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Finally, following upon the recent approach developed by Gelfondand Lifschitz, we extend all of our results to more general logic pro-grams which, in addition to the use of negation as failure, permit theuse of classical negation.1 IntroductionThe well-founded semantics has been introduced in [VGRS90]. It is a 3-valued semantics which seems to be the most adequate extension of the per-fect model semantics [ABW88, VG89b, Prz88a] from the class of strati�edlogic programs to the class of all logic programs, avoiding various drawbacksof the other proposed approaches (see [PP90] for an overview). The well-founded semantics has been proven to share many of the natural propertiesof the perfect model semantics [Prz89a] and it has been shown to be equiva-lent to suitable (3-valued) forms of all four major non-monotonic formalisms[Prz91, Prz89b]. Recently, D. S. Warren introduced the Extended WarrenAbstract Machine (XWAM) for this semantics [War89] and developed anelegant interpreter in Prolog.The stable model semantics has been introduced in [GL88] (see also [BF88]).It is a 2-valued semantics, which also extends the perfect model semanticsand has an elegant and simple �xed point de�nition. It is closely related toautoepistemic and default approaches to non-monotonic reasoning. However,the (2-valued) stable semantics also has some important drawbacks. First ofall, it is de�ned only for a restricted class of logic programs; secondly, it iscomputationally very expensive, and, thirdly, it does not always lead to theexpected (intended) meaning of the program [VGRS90, PP90].Well-founded and stable models are closely related. It is known that ifa logic program P has a 2-valued well-founded model than this model is theunique stable model of P [VGRS90]. On the other hand, however, there areprograms with unique stable models, whose well-founded models are 3-valuedand thus are not (2-valued) stable.In this paper we introduce 3-valued stable models of logic programs, whichconstitute a natural extension of (2-valued) stable models. We show that allsuch models are minimal and that every logic program P has at least one3-valued stable model. Moreover, we prove that the well-founded model ofany logic program P is, in fact, the smallest 3-valued stable model of P . As2



a result, we conclude that the well-founded semantics of an arbitrary logicprogram coincides with the 3-valued stable model semantics.One of the important features of well-founded models, and a strong in-dication of their naturality, is the fact that they can be described in manydi�erent, but equivalent, ways (see [VGRS90, Prz89a, Prz91, VG89a, Bry89]).Our results provide a new and simple characterization of well-founded modelsas smallest 3-valued stable models. They also seem to point out the natu-rality and importance of stable models, at the same time indicating that theproper de�nition of stable models should be 3-valued.The 3-valued stable model semantics not only provides a natural exten-sion of the well-founded semantics, but it also naturally corresponds to non-monotonic formalisms in AI (cf. [Prz89b, Prz88b]). Namely, every programP can be translated into an autoepistemic (resp. default) theory P̂ , so thatthe 3-valued stable semantics of P coincides with the (3-valued) autoepis-temic (resp. default) semantics of P̂ [Prz91]. Similar results hold for circum-scription and CWA.In [Prz90a, Prz90b] we prove that the 3-valued stable semantics has anatural extension to the class of all disjunctive logic programs, thus provid-ing a natural and very general semantics for all disjunctive logic programsand deductive databases. The fact that the 3-valued stable semantics iswell-de�ned for any normal program and can be extended to the class ofall disjunctive logic programs [Prz90b] is very important. A logic programmay contain predicates whose truth or falsity is not fully determined by theprogram (and thus is unde�ned), in addition to predicates whose truth valueis completely determined by the program. Semantics which are well-de�nedonly for limited classes of programs usually fail to assign any semantics tosuch programs.To illustrate this point, let us consider the following program:work  �tiredsleep  �worktired  �sleepangry  �paid; workpaid  It appears that the �rst three rules describe only mutual relationshipsbetween propositions tired; work and sleep, without providing su�cient in-3



formation to determine their truth or falsity. Depending on the point of view,we could describe our knowledge about propositions tired; work and sleep aseither incomplete or perhaps even confusing. On the other hand, regardlessof the status of propositions tired; work and sleep, the proposition paid mustbe true and thus angry, by negation as failure, must be false.This leads to the unique 3-valued stable model M =< paid; angry > ofthe program, in which paid is true, angry is false and tired; work and sleepare unde�ned. If we later learn, e.g., that work is actually true then we willconclude that sleep is false and tired is true, but our beliefs about paid andangry will remain unchanged.It is worth noting, that Prolog would return the same answers. Similarly,Fitting and Kunen's 3-valued extension of Clark's semantics [Fit85, Kun87],which should really be viewed as the \true Clark's semantics", leads pre-cisely to the same result, namely, M is the only (3- or 2-valued) model ofClark's completion of the program. On the other hand, it is easy to see thatthe 2-valued stable semantics, applied to this program, is unde�ned not onlymaking it impossible for us to �nd out that we don't have a complete informa-tion about propositions tired; work and sleep, but also, more importantly,denying us the ability to establish well-de�ned truth values of predicates paidand angry.The need to consider 3-valued models (possible worlds) to describe ourknowledge stems also from the fact that our knowledge about the world is al-most always incomplete and therefore we need the ability to describe possibleworlds (models) in which some facts are neither true nor false and thus theirstatus is unde�ned. Three-valued semantics have a realistic, computationallybased proof theory and can be naturally implemented in various inference en-gines. Namely, the SLS-resolution [Prz89a] provides a sound and completeprocedural mechanism for the 3-valued stable (or well-founded) semantics.The Extended Warren Abstract Machine (XWAM), introduced in [War89],also provides a procedural semantics for the 3-valued stable (or well-founded)semantics. Moreover, recently D. S. Warren developed an elegant interpreterfor the well-founded semantics written in Prolog.Clark's predicate completion semantics and its 3-valued extensions [Cla78,Llo84, Fit85, Kun87], which are considered by many researchers to be tooweak [PP90], can be viewed as natural and computationally less expensiveapproximations to the intended 3-valued stable (or well-founded) semantics,in the sense that any answers given by the (3-valued extensions of) Clark4



