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ABSTRACT

The first conference "VMEbus in Physics” was held at CERN on 7th and 8th October
1985. The conference surveyed the applications of the VMEbus standards in physics,
with special emphasis on particle physics and accelerator control. Developments in the
definition of the standards and in the formation of users groups were discussed.
Manufacturer's representatives were given the opportunity to appreciate the requirements
of the fast-growing VMEbus market in the physics community. These proceedings
contain the unedited text of the oral and poster presentations given on that occasion.
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PREFACE

That VMEDbus is a standard already accepted by a large number of physicists and engineers working in
experimental physics, was amply demonstrated by the number of participants to this first “VMEbus in
Physics” Conference, held at CERN on 7th and 8th October 1985. The Organising Committee had the
pleasure of welcoming a total of about 300 people from CERN member states and a number of other
countries. Some 50 of the participants were from industry, which was an encouraging sign of the
cross-fertilisation of ideas already bringing benefits to both manufacturers and users in this rapidly
evolving technology.

The Conference consisted of eight invited papers covering aspects of the organisation of VMEbus in
industry, of user groups, the progress of standardisation and of the major applications of VMEbus at
CERN. In addition to these invited talks, 19 papers and six posters were presented and one
round-table discussion was held.

In order to be able to produce these proceedings with the minimum of delay and hence with the
maximum of benefit to the participants and the VMEbus user community as a whole, no editing has
been done. The contents of the texts, as published, are therefore the sole responsibility of the respective
authors.

The Organising Committee would like to thank the speakers and presenters of posters for their
participation and all those who were involved in the running of the Conference for their contribution
to its success.

The Organising Committee

Organising Committee:

C. Eck, C. Patkman & D. Williams (CERN, DD Division);
P. Ponting & H. Verweij (CERN, EP Division);

R. Rausch (CERN, SPS Division).

Paper Selection Committee:
R. Rausch, H. Verweij & D. Williams.

Administration:
Mile K. Protoulis (CERN, DD Division)
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PRIAM and VMEbus at CERN

C.Eck

Geneva, 10 December 1985

1. Introduction

PRIAM is the French acronym (PRojet Interdivisionnaire d’Assistance aux Microprocesseurs) for In-
terdivisional Project for Microprocessor Support.

The CERN management established the PRIAM project in June 1983 following the recommen-
dation of CERN's Steering Committee for Microprocessor Standardisation. This committee studied
the problem of hardware and software support for 8 bit and 16/32 bit micros at CERN and made the
following main recommendations:

— B8 bit systems should use the MC6809 processor and the G — 64 bus

— 16/32 bit systems should use the M68000 processor family
and the VMEbus

This paper will concentrate on the PRIAM work in the 16/32 bit area.

2. Areas of PRIAM Activity
2.1 Information

PRIAM has to market its services, to inform prospective users about them. And not the last of its
services again is information distribution. How is this done?

The PRIAM project, together with the Online Computing group at CERN, publishes four times
per year the “Mini and Micro Computer Newsletter”, MMCNL [1],which is distributed free of charge
in more than 800 copies (550 outside CERN). It contains articles on PRIAM work, contributions by
users, and a reference section with pointers to people and additional information channels.

On CERN’s IBM (HELP PRIAM under Wylbur) and on the PRIAM—VAX (use apropos
and/or man commands) simple documentation access schemes have been installed. These tools are
rather crude but have proven to be useful for people at CERN and regular collaborators. PRIAM
plans to update/improve this information channel and to discuss how to make it available to a broader
user community. The antisocial behaviour of a shabby group of people, Hackers and Co, make this a
difficult task.

PRIAM organises, through the CERN stores, access to printed documentation like: Compatible
Products Directory, Specification Manuals.

CERN, represented by the PRIAM project, is a Regular Member of VITA, maintaining a useful
information flow in both directions.
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And finally PRIAM organises seminars, presentations, and last but not least events like this con-
ference.

2.2 Training

To offer training on various items connected with its support work is an important activity of
PRIAM.
Courses on MC68000, VMEbus, RMS68K, UNIX, MC68020 have been and will be offered at
CERN. 1t is a difficult task to find the right level of a course for people with widely differing prior
knowledge and to get instructors for general, non commercial, courses.
PRIAM urges VITA to establish a comprehenswe offer of courses on all aspects of the VMEbus fam-
ily of standards.

2.3 Consultation

Compared to the size and complexity of its task, the PRIAM project has a very limited number
of staff. PRIAM support has therefore to concentrate on general tools and services and cannot get in-
volved in direct help for specific applications. Nevertheless good advice is available to people starting
on a development or wanting to use a product in the area of PRIAM responsibility. These consulta-
tions are as important for PRIAM as they are for a client or prospective client of PRIAM. The client
should not get lost in exotic choices and the project has to keep aware of what is going on and how
well its services fit the users needs. PRIAM’s developments need the innovative ideas which come
from a wide user base.

2.4 Hardware Support

Again, full support of VMEbus hardware would require several times the number of staff PRIAM
can count on. The project has therefore to concentrate on the most essential elements of such a sup-
port. They can be split into two broad classes: providing information and recommendations concerning
the VMEbus market on one side, and helping that CERN staff and collaborations to obtain access to
this market at the most favourable conditions. The first point requires a constant survey of the VME-
bus market and multiple contacts with manufacturers. With a fast growing market this becomes more
difficult. VITA’s Compatible Products Directory will help us in this respect.

It is necessary to evaluate and test certain products in detail. Hopefully such evaluations can in
the near future concentrate on the functionality of a module, the compatibility with the VMEbus specs
having been tested in one of the certification labs being set up with the help of VITA. PRIAM will
also offer its services to channel information back from CERN users to VITA and the manufacturers.
After internal discussions this should allow for example to present a consistent demand for develop-
ment of a certain module or even the VMEDbus standards.

The second point, access to the market, can be partially fulfilled by keeping the most common

parts (backplanes, connectors, chips etc) in the CERN stores. Providing access to board level products
is much more complicated. Buying a large stock of CPUs, memories etc. for later redistribution would
be a very risky operation considering the rapid development of the market. Random purchases of small
quantities by numerous groups at CERN will not very likely achieve good commercial conditions, let
alone the increased effort of justifying each purchase decision to the CERN administration.
The PRIAM project decided, therefore, to set up so called blanket orders with a small number of
firms, selected on the basis of a formal request for information (sent out mid November ‘85). Selected
firms would have to open up their complete product range to buyers from CERN with favourable
conditions (discounts, delivery times, service and repair agreements). In return they will get the major
part of CERN’s orders of VMEbus equipment. This procedure will need regular revision, based on the
experience with it and on major developments in the VMEbus market.



2.5 Software Support

Every group trying to set up a support for microprocessor software development will have to an-
swer the crucial question: what can be bought from outside and what has to be developed in —house?
Valid answers to this question will vary widely according to circumstances. PRIAM'’s decision to base
its software support mostly on in house developments is the result of the following considerations:

¢ One cannot buy, what is not available yet. Some of the developments of PRIAM supported
software started well before PRIAM (around 1980), little good quality micro — processor
software was offered by industry.

¢ The distribution of PRIAM software without costly licences is a must. CERN collaborates
with many small institutes.

¢ PRIAM software must be portable to different brands of computers used by the collaborat-
ing institutes. Portability allows software to be installed on new workstations coming on the
market.

¢ PRIAM software should be consistent and coherent; following the same conventions, having
the same user interface, allow free language mixing, supported by a common symbolic de-
bugger.

® And finally, in a highly competitive research environment quick response to user demands
for bug —fixes or developments has a non — negligible value.

The status and the next developments of PRIAM software are presented in the following sections.

2.5.1 Working Environment

A programmer using PRIAM software should be able to develop his code on a single —user
workstation, networked to powerful servers, link it to executable packages and downline load it into
the target for execution. Execution can be under the control of a symbolic debugger running mostly on
the comfortable workstation with only a minimal part of the debug monitor executing in the target.

For a hardworking developer of microprocessor code this looks too good, to be true: and it is not
yet completely true.

PRIAM software is however not far from this picture already and the plans are to provide exactly the
above environment around the middle of 1986. Today most of the cross software development is still
done on larger timesharing computers (IBMs, VAXes, ND — 500s etc.), the main workhorse being a
VAX —11/785 running Berkeley BSD 4.2 UNIX. But the cross software written in portable Pascal, has
been ported to some small workstations with good networking capabilities and PRIAM will soon se-
lect a few supported types.

The symbolic debugger is still target resident (including its symbol tables) but work has started to
split it up and define a suitable host/target protocol.

2.5.2 Language Support

PRIAM supports a macro assembler, M68Mil[2], and Pascal, Modula— 2 (mainly for accelerator
control applications), Fortran— 77 (mainly for physics applications), and C (mainly for communica-
tions software).

Figure 1 gives an overview of PRIAMs cross —software. All language processors follow the same
programming conventions [3], producing the same object code format, assuring free language mixing
and a common symbolic debugger. A slightly modified version of the object code format CUFOM [4]
(CERN Universal Format of Object Modules) has been standardised by IEEE under the name
MUFOM. The pusher will either produce Motorola S —format for downline loading into the target or
a format suitable for a DATA IO PROM programmer.
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Figure 1: PRIAM Cross — Software

The elegant and practical choice of a common code generator for the compiler front —ends is at
the moment only realised for Pascal and Modula—2 whilst Fortran—77 and C compilers (bought
from industry) produce assembly code, which has to pass via M68Mil with a corresponding loss in
symbolic debug information. A Fortran — 77 front—end is in production and will be available mid
1986. Work has started on a C front —end, but lack of manpower does not allow a definite completion
date to be quoted.

The code generator for the MC68020 is in its final test phase.

2.5.3 Debug Monitor

The name of PRIAM’s debug monitor is MoniCa: “Monitor in Camac”, where it originated in
1980. MoniCa provides interrupt driven I/O based on logical channels, named MIOS (MoniCa I/0
Systemn), run—time support in the form of integer and floating arithmetic and exception handling, and
finally symbolic debugging for all languages following the PRIAM programming conventions. Version
1.0 of MoniCa [5] (in field test now) contains MC68020 support and a line by line assembler. 80% of
MoniCa is written in portable Pascal, which will ease the task of splitting it into a host resident and a
target resident part for remote debugging. MoniCa contains some 30 commands in an open ended
structure, allowing specific user commands to be added.

2.5.4 Real Time Kernel

MoniCa is sufficient for single task systems plus interrupt driven I/O. Applications, which need
multitasking, are supported by PRIAM via the RMS68K real time kernel. RMS68K 1is integrated into
the PRIAM software. A directive library is callable from PRIAM supported high level languages. I/O
is based on MIOS and MoniCa can run as exception monitor task of RMS68K providing symbolic
debugging in a multi —task environment. Version 4.4 of RMS68K [6] runs also on the 68020 and
multi — processor support is announced for a later version.

3. Standards and Support

As a conclusion of this short presentation a few words on these heavily inter —related terms,
which will clarify the position of PRIAM.
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A standard without the necessary level of support will never be accepted by users, and support
can in no way achieve its goal without a prior selection of the items to be supported. Efficient support
will therefore either create an “in —house standard” or, better, reinforce an existing, carefully chosen,
standard.

Every choice is sometimes felt as a restriction. It is only natural that a support group will be put
under pressure to change some of its decisions. And here another important term has to be considered,
namely stability. Support decisions have to be stable to protect acquired know—how and capital in-
vestments. But how can one achieve stability in an area as rapidly changing as microprocessors and
bus standards?

The only possible way out of this dilemma can be found by properly understanding what a stan-
dard should be. A healthy standard, a standard to which a support group should be able to stick to,
should be seen as a living entity. It must be able to develop and adapt, either via compatible exten-
sions or via new members within a family of standards.

Development needs a lot of pushing and pulling and lobbying. And the value of a chosen standard for
a support group will depend heavily on the extent of the influence the community of users of this
standard has on the body who is developing (maintaining) the standard.

VITA, the VMEbus International Trade Association, is the body maintaining the family of
VMEbus standards. The constitution of VITA, which is not dominated by a single firm, and their at-
titude towards participation of the user community in the association should make the VMEbus stan-
dard ideal for a support group.

A lot will depend now on the activity of VITA user groups. Let us hope that this conference has
helped to trigger activities in Europe.
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INTRODUCTION TO VITA

L. Hevle

Executive Director
VMEDbus International Trade Association
Suite #E, 01229 N. Scottsdale Road
Scottsdale
AZ 85253
USA

Abstract

VITA (The VMEbus International Trade Association) is an independent

“not-for-profit” organisation whose object is to promote VMEbus technically as well
as commercially.

VITA is organised under a Board of Directors and an Executive Director into three
committees: Technical, Promotional and Users. Membership is at one of four levels:

Sponsor, Senior, Regular (all of which have voting rights) and Associate (for
individuals).
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VMEBUS USER GROUPS

E.C.G.Owen, Daresbury Laboratory
Daresbury UK.

There is much activity within the European research community on VMEbus systems and the
need for some form of collaboration in this area at a European level is thought to be benificial. We
have therefore to consider what form this activity should take to obtain maximum benefit for our
users.

Two major questions arise, one, the common sharing of our technical developments and two, the
best approach to the growing number of worldwide VMEbus manufacturers. In addition, it is also es-
sential that we have some voice in the future standardisation activities which will take place in the
VMEDbus field.

In the area of sharing technical expertise and development, it is hoped that we can collaborate via
the VMEbus working group which has been set up by ESONE (European Standards Organisation for
Nuclear Electronics) under the Chairmanship of Chris Eck at CERN. If, however, we are to have
strong influence on standardisation and the industrial manufacturers, it is essential that we are associ-
ated to the much larger user community of potential and current VMEbus users.

VITA (VMEbus International Trade Association) has declared its intention of forming user
groups throughout the world for the purpose of education, liaison, association with the manufacturers
and the promotion of the VMEbus standards, and it is to this organisation we must affiliate to make
our views known.

VITA users are already operational in the USA and it is in our own interest to ensure that an ac-
tive user group organisation is created in Europe.

To form user groups in Europe does, however, bring its own problems, we have our own national
factors to consider, we do not have a common language and therefore many documents will need to
printed in more than one language, in some cases there are regulations about finance which would
make difficult a single European committee consisting of representatives from each country.

Under the proposed VITA structure it is also seen that regional and local VITA groups will be
formed if the membership numbers make this valid. The VITA structure also allows for special interest
groups to be represented at European level if their size and/or influence justify this, and it at this level
we expect our community to be represented via the ESONE working group.

To start the formation of VMEbus user groups in Europe, I am trying to find volunteers to act as
the initial national chairmen and for some countries we already have a nominee who is prepared to
take on this task. It is also obvious that we will need the help and support of the VMEbus manufac-
turers in the formation of these national groups and this they seem willing to provide.

It will, of course, take some time to get User Groups into action, as most of the people involved
will, like me, have full time jobs and therefore only be able to attgnd to VMEbus user matters in their
own spare time and we will require the help of all interested people during the initial stages.
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Some documentation is in preparation and we will contact all those who have already expressed
an interest during the conference. If, however, you wish to register your interest then please refer to the
contact list below.

Most of us are convinced of the need to have a strong user association and VITA seems to be the
best way of achieving these aims, I would ask you all to help make VITA USERS EUROPE an active
and expanding organisation.

Ted Owen,

SERC,

Daresbury Laboratory,
Warrington WA4 4AD,
United Kingdom.

Telephone 925 65000 Telex 629609
For registration on a VITA mailing list and general VITA enquiries:

Mariette Klewer,
VITA,

Begijnstraat 10,

5303 XW Veldhoven,
The Netherlands.

Telephone 31 40 544372
For information on the ESONE VMEbus Group:

Chris Eck,

DD Diviaion,

CERN,

CH 1211 Geneva 23,

Switzerland.

Telephone 22 834260 Telex 419000 CER CH
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VMEBUS STANDARDS

A. Schellekens

Philips International
Department of External Standardisation
5600 MD Eindhoven
The Netherlands
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Ladies and Gentlemen,

In his presentation Mr. L. Hevle this morning has introduced to
you the -VMEbus International Trade Association. It is an indepen-
dent, non-p}ofit, organisation, whose object it is to promote the

VMEbus technically as well as commercially.

The VMEbus Specification Manual, issued by VITA, is one source of
documentation of the VMEbus.

Another source of documentation of the VMEbus is the forthcoming
international standard, to be issued by the International Elec-
trotechnical Commission.

An there are other sources of VMEbus dbcumentation as well.

The question then arises:

How long will it take till homologation of the documents of the

various sources is achieved, if ever?

Before answering that question, I would like to address a subject
that is closely related to that question, namely that of the

status or if you like that of the acceptance of the documents.

Each source of documents for the VMEbus has its own figure of

merit.

For the purpose of this presentation I would like to make a dis-

tinction between two sources of standards:

At one side an Industry Standard or a de-facto standard.At the
other side apnIEC standard, that is a standard issued by the

International Electrotechnical Commission.

The creation of an Industry Standard is characterized by the

following 3 items:

a) The draft of the standard is under the control of its orgina-

tors during its preparation.
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b) A restricted group of industries or individuals is involved in

the preparation.

c) When the standard is issued finally, considerable marketing

efforts are required to promote the standard and to gain its

acceptance by third parties.

There are mény examples of successful Industry standards.
A rather recent example is the standard for the Compact Disec
player, where initially two companies were involved in the prepa-

ration of the standard.

But how is the situation when the IEC is in the process of crea-
ting a standard.
It is rather the opposite of the process involved by an Industry.

Standard.

The creation of an IEC standard is characterized by the following

3 items:

a) The draft of the standard is under control of the IEC during

the preparation. The originator has no more control over it.

b) A large number of industries, interested parties or indivi-

duals is involved in its preparation.

¢) Acceptance of the standard is by voting. Voting rights have
the members of the IEC.,

Let me explain this point a little more in detail.

Overhead sheei 1
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Members of the IEC are the National Committees of 42 countries.
They collectively represent 80% of the world population that
produces and consumes 95% of the electric energy.

Individuals are not member of the IEC.

Their interests are represented by the National Committee of

their respective countries.

The National Committees represent the interests of the various
parties in their country such as :

- manufacturers

- users

- trade asssciations

- government

- academic and engineering professions

Not shown on the overhead sheet , because it only applies to some
countries , are the standards organisations of that particular

country.

It is the prerogative of the National Committe for the IEC to

organize the standardization efforts in its country.

In conclusion it can be said that consensus about the proposed

IEC standard is achieved in two stages:

- first at National level between the various parties in the

country concerned

- secondly at International level, between the National
Committees for the IEC

The second stage is governed by the Rules of the IEC.

These Rules provide for dissolving conflicts which may arise
because of national interests.

In a democratic institution 1like the IEC these Rules give a fair
opportunity to each National Committee to express its views ; the

domination by one or more National Comﬁittees is prevented.
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It goes without saying that the process of achieving consensus is
a slow one. This in spite of all efforts to avoid unnecessary
delays. It is a sequential process and the National Committees
need to be given sufficient time to study the proposed standard.
On the other hand, the time required to achieve consensus about
an Industry Standard by marketing efforts should not be under-

estimated.

In conclusion it can be said that consensus about the standard is
gradually building up in case of an Industry standard.
It is already achieved when the IEC standard is issued.

That brings~us back again to the question of the homologation of

the documentation of the VMEbus from the various sources.

I have noted with pleasure that VITA partic;pates actively in the
standardization efforts of the IEC. As a trade organisation they
are represented in some of the National Committees and as such

participate in the preparation of the IEC Standard.

On the other hand, and this is a quite natural behaviour of a
commercially oriented organisation, comments on the standard,
either at National level or at international level in the IEC,
are picked-up and entered in the VMEbus Specification Manual.

The front sheet of the VMEbus Specification Manual, Revision C,
contains a notice that the document includes recommended changes
from the IEC/Sub-committee U7B and the IEEE P1014 standardscom-
mittee. It refects the intention to come to a single standard for
the VMEbus.The VMEbus Specification Manual may be considered as a
preview of the forthcoming IEC standard.

The IEC standard for the VMEbus, known as IEC Publication 821, is
in the process of printing.



_.20_

The report of the voting on the draft standard showed support for
the standard by 21 countries.

Overhead sheet 2

Against approval were 2 countries.

The rules of the IEC require that the draft is approved by a
majority of the votes in favour. Majority means that more than
80¢% of all votes submitted should be in favour. Abstentions are

not counted.

The major countries active in the field of microprocessor systems

were in favour of the publication of the draft as a standard.
F4

The technical comments of the British National Committee which
led to the ;egative vote could be met and have been introduced in
the standard by the Editing Committee.

The Editing Committee has completed its task and the standard is
in process of printing.

It is expected that the standard will be available in early
spring 1986.

It will be known as IEC Publication 821: Microprocessor system
bus II, 8-bit, 16-bit and 32-bit data.A

Now that the standard is reality, the next question is: How will
the standard be kept up-to-date.

It is evident that new material should be added and that short-

comings should be amended.

However this should be carefully balanced against the interest of
those parties who have already implemented the bus and whose

interests are effected by that action.
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The IEC Rules of Procedure provide for that balance,

All new material proposed to the IEC is treated in the same way
and there is no distinction between a proposal for a new standard

or a proposal for an amendment of an existing standard.

Only if consensus 1s reached, as expressed in a majority vote in
favour of the proposal, an existing standard will be amended or a

supplement to an existing standard will be published.

And with this theme we are already leaving the business of to-day

and entering the future.

What will be the probable direction of étandarﬁisation effords?
I would 1like to split this part of the presentation into two.

The first part will deal with new activities which have already

been approved as new aétivities and which have already started.

The second part will be more prospective. I will present some
areas of new activities which I think will be interesting for

you.

These are mere ideas. To become new activities in the IEC, they
have to be proposed by a National Committee.
And they have to be supported by other National Committees to

gain approval as New Work.

But first the current activities.

Two buses are proposed as an addition to the VMEbus.

These are known as the VMXbus and the VMSbus, a Sub-system bus

and a Serial bus respectively.

The proposals for these buses have been referred to so called

Special Working Groups.
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Special Working Groups are composed of experts in a particular
field.

It is the task of a Special Working Group to sort out a parti-
cular problem and to prepare a first dgaft of a standard.

The Special Working Group on the VMXbuS has met in the beginning
of September in California.

At this moment the results of the meeting are not yet known.

The Special Working Group on the VMSbus met in the second half of
September in Paris.

Agreement was reached on all open questions related to the Serial
bus.

A proposal for a standard will be submitted to the National
Committees for comments in the beginning of 1986.

The proposal will contain the protocol for the serial bus and
further details regarding the Backplane Serial Bus.

That is the serial bus that make use of the two tracks of the
backplane of the VMEbus that are reserved for that purpose.
(P1 connector b21 and b22). |

The proposal will furthermore contain the details regarding the
Interbackplane Serial Bus.

This Interbackplane bus is an extension of the Backplane Serial
Bus and is intended to connect to other backplanes. The Inter-
backplane Serial Bus is buffered and uses two pairs of twisted
wires as a medium. The proposal provides for a total length of

40 m for the Interbackplane Serial Bus.

Now that we have seen the current activities in the field of

standardization of buses, lets enter the future.

Sub-committee U47B of the IEC, the committee responsible for
standardization in field of microprocessor systems, has identi-

fied at its last meeting the following areas of work.
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Overhead sheet 3

The areas which are shaded blue are those areas in which

Sub-committee 47B is currently active.

Apart from buses, the activities concern:
- Terms

- Definitions

- Symbols and

- Microprocessor Programming

For the other areas, including the red areas, there is no
activity at present.
National Committees are invited to submit proposals to start the

work.

The red areas are a special case.
They are related to the subject of compatibility of board level

products.

Compatibility means that boards of different manufacture will

operate together on the same bus.

It also means that a board of one manufacturer may be exchanged

for an identical board of another manufacturer.

It goes without saying that compatible products shall comply with
the regquirements listed in the VMEbus standard.

Compliance with the regquirements has to be testable.
Results become comparable when standard test and measuring

methods are employed.
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There are already several test and measuring methods available as
IEC standards. These methods cover devices ranging from simple

diodes to fairly complex integrated circuits.

Sub-committee U47TB recognized that board level products require

additional, specialized test and measuring methods.

Standard test and measuring methods are a first step towards com-
patibility.

The second and final step towards compatibilit& could be the
application of a Quality Assessment System for board level

products.

Overhead sheet &

A typical Quality Assessment System would assess:

- Electrical characteristics, including operational/functional

characteristics.

- Environmental characteristics, including endurance (Immersion
in cleaning solvents, Robustness of terminations, Shock,
Vibration, Acceleration, Damp heat, Dry heat, Storage at

extremes of temperature, Transient Energy).
- Mechanical characteristies. Dimensions, visual examination.

Such a system would thus not only assess the compatibility of the
board level products, it would also assess thelr reliability.

And the reliability date from current production at the manufac-

turer would be available to the users.
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For such a Quality Assessment System the IEC may be a good
choise.
The IEC operates a Quality Assessment System known as:

IEC Quality Assessment System for electronic components.

Today, components covered by this quality assessment system range
from resistors and capacitors to discrete semiconductors.
Integrated circuits are about to be added to the range of compo-
nents. The required documentation for these devices will become
avallable in the near future.

This documentation will include complex integrated circuits such

as microprocessors.

The question then arises: If such complex devices as micropro-
cessors can be assessed under the IEC Quality Assessment System,

would it be also applicable to board level products?

The arrangements required for microprocessors look similar to the
requirements found in the VMEbus standard.
There is of course the additional problem of the characteristics

of the backplane, but would this problem be unsurmountable?

On the other hand the advantages of the use of the IEC Quality

Assessment System are quite impressive:

Overhead sheet 5

- Characteristics of the board level products are easily com-
parable.
They are tested using standard test and measurement methods.

They are tested against known limits.

- Essential characteristics to be tested are agreed internatio~

nally and are mandatory.
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Additional characteristics may be specified.

- Verification of the function over the full operating tempera-

ture range.

- Reliability of the product is assessed by environmental and

endurance testing.

- Modular approach of VMEbus standard allows for large variaty
of board level products, to be assessed on the basis of the
modules.

That is the required documentation can be simple and quite
straight forward.
(Masters,Slaves,Location monitor,Bus timer,Interruptor,

Interrupt handler,Requester,Arbiter,Clock driver).

The approval of a board level product is repognized by all
countries participating in the IEC Quality Assessment Systemn.

The IEC Quality Assesssment System is a truely world-wide
certification system.

There are 22 National Authorized Institutions involved in the

certification of components.

Overhead sheet 6

These National Authorized Institutions are authorized by the
responsable national organisations such as government, trade

assoclation, standards organisations.

It shows that the claim of the IEC to operate a world-wide certi-

fication system 1s well founded.
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For those who are interested in the IEC Quality Assessment System
for electronic components there is a glossy paper brochure

avallable.

The reason why I introduced the IEC Quality Assessment System to
you as a candidate for a Quality Assessment System for board

level products is that at this moment Technical Committee 47B 1is
polling the National Committees about their interests in quality

assessment for microprocessor systems.

Apart from showing interest,the National Committees are also
requested to submit proposals for the documents required for the

quality assessment for microprocessor systems.

Another reason is that I am very interested in your reaction.
The Netherlands National Committee has also to answer the request
of Sub-Committee 47B regarding quality assessment of

microprocessor systems.

In fact, much of the material of this presentation is derived
from the discussions we have had so far in the Netherlands
National Committee.

The Netherlands National Committee has not yet taken a decision.

They realized that the problems assoclated with test and
measuring methods and with the assessment of quality are indeed

difficult and complex problems.

Answering the request of Sub-Committee in the affirmative would
also contain the obligation to submit proposals for test and
measuring methods in the first instance and later on the

proposals for the quality assessment.

This work would put a heavy claim on the available resources of
the Netherland National Committee and that for a considerable
time.
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This commitment can only be justified if there is a real interest

in quality assessment for microprocessor systems.

And that interest should not be restricted to the Netherlands, it
should, if possible, be world wide.
In search for reactions, in search for interest, I have

confronted you, Ladies and Gentlemen , with the problem!

