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Abstract

We introduce 3-valued stable models which are a natural general-
ization of standard (2-valued) stable models. We show that every logic
program P has at least one 3-valued stable model and that the well-
founded model of any program P [VGRS90] coincides with the smallest
3-valued stable model of P. We conclude that the well-founded seman-
tics of an arbitrary logic program coincides with the 3-valued stable
model semantics.

The 3-valued stable semantics is closely related to non-monotonic
formalisms in AI. Namely, every program P can be translated into a
suitable autoepistemic (resp. default) theory P so that the 3-valued
stable semantics of P coincides with the (3-valued) autoepistemic
(resp. default) semantics of P. Similar results hold for circumscrip-
tion and CWA. Moreover, it can be shown that the 3-valued stable
semantics has a natural extension to the class of all disjunctive logic
programs and deductive databases.

*The author acknowledges support from the National Science Foundation under grant
#IRI1-89-10729 and from the Army Research Office under grant #27079-EL-SAH.



Finally, following upon the recent approach developed by Gelfond
and Lifschitz, we extend all of our results to more general logic pro-
grams which, in addition to the use of negation as failure, permit the
use of classical negation.

1 Introduction

The well-founded semantics has been introduced in [VGRS90]. It is a 3-
valued semantics which seems to be the most adequate extension of the per-
fect model semantics [ABW88, VG89b, Prz88a] from the class of stratified
logic programs to the class of all logic programs, avoiding various drawbacks
of the other proposed approaches (see [PP90] for an overview). The well-
founded semantics has been proven to share many of the natural properties
of the perfect model semantics [Prz89a] and it has been shown to be equiva-
lent to suitable (3-valued) forms of all four major non-monotonic formalisms
[Prz91, Prz89b]. Recently, D. S. Warren introduced the Extended Warren
Abstract Machine (XWAM) for this semantics [War89] and developed an
elegant interpreter in Prolog.

The stable model semantics has been introduced in [GL88] (see also [BF88]).
It is a 2-valued semantics, which also extends the perfect model semantics
and has an elegant and simple fixed point definition. It is closely related to
autoepistemic and default approaches to non-monotonic reasoning. However,
the (2-valued) stable semantics also has some important drawbacks. First of
all, it is defined only for a restricted class of logic programs; secondly, it is
computationally very expensive, and, thirdly, it does not always lead to the
expected (intended) meaning of the program [VGRS90, PP90].

Well-founded and stable models are closely related. It is known that if
a logic program P has a 2-valued well-founded model than this model is the
unique stable model of P [VGRS90]. On the other hand, however, there are
programs with unique stable models, whose well-founded models are 3-valued
and thus are not (2-valued) stable.

In this paper we introduce 3-valued stable models of logic programs, which
constitute a natural extension of (2-valued) stable models. We show that all
such models are minimal and that every logic program P has at least one
3-valued stable model. Moreover, we prove that the well-founded model of
any logic program P is, in fact, the smallest 3-valued stable model of P. As



a result, we conclude that the well-founded semantics of an arbitrary logic
program coincides with the 3-valued stable model semantics.

One of the important features of well-founded models, and a strong in-
dication of their naturality, is the fact that they can be described in many
different, but equivalent, ways (see [VGRS90, Prz89a, Prz91, VG89a, Bry89]).
Our results provide a new and simple characterization of well-founded models
as smallest 3-valued stable models. They also seem to point out the natu-
rality and importance of stable models, at the same time indicating that the
proper definition of stable models should be 3-valued.

The 3-valued stable model semantics not only provides a natural exten-
sion of the well-founded semantics, but it also naturally corresponds to non-
monotonic formalisms in Al (cf. [Prz89b, Prz88b]). Namely, every program
P can be translated into an autoepistemic (resp. default) theory ]5, so that
the 3-valued stable semantics of P coincides with the (3-valued) autoepis-
temic (resp. default) semantics of P [Prz91]. Similar results hold for circum-
scription and CWA.

In [Prz90a, Prz90b] we prove that the 3-valued stable semantics has a
natural extension to the class of all disjunctive logic programs, thus provid-
ing a natural and very general semantics for all disjunctive logic programs
and deductive databases. The fact that the 3-valued stable semantics is
well-defined for any normal program and can be extended to the class of
all disjunctive logic programs [Prz90b] is very important. A logic program
may contain predicates whose truth or falsity is not fully determined by the
program (and thus is undefined), in addition to predicates whose truth value
is completely determined by the program. Semantics which are well-defined
only for limited classes of programs usually fail to assign any semantics to
such programs.

To illustrate this point, let us consider the following program:

work < ~tired

sleep <+ ~work
tired < ~sleep

angry <— ~paid,work
paid <

It appears that the first three rules describe only mutual relationships
between propositions tired, work and sleep, without providing sufficient in-



formation to determine their truth or falsity. Depending on the point of view,
we could describe our knowledge about propositions tired, work and sleep as
either incomplete or perhaps even confusing. On the other hand, regardless
of the status of propositions tired, work and sleep, the proposition paid must
be true and thus angry, by negation as failure, must be false.

This leads to the unique 3-valued stable model M =< paid; angry > of
the program, in which paid is true, angry is false and tired, work and sleep
are undefined. If we later learn, e.g., that work is actually true then we will
conclude that sleep is false and tired is true, but our beliefs about paid and
angry will remain unchanged.