semantics are correct with respect to the (3-valued) stable semantics but notvice versa.The negation operator � that is used in standard logic programs does notrepresent the classical negation, but rather the so called negation as failure.For example, all major semantics applied to the logic program a �b imply�b (and thus also a), based on the lack of evidence that b holds. This ismuch weaker than the requirement of positive evidence that the negation :bof b holds, which is needed to assert classical negation of b.Gelfond and Lifschitz pointed out [GL89] that in logic programming it isoften useful to use the negation as failure operator (�) together with a di�er-ent negation operator (:), which is supposed to constitute a rough counter-part of classical negation1. They developed a semantics for such programs,based on their (2-valued) stable models, which is de�ned for some but not allsuch programs. Following upon their approach, we de�ne the well-foundedand the 3-valued stable semantics for all such extended programs and we showthat both semantics coincide. This allows us to extend all results obtainedin this paper to the class of programs permitting both types of negation.The paper is organized as follows. In the next Section 2 we introduce3-valued interpretations and models. In Section 3 we de�ne and discuss3-valued stable models. In Section 4 we prove some of their properties,including the equivalence of the well-founded and 3-valued stable semantics.In Section 5 we discuss the relationship of the 3-valued stable semantics tonon-monotonic formalisms. In Section 6 we extend our results to programspermitting the use of both negations � and :.The results contained in this paper were announced in [Prz90a]. Theextension of the 3-valued stable semantics to all disjunctive programs is de-scribed in [Prz90a, Prz90b]. For an overview of semantic issues in logicprogramming and theory of deductive databases, the reader is referred to[PP90].2 Model TheoryBefore de�ning 3-valued stable models we need to de�ne 3-valued interpreta-tions and models of logic programs. We closely follow the approach developed1Gelfond and Lifschitz use the symbol not, instead of �, to denote the negation asfailure. 5



in [Prz89a, PP90].By an alphabet A of a �rst order language L we mean a (�nite or count-ably in�nite) set of constant, predicate and function symbols. In addition,any alphabet is assumed to contain a countably in�nite set of variable sym-bols, connectives (^;_;�; ), quanti�ers (9; 8) and the usual punctuationsymbols. Moreover, we assume that our language also contains propositionst, u and f, denoting the properties of being true (resp. unde�ned or partiallytrue; resp. false). The �rst order language L over the alphabet A is de�nedas the set of all well-formed �rst order formulae that can be built startingfrom the atoms and using connectives, quanti�ers and punctuation symbolsin a standard way. An expression is called ground if it does not contain anyvariables. The set of all ground atoms of A is called the Herbrand base H ofA. The set of all ground terms of A is called the Herbrand universe U of A.If G is a quanti�er-free formula, then by its ground instance we mean anyground formula obtained from G by substituting ground terms from U forall variables. For a given formula G of L its universal closure or just closure(8)G is obtained by universally quantifying all variables in G which are notbound by any quanti�er.If P is a program then, unless stated otherwise, we will assume that thealphabet A used to write P consists precisely of all the constant, predicateand function symbols that explicitly appear in P and thus A = AP is com-pletely determined2 by the program P. We can then talk about the �rst orderlanguage L = LP of the program P and the Herbrand base H = HP of theprogram.De�nition 2.1 By a 3-valued Herbrand interpretation I of the language Lwe mean any pair < T ;F >, where T and F are disjoint subsets of theHerbrand base H. The set T contains all ground atoms true in I, the setF contains all ground atoms false in I and the truth value of the remainingatoms in U = H� (T [ F ) is unde�ned (or unde�ned). We assume that inevery interpretation I the proposition t is true, the proposition f is false andthe proposition u is unde�ned. A 3-valued interpretation I is 2-valued if allground atoms (except for the proposition u) are either true or false in I.Throughout the paper, we consider only Herbrand interpretations andmodels, although our results can be easily extended to non-Herbrand models.2If there are no constants in P then one is added to the alphabet.6



