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NEW BOUNDS ON CAP SETS

MICHAEL BATEMAN AND NETS HAWK KATZ

1. Introduction

A set A ⊂ FN
3 is called a cap set if it contains no lines. In this paper, we will be

concerned with proving the following theorem:

Theorem 1.1. There exist an ε > 0 and C < ∞ such that if A ⊆ FN
3 is a cap set,

then

|A|
3N

≤ C

N1+ε
.

The problem of the maximal size of cap sets is a characteristic 3 model for
the problem of finding arithmetic progressions of length 3 in rather dense sets of
integers. Meshulam [M95] , through a direct use of ideas of Roth, was able to show
that there is a constant C so that any cap set A has density at most C

N . Our result
may be viewed as a very modest improvement over Meshulam’s result.

Sanders [S11] recently showed that any subset of the integers whose density in

{1, . . . ,M} is at least C(log logM)5

logM must contain arithmetic progressions of length 3.

This may be thought of as bringing the results known for arithmetic progressions
almost to the level of Meshulam’s result. This has spurred further interest in
improving Meshulam’s result in hopes that it might suggest a way of improving the
results on arithmetic progressions.

A rather concrete, though perhaps still out of reach, goal in this direction is a
conjecture of Erdös and Turan:

Conjecture 1.2. Suppose A ⊆ Z is such that∑
n∈A

1

n
= ∞.

Then A contains an arithmetic progression of every length.

It is clear that the present paper is directly relevant only for finding 3-term
progressions. However it is also easy to see, based purely on density considerations,
that proving an estimate of the type in Theorem 1.1 in the integer setting would
yield the 3-term case of the conjecture stated above. In fact, Polymath 6 [PM6]
has recently been started with the goal of adapting the ideas of this paper to the
integer setting. See [PM] for more information about so-called “polymath” projects
in general.
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586 MICHAEL BATEMAN AND NETS HAWK KATZ

While the research in this paper was well underway, Gowers [G] wrote a post
on his blog suggesting that one could attack the problem of bounding cap sets by
studying the additive structure of their large spectrum. This had been our approach
as well and we wrote a reply [K1] sketching our rather strong results regarding that
structure. In the course of a few days, we realized that we actually could convert our
structural theory into an estimate on cap sets. We recorded this [K2] in a second
reply to Gowers’s blog. The current paper should be viewed as an elaboration of
these two posts.

We describe our plan for proving Theorem 1.1. To prove this theorem we will
prove a theorem about sets without unusually dense subspaces, a notion we make
precise below.

Definition 1.3. Suppose A ⊆ FN
3 has density ρ; i.e., |A| = ρ3n. We say that A

has no strong increments if for every subspace V ⊆ FN
3 with d = codimV ≤ N

2 , we
have

|A ∩ V |
|V | ≤ ρ+

20dρ

N
.

Theorem 1.4. There exist an ε > 0 and C < ∞ such that if A ⊆ FN
3 is a cap set

with no strong increments, then

|A|
3N

≤ C

N1+ε
.

The major ingredients needed to prove this theorem are Proposition 3.3, Lemma
5.4, and Theorem 7.1. We combine them with a Fourier analytic argument in
Section 8.

Proof. We deduce Theorem 1.1 from Theorem 1.4 using induction. Suppose that
for every n ≤ N − 1 we have shown that if B ⊆ Fn

3 is a cap set, then

|B|
3n

≤ C

n1+ε
.

We aim for a contradiction: assume there exists a cap set A ⊆ FN
3 such that

|A|
3N

> C
N1+ε . By Theorem 1.4, this implies that A has a strong increment. Since A

has a strong increment, there exists an affine subspace V ⊆ FN
3 with codimension

≤ N
2 such that

|A ∩ V |
|V | ≥ ρ+

20dρ

N

= ρ(1 +
20d

N
)

>
C

(N − d)1+ε

since the derivative of C
x1+ε is uniformly bounded by 16CN−2−ε = 16ρ whenever

0 < ε < 1. But we know that A ∩ V (in fact any subset of A) is a cap set. This
contradicts the induction hypothesis, yielding Theorem 1.1. �
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NEW BOUNDS ON CAP SETS 587

1.1. Proof sketch. We sketch our plan for proving Theorem 1.4.
We will study the large spectrum Δ of a cap set A with no strong increments.

The reader should think of Δ, for a cap set of the size 3N

N given by Meshulam’s
estimate, as consisting of the positions at which the absolute value of the Fourier
transform of A is around 1

N2 . The set Δ should have cardinality approximately N3

(established in Section 3) and have about N7 additive quadruples (established in
Section 4). The estimate on the number of quadruples is essentially the same as
a result in the integer setting obtained independently by Shkredov [Shk08]. Recall
that an additive quadruple is a quadruple (x1, x2, x3, x4) of elements of Δ with the
property that

x1 + x2 = x3 + x4.

Similarly an additive octuple is an octuple (x1, x2, x3, x4, x5, x6, x7, x8) of elements
of Δ with

x1 + x2 + x3 + x4 = x5 + x6 + x7 + x8.

It is easy to see a priori that a set with many additive quadruples will have
many additive octuples. In our case, a set with size N3, having N7 quadruples
must have at least N15 octuples. (But it may have more octuples.) The number of
octuples it has should be taken as an indication of its structure. If there are many
octuples, it means that the sum set Δ+Δ looks like it has more additive structure
than the set Δ. We then say that the set Δ is additively smoothing. (It becomes
smoother under addition.) We show, however, that this cannot be the case for Δ,
the large spectrum. We use the probabilistic method to do this, finding too much
of the spectrum contained in a small subspace in the additively smoothing case.
We establish this in Section 5. (This is somewhat reminiscent of the paper of Croot
and Sisask [CS11], where random selections are used to uncover structure.)

Thus our set Δ is entirely additively nonsmoothing. This means it is already as
smooth as it will become under a small number of additions. This makes its additive
structure particularly easy to uncover as it is already present without adding the
set to itself. This kind of idea was first exploited in a paper of the second author
with Koester [KK10] , and we use techniques quite similar to those found in that
paper. We end up showing that the set Δ should be thought of as looking like the
sum of a very structured set K of size N (that is to say that K is almost additively
closed) with a very random set Λ of size N2. Section 6 contains the proof of a
structural theorem for sets with substantial additive energy (i.e., many additive
quadruples) but no additive smoothing.

We find that this structure of Δ is inconsistent with A’s being a cap set with no
strong increments. The reason is that we can use Freiman’s theorem to place K
inside a subspace H with relatively low dimension. We can essentially mod out by
H, examining the “fibers”, the intersections of A with translates of H⊥. We find
that the structure of Δ makes the behavior of the fibers unrealistic. This argument
is suggested by a paper of Sanders [S10] and is carried out in Section 8.

One final remark about the value of ε obtained in this paper: it is necessarily
rather small (at least with our current argument). We discuss the reasons for this
in a brief final section as well as giving some conjectures that if true would greatly
improve the efficiency. We have not attempted to optimize ε (or even keep track of
the exact dependence on ε) throughout the paper.
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588 MICHAEL BATEMAN AND NETS HAWK KATZ

2. Preliminaries

In this section, we record a few general results of which we will make frequent
use throughout the paper. We begin with our favorite form of the Cauchy-Schwarz
inequality.

Lemma 2.1. Let S and T be finite sets and ρ a map,

ρ : S −→ T.

Let P be the set of pairs

P = {(s1, s2) : ρ(s1) = ρ(s2)}.

Then

|P | ≥ |S|2
|T | .

Proof. Note that we can express |P | by

|P | =
∑
t∈T

|ρ−1(t)|2.

Applying the Cauchy-Schwarz inequality we obtain

|P | ≥ 1

|T | (
∑
t∈T

|ρ−1(t)|)2 =
|S|2
|T | .

�

Here we introduce another variant of Cauchy-Schwarz:

Lemma 2.2. Let (X,m) be a measure space with total measure M . Let A1, . . . , Ak

be measurable subsets of X and 0 < ρ < 1 be a number (the density), so that

m(Aj) � ρM for each j. Suppose k � 1
ρ

2
. Then

k∑
j=1

∑
l �=j

m(Aj ∩Al) � k2ρ2M.

Proof. Note that
k∑

j=1

m(Aj) = ρkM 	 k2ρ2M,

unless ρ ∼ 1. Thus we may estimate the full sum

k∑
j=1

k∑
l=1

m(Aj ∩ Al).

Define c(x) to be the measurable function giving, for each x, the number of sets Aj

which contain x. Thus we would like to estimate∫
c(x)2 ≥ 1

M
(

∫
c(x))2 = k2ρ2M.

�

Licensed to Indiana Univ Bloomington. Prepared on Thu Oct 23 15:48:20 EDT 2014 for download from IP 129.79.34.151.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



NEW BOUNDS ON CAP SETS 589

In what follows μ shall be a small exponent. We will frequently use expressions
such as NO(μ). The exponent will be bounded by Cμ for C a universal constant
which varies from line to line in the paper. We illustrate this by the following
version of the large families principle (this is the principle which says that most
children belong to large families) which will be used extremely often in this paper.

Lemma 2.3 (Large Families Principle). Let M1, . . . ,MK > 0 be real numbers and
let R > 0 be a real number. Suppose that Mj ≤ RNμ for each j and suppose that

K∑
j=1

Mj ≥ RKN−μ.