To assess or not to assess , that is the question!
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VMSbus FACILITIES FOR MULTIPROCESSING AND FAULT TOLERANCE

Mira PAUKER, PHILIPS CTI, Fontenay-aux-Roses, France

ABSTRACT

This contribution emphasizes VMSbus as a complementary control and
data path to the parallel backplane VMEbus.

Multiple paths between boards provide multiprocessors with shared
resource allocation and fault tolerant functiomnality.

Event message latency times are minimized for tightly and loosely
coupled multiprocessor systems, using VMSbus intrabackplane and
interbackplane links with self arbitration and resynchronization
capabilities.

Redundancy in the fault isolation path, an alternative route to
reset or disable failed boards, group addressing for broadcast and
broadcall operations are basic means for fault localization and
recovery. _ )
Data link compound groups such as semaphores, signature-~checking
semaphores, tokenpassing, multiaddress talker and listener, locking
transaction listener and talker are high reliability tools provided
by the VMSbus.

1 INTRODUCTION

The VMSbus provides a serial communication path within a
closely-coupled computer system and/or. among systems in close
proximity. "It represents a complementary control and data path to
the VMEbus parallel data path.

VMSbus uses two signal lines, a common single sourced clock signal
and a data line on which the stations place and sample data. The
data is logically OR-ed among active transmitters. Every transmitter
continuously monitors and tracks frame progress on the link, solving
bus contention problems by a straightforward protocol.

This presentation focuses on VMSbus as a response to multiprocessor
system requirements and fault tolerant system needs.

2 VMSbus OVERVIEW

2.1 Layered representation

The VMSbus can be represented with a layered organization as in
Figure 1 :
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- Link Layer modules
HEADER SENDER (HS)

. FRAME MONITOR (FM)

. HEADER RECEIVER (HR)

. DATA SENDER (DS)

. DATA RECEIVER (DR)
They are always organized in groups of functional modules. These
groups can be regarded as a higher sublayer within the Link Layer.

- Physical Layer modules (free standing modules)
. BUS ACCESS MODULE
SERIAL CLOCK MODULE

- Medium
. Conductive paths

- Higher layer management controls transactions between functional

groups of Link Layer modules like the following

. A Controller group, formed by a HEADER SENDER and a FRAME
MONITOR,

. A Flag group, formed by a HEADER RECEIVER and a latch,

. A Talker group, formed by a HEADER RECEIVER and a DATA SENDER,

. A Listener group, formed by a HEADER RECEIVER and a DATA
RECEIVER.

The functional groups involved 1in a transaction are typically
situated on different boards, as illustrated in Figure 2.

2.2 Layer interface signals

2.2.1. Physical Layer and Physical Medium Interface

Two signals in the Medium provide communication among Physical Layer
modules :

SERCLK - provides clocking information to Bus Access Modules

SERDAT* - bidirectional. '

2.2.2 Link Layer and Physical Layer Interface

Six signals represent this interface :
SCLK, RONE, RSTART - from the Physical Layer to the Link Layer
XORE, XSTART, XJAM - from the Link Layer to the Physical Layer

SCLK transmits timing 1information to the Link Layer. The other
signals relate to SERDAT*.

2.2.3 Link Layer module Interface

Five signals describe operation between the Link Layer modules
SELECT -~ HEADER SENDER output to the FRAME MONITOR, indicating
that HS won the bus arbitration
FRAME IN PROGRESS - FRAME MONITOR output to the HEADER SENDER,
indicating a frame is in progress

DSAE - HEADER RECEIVER output to the paired DATA SENDER,
indicating DSAE bit state in the Header subframe
S SELECT, R SELECT - HEADER RECEIVER outputs to the paired

DATA SENDER, or DATA RECEIVER, upon detection of
respective selection code in Header subframe
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2.2.4 Higher Layers/Link Layer Interface

Some of the following signals, used to represent the interface of
the Link Layer modules with higher layers serial bus management,
will be detailed by the explanations concerning high reliability
built-in features, presented in 6.3 to 6.6.

S STROBE, R STROBE sourced by HR

S ENABLE, R ENABLE sent to HR

SENT, CANCELLED - sourced by FM

RESOURCE FREE - sent to HS

Priority Port, S Code, R Code, Data Frame Port, Status Port
- sourced by FM

Code 1 Port, Code 2 Port, SEND12, SEND21
- sent to HS

LOST ARB - sourced by HS

Code Port - sent to HR

Data Port - sent to DS or DR

Data Size Port - sourced by DR

DSENT - sourced by DS

RESET¥* - sent to all LL modules

2.3 Frame protocol

The serial communication frame defines a transaction protocol
surrounding data or <controls ‘with synchronization and error
detection bits.

A typical frame representation is :

(——— Header Subframe ———— )
!/
Start}|PRI S R DSAE}|HS |Frame Data Frame Jam
bit VAL|Type Status| Detect
//
1 3 10 10 1 1 3 8-256 3 1

Length (bits)

Control frames do not contain the data subframe.

Cancelled frames contain neither data nor status subframes. The
Frame Type value 1is forced to 111 by the entity which cancels a
frame.

The Frame Type subframe value 000 characterizes control frames. The
values 001 to 110 give the length of the data subframe.

The Frame Status field indicates the status of selected modules.
A"1" in the most significant bit indicates an unsuccessful operation
due to a data size conflict between DATA SENDERS or RECEIVERS, or
incorrect selections during control or data frames. The other two
bits indicate the selection of modules by the fields S or R.

Different entities provide the information in the various
subframes. It is a read-write protocol, checking the active
participation of the implied modules.

The Jam detect bit is sampled by the modules involved in the frame
transmission to check frame synchronization. if frame
synchronization is lost, the FRAME MONITOR drives a sequence of
512 one-bits, which will resynchronize all modules. The presence of
a "1" in the Jam detect bit makes the participating modules ignore
preceding frame transmission.
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3 SUPPORT FOR MULTIPROCESSOR SYSTEMS

The main features of the VMSbus are oriented to support
multiprocessor systems.

3.1 Messages between distributed processing elements

VMSbus data frames carry messages

-~ in tightly coupled configuration sharing a common memory and a
single operating system, as well as

- in loosely coupled configurations with a local memory and local
0.S. for each processing element.

3.2 Addressing capabilities

VMSbus generalized addressing is widely useful for
. broadcast addressing, .

. group addressing,

. polling by broadcall operations.

3.3 Resource allocation

VMSbus provides special mechanisms like

. semaphore implementation,

. token implementation,

which are important for reliable multiprocessing.

4 VMSbus MULTIPROCESSING ORIENRTATIONS

4.1 Throughput oriented

The VMSbus autonomy allows :

. maximizing the number of independent jobs dome in parallel by
general purpose computers.

. balancing the workload between CPU-s and I/O-s.

4.2 Availabiliby oriented

The alternative link offered by the VMSbus is suitable :

. for real time on line applications.

. for failsafe operation (or short downtime).

. for 1/0 intensive applications.

. to maximize the number of interdependent tasks dome in parallel.

4.3 Response oriented

Optimized VMSbus allocation and predictable delivery time are
essential
. for dedicated/embedded applications.
. in specialized applications.
. in CPU intensive applications.
to maximize the number of cooperating processes done in parallel.

The VMSbus functionality that responds to these needs is summarized
by the following.

5 VMSbus SUPPORT FOR FAULT TOLERANCE

The VMSbus frame protocols are oriented for short autonomous
communications, efficient to failure reply.
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5.1 In fault counfinement

VMSbus can be used to limit the spread of fault effects in a system,

in the following ways

. under Operating System management, VMSbus can be wused to
effectuate consistency checks of range.

. before performing a function, the VMSbus can be wused for
requesting and confirmation of resource availability.

5.2 In fault detection

VMSbus frames are most suitable :

. to notify system elements of a fault occurence,

. to do consistency checking concurrently with the useful transfers
on the parallel bus,

. to implement watchdog timers and time outs.

5.3 Dynamic redundancy <can be achieved by switching on spare
components, using VMSbus control frames.

5.4 Retry égpration

In case of transmission error detected by error checking included in
the VMSbus protocol, a second operation attempt can be successful
(up to 15 are provided by the SCC 68173 controller).

5.5 Diagnosis information can be provided about the locatiom and its
type of a failure, using VMSbus data frames.

5.6 Reconfiguration

VMSbus can isolate failed components or boards by switching them
off, with a possible degradation of performance, or replace them by
back-up spares.

5.7 Restart of the system

Can be achieved in three ways : hot - if no information was lost ;

warm -if some processes can be resumed ; or cold if no process is
surviving and a complete reload is necessary.

5.8 On line repair is possible wusing procedures equivalent to
reconfiguration.

5.9 Reintegration of an on-line repaired board can be achieved
without interrupting serial bus operation, by using the jam protocol
of the VMSbus.

6 VMSbus BUILT-IN HIGH RELIABILITY FEATURES

6.1 Arbitration Mechanism

An arbitration mechanism is built into the procedure for
transmitting frames :

- no separate lines are used,

- no dedicated time period is used.

Fair access to the bus can be ensured by the higher-layer logic
arbitration strategy. The priority value of a HEADER SENDER can
be increased when the arbitratiom is lost or can be decreased when
a frame is cancelled.
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6.2 HEADER SENDER VALIDATION

The HSVAL bit guards against the possibility that all HEADER SENDERS
might drop out of the VMSbus arbitration. If HSVAL is a zero bit,
the frame must be ignored.

The protocol allows several HEADER SENDERS to send the same Header
subframe together. For applications in which this is not appropriate
(e.g., Semaphore Set frames), the higher layers must ensure unique
header subframes.

6.3 ENABLE S, ENABLE R validation

When a HEADER RECEIVER matches a selection codes in the S or R
field, it will cancel the frame if the corresponding higher layer
input ENABLE S or ENABLE R 1is false. This 1is useful if a data
receiving buffer is not yet ready to accept new data or if some
other resource is not ready for the frame operation.

6.4 S, R STROBE validation

The entire frame is checked for successful transmission before the
S and/or R STROBE signal validates the frame.

No STROBE will be generate if :

- the most significant bit of the frame status field 1is one
(abnormal operation),;

- the jam bit is true (frame desynchronization).

6.5 DSENT validation

The DATA SENDER output DSENT informs higher layers that it has
successfully transmitted data. This allows two strategies for
Talker or Listener groups : an On-Demand Talker/Listener or a
Transaction Talker/Listener. An On-Demand Talker is always ready to
send the most recent data provided by its higher-layer logic. An
0.D. listener is always ready to receive new data and present it to
its higher 1layers. Such "always ready" Talkers and Listeners,
require double buffering or other means to avoid mixturing of old
and new data.

A Transaction Talker sends data only once when it is provided by its
higher layer logic. A Transaction Listener requires that its higher
layers must read out received data before it will accept more. For
such groups, the ENABLE S or ENABLE R signal controls whether the
group 1s ready or whether it cancels the frame.

6.6 SENT/CANCELLED loop signals

The FRAME MONITOR, coupled with a HEADER SENDER, informs higher
layers of the =serial bus management of the results of frame
transmission. The SENT output indicates successful tramsmission. The
CANCELLED output indicates that a selected group was not ready. The
LOST ARB output indicates the frame lost the arbitration to a higher
priority one.

6.7 JAM protocol

The Jam procedure provides ‘security against frame-level
desynchronization among VMSbus modules.
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This procedure is also useful in extended configurations where the
serial bus modules do not share a common Reset signal. The Jam
sequence allows live insertion of modules, assuring frame
resynchronization with other controllers.

7 VMSbus MODULE GROUPS DEDICATED TO HIGH LEVEL FUNCTIONS

7.1 Simple Flag

The simplest group is formed by a HEADER RECEIVER (with its ENABLE
S, _R inputs set true) and a latch. Among other applications, the
latch output can enable/disable the system bus interface of a
board, or provide a signal to Reset the logic of a board. Fault
area confinement, recomnfiguration after repair, or backup recovery
can be managed using Flag groups.

7.2 Multiaddress Flag

A Flag can be set or reset by means of any of several selection
codes. Such a group is described as consisting of several HEADER
RECEIVERS whose S STROBE outputs and R STROBE outputs are OR-ed
logically. Such a Flag can be used to dynamically disable Masters on
particular boards or all boards of a certain type.

Multiaddress Flag HEADER RECEIVERS are configured with their ENABLE
S and R inputs true.

7.3 Multiaddress Talker

In this group, a DATA SENDER can be selected by means of any of
several selection codes. The S-SELECT outputs of several HEADER
RECEIVERS are OR-ed to produce the DATA SENDER's S SELECT input.

This group can be useful in system monitoring or diagnosis, reading
data from a unique address or from a set of DATA SENDERS. In the
latter case, the result can be the largest value among them (due to
Data Arbitration Enable feature), or the logical OR of their data.

7.4 Multiaddress Listener

In this group a DATA RECEIVER can be selected by any of several
selection codes, the outputs of several HEADER RECEIVERS are OR-ed
to produce an R SELECT input.

In mnmultiprocessor systems, this group allows event mnotification
or message sending to all processors or to a group of processors.

7.5 Semaphore group

A single-bit mutual exclusion mechanism is provided by a compound
group formed by a controller, a Flag and some additional logic.

The Flag status represents the status of a sharable resource 1in
the multiprocessor system. )

The <controller provides access to set or . clear this Flag,
corresponding to the allocation or deallocation of the shared
resource.

This group differs from a Simple Flag group in that the set frame
is cancelled if the Flag is already set.

It 1is recommended to implement Flags 1in parallel with same
addresses, one for each controller that can request the resource.
These Flags must be in compliance. The serial bus protocols ensure
- this : a Flag is set by a successful "set frame" and also when a set
frame is cancelled.
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The semaphore operation with VMSbus includes two selection codes :
a semaphore code, assigned to each sharable resource controlled by
the Serial.bus and a requester code, assigned to each group that can
request control of any resource. The different Controllers trying to
acquire the same resource MUST use different requester codes, so
that there 1s a unique winner of the VMSbus arbitration. The
resource and requester codes are typically assigned at configuration
time.

7.6 Signature—checking semaphore

For high security operations, an additional requirement is applied
to this type of semaphore group. The requester code is checked by
the Flag logic, for the right to share the resource. Additional
HEADER RECEIVERS, one for each permitted requester code, have their
R STROBE outputs OR-ed. The access rights for each requester code
are determined at the configuration time.

7.7 Token Passing Group

This is an alternative way to share common resources. A set of token

passing groups form a logical "rimg". Each group knows the selection

code of its "successor" group, to which it sends frames representing

the token.

The resource can be controlled by a group as long as it has received

the token and has not yet sent it to its successor.

Two mechanisms for error checking are considered

- one RING ERROR logic included in the <controller surveys the
cancelled frames, on an attempt to set a Token Flag already set or
to reset a Token Flag already reset. This ensures that only one
token frame is passing through the logical ring ;

-~ a recommendation is done to maintain a timer controlling the
maximum time the resource is used per group.

7.8 Locking tramsaction Listener/Talker

Two other compound module groups are aimed to allocate a resource to
a process, instead of semaphore usage.

The Locking Transaction Listener, similar to a Mu1t1addressed
Transaction Listener and a Flag, ensures a Listener receiving
several frames of a data unit, in case of a file transmission, from-
one Talker, before allowing that Listener to be open to any other
suitable-configured Talker. So, in case of a printer, a semaphore
mechanism can be directly build in the printer serial bus interface.
The Locking Transaction Talker, equivalent to a Multiaddress
Transaction Talker and a Flag, ensures the locking of a Talker to a
Reading Controller, up to the end of the transmission of successive
frames, until it is released by the controller.

These were some examples of VMSbus modules possible operatioms, in

order to satisfy multiprocessor system requirements and high
reliability environment. ’

8 FRAME TRANSMISSION OPTIMIZATION

Several built-in protocol features ensure minimal occupancy of the
VMSbus medium by shortening rejected frames and then, avoiding
unecessary one's.
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8.1 Frame cancellation

Any addressed module, not ready to participate to the VMSbus
transaction, has to cancel that frame by sending 1l's in the Type
field which follows the Header Subframe. In such a case, the frame
is shortened to its minimal length of 30 bits :

Start PRI S R DS HS 1 1 1 JAM
bit AE VAL det
1 3 10 10 1 1 3 1

But this is not a “productive use" of the serial bus and cancelled
frames has to be prevent if possible.

8.2 - Handshaking groups

Handshaking Writing Controller and Handshaking Transaction Listener
are built to avoid frame cancellation and improve bus efficiency,
controlling the transactions by the rate of the Listener data
processing.

8.3 Variable Priority Controller

This module group associates a 3-bit counter to the priority port of
the HEADER SENDER. Its 1initial value 1is set by the serial bus
management, when the Header is configured.

When a frame 1s cancelled, the FRAME MONITOR of that controller
clears the priority counter, avoiding to repeat sending. The same
clearing mechanism can be used to ensure bus "fairness", after
winning the bus allocation. In case the bus allocation is lost, the
counter value must be incremented to increase the chances to win.
This method ensures productive traffic on the bus.

9 CONCLUSION

I tried to show how VMSbus contributes to multiprocessing offering a
concurrent and independent link to interconnect system boards. This
link will facilitate scheduling and synchronization of the
Processing Elements.

Fault tolerance capabilities introduced by this complementary bus
will reinforce VMEbus usage in high reliable applicationmns.

The Silicon support of the basic modules of this VMSbus protocol 1is
opening its spread usage.

The newcoming .SCC68173 VMSbus controller and the SCB68171 VMSbus
interface chip are first circuits dedicated to this protocol. The
operating systems have to incorporate efficient management of this
communication link with all its wide opening features.
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VMEbus INTERFACE CHIP SET

by N. Nissen

Valvo GmbH, Hamburg

INTERRUPT GENERATOR 68154

The 68154 Interrupt Generator provides an interface between
an interrupting device and the system bus such as the
VMEbus. Its three primary functions are

- Generate system bus interrupts.
- Control daisy chain acknowledge line.
- Provide interrupt vector if needed.

The chip is controlled by a local master via a local databus
and appropriate local control signals.

It is a 40 pin bipolar device. Samples should be available in
1985.

For systems, which don't have to have local master control, a
solution with programmable logic seems to be more
appropriate.

INTERRUPT HANDLER 68155

The 68155 Interrupt Handler can handle seven system bus
interrupts plus six local interrupts and a non maskable local
interrupt. The output signals IPL 0..2 indicate the interrupt
priority level,
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For system bus interrupts the 68155 works with the bus
control devices 68172/6815 to aquire the interrupt vector
from the system.

For local interrupts an interrupt base vector presented by
the upper five bits of a byte can be provided. The lower
three bits are defined by the interrupt level.

It is a 40 pin bipolar device. Samples should be available in
1985,

For systems which don't require the functional complexity as
of the 68155, a solution with programmable logic seems to be
more appropriate.

VMEbus CONTROLLER 68 172

The 68172 VMEbus Controller is an interface device for the
VMEbus. The device can be implemented for three different
configurations:

- master only
- slave only
- master/slave

It can be used either with a processor type interface or with
a DMA controller type interface.

An internal synchronization scheme provides for save address
decoding.

The controller is designed for dual port operations (shared
slave) in order to avoide a "deadlock" situation, which may
occur when on a slave access the local master has already
started a cycle for the VMEbus.
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It is a 2B pin bipolar device. Samples and data sheets are
available.

For master only applications the
68175 BUS CONTROLLER

can be used. The controller is an asynchronous design and
requires an additional 35 ns delay line.

Here an error / retry sequence is included. It is a 24 pin
bipolar device. Samples should be available in 1985.

VMSbus CONTROLLER 68 173

The VMSbus Controller 68173 is a register oriented peripheral
device, that includes a collection of the basic functional
modules described in the VMSbus specification. It interfaces
to the VMSbus via the 68171 VMSbus Interface and to a
standard 68000 family bus or other parallel buses.

It comes with

- Header Sender paired with frame monitor with up to fifteen
automatic retries on lost arbitration.

-~ Alternate frame start by single SYNCN input.
- Six Header Receivers with multiplexing capability.

~ Programmable single or multiple data
transmission/reception with data valid control.

- Four programmable flag modules with two direct outputs for

immediate control.
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- Interrupt control and upper five bit (of byte) vector
base. The lower three bits are for modul identification.

- Four byte data buffer for sender and receiver,

It is a 28 pin CMOS device. Samples should be available early
1986. Product Description (Valvo VDP 8503) is also available.

VMEbus INTERFACE 68171

The VMSbus Interface connects one or more VMSbus controllers
to the VMSbus itself. It provides bus driving and receiving
in addition to latching data in both the transmit and receive

directions.

This guarantees for save operation at maximum speed, taking
into account all additional delays on the backplane under
worst case conditions.

It is a 16 pin bipolar device. Samples should be available
early 1986.
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VME PROTOCOL CHIPSET USING
PROGRAMMABLE LOGIC DEVICES

L.Gustafsson, P.Gillnt
DD Davision, CERN, Geneva, Switzerland

Cieneva, B October 1985

Abstract: We have investigated the availability, cost and performance of the VME protocol chipset. We
have found that for most applications it is possible to use a simpler chipset built with
programmable logic devices. We describe how to implement a Bus requester, Priority arbiter,
Bus interrupter, Data transfer master and Slave controller, using finite state machine descriptions
that easily can be transferred to programmable logic devices.

1. Introduction

We are using a VME system in order 1o test the main features of a general channel interface. In this in-
terface we need a bus requester, bus interrupter, master and slave controller, see figure 1. These parts
are commercially available from different manufacturers [1], but price/performance is poor compared
with s functionally equivalent design using programmable logic devices (PLD). In order to test our de-
signs in a logic simulator a rudimentary PRI arbiter and interrupt handler have been implemented in
software. Similar designs have been presented [2] [3], but we hope to have found new solutions to
problems in the design of VME modules. Among those problems one can mention the many straps
used in some modules in order to get flexibility.

In our implementations of different protocol chips we have tried to isolate general parts from the
VME protocol specification. These parts have then been transformed into finite state machine descrip-
tions. As the VME protocol is asynchronous we have developed computer programs that can treat as-
ynchronous machines in a race free manner and give logic equations that can be used directly in a PLD
assembler,

2. The Bus requester

The first part of the protocol that has been investigated and implemented is the bus request whose fi-
pite state description is shown in figure 2. When a bus request (BR) is received from a user device a
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signal (BRX) is transmitted and encoded for the request level that has been chosen. After that, it waits
for a bus grant (BGR) from a local arbiter that compares the local bus request level with a bus grant
level sent from the global bus arbiter. When granted the bus it also checks that AS* is high. This is
done in order to pipeline with other processes. A bus busy (BBSY®) is sent back to the global arbiter
in order 1o clear the grant level and make it possible to start a new bus arbitration cycle. When the bus

disappears the requester machine goes to a so called operate state waiting either for a release
of the bus request, or that a bus clear (BCLR*) is received. The release modes that have been imple-
mented are RWD and ROR. When a bus clear is received, time is given to end the current cycle and
issue a new bus request. Our present implementation of the bus requester is shown in figure 3 and
comprises two 20L8 PLDs. One of the PLDs houses the bus request encoder and the other imple-
ments the state machine described above. The benefit of using a PLD for the request level encoding is
that the number of straps otherwise needed can be reduced, and a possibility exists to allocate request
k;veiz dynamically. In the encoder PLD we have also incorporated special switches to handle some of
the metastability problems that can occur during the local arbitration {4]. In systems with frequent re-
guests from different sources we recommend 2 special study before choosing the type of arbitration
switches, One can level criticism against the VME specification as we have not found any recommen-
dations when to use and not to use the system clock (SYSCLK*).

3. The PRI arbiter

As has been mentioned above we use a soft arbiter in order to test the bus requester in a logic simula-
tor. This arbiter is described in figure 4. When the global bus arbitration is started it jumps to a state
according to the bus request with the highest request level. This state produces a bus grant level and
waits for a BBSY™ signal to come back. This handshaking is following a complete level type protocol
and specifications of waiting times etc. are not needed. If a bus request is recognised on a level higher
than the current or if BBSY™ goes high a new arbitration is started. A bus clear is sent if BBSY™ is still
low. In a hardware irnplementation of this arbiter it must be supplemented with parts to ensure that no
spikes are generated during the arbitration phase,

4. The Master controller

The more complex chips used in VME can handle bus transfers directly but sometimes parts have to
be used that have no direct interface to the transfer protocol. In figure 5 a master controller is described
that can only handle the simpler transfer schemes, but that can easily be supplemented. When the cur-
rent master sees that it is possible to use the bus, it decides on what type of transfer to perform. Sup-
pose it wants to make a write to a slave, First it asserts a request out signal (REQ_OUT) which makes
WRITE® go low and after a delay a local DS signal (LDS) goes high. This local DS can be used to
generate the DS0*, DS1* and AS* signals. When a DTACK™ or BERR* returns, LDS is taken away
and a signal (RDY) is sent to the current master to check or update counters ete.. When REQ_OUT
disappears the transfer cycle is ended. It is working in a similar way when reading from a slave. The
only difference is that a request in signal (REQ_IN) is generated and the WRITE* signal is left high.

1t is probably possible to design an even simpler controller that fulfils the same function as the one
deseribed, We see it as a strength of state machine descriptions that it is so easy to redesign a simple
controller.

8. The slave controller

A controller that also has limited generality is described in figure 6. The only function that the slave
controller has is to follow the timing in read and write operations. It is started on AS* low, IACK*
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high and a valid address (VAIAE) pending or if a STATUS/ID signal is coming from a local bus in-
terrupter. There are two handshaking parts as we need a multlplemng/demultxplemng port. When a
transfer is finished a data as%zmw}ﬁé@ {DTACK™) is sent back, which is handshaked with AS® and in-
ternal DS* both high.

The bus error generation in a slave is not possible to generalize as slaves differ too much from each
other. The VME specification is also vague on this point, depending on how it is interpreted bus errors
can be generated either much more or less then necessary.

6. The Interrupt requester

In the parts of the VME protocol that has been described above, complete handshaking chains exist
but unfortunately that is not the case in the interrupt handling. The problem is that a qualifier is miss-
ing showing when the interrupter has taken away its interrupt request level. In the VME specification it
mhspaé%%m&mzptieveié&%@maﬁhgmemeasthc DTACK* signal appears asserted at
ﬁw mtemzp: handler but that is not completely satwfactory In figure 7 an interrupter has also been

mented in PLD's. A service request (SREQ) is asserted by the user device. On this signal an in-
iemzpi request (IRQX) is gmmad and sent to an encoder. It then waits for an interrupt grant ac-
knowledge (INTGR) which in its tum generates a STATUS/ID request to the slave controller. Already
at this stage the interrupt request level can be taken away. It will have at least two following handshak-

ing delays to d ar at the interrupt handler. When 1ACK®* disappears as a result of a low going
DTACK*" it is necessary to send a service request end (SREND) and wait for the service request to be
removed before idling,

If this part is implemented as an edge driven system it is possible to simplify the handshaking parts.
The present implementation of the interrupter is using two 20L8 PLD's which is shown in figure 8.
The commercially developed interrupters comprise a 8 bit status/id register, but a bigger word is often
more useful,

7. The Interrupt handler

As in the development of the bus requester we have simulated the interrupter together with a soft in-
terrupt handler that is shown in figure 9. When the arbitration is finished a bus request is started and
after gaining the bus an interrupt a;:émcmieégﬁ IACK* and IACKIN* is sent together with a 3 bit ac-
knowiedge address. A iacal master controller is started in order to get the STATUS/ID word trans-
ferred. If the datafield specification is not supported by the slave in quesuan a BERR®* is sent back. On
the reception of a ready signal (RDY) from the master controller the service cither continues or is ter-
minated directly. It is important in the loop back to the idle state that the request has disappeared or
- malfunction will occur. In a hardware implementation it is necessary to guarantee metastate free out-
puts in the arbitration of the interrupt level that will get service. By the state assignments we are using
in the state machine, we think that we have eliminated the major part of this problem. All states trav-
ersed from an instability are tied back 10 the idle state, In a final system it would be preferred also to
have a possibility 10 mask interrupts.