Any interpretation I =< T ;F > can be equivalently viewed as a function I :H ! f0; 12 ; 1g, from the Herbrand base H to the 3-element set V = f0; 12 ; 1g,de�ned by: I(A) = 8><>: 0; if A 2 F12 ; if A 2 U1; if A 2 T:We now extend the function (interpretation) I : H ! V recursively tothe truth valuation Î : C ! V de�ned on the set C of all closed formulae ofthe language.De�nition 2.2 [Prz89a] If I is an interpretation, then the truth valuationÎ corresponding to I is a function Î : C ! V from the set C of all (closed)formulae of the language to V recursively de�ned as follows:� If A is a ground atom, then Î(A) = I(A).� If S is a closed formula then Î(�S) = 1� Î(S).� If S and V are closed formulae, thenÎ(S ^ V ) = min(Î(S); Î(V ));Î(S _ V ) = maxfÎ(S); Î(V )g;Î(V  S) = ( 1; if Î(V ) � Î(S)0; otherwise.� For any formula S(x) with one unbounded variable x:Î(8x S(x)) = minfÎ(S(A)) : A 2 Ug;Î(9x S(x)) = maxfÎ(S(A)) : A 2 Ug;where the maximum (resp. minimum) of an empty set is de�ned as 0(resp. 1).Remark 2.1 Truth valuations assign to every formula F a number 0; 12 or1, which reects the degree of truth of F, ranging from the lowest, namelyfalse (0), through unde�ned (12), to the highest, namely true (1). Here, theintuitive meaning of the unde�ned truth value is partially true or possible,rather than either true or false. Therefore, the unde�ned status of an atomA in a given modelM of a theory T indicates that M assigns some, but onlylimited, truth to A. 7



By a logic program we mean a set of universally closed clauses of the formA L1 ^ : : : ^ Lmwhere m � 0, A's is an atom and Li's are literals. For consistency reasons,we will not allow propositions t, u and f to appear in heads of clauses3.Conforming to a standard convention, conjunctions are replaced by commasand therefore clauses are simply written in the formA L1; : : : ; Lm:A program P is positive if all of its clauses contain only positive premises.De�nition 2.3 An (Herbrand) interpretation M is a model of a program Pif all of its clauses are true in M , i.e., if for every ground instanceA L1; : : : ; Lmof a program clause we haveM̂(A) � minfM̂(Li) : i � mg:Thus, M is a model of a program if and only if the degree of truth of thehead of every clause is at least as high as the degree of truth of its body (i.e.,the conjunction of its premises).By a ground instantiation of a logic program P we mean the (possiblyin�nite) theory consisting of all ground instances of clauses from P. It iseasy to see, that an Herbrand interpretation M is a model of a program Pif and only if it is a model of its ground instantiation. Therefore, as long asonly Herbrand interpretations are considered, one can identify any program Pwith its ground instantiation. Whenever convenient, we will assume, withoutfurther mention, that the program P has already been instantiated.There are two natural orderings between interpretations, one of them, �,is called the standard ordering and the other, �F , is called the F-ordering(or Fitting-ordering).3This assumption is not essential and can be removed, but for the sake of simplicitythis issue will not be discussed here. 8



De�nition 2.4 [Prz89a] Suppose that I =< T ;F > and J =< T 0;F 0 > aretwo interpretations. We say that I � J ifT � T 0 and F � F 0:We say that I �F J if T � T 0 and F � F 0:Models which are �-minimal or �-least will be just called minimal or leastmodels, respectively. On the other hand, models which are �F -minimal or�F -least will be called F-minimal or F-least, respectively. F-least models willalso be called smallest models.It is easy to verify that I � J if and only if for all atoms A:I(A) � J(A) (or, equivalently, Î(A) � Ĵ(A)):The notions of F-minimal and F-least models are di�erent from the notionsof minimal and least models. While minimal and least models of a program Pminimize the degree of truth of atoms, by minimizing the set T of true atomsand maximizing the set F of false atoms F, F-minimal and F-least modelsminimize the degree of information of their atoms, by jointly minimizing thesets T and F of atoms which are either true or false and thus maximizingthe set U of unknown atoms. For example, the F-least (or smallest) modelof the program p p is obtained when p is unde�ned, while the least modelof P is obtained when p is false.3 Three-Valued Stable ModelsIn this section we de�ne 3-valued stable models. Our de�nition is similar tothe de�nition of (2-valued) stable models given in [GL88]. Every 2-valuedstable model is a 3-valued stable model, so our de�nition extends the notionof stable models.First, we need the following generalization of the Kowalski-Van EmdenTheorem [VEK76]:Theorem 3.1 Every positive logic program P has a unique least 3-valuedmodel. 9



The above theorem is a strict generalization of the Kowalski-Van Emdentheorem in view of the fact that our positive logic programs are allowed tocontain atoms t, u and f among their premises (only the occurence of atomsu is essential). In particular, least models of such programs may not be2-valued.Example 3.1 Suppose that P is given by:c  a  c;ub  b;uThe least model of P is M =< c; b >, i.e., in M the atom c is true, b is falseand a is unknown.In order to prove Theorem 3.1 we will �rst introduce a natural operator	, which acts on the set of all 3-valued interpretations of a program and gen-eralizes the Van Emden-Kowalski immediate consequence operator [VEK76].We will then show that the least model of a positive program can be obtainedas the least �xed point of this operator.De�nition 3.1 Suppose that P is a logic program, I is a 3-valued interpre-tation of P and A is a ground atom. De�ne 	(I) to be the interpretationgiven by:(i) 	(I)(A) = 1 if there is a clause A A1; : : : ; An in P such that I(Ai) =1, for all i � n;(ii) 	(I)(A) = 12 if 	(I)(A) 6= 1 and there is a clause A  A1; : : : ; An inP such that I(Ai) � 12 , for all i � n;(iii) 	(I)(A) = 0 , otherwise.Theorem 3.1 is an immediate consequence of the following Theorem gen-eralizing the well-known result from [VEK76].Theorem 3.2 If P is a positive program, then the operator 	 has the least�xed pointMP , i.e., there exists the least interpretationMP such that 	(MP ) =MP . The interpretation MP is the least model of P.10