Then there exists a subset J of {1, . . . ,K} with |J | � N−O(μ)K so that for each
j ∈ J , we have Mj � N−O(μ)R.

Proof. Let

J = {j : Mj � N−10μR}.
Suppose that |J | � N−10μK. Then by the upper bound on Mj , we have that∑

j∈J

Mj � N−9μRK,

while ∑
j /∈J

Mk � N−10μRK.

Combining these two estimates gives us a contradiction. �

We take a moment to state the asymmetric Balog-Szemeredi-Gowers theorem,
which we will have occasion to use. First, we give a slightly nonstandard definition.

Definition 2.4. A set B ⊂ FN
3 will be said to be μ-additively closed if

|B +B| � NO(μ)|B|.

Lemma 2.5. Let B,C ⊂ FN
3 so that there are at least Nη|B||C|2 additive quadru-

ples of the form

b1 + c1 = b2 + c2

with b1, b2 ∈ B and c1, c2 ∈ C. Let L = |B|
|C| and assume L � N10. Then there

exists μ depending only on η, with μ → 0 as η → 0, and there exist a μ-additively
closed set K ⊂ FN

3 and a set X ⊂ FN
3 with

|X| � NO(μ) |B|
|C| ,

so that

|B ∩ (X +K)| � N−O(μ)|B|,
and an element x ∈ FN

3 so that

|C ∩ (x+K)| � N−O(μ)|C|.
In particular, the last inequality implies that

|K| � N−O(μ)|C|.
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590 MICHAEL BATEMAN AND NETS HAWK KATZ

An only slightly stronger form of this lemma appears in the book of Tao and Vu
as Lemma 2.35. See [TV06].

Finally, we record the form of Freiman’s theorem which we shall use.

Theorem 2.6. A μ-additively closed set is contained in a subspace of dimension
NO(μ).

Various improvements of the finite characteristic Freiman’s theorem have ap-
peared, such as the result by Sanders [S08], but these only affect the constant in
our formulation. Even Ruzsa’s original version [R99] suffices. We also mention a
remarkable recent result in the integer setting due to Schoen [Sch11].

3. Review of Meshulam’s argument, Fourier analysis in FN
3 , and

sparsity of the spectrum

For the remainder of this paper, A will be a subset of FN
3 with |A| = ρ3N � 3N

N1+ε

with ε > 0 to be determined later. Moreover, A shall be a cap set, meaning that it
contains no lines. A line in FN

3 is characterized by being a set with exactly three
distinct elements a, b, c satisfying a+ b+ c = 0.

In this section we will establish some basic facts needed for our proof and that
are enough to obtain Meshulam’s bound of ∼ 1

N on the density of cap sets. Further,
we shall prove a statement of the form “The spectrum Δ does not have too much
intersection with any small subspace.”

We will assume that there are no strong increments for A in the sense of Defini-
tion 1.3. Precisely, we assume there is no hyperplane H so that A ∩H has density
≥ ρ+ 20ρ

N in H and no subspace H of codimension d < N
2 so that A∩H has density

≥ ρ+ 20ρd
N . We recall that a contradiction of this assumption will mean that every

large cap set A has strong increments. This will contradict the existence of large
cap sets.

We define the character e : F3 −→ C by e(0) = 1, e(1) = − 1
2 +

√
3
2 i, and

e(2) = − 1
2 −

√
3
2 i. We will study the Fourier transform of the set A, namely

Â(x) =
1

3N

∑
a∈A

e(a · x).

As a consequence of the assumption that A is a large cap set without strong incre-
ments, we shall see that there is a significant set Δ of x for which |Â(x)| is fairly
large (the set Δ will be called the spectrum of A) and we shall see that Δ does
not concentrate too much in any fairly low dimensional subspace of FN

3 . Our first

nontrivial fact about Â is that Â− ρ has large L3 norm, and moreover that this
large L3 norm is accounted for by the set of x where |Â(x)| is large. Precisely:

Definition 3.1. Define

Δ = {x = 0: |Â(x)| � ρ2}.

We shall refer to the set Δ as the spectrum of A and it shall be our central object
of study for the remainder of the paper.

Note that with this definition, Δ is symmetric, that is,

Δ = −Δ.
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NEW BOUNDS ON CAP SETS 591

It is worth noting that the following proposition is the only place in the paper
where we use the assumption that A is a cap set specifically; the other parts of the
paper use only the assumption that A has no strong increments.

Proposition 3.2. If A is a cap set, then∑
x�=0

|Â(x)|3 � ρ3.

Moreover, ∑
x∈Δ

|Â(x)|3 � ρ3,

and

N3 � |Δ| � N3+3ε.

Note that this proposition is already enough to obtain Meshulam’s estimate: in
particular, it guarantees that the set Δ defined in the statement of the proposition

is nonempty. This means that there is at least one x such that |Â(x)| � ρ2. This
guarantees the existence of a hyperplane P such that the density of A∩P inside P
is at least ρ + cρ2. Taking ρ large enough compared to 1

N already contradicts the
no-strong-increment hypothesis, yielding Meshulam’s estimate.

In what follows, we prove this proposition. We consider∑
x∈FN

3

Â(x)3 =
1

33N

∑
x∈FN

3

∑
a∈A

∑
b∈A

∑
c∈A

e((a+ b+ c) · x).

Summing first in x, we see that this expression yields 3−2N multiplied by the number
of solutions of the equation a+ b + c = 0 with a, b, c taken from A. Since we have
assumed that A is a cap set, the only solutions occur when a = b = c. Thus∑

x∈FN
3

Â(x)3 = 3−2N |A| = 3−Nρ.

However, we observe that Â(0) = ρ. Thus, given the size of A, we see that ρ3

dominates 3−Nρ and we conclude that

(3.1)
∑
x�=0

|Â(x)|3 � ρ3.

However, following the proof of Plancherel’s inequality, we see that∑
x�=0

|Â(x)|2 ≤
∑

x∈FN
3

|Â(x)|2 =
1

32N

∑
x∈FN

3

∑
a∈A

∑
b∈B

e((a− b) · x).

Summing first in x, we conclude that

(3.2)
∑
x�=0

|Â(x)|2 ≤ 3−N |A| ≤ ρ.

By the assumption that A has no strong codimension 1 increment, we conclude
that

(3.3) |Â(x)| � |A|
N3N

=
ρ

N
.

Recall that
Δ = {x = 0 : |Â(x)| � ρ2}.
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592 MICHAEL BATEMAN AND NETS HAWK KATZ

By selecting the implicit constant in the definition of Δ correctly, we see by com-
bining inequalities (3.1) and (3.2) that

(3.4)
∑
x∈Δ

|Â(x)|3 � ρ3.

Combining inequalities (3.3) and (3.4), we see that

|Δ| � N3.

Combining the definition of Δ with Proposition 3.2 we get

|Δ| � N3+3ε.

Now we prove a statement of the form “The spectrum Δ does not have too much
intersection with any small subspace.” Precisely:

Proposition 3.3. Let A be a set without strong increments. Let Δ be the spectrum,
as in Definition 3.1. Then for any subspace W of FN

3 having dimension d ≤ N
2 ,

we have

|Δ ∩W | � dN1+2ε.

Moreover for such a subspace W , we have the estimate∑
w �=0∈W

|Â(w)|2 � ρ2
d

N
.

Here we see what the assumption of no higher codimension strong increments
implies about the spectrum Δ. Letting H be a subspace with codimension d < N

2 ,

we let V be a dimension d subspace which is transverse to H (i.e., V +H = FN
3 )

and we let W be the annihilator space of H. Then for any w = 0 ∈ W , we see that

Â(w) =
1

3N

∑
v∈V

(|A ∩ (H + v)| − 3−d|A|)e(v · w).

Then we have

(3.5)
∑

w �=0∈W

|Â(w)|2 = 3d−2N
∑
v∈V

(|A ∩ (H + v)| − 3−d|A|)2.

By getting an upper bound on the right-hand side of (3.5), we can obtain an upper
bound on |Δ ∩W |, which is our goal.

To estimate the right-hand side, we subdivide V = V + ∪ V −, where

V + = {v : |A ∩ (H + v)| − 3−d|A| ≥ 0}

and

V − = {v : |A ∩ (H + v)| − 3−d|A| < 0}.
We observe that since∑

v∈V

(|A ∩ (H + v)| − 3−d|A|) = 0,

we have

(3.6)
∑

v∈V +

||A ∩ (H + v)| − 3−d|A|| =
∑

v∈V −

||A ∩ (H + v)| − 3−d|A||.
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NEW BOUNDS ON CAP SETS 593

We observe that the hypothesis that A has no strong increments implies that for
v ∈ V +, we have the estimate

||A ∩ (H + v)| − 3−d|A|| � 3−d|A| d
N

.

Thus simply using that |V | = 3d, we get the estimates

(3.7)
∑

v∈V +

||A ∩ (H + v)| − 3−d|A|| � |A| d
N

and

(3.8)
∑

v∈V +

||A ∩ (H + v)| − 3−d|A||2 � 3−d|A|2 d2

N2
.

Now for v ∈ V −, we have the trivial estimate

||A ∩ (H + v)| − 3−d|A|| ≤ 3−d|A|.
In light of (3.6) and (3.7) this yields

(3.9)
∑

v∈V −

||A ∩ (H + v)| − 3−d|A||2 � 3−d|A|2 d

N
.

