of operations (Figure 9-(a) to 12-(b)).  

Full CSB+-Trees show the best in insertion, while B+-Trees, CST+-Trees show 
comparable performance in their insertions. T-Trees are among the worst in machines 
except one (machine-D) where original CSB+-Trees also perform poor. 
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Fig. 9. (a) Insertion  (b) Deletion : CPU elapsed times in machine-A 
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Fig. 10. (a) Insertion  (b) Deletion : CPU elapsed times in machine-B 
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Fig. 11. (a) Insertion  (b) Deletion : CPU elapsed times in machine-C 

The delete performance also showed a similar pattern to that of search, in that the 
“lazy” strategy was employed for deletion. Most of the time on a deletion is spent on 
pinpointing the correct entry in the leaf node. In all experiments (Figure 9-(b) to 12-
(b)), CST-Trees show the best both in terms of speed and cache miss rate. CSB+-
Trees, B+-Trees, and T-Trees follow the next in order. 
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Fig. 12. (a) Insertion  (b) Deletion : CPU elapsed times in machine-D 

5   Conclusion 

In this paper, we present an experimental evaluation of tree-based index structures on 
multiple conventional processors. CST-Tree is one of the index structures that we es-
pecially care for the performance on multi-core CPU processors.  

Our experimental results show that cache sensitive trees provide much better per-
formance than their original versions. In searching operations, CST-Trees show much 
superior performance than CSB+, B+-Trees, and T-Trees. CSB+-Trees also show bet-
ter performance than B+-Trees. CST-Trees and CSB+-Trees also show good perform-
ance on insertion operations and better performance on deletion operations, although 
the performance benefits over their original versions are less than in searching.  

The experiment is worthy because the experimental results show that cache sensi-
tive index structures may benefit of the designs of modern commodity microproces-
sors. It is, however, limited in that we have not developed an analytical model of our 
cache sensitive index on a multi-level shared cache architecture, so that we can 
mathematically compare the empirical results to the theoretically-expected behavior 
of the model. This should be one of the works we shall deal with in future. 

It is one of the hottest research topics in database community to tune a database 
management system to perform well enough to benefit the commodity microproces-
sors. Building an index structure more cache-conscious is a way to decrease the cache 
miss and therefore to benefit more the larger size of shared cache. However, those 
cache conscious technologies employed in either CST-Trees or CSB+-Trees may not 
inherently resolve a problem of so called cold miss. We are developing a CST-Tree 
version which employs a prefetching technology to reduce the cold miss rate. 

References 

1. Ailamaki, A., DeWitt, D.J., Hill, M.D., Wood, D.A.: DBMSs On A Modern Processor: 
Where Does Time Go? In: Proc. of the 25th International Conference on Very Large Data-
base Systems, pp. 266–277 (1999) 

2. Ailamaki, A., Govindaraju, N.K., Harizopoulos, S., Manocha, D.: Query co-processing on 
commodity processors. In: Proc. of the 32nd International Conference on Very Large Da-
tabase Systems, Tutorials, pp. 1267–1267 (2006) 



200 K. Kim, J. Shim, and I.-h. Lee 

3. Bohannon, P., Mcllroy, P., Rastogi, R.: Main-Memory Index Structures with Fixed-Size 
Partial Keys. In: Proc. of the 2001 ACM SIGMOD Int’l Conf. on Management of Data, pp. 
163–174. ACM Press, New York (2001) 

4. Boncz, P., Manegold, S., Kersten, M.L.: Database Architecture Optimized for the new 
Bottleneck: Memory Access. In: Proc. of the 19th International Conference on Very Large 
Database Systems, pp. 54–65 (1999) 

5. Chilimbi, T.M., Davidson, B., Larus, J.R.: Cache-Conscious Structure Definition. In: Proc. 
of the ACM SIGPLAN 1999 conference on Programming language design and implemen-
tation, pp. 13–24. ACM Press, New York (1999) 

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. The 
MIT Press, Cambridge (1990) 

7. Hsu, L.R., Reinhardt, S.K., Iyer, R., Makineni, S.: Communist, utilitarian, and capitalist 
cache policies on CMPs: caches as a shared resource. In: Proc. of the 15th International 
Conference on Parallel Architectures and Compilation Techniques, pp. 13–22 (2006) 

8. Ghoting, A., Buehrer, G., Parthasarathy, S., Kim, D., Nguyen, A., Chen, Y.-K., Dubey, P.: 
Cache-conscious frequent pattern mining on modern and emerging processors. The VLDB 
Journal 16(1), 77–96 (2006) 

9. Lehman, T.J.: A Study of Index Structures for Main Memory Database Management Sys-
tem. In: Proc. of the 12th International Conference on Very Large Database Systems, pp. 
294–303 (1986) 

10. Lee, I.-h., Shim, J., Lee, S.-g., Chun, J.: CST-Trees: Cache Sensitive T-Trees. In: 
DASFAA 2007. Proc. of the 12th International Conference on Database Systems for Ad-
vanced Applications, pp. 398–409 (2007) 

11. Manegold, S., Boncz, P.A., Kersten, M.L.: Optimizing database architecture for the new 
bottleneck: memory access. The VLDB Journal 9(3), 231–246 (2000) 

12. Rao, J., Ross, K.A.: Cache Conscious Indexing for Decision-Support in Main Memory. In: 
Proc. of the 19th International Conference on Very Large Database Systems, pp. 78–89 
(1999) 

13. Rao, J., Ross, K.A.: Making B+ Trees Cache Conscious in Main Memory. In: Proc. of the 
2000 ACM SIGMOD International Conference on Management of Data, pp. 475–486. 
ACM Press, New York (2000) 

14. Sutter, H.: The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Soft-
ware, available at http://www.gotw.ca/publications/concurrency-ddj.htm 


	Cache Conscious Trees: How Do They Perform on Contemporary Commodity Microprocessors?
	Introduction
	Background
	Related Work on Index Structures
	Cache Sensitive T-Trees

	Trends in CPU Processor Technology
	Performance Evaluation
	Experimental Environment
	Results

	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