Moreover, the model MP can be obtained by iterating ! times the operator	. More precisely, the sequence 	"n, n = 0; 1; 2; : : : ; !, of iterations4 of 	 ismonotonically increasing and it has a �xed point 	"! =MP .Proof: The proof is completely analogous to the proof given in [VEK76]and therefore it is skipped. 2We now introduce the operator �� which assigns to every 3-valued inter-pretation I a new 3-valued interpretation ��(I). This operator extends theGelfond-Lifschitz transformation [GL88] to 3-valued logic programs.De�nition 3.2 Let P be a logic program and let I be any 3-valued interpre-tation. By the extended GL-transformation of P modulo I we mean the newprogram PI obtained from P by replacing in every clause of P all negativepremises L = �C which are true (resp. unknown; resp. false) in I by atomst (resp. u; resp. f). Since the resulting program PI is positive thus, byTheorem 3.1, it has a unique least 3-valued model J. We de�ne ��(I) = J.It is easy to see that if t appears among the premises then it can be simplyerased and if f appears among the premises of a given clause, then the wholeclause can be erased without changing anything. On the other hand, u's ingeneral cannot be removed. It turns out that �xed points of the operator �for a program P are always minimal models of P .Proposition 3.1 Fixed points of the operator � for a program P are minimalmodels of P .Proof: Let M be a �xed point of the operator �, i.e., let �(M) = M .Then M is the least model of the reduced program PM . Let C:A B1 ^ : : : ^ Bm;�C1 ^ : : : ^ �Cnbe an arbitrary clause from P. The corresponding clause C 0 in PM is obtainedby replacing all negative premises Li = �Ci which are true (resp. unknown;resp. false) in M by atoms t (resp. u; resp. f) and clearly C 0 must besatis�ed in M. This immediately implies that also C must be satisi�ed in M,thus showing that M is a model of P.4With respect to the standard ordering � of interpretations and beginning from theleast interpretation < ;;H >. Here ! denotes the �rst in�nite ordinal.11



To show that M is a minimal model of P it su�ces to show that anymodel N of P, which is less than or equal to M (i.e., N �M) is also a modelof PM . Since M is the least model of PM , this will imply thatM = N . Let C, asabove, be an arbitrary clause in P and let C 0 be the reduced clause in PM andC 00 the reduced clause in PN . Since N is a model of P it must clearly satisfythe clause C 00. Moreover, since N � M and the premises �Ci are negativeN must also satisfy C 0. This shows that N must be a model of PM . 2Fixed points of the operator �� are de�ned as 3-valued stable models ofP.De�nition 3.3 A 3-valued interpretation M of a logic program P is calleda 3-valued stable model of P if ��(M) = M . Thus M is a 3-valued stablemodel of P if and only if it is the least model of PM .The 3-valued stable model semantics STABLE3(P ) of a program P isdetermined by the set STBMOD(P ) of all 3-valued stable models of P: asentence F is true in STABLE3(P ) if and only if it is true in all modelsfrom STBMOD(P ).The above de�nition of 3-valued stable models is a strict extension of theoriginal de�nition of stable models. In fact, standard stable models coincidewith 2-valued stable models introduced above.Proposition 3.2 For any logic program P, stable models, as introduced in[GL88], coincide with 2-valued stable models, introduced above.Proof: As we observed before, if t appears among the premises of a givenclause then it can be simply erased and if f appears among the premises thenthe whole clause can be erased without changing anything. This immediatelyshows that if the stable model is 2-valued then the de�nition given abovecoincides with the de�nition given in [GL88]. 2Let us consider the example discussed in the introduction:Example 3.2 Suppose that P is:work  �tiredsleep  �worktired  �sleepangry  work;�paidpaid  12



and let M =< paid; angry >. Then the transformed program PM is:work  usleep  utired  uangry  work; fpaid  and its least model coincides with M which shows that M is a 3-valued stablemodel of P. As we mentioned before, the above program does not have any2-valued stable models. It also illustrates di�erences between the 3-valuedstable (well-founded) semantics and the semantics recently introduced in[BLM90], which implies, e.g., work_sleep and generally treats clauses of theform A �B as disjunctions A _B, which our semantics does not do.In general, a logic program may have more than one 3-valued stable model(we will see in the next section that it always has at least one). For examplethe program: a  �bb  �ahas three stable models, two of which are 2-valued. In one of them a is trueand b false, in the other b is true and a false and in the third both a and bare unde�ned. When originally de�ning the stable model semantics Gelfondand Lifschitz considered only those programs which have a unique (2-valued)stable model. We do not make any such assumption.Remark 3.1 It seems that most researchers agree that the truth value ofthe proposition A in the logic program:A �Ashould not be de�ned as true and stress the fact that neither the connective nor the negation symbol � represent classical implication and negation.Consequently, those researchers either propose not to assign any semanticsto programs with this kind of negative recursion or to use 3-valued seman-tics and assign to the proposition A the value unde�ned. The last solution13