Combining (3.8) and (3.9) gives the estimate∑
v∈V

||A ∩ (H + v)| − 3−d|A||2 � 3−d|A|2 d

N
.

Thus (3.5) gives ∑
w �=0∈W

|Â(w)|2 � ρ2
d

N
.

However, we recall that if w ∈ Δ, we have that

|Â(w)| � ρ2 =
1

N2+2ε
.

Thus we get the desired estimate:

|Δ ∩W | � dN1+2ε.

4. Additive structure in the spectrum of large cap sets

In this section we establish that the spectrum has some nontrivial additive struc-
ture. Specifically, we prove that it has N7−O(ε) additive quadruples. We mention
that similar results in the integer setting were obtained independently by Shkredov;
see [Shk08].

Corollary 4.1. Let A be a large cap set. Let Δ be the spectrum of A and let Δ′

be any symmetric subset of Δ with

|Δ′| ≥ 1

2
|Δ|.

Let E4(Δ
′) be the number of additive quadruplets x1+x2 = x3+x4 with x1, x2, x3, x4

∈ Δ′. Then

E(Δ′) � |Δ|4
N5+5ε

.
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594 MICHAEL BATEMAN AND NETS HAWK KATZ

The argument for a major subset Δ′ of Δ is no different, so for convenience of
notation we assume in fact Δ′ = Δ.

We retain the notation of the previous section, considering Δ to be the spectrum

of a large cap set A. In particular, we have |A| � 3N

N1+ε , we have

N3 � |Δ| � N3+3ε,

we have for every x ∈ Δ, that |Â(x)| � |A|
N1+ε , and we have that Δ is symmetric,

namely Δ = −Δ.

From the lower bound on |Â(x)|, we have for each x, an affine hyperplane Hx,
annihilated by x so that

|A ∩Hx| −
1

3
|A| � 3N

ρ

N1+ε
=

|A|
N1+ε

.

Summing over Δ, we obtain∑
x∈Δ

(|A ∩Hx| −
|A|
3

) � |A||Δ|
N1+ε

.

We wish to rewrite this as a double sum by introducing 1Hx
, the indicator func-

tion of Hx: ∑
x∈Δ

∑
y∈A

(1Hx
(y)− 1

3
) � |A||Δ|

N1+ε
.

We interchange the order of the sum:∑
y∈A

(
∑
x∈Δ

(1Hx
(y)− 1

3
)) � |A||Δ|

N1+ε
.

Now we apply Hölder’s inequality:

|A| 34 (
∑
y∈A

|
∑
x∈Δ

(1Hx
(y)− 1

3
)|4) 1

4 � |A||Δ|
N1+ε

.

Taking everything to the fourth power and simplifying, we get∑
y∈A

|
∑
x∈Δ

(1Hx
(y)− 1

3
)|4 � |A||Δ|4

N4+4ε
.

Crudely expanding the sum, we get the apparently weaker inequality∑
y∈FN

3

|
∑
x∈Δ

(1Hx
(y)− 1

3
)|4 � |A||Δ|4

N4+4ε
.

We can rewrite this as

(4.1)
∑

y∈FN
3

∑
x1,x2,x3,x4∈FN

3

4∏
α=1

(1Hxα
(y)− 1

3
) � |A||Δ|4

N4+4ε
.

We claim that (4.1) says that the spectrum Δ has substantial additive structure.
This will be demonstrated by the following proposition.

Proposition 4.2. Let x1, x2, x3, and x4 be nonzero elements of FN
3 . Then the

expression ∑
y∈FN

3

4∏
α=1

(1Hxα
(y)− 1

3
) � 3N .
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NEW BOUNDS ON CAP SETS 595

Moreover it vanishes unless an equality of the form

±x1 ± x2 ± x3 ± x4 = 0

holds.

Proof. We introduce the Fourier transforms of the balanced function of the hyper-
planes Hxα

setting

fα(z) =
1

3N

∑
x∈FN

3

(1Hxα
(y)− 1

3
)e(y · z).

Then we use the standard Fourier identity

∑
y∈FN

3

4∏
α=1

(1Hxα
(y)− 1

3
) = 3N

∑
z1+z2+z3+z4=0

f1(z1)f2(z2)f3(z3)f4(z4).

We observe that fj(zj) vanishes unless zj = ±xj .
The upper bound on the sum just follows from the triangle inequality. �

To finish the proof of Proposition 4.1, we apply (4.1), the fact that |A| � 3N

N1+ε ,
Proposition 4.2 and the fact that the spectrum Δ is symmetric.

5. Random selection argument for additively smoothing spectrum

In this section we study the additive properties of random subsets of the spec-
trum. We will show that they typically have very poor additive structure. This
will allow us to conclude that, although the spectrum has many 4-tuples, it cannot
have too many 8-tuples. The significance of this will only be made clear in Section
6.

We defined E4(Δ) to be the number of additive quadruplets in Δ.

Definition 5.1. We define E2m(Δ) to be the number of additive 2m-tuples

x1 + x2 + · · ·+ xm = xm+1 + xm+2 + · · ·+ x2m,

such that x1, x2, . . . , x2m ∈ Δ.

We let Δ̂(x) be the Fourier transform:

Δ̂(y) =
1

3N

∑
x∈Δ

e(y · x).

Then

E2m(Δ) = 3(2m−1)N
∑

y∈FN
3

|Δ̂(y)|2m.

We always have E2(Δ) = |Δ|. When we have nontrivial amounts of additive struc-
ture in the sense that say E2k(Δ) � |Δ|k, we can lift this up to counts of higher-
tuplets using Hölder’s inequality. (We use the inequality to bound the 2k-norm by
the 2-norm and the 2m-norm.) We can view this process as a poor man’s Plunnecke
theorem. We record this result for high E4 and high E8.

Lemma 5.2. Let m > 2. Then

E4(Δ)m−1

|Δ|m−2
≤ E2m(Δ).
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596 MICHAEL BATEMAN AND NETS HAWK KATZ

Suppose m > 3. Then

E8(Δ)
m−1

3

|Δ|m−4
3

≤ E2m(Δ).

5.1. Discussion of additive smoothing. We are now ready to introduce the
notion of additive smoothing. We keep in mind two examples of kinds of sets
having additive structure. One kind of set consists of a subspace plus a random
set. The other consists of a random subset of a subspace. We think of the first kind
of set as not being additively smoothing because as you add it to itself, its expansion
rate stays essentially constant. This is the kind of example for which Lemma 5.2
is close to sharp. But the second kind of set, when added to itself, will quickly fill
out the subspace, and its rate of additive expansion will shrink dramatically. The
lack of additive structure smooths out under addition. This is the kind of example
for which Lemma 5.2 is far from sharp.

We will momentarily define Δ to be additively smoothing if E8(Δ) is substan-
tially larger than expected from Lemma 5.2 and our lower bound for E4(Δ) obtained
in Section 4. (Nonetheless the gain in the exponent need only be O(ε).) We will
define additive smoothing so that if Δ is additively smoothing, then for some not
very large m, we may expect to find additive m-tuplets of Δ in a randomly chosen
set S of d elements.

Before we formally define the property of additive smoothing, we illustrate how
the calculation works in the case ε = 0. In that case d ∼ N so that an element of
Δ (which has size N3) is chosen with probability N−2. We have a lower bound of
N7 on E4(Δ). Suppose that we can improve on the lower bound of N15 for E8(Δ),
which we get from the first part of Lemma 5.2, and in fact

E8(Δ) > N15+δ

for some δ > 0. Then from the second part of Lemma 5.2, we obtain the estimate

N (4+ δ
3 )m+7− δ

3 ≤ E2m(Δ).

Thus there is some m which depends only on δ so that

E2m(Δ) � N4m.

Thus the expected number of 2m-tuplets in S is � 1. We will formally define
additive smoothing to achieve the same effect when ε is different from 0.

5.2. Nonsmoothing of the spectrum. In this subsection we make rigorous the
arguments of the last subsection.

Definition 5.3. We define Δ to be additively smoothing if there is some σ > 30ε
so that E8(Δ) � N15+σ.

We are now in a position to state the main result of this section.

Lemma 5.4. If Δ is the spectrum of a large cap set without strong increments,
then Δ is not additively smoothing.

We begin with a few comments about our proof strategy in this section. If S is
a “random” subset of Δ, then we expect

E2m(S) =

(
|S|
|Δ|

)2m

E2m(Δ).

Licensed to Indiana Univ Bloomington. Prepared on Thu Oct 23 15:48:20 EDT 2014 for download from IP 129.79.34.151.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



NEW BOUNDS ON CAP SETS 597

Thus we can show that E2m(Δ) is small by showing that ER is small for a typical
(somewhat large) subset R of Δ.

Now we fix a particular number d and consider random subsets of Δ of size d.
We will take

(5.1) d ∼ N1−ε

with the explicit constant to be determined later. Our first goal is to prove that we
expect this subset to span a space of dimension d. More precisely:

Definition 5.5. Let S be a set of d vectors x1, . . . , xd ∈ FN
3 . We say that the set

S has nullity k if the dimension of the span of S is d− k.

We will consider uniform random selections of sets of d elements from Δ. We can
view these selections as d-fold repetitions of uniform selection without replacement.
We will prove

Lemma 5.6. A random selection S of size d from the spectrum Δ has nullity at
least k with probability � 2−k.