It is worth noting, that Prolog would return the same answers. Similarly,
Fitting and Kunen’s 3-valued extension of Clark’s semantics [Fit85, Kun87],
which should really be viewed as the “true Clark’s semantics”, leads pre-
cisely to the same result, namely, M is the only (3- or 2-valued) model of
Clark’s completion of the program. On the other hand, it is easy to see that
the 2-valued stable semantics, applied to this program, is undefined not only
making it impossible for us to find out that we don’t have a complete informa-
tion about propositions tired, work and sleep, but also, more importantly,
denying us the ability to establish well-defined truth values of predicates paid
and angry.

The need to consider 3-valued models (possible worlds) to describe our
knowledge stems also from the fact that our knowledge about the world is al-
most always incomplete and therefore we need the ability to describe possible
worlds (models) in which some facts are neither true nor false and thus their
status is undefined. Three-valued semantics have a realistic, computationally
based proof theory and can be naturally implemented in various inference en-
gines. Namely, the SLS-resolution [Prz89a] provides a sound and complete
procedural mechanism for the 3-valued stable (or well-founded) semantics.
The Extended Warren Abstract Machine (XWAM), introduced in [War89],
also provides a procedural semantics for the 3-valued stable (or well-founded)
semantics. Moreover, recently D. S. Warren developed an elegant interpreter
for the well-founded semantics written in Prolog.

Clark’s predicate completion semantics and its 3-valued extensions [Cla78,
Llo84, Fit85, Kun87|, which are considered by many researchers to be too
weak [PP90], can be viewed as natural and computationally less expensive
approxzimations to the intended 3-valued stable (or well-founded) semantics,
in the sense that any answers given by the (3-valued extensions of) Clark
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semantics are correct with respect to the (3-valued) stable semantics but not
vice versa.

The negation operator ~ that is used in standard logic programs does not
represent the classical negation, but rather the so called negation as failure.
For example, all major semantics applied to the logic program a <— ~b imply
~b (and thus also a), based on the lack of evidence that b holds. This is
much weaker than the requirement of positive evidence that the negation —b
of b holds, which is needed to assert classical negation of b.

Gelfond and Lifschitz pointed out [GL89] that in logic programming it is
often useful to use the negation as failure operator (~) together with a differ-
ent negation operator (—), which is supposed to constitute a rough counter-
part of classical negation'. They developed a semantics for such programs,
based on their (2-valued) stable models, which is defined for some but not all
such programs. Following upon their approach, we define the well-founded
and the 3-valued stable semantics for all such extended programs and we show
that both semantics coincide. This allows us to extend all results obtained
in this paper to the class of programs permitting both types of negation.

The paper is organized as follows. In the next Section 2 we introduce
3-valued interpretations and models. In Section 3 we define and discuss
3-valued stable models. In Section 4 we prove some of their properties,
including the equivalence of the well-founded and 3-valued stable semantics.
In Section 5 we discuss the relationship of the 3-valued stable semantics to
non-monotonic formalisms. In Section 6 we extend our results to programs
permitting the use of both negations ~ and —.

The results contained in this paper were announced in [Prz90a]. The
extension of the 3-valued stable semantics to all disjunctive programs is de-
scribed in [Prz90a, Prz90b]. For an overview of semantic issues in logic
programming and theory of deductive databases, the reader is referred to
[PP90).

2 Model Theory

Before defining 3-valued stable models we need to define 3-valued interpreta-
tions and models of logic programs. We closely follow the approach developed

!Gelfond and Lifschitz use the symbol not, instead of ~, to denote the negation as
failure.



in [Prz89a, PP90].

By an alphabet A of a first order language £ we mean a (finite or count-
ably infinite) set of constant, predicate and function symbols. In addition,
any alphabet is assumed to contain a countably infinite set of variable sym-
bols, connectives (A, V,~, <), quantifiers (3,V) and the usual punctuation
symbols. Moreover, we assume that our language also contains propositions
t, u and f, denoting the properties of being true (resp. undefined or partially
true; resp. false). The first order language L over the alphabet A is defined
as the set of all well-formed first order formulae that can be built starting
from the atoms and using connectives, quantifiers and punctuation symbols
in a standard way. An expression is called ground if it does not contain any
variables. The set of all ground atoms of A is called the Herbrand base H of
A. The set of all ground terms of A is called the Herbrand universe U of A.
If G is a quantifier-free formula, then by its ground instance we mean any
ground formula obtained from G by substituting ground terms from U for
all variables. For a given formula G of L its universal closure or just closure
(V)G is obtained by universally quantifying all variables in G which are not
bound by any quantifier.

If P is a program then, unless stated otherwise, we will assume that the
alphabet A used to write P consists precisely of all the constant, predicate
and function symbols that explicitly appear in P and thus A = Ap is com-
pletely determined? by the program P. We can then talk about the first order
language L = Lp of the program P and the Herbrand base H = Hp of the
program.

Definition 2.1 By a 3-valued Herbrand interpretation [ of the language L
we mean any pair < T;F >, where T and F are disjoint subsets of the
Herbrand base H. The set T contains all ground atoms true in I, the set
F contains all ground atoms false in I and the truth value of the remaining
atoms in U =H — (T'UF) is undefined (or undefined). We assume that in
every interpretation I the proposition t is true, the proposition f is false and
the proposition u is undefined. A 3-valued interpretation I is 2-valued if all
ground atoms (except for the proposition u) are either true or false in I.