seems superior, because it allows us to assign reasonable semantics to moreprograms, and thus prevents us from loosing useful information contained inthe program (see the example discussed in the introduction). This is the so-lution adopted by the well-founded semantics and also by Fitting and Kunen[Fit85, Kun87] in their 3-valued extension of Clark's semantics.At the same time a number of researchers (e.g., [BLM90, BS90]) arguethat a program P of the form: A �BB  �Ashould somehow be viewed as representing a disjunction A _ B and thus,when augmented with clauses: C  AC  Bit should imply C.The well-founded (or 3-valued stable) semantics, as well as Fitting-Kunen'ssemantics assign unde�ned value to C and we believe that this is a correctthing to do. We explain this claim below:� First of all, if we really wanted to express disjunction, we should do soexplicitely, rather than use this conspicuous way.� Secondly, the only reason why we should view the above clauses asrepresenting a disjunction A _ B is that we view the world as \blackor white" (2-valued), i.e., we assume that everything, is always knownto be either true or false. We argue then that since A must be eithertrue or false, B must be, respectively, false or true and, consequently,either A or B must always be true. However, the assumption thatour knowledge about the world is always \black or white" (2-valued)is not only unintuitive, but it also prevents us, as pointed out above,from assigning any sensible meaning to large classes of programs andthus should be rejected. Once we agree that portions of our knowledgemight be unde�ned, there is no longer any reason to view the programP above as somehow representing a disjuction A_B, because it is quitepossible that both A and B might be unde�ned (and so can be C).14



� Finally, if for any propositions A and B the programA �BB  �AC  AC  Bis somehow to be viewed as representing a disjunction A_B and implyC then, in particular, this should be true for A equal to B. However,this immediately leads to the conclusion that the program:A �AC  Ashould imply both C and A, which contradicts the view that the clauseA �A is not equivalent to A.Although the class of 3-valued stable models extends the class of 2-valuedstable models, the 3-valued stable model semantics does not extend the (2-valued) stable model semantics. In fact, as we will see in the next section, the3-valued stable model semantics coincides with the well-founded semantics,which is known to di�er from the 2-valued stable semantics.Example 3.3 [[VGRS90]] Let P be given by:b  �aa  �bp  �pp  �a:The above program has a unique (2-valued) stable modelM = fp; bg. There-fore, in spite of the fact that the information encoded in the above program israther confusing or incomplete, the (2-valued) stable semantics categoricallyimplies that p and b are true and a is false, which is considered by manyresearchers to be unintuitive [VGRS90].But P also has two 3-valued stable models < a; b > and < ;; ; >. Thelatter model < ;; ; > coincides with the well-founded model of P. The 3-valued stable semantics, which implies only those formulae which are satis�edin all 3-valued stable models, coincides with the well-founded semantics andcorrectly assigns unde�ned values to all a, b and p.15



4 Well-Founded Semantics CoincidesWith Three-Valued Stable SemanticsThe main result of this section shows that the well-founded model MP ofany program P is the smallest (i.e., F-least) stable model of P . This clearlyimplies that every logic program has at least one 3-valued stable model,namely MP . Moreover, it also implies that the well-founded semantics ofany program P coincides with the 3-valued stable model semantics of P.Theorem 4.1 Every normal logic program P has the smallest (i.e., F-least)3-valued stable model. Moreover, this model always coincides with the well-founded model MP of P .In other words, the well-founded model MP is the smallest stable modelof P, in the sense that, of all stable models, MP contains the least number oftrue or false facts, and, thus, the largest set of unde�ned facts. We can say,borrowing from Horty and Thomasson's inheritance network terminology,that the well founded model is the most skeptical 3-valued stable model orpossible world for P. For example, if P is given by a �b; b �a, then, aswe have seen before, P has three stable models. One, in which a is true andb is false, the second, exactly opposite and the third in which both a and bare unde�ned. The last model, the most `skeptical' one, is the well-foundedmodel of P. Similarly, if P is the program from Example 3.3, then the `mostunde�ned' stable model of P is well-founded. This can be explained by sayingthat the well-founded semantics `believes' only in those things which hold inall possible worlds (stable models) of the program.Observe that although the above characterization of well founded modelsas F-least 3-valued stable models is mathematically elegant it does not pro-vide any constructive way of �nding such models. Constructive de�nitions ofwell-founded models were given in [Prz89a, VG89a].Proof of Theorem 4.1: In order to prove Theorem 4.1 we �rst need torecall the de�nition of well-founded models. We combine here the de�nitionsgiven in [VGRS90, Prz89a]. Suppose that P is a logic program and I is a3-valued interpretation. We de�ne two subsets TI and FI of the Herbrandbase as follows:� TI is the smallest set of atoms A with the property that A is in TI ifthere is a clause A  L1; : : : ; Ln in P such that, for all i � n, either16