8. Conclusions

We think that it is possible to build VME systems with many bus requesters and bus interrupters fre-
quently asking for service and still have an acceptable runtime before failure. This can be done by pay-
ing attention to the metastability problem that can occur at the synchronization points for different
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processes, especially when using PLD constructions. On some points the VME specification is still
very vague and the interrupt handling is insecure from a handshaking point of view.
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. WRHE * ROY -
orack* :
BERR *
AS® - - RESET
et o SLAVE  [eYALAD
D51 - . CONTROL te STATUS/ID
IACK - ENA 1 -
. DTACK ENA2
o READY 1
| _READY?

Fig. 1



BUS REQUESTER STATE DIAGRAM
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done tdle
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PRI ARBITER STATE DIAGRAM

MASTER CONTROL STATE DIAGRAM

WRITE Y (EN-QUT)

BR;BR} *BR; *BR]

a&;*ﬁﬁ;°§§§

idle

TR En-oun) WA t o 105
WRITE S (En-oun) WYL AL

| DTACK *. BERR ¥
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Fig. 5
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SLAVE CONTROL STATE DIAGRAM
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idle
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Fig. 6

INTERRUPT REQUESTER STATE DIAGRAM

Fig. 7
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UA1 EXPERIMENT LAYOUT

MUON HADRON
CHAMBERS CALORIMETER
qg | ENDCAP
GONDOLAS T b
DETECTOR

v

AR ERN
N

ity

IE | B

lﬂ

MUON WALL CENTRAL
STREAMER TUBES DETECTOR
T — i
POSITION
DETECTOR
Detectors Channels Raé";?g;ﬁ |
[ ] Central Detector 6250 1600000
Hadron Calorimeter 1184 2400
Electromagnetic Cal. 2032 4100
Position Detector 4000 8000
Forward Chamber 2000 =6000
Muon Chamber . 6000 =500
Muon Wall 40000 40000
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UAl1 OVERVIEW

DETECTORS

TRIGGER RATES AND LEVELS
DATA ACQUISITION COMPONENTS
REMUS READOUT

168E EVENT FILTER
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DATA ACQUISITION STAGES AND RATES

MAXIMUM RATE TRIGGER RATES

(No. Bytes) DETECTORS |

50 KHz ( L=10 emasc ')

(orovies | oaBBER o] T
riest o L LEVEL 1(2)
40 Hz N
(~120 KBytes) ?Aﬁé%ﬁl&géﬁ%g} 20Hz (40 ms)
EVENT BUILDER
EVENT FILTER LEVEL 3
4 Hz
(~120 KBytes) MASS STORAGE 4 Hz
AVERAGE EVENT SIZE 120 KByte

MAXIMUM SYSTEM THROUGHPUT 450 KByte/sec
MULTIEVENT BUFFER DEPTH 4 (16) Events

DEAD TIME {(100pusec to =40ms)
READOUT ERROR RATE £S5 %
SYSTEM EFFICIENCY {at 4 H2) Q0 %5

NUMBER OF READOUT CRATES 170
NUMBER OF PIN CONNECTIONS =105

TRIGGER LEVELS

= BETWEEN BUNCH CROSSING (<4HSEC) =]
LEVEL O PRETRIGGER [HODOSCOPE COUNTER, STANDARD LOGIC
LEVEL 1 CALORIMETER [HARD-WIRED PROCESSOR, FAST ADC]
LEVEL 1 FAST MUON  [MUON DETECTOR HIT PATTERN]

E= DURING /AFTER DATA READOUT AND REDUCTION =]
LEYEL 2 MUON TRIGGER [TRACK RECONSTRUCTION BY uP}

LEV&:L 3 EVEH”? FEL’?ER IENERGY RECONSTRUCTION BY 168E)



LEVEL 1. CALORIMETER TRIGGER
TIMING OF TRIGGER LEVELS

TWO HARD-WIRED PROCESSORS (LOOKUP TABLE/ADDER/
CONPARATUR],

DEDICATED READDUT OF 288 CHARNELS

§
4 gw&r E&Em ELECT ROMAGNETIC HADRON
[EVENT _ IEVENT CALORIMETER CALORIMETER
BUNCH CROSSINGH 0o —H U . Zi
PP coiLision 3wl | (T
EL - 7.5
LEVEL 1 CAL, lzSps] b R . | ,..« SN -
LEVEL 1 MUCH [Eml BB iia sy it 1R
LEVEL 2 MUON [Zime ] E ] I
DIGITIZATION (‘A?t:) 3m ] e d 1} [FEvAL)
DATA REDUCTION| [ =40 | —
PARALLEL READOUT Viiigizzziye ™ | | ] TRIGGER SELECTION
o T — — T . ESTANDARD CALORIMETER TRIGGERY
i | electron > 10 Gev
MASS STORAGE | [ 200 ms i 2 electron > 6 (8) Gev
1 jet > 25(30) Gev
Z Et[G+C]> 80 (60) Gev
ft TR T Et [imball> 177 1 jet>15Gev |
aus | lims ‘ E= BACKGROUND TRIGGER
_LEVELS High Et Hadron > 8 Gev ("pion™)
I jet > 15 Gev
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LEVEL 1. FAST MUON TRIGGER

LOOK UP TABLE PATTERN RECOGNITION OF TUBE HIT.
SEARCH FOR TRACKS POINTING TO THE INTERACTION
VERTEX WITHIN £ 150 mRad.

630 mm

7 W I O

%t 150 mRad

VERTEX

LEVEL 2. MUON TRACK TRIGGER

MUON TRACK RECONSTRUCTION BY THE FAMP

M68000 MICROPROCESSOR SYSTEM.
USED TO FLAG EVENTS FOR FURTHER SELECTION.

e WWW PIUON CHAMBER

MTD ﬁ mb'g HTD E MTD § Mo | wo | DIGZER
| I I |

les000 gsaoasﬂasﬂeugsssw}iaaﬁs‘gﬁk&a; FAMP PROCESSOR

| I O I I

|
| orm g npng bRt E DPM H DPM g beM } DUAL PORT MEMORY
| | I | |

TRIGGER AND READOUT PROCESSOR

“MUGH" TRACK

_OL—



LEVEL 3. EVENT FILTER

A FIVE 168E STACK RUNNING A 25000 LINES FORTRAN
PROGRAM.

~ DATA STRUCTURE YALIDATION AND STATISTICS

-~ ELECTRON ENERGY CALCULATION USING CALIBRAT ION
CONSTANTS, GEOMETRY CORRECTION AND CLUSTER
IDENTIFICATION FOR GONDOLA AND ENDCAP CALORIMETER

- JET IDENTIFICATION

~ MISSING ENERGY

=~ MUON TRACK RECONSTRUCTION

~ BACKGROUND

- EVENT FLAG : "SPECIAL" "NORMAL” “"REJECTED"

POSITION
DETECTOR

ERDLAP
PETAL

UAT DATA TAKING RUN STATISTICS

DATA TAKING

1981 1982 1583 tuaq
LUMINDSITY cmsec |  1027) 102% | 102% | 3.10%°
{integrated L. nb ) (1) (18) | ¢118) |(270)
COLLISION RATE Hz 40 400 4000 | 12000
LEVEL t RATE Hz 1 t 2 £ 3 £ 10
LEVEL 3 RATE Hz - - ¢ X £ 10
HMASS STORAGE Hz 1 § 2 £ 3 £ 4
RAW DATA | NORMAL | 3000 1560 | 2700 | 3500
TAPES SPECIAL e - 300 550

- 1 =



UA1 DATA ACQUISITION COMPONENTS
UAT DATA ACQUISITION PARAMETERS

2  NORD 100/500 2 MByte MEMORY
3 MTU 6250 BP1 125 1PS
[ Data acquisition and physics monitor]
64 KW PROGRAM MEMORY
512 KB DATA MEMORY
{Event filter and event display] .

7 FAMP M6800O uP ; MASS $TGRA€5E ﬁAXINUN THROUGHPUT fSG KB/s
{ Muon readout and second level trigger]

20  SUPER CAVYIAR MICROCOMPUTERS

- M6800, AMD 9511 FP, 256 KB RAM, 84 KB EPROM

[ Equipment test and control} DEAD TIME :
200 MCO68B0O0 pP ROP, GPMC - |F READOUT FREE = DOUBLE BUFFER DEAD TIME

[ Readout electronics controt ] { CD = 4us , IAROCC! = 100us, CALORIMETER = [0ms)
110 SIGNETICS 8X300 _ »

[ Central detector data reduction and formatting] DURING READOUT = ROP DEAD TIME b~40ms)
200 CAMAC CRATES - 1F MULTIEVYENT BUFFER FULL > 100ms

16 VYME CRATES
60 CPUA1L. YME MC68010 CPU

256 KB RAM, 32 KB EPROM, NS 16001 FP
YME/VHK Bus '

[ Parallel readout and event builder processors)

READOUT ERROR RATE ~ 5%

150 VME modules. Dual Port RAM. EPROM. REMUS THIRD LEVEL TRIGGER MAXIMUM RATE ~10Hz2
es. r ) , REP v -
branch driver, Graphics .... MAGNETIC TAPE MAXIMUM WRITE RATE ~ 3 Hz
24 MacVEE (Apple Macintosh with VME interface ) SYSTEM RUNNING EFFICENCY ~ 90X

{ VME interactive intertace for test, monitor and
software development)

6 3081E iBM EMULATORS. 2 MB MEMORY
[ Event filter and off Jine data preprocessing ]

NUMBER OF READOUT CRATES = 170

-ZLW
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DATA DIGITIZATION AND REDUCTION

Detgclor mtﬁa:gtes big{:;;z;ng Rmi";fnt;ﬂ" Processors
Calorimeter 14000 3 ms - Lecr{?} 2282
Sirsamer ﬁa!}e 400600 100 us <S5 ms Vﬂﬁ(g;e}m

central detector | 1600000 4us | ¢ 40 ms (??E)

DATA DIGITIZATION AND REDUCTION TIMING

& 1 5EC

BUNHCH CROSSING

TRIGBER DATA

§ 5.5 paee }

CENTHAL DETECTOR

5.8 psic

2 40 mz

|

Lo

DUUBLE BUFFER {4 4 3ec)

HMUDN CHAMBER

2 psec)

CALORIMETER

I

3 ms

STREAMER TUBE

ﬁﬁiﬁi

100 P SEC

=5 my
DOLBLE

DIGITH

ZATION

BUFFER (1

00 i see)

2 Mbyte
RAW DATA

REDUCTION

i

20 Kbyte

EVENT DATA
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DATA DIGITIZATION AND REDUCTION

LARGE DATA YOLUME. 1600000 Byte/Event
REAL TIME PARALLEL PROCESSING. 40ms/Event

PROGRAMMABLE DATA FORMATS



CENTRAL DETECTOR
CYLINDRICAL DRIFT CHAMBER WITH “IMABGE" READOUT

FORWARD CHAHBER  CENTRAL CHAMBER FORWARD CHAMBER
2 m * Zm 2m

DRIFT YOLUME

....................................

.....................................

AN

CATHODE PLANE  ANODE PLANE

CENTRAL DETECTOR PARAMETERS =)

Electric field 15 K¥/em
Magnetic field 0.7 Tesls

Drift velocity 53 Micron/nsec
Drift angle (B = 0.7 T) 23 Degree
Drift gap 18 cm

Sense wire spacing 1 cm

Sense wires in drift 175 (Forward)
volume 4 80 (Central)
Drift volumes 46

Sense wires 6250

H N H 3 H
H N % : X
: N 3 : H
H 5 3 H N
H t H : M
H H . s H
N H : 3 :
2 19 : 3 H .
* - - * 2
N H 1 L \ 1
¥ M . 14 \
N : 3 . k
N H 3 ]
3 : 5 :
M b o M
£, s " v
it R B H T Bavanscavexascnooxsnxsrnirstunennaturn
RN . i H
H 3
. " X N
FF § k3 » °
PO MU £ 4.4 &4 1L LT 45 LA $ 1 [ PO cxn
X 3 : : * *
H H N H
: H T : A
N 4 x 3
..................................... L N H : onx
N 3 N 3 . *
. M 2 b 3

Esmmm. DETECTOR DATA YOLUME

WIRE 256 Bytes
CRATE 15360 Bytes
ALL SYSTEM 1600000 Bytes

E=== HIT INFORMATION

DRIFT TIME {4ns Unit) Q Teft

WIRE/MODULEZCRATE T
Q Total ’z\\
Z=01eft / QTotal st

PULSE LENGTH (32ns Unit)

TYPICAL EVENT ==

~100 TRACKS (~100Hit/Track)

NONZERO DATA 300000 Bytes
HIT DATA 80000 Bytes

i

”i‘ms:l?%i

Drift
time

ey

wire

Pules length
oc Angle

G right

H
o
L

i



CENTRAL DETECTOR
ELECTRONICS CHANNEL BLOCK DIAGRAM

= TRACKS

DRIFT LENSTH
18 cm

DOUBLE BUFFER
(16 NS TIME SHARING)

i

BANK }

Il

4E fax

1

h
CURRENT DB/ISION

BANK ©

F

t

- TRE OFFSET

TIME STOP INTERPOLATOR {TS1)

READOUT PROCESSOR CAMAC CRATE

READ OUT PROCESSOR (ROP)

fod

CLOCK 123MB2  pagT MEMORY 128%16 BIT

{ 4 JSEC DRIFT TIME)

32 ns SAMPLE (16 Bits)

]
6 Bitsl

(Q++Db)

F = I /dx.

(Aop+b+p) N
Z=Q,/ Q; Curr. Division. 6 Bits
t =TDC+Time Tag(4ns) Drift time. 4 Bits{

A = 8162 compression constant

B = base line b = scale

N G

i\ CHARGE TINME DIGITIZER {(CTD) i
P N

Read ‘m o 2 ok ]
Clear' : ﬁ"?e ?@* e top ® . ng
$lap OUT ’ o : £
& ot
& » @ 8

Cheak QUT <

Yrigper M
Houmy DUT

%
EEDE oK

mgim

TSt Time Stop iInterpolstor
5 CTD Charge Time Digitizers.(60 wires)
ROP Read Out Processor

E== CENTRAL DETECTOR CAMAC CRATE
CAMAC ESONE COMPEX PROTOCOL (250ns)

E== A1 CENTRAL DETECTOR READOUT

110 CRATES (6250 wires)

110 ROP (Read Out Processor) MODULES
110781 (Time Stop Interpolator) MODULES
500 CTD (Charge Time Digitizer) MODULES




CENTRAL DETECTOR DATA FORMATS

Data pattern data 200-1600000 Bytes

Pulse data (unpacked) =300000Bytes

Packed data £100000 Bytes

Super packed <60000 Bytes
-

ROP DUAL PROCESSOR FUNCTIONS

EE=== FAST DATA REDUCTION

CTD readout, zero skipping control
Hit parameters calculation

Double pulse detection

REMUS output

ELUCAL SYSTEM AUTONOMOUS FUNCT!ON%
ROP autotest
Front panel control ‘

ADLC LAN driver

Electronics parameter evaluation
Histogramming and statistics accumulation
€10 internal DAC calibration and adjusting
Data communication with supervisor

UNPACKED HIT DATA FORMAT

dEsdx FADC
(& Bit/Sempie)

”"f”"éi}ijaw HIT
THRESHOLD

Fi
- 3 ST MO OF PULSE
PeDESTALY | | BEEE RN ] THRESHOLD
o L o
TINE TAG 32ns . SOFTWARE TAG DRIFY TIME
SAMPLE { T SAMPLE

Current Division
{6 Bit/Sample)

1.

EEHIT UNPACKED DATA FORMATE

Hit frame bit DRIET TIHE 4 ns U ‘s{ WIRE | Hit Header

Fg sample | Zpsample |MOD

Fisample | Zisample |1OD

1
0
0 Fysample | Z;sample HQD
0
0

F sample | 2 ssmple MDD

Hil frame bit nl DRIFT TIME 4 nsU |S| WIRE | Next Hit Header

DRIFT TIME(4ns Unil) = (No. Channgl}*8 + Time offset

WIRE = No. wire (1+12)

5 = Hardware (0)/ Software (1) tag
nap = He. CTD module (1+3)

Fy = FADC sample = (QT+B)/(A-QT+B+h)

Z; = Current division sample = QL/OT

wéz'm



desdx FADC
(6 Bit/Sample)

pepesTaLY [

- JH -

PACKED HIT DATA FORMAT

................

Current Division

. DOUBLE HIT

*********** THRESHOLD
R

.............................. END OF PULSE
‘T‘}—-,i ~ THRESHOLD
— :
TIME TAG 32 ns : SOFTWARE TAG DRIFT TIME
SAHMPLE SAMPLE

{6 Bit/Sample) 7

.
.
®
¥
*
¥

Hit frame bit

HIT PACKED DATA mmm%

1. DRIFTTIME 4nsU |S| WIRE| Hit Header
¢ 0 =30z MOD
L | M
Sum over n=B samples
0 DT
f
nov Long pulse continuation
DT

Hit frame bit | 1| DRIFT TIME 4nsU |S| WIRE | Next Hit Header

DRIFT TIME (4ns Unit) = (No. Chennel)*8 + Time offset

WIRE = No. wire (1-12)
S = Hardware (0)/ Software (1) tag
MOD = No. CTD module (1-5)

Left = 3(0s - 5 64(2:B(630000-63-4))

@ 1 Lprt) ((6360-b)(63000-A-F))
O=3(Q;Left+0;Right) = 3 B(630000-63-A) (F-100-base)
T il 2 T (6300-D)(63000-AF))

DT ' = Pulse Length (unit 32 ns)




UA1 REMUS READOUT

IiEiiikenics
992 9900an oo

PARALLEL
READOUT

168E STACK

O G G T
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DATA READOUT

170 CAMAC CRATES READ VIA REMUS BUS

LOCAL DATA SAMPLING BY "SPY" TECHNIQUE

28 BRANCHES PARALLEL READOUT {=50 MB/sec)

168E SYSTEM LAYOUT

REAL TIME EVENT FILTER

ONLINE MONITORING AND EVENT DISPLAY

(5 renus BrANCHES |

i

SPY
168€

%, ] L S ?
", f‘/
£
DATA CAMIAC ca?\?&ﬂ —(nc?rﬁfua}
. |
jrese| [ 6oe| {160 [168e| |1 s8E] |1 68e]
. o o
carAC CAMAC cAMAC carac
| | | s
Hp HIST| | NORD B {m}a h) ST OR AGE cabte

NORMAL EXPRESS
TAPE  LINE TAPE

168E EVENT FILTER

[

EVENT
DISPLAY

ENERGY ]

PLOT

ONLINE POWER OF 3 1BM 370/168 UNITS

6 168E WITH MGBOO pP AS FRONT END

EVENT SELECTION AND EVENT DISPLAY




EVENT FILTER

168k
EVENT FILTER

F}ﬁi/ 5% 35%
v :

REJECTED SPECIAL NORMAL |
EVENTS - TAPE TAPE

‘Qutput rate | ¢ 1Hz <4 Hz

input rate < 10Hz {

| EXPRESS
LINE

SELECTION CRITERIA {(average execution time)

ELECTRON { = 350 ms)

Calorimeter cell energy reconstruction.
Electron identification by Egj threshold cut,
isolation check in space and in the hadron
calorimeter energy deposition.

JET (=40 ms)

Jet identification using energy vectors

ET
Total energy calculation from cell energy list

MISSING ET
Total vector energy unbalance

BACKGROUND (= 10 ms)

“Pion” identification by threshold cut in the Efpqd
and isolation in the electromagnetic cell's space

MUCN (= 10 (+150) ms)

Muon track reconstruction and track following

in a central detector “rosd”. Trigger selected by
momentum cut.

3 Average time = 500 ms

1984 run

168E EVENT FILTER

5 REMUS SUPER
BRANCHES

SUPER

1 caviAR | l

CAVIAR MATROX
EVENTY DISPLAY

au

e

.~
e A * EBE = 4 %:_”, ‘

. =

S

!

CAnMacC

“GREYHOUND
0
EMULATOR BUS

NORD ||

...‘[g“



JET TRIGGER

Energy vector

Find jet "initiator”
by energy cut E¢ > 2.5 Gev
then try clustering

MISSING ENERGY

Energy vector sum
cut and background
test.

M E; > 15Gev

ELECTRON

Calorimeter energy cell reconstruction using
calibration constants.

Electron selected by energy threshold cut and
space isolation test.

Energy vecier

" Cslorimeter
cell

Endcoap putsl

Gondola

ETqy cut> 6 Gev
EThar <1 Gev

Isolation

Rapidity-azimuth cone (0.4)
for space isolation cut
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168E MUON TRIGGER

Reconstruct the muon track fro the muon chamber
data

MUON CHAMBER

Search for a track whitin
a "road” in the central
detector then fit a circle
and cut on vertex postion
and momentum

CENTRAL
DETECTOR
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DATA ACQUISITION BLOCK STRUCTURE
YME/YMX BUS



DATA ACQUISITION STRUCTURE

(i) ) TRIGGER
{

& ®
P PARALLEL \ | READODUY
y, READOUT ) 1 SUPERYISOR

REMUS READOUT SYSTEM

g REMUS CRATE CONTROLLER

ﬂ ROP. READOYT PROCESSOR E REMUS DATA BUFFER

51 REMUS BRANCH DRIVER

EVENT EYENT
@ BUILDER MANAGER
@ @ EVENT
REQUEST

168E, MASS-STORAGE, MONITOR

.....

[FULL EVENT DATA HANDLING TASKS}
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DOUBLE
EUROD
MODULE

VME CRATE

20 SLOTS »

VHME MODULE

....................................

| VME OPT 24
24 BIT ADDR.
16 BIT DATA

VME OPT 32
32 BIT ADDR.
| 32 BIT DATA

.......................

¥YMX LOCAL BUS
24 BIT ADDR.
32 BIT DATA

VME/VMX/VMS BUS ARCHITECTURE

EXTERNAL BUS

]

1~0
DRIVER

VHMS BUS

EPRON

RAM cpusz| | RAM

YME BUS FOR GLOBAL CONNECTION
YHMX BUS FOR EXECUTION AND DATA TRAFFIC
VMS SERIAL BUS FOR SYSTEM CONTROL

EE= —vmRis=——+

~ 32 BIT DATA PATH

- 4 GIGABYTE ADDRESSING

- MULTIPROCESSOR, MULTILEVEL SYSTEM
- INDUSTRY STANDARD

- 20 MB/SEC BANDWIDTH

VYHMX BUS

- 32 BIT DATA PATH
-~ 16 MEGABYTE ADDRESSING
-~ RIBBON CABLING BETWEEN SLOTS

- G -
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= VME COMPONENTS
CPUAL 60
DUAL PORT MEMORY 60
EPROM MODULE 16
CRATE INTERCONNECT 18
INTERUPPT GEN. 2
PARALLEL 10 2
168E DATA LINK 2
REMUS BRANCH DRIVER 40
VME CRATES 18
3081E VME INTERFACE 12
VIDEO DISK SCSI INTERFACE 2

Data Sud
Data Sud
Force
Helsinki
Saclay

Lapp
CERN/ED~DD
CERN/EI-EP
CERN/DD

CERN/ED-DD
Data Sud
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M68010 CPU

YME/YMX DUAL PORT MEMORY

YME CRATE INTERCONNECT

YME INTERRUPT GENERATOR

YME/YMX DMA CONTROLLER

YME PARALLEL INPUT/OUTPUT

YME/YMX REMUS BRANCH DRIVER

3081E YME INTERFACE

GENERAL PURPOSE PERIPHERAL CONTROLLER
SCSI BUS CONTROLLER (THOMSON VYIDEO DISK)



DPRX. VME-VMX DUAL PORT MEMORY
(DATA SUD FRANCE)

-

CPUA 1. MCB8010 VME~-VMX PROCESSOR
(DATA SUD FRANCE)

g

[V | Lic

DPRYX. STATIC RAM
128KB, 256KB

HCEBO (O \
VHE-yMY | VME
MASTER
DPDX. DYNAMIC RAM AKB RAM
S12KB, 1MB | 256KB RAM
\ 64KB EPROM
- vIix NS 16001
DTACK L RS232 VMX
1 TIMER
E==—=pRX.DUAL PORT MEMORY == M-
1287256 KByte static memory
400 ns access time i
Byte/Word/Long word access EEmm=————r CPUAJ
YME/VMX access 68010 8 MHz .
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VMX DIRECT MEMORY ACCESS

REMUS-VME REMUS-YMX VME-VMX

SPY

MASTER

RS 232
SERIAL

INTERFACE ﬁ

VME CRATE INTERCONNECT
(HELSINK! UNIVERSITY)

.

[VME

CRATE INTERCONNECT BUS
32 BITS DATA AND ADDRESS
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VME PARALLEL INPUT/OUTPUT MODULE
(LAPP/ANNECY)

16 Bits
ouUTPUT

EVME/VMX PARALLEL /0=

6 Bit INPUT (TTL-NIM)
16 Bit QUTPUT (TT1-NIM)
512 Words FIFO (200ns)
YME CONTROL

YMKX SECONDARY MASTER

DATA COMMUNICATION 16 Bit SEQUENCER 16 Bit STATE ANALYZER

VHE - VIE VIE

||
RAM
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SYSTEM BUSSES and MODULES
READOUT SUPERVYISOR

- EYENT MANAGER

PARALLEL READOUT UNIT
EYENT UNIT
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DATA ACQUISITION BLOCK STRUCTURE

Trigger  Busy

Rendout
Gupervisor

Event
Manager

Svpnt  Rew
Baguest %

DETECTORS

Detector Busses

1 Bus Drivers

Locd Busses

Buffers

DHMA

’;

[

Event mm

ﬁ EVENT DATA SAMPLING

DATA

EVENT MANAGER

ACOHSITION

Detector
Digitizers

Paralie!l
Readoul

Multievent
Bulfer

Event
Bullder

UG

A VME master processor of the Event Data Bus.

TASKS:

Initialize/Test the Event Units
Process the event requests

Communicate with the Readout Supervisor
Build one event data into event unit buffer

Update multievent buffer directory

Control the Readout Supervisor



READOUT SUPERVISOR

PARALLEL READOUT UNIT

A VME master processor of the Readout
Control Bus.

TASKS:

Initialize/Test Readout Units

Process Trigger signal (Read,Busy,Clear;
Start and monitor readout operations
Keep the multi event buffer directory
Communicate with event manager

THE PARALLEL READOUT UNIT
PERFORMES THE FUNCTIONS OF
CONTROL AND READOUT OF A
DETECTOR BUS AND THE DATA
STORAGE INTO A MULTI EVENT
DATA BUFFER

THE UNIT CAN HAVE LOCAL CPU
POWER FOR DATA REFORMATTING
AND SECOND LEVEL TRIGGERING

Detector Bus (Remus, Specialized bus ... 3

( Vi‘!fi BUS HEADQU’? CONTROL SYSTEH )
Deteator Beadout e Trigger
Bus Driver cpy Supervisor :.’..’g;’;gr

Dual Port | Muilisvent
Memory | Buffering

Resdout Conlrol
Dals Formatling
Second Leve! Trigger

< VHME BUS EVENT BUILDER SY3TEN

CRATE
INTERCONRECT

- pf -



mQBM

REMUS READOUT
IAROCCI YME READOUT
FASTBUS YME READOUT
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FASTBUS READOUT UNIT
( MICROVERTEX LECROY TOC SYSTEM)

/ FASTBUS CRATE
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| I \
LECROY| |LECROY
T0C PROC.