Throughout the paper, we consider only Herbrand interpretations and
models, although our results can be easily extended to non-Herbrand models.

21f there are no constants in P then one is added to the alphabet.



Any interpretation I =< T'; F' > can be equivalently viewed as a function [ :
H—{0,1 5> 1}, from the Herbrand base H to the 3-element set V = {0, 5> 1},
defined by:
0, if AeF
I(A) = %, if AeU
1 it AeT.
We now extend the function (interpretation) I : H — V recursively to
the truth valuation I : C — V defined on the set C of all closed formulae of
the language.

Definition 2.2 [Prz89a] If I is an interpretation, then the truth valuation
I corresponding to I is a function I : C — V from the set C of all (closed)
formulae of the language to V recursively defined as follows:

o If A is a ground atom, then I(A) = I(A).

e If Sis a closed formula then I(~S) =1 —I(S).

o If S and V are closed formulae, then
HSAV) = min(i(5).1(V):
I(SVV) = mazx{I(S),1(V)};
f(V<—S):{1’ if 1(V)=1(5)

0, otherwise.

e For any formula S(x) with one unbounded variable x:

ji(V.r S(z)) = mm{ji(S(A)) A elUl};
I(3z S(x)) = max{I(S(A)): AelU};

where the mazimum (resp. minimum) of an empty set is defined as 0
(resp. 1).

Remark 2.1 Truth valuations assign to every formula F a number 0, 1 5 or
1, which reflects the degree of truth of F, ranging from the lowest, namely
false (0), through undefined (%), to the highest, namely true (1). Here, the
intuitive meaning of the undefined truth value is partially true or possible,
rather than either true or false. Therefore, the undefined status of an atom
A in a given model M of a theory T indicates that M assigns some, but only

limited, truth to A.



By a logic program we mean a set of universally closed clauses of the form

where m > 0, A’s is an atom and L;’s are literals. For consistency reasons,
we will not allow propositions t, u and f to appear in heads of clauses?.
Conforming to a standard convention, conjunctions are replaced by commas
and therefore clauses are simply written in the form

A(—Ll,...,Lm.
A program P is positive if all of its clauses contain only positive premises.

Definition 2.3 An (Herbrand) interpretation M is a model of a program P
iof all of its clauses are true in M, i.e., if for every ground instance

A+ Ll; cee L,
of a program clause we have
M(A) > mm{M(Ll) ci < m}.

Thus, M is a model of a program if and only if the degree of truth of the
head of every clause is at least as high as the degree of truth of its body (i.e.,
the conjunction of its premises).

By a ground instantiation of a logic program P we mean the (possibly
infinite) theory consisting of all ground instances of clauses from P. It is
easy to see, that an Herbrand interpretation M is a model of a program P
if and only if it is a model of its ground instantiation. Therefore, as long as
only Herbrand interpretations are considered, one can identify any program P
with its ground instantiation. Whenever convenient, we will assume, without
further mention, that the program P has already been instantiated.

There are two natural orderings between interpretations, one of them, <,
is called the standard ordering and the other, <y, is called the F-ordering
(or Fitting-ordering).

3This assumption is not essential and can be removed, but for the sake of simplicity
this issue will not be discussed here.



Definition 2.4 [Prz89a] Suppose that [ =< T;F > and J =<T'; F' > are
two nterpretations. We say that I < .J if

TCT and FDF.
We say that I <p J if
TCT and F CF.

Models which are <-minimal or <-least will be just called minimal or least
models, respectively. On the other hand, models which are <p-minimal or
<p-least will be called F-minimal or F-least, respectively. F-least models will
also be called smallest models.

It is easy to verify that [ < J if and only if for all atoms A:
I(A) < J(A) (or, equivalently, T(A) < .J(A)).

The notions of F-minimal and F-least models are different from the notions
of minimal and least models. While minimal and least models of a program P
minimize the degree of truth of atoms, by minimizing the set T of true atoms
and maximizing the set F of false atoms F, F-minimal and F-least models
minimize the degree of information of their atoms, by jointly minimizing the
sets T and F' of atoms which are either true or false and thus maximizing
the set U of unknown atoms. For example, the F-least (or smallest) model
of the program p < p is obtained when p is undefined, while the least model
of P is obtained when p is false.

3 Three-Valued Stable Models

In this section we define 3-valued stable models. Our definition is similar to
the definition of (2-valued) stable models given in [GL88]. Every 2-valued
stable model is a 3-valued stable model, so our definition extends the notion
of stable models.

First, we need the following generalization of the Kowalski-Van Emden

Theorem [VEKT76]:

Theorem 3.1 FEvery positive logic program P has a unique least 3-valued
model.



The above theorem is a strict generalization of the Kowalski-Van Emden
theorem in view of the fact that our positive logic programs are allowed to
contain atoms t, u and f among their premises (only the occurence of atoms
u is essential). In particular, least models of such programs may not be
2-valued.

Example 3.1 Suppose that P is given by:

cC <
a +— cu
b + bu

The least model of P is M =< ¢;b >, i.e., in M the atom c is true, b is false
and a is unknown.

In order to prove Theorem 3.1 we will first introduce a natural operator
W, which acts on the set of all 3-valued interpretations of a program and gen-
eralizes the Van Emden-Kowalski immediate consequence operator [VEKT76].
We will then show that the least model of a positive program can be obtained
as the least fixed point of this operator.