Proof. Once we have completed our first m choices, our selections x1, . . . , xm span
a vector space Wm with dimension no more than m. Thus |Δ∩Wm| � mN1+2ε by
Proposition 3.3. We choose the constant in (5.1) so that the probability that the
(m + 1)st element of S lies in Wm is bounded by 1

d for all m ≤ d − 1. Note that
since m ≤ d, this probability is bounded by

|Δ ∩Wm|
|Δ| ≤ CdN1+2ε

N3

=
Cd

N2−2ε

≤ 1

d

provided d 	 N1−ε. Thus the probability that S has nullity at least k is bounded
by the probability that for d independent events with probability 1

d at least k occur.
The probability that exactly k events from d independent events with probability

1
d occur is exactly

g(k, d) =

(
d

k

)
(d− 1)d−k

dd
.

The numbers g(k, d) decrease by a factor of more than 2 as k is increased by 1 as
long as k > 2. This completes the proof of the lemma �

Now that we know our random subset is likely to have full rank, we estimate the
number of 2m-tuples it contains in the case it does not have full rank. Given a set
S with nullity k we will bound the number of possible additive 2m-tuplets between
elements of S. Specifically:

Lemma 5.7. A set S of size d and nullity k has E2m(S) � Cmk2m.

Proof. We write a list E of all equations among elements of S which involve 2m
or fewer elements of S. Because the nullity is k, the span of these equations has
dimension at most k. We pick a basis B for E, and the equations in B involve
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at most 2mk elements of S. Thus all of the equations of E involve at most 2mk
elements of S. Thus there are at most

h(m, k) = 2m(2m)!

(
2mk

2m

)
additive 2m-tuplets from S. We refer to h(m, k) as the number of possiblem-tuplets
in S. Note that h(m, k) is a polynomial of degree 2m in k. �

Proof of Lemma 5.4 . Now let S be a random selection of d elements from Δ. Then
by Lemma 5.6, the probability that S has nullity k is � 2−k. Thus the expected
value of the number of possible 2m-tuples

∑
k≥0 h(m, k) is �m

∑
k≥0 2

−kk2m � 1.
Now we will show that we have defined additive smoothing so that the expected

number of 2m-tuples is � 1. This will give us a contradiction.
We know that d � N1−ε. Thus our selection S will be expected to have � 1

nontrivial 2m-tuples, whenever E2m(Δ) � N4m+2mε. (We simply calculate the
probability that an individual 2m-tuple involves only elements of S.) Thus we may
assume that

E2m(Δ) � N4m+8mε.

Using the fact that |Δ| � N3+3ε and the second part of Lemma 5.2, we get that

E8(Δ) � N
15m+27mε−1−ε

m−1 .

Choosing m sufficiently large gives

E8(Δ) � N15+27ε.

The choice of m and hence the constants depends on ε but not on N . �

6. Structure of robust additively nonsmoothing sets

In this section, the only properties of the spectrum Δ which we shall use are
its size, its additive structure, and its nonadditive smoothing. Consequently the
results can be stated in somewhat more generality. We leave intact, however, the
numerology coming from the case of a spectrum of cap sets.

Definition 6.1. We will say that a symmetric set Δ ⊂ FN
3 is a robust additively

nonsmoothing set of strength δ provided that we know its size:

(6.1) N3 � |Δ| � N3+δ,

that we know how many additive quadruples can be made from any large subset of
it, namely that if Δ′ ⊂ Δ with |Δ′| ≥ 3

5 |Δ| and Δ′ symmetric, we have

(6.2) E4(Δ
′) � N7−δ

and that we have additive nonsmoothing, namely

(6.3) E8(Δ) � N15+δ

and moreover that for each element a ∈ Δ, there are at most N4+δ quadruples of
the form

±a± b = ±c± d

with b, c, d ∈ Δ.
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NEW BOUNDS ON CAP SETS 599

Let us pause to consider the case of Δ, the spectrum of a cap set with no strong
increments. We know that the number of a ∈ Δ participating in more than N4+O(ε)

quadruplets
±a± b = ±c± d

is smaller than 1
10 |Δ| since otherwise Δ would have more quadruples and hence

more octuples than allowed by Lemma 5.4. Let Δ′ be the remaining elements of Δ.
Note that by its definition Δ′ is still symmetric. Note that any symmetric subset
of Δ′ containing at least three fifths of its elements must contain at least half the
elements of Δ. Thus from Proposition 3.2, Corollary 4.1, and Lemma 5.4 we know
that:

Proposition 6.2. Let Δ be the spectrum of a large capset with no strong incre-
ments. There is a subset Δ′ of Δ so that Δ′ is a robust additively nonsmoothing
set of strength O(ε).

Returning to the setting of robust additively nonsmoothing sets, we let, for the
remainder of the section, the set Δ be a robust additively nonsmoothing set of
strength δ.

Given a value x ∈ Δ−Δ, we define m(x) to be the number of pairs (a, b) ∈ Δ×Δ
so that a− b = x. Clearly we have

E4(Δ) =
∑

x∈Δ−Δ

m(x)2.

Given a robust additively nonsmoothing set Δ of strength δ, for each α, we may
define Gα ⊂ Δ×Δ by

Gα = {(a, b) ∈ Δ×Δ : N1+α ≤ m(a, b) < 2N1+α}.
By the dyadic pigeonhole principle, there is an α so that

|Gα| �
N6−α−δ

logN
.

Moreover, we know that no a in Δ participates in more that N4+δ quadruples.
Thus no element a in Δ participates in more than N3−α+δ pairs in Gα. Thus there

are at least N3−2δ

logN elements of Δ, each of which participates in at least N3−α−2δ

logN

pairs in Gα.
We now forget about optimizing our exponents and consolidate this information

in a single definition.

Definition 6.3. We say that (Δ, G,D) is an additive structure at height α with
ambiguity η if the following hold. We have

|Δ| ≤ N3+η.

We have
G ⊂ Δ×Δ

with the property that for each (a, b) ∈ G we have that a − b ∈ D, and so that
each d ∈ D has ∼ N1+α representations as a difference of a pair in G. We have
|G| ∼ N6−α−η. Moreover there are at least N3−η elements of Δ participating in at
least N3−α−η sums each. Finally there are no more than N15+η additive octuples
among elements of Δ.

We summarize what we have shown so far in a proposition.
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600 MICHAEL BATEMAN AND NETS HAWK KATZ

Proposition 6.4. Given a robust additively nonsmoothing set Δ of strength δ we
may find G ⊂ Δ×Δ, and D ⊂ Δ−Δ and α ≥ 0 so that (Δ, G,D) is an additive
structure at height α and ambiguity O(δ).

We now describe a slightly deeper property of additive structures at height α and
ambiguity η. Given a structure (Δ, G,D), for each x ∈ D, we define the set ΔG[x]
to be the set of a ∈ Δ so that there exists b ∈ Δ with (a, b) ∈ G and a− b = x. In
light of our definitions, we have for each x ∈ D that |ΔG[x]| ∼ N1+α. We consider
the quantity

(6.4) K(Δ, G,D) =
∑
x∈D

∑
y∈D

|ΔG[x] ∩ΔG[y]|.

Clearly K(Δ, G,D) counts the number of triples (a, x, y) with a ∈ ΔG[x] and
a ∈ ΔG[y]. Each element in a is contained in exactly as many sets ΔG[x] as
it participates (in the first position) in pairs in G. Thus we conclude that for
(Δ, G,D) an additive structure with height α and ambiguity η that

K(Δ, G,D) � N9−2α−3η.

Now examining (6.4) and dyadically pigeonholing, we observe that we can find
β so that there are at least N9−2α−β−4η pairs (x, y) so that for each such pair, we
have Nβ ≤ |ΔG[x] ∩ΔG[y]| < 2Nβ .

Definition 6.5. We say that the additive structure (Δ, G,D) at height α and with
ambiguity η has comity μ if we can find the above-mentioned β with β > 1+α−μ.

Lemma 6.6. Given an additive structure (Δ, G,D) at height α and with ambiguity
η either it has comity μ or there is an additive structure (Δ, G′, D′) with height
β − 1 < α− μ and ambiguity O(η).

Proof. We dyadically pigeonhole (6.4) to find β so that there is a set of at least
N9−2α−β−4η pairs (x, y) so that for each such pair, we have Nβ ≤ |ΔG[x]∩ΔG[y]| <
2Nβ . If it happens that β − 1 > α − μ, then we are done. Otherwise, we will
construct an additive structure at height β − 1.

Now any time that a ∈ ΔG[x] ∩ΔG[y], this means that we can write x = a − b
and y = a − c. Thus we have x − y = c − b. We have between Nβ and 2Nβ

representations of the difference x − y. It remains to determine how many such
differences there are.

We have two distinct upper bounds on the number of such differences. First
there are � N6−β+2η, since each difference is represented by ∼ Nβ pairs in Δ×Δ
and there are only N6+2η such pairs. The second estimate is that there are �
N7−2β+O(η) many such differences, because otherwise E4(Δ) would be much larger
than N7 which would make E8(Δ) larger than N15+η. The first upper bound is
most effective (ignoring ambiguity) when β < 1 while the second is most effective
when β > 1. Our plan (modulo ambiguity) is that we shall rule out the case β < 1
and that we shall show that the second upper bound is tight up to a factor of NO(η).
Both estimates will follow from the upper bound on E8(Δ) and the Cauchy-Schwarz
inequality, namely Lemma 2.1.