{_ READOUT CONTROL BUS SYSTEM >

[ 1Y

DRIVER

MY [// DPRY
Buot Port

HMemory

|

< EVENT BUILDER BUS SYSTEM >

LECROY PROCESSOR
YHE~YMY INTERFACE

STREAMER TUBE READOUT UNIT

{Straamer Tube ADC Readout (STAR) ]
16 busges-

Monitor

CPUA il

<

f .
4 YHE DATA BUS >
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DATA SAMPLING UNIT
168E EVENT UNIT
3081E VME SYSTEM



63020 SECOND LEVEL TRIGGER
PARALLEL READOUT UNIT
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{  READOUT CONTROL BUS SYSTEM >

e 10 1]

Detestor cPU | Readout | Trigger
Bus Driver | | 68020 | Supervisor o BHSY

Readout Controt

Dual Part

Muittevent Date Formeaiting
Memery | Buffering Second Level Trigger
| ]
< EVENT DATA BUS SYSTEM D

I

3081E SECOND LEVEL TRIGGER
PARALLEL READOUT UNIT

]
X,
{ READOUT CONTROL BUS SYSTEM

4 i
e TG

Reandoul 8
Supervisor Wc?esé‘r

Detector
Bus Driver

£

BUS DRIVER WITH
DA CAPABILITIES
OM THE YHX PORY

< EVENT DATA BUS SYSTEM
1

168E EVENT UNIT

(oA

{  EVENT DATA BUS SYSTEM

)

bl
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. DPRE
256KB

LONG DISTARCE
YME CAMAC LENK

256X

DPRX

i

CAMAC

DUAL PORT
HMEMORY FULL
EVENT BUFFER

| yrg-ptal | FPUAL
(3 ] 11
< PERIPHERAL CONTROL BUS SYSTEM )
TRIGHER =] 168E SYATUS
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¥

l168E 4]
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EVENT UNIT

SUB-EVENT UNIT SYSTEM

THE EVENT UNIT 18 A COMPUTER
SYSTEM ABLE TO COLLECT A
FULL EVENT DATA BLOCK.

| THE EVENT 1S BUILT INTO THE

UNIT'S MEMORY BY THE EVENT
MANAGER, | INTERCONNECT |

THE EVENT UNIT CONNECTED TO gy s i vl o s ’ I}
THE MASS-STORAGE SYSTEM RUNS ( EVENT BUILDER BUS SYSTEM

THE PRIMARY TASK

f CRATE )

THE SUB-EVENT UNIT SYSTEM
IS A YME CRATE WITH UP TO P oY
6 CPU GETTING EVENT DATA

¥
FROM A THE VME PORT OF A §
Lm%%@é‘;igﬂ} ONE MBYTE MEMORY CONNECTED ~ » ;
2 VIA YMX TO A STANDARD EVENT CPUAT| | |
UNIT CPU L
¢ EVENT BUILDER BUS SYSTEM D f v
{ PERIPHERAL BUS SYSTEM >
DUAL PORY EVENT -
MEMORY MANABER UP TO & SUB-EVENT UNITS
: t 2 3 4 DPDX |
. EVENRT READY EVEMT REQUEST CPUA ! ! MBYTE -
cruat || IS
SUB~EYENT UNIT YME BUS >
C PERIPHERAL BUS SYSTEM >

¥
EMULATOR 5TALK G
MASS STORABGE @
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VME VIDEO DISK (THOMSON G1001)

CRATE
IHTERCONHECT
DitA

{ PERIPHERAL CONTROL BUS SYSTEM >

SCsiI BUS
TN

PROGHAMMABLE SCS1
IMTERFACE,

YME AND YMX DATA
TRANMSFER POSSIBILITY

THOMSON G1001 YIDEQ DISK =y

CAPACITY 1 GBYTE (8 6250 BP1 TAPES)

SPEED 4 MBIT/SEC (6250 125 IPS MTU)

DISK CONTROLLER WITH ERROR CORRECTION

UP TO 8 DRIVES ON A SINGLE CONTROLLER

SCS| INTERFACE (Small Computer System
interface).
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YME CRATE LAYOUT
YME LOGICAL LAYOUT
SYSTEM BUSSES
SYSTEM MODULES



3081E STACK VME EVENT UNIT
(ON~OFF LINE MAIN FRAME)

CRATE |
INTERCONNELT |

GHMA

¢ EMULATOR EVENT DATA INPUT BUS (VME) >

YME 3081E
INTERFACE

EMULATOR
STACK

PAXY
CAMAC

{ EMULATOR PERIPHERAL CONTROL BUS (VME) »

] 1 P

CPUAL MASS STORAGE DATA
VIDEC LINK

DiSK

E==== VME 3081E INTERFACE FEATURES ===

EMULATOR CONTROL

3081E MEMORY DIRECT MEMORY ACCESS

3081E MEMORY WINDOW ACCESS BY BLOCK OF
64K BYTES MAPPED INTO YME ADDRESS SPACE

VME PARALLEL READOUT

PHYSICAL LAYOUT

DETECTOR BUSSES

RARRRER IRRRRARN RERRERR!

£ 8 X |

(R

— 75

e

DETECTOR BUSSES
e ~
EADOUT CONTROL EVENT DATA
SYSTEM BUS SYSTEM BUS
1

[

DUAL PORT MEMORY. MULTI EVENT BUFFERS

DETECTOR BUS DRIVER. PARALLEL READDUY

VHE CRATE INTERCONNECT SLAVE
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VME READOUT LOGICAL LAYOUT

CPUAL

El DPRX. DUAL PORT MEMORY

Bl CRATE INTERCONNECT
REMUS BRANCH DRIVER

[l vy BUS SEGMENT

CRATE INTERCONNECT LAYOUT

16BESNORD GIGADISK

READOUT READOUT READOUT
CRATE 1 CRATE 2 CRATE 3
i I . |
EVENT DATA EVENT DATA EVENTY DATA
CRATE 4 CRATE S CRATE 6
11 i
READOUT READOUT READOUT
CRATE 7 CRATE 8 CRATE 9
el 1 i
$ necLeveL s
4 mc roon
RACK 9 RACK 10
READOUT EVENT UnNIT
SUPERVISOR | | 16BE, ZPHYS.. TEST CRATE
[ 3 | £
0 A 18
EVENT EVENT UNIT
MANAGER 3081E
SUB~EVENT EVEKNT UNIT 3081E
UNIT CD CALIB. DATA OUTPUT
I T I
7 c B
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VME CRATE LAYOUT

READOUT SUPERVISOR VME CRATE A

MEC THIRD FLOOR

iRﬁAi)ﬁiﬁ“ SUPERVISUR CPU 10 EPROM MODULE FOR
SYSTEM COLDSTART

| HORD VME MASTER |

READOUT CONTROL EVENT DATA
SYSTEM BUS SYSTEM BUS

TRIGGER ——p |
CLEAR
BuUsY L

!

VHE~NORD PLAYBACK

CRATE INTERCONNECT DATA MEMORY

READOUT CONTROL
3081E
OUTPUT MASTER UNIT

INTERRUPT VECTOR GENERATOR
TRIGGER CONTROL UNIT
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EVENT MANAGER VME CRATE O

{ EVENT MANAGER CPU 39

EPROM MODULE FOR
SYSTENM COLDSTARY AND
TEST DATA

EVENT UNIT VME CRATE 8

EVENT MHANABER DATA
COMMUNICATION MENORY

MAL VEE
INTERFALE

DAS-168E EVENT um?;

\ ;mc VEE INTERFACE

EVENT UNIT 256BK BUFFERS

EVENT MANAGER HASTER

CRATE INTERCONNELT AND

LONG DISTANCE UNIT

VHE CAVIAR LINK

CAV-NORD (6,1,20)

FOR MONITOR DISPLAY

CPU 35, CAMAC LINK -

DISPLAY EVENT UNIT
CPU SF, 1MDYTE Rait

COLOR DISPLAY
EVENT-DISPLAY
CAL~-DISPLAY

\e=, 7
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ZPHYS EVENT UNIT

DAQ CPU 7E(VMX PRIMARY)
1HBYTE DUAL PORT RAH i
DISPLAY CPU 17 (VMX SECONDARY)

YME-NORD
SPS LINK

/

EVENT MANAGER

CRATE INTERCDNNECT
{Ci = B)

CALORIMETER EVENT UNIT

DAQ CPU 7C (¥1X PRIMARY)
IMBYTE DUAL PORT RANM

DISPLAY CPU 6A (VMY SECONDARY)

DAS-CAYIAR
YHE LINK
CAY-ND 7,2,3
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EVENT UNIT iNORD ) ]
/ ' CRATE 8
DAS-CAVIAR VHE
INTERFACE
EVENT UNIT} I
VMX
SPUsS SEGHENT
EVENT UNIT DATA
-4 0 -5 4 ,;,.vé"' BUFFER 2%256KB
= T
EVENT MANAGER
CRATE

- 601 ~



EVENT UNIT VME CRATE C

CPU 7B

VERT MANAGER DATA

MAL VEE

LE
TEST EVENT URIT COMHURICATION MEMORY
SUB-EVENT UNIT i EPROM
EVENT MANAGER

INTERFACE [HORD VME MASTER | /

EVENT MANAGER

CRATE INTERCONNECY
(C1=C)

|

CENTRAL DETECTOR EVENT UNIT
DAQ CPU 6C, DAGQ CPU TC

1 MBYTE DUAL PORT RAN

DATA COMMUNICATION CPU 7E

< YME >
1

4 YME >

VME SYSTEM BUSSES

_EDETECTOR BUS. DIGITIZER READOUT 5§

The BUS connects the digitizer
modules to the YME drivers such as
REMUS, STAR (streamer tube)
LeCroy FAST BUS 1892 processor

g&ﬁ&&%&%‘?ﬁﬁ&?ﬁﬁ%ﬁ& CONTROL BUS

The BUS initializes and controls all
the readout driver unils and
peripheral devices

E====— FVENT DATA BUS

The BUS connects the parallel
readout memories together, and
to the event builder ones.

< YME >

E=——— 10CALBUS =———

The BUSses connect the detector bus
driver to the parailel readout dual
port memory and the event builder
event memory to the event unit CPU

E= CRATE INTERCONNECT BUS (CI)

The BUS connects together up to
16 YME crates, allowing memory
mapping and DMA transfer.
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VIDEO DISK VME LAYOUT AND DATA FORMAT

VME BUS
L] L L
FLEXIPM
1 HBYTE USER
DHA
ses1 RAM teu
i?%& Bus

5CS1
VIDED DISK

"DISK 24

;me, 2 | DS 2,05 1,
P 1

i b i o VOLUME RECORC
o FOINTERS AHD FLAGS
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M680OXX SOFTWARE DEYELOPMENT
YME-MAIN COMPUTER DATA COMMUNICATICN
YME-PERSONAL COMPUTER APPLICATION



MODULES

VME-MAIN COMPUTER DATA COMMUNICATION

E=—— DETECTORBUS DRIVER =] ¢

VHME BUS >

The module interfaces a detector
BUS either to VME or VMY parallel
readout system

CPU MODULE {CPUA1 68010)
These modules perform the
functions of readout controller,
readout supervisor, event builder
and event unt

E—=— DUAL PORT MEMORY =
The module is used either as multi
event buffer for parallel readout or
full event data buffer or for data

communication between YME crates
o s

{RORD 170 BUD

YME BUS MASTER MODULE
DRIVEN BY NORD 170 {SPS/LEP) |

NORD 10X instructions sel the
sddress, the data direction and

read or write 16 bit dals

YMX-CAMAC LINK {CERN ED/DD)

Hodule contrel via VHME access.
VMK secondary master with a
DMA channel. (4MB/sec speed)

The CAMAC module emulates a
Remus branch driver

YME/YHMX 16 BIT PiO (LAPP)

{_CAMAC >

<

E==—= CRATE INTERCONNECT =—

VHE BUS >

<

The module connects YME crates
by means of a Cl BUS allowing
window and DHMA access modes

o Rt

Used with a CAMAC parallel
170 register

CRATE INTERCONNECT {HELSINKI)

DHMA block move between YME
crates or YME and CAMAC
dataway

{  CAMAC
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VME SOFTWARE DEVELOPMENT

YME CRATE

NORD

CPUAI

~ Resident monitor. MONUAL
- ¥ME Resident Libraries:
CAMAC
RAM test
{rate interconnect
Remus Branch Driver
168E YME-CAMACL link
3081E utilities

NORD 100/500

~ CERN MCB8000 Cross Assembler/Linker/Pusher
~ HVYDS Fortran Compiler

-~ Standard Fortran Libraries

| 1007500 |

MACVEE

Microcomputer Applied to the Control of VME

MACPLINTH

Electronics Equipment

z APPLE Macintosh i

MEMORY MAPPING OFUP TO 8 YME CRATES

é MacVYEE VME Hﬁ}[}ﬁiﬁi

YME
CRATE

B

AND 7 CAMAC CRATES
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A 68000 PERSONAL COMPUTER
VME INTERFACE

YHME MODULE l YME CRATE

BUS MASTER

ADDRESS

LONG DISTANCE
CPU BUS EXTENSION

ADDRESS DECODER
MEMORY MAPPING
INTERRUPT MERGER

INTERFACE SOFTWARE = "NONE~

MacVEE MULTICONSOLE
-EXPERIMENT CONTROL SYSTEM

HacVEE

canac
DATA 170

YME CRATE



E=== MacVEE APPLICATIONS =

- YME/CAMAC TEST SYSTEM

~ ¥ME BASED MULTIPROCESSOR SOFTWARE
DEVELOPMENT SYTEM

- MULTIPROCESSOR SYSTEM MONITOR AND
INTERACTIVE INTERFACE

[ vMEe
| CRATE 1

........................................

CRATE 8

CRATE 1

CAMAC
CRATE 7

MACVEE SOFTWARE DEVELOPMENT

EE==—— MACINTOSH STAND ALONE ===

APPLE MDS. Editor, assembler and linker
ABSOFT FORTRAN T7
MICROSOFT BASIC

YHME utilities

CAMAC librery (MAC-CCend DS branch driver)
UAl System  {General user support}

UA1 Editor {Window handling facilities)
HYDS FORTRAN {(MAC and CPUAT development)

E===——— \ORD CROSS SOFTWARE =]

CERN CROSS ASSEMBLER/LINKER/PUSHER
HYDS FORTRAN

FORTRAN LIBRARIES

DOWN LOADING INTO YME MEMORY

YME CRATE

MACYEE

R
—2 RS232
8 NORD
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MACVEE READOUT-SYSTEM FRONT END

ik

s

READOUT MONITOR

EMULATOR MONITOR

EYENT UNIT MONITOR
AND SYSTEM BACKUP

VME READOUT

Modular structure
Separate bus system/function

industrial standard niult?pmcessar bus
Cost effective
Upgradable

= LI] =
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USION

THE DESCRIBED SYSTEM IS INSTALLED IN THE
UAT EXPERIMENT AND IT 1S RUNNING SINCE
SEPTEMBER 1985.
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THE OPAL VMEBUS DATA COLLECTION SYSTEM

J.C.Brisson, Ph.Farthouat, B.Gandois, F.X.Gentit, V.Hajjar, P.Le Du
E.Lesquoy, J.Mallet, P.Rougevin—Baville, S.Zylberajch

0.1 - INTRODUCTION.

I will present the non-VAX part of the data-acquisition system of the OPAL
experiment, the part iocated between the front end detectors and the VAX cluster. My
talk is divided into two parts, the first one for the hardware, the second one for the
software.

0.2 - HARDWARE.

it was decided in OPAL not to impose one and only one standard of bus for the
front~end part of the data acquisition. Severa! arguments were in favour of this attitu-
de :

- It appeared expensive to disregard all the existing hardware in CAMAC and also all
the experience accumulated with this bus.

- For the small detectors, the complexity of FASTBUS is definitely not needed.

- On the contrary, for the central detector, CAMAC was inadequate and the solution
adopted of a combination of ECL crates in EUROPE mechanics and VME crates has
two advantages over a FASTBUS solution: it is cheaper and leaves more freedom in
the use of microprocessors

In consequence, it was decided to organize the hardware of the OPAL data acquisi-
tion according to the following principles :

1. The front-end part of the electronics may be in ihe CAMAC, FASTBUS or
EURQOPE-VME standard.

2. The upper part is in the VME standarc.

3. The general structure is an inverted tree with branches and sub~branches. The tree
has 5 feveis. The tree appears naturally due to the fact that each proceessor in the
set~up has one and only one direct master, able to read or write into its memory.
Nobody else in the set-up is able to read or write into the memory of the
processor.

4. The first subdivision of the tree is a subdivision into 12 detectors. Each detector
has a test computer and is able to work in a stand alone mode, separated from the
rest of the experiment during the test phasis.
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5. The only way to communicate from one branch to another is through messages (by
the PALABRE message system which will be presented later). It is safe in the sense
that it is impossible to have a direct access from one branch to another or from
one detector to another, so that a software error in one detector cannot cause any
trouble in other detectors.

0.2.1- THE FRONT-END PART.

(see fig. 1)

The front-end part is at the fifth level of the tree. Its processors are ACC (auxiliary
crate controllers). 3 cases are to be considered :

a) CAMAC crates.

(see fig. 2)

In that case, the ACC are the auxiliary crate controllers named CACs and built at
Saclay : they use an MB68000 microprocessor, are perfectly conform to the CAMAC norm
concerning auxiliary crate controllers and are aiso conform to the CERN-SACLAY conven-
tion for addressing CAMAC with a M68000.

All crates are organized in branches . At the top of the branches are CBAs (auxiiiary
branch controller), located inside the detector system crate. We describe them in the
section concerning the detector system crate.

b) FASTBUS crates.

(see fig. 3)

FASTBUS crates are used by all the detectors using charge integrating ADC (
electromagnetic calorimeter, presampler, end cap calorimeter and hadron calorimeter). All
these FASTBUS crates converge into a detector system crate which may be either a VME
crate, or a CAMAC crate.

c) EURDPE and VME crates.

(see fig. 4)

For the JET chamber, the Z chamber and the VERTEX chamber, the front-end
electronics will use a specific ECL bus in EUROPE mechanics, interfaced to the VME.
Each EUROPE crate is read by a CPU board, sitting in a true VME crate, and playing the
same role as the CACs in the case of CAMAC. A prototype of such a VME CAC is now in
use at the JADE experimeni. It is based on the CPU 07 board of MICROSYS. The 8 VME
crates containing CACs are grouped into 4 branches driven by 4 VME CBA. This VME CBA
will be described in the next chapter.

0.2.2- THE DETECTOR SYSTEM CRATE.

a) Bus stangard for the detector system crate.

All the front-end branches of a detector converge into a detector system crate,
containing CBAs. This detector system crate is

a CAMAC crate in case of a front-end electronics in CAMAC.
a VME crate in case of a front-end electronics in EUROPE mechanics.
a VME crate or a CAMAC crate in case of a front-end electronics in FASTBUS.

b) CAMAC detector system crate.

In case of a CAMAC detector system crate, the CBAs are also based on the M68000
microprocessor. They work the same as the CACs previously described, and in addition
they are able to drive a CAMAC sub-branch. They follow the same norms as quoted for
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the CACs. The final version of these two modules have been succesfully tested in real
experimental environment.

c) VME detector system crate.

With VME, we have two problems to solve :
1. how to build the equivalent of a CBA in VME.
2. now to interconnect VME crates.

We want the VME CBA to be able to drive a branch with 16 crates. We do not want
to buiid ourselves the CPU used in the VME CBA. We want to buy it as a commercial
VME board. So a VME CBA is at least composed of 2 boards : the CPU board and the
branch driver board. The connection between the CPU of the CBA and its branch driver
cannot use the VME bus, but must use a private bus in order that many CBAs be able to
work in paralle! in the same crate.

On the contrary, if the problem is not to build a CBA, but only to interconnect VME
crates then the interconnecting boards have to be operated from the VME bus.

We intend to solve the two problems { the probiem of building CBAs in VME and
the problem of interconnecting VME crates) by mean of a VME board, called VME Inter~
face Port { VIP),now in development at Saclay.

i* The VIP.

(see fig. 5)

The VIP can be considered as a module with 3 physical ports:
1. A VME port.
2. A VMX32 port.

3. A branch port, for the connection to other VIPs in other crates. We will call this
port the BVMX32 port, B standing for branch.

To each of the B4 lines of the VMX32 bus corresponds a differential pair in the
BVMX32 branch : this in order that the BVMX32 branch be adapted and abie to extend
over long distances. Except for that point, the BVMX32 branch is identical to the VMX32
bus.

All the VIPs connected together by a BVMX32 branch have the same branch number.
Bits 28-31 of the address are reserved for the branch number: so each time an address
is emitted with bits 28-31 indicating the branch number of a VIP in the crate, then the
ViP is addressed and the transaction goes through the branch.

Bits 24-27 of the address indicates the destination crate. So once the transaction is
in the branch, the VIP with the crate number specified generates the transaction into its
crate and give the result back into the branch.

So, if the VIPs are used for a VME-VME interconnection, the path followed by the
transaction is :

The VME bus of the master crate between the CPU and the VIP of the master crate.

The BVMX32 branch between the VIP of the master crate and the VIP of the desti-
nsation crate.

The VME bus of the destination crate between the VIP of the destination crate and
the addressed module.
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If the branch is driven by a VME CBA, then the connection between the CPU of the
CBA and the VIP master of the branch is through the VMX32 bus of the crate, so that
many CBAs may work in parallel in the detector system crate.

Accordingly, a VME-VME CBA will consist of 3 VME boards, communicating together
through the VMX32 bus :

¢ A CPU board, interfaced to VME and to VMX32
e A double port (VME VMX32) memory extension board.
o A VIP,

If you need instead a VME-CAMAC or a VME-FASTBUS CBA, then it is only necessary
to redesign the VIP. A VIP for VME-FASTBUS ( calied a FIP) is now in development at
Saciay.

d) Link with the test computer.

In each detector system crate, there is one CBA which has the special role of linking
the detector system crate to the test computer. This special CBA will be called the CCBA.
two cases have to be considered :

i* The test computer is only an intelligent terminal (Macintosh).

In that case, we intend to use for the connection between the CCBA and the
Maclntosh exactly the solution adopted by the DD division at CERN for the VALET plus.
The characteristics of this solution are the following :

e The link between the CCBA and the Macintosh is simply an RS232 connection.
e All application programs are running in the CCBA, not in the Macintosh
° The Macintosh is only there for :

Editing PILS programs, downloading them into the CCBA, saving them on disket-
tes or printing them.

Allow the program running in the CCBA to do I/0 on its keyboard, screen and
printer.

Display of histograms on the screen.
Allow the program running in the CCBA to use files.

In the case of a VME detector system crate, we have nothing eise to do than taking
hardware and software of the VALET plus (PILS,MINIGD3, HMINI). In the case of a CAMAC
detector system crate, P. Scharff-Hansen and J.Petersen of the DD division of CERN have
succeeded in transporting the VALET plus software on our CAMAC CBA.

ii* The test computer has a VME or CAMAC interface.

It seems to-day that in OPAL only two kinds of test computers will be used
Macintosh and MicroVaxes. In the case of a MicroVAX test computer, we intend to
provide much more than simply an intelligent terminal. In particular we ask

° that the MicroVax be able to run programs itself and execute operations into the
VME (or CAMAC) crates of its detector. In the case of VME, there is no problem if
the MicroVax has a VME interface: it can access any crate of the system through the
VIPs of the CBAs of the detector system crate. In case of CAMAC, the problem is
that the the CAMAC CBA is not transparent, so that an operation in a subbranch is
only possible in an indirect way, through a dialog with the CBA of the subbranch.
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But all this dialog may be done by software in a mode invisibie by the user, so that
the transparency is recovered by software.

[ that the MicroVax be able to send or receive messages from the PALABRE message
system ( the PALABRE message system connects all mini or micro processor involved
in data acquisition and will be described later ).

0.2.3- THE VME-VMX MATRIX INTERFACE.

{see fig. )

When the detector's data have reached the CBAs of the detector system crate, they
are read by the master of the CBAs. The master of the CBAs is called the DIF { Data
acquisition processor of the InterFace} and is a3 processor of the VME interface. If the
detector system crate is a CAMAC crate, then the link between the DIF and the detector
system crate will be through a VME CAMAC branch driver { the one commercialized by
C.ES.). If the detector system crate is a VME crate, then the VIP will provide the link.

The OPAL VME interface is formed of N+2 VME crates, where N is the number of
detectors. So there is one crate per detector plus one master crate, plus one extension
of the master crate. in each of the crates assigned to a detector, there is one
processor, the DIF and a certain number of memory boards. The DIF uses one and oniy
one memory board to store one event of detector n. If an other event comes, an other
memory board will be used. All these memory boards are connected vertically by a
branch extension of the VMX32 bus (the same as described for the VME CBA). At the top
of the BVMX32 branch, inside the VME master crate, is a CPU, called the FIF ( Filtering
processor of the InterFace). This FIF is a VME-VMX32 CPU board, and a smal! appendix
behind the VMX32 connector transforms the VMX32 bus into a BVMX32 branch. It is this
BVMX32 branch which connects vertically the FIF with all its memory boards. The FIF
can read through its BVMX32 branch a whole event, that is to say N memory boards,
each filled with data of a particular detector. So the FIF is the first processor of the
set-up which may do sophisticated filtering, because it is the first processor handling a
whole event. .

In the VME master crate is a special processor called the MIF ( Master of the
InterFace) which is in fact the direct master of the DIFs and FiFs. It is able to read into
the memory of the FIFs through the VME bus of the master crate. It is also able to read
into the memory of the DIFs through the VMX32 branch connecting the MIF and the
DiIFs. So DIFs and FIFs are at the same level of the tree (level 3) and the MIF is their
master (level 2). The master of the MIF is the VAX (level 1). The role of the MIF is the
following :

1. Assign to each DIF the memory siot that it has to use for the next event. This is
done by looking at the FiFs in order to find one free { that is to say having
terminated its filtering process and sent its event towards the VAX).

2. Looking at the FIFs in order to aliow one FIF having terminated its filtering process
to send its event towards the VAX. - -

3. Handling of the fast gate module of the experiment.

4. Handling of the PALABRE message system.
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0.3 - SOFTWARE,

0.3.1- INTRODUCTION : LESSONS FROM THE PAST.

| won’t go here into the PALABRE data acquisition program itself, which is
documented eisewhere. | will restrict myself to the general principles that we are trying

to follow, and | will spent some time on the main characteristics of this program : the
PALABRE message system.

In order to understand the background on which our ideas are based, it is of inter-

est to have a look at the past and see how microprocessors were used in physics
experiments.

Let me distinguish four periods for the use of micros in high energy physics
experiments :

a) Good old days. ’

During these ages, high energy physics experiments were driven only by one
mini—computer, without the help of microprocessors. It is however to be remembered
that during these good old days mini computers were good in real time applications : a
PDP 11 working under RT11 needed only 100 microseconds to react to a trigger.

b) Infancvy.

Microprocessors made their appearance in experiment first as a non essential heip
for the mini-computer, to solve very specific probiems, like

reordering or compacting- of data for one apparatus.

elementary track recon'struction.

calculation of simple second order trigger.

The characteristics of this way of using microprocessor are the following :

[} the microprocessor is not an essential part of the experiment : if it fails, it can be
switched off and the work that it was intended to do is either done by the
data-acquisition computer or left for the off-line analysis.

. the setting up of the microprocessor was very often not done by the people in
charge of the data acquisition, but by the people in charge of the apparatus on
which the microprocessor is intended to work. In case of a problem, the data acqui-
sition people could only switch the micro off and wait for the arrival of the expert.

c) Babel.

A proliferation of microprocessors in experiment appeared very soon, for a lot of
good reasons : they are cheap, fast and fun. An other reason, not very often gquoted, for
this proliferation is the degradation of the real time characteristics of mini~computers :
nowadays a VAX needs 3000 to 4000 microseconds to react to a trigger.

As the way of using microprocessors did not change, the setting up of all these
micros became very painful, necessitating the presence of all experts all the time. The
tasks done by the micros were so numerous that it became unrealistic in case of
probiem to switch them off and to let the off-line people handle each case of failure.
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d) Remedies : standardization and communication.

Two remedies may be and are now applied to this situation: standardization and
communication.

If the level of standardization increases, it becomes more and more likely that
people in charge of the data acquisition will be able to manage possible problems or
bugs, because they no longer have to remember a lot of different systems.

On the other hand, if you are able to communicate between micros, you benefit
from the following advantages :

® A microprocessor faced with an abnormal situation can send a message towards its
master before it stops because of this abnormal situation. You are immediatly
informed of which micro has failed and why. An example of this kind of failure is
the case of spoiled memory : it is very easy to implement, by mean of a checksum
test, a test of the portion of memory containing the code of the program, test
which is activated from time to time. If this test fails, then the micro can send
towards its master a message saying “my code is spoiled”, and stop activity.