Definition 3.1 Suppose that P is a logic program, I is a 3-valued interpre-
tation of P and A is a ground atom. Define W(I) to be the interpretation
given by:

(1) W(I)(A) =1 if there is a clause A <— Ay, ..., A, in P such that I(A;) =
1, for all i < n;

(i) U(I)(A) = 5 if U(I)(A) # 1 and there is a clause A < Ay,..., A, in
P such that I(4;) > %, for all i < n;

(iii) U(I)(A) =0, otherwise.

Theorem 3.1 is an immediate consequence of the following Theorem gen-
eralizing the well-known result from [VEKT76].

Theorem 3.2 If P is a positive program, then the operator W has the least
fized point Mp, i.e., there exists the least interpretation Mp such that ¥(Mp) =
Mp. The interpretation Mp is the least model of P.
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Moreover, the model Mp can be obtained by iterating w times the operator
V. More precisely, the sequence U, n=0,1,2,...,w, of iterations* of ¥ is
monotonically increasing and it has a fived point ¥ = Mp.

Proof: The proof is completely analogous to the proof given in [VEK76]
and therefore it is skipped. O

We now introduce the operator I'* which assigns to every 3-valued inter-
pretation I a new 3-valued interpretation I'*(I). This operator extends the
Gelfond-Lifschitz transformation [GL88] to 3-valued logic programs.

Definition 3.2 Let P be a logic program and let I be any 3-valued interpre-

tation. By the extended GL-transformation of P modulo | we mean the new

program ? obtained from P by replacing in every clause of P all negative

premises L = ~C which are true (resp. unknown; resp. false) in I by atoms
P

t (resp. u; resp. f). Since the resulting program % is positive thus, by

Theorem 3.1, it has a unique least 3-valued model J. We define T*(I) = .J.

It is easy to see that if t appears among the premises then it can be simply
erased and if f appears among the premises of a given clause, then the whole
clause can be erased without changing anything. On the other hand, u’s in
general cannot be removed. It turns out that fized points of the operator I'
for a program P are always minimal models of P.

Proposition 3.1 Fized points of the operator ' for a program P are minimal
models of P.

Proof: Let M be a fixed point of the operator T', i.e., let T'(M) = M.
Then M is the least model of the reduced program ﬁ. Let C:

be an arbitrary clause from P. The corresponding clause C' in % is obtained
by replacing all negative premises L, = ~C; which are true (resp. unknown;
resp. false) in M by atoms t (resp. wu; resp. f) and clearly C' must be
satisfied in M. This immediately implies that also C must be satisified in M,
thus showing that M is a model of P.

4With respect to the standard ordering < of interpretations and beginning from the
least interpretation < (), H >. Here w denotes the first infinite ordinal.
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To show that M is a minimal model of P it suffices to show that any
model N of P, which is less than or equal to M (i.e., N < M) is also a model
of ﬁ. Since M is the least model of ﬁ, this will imply that M = N. Let C, as
above, be an arbitrary clause in P and let C' be the reduced clause in ﬁ and
C" the reduced clause in %. Since N is a model of P it must clearly satisfy
the clause C". Moreover, since N < M and the premises ~C; are negative

N must also satisfy C'. This shows that N must be a model of %. O

Fixed points of the operator I'* are defined as 3-valued stable models of

P.

Definition 3.3 A 3-valued interpretation M of a logic program P is called
a 3-valued stable model of P if I'*(M) = M. Thus M is a 3-valued stable
model of P if and only if it is the least model of %.

The 3-valued stable model semantics STABLE3(P) of a program P is
determined by the set STBMOD(P) of all 8-valued stable models of P: a
sentence F is true in STABLE3(P) if and only if it is true in all models
from STBMOD(P).

The above definition of 3-valued stable models is a strict extension of the
original definition of stable models. In fact, standard stable models coincide
with 2-valued stable models introduced above.

Proposition 3.2 For any logic program P, stable models, as introduced in
[GL88], coincide with 2-valued stable models, introduced above.

Proof: As we observed before, if t appears among the premises of a given
clause then it can be simply erased and if f appears among the premises then
the whole clause can be erased without changing anything. This immediately
shows that if the stable model is 2-valued then the definition given above
coincides with the definition given in [GL88]. O

Let us consider the example discussed in the introduction:

Example 3.2 Suppose that P is:

work < ~tired
sleep <+ ~work
tired <+ ~sleep

angry <— work,~paid
paid <

12



and let M =< paid; angry >. Then the transformed program % is:

work < u
sleep < u
tired < u

angry < work,f
paid <

and its least model coincides with M which shows that M is a 3-valued stable
model of P. As we mentioned before, the above program does not have any
2-valued stable models. It also illustrates differences between the 3-valued
stable (well-founded) semantics and the semantics recently introduced in
[BLM90], which implies, e.g., work V sleep and generally treats clauses of the
form A <+ ~B as disjunctions A V B, which our semantics does not do.

In general, a logic program may have more than one 3-valued stable model
(we will see in the next section that it always has at least one). For example
the program:

a +— ~b
b +— ~ua

has three stable models, two of which are 2-valued. In one of them a is true
and b false, in the other b is true and a false and in the third both a and b
are undefined. When originally defining the stable model semantics Gelfond
and Lifschitz considered only those programs which have a unique (2-valued)
stable model. We do not make any such assumption.