Î(Li) = 1 or Li = Bi is an atom and Bi is in TI .� FI is the largest set of atoms A with the property that A is in FI if forevery clause A  L1; : : : ; Ln in P there is an i � n such that eitherÎ(Li) = 0 or Li = Bi is an atom and Bi is in FI .The sets TI and FI always exist. The well-founded model is de�nedrecursively as follows. Let M0 =< ;; ; > and suppose that for every � < �interpretations M� =< T�;F� > are already de�ned. De�ne:M� =< T� [ TM� ;F� [ FM� >if � = � + 1 is a successor ordinal andM� =< [�<� T�; [�<� F� >if � is a limit ordinal. The trans�nite sequence M� is clearly increasing andtherefore there must exist the �rst ordinal � such that M�+1 = M�. ThenMP =M� =< T�;F� > is de�ned as the well-founded model of P.We �rst show that MP is stable. Let P 0 = PMP and suppose that N =<T ;F > is also a model of P 0 and that N � M , i.e., T � T� and F � F�.We will show that M = N . Suppose �rst that T 6= T� and let � be the �rstordinal such that there is an atom A such that A 2 T��T . By the de�nitionof T� it follows immediately that � must be a successor ordinal, � = � + 1.Moreover, we also have T� � T and naturally F� � F� � F .By de�nition, T� = T� [ TM�. But TM� is the smallest set of atoms Awith the property that A is in TM� if there is a clause A  L1; : : : ; Ln in Psuch that, for all i � n, either M̂�(Li) = 1 or Li = Bi is an atom and Bi isin TM� . Therefore, TM� contains all those atoms that are logically impliedby the program P 00 = PM� (cf. [Prz89a]). Since the model N extends theinterpretation M�, i.e., T� � T and F� � F , we conclude that they mustalso be logically implied by the program PN of which N is a model. Thisimplies that TM� � T and thus T� � T , which is a contradiction and provesthat T = T�.Suppose now that F � F�. Since N is a model of the positive programP 0 that means that for any A 2 F and for any clause in P 0 with A in its headthere must exist a (positive) premise Bi which is false in N , i.e., such thatBi 2 F . Consequently, for any A 2 F and for any clause in P with A in its17



head there must either exist a positive premise Bi 2 F or a negative premise�Ci such that Ci is true in N and thus Ci 2 T�. From the de�nition of FM�it follows that F � FM� � F�+1 = F�, which again is a contradiction.It remains to show that the well-founded model MP is the F-least stablemodel of P. Let N =< T ;F > be an arbitrary stable model of P. ThereforeN is the least model of PN . We will show by trans�nite induction that:(�) T� � T and F� � Ffor every � � �. Clearly (*) is true for � = 0. Assume that (*) is true for all� < �. If � is a limit ordinal then clearly (*) holds for �. Assume thereforethat � = � + 1.We �rst prove that T� � T . By de�nition, T� = T� [ TM�. But TM� isthe smallest set of atoms A with the property that A is in TM� if there is aclause A  L1; : : : ; Ln in P such that, for all i � n, either M̂�(Li) = 1 orLi = Bi is an atom and Bi is in TM�. Therefore, TM� contains all those atomsthat are logically implied by the program P 00 = PM� . Since by the inductiveassumption the model N extends the interpretation M�, i.e., T� � T andF� � F , we conclude that they must also be logically implied by the programPN of which N is a model. This implies that TM� � T and thus T� � T .We now prove that F� � F . It su�ces to show that FM� � F . Byde�nition, FM� is the largest set of atoms A with the property that A is inFM� if for every clause A L1; : : : ; Ln in P there is an i � n such that eitherM̂�(Li) = 0 or Li = Bi is an atom and Bi is in FM�. Since N extends theinterpretation M� it easily follows that all of the atoms in FM� must be falsein the least model of PN . But N itself is the least model of PN and thereforeall of the atoms in FM� must be false in N . This shows that F� � F andcompletes the proof of the theorem. 2Corollary 4.2 Every logic program has at least one 3-valued stable model,namely, the well-founded model MP .Consequently, as opposed to the (2-valued) stable semantics, the 3-valuedstable semantics is well-de�ned for any logic program. As we stressed in theintroduction, this is a very important property of the semantics.Corollary 4.3 The well-founded semantics of an arbitrary logic program Pcoincides with the 3-valued stable model semantics of P in the sense that for18



any sentence F (not containing the connective \ "):MP j= F � STABLE3(P ) j= F:Proof: Since the well-founded model is stable, if K is a literal andSTABLE3(P ) j= K then MP j= K. Conversely, if MP j= K then, sinceMP is the F-least stable model of P and therefore it contains the least num-ber of true or false facts of all stable models of P, K must also hold in allstable models of P. This shows that STABLE3(P ) j= K. 2The above results stress the naturality and importance of stable andwell-founded models, at the same time indicating that the proper de�nitionof stable models should be 3-valued.As a byproduct of our considerations we immediately obtain the impor-tant result from [VGRS90] relating 2-valued well-founded and stable models.Corollary 4.4 [VGRS90] If the well founded model of a program P is 2-valued then it coincides with the unique stable model of P.Proof: Well-founded models are F-least stable models of a program andtherefore, if the well founded model of a program P is 2-valued, then it mustbe the only stable model of P. 25 Relationship to Non-Monotonic FormalismsIt follows immediately from the results proved in [Prz91] that the 3-valuedstable semantics of logic programs closely corresponds to non-monotonic for-malisms. Namely, after a suitable translation of an arbitrary program P intoan autoepistemic (resp. default) theory P̂ , the 3-valued stable semantics ofP coincides with the (3-valued) autoepistemic (resp. default) semantics of P̂[Prz91].We �rst need to translate logic programs into autoepistemic theories. Weuse the translation proposed in [Gel87].De�nition 5.1 [Gel87] Let P be a logic program. The autoepistemic theoryP̂ , which we call the autoepistemic translation of P , consists of all clausesof the form: A B1; : : : ; Bm;:LC1; : : : ;:LCn;19