® As in the example just quoted, there are cases where the hang—up of the processor
can be cured without human intervention, provided you have a mean of communica-
tion between processors : for instance, in the case of spoiled memory, the VAX can
be asked to reload the program into the hanging processor and to restart it, ali
automatically.

° If you have a message system connecting all your processors, you can even debug a
failing processor from any terminal of the set-up. It is not necessary to go down
the pit in front of the microprocessor with a terminal under your arm.

0.3.2- PRINCIPLES ADOPTED IN THE OPAL EXPERIMENT.

a) Standardization.
In OPAL we propose to use these ideas in the following way :
1. We decide to standardize on the use of microprocessors of the M68000 family.

2. We also standardize on the use of one MONITOR for all our microprocessors : we
choose MONICA because :

Contrary to many other monitors, it is easy to transport MONICA from one
processor to an other: we had no problem to transport it from the VME CPU
board 101 of MOTOROLA to our CAMAC CACs and CBAs. This characteristic is
essential in an experiment where different busses will be used, and even
different CPUs inside each bus.

It allows without any adaptation the use of the CERN cross-software system,

allowing modular programming in PASCAL, MODULA 2, FORTRAN 77 or ASSEM-
BLER.

It has a debugging facility.
It needs less than 20 microseconds to react to an external trigger.
3. We standardize on the use of PASCAL and ASSEMBLER for the body of the data
acquisition program, allowing however USER routines to be written in FORTRAN 77.
A USER routine is easy to switch off and the responsability of debugging it

belongs to the user.

4. We standardize on the use of the CERN-DD library for graphics and histogramming.
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Although we said that one of the reason for the Babel-like situation that arose in
the micro~world was the fact that the programs inside the micros were written by
specialists of the apparatus and not by the people in charge of the data acquisition, we
still think that these people are best placed to write the data acquisition and
monitoring routines for their equipment. It is much safer that these routines are
written in the form of user routines, embedded in the framework of the main program,

which is written by the data—acquisition people AND WHICH IS THE SAME IN ALL
MICROS.

So the last, but not the least point in the standardization of the OPAL data acquisi—
tion system is the fact that we hope to reach a situation where the programs are the
same in all micros, except for the user routines and options selected.

b) Communication : the PALABRE message system.

The most important aspect of the OPAL data acquisition program in the
microprocessors is the PALABRE message system.

Having recognized the necessity of a communication system between micros, we
assigned the following tasks to it :

1. Fatal error messages in case of abnormal situations.

2. Non fatal error messages.

3. Periodic display on a centralized terminal of the most important flags of the data
acquisition program of each processor.

4. Setting of flags inside each processor.

5. Loadinvg or checking code.

6. Reguesting or sending histograms.

7. Requesting or sending events to spy computers.

Once these specifications were made, we chose to use for the physical part of the
PALABRE message system the same path as the data. It means that the PALABRE message
system uses the CAMAC dataway and branch in the CAMAC part of the experiment, and
the VME or VMX32 bus in the VME part of the experiment. The reasons for this choice
are the following :

° Iin 1984, when we began writing the code, no standard had yet emerged for a LAN
applied to an high energy physics experiment.

° Even if the situation has changed in 1985 with the emergence of Cheapernet and
Utinet, one of the specifications of PALABRE is not satisfied by either of these LAN
the speed. The time needed to load the code inside 100 micros would be prohibi-

tive with these LANs, but is acceptable with PALABRE on CAMAC or VME.

° By using the physical path of the data for the message system, we reduce the
physical cost of the message system to zero.

Another point should be pointed out. The PALABRE message system is
implementated on an inverted tree with five levels (see fig. 7). As a consequence, the
routing problem is extremely simple. It represents a routine of 40 lines of assembly
code. This is to be contrasted with the cumbersome problem of geographical to logical
address translation in FASTBUS, where there is no tree structure.
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0.4 - CONCLUSIONS.

We had the opportunity to test a first version of the PALABRE data acquisition
program in a set-up with a tree of 3 levels {(VAX,CBA and CACs) during the tests of JULY
1985. In order to simuiate the most complex situation compatibie with these tests, we
have artificially grouped into one branch of 4 CAMAC crates 4 different detectors of
OPAL. Each crate had a CAC, the branch was driven by a CBA and the VAX was reading
the events from the memory of the CBA.

We were happy to see that all the synchronization problems between the VAX and
the micros, and also between the micros themselves were perfectly taken in charge by
the Palabre message system.

These opportunities of testing the program are essential. Even if we had the chance
of verifying that the general design of PALABRE is sound and working, these tests
always point at a series of minor deficiencies which would not have been discovered
otherwise.



- 128 -

(D

VME or CAMAC

Crate £ -

o
|
{

mini or micro (||||

processor

etector SystemE

firt level trigoer nn}

-
5
@
c
o
w
>
he)
@
o
~

Frbnt end
digltizer
modules

m
o8 =
< a >
TR 54
32°¢
=]

L w

ADC,
TDC,FADC ..

1
H !
\ - - e e Y -
,__- ]

LS S |

et

| SpiyiaugingthydeSgligivy ugid

S C

Jme o o

Cel® Lo = VT 3

.......I.,,i s e}

A [RIC—

....l—

il
)

P L=
[62 €O RS L)

m=Il}]

B LD
(IR L = 3 VET- 3

Auxiliary Branch Controller { 68010 Processor and Memory )

CAC : Auxiliary Crate Controller { 68010 Processor and Memory )

CBA
SCANNER

Hardware Zero Skipplng Module

FIrs



- 129 -~

BRANCH 4 IR OF PLIGET
VME INTERFACE
TRIGGER — IRNEREAN
READY «— ol B
|
F .
‘Intelligent’
Terminal’ Crate No.5
i

Disglay c B
Print out c C
PS 232 s B
1 A
Floppy 1 N
——
CAMAC 12 bit ADC A
320 channels |2
COXKTROLS

‘HY menitoring ... | 2

(GONDOL A 2)

11 bit TDC

160 channels {2

11 bit TDC
160 channels |2

PATTERN |,

UNITS 2
160 Ch.

PATTERN |,

UNITS 2
160 ch.

FIG Z

CAMAC or VME
DETECTOR
SYSTEM CRATE

RUCRKSACK
RN2

FRONT END
CAMAC
BRANCH

[Ana!og channels: 320

Data throughput*: 350 By‘les]
* Hedronic event (20 charged tracks)




- 130 -

ELECTROMAGNETIE
BHARREL CALORIMETER

TRIGGER

EEDNCATED
TEST 5

VME INTERFACE
HERRNEE

READY «+— , || MEMOR
Fl EE : 1
‘Intelligent g
Terminal’ INRRERER]
Crate No.S
Lispley c 5 Y
c gle CAMAC or VME
BS 232 A BB DETECTOR
- : S8l | SYSTEM CRATE
LTEAR A FAR
SHID E 2 S$HD-E
(Pzcksack RN3) K (Rucksack RF3I) i
Graphi: Grephic ||
15 BIT ADC terminal| 1S BIT ADC terminel
1920 Channels 1920 Chennels
1920 Channels | FRONT END 1620 Channets |
880 Channels | | FASTBUSCRATES 880 Chennels |
COXTROLS A CORIROLS
HV monitoring... | 2 Anelog chennels : 9440 HV monitoring ...
Data throughput*: 550 Bytes
CAMAC * Hedronic event (20 cherged tracks) CAMAC

FiG

3




- 131 -

BRANCH 2 JET CRIAMBER

VME INTERFACE

Analog chennels : 7680 Dedicated
Date throughput* . 160 Kbyles ( W&B 019 07759) ! ' ‘ ! 11]]
¢ Kadronic eveal (20 charged trecks) test computer |
TRIGGER F ,
READY « !ﬂﬂlll
‘Intelligent’ Crat.e No.3
Terminal’ VME- VME tiok 10 Mbyles/s
v
AR E
Print oat El fCjaor fC VME DETECTOR
- RS 232 Al B} 8 B
1] |A]cza [a SYSTEM CRATE
Floppy =5 I
VHE Branch
COETROLS 80 CAC (turD) @@m@@n‘ A
HY monitoring ... or
l?gch§§o_r§ 24 CAC (Fastbus) GO}
. . :]:F]:I:I:I’]’
{GONDOLA 2)
- | VME CRATES
CONTROLS 2 (FB) to B crates (EURD)
Private
LASER Calibration DATABUS
1 {80 EURQ or 24 TASTBUS crates)

(Rucksack RN2) ! ! ! ! ! ! ! . !

100 HHZ TADC
(8 bit nonlinear)
EUR0:96Ch.
FASTBUS :320 ¢h.

FRONT END FADC CRATES

FIG 4


http://ri.DC

© YMK32

- 132 -

VIP

VME Interconnect Port

VIP in Master Crate

YME
port

BYMX32
YMX32 3 =

port

VME board

VIP in Slave Crate

YME
port

port

BYMX32
port

VME board

FIG 3



- 133 -

BUS

VME

Trigger 1

)

optical
fibbers

(21 4+ = S P )

R Dkt

LD vwanNnO Y I—

©an voacnafe ’4—
\

QoD BN - ’

DaD E-uvr-wuias

QoD wwenoim ’— .

“ private bus " §

Detector
System
Crate CBA's

|
v
&

i —‘rvnuu B~ _

“ private bus “ §

T L O L @ €I L)
— A AS , wC eI 5T

EWE =
EwWE $o b"
EwE e ’:
EWE fi— ’

:
&

Crate CBA's

s

™N

LV.G. : Interrupt Vector Generator L

m 1]

1= R

F—



- 134 -

DIF \F \IF
‘TOR iICTOR EILTER
SSOR :ESSOR Processor

DETECIOR
PROCESSOR

[ TEST

CBA]

V{0 X

MR

MASTER INTERFACE
PROCESSOR

DETECTOR BRANCK PROCESSORS

COMPUTER

'CONTROL

c c CcC ccoc .
A A A A A A FRONT END PROCESSORS
€c CcC C CccCoZCcC

PALABRE STRUGCTURE

FIL 7



Abstract

- 135 -

DATA ACQUISITION SYSTEM FOR NORDBALL
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A modular data aqcuisition system based on parallel data read-

out and processing and utilizing several MC68xxx based CPU's and VME-

buses is described. It has been designed for a joint Nordic Nuclear

physics (heavy-ion) 4w multidetector system - Nordball, but is easily

applicable for other systems. Readout and preprocessing system has

been implemented and full processing system is under construction.
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1. Introduction

The rapid development in the experimental facilities during
last few years and even more complex systems available in the future
have created greater demands on data aqcuisition systems of a nuclear
physics laboratories. Especially multicoincidence and multiparameter
experiments used in nuclear physics research can only be matched with a
multiprocessor data aqcuisition and processing system. The joint Nor-
dic multidetector system (NORDBALL) requires an efficient data aq-
cuisition system, but also experiments with other equipments are becom~
ing more complex. An efficient system designed for such a detector
arrangement with tens of parameters can also easily be adapted for
smaller scale experiments and used in smaller laboratories.

The basic concept of the NORDBALL project is that many
different types of detectors needed for the experimental program are
designed with the restrictions given by the modular NORDBALL frame.

The basic structure gives room for 20 large BGO shielded
Ge—detectors placed in the hexagons and 12 smaller detectors placed in
the pentagons.

It is planned that at least one frame is installed in
connection with each accelerator in the Nordic countries. Many groups
are taking part in the design of special equipment for their own
primary use, which then becomes available to other users too. The
following detector systems are considerd at the moment.

1. Anticompton spectrometers
2. Calorimeter for sum energy and gamma multiplicity and with time

of flight (TOF) discriminations against neutrons
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3. Beta-spectrometers of the orange type

4, Neutron TOF detectors

Sf Particle telescopes
6. Recoil detectors
7. Position sensitive detectors doe Coulomb excitation experiments
8. A plunger facility for lifetime measurements
9. A catcher facility for experiments with delayed radiation
A typical example of the NORDBALL equipped with 20 anticompton
spectrometers and a BaF, calorimeter for high spin spectroscopy is

shown in fig. 1.

NORD BALL

Equipped for high spin
spectroscopy

12* 5 fold counter element
for inner ball structure

;

L

$ 84139

. 20« double purpose / - Target chamber
Anti Compton
spectrometer ¢ 4 BaF, spectrometer

Fig. 1. A cut through the Nordball equipped with detectors for a typi-
cal high spin experiment. The set up includes 20 Anti-Compton

spectrometers and a Uwm BaF, calorimeter around the center.
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The most important detector, the basic element in NORDBALL
detector system is the anticompton spectrometer.
The design is compact and easy to "pack" around the target to
obtain optimum solid angle for each detector. The triple coincidence
rate is proportional to the 6th power of the distance to the target. A
good response function with a high peak/total ratio is also very impor-
tant such that the remaining background can easily be removed by simple
unfolding procedures. It may then become feasible to unfold 3—- and
maybe U4-dimensional matrix spectra without erroneous "blowup".
The main use of the data acquisition system for NORDBALL is
to collect data from the experiment and to store it for final data
analysis. However, also on~line sorting is essential due to large
amount of events. The data acquisition system has been designed
1) to collect event=by-event data up to 500 kB/s rate without consid-
erable dead time,

2) to preprocess events according to users criteria(by calibrating,
gating etc.)

3) to sort or presort some type of events on-line into computer memory
or to disk

4) to store unsorted events (or all events if so desired) on tape or
disk

5) to monitor some critical parameters during the experimentf

In order to fullfil these requirements a modular VME-based
system have been designed. The whole data acquisition system 1s. modu-
lar both in hardware and in software design. It is constructed in two
steps and thus there will be two generations of the systemf It has
also been designed so that it can be used at different size of Nordic

laboratories together with the NORDBALL or for some other experiments.
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2. First generation

In the first generation, which has been constructed, the data
collection and preprocessing is implemented on a multiprocessor VME-
systemf At this point the on-line sorting and storage of the event-
by~event data is done by a host computer which has disk and tape
units. The existing laboratory computers in each laboratory (PDP, VAX)
are used as the host computer. A schematic diagram of a hardware setup
of the first generation data acquisition system with one VME-crate and
a VAX host computer is shown in Fig. 2. As seen from the figure the
system can logically and physically be divided into three separate

parts: the LAB-system, the VME-system and the host computer.

ECLNI CAMAC iCAMACT NIM T°NIM™ T LAB system
logic doto Lduta ! data H 1 -logic

a-r- T -digitation
|
L =
ICRTPU, 170 1 1/0 WNRTCPU} 17077 VME system I
i b : i i {  -data collection
Lopmped togoq-J LIGQdE Lep~p-} Loco-.d  -preprocessing
HEH HEH 4 id
VME D
[ | - H
]

-data storoge
~monitoring

UNIT BUS D -user

= [

DRE 11 Host \AX/PDP
-sarting

Fig. 2. A block diagram of the hardware of the first generation data

acquisition system.
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The LAB-system consists of the data digitation devices (ADC's,
TDS's, etc.), their housing and interfacing. The system is designed so
that different kind of laboratory equipment and data transfer connec-
tions can be used according to local and experimental requirements.
Presently these include interfaces to NIM and ECL logic, CAMAC crates
and direct interface of Nlﬂ ADC's to the VMErbus. Later connections
for Fastbus, IEEE-488 bus etc. can be implemented. The system is de-
signed to be fully modular so that any combination of the laboratory
interfaces can be used.

The VME system I is a multiprocessor system based on one glo-
bal VME-bus, which can also be distributed into several VMEbuses, sev-
eral MC68000 (or MC68010) microprocessor cpu's and local buses. This
system is used to manage and perform the event~by-event collection from
the LAB-system using parallel readout, to perform event-by-event pre-
processing (calibration, event recognition, gating, event formating
etc.) and to pass the data to the host computer via a fast parallel 1I/0
link, The use of several cpu's on the system enables parallel readout
and preprocessing thus utilizing the full power of the VME-system to
receive a fast data throughput.

The host VAX computer is used to enter the user control com-
mands, to control the data acquisition, to sort events on~line and to
store the sorted spectra into memory or on disk and to write the events
on tape as desired. The fast parallel (16 bit) DMA link to the host
computer for VAX and PDP computers 1is done with DRE11 or Dlew units.

The VME~system I used for data collection includes one cpu
that will control the event-by-event data readout and preprocessing.
Here this cpu is named EM (event master). It is a master cpu only in a

logical (software) sense because each of the cpu's in the system will
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be the actual bus master whenever it will be using the bus. In addi-
tion to the general management of the data EM will handle the communi-
cations to the external event logic system., The direct interfacing of
the NIM ADC's to the readout VME~bus are done with a 15-channel (16
bits/channel) input registers JYVME~I developed at University of Jyvids-
kyld. The data from these interfaces are read with NIM reader cpus
(NR). Depending on the actual number of NIM interfaces and data rate
one or more NR cpu's can be used in the system.

Also several CAMAC crates can be interfaced to the VME system.
Each crate will be connected using the CAMAC~crate controller developed
at the University of Lund and one cpu, (CR). The data from each
CAMAC crate and NIM interface are read by the corresponding reader cpu
and passed to the system via the dual ported memory of the preproces-
sing or event handler cpu's (EH).

The preprocessing of the event-by-event data is done using
several parallel cpu's connected to the VMEbus and having dual ported
memory for data transfer. These cpu's are called event handlers, EH's.
The data processing is done by the cpu's using a local bus without dis-
turbing the VME~-bus and then passed forward, in block mode using, the

fast DMA link.

2.1. Event collection

The external ECL logic is used to create an event signal

(trigger) and to interrupt the event master (EM) externally. It also

provides a master event pattern and other information about the event
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for EM cpu. Once interrupted EM cpu will create an external busy to

block further events during the readout and make up the reader cpu's
to start the parallel readout. The event master cpu (EM) selects a
free event handler cpu ( EH), during data digitation and instructs the

reader cpu's to press data that cpu.

After the readout is finished and the data is stored into the
dual ported memory of the EH cpu each reader cpu informs EM cpu and get
ready for the next event. At this point the data has been transferred
from the LAB-~system into the VME~system and thus Eﬁ cpu clears the
data registers (JYVME-I, CAMAC TDC's, ADC's and IR's, etc.) externally
and then allows new events by releasing the busy signal. It should be
noted that using this readout system the parameters are transferred
parallel and thus effective transfer rate of several megabytes per
second can be reached.

After releasing the LAB-system for the next event, CPU EM
will interrupt the processing (EH) cpu locate a new free event handler

and wait for the next event.

2.2, Preprocessing

The preprocessing cpu's manipulate the event—~by-event data
according to user's definitions. At the preprocessing system parame-
ters can be selected, new parameters can be defined, whole events or
individual parameters can be gated, some parameters can be calibrated
etc. The preprocessing cpu's process the events using local bus with-

out disturbing the VME bus and place the events into a buffer in dual
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pérted memory. Whenever the oﬁtput buffer is filled the cpu initiates
a DMA transfer from dual ported memory into the host computer using the
VME bus, and DRE11 link. The number of the preprocessing cpu's re-
quired depends on the event data rate and it can vary from experiment
to another. The system is designed to use one to eight preprocessing

cpu's without any changes. Typically one to three cpu's are enough.

Since the event handler cpu all do the same event formating handling
separate events they are independent of each other and the number of

them can vary from experimental to another.

2.3. Host computer

The maximum data collection speed is received if each labora-
tory interface used in the experiment is controlled with its own reader
cpu. However, one cpu can manage several interfaces and in an experi-
ment with low counting rates the event master (EM)can do also the
readout. Futhermore the addition of different readout channels (ex
Fastbus) are relatively easily incorporated to the system of this modu-
lar design.

The software for the data collection system is written so that
it is adaptable for systems of different sizes from a small system with
one cpu up to a multiparameter experimental setup. The data rate re-
ceived with DRE11 can be easily obtained with the VME system described
above, Actually the processing load of the host computer can be de-
creased by adding more preprocessing power to the system and imple-

menting maximum amount of processing into this step of the data acqui-
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sition. The on~line sorting of the events and writing of event-by-
event data on tape will be done by the host computer.

In addition to the parallel DRE11 connection between the VME
system and the host computer a serial RS232C connection is used for the
user control of the experiment. The definitions and the control of the
experiment is done by using a control program in the host computer. The
same control program is used in the host computer to define the form of
data storage. At the first generation the existing tape and disk units
are used in the host computer. Eventually a new on-line sorting system
will be developed for the host VAX computers to create spectra on disk.
However, since the readout from DRE11 is formally equivalent for read-
ing data from event tapes any existing off-line sorting system can be
easily modified to be a temporary on~line sorting system. The existing
on-line sorting system at PDP11/84 in Jyvdskyld has been modified for
the new VME based data acquisition system and the modification of the
on-line sorting system on VAX 11/780 at Niels Bohr Institute (Risé,
Denmark) is under way. An experimental version of the first genera-
tion of the data acquisition system has been developed at JYFL during
the spring 1985 and is used for experiemnts at Jyv&3skyld Cyclotron
Laboratory. The system will be implemented using a VAX host computer
during the and fall 1985. A small version of the Nordball will be op-

erational early 1986 at Risd.

3. The second generation

The second generation will include all the parts of the first

generation and a second VME-system will be added and the on-line data
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sorting will be done by this VME system II. A schematic diagram of the
second generation data acquisition system is shown in fig. 3. The host
computer will still control the system (user communication program).
The VME system II will be based on full 32 bit address and data space
and at least at some parts use MC68020 based CPU's. The data sorting
will be done by several cpu's (DS) which are controlled by one data
master CPU (DM), (parallel processing).

The sequence of the data sorting at this stage will be done
much the same way as the event preprocessing is done in the data col-
lection at VME system I. Here, however, the master CPU will receive
blocks from the VME system I via the crate interconnect units and the
processing cpu's (DS) will sort the events one block at a time. The

master cpu (DM) will distribute the blocks for the slave cpu's se-
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Fig. 3. A block diagram of the hardware of the second generation data

acquisition system,
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quentiallyf Also here the amount of the cpu's depend on the amount of
computing power required. Since all the slave cpu's are performing the
same functions doubling of the number of cpu's will double also the
computing power.

Because of the large address space (4GB) even big matrices can
be created in memoryf In Nordball experiments at least one Ey vs Ey
spectrum can be created into the memory. In addition to the on-line
sorting a graphics system for onr-line data display in the VME~bus sys-
tem will be developed. The development of the VME system II have
been started in fall -85 and it will be finished during the spring -86.

The VME system II will also be made modular in both hardware
and software so that it can be implemented with different amount of
cpu's according to the experimental and laboratory requirements. It
will also be designed so that it can be used for off-line data analysis
(data playback) to sort the stored events. At this mode the events
will be fed from the host computer via DRE11 system or read from a

storage unit directly connected to the VME system II.
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Abstract

An intelligent interface for readout of a high
speed (100 MHz), multichannel Flash-ADC System [1] is
described. 3072 FAOC channels are controlled and read
by a system of 34 microprocessors M68000 placed at two
different hierarchical levels. In addition to the
readout itself, the processors perform a detailed pulse
shape analysis neccessary for a compact and manageable
data format.

The purpose of the system is to exploit the good
double track separation and time resolution provided by
Flash-ADCs in conjunction with large drift chamber
detectors such as JADE at PETRA [2] and OPAL at LEP
[3). Details of the system presently being installed at
JADE are reviewed,

Introduction

In conventional drift chamber electronics the
drift time is measured with a discriminator of fixed
threshold and a fast time to digital converter (TOC).
With this type of electronics the accuracy of the drift
time measurement is mainly determined by diffusion,
especially for large drift distances, and often by the
accuracy of the TOC. In pictorial drift chambers, where
genuine space points are recorded, the third coordinate
is frequently obtained by charge division. This
requires in addition to the timing measurement a charge
integration and digitisation at both ends of each
signal wire. In the case of multihit electronics one
needs furthermore a charge storage. The measurement of
the charge provides also information about the
jonization loss and thereby about the particle type.
The two-track resolution is affected either by the size

of the drift cell or by the finite, prefixed
integration time required for an accurate charge
measurement.

Recently a new technique for the simultaneous
precision measurement of drift time and signal charge
has been proposed, which provides at the same time an
unsurpassed two-track resolution. This system is based
on Flash=-ADCs which record the development of the drift
chamber signal in steps of 10 ns [4]. The detailed
analysis of the pulse shape leads to a timing accuracy
with small contributions from the electronics and with
a strongly reduced influence of the diffusion for large
drift distances, The pulse shape analysis allows
furthermore a good charge measurement even for
overlapping hits, Values of 90 pm for space and 2.5 mm
for two-track resolution have been achieved in a
prototype cell of the JADE drift chamber (16 wires) and
it has been shown that a sophisticated on line pulse
shape analysis is possible even in a system with many
channels, The implementation of such a system at the
JADE detector is described in detail,

Setup

The JADE central tracking device consists of a
Jjet chamber with 1536 wires arranged in 48 concentric
layers parallel to the beam axis. The readout
electronics used up to now {is sketched in Fig.l. The
time measurement is performed on the sum of the signals
from both wire ends using a discriminator and a RAM as
TOC, while the charges are found by analog integration.
Up to 8 hits can be stored for a wire [5].

The new readout scheme employs a multichannel
transient recorder and subsequent digital signal
discrimination followed by detailed software pulse
analysis (Fig.2). The final data format is left
unaltered: 2 signal amplitudes and the drift time are
recorded for each hit., The data compression which
starts from raw data of 1536 wires * 2 channels/wire-
256 bytes/channel = 0,75 Mbyte is partly done in
hardware and partly in software, Three different
hardware layers can be distinguished (Fig.3):

The first layer houses the digitising electronics
(FADC-modules) and the hardware processor for zero
suppression (SCANNER) in a double height eurocrate
(DL300-system),

The second Tlayer contains 2+16 Front End
Processors (FEP) which are placed in two VME crates.
Each CPU (M68000) is connected to the associated DL300
crate through an interface which resides on a custom
made piggyback card on the CPU board., The CPUs read the
relevant data of the DL300 system and perform the pulse
analysis in order to determine the drift time and the
signal charge for each hit,

The third layer, placed in a VME crate, contains
the EVent Processor (EVP) which assembles the event and
controls the transfer to the host computer of the
experiment via a single width CAMAC module. The same
VME crate houses another processor, the MOnitor
Processor (MOP), which performs checks on data passing
through the EVP, determines the calibration constants
necessary, and distributes the programs at system
startup.
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Fig. 1 The multihit electronics of the JADE experiment
using ana]o% Fu]se discrimination and charge
integration (5].
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Fig, 2 The readout of the JADE drift chamber with
Flash-ADCs followed by microprocessor pulse
analysis.

Components

The main components assembled in a DL300-crate
and their functions are summarized below, details have
been described elsewhere [1].

(i) The FADC-Module is a fast (100 MHz), 4
channel analog to digital converter based on monolithic
6-bit-flash-ADCs followed by 256 word deep memory, The
FADCs are operated in a mode with a non-linear response
function resulting in an extension of the dynamic range
by a factor of 4 in the lower amplitude region. 24
FADC-modules for 48 wires (96 channels) reside in one
crate.

(ii) The SCANNER- and HIT DETECTOR-Module is the
programmable control unit in a DL300 crate and can
operate in two basic modes: The 100MHz SAMPLING-mode
for digitisation of the drift chamber signals and the
25MHz FASTSCAN-mode, where all data in the FADC modules
are inspected for valid hits.

(ii1) The VME-Interface-Module is the interface
to the M68000 processor Tor data and address transfers.
The SCANNER signals "“End of sampling" and ‘“Hit
detection” are available in a status word and generate
an interrupt at the connected CPU,

The FEPs [6] are commercial single width VME
units with a 128 kbyte RAM, The access to the
associated DL300 crate is provided by a piggyback card
which plugs into the CPU board and uses the P2
connector at the back of the module. The memory of the
FEPs is dual ported and placed at non overlapping VME
base addresses, A memory access in conjunction with a
special VME address modifier is used to generate an
interrupt at the parallel port chip of each CPU (mail
interrupt).