Remark 3.1 It seems that most researchers agree that the truth value of
the proposition A in the logic program:

A ~A

should not be defined as true and stress the fact that neither the connective
< nor the negation symbol ~ represent classical implication and negation.
Consequently, those researchers either propose not to assign any semantics
to programs with this kind of negative recursion or to use 3-valued seman-
tics and assign to the proposition A the value undefined. The last solution
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seems superior, because it allows us to assign reasonable semantics to more
programs, and thus prevents us from loosing useful information contained in
the program (see the example discussed in the introduction). This is the so-
lution adopted by the well-founded semantics and also by Fitting and Kunen
[Fit85, Kun87] in their 3-valued extension of Clark’s semantics.

At the same time a number of researchers (e.g., [BLM90, BS90]) argue
that a program P of the form:

A<+ ~B

B+ ~A

should somehow be viewed as representing a disjunction A V B and thus,
when augmented with clauses:

C+ A

C+ B

it should imply C.

The well-founded (or 3-valued stable) semantics, as well as Fitting-Kunen’s
semantics assign undefined value to C' and we believe that this is a correct
thing to do. We explain this claim below:

e First of all, if we really wanted to express disjunction, we should do so
explicitely, rather than use this conspicuous way.

e Secondly, the only reason why we should view the above clauses as
representing a disjunction A V B is that we view the world as “black
or white” (2-valued), i.e., we assume that everything, is always known
to be either true or false. We argue then that since A must be either
true or false, B must be, respectively, false or true and, consequently,
either A or B must always be true. However, the assumption that
our knowledge about the world is always “black or white” (2-valued)
is not only unintuitive, but it also prevents us, as pointed out above,
from assigning any sensible meaning to large classes of programs and
thus should be rejected. Once we agree that portions of our knowledge
might be undefined, there is no longer any reason to view the program
P above as somehow representing a disjuction AV B, because it is quite
possible that both A and B might be undefined (and so can be C).

14



e Finally, if for any propositions A and B the program
A+ ~B
B+ ~A
C+ A
C<+ B

is somehow to be viewed as representing a disjunction AV B and imply
C then, in particular, this should be true for A equal to B. However,
this immediately leads to the conclusion that the program:

A+ ~A

C+ A
should imply both C' and A, which contradicts the view that the clause
A + ~A is not equivalent to A.

Although the class of 3-valued stable models extends the class of 2-valued
stable models, the 3-valued stable model semantics does not extend the (2-
valued) stable model semantics. In fact, as we will see in the next section, the
3-valued stable model semantics coincides with the well-founded semantics,
which is known to differ from the 2-valued stable semantics.

Example 3.3 [[VGRS90]| Let P be given by:
— ~a
— ~b
— ~p
— ~a.

k"8 @ o

The above program has a unique (2-valued) stable model M = {p, b}. There-
fore, in spite of the fact that the information encoded in the above program is
rather confusing or incomplete, the (2-valued) stable semantics categorically
implies that p and b are true and a is false, which is considered by many
researchers to be unintuitive [VGRS90].

But P also has two 3-valued stable models < a; b > and < (;() >. The
latter model < ;) > coincides with the well-founded model of P. The 3-
valued stable semantics, which implies only those formulae which are satisfied
in all 3-valued stable models, coincides with the well-founded semantics and
correctly assigns undefined values to all a, b and p.
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4 Well-Founded Semantics Coincides
With Three-Valued Stable Semantics

The main result of this section shows that the well-founded model Mp of
any program P is the smallest (i.e., F-least) stable model of P. This clearly
implies that every logic program has at least one 3-valued stable model,
namely Mp. Moreover, it also implies that the well-founded semantics of
any program P coincides with the 3-valued stable model semantics of P.

Theorem 4.1 Every normal logic program P has the smallest (i.e., F-least)
3-valued stable model. Moreover, this model always coincides with the well-
founded model Mp of P.

In other words, the well-founded model Mp is the smallest stable model
of P, in the sense that, of all stable models, Mp contains the least number of
true or false facts, and, thus, the largest set of undefined facts. We can say,
borrowing from Horty and Thomasson’s inheritance network terminology,
that the well founded model is the most skeptical 3-valued stable model or
possible world for P. For example, if P is given by a < ~b, b < ~a, then, as
we have seen before, P has three stable models. One, in which a is true and
b is false, the second, exactly opposite and the third in which both a and b
are undefined. The last model, the most ‘skeptical’ one, is the well-founded
model of P. Similarly, if P is the program from Example 3.3, then the ‘most
undefined’ stable model of P is well-founded. This can be explained by saying
that the well-founded semantics ‘believes’ only in those things which hold in
all possible worlds (stable models) of the program.

Observe that although the above characterization of well founded models
as F-least 3-valued stable models is mathematically elegant it does not pro-
vide any constructive way of finding such models. Constructive definitions of
well-founded models were given in [Prz89a, VG89a).

Proof of Theorem 4.1: In order to prove Theorem 4.1 we first need to
recall the definition of well-founded models. We combine here the definitions
given in [VGRS90, Prz89a]. Suppose that P is a logic program and I is a
3-valued interpretation. We define two subsets 7 and F; of the Herbrand
base as follows:

e 17 is the smallest set of atoms A with the property that A is in 77 if
there is a clause A < Lq,..., L, in P such that, for all i < n, either

16



I(L;)=1or L; = B; is an atom and B, is in T}.

e [ is the largest set of atoms A with the property that A is in Fj if for
every clause A < Ly,...,L, in P there is an i < n such that either
I(L;) =0 or L; = B; is an atom and B; is in F].