for all possible (ground instances of) clauses:A B1; : : : ; Bm;�C1; : : : ;�Cnfrom P , where L represents the autoepistemic belief operator.The following theorem is an immediate consequence of the results ob-tained in [Prz91]:Theorem 5.1 (Equivalence of 3-valued stable and autoepistemic se-mantics) There is a one-to-one correspondence between 3-valued stable mod-els of P and 3-valued stable autoepistemic expansions of P̂ . In particular,the 3-valued stable semantics of P coincides with the (3-valued) autoepistemicsemantics of P̂ .To obtain the correspondence with default logic we �rst have to translatea logic program P into a default theory P̂ . We use the approach proposedoriginally by Bidoit and Froidevaux [BF88]. First of all, the default transla-tion P̂ of P contains all clausesA B1; : : : ; Bmfrom P , which do not have negative premises. Next, for every clause:A B1; : : : ; Bm;�LC1; : : : ;�LCn;in P with some negative premises, the translation P̂ contains a default rule:B1 ^ : : : ^Bn : :C1; : : : ;:CkAFinally, P̂ contains defaults : :A:Afor every ground atom A in the language.The following theorem also follows from the results obtained in [Prz91]:Theorem 5.2 (Equivalence of 3-valued stable and default seman-tics) There is a one-to-one correspondence between 3-valued stable modelsof P and 3-valued default extensions of P̂ . In particular, the 3-valued stablesemantics of P coincides with the (3-valued) default semantics of P̂ .Similar relationships are valid between 3-valued stable semantics and cir-cumscription and CWA [Prz91]. 20



6 Programs with \Classical" NegationAs we mentioned in the introduction, Gelfond and Lifschitz pointed out[GL89] that in logic programming it is often useful to use the negation asfailure operator (�) together with a di�erent negation operator (:), whichis supposed to constitute a rough counterpart of classical negation. Theydeveloped a semantics for such programs based on their (2-valued) stablemodels. For standard logic programs their semantics coincides with the (2-valued) stable model semantics and, consequently, it is not de�ned for alllogic programs.In this section, following upon Gelfond and Lifschitz's approach, we willde�ne the well-founded and the 3-valued stable semantics for all such extendedprograms with \classical" negation and we will show that both semanticscoincide. This will allow us to extend the results obtained in this paper tothe class of all programs permitting both types of negation.As in [GL89], by an extended program with classical negation we willmean any (�nite or in�nite) set of clauses of the form:L L1; : : : ; Lm;�Lm+1; : : : ;�Lnwhere 0 � m � n and Li's are :-literals, i.e., Li's are either atoms A ornegated atoms :A, where the \classical" negation : is used instead of thenegation as failure �. Since we are only concerned with Herbrand models,as explained in Section 2, we can assume that all clauses are ground.The only, yet essential, di�erence between standard logic programs andextended logic programs de�ned above is the fact that Li's are allowed tobe (\classically") negated literals :A rather than just atoms. The class ofextended programs is clearly broader than the class of standard programs.Example 6.1 The following program P is an example of such an extendedprogram: innocent  charged;:guilty:convicted  charged;�guiltycharged  The program states that if someone is charged then to know for sure that heis innocent one needs to know for sure that the person is not guilty (classical21



negation). However, to deduce that someone is not convicted it is enough toknow that he has not been proven guilty (negation as failure). Observe theuse of classically negated atom \convicted" in the head of the second clause.Now we extend the well-founded and 3-valued stable semantics to suchprograms with classical negation by using the following program transforma-tion (cf. [GL89]):� First, we rename all \classically" negated (ground) literals :A by newatomic symbols, say, A0 and make a suitable substitution everywhere inthe program P . As a result we obtain a standard program P � withoutclassical negation.� Then for any 3-valued stable model M� of of the transformed programP � (in particular, for the well-founded model) we de�ne the correspond-ing 3-valued stable (or well-founded) modelM of the extended programP as follows:{ If A (resp. A0) is true in M�, then we we take A (resp. :A) to betrue in M .{ If A (resp. A0) is false in M�, then we we take �A (resp. �(:A))to be true in M , i.e., we view A (resp. :A) as false by default.{ Otherwise, if A (resp. A0) is unde�ned in M�, then we considerthe status of A (resp. :A) in M as also unde�ned.� We throw out all inconsistent modelsM , i.e., those which contain bothA and :A, for some atom A.The transformed program P � of the program P given in Example 6.1looks as follows: innocent  charged; guilty0convicted0  charged;�guiltycharged  The transformed program P � has exactly one stable (and well-founded)model M� in which convicted0 and charged are true and all the remain-ing atoms innocent, innocent0, guilty, guilty0, charged0 and convicted arefalse. 22



This leads to the unique stable (and well-founded) model M of the ex-tended program P described by the following table:Atom A guilty innocent charged convictedA no no yes no:A no no no yesIn the above table, yes (resp. no) for a literal L means that L (resp. �L) is true in M . Thus, in M the individual is known to be charged andnot convicted, but neither innocent nor guilty nor their classical negations,:innocent or :guilty, can be proven and thus their negation (as failure) canbe assumed.Notice, that, L is true (resp. false) if and only if �(L) is false (resp.true), for any :-literal L. This is a consequence of the fact that we requireÎ(L) = 1 � Î(�L), for any :-literal L. On the other hand, observe thatit is possible that neither A nor :A holds in MP and consequently, �Aand �(:A) both are true. This simply means that neither A nor :A are\classically" derivable, and therefore both can be assumed false by default.It also shows that the condition Î(A) = 1� Î(:A) is, in general, not satis�edfor classical negation. The ability to distinguish between facts \classically"true and those which are true by virtue of negation as failure is the greateststrength of Gelfond and Lifschitz's approach.Remark 6.1 Observe that the above described method applies to any se-mantics that we wish to choose for standard programs (i.e., programs withoutclassical negation). This means that no matter what semantics we choosefor standard programs we can immediately extend it to programs with classicalnegation. Thus the inclusion of classical negation does not require any newsemantic considerations.The resulting modelM derived fromM� may turn out to be inconsistent,namely, it may contain both A and :A, for some atom A. This is caused bythe fact that the atoms A and A0 in the transformed program P � are treatedas independent atoms, even though one of them is really meant to representthe classical negation of the other. In this case we discard it. The followingis an example of an extended program with resulting inconsistent model:23