Since we have N9−2α−β−O(η) pairs (x, y) with at most N6−β+O(η) differences,
by the Cauchy-Schwarz inequality, there must be at least N12−4α−β−O(η) additive
quadruples in D, namely x− y = x′ − y′. (Here we let S be the set of pairs (x, y),
we let T be the set of differences with ∼ Nβ representations as difference of Δ and
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NEW BOUNDS ON CAP SETS 601

we let ρ be the difference map, ρ(x, y) = x − y. Then we can apply Lemma 2.1.)
However since each difference x, y can be represented in N1+α ways as a difference
in Δ, we can represent each quadruple in D as an octuple in Δ in N4+4α ways.
Thus there are at least N16−β−O(η) many such octuples which implies β ≥ 1−O(η).

Thus we are in the regime where the estimate that there are at most N7−2β+O(η)

many differences is most effective. Suppose that there were only N7−2β−γ many
such differences with γ � η. Then applying Cauchy-Schwarz again, we would
see that there are at least N11−4α−O(η)+γ many quadruples in D which implies
N15−O(η)+γ octuples in Δ, a contradiction.

Thus taking D′ to be the differences x − y obtained from (x, y) so that Nβ ≤
|Δ[x]∩Δ[y]| < 2Nβ and taking G′ to consist of representatives of these differences
coming from the intersections, we obtain an additive structure (Δ, G′, D′) with
height β − 1 < α− μ and ambiguity O(η). �

Corollary 6.7. Given an additive structure (Δ, G,D) at height α and with ambi-
guity η there is an additve structure (Δ, G,D) at height α′ ≤ α with ambiguity μ
and comity μ with μ � 1

log 1
η

.

Proof. We iteratively apply Lemma 6.6 with comity μ fixed by

μ =
K

log 1
η

with K a large constant, and with the ambiguity increasing by a constant factor
C in each iteration. Since α decreases by μ each time we don’t find comity we
need only 1

μ iterations to achieve comity. At this point, we have ambiguity given

by C
log( 1

η
)

K η 	 μ, as long as K was chosen sufficiently large. �

Now we begin to investigate what we can say about the shape of the set H of
all pairs (b, c) in Δ × Δ having the property that b − c has at least N1+α−O(μ)

representations in Δ × Δ for (Δ, G,D) an additive structure with height α and
ambiguity and comity μ. We will find that the set H is rather thick in a product
set whose projection has size N3−α−O(μ).

Lemma 6.8. Let (Δ, G,D) be an additive structure with height α and ambiguity
and comity μ. Then there is a subset B ⊂ Δ with |B| � N3−α−O(μ) so that there
is a set H ⊂ B ×B with

|H| � N−O(μ)|B|2,
so that for any (b, c) ∈ H, the difference b − c has N1+α−O(μ) representations in
Δ×Δ.

Proof. From the hypotheses, we have that∑
x∈D

∑
y∈D

|ΔG[x] ∩ΔG[y]| � N9−2α−O(μ),

and that there are at least N8−3α−O(μ) pairs (x, y) for which

|ΔG[x] ∩ΔG[y]| � N1+α−O(μ).

Using the pigeonhole principle, we fix one value of x for which N3−α−O(μ) choices
of y exist such that

|ΔG[x] ∩ΔG[y]| � N1+α−O(μ).
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Again using the pigeonhole principle, we find an a ∈ Δ and a set Y ⊂ D so that
a ∈ Δ[y] for every y ∈ Y , so that |Y | = N3−α−O(μ) and so that for each y ∈ Y , we
have

|ΔG[x] ∩ΔG[y]| � N1+α−O(μ).

We notice that by definition, a−Y ⊂ Δ. We choose B = a−Y . Finally since each
ΔG[y] has relative density N−O(μ) in ΔG[x], we have by Cauchy-Schwarz (Lemma
2.2) that ∑

y∈Y

∑
y′∈Y

|ΔG[y] ∩ΔG[y
′]| � |Y |2N1+α−O(μ).

This implies that B satisfies the conclusion of the lemma. The reason is that by
Lemma 2.3, we have a set Ỹ of pairs y, y′ so that |Δ[y]∩Δ[y′]| � N1+α−O(μ). This
implies that y − y′ has at least N1+α−O(μ) representatives as a difference of two
elements of Δ. �

Now we are going to use Lemma 6.8 repeatedly to show that for any robust
additively nonsmoothing set of size δ we can find an additive structure of ambiguity
η with η � 1

log 1
δ

which breaks into dense blocks.

Lemma 6.9. Let Δ be a robust additively nonsmoothing set of strength δ. Choose
μ ∼ 1

log 1
δ

. Then for some 0 ≤ α ≤ 1, there is an additive structure (Δ, G,D)

of height α and ambiguity μ and disjoint subsets B1, . . . , BK of Δ with each Bj

satisfying |Bj | � N3−α+O(μ) so that

G ⊂
K⋃
j=1

Bj ×Bj .

Note that since we are requiring that (Δ, G,D) be an additive structure, this requires
|G| � N6−α−O(μ), which implies K � Nα−O(μ).

Proof. Using Proposition 6.4 , Corollary 6.7, and Lemma 6.8. We can find a subset
B1 of Δ so that for some choice of α, it has size at most N3−α+O(μ) and nevertheless
B1 × B1 contains at least N6−2α−O(μ) pairs whose differences have N1+α−O(μ)

representations as differences in Δ.
Having done this, we use the robustness property of Δ to apply the same argu-

ment to Δ\(B1∪−B1). We continue removing sets from Δ until we have exhausted
half of Δ. Now one difficulty is that the disjoint sets B which we chose do not all
have the same α. We use dyadic pigeonholing to resolve this for only a small cost
in the number of sets. We call these sets B1, . . . , BK . Now Lemma 6.8 guarantees
us in each Bj × Bj , a subset Hj of cardinality at least N6−2α−O(μ) so that each

difference in Hj is represented in Δ×Δ at least N1+α−O(μ) times. We denote by

Dα the set of differences represented in Δ×Δ at least N1+α−O(μ) times, and note
that

|Dα| � N5−2α+O(μ),

lest there be enough quadruples in Δ to violate the additive nonsmoothing con-
dition. Pigeonholing, we find some α′ � α − O(μ) so that at least N5−2α−O(μ)

differences are represented at least N1+α′
many times in

⋃
j Hj ×Hj . We denote

this set of differences as D′
α. We let D be D′

α and let G be a subset of
⋃

j Hj ×Hj

consisting of N1+α′
representatives of each difference in D. �
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Our goal now will be to use Lemma 6.9 to find almost additively closed sets E of
size at least N1−f(μ) inside robust nonadditively smoothing sets of strength δ. Here
f : [0, 1] −→ [0,∞) is some function with limt−→0 f(t) = 0. We will be employing
such functions from now on in the paper. They, like constants, will change from
line to line.

The project of finding additively closed sets will be easiest when we have additive
structures of height zero having ambiguity and comity μ. For this reason, we
are about to define a stylized structure which generalizes this situation. We will
eventually use the generalized version, replacing Δ with the blocks Bj .

Definition 6.10. We will now define a μ-full stylized ρ-structure which is τ -
energetic and has ambiguity and comity μ. (The error exponents μ are all the
same.) This will be a set (Δ′, G,D), where

|Δ′| ∼ Nρ

(hence a ρ-structure), where G ⊂ Δ′ ×Δ′ with

|G| > N2ρ−O(μ)

(this was the μ-fullness), where D is the set of differences in pairs in G and each
difference represented � Nτ and � Nτ+O(μ) times, hence τ -energetic. Finally we
assume that there are at least N3ρ−τ−O(μ) pairs (x, y) ∈ D ×D so that

|Δ′[x] ∩Δ′[y]| � Nτ−O(μ),

which is of course the μ-comity.

Definition 6.11. We shall say that a set K is μ-additively closed provided that

|K −K| � NO(μ)|K|.

Lemma 6.12. There is a function f : [0, 1] −→ [0,∞) with

lim
t−→0

f(t) = 0,

so that the following holds. Let (Δ′, G,D) be a μ-full stylized ρ-structure which
is τ -energetic and has ambiguity and comity μ. Then there is an f(μ) additively
closed set K with

|K| � Nτ−f(μ)

and a set X so that

|X| � Nf(μ) |Δ′|
|K| ,

so that
|Δ′ ∩ (X +K)| � Nρ−f(μ).

Proof. We proceed essentially as in the proof of Lemma 6.8. We find x ∈ D so that
there is a set Y of y ∈ D with |Y | � Nρ−O(μ) so that

|Δ′
G[x] ∩Δ′

G[y]| � Nτ−O(μ),

for every y ∈ Y . As before, we use the pigeonhole principle to find a ∈ Δ′ so that
there is a subset Ya of Y so that for each y ∈ Ya, we have

a ∈ Δ′
G[y]

and so that
|Ya| � Nρ−O(μ).
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However Ya ⊂ a − A. Thus we think of Ya as a dense part of a translate of −A.
Now we know that ∑

y∈Ya

|Δ′
G[x] ∩Δ′

G[y]| � Nρ+τ−O(μ).