The sets T} and F; always exist. The well-founded model is defined
recursively as follows. Let My =< (J;() > and suppose that for every a < (3
interpretations M, =< T,; F,, > are already defined. Define:

Aﬂgzxithjjhh;f%LJf%@ >
if # = a+ 1 is a successor ordinal and

Mg =< |J Ts | Fo >

a<f a<f

if #is a limit ordinal. The transfinite sequence M, is clearly increasing and
therefore there must exist the first ordinal A such that M,,; = M,. Then
Mp = My, =< T)\; F > is defined as the well-founded model of P.

We first show that Mp is stable. Let P’ = ML; and suppose that N =<
T;F > is also a model of P’ and that N < M, i.e., T C T\ and F D F).
We will show that M = N. Suppose first that 7" # T and let § be the first
ordinal such that there is an atom A such that A € T3 —T". By the definition
of Ty it follows immediately that § must be a successor ordinal, § = a + 1.
Moreover, we also have T, C T and naturally F,, C F\ C F.

By definition, Ty = T, U Ty,. But Ty, is the smallest set of atoms A
with the property that A is in T}, if there is a clause A <~ Ly,..., L, in P
such that, for all i < n, either Ma(Li) =1 or L; = B; is an atom and B; is
in T)y;,,. Therefore, T);, contains all those atoms that are logically implied
by the program P" = ML; (cf. [Prz89al]). Since the model N extends the
interpretation M,, i.e., T, C T and F, C F, we conclude that they must
also be logically implied by the program % of which N is a model. This
implies that Ty, C T and thus Ty C T, which is a contradiction and proves
that 7' =T).

Suppose now that F' D F\. Since N is a model of the positive program
P' that means that for any A € F and for any clause in P’ with A in its head
there must exist a (positive) premise B; which is false in N, i.e., such that
B; € F. Consequently, for any A € F' and for any clause in P with A in its
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head there must either exist a positive premise B; € F' or a negative premise
~C; such that C; is true in NV and thus C; € T)\. From the definition of Fj;,
it follows that F' C Fy;, C F)\4, = F), which again is a contradiction.

It remains to show that the well-founded model Mp is the F-least stable
model of P. Let N =< T'; F' > be an arbitrary stable model of P. Therefore
N is the least model of %. We will show by transfinite induction that:

(x) T,CT and F,CF

for every o < A. Clearly (*) is true for « = 0. Assume that (*) is true for all
a < . If B is a limit ordinal then clearly (*) holds for §. Assume therefore
that 8 = a + 1.

We first prove that T3 C T'. By definition, T = T, U Tyy,,. But T}, is
the smallest set of atoms A with the property that A is in Ty, if there is a
clause A < Ly,..., L, in P such that, for all i < n, either MQ(LZ-) =1 or
L; = B, is an atom and B; is in T}, . Therefore, Ty, contains all those atoms
that are logically implied by the program P" = ML;. Since by the inductive
assumption the model N extends the interpretation M,, i.e., T, C T and
F, C F, we conclude that they must also be logically implied by the program
% of which N is a model. This implies that 7y, C T and thus 75 C T

We now prove that Fz C F. It suffices to show that Fy, C F. By
definition, Fy, is the largest set of atoms A with the property that A is in
Fy,, if for every clause A <— Ly, ..., L, in P there is an ¢ < n such that either
MQ(LZ-) = 0 or L; = B; is an atom and B; is in F); . Since N extends the
interpretation M, it easily follows that all of the atoms in F), must be false
in the least model of %. But N itself is the least model of % and therefore
all of the atoms in Fj;, must be false in N. This shows that F3 C F' and
completes the proof of the theorem. O

Corollary 4.2 Fvery logic program has at least one 3-valued stable model,
namely, the well-founded model Mp.

Consequently, as opposed to the (2-valued) stable semantics, the 3-valued
stable semantics is well-defined for any logic program. As we stressed in the
introduction, this is a very important property of the semantics.

Corollary 4.3 The well-founded semantics of an arbitrary logic program P
coincides with the 3-valued stable model semantics of P in the sense that for
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any sentence F' (not containing the connective “”):
Mp=F = STABLE3(P) E F.

Proof: Since the well-founded model is stable, if K is a literal and
STABLE3(P) = K then Mp = K. Conversely, if Mp = K then, since
Mp is the F-least stable model of P and therefore it contains the least num-

ber of true or false facts of all stable models of P, K must also hold in all
stable models of P. This shows that STABLE3(P) E K. O

The above results stress the naturality and importance of stable and
well-founded models, at the same time indicating that the proper definition
of stable models should be 3-valued.

As a byproduct of our considerations we immediately obtain the impor-
tant result from [VGRS90| relating 2-valued well-founded and stable models.

Corollary 4.4 [VGRS90] If the well founded model of a program P is 2-
valued then it coincides with the unique stable model of P.

Proof: Well-founded models are F-least stable models of a program and
therefore, if the well founded model of a program P is 2-valued, then it must
be the only stable model of P. O

5 Relationship to Non-Monotonic Formalisms

It follows immediately from the results proved in [Prz91] that the 3-valued
stable semantics of logic programs closely corresponds to non-monotonic for-
malisms. Namely, after a suitable translation of an arbitrary program P into
an autoepistemic (resp. default) theory ]5, the 3-valued stable semantics of
P coincides with the (3-valued) autoepistemic (resp. default) semantics of P
[Prz91].