The connection to other VME crates is established
by the Crate Interconnect module (CI) [7] which is used
to open a 64kbyte window into the memory of another
crate,

The EVP consists of a CPU of the same type used
for the FEP, It is connected to the module driving the
Auxiliary Crate Controller Interface (ACCI) [8]
presenting the data in their final format in a CAMAC
unit to the host computer of the experiment,
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Fig. 3 The three hardware levels of the readout
system,
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Fig. 4 The components of the " system and their
connection to the different VME buses,

The MOP is housed in the same VME crate as the
EVP. Its task is to supervise the data flow and to
collect and store data and calibration constants, While
otherwise identical to the other processors, this
CPU-board holds a memory of 256 kbytes which is further
increased by a separate 0.5 Mbyte VME-RAM unit
contained in the crate. This CPU is connected to a 27
Mbyte Winchester disk and a floppy disk drive. It runs
under CP/M68K while all other CPUs do not require an
operating system. An ASCII-terminal and a graphics



terminal are connected to the serial ports of the MOP,
Figure 4 shows the different buses of the system.

Readout Scheme

Under the control of the SCANNER- and HIT
DETECTOR module, the hardware FASTSCAN [1] starts at
the end of the SAMPLING phase to look for valid hits in
the memories of all FADCs, On detection of a valid hit,
the FASTSCAN is paused and a CPU read cycle is invoked
for all data bins related to the hit. The SCANNER
continues the search for new hits while the CPU itself
reads the data, The total transfer time is about 3ms,
where "the exact value depends on the number of hits,
and is entirely dominated by the time required to read
the data into the FEP., In the case where no hits are
found in a given crate, the FASTSCAN is completed
within 0.5 ms.

The pulse shape analysis is the most time
consuming part of the readout chain requiring 1-3 ms
per hit. However, once the pulse has been read into the
dual ported memory it is accessible to all 16 CPUs in
the same VME crate, To profit from the computer power
available we have adopted the solution where each CPU
can analyse not only its own hits but can help to
analyse all hits stored in the other CPUs of the same
crate. In this case only the average hit population of
48 wires determines the analysis time per crate, while
in the case where each processor only deals with data
from its own front end crate the highest hit population
for a group of 48 wires is relevant for the processing
time. The gain amounts in JADE to a factor of 4,
leaving 8 hits on average for each processor, To
exclude interference between different processors each
hit has to be protected by a semaphore (Fig.5). Even
though the hits of one CPU may have been analysed by
different CPUs the results are stored back into the
memory of the originating CPU, thus facilitating the
ordering of hits and assembly of the event record after
pulse analysis (Fig.6).

The JADE event format implies a fixed readout
sequence for the wires and hence for the data from the
processors. Therefore, the selection of the next hit to
be analysed follows this predefined order and gives the
highest priority to the analysis of the data stored in
the first processor to be read.

The EVP event readout and transfer to the host
computer of the experiment starts synchronously with
the ongoing hit analysis.

Optionally the MOP may request the full Flash-ADC
information of selected channels for debug and
performance tests of the hardware and algorithms, The
additional CPU load placed on a FEP by such a request
is easily compensated by the other processors in the
same VME crate.
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Fig. 5 Data Structure for raw and result data in the
different CPUs and the protection by a
semaphore.
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Pulse Analysis

Several pulse shape analysis algorithms have been
investigated [1,9,10,11], We have restricted our
selection to those algor1thms that calculate a weighted
center of gravity of a small number of samples around a
characteristic bin of the FADC pulse distribution. A
bin showing high stability against fluctuations of the
pulse shape is, for example, given by the bin with the
largest positive derivative, To achieve the best
resolution we empirically determine the optimum set of
constant weights for the time estimate. Qualitatively,
the result of such minimization emphasizes the early
part of the pulse which contains the information of the
first arriving electrons. However, the detailed
distribution of weights, especially the inclusion of
the falling part of the distribution has to be
optimized with chamber data itself. 4 bins (40 ns) are
sufficient to deduce a drifttime estimate accurate to 2
ns (Fig.7). The intrinsic time resolution of the FADC
is better than 1 ns as has been demonstrated by
comparing the drift times measured at both ends of a
wire,

The DOS (difference of samples) algorithm [10] is
based on calculating the weighted center of gravity of
the differentiated pulse. After optimizing the weights
for this method we arrive at a resolution which is
equal or even better than that for the center of
gravity of the direct distribution. Since this method
is fast and has excellent properties for detecting a
second hit we adopt this method for calculating the
time of the pulse.

The amplitude is found by integration of the
pulse for a fixed number of bins (150 ns). For
overlapping hits the ipdividual amplitudes are
determined in the following way: A norm pulse is fitted
to the unobstructed part of the first hit and
extrapolated into the region of the overlapping second
hit, The extrapolated part of the fitted pulse is then
added to the charge integral of the first hit and
subtracted from the second hit,
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with the prototype of a JADE cell. The double
structure is caused by the wire staggering and
shows that the left/right-ambiguity can already
be resolved on the basis of a wire triplet,

Communication between processors

Communication between processors is necessary at
several stages:

Parallel processing of all hits requires easy
access to all hits read out by the CPUs, With all of
the memory being dual ported, access to data in another
CPU appears as a simple memory access.,

The event building processor (EVP) uses the Crate
Interconnect module to open up a transparent 64kB
window at an arbitrary memory position of a front end
processor to transfer the results of the individual
pulse analyses.

The monitoring processor (MOP) uses the same
module to distribute programs at system startup.

, An important aspect of the communication between
processors is the possibility to issue mail interrupts
to an outside CPU, We use a VME bus memory access at a
certain address in conjunction with a special address
modifier to generate the interrupt used to initiate a
certain task in such a CPU (mail interrupt).

System Startup

The system is started from the MOP either through
operator intervention or automatically through a system
reset initiated by the host computer. Downloading of
the different programs and data components into the
other processors proceeds according to a routing table
held on the disk of the MOP. This table in ASCII format
can easily be edited with the system editor and thus be
adapted to the different program configurations
necessary for system calibration, debug and standard
data taking. An initial mail interrupt, issued
sequentially to the CPUs involved, starts execution of
the individual programs after download., The time
required to setup the entire system amounts to a few
seconds only.

Software Aspects

A1l code is written in high level FORTRAN 77 [12]
especially extended for real time applications. Among
the many hardware oriented extensions the most
important ones for our purposes are:

(i) Support of memory mapped I1/0 with special
language constructions for both static and dynamic
assignment of variables to memory positions and
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(11} Reentrancy of the code to allow for sharing
of 1libraries and direct use of interrupt routines
without the extra overhead of an operating system.

Many other extensions with respect to semaphore
handling, explicit register access, full M68020 and
coprocessor support are available for the user.

Program Development

The programs are written, compiled, linked and
executed on the VME-system itself. Both the VAX-like
editor and the compiler are written in FORTRAN 77. File
access is provided by CP/M68K, Using only one language
for both system and application software greatly
simplifies the development of the readout system. The
actual programming effort for the entire system could
only be kept at comparatively low level due to the
availability of a known high level language and the
valuable extensions necessary for real time
applications. Standard  software  packages Tike
Mini-ZCEDEX, Mini-GD3 and Mini-HBOOK are running on the
system,

. Conclusion

The JADE experiment is presently being equipped
with fast Flash-ADCs for drift chamber readout. The
huge amount of data produced by such a system can
effectively and fast be reduced online by a combination
of hardware zero suppression and additional pulse shape
analysis in a system of VME processors. The
architecture of the VME bus allows full use of the
available CPU power for parallel processing, while the
jmplementation of such a system is simplified by a high
level FORTRAN 77 compiler with real time extensions.
Owing to these two aspects of the system the effort on
the VME side of the readout could be kept at a very
moderate level,
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Abstract

MLLE is a YMEbus based multiprocessor system for data acquisition and processing in nu-
clear physics applications. A large memory allows megachannel histograms. The system in-
terfaces CAMAC via a special auxiliary crate controller. The DAMOS operating system fea-
tures dataflow controlled processing using about 10 microprocessors operating in a non hi-

erarchical mode.

Introduction

In 1977 we started in our laboratory with a multiprocessor system called MADAME (Million
channel Analyser for Data Aquisition of Multiparameter Events) [1]. It is still used for online
accumulation of large multidimensional histograms. Since MADAME allows a maximum of
not more than 4 ADCs and programming is done completely in assembler (TMS9900), the
range of applications for MADAME is too small. This fact, and the age of our current data

aquisition system (PDP15) lead us three years ago to the decision to develop the MLLE [2].

To avoid waisting manpower each time when changing from a previous data aquisition
system to the following, for system implementation only high level languages and, if possible,
standard operating systems should be used. We chose C as programming language and UNIX

as operating system. Application software can also be written in FORTRAN 77.
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Figure 1: Blockdiagram of the MLLE

Hardware

MLLE is realized as a VMEbus system (Fig. 1)
and contains a VMEbus system controller, up
to 10 processing units, an IECbus controllér,
and up to 16 Mbyte memory used by all CPUs
as a global memory. The AIAC processor is
necessary to interface CAMAC. At present we
use MVMEI21-boards. Each board contains a
MC68010 CPU with 10 Mhz clock rate, 512
Mbyte local memory, up to 128 Kbyte EPROM,
a MC68451 MMU, a serial debugging port,

4 timers, and 4 switches on the front panel for
board identification. Communication between
host (CADMUS 9230) and MLLE is done via
the IEEE 488 bus link.

DAM

The software of MLLE consists of several com-
ponents organized in different layers. The main
components are ULRIKE [3] (UNIX like runtime
kernel), the application software divided in tasks,
and DAMOS.

DAMOS is a multiprocessor operating system

and runs on all processors in identical form. There
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Figure 2: DAMOS processor loop
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is no master in the system. One processor handles the communication with the debugging
terminal for printing error messages or giving START or STOP commands. It is also possible
to have the debugging terminal at the system controller or via the system controller at the
host.

All processors are running in the processor loop (Fig. 2). The decision which task may run

next cannot be done by several processors in parallel. With the indivisible TAS (test and set)

instruction it is possible to use semaphores for processor synchronisation. With this method it
can be achieved that the critical part of the processor loop will be executed by only one
processor at a time.

In the normal case each task reads incoming data and writes outgoing data, thus functio-
ning as a consumer and producer of data packets. If the executable task with highest priority
has been found, from each input queue one data block is retrieved and linked to the task.
The task code will be copied from the global to the local processor memory only, if it isn't
already there.

It is possible, that one task will be executed by several processors simultaniously, each wor-
king on a separate block from the input queue and producing its own data for the output
queue. If the output buffer is full or the task finishes processing, the output blocks will be

linked to the output queue.

Example of a simple net

Let us consider as a nuclear physics application a K—xcoincidence between two detectors.
Fig. 3 shows the graphical representation of the corresponding net. The net contains queues

of data packets, tasks, and histograms. These items are all stored in the global memory.

The net describes the dataflow through MLLE:
The raw data from CAMAC reaches, the global memory via the AIAC CPU in the MLLE.
Now the task hostcomm sends the rawdata on the IECbus to the host to save it on mag-
tape for later analysis. The rawdata will also be processed immediately by the task filter,
where window conditions will be tested and data will be sorted into the queues d2 and
d3. Finally these data packets will be accumulated to two-dimensional histograms by the
tasks accu2 and accu3. The task accul accumulates the rawdata directly to one-dimen-
sional histograms. '
The rawdata appears three times as queue in the diagram but it is stored physically in the
global memory only once. Therefore a data packet in the queue rawdata will not be physi-
cally removed before the tasks accul, filter and hostcomm have finished processing of this
data.
In contrast to usual multitasking systems, in which each task has a fixed priority, DAMOS
computes the task priority dynamically: Priority increases with the number of data packets in
the input queue and decreases with the packets waiting in the output queue. If in the given

example the task filter needs too much processing time the queue rawdata would increase,
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ACCU 1 ACCU2 ACCY 3
i S
i N r/\ .

l
Oet 1 Oet 2 time coinc 2

Figure 3: Graphical structure of a simpl net

aiac > rawdata

host < rawdata

accul < rawdata > detl det2 time
filter < rawdata > d2 d3

accu2 < d2 > coincl

accu2 < d3 > coinc2

#spec detl 1 20,2047

#spec det2 1 20,2047

#spec time 1 20,1023

#spec coincl 2 2 0,511 0,511
#spec coinc2 2 2 0,511 0,511

Figure 4: Description of this net

the queues d2 and d3 would become empty. But if this happens, the priority of this task

would increase fast and therefore several other processors would run this task.

The way to define such a net is very simple (Fig. 4). The first name in a line gives the

name of the task and the task code file in the host. Names after "<" are the names of input

queues, after ">" of output queues. Lines beginning with #spec define histograms. The argu-

ments are: dimension, bytes per channel, first and last channel for each dimension.

The MLLE may also be able for later analysis of the raw data stored on tape. In this case

it is only necessary to cancel the line:

and to change the line:
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alac > rawdata

host < rawdata to host > rawdata.
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Abstract

The read-out system is built on 9u size boards in a
Eurocrate with VMEbus Jl1 and J2 dataways and uses a Motorola
68000 processor to control the read-out of a Reticon based
camera. The read-out normally runs asynchronously at a regular
rate to give a constant noise from charge leakage and gives a
fast rejection of each frame read unless it is accompanied by

an external accept signal.

Accepted events are transferred to an LSI 11/23

computer for display after background subtraction.

_Frames are read by DMA directly into the memory at a
rate of one pixel per five hundred nanoseconds, which is
limited by the speed of available memory, 'and then only
selected events of interest are transferred at relatively low
rate to the display. The system has been tested by selecting
events from an optical read-out avalanche chamber where a
cosmic ray track has passed through the active region. It will

be used for the optical read-out of scintillating fibres.
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1 Introduction

At Bristol we have developed a fast two dimensional
optical readout system. This has been developed to study the
light from an electron avalanche chamber and also from

scintillating fibres.

The avalanche chamber was constructed as part of a
Cerenkov ring 1imaging detector (1], for which the camera
readout system was 1initially developed. Light from the
Cerenkov radiator was focused onto the calcium fluoride input
window of the avalanche chamber. The avalanche chamber acts as
an image intensifier. Photoelectrons are multiplied to produce
avalanches which emit light from atoms excited by the avalanche
{2]. This 1light was then focused onto the photocathode of a
Mullard XX1500 type image intensifier. A Reticon integrated
photodiode array was coupled to the phosphor screen of the
image intensifier via fibre optics and the digitised data from

the pixels was read out with the VMEbus 68000 system, Fig 1.

Further developments have lead to the camera being used
in a érototype detector constructed from scintillating glass
fibres {3]. At present a bundle of fibres made from GS1 glass
is used as an interaction target. Light from the fibres was
fed away from the beam to a diode type image intensifier. This
is an intensifier without a channel-plate; it consists of a
thin alkali metal photocathode and a phosphor screen.
Electrons 1liberated at the photocathode are accelerated in an
electric field and collide with the phosphor screen to generate
light ([4]. This diode type image intensifier has a good
quantum efficiency and a clean single photoelectron peak, but
has fairly 1low gain. Coupled to the phosphor screen of the

diode intensifier is a high gain gated channel-plate type
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intensifier, which 1is normally gated off to decrease any
photocathode noise. Coupled to the exit window of this

intensifier will be the Reticon device.
2 The'data acquisition system

The data acquistion system consisted of an LSI 11/23
computer and a VMEbus based 68000 system, which acted under
program control of the 11/23. communication between the two
computers was by means of a 16 bit bidirectional parallel

interface.
2.1 The solid state camera

The camera is based on an EG+G Reticon device RAl100 or
RA256, Fig 2. This is a silicon device with a square array of
photodiodes, which can be read out sequentially and is 1in
operation wunlike a CCD. The rows of photodiodes are accessed
sequentially and each row is shifted only once into a BBD type
output register. This circumvents the problems that CCDs have
of light arriving while the shifting process is in operation,
aﬁd consequently appearing in the wrong place in a
reconstructed image. The RA256 device has a pixel centre ¢to
centre spacing of 40 microns and a total active area of 12mm by

12mm.

The Reticon device had a fibre optic coupling piece bonded
to its surface to allow uniform illumination of the whole
active surface. Previous use of a CCTV lens had proved
inadequate due to severe transmittance variations across the
lens surface. The fibre optic protuded about 1 cm from the
ceramic chip package to allow easy optical mating with the

device to be viewed.
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The active elements of the Reticon device are reversed
bias photodiodes, Fig 3, with a reset charge stored its inbuilt
capacitance while in the reversed biased state. Electron-hole
generation by photons falling onto the pixel create a charge
deficit on the reset level and this is the signal sensed at the
output. Electron-hole pairs are generated thermally, and in
the absence of any signal there 1is still a 1leakage current
across the photodiodes. This gives rise to a fixed pattern
noise in the output ( assuming the readout time is constant ).
The problem of this pattern noise was minimised by first taking
a background frame ( by averaging 16 frames) and subtracting

this ( online ) from every frame transferred to the LSI 11/23.

The signals from adjacent pixels are fed to two output
stages on the chip, and then onto an "OUTPUT PROCESSOR" board.
This board buffered and amplified them and provided correlated
doubling sampling. The signal emanating from the chip consists
of the wanted signal and a bias voltage superimposed onto the
bucket-brigade reset voltage, which was found to drift with
time. To eliminate this drift from the final signal the
techniqﬁe of correlated double sampling was employed. Here
this technique was implemented by the first section of the
circuit, shown in Fig 4. After the output amplifier of the
Reticon has been reset and before the next signal charge is
sampled the point B is reset to a clamp voltage by pulsing on
the mosfet Tl. Thus when the next signal charge is transferred
into the output amplifier the point “A° goes to the voltage
Vreset-(vbias+Vsiq) and the point ‘B’ goes to
Vclamp-(Vbias+Vsig); hence the term Vreset is eliminated from
the signal amplified by further stages in the "QUTPUT

PROCESSOR" board, Fig 5.
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Clock and control signals for the chip were provided by a
separate camera controller board which was connected to the
camera by ECL level twisted pair cable. The clock signals were
buffered by a "DRIVER" board before being applied to the chip,

bias levels were also provided by this board.

The signals were then fed to a TRW TDC1l048E1C flash ADC
card, which fed its digitised output down an ECL twisted pair

to the camera controller.

The two digitised values for the pixels were latched on
the camera controller before being passed via another ECL
twisted pair to the VME system. When running the frames from

the camera were read continuallly into the VME memory.
2.2 The VMEbus system

The VME system is a mixture of commercially available
components and special units built at Bristol. The prototype
units were constructed on standard double extended eurocards,
but their size proved to be a severe limitation on the
functionality of a board. One unit, the DMA controller, was
built on two»double extended eurocards, interconnected with a
ribbon cable, which was far from satisfactory. So a new size,

9U, was adopted for construction.

To allow double extended eurocard components to be used
the VME crate was divided into two sections. The left hand
half was built to take these cards, and the right hand half to

accommodate 9U boards.

The backplane specifications limit the current that can be
drawn from the 5 volt line for a single slot to 3 amps, which

for a 9U size board filled with TTL logic would prove
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insufficient. So an extra power connector was added below the

J2 connector, and a separate ‘power bus added to the crate.
This also allowed for separate analogue power lines to be

supplied to a board.

The units for the VME system consisted of an 8 MHz Mé68000
cpu board and a 1/2 Mbyte dynamic RAM card. The following were
specially constructed for this application :

DMA controller.
16 bit parallel interface.

NIM trigger unit.

2.2.1 The DMA Controller

This provided the interface between the camera controller
and the VME memory. The board contained 1logic for bus
mastership acquisition and, for handshaking to control the flow
of data from the camera controller board, and to write the data
into the system memory. The mastership of the bus was gained
by the circuit in Fig 6. Under program control the Q output of
flip-flop Ul was set. this was fed to the VME signal BR1l* to
request, mastership of the bus. The 68000 responded with the
BGACK* signal which was latched by U2 when AS* was hiéh ( at
the end of current bus cycle ). This ensured that BBSY* was
not asserted during the bus cycle by the CPU which originally

set BR1l*,

The DMA was a block transfer of a single frame from the
camera, which for the RA256 device consisted of 64 Kbytes. To
increase data throughput the data was transferred as words, and
at the end of a frame or upon an error condition occurring the

bus mastership was relinquished.
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The flow of data from the camera controller to the DMA
controller was controlled by ‘handshake”® signals. The
handshaking allowed an asynchronous flow of data from the
camera to the VME system, the data rate being limited by the
system memory speed. In practice the rate was determined by
the time taken for a memory write cycle when a refresh cycle
was in progress, which in our case was 1 microsecond. The data
rate could therefore be vastly improved by using a fast static

memory board for the ring buffer data area.

The handshaking between the camera and the controller

consisted of four signals, Fig 7.

Two signals “ENABLE  and “SEND  are driven by the DMA
controller and the ’“RECEIVE ', 'EOF° signals by the camera
controller. The “ENABLE  signal signified that a frame of data
was required, the “SEND  signal requested a 16 bit word of data
from the camera controller. 1In response to the “SEND” signal,
the camera controller placed a word of data on the cable, and,
after a delay to allow for propagation time on the cable,

asserted ‘RECEIVE’.

After latching the data on the DMA controller board “SEND’
was removed, which in turn allowed "RECEIVE  to be removed, and
a bus cycle was then initiated to write the data to memory.
Upon completibn of the bus cycle “SEND  was again asserted to

request the next word of data.

The “EOF” signalled the end of a frame and arrived after

the last pixels were transferred.

Fig 8 shows the relationship between the handshake 1lines

and the data.flow.
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2.2.2 Parallel interface

This device was also constructed to provide a
bidirectional interface between the VME system and the 11/23.
A commercially available DRV-11 interface was purchased for the
11/23. The interface constructed interface has TTL logic
levels and contains a four line handshake system to control the

data flow at a rate of 100 Kwords per second.
2.2.3 NIM trigger unit

As NIM logic is used extensively in high energy physics, a
NIM level input/output module was constructed . It consists of
four self-latching inputs and four pulsed outputs. The unit
can be configured to interrupt the 68000 upon reception of a
combination of input pulses ( defined by a loadable bit mask )

or to latch the lines so the unit can be polled.

In practice the unit was polled because of - problems

associated with the asynchronous nature of interrupts.
3 Conclusion

The apparatus has‘been operating reliably for almost 18
months. The readout time for one pikel is 500 nS and a frame
from the RAZSé can be read in 35 mS. The transfer time of a
full‘ frame to the 11/23 is appro#imately 2 seconds, a

compressed frame is transferred considerably quicker.

There are limitiations with its operation : the lack

of ability to have a triggered read and the speed of the

readout.

It would prove very difficult to provide a triggered read

due to the design of the Reticon chip itself. Although it has
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a frame-reset control this 1is not wused due to timing

requirements in its application.

With the current DRAM in the VME system, the readout
speed is limited to 1 microsecond per 16-bit word. This is
much slower than the access time of the memory, but allows for

increased access time when a refresh cycle is in process.

Cosmic ray tracks and pair production from cosmic rays

have been seen in the avalanche chamber, but the camera has not

yet been successfully used on the scintillating glass detector.

4 Future improvements

A fast-access static memory board is under construction
which will allow the reticon to be clocked at its maximum rate
of 5 MHz. A unit which will allow background subtraction and
frame compression “‘on the fly  is also under construction, and
this will speed up the data rate considerably. A stand
alone VMEbus system with its own integral 40 Mbyte Winchester
hard disk drive and graphics capability 1is being developed.
This can boot an operating system from the hard disk and will

allow data acquisition to be independant of the LSI 11/23.
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LOSS-FREE GAMMA-RAY COUNTING ON THE VMEbus

M. M. Minor, E. B. Shera, and J. W. Lillberg
Los Alamos National Laboratory
Los Alamos, NM 87545, USA

ABSTRACT

An add-N histogram memory controller has been designed to his-
togram gamma-ray data using conventional pulse-height spectroscopy
ADCs into VMEbus memory. The weight factor, N, is derived from the
instantaneous counting losses present in the system.

1. Introduction

Loss-free gamma-ray counting is a technique of correcting for system
counting losses in real-time. The technique is particularly useful when
measuring mixed radionuclides with very short half lives. In order to perform
accurate quantitative pulse-height analysis measurements of short-lived neu-
tron activation products under conditions of rapidly varying count rates, we
have designed a loss-free counting module which interfaces pulse height
nuclear ADCs to VMEbus memory. Several techniques for real-time correction of
counting losses have been developed.!”™3 A1l employ add-N histogram memory
where the integer weighting factor, N, is derived from the instantaneous
counting losses present in the system.

The loss-free counting module provides the basis for a replacement con-
trol and data acquisition system at the Los Alamos Omega West Reactor. The
system which has been in use for a number of years has been described else-
where.* In short, the system is designed to automatically control sample
irradiations and gamma-ray counting. The system utilizes a PDP-ll* computer,
a UNIBUS* programmable CAMAC branch driver, and several CAMAC crates. It is
planned to replace all the above with a VMEbus based microcomputer. A VMEbus

* PDP-11 and UNIBUS are trademarks of the Digital Equipment Corporation.
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system provides the versatility and excellent mechanical specification desir-
able for a replacement system. Most VMEbus system components required for
this system are now commercially available; a suitable ADC interface is not.

2. Real-Time Correction of Counting Losses

Real-time correction of counting losses requires the generation of con-
secutive weighting factors W(t) of high statistical accuracy in millisecond
time intervals. The weighting factors are generated from a clock signal (4MHz
SERCLK) and a gating circuit which transmits clock pulses to a preset counter
only during live-time intervals of the pulse-height analysis system. The
number of clock ticks accumulated during this time in a second counter is
equal to the value of the preset counter divided by the system live-time. The
instantaneous weighting factor is just the accumulated clock ticks divided by
the preset (gated) counter value. In order to generate an integer weight, the
integer part of the weighting factor is added to histogram memory and its
fractional remainder is added to the next weighting factor thus forming a new
integer approximation of the true weight with each stored conversion.

As with any live-time generation system, the accurate derivation of sys-
tem busy is crucial. We have included provisions for generating an extended
busy signal as described by Westphal® in his Virtual Pulse Generator Method,
and have utilized the same weight generation methods.

3. Loss-Free Counting Module

An add-N histogram memory controller was designed to histogram gamma-ray
data using conventional pulse-height spectroscopy ADCs with a VMEbus computer
system. As shown in Fig. 1, the controller is designed to interface to
VME /VMXbus compatible dual ported memory. Our application utilizes a commer-
cially available 128K byte static RAM module.® A block diagram of the module
is shown in Fig. 2. The module employs a single VMEbus control register which
specifies storage memory offset, ADC enable lines, and mode of operation bits.
Mode bits allow add-1 or add-N histogramming and enable or disable extended
busy generation.

The module uses an 8-bit adder with carry increment in order that memory
may be incremented by weight factors of 1 to 255 in the modify portion of the
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VMXbus Standard Indivisible Single Address Cycle. This allows the loss-free
counting techniques described above to be utilized in addition to conventional
add-1 histogramming. The weight generation circuitry is shown in Fig. 3. A
new integer weight, N, is generated with each ADC conversion.

The controller is a VMXbus D32, IMA Master which accesses 32-bit longword
locations in the accompanying memory. Since the ADCs are typically set for
use at their maximum 13-bit conversion gain, 32Kbytes (8K longwords) of memory
are utilized per spectrum, and up to four spectra can be accumulated in the
histogram memory.

4. Summary

With the inclusion of multiple detector gamma-ray histogram capability on
the VMEbus, a VMEbus based microcomputer system is being configured which will
replace a PDP-11/CAMAC based data acquisition system. It is expected that
UNIX** System V operating system software has all the “"real-time" implementa-
tions necessary for our applications. Specifically shared memory segments,
memory locking, and semaphores will allow software similar to our current
RXS-11-based data acquisiton software to be written.

** UNIX is a trademark of Bell Telephone Laboratories.
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A VMEbus APPROACH FOR THE CONTROL OF THE CLOSED ORBIT CORRECTION

POWER SUPPLIES WITHIN THE SPS SUPERCYCLE

P. Martinod, G. Mugnai, J. Savioz, P. Semanaz

SPS Beam Monitoring Group

CERN, Geneva, Switzerland

Abstract

As an injector for LEP, the SPS will operate with a supercycle consisting
of 5 elementary cycles (lp, 2e*, 2e7). During the e* and e~ cycles,
the closed orbit has to be corrected everywhere during the cycle, thus the
corresponding power supplies have to be pulsed with a different function for
each elementary cycle.