Example 6.2 Let P be as follows::a  �ba  :aThe transformed program P � is:a0  �ba  a0and it has a unique well-founded (in fact, perfect) modelM� =< fa; a0g; fb; b0g >.Therefore, the resulting model M contains both A and :A and thus it is in-consistent. In other words, M is inconsistent, because both a and a0 are truein M�.Once we de�ned the well-founded and 3-valued stable models models forany extended program P we de�ne the well-founded (or 3-valued stable)semantics of P as the set of all sentences satis�ed all (consistent) models,where the satisfaction of sentences involving both � and :, in an interpre-tation I, is de�ned similarly as in Section 2. We require, as before, thatÎ(L) = 1� Î(�L), for any :-literal L, but, for reasons explained above, wedo not require Î(A) = 1 � Î(:A), but instead treat A and :A as separateliterals which, as in the case of b in Example 6.1, both might be false or even,if I is inconsistent, both can be true.Observe, that the 3-valued stable semantics may be well-de�ned, eventhough some of the 3-valued stable models of P turn out to be inconsistent:Example 6.3 Suppose that P is given by::a  a  �bb  �aThe transformed program P � is:a0  a  �bb  �a24



and it has three 3-valued stable models: M�1 =< fa0g; fb0g >, M�2 =<fa0; ag; fb0; bg > and M�3 =< fa0; bg; fb0; ag >. They give rise to three 3-valued stable models M1, M2 and M3 of P . In the model M2 both a and :ahold and therefore M2 is inconsistent, yet the 3-valued stable semantics of Pis consistent, because a is not true in the remaining two models. The smallest(F-least) stable model M1 of P again coincides with the well-founded modelof P .The following result extends the results obtained in the previous sectionsof the paper to the broader class of programs allowing \classical" negation.It is an almost immediate consequence of the above given de�nitions and theresults proved before and therefore its proof will be omitted.Theorem 6.1 The well-founded (resp. 3-valued stable) models and seman-tics de�ned above extend the concepts of well-founded (resp. 3-valued stable)models and semantics from standard programs to the class of all programswith \classical" negation. The well-founded model always coincides with thesmallest (F-least) 3-valued stable model. Consequently, the well-founded se-mantics always coincides with the 3-valued stable semantics.The above result immediately implies the following generalization of theresult previously obtained in [VGRS90] establishing a relationship between2-valued stable models of extended programs introduced in [GL89] and well-founded models of such programs introduced here.Corollary 6.2 If the well founded model of an extended program P is 2-valued then it coincides with the unique 2-valued stable model of P .Remark 6.2 It should be pointed out that the negation operator : does nottruly represent classical negation, but only constitutes its rough counterpart.Classically, the negation :A of an atom A is implied by a given theory T ifand only if A is false in all models of T . This certainly does not apply to thenegation operator : considered here. For example, the program:a  �ba  :afrom Example 6.2 clearly has a (consistent) model in which b and a aretrue and :a is false. Therefore, from the standpoint of classical logic, the25



program neither is inconsistent nor implies :b. This illustrates the fact thatthe \classical" negation operator : and the negation as failure operator �are mutually dependent upon one another and as a result both of them arenon-monotonic operators and thus neither one of them can be truly viewedas a classical, monotonic negation.Moreover, even in programs which do not contain negation as failurethe operator : does not behave in a \classical" way (due to the specialinterpretation of the implication symbol  ). For example, the program:a  :a  bclassically implies :b and yet neither b nor :b is true in the unique stable orwell-founded model of P .Consequently, it is best to view : as a non-monotonic negation operatordi�erent from the negation as failure operator �, which is supposed to con-stitute a rough counterpart of classical negation in non-monotonic theories.References[ABW88] K. Apt, H. Blair, and A. Walker. Towards a theory of declarativeknowledge. In J. Minker, editor, Foundations of Deductive Databasesand Logic Programming, pages 89{142. Morgan Kaufmann, Los Altos,CA., 1988.[BF88] N. Bidoit and C. Froidevaux. General logical databases and programs:Default logic semantics and strati�cation. Journal of Information andComputation, 1988. In print.[BLM90] C. Baral, J. Lobo, and J. Minker. Generalized well-founded semanticsfor logic programs. In 10th International Conference on AutomatedDeduction, West Germany, 1990.[Bry89] F. Bry. Logic programming as constructivism: A formalization and itsapplication to databases. In Proceedings of the Symposium on Princi-ples of Database Systems, pages 34{50. ACM SIGACT-SIGMOD, 1989.[BS90] C. Baral and V.S. Subrahmanian. Stable and extension class theoryfor logic programs and default logics. Research report, University ofMaryland, 1990. 26
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