We first need to translate logic programs into autoepistemic theories. We
use the translation proposed in [Gel87].

Definition 5.1 [Gel87] Let P be a logic program. The autoepistemic theory
]5, which we call the autoepistemic translation of P, consists of all clauses
of the form:

A<—Bl,...,Bm,—!Lcl,...,—lLCn,
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for all possible (ground instances of ) clauses:
A(-Bl,...,Bm,NCh...,NCn
from P, where L represents the autoepistemic belief operator.

The following theorem is an immediate consequence of the results ob-
tained in [Prz91]:

Theorem 5.1 (Equivalence of 3-valued stable and autoepistemic se-
mantics) There is a one-to-one correspondence between 3-valued stable mod-
els of P and 3-valued stable autoepistemic expansions of P. In particular,
the 3-valued stable semantics of P coincides with the (3-valued) autoepistemic
semantics of P.

To obtain the correspondence with default logic we first have to translate
a logic program P into a default theory P. We use the approach proposed
originally by Bidoit and Froidevaux [BF88|. First of all, the default transla-
tion P of P contains all clauses

A+ Bl; cee B,
from P, which do not have negative premises. Next, for every clause:
A+~ Bl,...,Bm,NLcl,...,NLCn,

in P with some negative premises, the translation P contains a default rule:
Bl/\.../\BnZ_'Ch...,_'Ck
A

Finally, P contains defaults
1A
-A
for every ground atom A in the language.
The following theorem also follows from the results obtained in [Prz91]:

Theorem 5.2 (Equivalence of 3-valued stable and default seman-
tics) There is a one-to-one correspondence between 3-valued stable models
of P and 3-valued default extensions oflf’. In particular, the 3-valued stable
semantics of P coincides with the (3-valued) default semantics of P.

Similar relationships are valid between 3-valued stable semantics and cir-
cumscription and CWA [Prz91].
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6 Programs with “Classical” Negation

As we mentioned in the introduction, Gelfond and Lifschitz pointed out
[GL89] that in logic programming it is often useful to use the negation as
failure operator (~) together with a different negation operator (=), which
is supposed to constitute a rough counterpart of classical negation. They
developed a semantics for such programs based on their (2-valued) stable
models. For standard logic programs their semantics coincides with the (2-
valued) stable model semantics and, consequently, it is not defined for all
logic programs.

In this section, following upon Gelfond and Lifschitz’s approach, we will
define the well-founded and the 3-valued stable semantics for all such extended
programs with “classical” negation and we will show that both semantics
coincide. This will allow us to extend the results obtained in this paper to
the class of all programs permitting both types of negation.

As in [GL89], by an extended program with classical negation we will
mean any (finite or infinite) set of clauses of the form:

L%LI;---;Lm;NLm—l—l;--- ~L,

3

where 0 < m < n and L;’s are —-literals, i.e., L;’s are either atoms A or
negated atoms —A, where the “classical” negation — is used instead of the
negation as failure ~. Since we are only concerned with Herbrand models,
as explained in Section 2, we can assume that all clauses are ground.

The only, yet essential, difference between standard logic programs and
extended logic programs defined above is the fact that L;’s are allowed to
be (“classically”) negated literals —A rather than just atoms. The class of
extended programs is clearly broader than the class of standard programs.

Example 6.1 The following program P is an example of such an extended
program:

imnocent <— charged, ~guilty
—convicted < charged, ~guilty
charged <+

The program states that if someone is charged then to know for sure that he
is innocent one needs to know for sure that the person is not guilty (classical
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negation). However, to deduce that someone is not convicted it is enough to
know that he has not been proven guilty (negation as failure). Observe the
use of classically negated atom “convicted” in the head of the second clause.

Now we extend the well-founded and 3-valued stable semantics to such
programs with classical negation by using the following program transforma-
tion (cf. [GL89]):

e First, we rename all “classically” negated (ground) literals = A by new
atomic symbols, say, A" and make a suitable substitution everywhere in
the program P. As a result we obtain a standard program P* without
classical negation.

e Then for any 3-valued stable model M* of of the transformed program
P* (in particular, for the well-founded model) we define the correspond-
ing 3-valued stable (or well-founded) model M of the extended program
P as follows:

— If A (resp. A') is true in M*, then we we take A (resp. = A) to be
true in M.

— If A (resp. A') is false in M*, then we we take ~A (resp. ~(—A))
to be true in M, i.e., we view A (resp. —A) as false by default.

— Otherwise, if A (resp. A’) is undefined in M*, then we consider
the status of A (resp. =A) in M as also undefined.

e We throw out all inconsistent models M, i.e., those which contain both
A and —A, for some atom A.

The transformed program P* of the program P given in Example 6.1
looks as follows:

innocent < charged, guilty’
convicted < charged, ~quilty
charged <

The transformed program P* has exactly one stable (and well-founded)
model M* in which convicted’ and charged are true and all the remain-
ing atoms innocent, innocent', quilty, gquilty’, charged and convicted are
false.
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This leads to the unique stable (and well-founded) model M of the ex-
tended program P described by the following table:

H Atom A ‘ guilty ‘ innocent ‘ charged ‘ convicted H

A no no yes no
—-A no no no yes

In the above table, yes (resp. no) for a literal L means that L (resp. ~L
) is true in M. Thus, in M the individual is known to be charged and
not convicted, but neither innocent nor guilty nor their classical negations,
—innocent or —guilty, can be proven and thus their negation (as failure) can
be assumed.