This note describes a flexible solution using the VMEbus-68000 up
standard as a multi-output function generator to control COD & POD/MDP power
supplies for closed orbit correction within the SPS supercycle. A VMEbus crate
will house up to 36 independent, 16 bit resolution function generators.

Basically this approach consists of a VMEbus structure, linked to the SPS
computers through the MIL-1553-B network, wusing a CPU in a mono-master
configuration followed by nine dedicated VMEbus hardware units, 68000
(10 MHz) up based, housing up to four function generators each.

1. INTRODUCTION

At present as a proton accelerator whether for fixed target physic or
ppbar collider experiments, the Super Proton Synchrotron (SPS) works on a

elementary cycle basis, as illustrated in Fig. 1.1.

As an injector for the Large Electron Positron machine (LEP) the SPS while
continuing to accelerate ‘protons as in a normal cycle, will have to
receive as well electrons (e ) and positrons (e+) from the Proton
Synchrotron (PS) at 3.5 GeV and accelerate them up to 20 GeV then finally
injet them into the LEP.
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Figure 1.1 - The SPS normal proton cycle

Hence the new SPS cycle becomes a Supercycle (see Fig. 1.2) made up of

five elementary cycles : lp, 2e', 2e

450 Gevic P

20 Gev/c¢

1 Gev/c

1.2s 12s 12s "1.2s

~15.6¢

Figure 1.2 - The new foreseen SPS supercycle

The much greater complexity of the SPS supercycle, as compared to a normal
proton cycle, requires additional and more sophisticated controls over
several hundreds of magnetic elements and their associated power-supplies

distributed around the accelerator ring.

During the e+ and e elementary cycles, the beam closed orbit must be
corrected everywhere during the whole cycle. This is due to the 1low
injection energy of 3.5 GeV and the need to keep the orbit centered at the
top energy of 20 GeV in order to catch all the synchrotron radiation with
the tungsten diaphrams foreseen for this purpose. This 1is entirely
different from the present mode of fixed target operation in which the
orbit is only corrected at injection with DC current in the laminated

closed orbit correctors.
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Furthermore about sixty existing elements (i.e. RF control, Chromaticity
adjustement, Extraction, etc...) currently controlled by AUXPS through
first generation function generators (FG) must be pulsed with a different

function for each of the five elementary cycles.

In this situation it is therefore necessary using present day technology
and standards in particular large use of fast 16 bit microprocessors,
VMEbus and analog converters, to develop for the control of approximately
250 closed orbit correction power supplies together with the sixty
elements mentioned above, a new high resolution, powerful, flexible and
easily implementable function generator called Multi-Cycle-Function
Generator (MUGEF).

By taking into account the SPS and CERN guide lines such as modularity,
the use of defined standards and that of commercially available units
whenever possible, the new FG will cover all the SPS and we believe all
CERN requirements; thus allowing uniformity in the hardware and software,
easier control operation, and last but not 1least low-cost development,

maintenance and piquet service.

FUNCTIONS REQUIREMENTS

The functions required as input reference for the power supplies are
analog functions of time, which can be fitted and generated by a

succession of straight lines, called vectors.

The resulting function accuracy depends essentially on the amplitude,
slope and duration resolutions of the vectors; an ideal function generator

having infinite vectors parameters resolution

A function is therefore defined from a user point of view as a set of dots
each one having its amplitude Ai and duration Di; function discontinuities

being allowed as well, see Fig. 2.1.

The required characteristics are as follows :
. Function definition : Ai, Di 1x16 bit word each
Di are expressed in absolute time, i.e.

DiZDi_1
. Amplitude A : -32768£A£32767 bit (-10v£A<10v)

. Amplitude resolution : 16 bit DAC or 3.10——5



Amplitude
V)l (Bit)
10-1LS8 | 32767

1T I
BN
B

¢t -4

11
4
i
[
S
——-4*

—r

i

N o T -

1Ls8 - . E ;
” it =
0 e 32767 ¢ 0y
EEEREEERRES I L ims
S Selsis L IHLE
X - B R T H
| fung
C H
JTHH T
MRS ER RS +f-1;-4—{
-0 -32768 VDEmMMMﬁu
Figure 2.1 - Function requirements and definitions
(Amplitude and time not on scale)
. |A Amplitude| : |AA} = Al - Ai_ll

0<[AA|< 65535 bit or 0<|aA|< (20v - 1LSB)
It follows that a vector can be linked between any two dots of the
matrix Amplitude - Time as shown in Figure 2.1.
«x  Function length : 0 to 32767 ms

the max. foreseen length of the SPS supercycle is

15.6 s
. Function length resolution : 1 ms
. Number of vectors : ~ 800
. Number of vectors/function : 1 to 800

. " " resident functions/FG : 1 to ~ 10
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Vectors characteristics

The main characteristics of the vectors are essentially those of the
function itself, this being made up of 1 to 'n' vectors. There is no
upper limit in theory to the value of 'n'. In practice ’'n' is limited

by the memory size of the function generator.

The required characteristics are as follows :
. Amplitude Ai : -32768£Ai£32767 bits (~10v<A<1l0v)

«  Amplitude resolution : 16 bits (3.107)

The function length is limited to 32767 ms (i.e. 215 -~ 1 ms) due to
the definition of the durations (Di) in absolute time using a 16 bit
word, thus : Dizbi_.1

The max. function length allowed by the MUGEF function generator
itself is much greater, the duration in hardware format being defined
by 2 x 16 bit words, that is :

MUGEF Max. Function Length = (232—2)T with durations Di in absolute
time

Example : for a sampling-time T = 100 us we have

| MUGEF Max. Function Length =119 hours. |

. Duration Di : 1£Di£32767 ms

. " resolution : 1 ms

. Discontinuities : *1 bit/0 ms to 65535 bits/0 ms

. " resolution : *1 bit

. Slope P : t1 bit/32767 ms to %65535 bits/ms

and discontinuities allowed

. Slope resolution : this is one of the most important parameters
in the generation of a function, which is better illustrated and

explained in Fig. 2.2, rather than by analytical formulas.

It results that within the maximum amplitude and duration limits, the

9
number of possible individual vectors is in the order of ~ 2.10°,

which show a very high slope resolution indeed.
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Furthermore, for slopes [P|<l, the amplitude resolution is always 15
bits + SGN whatever the vector duration is. For slopes |P|>1, the
amplitude resolution is optimised so as to have the maximum

obtainable value.

AMPUTUDE
(V) yibit)

10-11LS8 |32767

o Ampii.resol.:

11 bit+ SGN . . .
o—— Ampli.resolution: 15 bit+SGN

P=1

T 2048 32761 37767 t (ms)

~ 2. 109 Vectors

-10 1-32768

Figure 2.2 - Slope resolution of the vectors
(Amplitude and time not on scale)

(T = 100 ys for the values here shown)

2.2 Ramp generation

The precision and the stability versus temperature and time of the
functions to be generated, require a digital rather than analog

approach.

Indeed taking into account the function specifications and the high
resolution and stability of present day quasi-monolithic DAC, a
digital integrator is much more suitable in our application rather

than a conventional analog integrator.

In a very simple form a Ramp Generator (RG) consists of a processor,
namely a pP, where the vectors are computed, followed by a DAC
converter. The DAC output is therefore a step function as illustrated

in Fig. 2.3.
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1LSB Y

D -

A

Figure 2.3 - Generation of a digital ramp of amplitude
AA and duration D

The parameters specified by the user are the amplitude 8A and the

duration D.

The parameters requested by the digital RG are the sampling period T,
the slope P = tga = AA/D and the amplitude resolution 2 1 LSB.

The main problem is the determination of the sampling period T, which
is used to increment or decrement the DAC output according to the

sign of the slope to be generated.

-3
[}

D/AA no integer in most of the cases

thus T f (AA/D, Amplitude resolutiom, Amax, Dmax)

T =5 us is the minimum value required for all the SPS function

generators

The solution of this function, taking into account the minimum
requested sampling time T = 5 s, requires the use of a
68000-10MHz yP, with very fast dedicated algorithms entirely
developped in assembler, and making use of 16 and 32 bits

multiplications and divisions.

The digital RG acts therefore like an automatic and sophisticated

frequency synthetiser within an overall accuracy of * 1 LSB.
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SYSTEM DESCRIPTION

3.

1

System structure and layout

The function generators and the power supplies to be controlled are
located in six Auxiliary Building (BA) placed around the 7 km SPS

ring.

The schematic function generators layout for each BA is shown 1in

Fig. 3.1.

Two independent VMEbus crates (1 for 36 CODs and 1 for 15 POD/MDP) in
each BA, linked to the SPS computers through the MIL-1553-B networks,
allow the entire control and analog acquisitions of the 250 COD and
POD/MDP power supplies for closed orbit correction within the SPS

supercycle.

We may distinguish two sections for each VMEbus crate :
- The VMEbus general crate control

- The ramp generators and power supplies control section.

The first section contains three VMEbus units, developped at CERN by
the SPS/LEP Control Group and it represents the minimum base
structure of the VMEbus crate, regardless of the process functions to

be carried out in the other section.

We have in the order :

. VME/MIL-1553-B Interface

. TG3 Timing module. This unit allows the synchronisation of the
functions to be generated to the SPS supercycle. It generates in
particular the Start and Stop of the functions. The module is
6809 or 68000 up based.

. CPU_HAMAC 1. This board, 68000 up based is the master of the

VMEbus and it controls all the communications of the crate.

The second section deals with the process equipment dedicated units
for the control of 36 independent Power Supplies. These are shown in

the following order :

. 1 or 2 ON/OFF & Status board. This unit being too specific

therefore is being developped at CERN.
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1 to 3 Analog Input board. 12 bit ADC resolution, 50 us

conversion time. 64 Single-Ended or 32 Differentials input
channels. These units will allow the analog acquisition of the
36 Ramp Generators output (i.e. the Power supplies' reference
voltage) and the 36 Power Supplies' current. This are no
intelligent peripheral modules (i.e. no wp on board) and

therefore their control is entirely made by the master CPU.

It follows that the analog acquisitions of all channels cannot
take place simultaneously but in sequence, one after the other

in time.

These modules are getting commercially available, e.g. XVME-560

KYCOM

1l to 9 Ramp Generators boards. These units are the heart of the

FG and they carry out the real time tasks of the system.

Essentially a ramp generator module is an intelligent hardware
dedicated wunit, 10 MHz, 68000 up based, driving up to 4
independent 16 bit DACs supplied by individual DC/DC converters
for noise and common mode rejection. The functions are carried
out by very fast dedicated algorithms. Thus a VMEbus crate will
house up to 36 independent FGs.

From a function loaded in its memory in 'hardware format', the
pp computes in a time-sharing fashion the 4 independent ramps
and sends every 'T' uws the new current amplitude to the

corresponding DACs.

It should be noted that the sampling time T = 100 us is
largely suitable for all the SPS power supplies 1). Therefore,
a ramp generator with 4 DACs can pratically cover all the SPS
function generator requirements. If particular applications
requiring steeper and higher amplitude resolution ramps should
arise, we can of course go as low as T = 5 wus, just by
inserting 1 DAC instead of 4 DACs into the modular Ramp

Generator, with no change on the application software.

In this way all the SPS FG requirements can be largely covered

by the MUGEF solution.
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The ramp generator module is made up of a "Mother + Daughter
board” technique, thus allowing modularity, flexibility and
cost-saving. Indeed, by changing the daughter card, one can
define another function (e.g. ADC, Scalers, etc...), the mother

card remaining the same.

The mother board called FLEXIPM is a commercial wunit from
DATA-SUD-FRANCE, as shown in Fig. 3.2. It should be noticed that
the “Analog Outputs”™ and the “Interrupts Inputs"™ pass through

“the P2 connector.
Remarks :

a) An 8 channels - 16 bit DAC - daughter card is currently
being developped. The unit should allow a considerable cost

and volume saving reduction per FG channel.

b) 1In view of the decreasing cost of memory, the memory size of
the RG could be increased by using new expected, JEDEC
compatible, 256/512 KB RAM & EPROM in order to have more

vectors/function and a greater number of resident functions.

¢) No booster output amplifier is required. The DAC being used
is capable of driving at least 70 m of twisted pair cable
with a good margin of gain and phase stability. This is a
very important point to highlight, as it allows a
considerable reduction in the volume of the electronics

involved, hence an important cost-saving too.

d) Function length and resolution could be both increased and

also software programmable.
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3.2 Function generation and system configuration

The system is a VMEbus mono-master structure configured in a
multiprocessor environment (up to 11 68000 up/VMEbus crate). The

CPU is the master of the crate.

All data transfer and commands N100-VMEbus take place in the CPU,
through the VMEbus/MIL-1553-B interface, wusing an appropriate

communication package.

The functions in user format are sent from the N100 to the CPU, where
they are converted in a new format, called hardware format, fitting
the Ramp Generator requirements. Up to 36x10 = 360 different
functions of 20 vectors each, both in user and hardware format can be

resident in the CPU.

Functions in hardware format are sent in real time to the RG in the

time interval Stop-Start, according to Fig. 3.3.

FG output

| f v f

Start FG Stop FG Start FG Stop FG

new Function r

Cycle i+1

Cycle i

CPU <RG transfer
functions allowed

Figure 3.3 - Function generation and timing signals

(Start FG - Stop FG intervals not on scale)

Transfer time from CPU to RG memory for 800 vectors is less than

10 ms.

The functions are then generated in real time by the ramp generators

which are entirely self independent and they cannot be interrupted
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until the next Stop timing signal from the TG3 module or from other

external sources.

The analog acquisitions and ON/OFF & Status board are entirely

controlled by the master CPU.

4. SQFTWARE TMPLICATIONS

. CPU. A data module subroutine °‘DMS MUGEF’ resident in the CPU will
provide the software data base both for the communication control
between the SPS computer network and the CPU, and also the management

of the VMEbus crate.

A function editor developped around the_Hotorola 68000 yp monitor

has been finalized and tested in the CPU.

Having the CPU connected to a standard video terminal via its
Host/Terminal RS-232 port, the function editor allows a inexpensive
way to work on the ramp generators without the need of an external

hardware/software development system.

Specific application programs concerning survey and faults

diagnostics have yet to be written.
Programming languages : MODULA-2, Assembler.
. Ramp Generator. Very fast algorithms have been written in assembler,

both for the 1 DAC/RG version (T = 5 us fastest sampling time) and
for the 4 DAC/RG version (T = 100 us). Real time tasks.

5. PRELIMINARY RESULTS

A first RG prototype with 4 channels - 16 bits DAC - has been developped
and tested. The results are in agreement with the expected values, in
particular concerning the functions generation, accuracy, noise crosstalk

and hardware modularity. -

The following photos show the high degree of flexibility we may obtain
with the 'MUGEF' system.
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Photo 5.3 shows the summing output on the oscilloscope, of the functions
carried out by the 4 channels, photos 5.2 to 5.5, The 4 DACs have
completely differsnt Ffunction esch other, both in amplitude and duration.

Alzo to be noticed are the function discontinuities.

Photo 5.1 Photo 5.2
I DAC 1 to DAC 4 DAC 1 output
outpuls

on the oscilloscope
¥ = 2 vwidiv.
H = %00 my/div.

Phote 5.3 Photo 5.4

PAC 2 output DAC 3 output

Photo 5.5

DAC 4 output
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CONCLUSIONS

The VMEbus standard appears to be very suitable for the development and
the construction of the new SPS multicycle function generators, both for
technical and economical reasons.

Thanks to the speed and resolution of the modular ramp generators, the
functions applied as references to the power supplies will be identical to
the desired current ouputs. The operation and fault diagnostics of the
function generators and power supplies will be simpler and more
transparent for the MCR and for the piquets.

By inserting 1 to 4 DAC in the ramp generator card, according to the
steepness and to the amplitude resolution of the ramps required, the
proposed 'MUGEF' solution is modular, flexible, cost saving and very
suitable for all the function generators at the SPS and, we believe, at
CERN as well.

REFERENCES

1) A possible solution to control POD & MDP Power Supplies for Closed
Orbit correction within the SPS supercycle.
SPS/ABM/Note/85-46 - 7.3.1985
G. Mugnai, J. Savioz
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P2 CONNECTOR - PANEL DISCUSSION
Chairman: D. O. Williams (CERN)

Participants: M. Lisel (Force Computers, Munich), R. Rausch (CERN), J. Regula (Ironics Inc.,
U.S.A), J. Werdehausen (Motorola GmbH, Munich) E. Owen (Daresbury Laboratory, U.K.),

Abstract

The outer two rows of pins on the VMEbus P2 connector have been a source of
controversy since they were allocated as "User I/O Pins”.

Several implementations of auxiliary buses on these pins have been made, notably:
VMXbus (which has passed through two revisions), MVMX32bus (from Motorola),
VM Cbus (in use at CERN), not to mention many others from different manufacturers.

Can we converge onto one standard, if so what should it be and what effect does this
choice (or lack of choice) have on associated equipment, especially in experimental
physics?

Chairman’s Summary: The Use of the User 1/O Pins on the P2 Connector

INTRODUCTION

It is clear that a full technical discussion on the merits of various different approaches to the use
of the “User 1/0” pins would have required at least one day. It is also clear that we did not have a
whole day available for such a discussion at this two-day conference. 1 hope, nevertheless, that the
audience and the panellists felt that it was useful to try to review the major ideas that arise in this area.

As Chairman I briefly introduced the speakers.

Jirgen Werdehausen is Technical Marketing Manager with Motorola Microsystems, Munich.
Max-Eberhard Losel is Vice-President, Technology and Engineering with Force Computers in
Munich. Raymond Rausch is with the SPS Division at CERN in charge of the hardware aspects of
the LEP/SPS Control System. He also has been involved in ESONE standardisation activities related
to microprocessors. Ted Owen is at Daresbury Laboratory, U.K.; he is Chairman of the ESONE
Technical Committee, and has recently taken on the job of Chairman of the VITA User’s Committee
in Europe. Jack Regula is with Ironics Inc. of Ithaca, New York, U.S.A., where he has designed an
MC68020 processor board using VMXbus Revision B, and is on the VITA Technical Committee.

Then I gave a brief overview of the problem.
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I showed a telex received about two weeks prior to the meeting where a company primarily
building physics instrumentation had been enquiring what CERN was recommending as a VMXbus
specification.

Basically the VMEbus specification defines the two outer rows (a and c) of the second (P2)
connector as "User defined”. However in October 1983 a draft specification of VMXbus was issued,
which required the use of these pins. Several users (notably the UA1 experiment at CERN) and several
companies (notably, but not exclusively Data Sud) then made designs to this draft specification. When
the specification was changed from draft (Revision A) to final (Revision B) in December 1984, there
were major modifications, and all Revision A designs were made obsolete.

During autumn 1984 it became clear that Motorola were not very enthusiatsic about VMXbus
Revision B, and that they proposed to design all of their MC68020 VMEbus board products using a
new specification, called MVMX32.

Question: Why do we need a second bus anyway? Surely VMEbus can do everything that we
need?
Answer: This is an issue of system design, and more especially one of performance. VMEDbus is

fine as a system bus, but we commonly find that each processor in any mutliprocessor
system needs a private bus to access its private equipment (private memory, special
1/0, etc.). If this private equipment is connected via the system bus then the bus can
get saturated and become the factor that limits the overall performance.

Question: Can this private bus be limited to memory extension only?

Answer: In my view any such limitation is too much of a constraint. Systems designers in fields
like particle physics need to interface very high data rate equipment to
microprocessors. This sort of high rate equipment is exactly the sort of thing that will
saturate the system bus, and so should be directly attached through a private bus.
However we should not limit this private bus uniquely to passive memory access.

The minimum physics requirement is that it should be possible to install a DMA controller on
the private bus which permits data coming from phyics readout systems to pass into a dual port
memory on the private bus, and where that data is then accessible to the controlling processor.

A set of physics requirements that are slightly more extensive, but which I consider still
reasonable, include:

1. Extension from a single secondary master (DMA controller) to multiple secondary masters.
This essentially permits greater flexibility to control multiple devices from a single CPU.

2. Possibilities to send interrupts from the secondary masters to the CPU. This permits faster and
more predictable response to events such as DMA completion, as compared to sending the
interrupts over the system bus.

3. The possibility for the private bus to prevent devices attached to dual port memory via other
ports from accessing this memory. If this facility is missing it is not possible (or, more exactly,
not simple) to ensure that the view of the data as seen through two ports of the memory is
consistent.

4, The possibility to prevent data in attached memory from entering the cache of a processor that
has a data cache.
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5. 32 bit data (no argument) and 32 bit addresses. I see the need here as being a strong preference
to avoid base registers, and to keep the addressing on the system bus and private bus
compatible, as far as possible.

Problems: One way of looking at this issue is to say that we are asking for the functionality of
the VMEDbus (32 bit address and data, multiple masters, interrupts, etc.), while only
having limited real estate and 64 pins available to provide this functionality

It is also crucially important to emphasise that the users need to mix and match
boards from different manufacturers. The ability to do this has been one of the real
success stories of VMEDbus, and I sometimes think that the supphers do not realise
how important this aspects is for the users.

Accordingly it is vital for the future of VMEbus that VITA puts some order into this

situation and provides a single recommendation for a private bus.

VM Xbus Revision B

As far as I can see this rather poor for use in physics, since:

a. The absence of a LOCK line (which was present in VMXbus revision A) means that safe
access to a dual-port memory cannot be provided.

b. The absence of a CACHE signal will make it difficult to keep volatile data out of the cache of
processors like the MC68020.

MVMX32

This design seems to solve the two major problems that I see with VMXbus Revision B.
However I then pose two other questions:

a. The original design comes (if I understand things correctly) from a pure memory access bus,
the RAMbus. Is the MVMX32 specification mature enough for the multiple master situation?

b. Is it too tied to the MC680207

PANELLISTS’ PRESENTATIONS
Juergen Werdehausen
Emphasised that the users must remain free to use the “User 1/O” pins for anything they need,
and pointed out that Motorola saw MVMX32 as an optimal bus for the MC68020, and not

necessarily in conflict with VMXbus Revision B. Since MVMX32 has evolved out of RAMbus, it has
a proven architecture, and Motorola will provide VLSI support chips for MVMX32 interfacing.

Max-Eberhard Losel

Also emphasised the freedom for users to use these pins in any way they like. Force use a special
connection ( “FLME” — Force Local Memory Extension) between processsors and local memory,
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which allows the processor to be attached to one memory board on each side. These boards are
interconnected using on-board DIN connectors that are aligned parallel to the backplane. This set of
interconnected cards can then be inserted or removed from the VMEbus backplane as a single unit.

The overall architecture which Force see as appropriate for automated manufacturing is shown in
the attachments.
Raymond Rausch

First of all explained the reasons which led his team to concentrate some of their work on the
VMCbus, which is a definition of the M68000 pinout onto the 64 “User I/O” pins.

He considered that the main problems with VMXbus Revision A had been:
a. Lack of any interrupt specification
b. Limitation to a single secondary master

c. Unusual address/data multiplexing. 32 bit data is supported, but the address is multiplexed
with twice 12 bits.

He saw the main advantages of VMCbus (C for CERN) as having
a. Full M68000 bus extension
b. Allows the logical and physical extension of the rather limited VMEbus board space
c. Allows use of M68000 peripheral chips
d. Allows easy no wait state memory extension
e. Provides vectored interrupts
f. Supports multiple secondary (DMA) masters

g. Facilitates the monitoring of the activity of the M68000, since special monitoring hardware can
be located on separate cards.

Note that VMCbus supports 32 bit addresses and only 16 bit data. It was emphasised that VMCbus is
NOT an alternative to VMXbus.

Raymond’s list of desirable features, from the user’s point of view, for the extension bus included:

a. Full 32 bit address and data, which automatically implies multiplexing, in view of the
limitation to 64 pins.

b. Mulitple secondary masters and
c. Vector interrupt capability, which together imply a daisy chained arbitration.
d. Full memory extension with no wait states

e. LOCK and CACHE facilities to support dual-port memory and caching processors
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f. Full support for the MC68020, including the coprocessor architecture

g. Simple interfacing for other processors, including the NS32032 and Intel 80286/80386
h. Asynchronous

He summarised by giving his opinion that we have not seen the end of the iterations around the
VMXbus specifications, and advised users to wait and see, while encouraging the suppliers and VITA
to come to the correct conclusion as fast as possible.

Ted Owen

Complained that the Chairman had stolen his lines, and then emphasised the need, as secen by the
users, for a single agreed VITA specification for the private bus. A standard would bring the well
known benefits which come from competition amongst suppliers of compatible equipment, and would

assits system design by removing the choice of an extension bus from the decisions that have to be
made.

Jack Regula

Reported that VMXbus Revision B, the official party line, was relatively easy to use, and that he
didi not think that there were real problems with it. VMXbus is good for 16 bit applications and
adequate for 32 bit processors. With the coming of big (1 Mbit) memory chips, the emphasis for the
extension bus would be on its use for I/O, rather than memory extension. With an on-board cache
memory, the need for a zero wait-state memory bus would largely disappear.

- General Discussion

At this point the session was thrown open for user questions and comments. I think that the
most important was the brief report made by Mira Pauker (Philips, France), who is the French
delegate to the IEC committee. If I have the picture clear (I have no notes on the point) the IEC
decided that neither VM Xbus nor MVMX32 should be endorsed as a bus related to VMEbus, and set
up a small working team to try to get the functionality of VMXbus Revision B and MVMX32 into a
unifed VME System Bus, or “VSB”. If you are optimistic, this work might be in reasonable shape by
the end of 1985!

In closing the session I pointed out that the conference, with its attendance of over 300, with 60
people from industry, had shown the vitality of the VMEbus marketplace. The confusion over
VMXbus presents a serious challenge for both the users and the suppliers, and I sincerely hope that
VITA will succeed to bring some measure of order in the near future.
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COMPUTERS

\

VMEbus P2 Connector Assignments

Advanced computer and microcomputer architectures
require a powerful bus structure for the various
types of processing and I/0 handling capabilities.

The VMEbus in that respect is seen as a future
oriented bus structure for 16 and 32 bit processing
unit and represents the "primary bus" in the

system enviroment.

To allow the system designer, system integrator and
user to utilize all the power of a processor it is

required to add "subsystem busses" to the primary bus.

Therefore there is a strong need for a VMXbus and
even the VMSbus within the VME system enviroment.

The P2 connector in the VMEbus enviroment had been
layed out to conform with these requirement and to
carry out two directions from a system design view-
point:

a) to provide an user 1/0 on P2 for dedicated
customer I/0 interface solutions.

It has been used so far to assign parallel I/0
interface lines (i.e. line printer or equivalent}
as well as serial I1/0 interfaces lines or proprie-

tary bus structures servicing 8 bit board products.

to this port.

P2 connector may optionally standardized for

RS 232 serial interface I/0 and/or printer inter-
face.

Our recommendation is to leave it as user 1/0
esp. ina l6 bit enviroment.

b) to provide an interface for a secondary or sub-
system bus. The VMXbus was and still is our
recommendation for the P2 connector under this
viewpoint. VMXbus, Rev.B, has been released now
and has so far been the common activity of the
manufacturing group. There is no major need
to change the P2 connector assignment. The VMX
on P2 serves the designhers need having the
secondary bus structure available in a more
complex computer envoriment.

®



- 196 -

The secondary bus should not serve a special need of
a particular microprocessor chip structure and should
be structured as much as possible to support system
enviroment configurations. VMX can do the job.

FORCE's FLME structure is not destroying the above described
model in contrary FLME is even supporting it. There is no
limitation built into a board design by using FLME. FORCE is
going to announce products soonwhich will demonstrate this
functionality.

FORCE COMPUTERS GMBH

e B L

Max-Eberhard Losel
Exec. VP R + D
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18.9.1985
VMCbus - A USER I/0 LOCAL BUS

R. Rausch
CERN - LEP/SPS Controls Group

The conclusions of the CERN interdivisional working group on bus systems and
microprocessors made in 1982 recommended the standardization of future equipment on
the VMEbus and the 68000 microprocessor family.