This precisely means that there are Nρ+τ−O(μ) triples (b, c, d) with b, c ∈ Δ′ and
d ∈ Δ′[x] with a − b = d − c with a still fixed. Applying Cauchy-Schwarz we find
Nρ+2τ−O(μ) quadruples (d, c, d′, c′) with d, d′ ∈ Δ′[x] and c, c′ ∈ Δ′. As it happens,
this is precisely the hypothesis of the asymmetric Balog-Szemeredi-Gowers theorem
(Theorem 2.5) applied to Δ′ and ΔG[x]. The conclusion follows directly. �

We are now prepared to state the main result of this section.

Theorem 6.13. Let Δ be a robust additively nonsmoothing set of strength δ. As
before choose μ ∼ 1

log 1
δ

. There is f : [0, 1] −→ [0,∞) with

lim
t−→0

f(t) = 0,

so that for some γ ≥ 0, there is an f(μ)-additively closed set K with

|K| � N1+γ−f(μ),

contained in Δ. In the event that we must have γ = O(f(μ)), for some 0 ≤ α ≤ 1,
we may find pairwise disjoint subsets B1, . . . , BM ⊂ Δ with M � Nα−O(μ) so that
for each integer 1 ≤ j ≤ m, we have

N3−α−O(μ) � |Bj | � N3−α+O(μ),

and moreover we find for each j a μ-additively closed set Kj with

N1−f(μ) � |Kj | � N1+f(μ),

together with a set Xj with

N2−α−f(μ) � |Xj | � N2−α+f(μ),

so that

|Bj ∩ (Xj +Kj)| � N3−α−f(μ).

Further, there is a set D with |D| � N5−2α+f(μ) so that each element of D has at
least N1+α−f(μ) representations as a difference of elements of Δ and so that for
each j, the set of 4-tuples Qj = {(k1, d1, k2, d2) : k1, k2 ∈ Kj , d1, d2 ∈ D : k1 − d1 =
k2 − d2} satisfies

|Qj | � N7−2α−f(μ).

Moreover we may choose Kj to be contained in the set of differences having at least

N5−2α−f(μ) representations as a difference between elements of D.

Proof. We apply Lemma 6.9 and restrict our attention to

G ⊂
K⋃
j=1

Bj ×Bj ,

where the Bj are the blocks obtained there. Now to G, we apply the argument
used in the proof of Lemma 6.6.

That is, for any element x ∈ −(G), we study

ΔG[x] = {a ∈ Δ : ∃b ∈ Δ : (a, b) ∈ G; a− b = x}.
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Then, we observe ∑
x,y∈−(G)

|ΔG[x] ∩ΔG[y]| � N9−2α−O(μ),

and we observe as before that there is some 1 + α ≥ β ≥ 1 − O(μ) so that there
are at least N9−2α−β−O(μ) pairs (x, y) for which |ΔG[x] ∩ΔG[y]| � Nβ . We note
that when this happens, for each a in the intersection ΔG[x] ∩ ΔG[y], we have
x = a− b1 and y = a− b2. Here if a ∈ Bj , we must have b1 ∈ Bj and b2 ∈ Bj , since
(a, b1), (a, b2) ∈ G. We argue as in the proof of Lemma 6.6, that there are at least
N7−2β−O(μ) differences having Nβ representations in

K⋃
j=1

Bj ×Bj ,

which is impossible unless β ≥ α − O(μ) since there are at most N6−α+O(μ) pairs
in

K⋃
j=1

Bj ×Bj .

Clearly this gives us O(μ) comity for G.
Thus we have a set H of pairs x, y for which |ΔG[x] ∩ΔG[y]| � N1+α−O(μ) and

so that |H| � N8−3α−O(μ). Now we use the pairwise disjointness of the blocks Bj

to write the identity

(6.5)
∑

(x,y)∈H

|ΔG[x] ∩ΔG[y]| =
K∑
j=1

∑
(x,y)∈H

|ΔG[x] ∩ΔG[y] ∩Bj | � N9−2α−O(μ).

Now we begin to use the comity of G. We first eliminate from the second sum in
(6.5) all terms for which the relative density of ΔG[x] in ΔG[y]∩Bj or the relative
density of ΔG[y] in ΔG[x] ∩ Bj is smaller than N−Cμ for too large a constant C.
By choosing C sufficiently large we do not reduce the sum by a factor of more than
2. We dyadically pigeonhole to obtain the largest possible sum from those terms
where N1+γ ≤ |ΔG[x] ∩ ΔG[y] ∩ Bj | ≤ 2N1+γ . (We denote this set of (x, y) as
Hγ,j .) Thus we have reduced the sum by at most a factor of logN . We keep only
those j for which

(6.6)
∑

(x,y)∈Hγ,j

|ΔG[x] ∩ΔG[y] ∩Bj | � N9−3α−O(μ).

We observe that for each x, there are at most N3−α+O(μ) choices of y so that
(x, y) ∈ H. The reason is that any a ∈ Δ belongs to at most N3−α+O(μ) sets ΔG[y]
because G is contained in

⋃
j Bj×Bj . However if there were more than N3−α+O(μ)

choices of y so that (x, y) ∈ H, then there would be elements a ∈ ΔG[x] which are
contained in ΔG[y] for more than N3−α+O(μ) choices of y. Thus, since we have at
least N8−2α−γ−O(μ) triples (j, x, y) for which

|ΔG[x] ∩ΔG[y] ∩Bj | � N1+γ ,

while at the same time
|ΔG[x] ∩Bj | � N1+γ+O(μ),

it must be that for some values of j, we must have at least N8−3α−γ pairs (x, y) ∈
Hγ,j . This means, fixing one such value of j (since at most N3−α+O(μ) values of
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y are paired with a given x), there are at least N5−2α+γ−O(μ) differences x with
N1+γ representations in G ∩ (Bj ×Bj). We call this set Dj,γ .

Thus G ∩ (Bj × Bj) is μ-full and (1 + γ)-energetic. Another way of describing

the μ-fullness is that N5−2α+γ−O(μ) (up to NO(μ) factors) is the largest number of
such x possible, purely based on the size of Bj ×Bj . Thus it must be that for a set

of size N5−2α+γ−O(μ) many such x, there are N3−α−O(μ) such y with (x, y) ∈ Hγ,j .
Thus (Bj , G ∩ (Bj ×Bj), Dj,γ) has O(μ)-comity. Clearly (Bj , G ∩ (Bj ×Bj), Dj,γ)
is a 3− α structure with ambiguity μ. Thus we are in a position to apply Lemma
6.12. This proves the first part of the theorem. (Indeed, since all our estimates
were optimal up to NO(μ) factors, there is a set J of choices of j for which we could
apply Lemma 6.12 with |J | � Nα−O(μ).)

To prove the second part, we consider in detail the case γ = 0. We will apply
the argument proving Lemma 6.12 to all j ∈ J . This will give us μ-additive sets
Kj and sets Xj with appropriate upper and lower bounds since we can assume Δ

contains no μ-additive sets with more than N1+f(μ) elements.
We will allow f to vary from line to line and we will express even quantities that

are clearly O(μ) as f(μ).
We let D be the set of all differences x for which |Δ[x] ∩ Bj | � N1−f(μ) for at

least Nα−f(μ) values of j ∈ J . For each value of j ∈ J , there are at least N8−3α−f(μ)

pairs (x, y) ∈ D2 with |ΔG[x] ∩ ΔG[y] ∩ Bj | � N1−f(μ). Note that we may also

restrict D to differences which cannot be represented in more than N1+f(μ) ways
as differences of elements of Bj for more than Nα−f(μ) values in j and so that in
each Bj our count of good pairs (x, y) consists only of pairs of differences which

cannot be represented as differences in Bj in more than N1+f(μ) ways. Otherwise,
we could choose γ > f(μ).

Now we recall the structure of the argument in Lemma 6.12. We chose an
a ∈ Bj and a set Ba of size N3−α−f(μ) of the differences in which a participates,

and a set Ka which is actually of the form ΔG[x] ∩ Bj and has size N1−f(μ).

We find N5−α−f(μ) additive quadruples made up of two elements of Ba and two
elements of Ka. We may strip down Ka further to those elements which participate
in at least N4−α−f(μ) of these quadruples and not harm our estimate. Now, we
note that since Ba is a large subset of a translate of Bj , it must be that there

are N2−f(μ) pairs (q1, q2) ∈ K2
a with the property that q1 − q2 is represented

N3−α−f(μ) times as a difference of elements of Bj . We let K1,j be the set of

differences of Bj that can be represented in N3−α−f(μ) ways as differences in Bj .

Because Bj contains no μ-additively closed set of size more than N1+f(μ), we have

that |K1,j | ≤ N1+f(μ). Otherwise we could apply the asymmetric Balog-Szemeredi-
Gowers theorem to obtain a μ-additively closed set, contained in Bj , which is larger
than Q.

We can replace N5−α−f(μ) quadruples q1 − q2 = x1 − x2 with q1, q2 ∈ K1,j

and x1, x2 ∈ Aa by an equation of the form q = x1 − x2 with multiplicity at
most N1+f(μ). Thus we obtain at least N4−α−f(μ) such equations. We rewrite the
equation as x1 − q = x2 and use Cauchy-Schwarz to obtain N5−α−f(μ) quadruples
x1 − q = x′

1 − q′. We see then that without losing more than Nf(μ) factors in
our estimates, we can replace Ka by K1,j . This is good since we have made it
independent of the choice of a. Now we need only show that we can find many
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NEW BOUNDS ON CAP SETS 607

quadruples not only between K1,j and Ba but between K1,j and D. This will give
us the desired result.