Notice, that, L is true (resp. false) if and only if ~(L) is false (resp.
true), for any —-literal L. This is a consequence of the fact that we require
I(L) = 1 — I(~L), for any —-literal L. On the other hand, observe that
it is possible that neither A nor —A holds in Mp and consequently, ~A
and ~(—A) both are true. This simply means that neither A nor —A are
“classically” derivable, and therefore both can be assumed false by default.
It also shows that the condition I(A) = 1—I(—A) is, in general, not satisfied
for classical negation. The ability to distinguish between facts “classically”
true and those which are true by virtue of negation as failure is the greatest
strength of Gelfond and Lifschitz’s approach.

Remark 6.1 Observe that the above described method applies to any se-
mantics that we wish to choose for standard programs (i.e., programs without
classical negation). This means that no matter what semantics we choose
for standard programs we can immediately extend it to programs with classical
negation. Thus the inclusion of classical negation does not require any new
semantic considerations.

The resulting model M derived from M* may turn out to be inconsistent,
namely, it may contain both A and —A, for some atom A. This is caused by
the fact that the atoms A and A’ in the transformed program P* are treated
as independent atoms, even though one of them is really meant to represent
the classical negation of the other. In this case we discard it. The following
is an example of an extended program with resulting inconsistent model:
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Example 6.2 Let P be as follows:

—q <+ ~b

a < —a

The transformed program P* is:

a + ~b

a — d

and it has a unique well-founded (in fact, perfect) model M* =< {a,a'}; {b,0'} >.
Therefore, the resulting model M contains both A and —A and thus it is in-
consistent. In other words, M is inconsistent, because both a and «’ are true

in M*.

Once we defined the well-founded and 3-valued stable models models for
any extended program P we define the well-founded (or 3-valued stable)
semantics of P as the set of all sentences satisfied all (consistent) models,
where the satisfaction of sentences involving both ~ and —, in an interpre-
tation I, is defined similarly as in Section 2. We require, as before, that
f(L) =1- f(NL), for any —-literal L, but, for reasons explained above, we
do not require I(A) = 1 — I(=A), but instead treat A and —A as separate
literals which, as in the case of b in Example 6.1, both might be false or even,
if I is inconsistent, both can be true.

Observe, that the 3-valued stable semantics may be well-defined, even
though some of the 3-valued stable models of P turn out to be inconsistent:

Example 6.3 Suppose that P is given by:

-a <
a <+ ~b
b +— ~a

The transformed program P* is:

a <
a +— ~b
b +— ~a
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and it has three 3-valued stable models: M} =< {d'};{V/} >, M; =<
{d';a}; {0/,b} > and M; =< {d,b};{b',a} >. They give rise to three 3-
valued stable models M,, M, and M5 of P. In the model M, both a and —a
hold and therefore M, is inconsistent, yet the 3-valued stable semantics of P
is consistent, because a is not true in the remaining two models. The smallest
(F-least) stable model M; of P again coincides with the well-founded model
of P.

The following result extends the results obtained in the previous sections
of the paper to the broader class of programs allowing “classical” negation.
It is an almost immediate consequence of the above given definitions and the
results proved before and therefore its proof will be omitted.

Theorem 6.1 The well-founded (resp. 3-valued stable) models and seman-
tics defined above extend the concepts of well-founded (resp. 3-valued stable)
models and semantics from standard programs to the class of all programs
with “classical” negation. The well-founded model always coincides with the
smallest (F-least) 3-valued stable model. Consequently, the well-founded se-
mantics always coincides with the 3-valued stable semantics.

The above result immediately implies the following generalization of the
result previously obtained in [VGRS90] establishing a relationship between
2-valued stable models of extended programs introduced in [GL89] and well-
founded models of such programs introduced here.

Corollary 6.2 If the well founded model of an extended program P 1is 2-
valued then it coincides with the unique 2-valued stable model of P.

Remark 6.2 It should be pointed out that the negation operator — does not
truly represent classical negation, but only constitutes its rough counterpart.
Classically, the negation —A of an atom A is implied by a given theory T if
and only if A is false in all models of T". This certainly does not apply to the
negation operator — considered here. For example, the program

—q <+ ~b

a < a

from Example 6.2 clearly has a (consistent) model in which b and a are
true and —a is false. Therefore, from the standpoint of classical logic, the
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program neither is inconsistent nor implies —b. This illustrates the fact that
the “classical” negation operator — and the negation as failure operator ~
are mutually dependent upon one another and as a result both of them are
non-monotonic operators and thus neither one of them can be truly viewed
as a classical, monotonic negation.

Moreover, even in programs which do not contain negation as failure
the operator — does not behave in a “classical” way (due to the special
interpretation of the implication symbol «-). For example, the program:

a 4+
—a <+ b

classically implies —b and yet neither b nor —b is true in the unique stable or
well-founded model of P.

Consequently, it is best to view = as a non-monotonic negation operator
different from the negation as failure operator ~, which is supposed to con-
stitute a rough counterpart of classical negation in non-monotonic theories.
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