To do this, we observe that we may delete from Ba a set with relative density
N−f(μ) without harming our estimates on the number of quadruplets between Ba

and K1,j . Our goal will be to cover a subset D′ by a disjoint union of subsets of

the form B′
a, where B′

a is a subset of Ba with relative density 1 − N−f(μ). To do
this we observe that for any fixed a ∈ Bj ,∑

a2

|Ba1
∩Ba2

| � N4−α+f(μ).

We can do this because the sum counts triples (x, a, a2) with x a difference and
a, a2 are parts of representations of it. We have assumed that we are only dealing
with differences with fewer than N1+O(μ) representations. Here we are using that
we are in the γ = 0 case,

Now we produce D′ as follows. We choose a1 and keep the set Ba1
. We add

all elements of Ba1
to D′. We choose Ba2

to have the minimal possible sized
intersection with Ba1

and let B′
a2

be those elements in Ba2
that are not already

in D′. We choose Ba3
to have minimal possible intersection with Ba1

∪ Ba2
. We

continue in this way until we reach a k so that B′
ak

no longer has relative density

1−Nf(μ) in Bak
. Because the average intersection |Ba∩Ba′ | is bounded byN1+f(μ),

we get that k is at least N2−α−f(μ). Thus our set D′ has relative density at least
N−f(μ) in D. Thus we have that K1,j has N7−2α−f(μ) quadruples with D and a
fortiori with D′.

Now we slightly refine K1,j to K2,j consisting only of differences of elements

of K1,j which participate in at least N5−α−f(μ) of the quadruples with D′. (We
perform this refinement so that after we apply Balog-Szemeredi-Gowers to K2,j , we
will still be guaranteed to have many quadruples between the μ-additively closed
set we obtain and D. Since D′ is a disjoint union of sets with relative density
N−f(μ) inside translates of Bj , it must be that K2,j still has N

5−α−f(μ) quadruples
with Bj . Thus we can apply the asymmetric Balog-Szemeredi-Gowers theorem to
find a subset Kj satisfying the conclusions of the theorem. �

7. Structure of spectrum of large cap sets

with no strong increments

In this section, we transfer the results obtained in Theorem 6.13 over to the
setting of the spectrum of large cap sets with no strong increments. This turns out
to be rather simple. The main ideas which we have not yet taken advantage of are
Freiman’s theorem and the use of the estimate in Proposition 3.3 which bounds the
number of elements of the spectrum in a subspace of dimension d by dN1+2ε.

We state the main result of the section.

Theorem 7.1. Let Δ be the spectrum of a large cap set without strong increments.
There is a function f : [0, 1] −→ [0,∞] with limt−→0 f(t) = 0 so that the following
holds. There is a subspace H of FN

3 of dimension f(ε) and a set Λ ⊂ FN
3 of

size N2−f(ε) so that for each element λ ∈ Λ, there is a subset Hλ ⊂ H with the
properties that

|Hλ| � N1−f(ε),

and the sets λ+Hλ are pairwise disjoint subsets of Δ. For any subspace W ⊂ FN
3

of dimension d, we have that W contains at most dNf(ε) elements of Λ.
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Proof. As before we allow our function f to vary from line to line until we achieve
the desired result.

In light of Theorem 2.6 and Proposition 3.3, any f(ε)-additively closed set in
which the spectrum hasN−f(ε) relative density, must be bounded in size byN1+f(ε).
Therefore, we are in the γ = 0 case of Theorem 6.13. We know that there is a set
Δ′ of density N−f(ε) in the spectrum Δ which is contained in

K⋃
j=1

Xj +Kj ,

with each Kj an f(ε)-additively closed set (of size at least N1−f(ε) and at most

N1+f(ε)) and with each set Xj of size N2−α±f(ε). Moreover, each set Kj lies in

the set K of differences having at least N5−2α−f(ε) representations as differences of
elements of D, the differences among elements of the spectrum which have at least
N1+α−f(ε) representations. In light of the nonadditive smoothing property of Δ, we
have that |K| � N1+f(ε) since there can be at most N11−4α+f(ε) quadruplets among
elements of D. We may eliminate all elements q of each Kj for which Δ ∩ q +Xj

does not have size at least N2−α−f(ε). Now we let K ′ be the set of elements of
K which appear in at least Nα−f(ε) many Kj . We can find some Kj which has

intersection of size N1−f(ε) withK ′. ThenK ′∩Kj = K ′′ is an f(ε)-additively closed

set with cardinality at least N1−f(ε). Moreover each element of K ′′ is contained in
Nα−f(ε) many Kj . Thus by pigeonholing there are at least Nα−f(ε) many Kj so

that |Kj ∩K ′′| � N1−f(ε). We only keep these j and replace Kj by Kj ∩K ′′. But

by Theorem 2.6, we have that K ′′ is contained in a subspace of dimension Nf(ε),
which we call H.

This basically proves the first part of the theorem. We have that a subset of the
spectrum of density N−f(ε) is contained in K ′′ + X, where X is the union of the
Xj ’s. We will pick Λ and the sets Hλ as follows: Find x1 in X so that at least

N1−f(ε) elements of Δ are contained in x1 + K ′′. Let Δ1 be the elements of Δ
contained in X+K ′′ but not in x1+K ′′. Let Δ1 be those elements of Δ contained
in x1+K ′′ and let Hx1

= Δ1−x1. Note that Hx1
is contained in K ′′ and therefore

in H. Now we proceed iteratively. Find xj ∈ X so that there are at least N1−f(ε)

elements of Δj−1 in xj + K ′′. When this is no longer possible, we terminate the
process. Then we let Δj be the elements of Δj−1 not in xj +K ′′ and we let Δj be
the ones that are. We let Hxj

= Δj − xj . We let Λ = {xj} after the iteration has
terminated.

To prove the second part of the theorem, let S be any subset of Λ with some car-
dinality M . But S+H contains at least MN1−f(ε) elements of Δ. This contradicts
Proposition 3.3 unless the span of S has dimension at least MN−f(ε). �

8. Contradiction

The goal of this section is to obtain a contradiction from the existence of large
cap sets without strong increments by using the result of Theorem 7.1. We begin
by recording some easy consequences of Plancherel’s identity for the interaction
between the Fourier transform of the characteristic function of a set and the Fourier
transforms of its fibers over a subspace.
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NEW BOUNDS ON CAP SETS 609

For any set A ⊂ FN
3 , we define its Fourier transform

Â(x) =
1

3N

∑
a∈A

e(a · x).

We state Plancherel’s identity:

Proposition 8.1. ∑
x∈FN

3

|Â(x)|2 = 3−N |A|.

We let H be a subspace of FN
3 and we let H⊥ be its annihilator. We let V be

a subspace of the same dimension as H which is transverse to H⊥. We define the
fiber AH,v for v ∈ V by

AH,v = A ∩ (H⊥ + v).

If we have h ∈ H, then

Â(h) = 3−N
∑
v∈V

e(h · v)|AH,v|.

Thus we arrive at another form of Plancherel:

Proposition 8.2. ∑
h∈H

|Â(h)|2 = |H|3−2N
∑
v∈V

|AH,v|2.

Moreover ∑
h �=0∈H

|Â(h)|2 = |H|3−2N
∑
v∈V

(|AH,v| −
|A|
|H| )

2.

Next, we consider the situation where we have a subspace H ⊂ FN
3 and a larger

subspace K with H ⊂ K ⊂ FN
3 . We let V be a subspace transverse to H⊥ as before

and we would like to consider the Fourier transforms of the fibers of A, namely the
sets AH,v. We can think of each fiber AH,v as being identified with a subset of H⊥

(by translation by v) and of course H⊥ can be identified with FN
3 \H. That is, we

define functions AH,v : FN
3 \H −→ C by

ÂH,v(w) =
|H|
3N

∑
a∈AH,v

e((a− v) · w).

The function ÂH,v(w) is well defined on FN
3 \H since a − v is in H⊥. Next,

we write down a version of Proposition 8.2 which shows how the L2 norms of the
Fourier transforms of the fibers on K\H compare with the L2 norm of the Fourier
transform on K. We let W be a subspace transverse to K⊥ with V ⊂ W .

Proposition 8.3. With H, K, V , and W as above,∑
k �=0∈K

|Â(k)|2 =
∑

h �=0∈H

|Â(h)|2 + 1

|H|
∑
v∈V

∑
k �=0∈K/H

|ÂH,v(k)|2.

Proof. Since clearly we have K⊥ ⊂ H⊥, there is a unique subspace W ′ ⊂ W with
W ′ +K⊥ = H⊥. We have V +W ′ = W .

We consider the following function on W :

g(w) = |AK,w| −
|A|
|K| .

Licensed to Indiana Univ Bloomington. Prepared on Thu Oct 23 15:48:20 EDT 2014 for download from IP 129.79.34.151.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



610 MICHAEL BATEMAN AND NETS HAWK KATZ

Clearly, in light of the second part of Proposition 8.2, the left-hand side of the
identity we are trying to prove is the normalized square of the L2 norm of the
function g(w).

We now break up g as the sum of a function g0 which is constant on translates of
W ′ and functions gv with v running over V having mean zero and supported on the
translate v+W ′ of W ′. Clearly the functions g0 and {gv} are pairwise orthogonal.
The first term on the right-hand side of the identity is the normalized square L2

norm of the function g0. The second term on the right-hand side represents the
sum over v of the normalized square L2 norm of the functions gv. The identity is
then an application of the Pythagorean theorem. �

(We remark that Proposition 8.3 can simply be thought of as Plancherel for a
“local Fourier transform” of A. Here, we localize to the translates of H⊥.)

Now we are prepared to apply Proposition 8.3 to the setting in which A is a large
cap set without strong increments and H is the subspace given to us by Theorem
7.1.

We let A be a large cap set with no strong increments. As usual, f will be a
function taking [0, 1] to [0,∞] with limt−→0 f(t) = 0. We will vary f from line to
line.

Then there is a subspace H with dimension Nf(ε) and a set Λ of size N2−f(ε) so
that for each λ ∈ Λ there is a subset Hλ of H, so that |Hλ| > N1−f(ε) so that for
each h ∈ Hλ, we have that

|Â(h+ λ)| � N−1−f(ε)3−N |A|.
We also have that the sets λ+Hλ are pairwise disjoint.

Note therefore that∑
λ∈Λ

∑
h∈Hλ

|Â(h+ λ)|2 � N−f(ε)N3−2N |A|2 � N−f(ε)3−N |A|.

Thus the structured elements of the spectrum of A account for a large proportion
of the squared L2 norm of the Fourier transform of A.

Now we would like to consider the fibers AH,v, where H is the subspace we’ve
been discussing. Because the cap set A has no strong increments, we know that for
each value v, we have

|AH,v| ≤ (
|A|
|H| )(1 +Nf(ε)−1).

(We will now momentarily fix the function f .)
However, we don’t have a good lower bound on |AH,v| in general. All we know

is that the sum of all the positive increments is equal to the sum of all the negative
increments. We let Vbad be the set of all v ∈ V for which

|AH,v| ≤ (
|A|
|H| )(1−N2

√
f(ε)−1).

(That is, Vbad is the set of those v ∈ V for which the fiber has a bad negative
increment.) We know that

|Vbad| � N−
√

f(ε)|V |.
We define

Abad =
⋃

v∈Vbad

AH,v,
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and we let
A′ = A\Abad.

We know that

|Abad| � N−
√

f(ε)|A|.
Thus ∑

x

|Âbad(x)|2 � N−
√

f(ε)

2

∑
λ∈Λ

∑
h∈Hλ

|Â(h+ λ)|2.

Thus removing Abad does not perturb the large spectrum of A too much.
(In making this precise, we now resume changing the function f from line to

line, observing that we may take the next f to be larger than the previous
√
f .)

We may find a set Λ′ which is a subset of Λ with |Λ′| � N2−f(ε) and so that for
each λ ∈ Λ′ there is a subset H ′

λ of H so that for each λ ∈ Λ′ and each h ∈ H ′
λ we

have
|Â′(h+ λ)| � N−1−f(ε)3−N |A|.

Thus from the point of view of the structure of the spectrum, we have that A′ is
essentially as good as A. However, the set A′ has a big advantage over A in that we
have good bounds on the Fourier transform of its fibers. This is because the fibers

are either empty or close to size |A|
H . Empty fibers achieve no increments. On the

other hand, fibers which are close to average cannot have an increment too large,
or else the set A will have a strong increment on a translate of a codimension 1
subspace of H⊥. Precisely, the estimate we get is

|Â′
H,v(x)| � 3−N |A|N−1+f(ε) = ρN−1+f(ε).

(This is because the negative increment on density to pass from A to A′
H,v does no

more than to reduce the density by a factor of 1 − Nf(ε)−1 and the codimension
of H is only f(ε). Should the Fourier transform of A′

H,v exceed the above bound,

then A will have a strong increment into a codimension one subspace of H⊥ + v.)
Moreover, the set A′

H,V is a large cap set without strong increments (on subspaces

of codimension no more than N
2 −Nf(ε)) but with ε replaced by f(ε). Thus we see

using Proposition 3.3 that for any subspace L of FN
3 \H with dimension d, we have

that ∑
x∈W

|Â′
H,V (x)|2 � (

|A|
3N

)2dN−1+f(ε).

This estimate is a version of the bound on the number of elements of the spectrum
of A′

H,V in W .
From this information, together with the fact that no subspace K of dimension

d contains more than dNf(ε) elements of Λ and hence of Λ′, we are ready to achieve
a contradiction.

We introduce some measure spaces on which we will apply Lemma 2.2. For each
v ∈ V , we define χv, a measure on FN

3 \H − {0}, by

χv(X) =
∑
x∈X

|Â′
H,v(x)|2.

Clearly the total measure of χv is bounded by 3−N |A|Nf(ε). We now give a
construction for sets which have large density for many of the measures χv.

Let Ξ ⊂ Λ′ with |Ξ| = d � N1−f(ε). Then in light of the fact that Ξ+H contains

at least dN1−f(ε) points x where Â′(x) is large and in light of Proposition 8.3, there
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must be O(N−f(ε)|H|) values of v for which span(Ξ) has density at least dN−2−f(ε)

for χv. (Here, by slight abuse of notation, the span is taken in FN
3 \H.)

We will take d ∼ N
2
3 . Now let Π be any collection of N

8
3+O(

√
μ) subsets of Λ′

with cardinality N
2
3 . We chose the exponents 2

3 and 8
3 somewhat arbitrarily. By

pigeonholing, we may find a set of v’s of cardinality |H|N−f(ε) for which at least

N
8
3−f(ε) of the sets Ξ in Π have the property that span(Ξ) has density N− 4

3−f(ε)

for χv. From this and Lemma 2.2 we obtain the lower bound

(8.1)
∑

v∈V −Vbad

∑
Ξ1∈Π

∑
Ξ2∈Π

χv(span(Ξ1) ∩ span(Ξ2))

χV (FN
3 \H)

� |H|N 8
3−f(ε).

What this says is that modulo Nf(ε) terms, the average density (in χv measure)

of an intersection span(Ξ1) ∩ span(Ξ2) is at least approximately N− 8
3 . This is

rather large since the density of any single element of FN
3 \H is only approximately

N−3 in light of the bound on the Fourier transforms of the fibers.
We will now produce a random construction of Π. We choose each set of Π

uniformly at random. We will write down an upper bound on the expected density
in any χv of the intersection span(Ξ1) ∩ span(Ξ2), which contradicts the lower
bound (8.1). We observe that if ρ is the density in χv of span(Ξ1)∩ span(Ξ2), then

ρ ≤ N−3+O(f(ε))(3k − 1),

where k is the nullity of the set Ξ1 ∪ Ξ2. We recall that there are no more than
N

2
3+f(ε) elements of Λ′ in any subspace of dimension 2N

2
3 . Thus as we choose the

2N
2
3 elements of Ξ1 and Ξ2, the probability of introducing nullity at each selection

is bounded by N− 4
3+f(ε). Thus the probability pk of having nullity k is bounded

by

pk � (N− 2
3+f(ε))k.

Thus the expected density of span(Ξ1) ∩ span(Ξ2) is O(N− 11
3 +f(ε)). This is a

contradiction since we have just proved that Δ cannot contain a set as thick in
Λ +H as required by Theorem 7.1.

Thus we have proved Theorem 1.4 and hence Theorem 1.1.

9. Epilogue on efficiency

The ε which we obtain in Theorem 1.1 is of necessity quite small. Like many
arguments in analysis, ours does not aim for great efficiency, and we seem to lose a
factor in the size of ε in nearly every line of the argument. However, there are a few
points in the argument where we lose significantly more. The most notable of these
are the use of the asymmetric Balog-Szemeredi-Gowers lemma and the discovery of
the additive structure with comity in Corollary 6.7. What these two parts of the
argument have in common is that they are iterative. One starts with a structure
and seeks a certain property. If the property is lacking, one finds a structure which
is in a certain sense better but which has cost us a factor in ε.

Iteration can be a powerful thing. It sometimes allows us to prove a very deep
result with very few words. The proof doesn’t care how many iterates must be
calculated to implement it. We have a version of our argument which we will
publish elsewhere that adds even another layer of iteration to the argument but
spares us some of the difficulties of Theorem 6.13. We have semantic disagreements
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about whether the more iterative argument is easier to understand. But certainly,
it is less efficient than the argument presented here.

To improve efficiency, it is important to make the argument less iterative. In
hopes of doing so, we leave the reader with two conjectures:

Conjecture 9.1. Let N > 0 be a large parameter. (Constants may not depend on
N .) Suppose B and C are sets in FN

3 each of whose cardinality is bounded by N100.
Suppose the number of quadruplets b1 + c1 = b2 + c2 with b1, b2 ∈ B and c1, c2 ∈ C
is at least |B||C|2N−σ. Then C is contained in a subspace of dimension NO(σ).

Conjecture 9.2. Suppose Δ is a subset of FN
3 that is Nσ additively nonsmoothing.

(We may assume as in the previous conjecture that |Δ| ≤ N100.) Then Δ admits
an additive structure at some height with NO(σ) comity.
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