At that time the VMXbus Specification was awaited and the first publication, revision
A, was received by October 1983. After a study of the document several serious technical
limitations were identified amongst which:

a) No interrupt mechanism for I/0 modules.
b) Only one secondary master possible.
c) Address/Data multiplexing for the 68000 family which is not multiplexed.

For the LEP/SPS control system a function to function architecture has been adopted
for the VME multiprocessors requiring close coupling of the CPU with private memory
extension boards and with private Input/Output cards. Thus for this type of application
the LEP/SPS Controls Group decided to assign the full 68000 microprocessor family to the
USER-I/0 pins of P2. A detailed specification manual, on the so-called VMCbus has been
written and made available to VME users and manufacturers. The main advantages of this
approach are the following:

-  Full 68000 microprocessor bus extending physically and logically the VME board
size and functionality with up to 5 VMC cards.

-  Possibility to use directly all 68000 peripheral chips; the addressing, the timing
and control signals over the VMCbus being those of the 68000 processor.

- Fast memory extension without WAIT states up to 12.5 MHz and no
multiplexing/demultiplexing logic.

- The 68000 vectorized and autovectorized interrupt mechanism is provided over
the VMCbus allowing each VMCcard to interrupt directly the microprocessor.

- The 68000 Direct Memory Access mechanism is supported over the VMCbus
allowing multiple DMA masters to communicate with the microprocessor’s
private memory.

-  Each VMC board may be interfaced both to the VMEbus and to the VMCbus.

- A powerful diagnostic tool is provided by plugging a logic analyser directly onto
the VMCbus to monitor the microprocessor’s activity on its private internal bus
without perturbation.

It should be noted that Private 32-bit data transfers could be done over the VMCbus,
using row b of P2, but this would exclude 32-bit VMEbus transfers. Nevertheless, in many
applications, it is more important to use efficiently a 68020 with a large private memory
than to transfer 32-bit data amongst processors.

The VMCbus is not meant to be an alternative to the VMXbus as its use is restricted
to the 68000 microprocessor family. It allows an easy, fast, powerful and modular
extension of the VME board.
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ABOUT VSBBUS (VME SUBSYSTEM BUS)

IEC Special Working Group nominated by the National Committee delegations
during last IEC General Meeting (May 85)

Is preparing a specification which is technically a superset of both VMXbus and
MVMX32 bus

First meeting took place on a 6 —9 sept, at Los Gatos

Present experts:

Nominated by USA Nat. Com.  Arlan Harris (Hamilton/Mostek)
Doug Graft (MOTOROLA)
Nominated by U.K. Nat. Com.  Paul Borrill (London University)
Nominated by France Nat. Com. Mira Pauker (PHILIPS CTI)
Convenor Robert Davis (IEEE MSC Chairman)
Present observers: Shlomo Pri—Tal (MOTOROLA)

Craig Mac Kenna (SIGNETICS)

It is anticipated that the preliminary specification will be available within a short
period of time. :
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VMEbus CRATE INTERCONNECT

B. Pietarinen

Department of Physics, University of Helsinki,
Siltavuorenpenger 20 D, SF-00170 Helsinki

ABSTRACT

The UA1 VMEbus based read-out system uses crate interconnect
modules for communication and data transfer between VMEbus
crates. A memory mapped transparent access through a 64 kbyte
movable window allows an easy control access to the remote
crates, wvhile a separate block transfer facility moves data

between VMEbus crates at rates up to 10 Mbytes/sec.

1. The main features on the VME crate interconnect and its use
in the UA1 VME readout system

The VMEbus specifications do not prescribe any definite rules
to be followed when building VME multicrate systems. Standard
VME I/0 modules and datalinks are usually restricted to trans-
fer speeds below | Mbyte/sec, which is not adequate for high
energy physics data acquisition systens.

In the UA1 experiment the off line processing capacity and the
speed of data storage (tape writing, laser discs) limit the
final data rate below 0.5 Mbyte/sec, but much higher peak

rates have to be handled internally during the event readout.
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The task of the VME crate interconnect module is to provide
the required control and date transfer facility to create a
VME multiprocessor network suited for large data acquisition
systems.

The functioning of the system can be best understood by
studying the bYlock diagram of the UA1 data acquisition
structure in Fig. 1 (ref.1). The readout supervisor has
complete control over all the readout crates. Most of the
readout modules at present are Remus branch drivers (RVMEX,
ref. 2). When a readout trigger occurs, the digitized data are
read in parallel via the VMX ports into VME/VMX dual port
memories. The event appears sliced into several (740)
fragments in different memory modules and even in separate VME
crates. The event manager sets up the crate interconnect

modules to collect the data together and transfer them

READ-OUT CRATES vHX
LINKS
RVMEX RVMEX RVMEX -
| = ) } &
DATA CRATES
DPRX DPRX DPRX ol
x L ) | ‘T
RVMEX RVMEX RVMEX ‘_)
X ¥ b
INTERCONNECT
CABLES EVENT UNITS vMX
LINKS
READ-OUT A
J | ¥
SUPERVISOR
EVENT o
MANAGER -
| )
| - ) {
EVENT UNITS

Fig. 1. The UA1 VME readout system
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simultaneously into those event units which have requested an
event. These event units may even be located in different
crates. Due to such a broadcasting mode the same event can be
made available to several tasks without significant overhead
to the event manager or decrease in the data flow rate.

The most frequent tasks of the crate interconnect module are
clearly the control access and the block transfer of data.
These operations are controlled hierarchically. The event
manager is a master over the data and event unit crates and it
determines the way the block transfers are performed.
Correspondingly the readout supervisor is a master over the
readout crates. Actually the readout supervisor is accessible
by the event manager and using two crate interconnect branches
in chain, the event manager can in principle directly access
the readout crates.

For control access the master VME crate interconnect can set
one of the remote crate interconnects into a window mode,
which maps a 64 kbyte segment of the remote crate VME address
space to a fixed location in the master VME crate. VME cycles
accessing the window area in the master crate are translated
into similar VME cycles in the remote crate (see Fig. 2). The
base address of the window in the remote crate is contained in

a register and it can be altered with a single instruction.

MASTER REMOTE
CRATE CRATE

Size: 64 kbytes

Base address is
programmable

Byte, word and
long word VME
cycles possible

Fig. 2. Crate interconnect window mode
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Since the window mode is normally used to refer to control
registers, descriptor blocks or CPU mail boxes, the window
size is adequate allowing non multiplexed fully handshaked
access through the crate interconnect cable.

For block transfer a CPU initialises via the master crate
interconnect the source and destination interconnects into
direct memory access (DMA) mode writing values to the start

address and byte count registers. After a start command the

modules transfer data autonomously until stopped by the byte
counter or an error condition. The correctness of data is
controlled by a 32-bit parity check as well as the number of
bytes transferred. A software initiated retransmission is done
in case of an error. It appears that no transmission errors
have been seen during tests involving transfers of several
hundred Gbytes.

In the UAY1 experiment the readout and data crates are at the
side of the detector separated from the counting room and the
rest of the VME system by cables of about 150 meters. A
special long distance interface module is used to convert the
crate interconnect cable signals to differential form as used
e.g. in RS-422 specification. Peak transfer rates of 8-10
Mbytes/sec can be achieved depending on the transfer distance
and the memory access times.

The crate interconnect contains also an RS5-232 interface to
allow a common multiplexed host connection for all CPU"s in a
crate for program development and testing. This interface is
independent of the other functions of the device. For visual
monitoring of the activities in each crate there is also a
front panel LED display of VMEbus data lines DO-D15, addresses
A1-A23 and the WRITE-line.

2. Theory of operation

The block diagram of the VME crate interconnect is shown in

Fig. 3. Table 3 shows the crate interconnect cable signal
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YMEbus
VMEbus address J VMEbus requester
and data display and arbiter
RS-232
interface Data
L Address latches
VME address bus counter
24 bits
Broadcast L <J
mask register D
__Extepded address
| register 8 bits | Byte
] counter
Address 24 bits
modifier|
regi;ter Parity |—
6 bits 1] generator|{——
Board
Rem|t l controi
ote VME access| | logic DRA cycle
access decoder generator
decoder ’
CA1-CAI1S
[ Crate interconnect cable 4J

Fig. 3. Crate interconnect block diagram

assignments and their description. A complete manual with full
technical details is available (ref. 3).

The data between the VMEbus and the crate interconnect cable
are routed via Am 29843 high performance latches, which in the
window mode operate transparently. Address and control lines
are interfaced via 48 mA drive capability transceivers. All
the internal 1logic is realised using programmable logic
devices (16 circuits). The serial interface uses the enhanced
programmable communications interface MC 68661 or SC2661.
Sockets are provided on the crate interconnect board to plug
in termination resistors. With appropriate terminations window

mode of operation is possible over 100 m and DMA mode up to 15

m without long distance interfaces.
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The VME access decoder has a jumper presettable VME base

address, which determines e.g. the window address in the
master crate, location of the module registers, and the
address of the RS-23%2 interface. Only a part of the registers
and the RS-232 interface are accessible from a slave crate
interconnect module.

The individual crate interconnect registers are accessed using
an offset proportional to the crate interconnect number, which
is jumper presettable between O and 15 (restricted by fan-out
requirements). The available commands and the registers are
described in Tables ' and 2. Commands arriving to a remote
module (strobes MSEL and DATA, Table 3) are digitally filtered
to remove any noise before an operation is performed or a
remote VME cycle is started. Similar filtering occurs while
receiving the data transfer acknowledge signal (CDACK).

An address counter is a write only register on each crate

interconnect module for defining the start address of DMA
block transfers and to hold the window base address. In the

latter case the lower address lines are taken from CAt{-CA15 on

the crate interconnect cabdble.

A byte counter is a read/write register, which is incremented
in steps of 2 (16-bit DMA mode) or 4 (32-bit DMA mode) until a
carry out is produced stopping the DMA operation. Both the

addresses and the byte counter are 24-bit wide only allowing a
maximum of 16 Mbyte block transfer with a single
initialisation. A32 addressing is possible using an extended
address byte register and the appropriate value in the address
modifier register. Extended addressing has not yet been used
in the UA1 VME readout system.

A VMEbus requester and a single level arbiter is realised

using PAL20X8. In normal use it is recommended that the crate
interconnect is set on the arbiter priority level 3 and other
VME masters on a lower level to ensure sufficient performance
of the data transfers and control. In DMA mode the crate
interconnect starts in release-when~done (RWD) mode and

switches to release~on-request, if no other bus requests are
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seen. As soon as another bus request is detected during DMA
operation, the requester switches to RWD mode and releases the
bus within two DMA cycles. The time-out counter during DMA
waits for delays due to arbitration and triggers only to
accesses where no data transfer acknowledge is received. Due
to the on board arbiter and own system clock the crate inter-
connect can be used alone in a VME crate without other VME
masters, as it appears in the data crates of the UA1 readout.

A TAS-register is a single bit location to control the access

to the interrupt register. It is used to arbitrate interrupt
requests among processors in the same crate. Releasing of the
interrupt access is done by clearing the register. The bit is
again set by the next TAS instruction executed after which the
access is transferred.

An interrupt register is a 4-bit wide register. The normal

contents are 0, but writing a value between 1 and 15 causes an
interrupt via the crate interconnect cable signal line CINTR.
This interrupt is served by the master CPU. The crates can be
connected by a daisy chain cable connected to the front panel
of the crate interconnect, this enables the master CPU to read
the interrupt number with a single instruction. In the case of
several interrupters in different crates, the first crate will
be serviced first with other interrupts pending. One of the

possible uses of such an inteerupt scheme is the transfer of

crate interconnect cable mastership in a non-hierarchical
environment. In that case mastership requests via interrupts
are serviced by the old master after it has completed the
activities with the network and the mastership is released
under software control to the new master. Only a few
microseconds in addition to the 68000 interrupt response time
are needed for mastership transfer, provided the 0old master

can release the mastership.
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Table 1. Crate interconnect commands and registers

(commands dependent on module number in Table 2)

COMMAND OR REGISTER

ACTION OR EXPLANATION

CCLEAR (cable clear)

Stops DMA, ends window

mode

Request mastership

Module becomes cable

master

Start DMA

Source and destination
modules start transfer

RS-232 registers: data,
status, mode, command

Available in all modules

Module and DMA status

Indicates ongoing DMA
and window modes

TAS-register

For interrupt register
arbitration

Interrupt register

Interrupts master with
a vector 1-15

Read interrupt source

Activates the interrupt
register daisy chain

Table 2. Commands dependent on the crate

interconnect module number

COMMAND OR REGISTER

COMMENT

Set window mode

Only one module at a time

Set longword mode

For D32 VME slaves

Set DMA source mode

Only one source

Set DMA destination

For destination crates

Send interrupt

Interrupt in remote crate

Reset remote crate

Removed by CCLEAR

write address register

For DMA or window

Read/write byte counter

Write broadcast mask

Defines modules for
broadcast, also used
for special DMA features

Write address modifier

For A32 mode and special
address modifier values

and extended address
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Table 3. Crate interconnect P2-connector pin
assignement and explenation of signals

Pin number { Row C Row B Row A
1 CINTR +5 Vv MSEL
2 GND GND DATA
3 CCLEAR - START
4 CPARITY | BA24 GND
S DSO BA25 GND
6 DSt BA26 GND
7 CDACK BA27 GND
5 ) CDSTR BA28 READ
9 CAI1S BA29 CA14
10 CA1l13 BA30 CA12
11 CAll BA31 CA10
12 CA9 GND CAS8
13 CA7 +5 vV CAb
14 CAS BD16 CA4
15 CA3 BO17 CA2
16 Cal BD18 GND
17 cD16 BD19 CcDo
18 CD17 BD20 CD1
19 cD18 BD21 cD2
20 CD19 BD22 CD3
21 CD20 BD23 CD4a
22 CD21 GND CDS
23 CD22 BD24 CcDhe6
24 cCD23 BD25 CD7
25 CD24 BD26 cDa8
26 CD25 BD27 CD9
27 CD26 BD28 CD10O
28 cD27 BD29 cD11
29 CD28 BD30O CD12
30 CD29 BD31 CD13
31 CD30 GND CD14
32 cD31 +S5 Y CDIS
ve Exptanation

Signal Acti
level

CINTR

CCLEAR
CPARITY

DSO
DS1
CDACK
CDSTR
CA1-15
CDO-31
MSEL
DATA
START

READ
GND
+3 YV
BA24-31
BD16-31

L
L
H
L
L
L
L
H
H
L
L
L
H

X

interrupt line
Initialisation
32-bit parity line
VHME data strobe

Data transfer acknowledge
DIMA data strobe

Cable address bus

Cable data bus

Master command strobe
Window data strobe

Start-DMA siansl

Data direction (except DMA)
VME-board ground

VME power line

VME extended address

VME data lines
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3, Further developments

A Unibues interface for the crate interconnect has been
developed (ref. 4) to enable data transfers to and from e.g.
VAX computers at the maximum rate allowed by Unibus (DRE-11).

A prototype module of a CAMAC-crate interconnect interface
also exists to tranafer data between the VME system and a
CAMAC computer at the maximum rate allowed in CAMAC. The
interface will also act as an euxiliary crate controller in a
CAMAC crate.

A geographical crate management system has been designed for
the 68020 based processors (ref. 5) to be installed to the UA1
experiment. A small modification of the VME access decoding of
the crate interconnect allows one to generate a bus error for
accesses outside the 64 kbyte window, after which a new window
can be set up by software. With this modification the access
to remote crates can be made completely transparent to the
user.

A fiber optics cable offers several advantages as a high speed
link between computer systems. An implementation of the
circuitry to transfer the crate interconnect cable signals in
bit serial form over an optical fibre is underway. The module
will have two fibre inputs and two outputs with bit rates over
150 Mbit/sec. The intention is to implement the control part
as a 68020 coprocessor to be used in conjunction with general

purpose 68020 cpu boards (e.g. ref. 5).
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VERTICAL BUS FOR MULTI-CRATE VREbus SYSTEWS - WV
Authorss J.Bovier,F.Hora
Creative Electronic Systeas 54, GENEVA
CP 107 Petit-Lancy SWITIERLAND

A Multimaster VMEbus Extender: The CES concept.
Foreword:

The CES vertical bus - called VMV in this document - has been
designed to provide an efficient and simple solution to the
data handling problem in large data acgquisition systeas
requiring several VME crates. The transfers on the VMV bus are
handled in cospletely transparent aode for the local CPUs and
are executed at the maximus VNE speed. The systes utilizes a
tree structure with up to 15 crates at each level of the tree

The hardware:

The VMV interface units consist of a pair of single width VME
boards.A solution with two separate units allows the best
preformance/price ratio in each application, because in mosts
of the cases only one board is required per crate.

- The receiver unit : VBR 8212

These units are similar to CANAC Crate Controllers.These Naster
VME boards receive the cycles coming from the VAV bus and
transfors thes into VME cycles in the crate where they reside.
# VMV Slave Crate requires only a VBR B212.

- The transsitter unit : VEE 8213

These units are similar to CAMAC Branch Drivers.They receive
the VME bus cycles from the crate where they reside and
transfora thes into VMV bus cycles for other VME crates. A VAV
Master Crate requires both a VBR 8212 and a VBE 8213,

The transfers:

The transfers on the VNV bus are of the asynchronous type as in
the VNE standard. The VMVbus works on 32 bits addresses and 32
bit data.fll the VME paraseters are transaitted between the
source crate and the destinmation crate. All types of transfers
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- i.e. DB, Bl&

transactions:
- RERD - BLOCK MODE
~ WRITE - ASCENDING MODE

- READ MODIFY WRITE

The Handshake between the Waster Crater and the Slave Crate is

maintained during the complete transaction.

Per forsances:

A special emphasis has been given to the speed and smoothness
of the transactions, The system bandwith is superior to 10
Mbytes for short distances { one rack ) with a full handshake.
The maximua length of the bus is around 100 seter. The signals
are distributed in differential fora and allow “wired-or®
connections. Each line is terminated on its characteristic
impedance.

Typiral systeas:

Systems can be sonobranch or sultibranch. A typical mono-branch
systen consists of one crate equipped with a VBR and a VBE ,
and of N crates equiped with VBR units. A typical multi-branch
systea consists of ope crate equipped with a VBR and a VBE
dealing with a first branch of N1 crates eguipped with VER
units where one - or sore- of these crates is equipped with
another pair of VBR/VBE units dealing with a second branch of
N2 crates equipped with VBR units.

U

v

s D32 - are supported for the following

Single Branch System
uP TO 1E |
Rl UME CRATE N | C o] comme
E [~ ZRATE w2
Rl UNE CRATE 4 D Iy
.
RJ UNE CRATE & !
RIE[ une crate 2 T| e .1
n 3
Carnc
HIGHLMAY
RIE| une cratE 1
R : UBR 8212
E : UBE 8213

In this system, crate |
and crate 2 may reach
all other crates through
the VBE units. The crate
N  contains a CAMAC
branch driver to drive
CAMAC crates from VNE.
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RIE! une crate =
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R : VBR 8212
E : VBE 8213

Crate Addressing:

Crate addressing is isplemented “geographically®. Up to 15
receiver crates can be connected to the VNV busjthe actual
nugber beeing defined by a rotary switch on the front-panel of
the VER 8212 unit.

Two modes of crate addressing are provided by the vertical bus:
- standard mode where a single crate is selected.
- wsulti-crate mode in which all on-line crates of the
branch are selected.

Hulti-crate mode is allowed during “DIRECT" or "VME-VME® cycles
and is possible because "wired-or® inherent in the vertical bus
structure, Wulti-crate aode is selected by crate address *0°,

Physical addressing:

There are two distinct ways to transait a VME cycle between
source and destination crates.

a) "window mode" Ain 1 Mbyte window mapped
address field
the branch.
kigh  address,
froa buffer registers,

In this system crate A

connected on Branch 1
Bay reach crate C
connected on branch 2

through the relay units
residing in crate B,

inforsation
crate nusber, is obtained directly

in the source crate’s
allows access to the other crates in
Destination missing
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b) "asto-routing mode" The destination crate number is mapped directly
within the address space of the source crate. (i.e.
f¥kbyte to 16Mbyte are direcly accessible for each
destination crate.}

The Vertical Bus Receiver

The
VHE
the
are

VBR 8212 is the Crate Controller for Vertical Bus cycles; it converts VMV protocol ta
standard cycles, implementing all VME cycles | A32,032,D14,D8) in all nodes. This is
only unit furnished with a differential interface for the vertical bus. Transceivers
positionned on the lower part of the card,P2 is a connector for an adjacent VBE 8213

Emitter,

A piggy-back bus tersinator, BVT 8214 is required for each of the VER 8212 units at the
ends pf the branch { and on no others ). The VBR B212 is a VME master { like a CPU ),
possessing arbitration logic and  comtrolling the VME cycles which it issues. It also
posseses interrupt handling abilities,

SCHEMA BLOCK UBR 8212
|
INTERHEL REG
|
P INTERNAL EUZ HIE
2 DATAS | ——
“@DDRESS
B
S B o
TRANSCEIUERS y
UMY DIFFEREMTIALS
s WME M
COMTROL E
LIMES
Y | B
REQUEST |
COMTROL N LOGIC
LaGIC ) ' —
|

Vertical Bus Emitter

The VRE 8213 is a VME slave unit.It converts transfers destined for
other crates from VNE to VMV protocol.It contains no differential
interface, thus can only work in conjunction with an adjacent VBR 8212

which

with

is connected via rows A and C of plug P2, The unit is equipped
arbitration logit so that severeal VBE B213 aay share the same

vertical bus,
Vertical bus cycles are generated automatically for transfers destined

for

other crates.The VBE 8213 interrupts its own crate at a

_prograamable level,stisulated by an internal event or by another crate
of the system.

The unit’s internal registers are only addressahle as 16 bit words,
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A VME MULTIPROCESSOR ARCHITECTURE FOR THE LEP/SPS CONTROL SYSTEM

J. Altaber, P.G. Innocenti and R. Rausch

LEP/SPS Controls Group

Abstract The control system for the LEP collider follows the concepts
developed for the SPS accelerator but making use of present-day technology.
Conventional minicomputers are replaced by Process. Control Assemblies
constructed in the VME standard wusing the 68000 yp family. LEP and SPS
equipment will be controlled by intelligent interfaces built in Gé64 or VME
crates and 1linked to the Process Control Assemblies by the MIL-1553-B
multidrop bus. These Process Control Assemblies will be interconnected by
ring networks following the IEEE 802.5 token-ring protocol. The paper
presents the advantages of a VME multiprocessor functional architecture
compared to the conventional mini-computer approach and discusses the merits
and limitations of the VMEbus for the implementation of flexible multi-
processor systems.

1. INTRODUCTION

CERN is constructing a Large Electron Positron (LEP) collider on the
Swiss/French border. The new machine has a circumference of 28 kms and is
located in an underground tunnel at 60 to 120 m depth below the surface of
the ground. Equipment will be installed into the tunnel and be controlled
from underground alcoves and from surface buildings located at eight

equidistant areas. LEP is expected to start operation early 1989.

The LEP control system will use a fully distributed computer system made

up almost entirely of closely coupled multi-microprocessor assembl.i.esl'2

The LEP machine will be operated from the same control room as the SPS

accelerator, in operation since 1976. It follows the same philosophy of
functional and geographical distribution but takes advantage of to-day's
technology. Instead of conventional mini-computers the LEP control system
will use assemblies of microcomputers built in‘ VMEbus standard3 linked by

a token passing ring network conforming to the ISO P.8802.5 standard

protocol, Fig. 1.
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The existing SPS control system will be progressively upgraded by using

the same VMEbus multiprocessor architecture and the token passing ring
+ -

network. Already new equipment required for the e e operation of the

SPS uses VME instead of CAMAC.

CERN 1is currently consulting computer manufacturers to identify and
chose a standard VME distributed multi-microprocessor system together with a

distributed real-time operating system industrially supported“.

The purpose of this paper is to describe the multi-microprocessor
architecture being developed in VME at CERN, Fig. 2. The objective of this
project 1s to verify the validity of these concepts for real-time control of
a large accelerator and to assess 1its relative merits and limitations

. 5,6,7
compared to a conventional implementation .

The technical requirements
to be =satisfied by a multi-processor architecture, the interprocessor
communication, and the reservation and protection mechanisms implemented are

discussed.

The merits and limitations of the VMEbus for constructing a true
distributed multimaster-multiprocessor are presented. Several improvements
to overcome these limitations have been implemented and are described in this

paper.

2. THE PRINCTIPLES

In the past, several multiprocessor architectures have been proposed
differring mainly by the degree of coupling and ranging from a network of
distributed processors to tightly coupled micro-computers connected to a high
speed multimaster parallel»busa'g. The CERN project described here is of
the closely coupled type and uses the high bandwidth of the standard VMEbus

for interprocessor communication without the aid of a central controller.

Modularity and expandibility, the primary goals in the hardware design,
are ultimately aimed at drastic reductions in design time and cost for
customized systems of varying degrees of complexity and software simpli-
fication. Although the microprocessor is a relatively slow device, the
parallelism obtained in closely coupled multiprocessors greatly enhances
system speed and throughput. In addition, future expansion of the system is
accomplished easily by adding more microprocessors without any significant

increase in the overall cost.
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Another attractive capability of the multiprocessor approach over the
single multitasking minicomputer is the potential for increasing the
reliability. Reliability can be 1increased by allowing more than one

microprocessor to perform the same critical tasks in parallel.
3. THE MULTIPROCESSOR ARCHITECTURE

The multiprocessor architecture CERN has developed for its pilot-
project, and for which CERN is currently consulting VME manufacturers, is of
the fully distributed multimaster-multiprocessor type. This means in
particular that all VME processors in a crate are real masters of the VME
backplane, thus up to 20 CPU modules can take the mastership of the VMEbus
for inter-communication. This approach is to be distinguished from the more
popular concept of a single multitasking processor controlling a number of
intelligent modules containing a microprocessor but each behaving like
a slave module on the VMEbus. This latter arrangement also is sometimes
claimed to be a multiprocessor system. In CERN's fully distributed multi-
master-multiprocessor system each VME processor module contains a resident

real-time software kernel and an interprocessor communication mechanism.

3.1 Function-to-Function Architecture

. . . 10 .
A Function-to-Function Architecture (FFA) has been implemented for

the CERN multi-microprocessor project. The FFA 1is a generation of
memory-intensive microcomputer boards and software modules completely

interchangeable within the system structure. FFA 1is the technique for

distributing functionally powerfull computing elements throughout a system.

This architecture provides familiar structures and simplified procedures

allowing users to benefit from highly advanced microcomputer technology.

In a conventional computer and input/output system, the three functions,
shown as Fl, F2 and F3 in Fig. 3, are executed in turn by multiplexing the
hardware resources between the functions as required. Thus only one function
at a time can be active. Even if one CPU was dedicated to each function, the
overall system performance would not improve appreciably because all activity

is bound by the bandwidth of the bus.

The function-interconnect bus of Fig. 3 represents the form of FFA, and
resolves the bus crowding problem. Each functional module contains

sufficient processing, memory and I/0 capability to execute the required
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functions collected within the module. The effective bandwidth of an FFA
system can be as high as the sum of its individual microcomputer bandwidths.
The bandwidth of the bus that interconnects these microcomputers 1is a
function of the volume of inter-processor messages and shared data traffic.
Modular computing functions can contain the hardware and software for

implementing one or several pre-programmed functions.

The multiprocessor architecture is aimed at the control of the LEP and
SPS accelerators. A large number of these multiprocessor systems will be
used and they will act as Process Control Assemblies (PCA). Each PCA
contains several functionally dedicated processing units, some of them are
associated privately with Input/Output cards or private memory extension
boards, Fig. h. All processing wunits are identical in the current
implementation, using a Motorola 68010-12.5 MHz processor and show to the
function-interconnect bus the same logical multimaster structure, Fig. 5.
More powerful processors, 68020 with 68881 arithmetic coprocessor, will be
used in the future if required for some specific function but the physical

and logical connection to the bus will be identical to the present one.
Some of the functional modules are:

- A Data-Link unit (DL) interfacing each PCA to the Token Passing
Ring network conforming to the ISO-P.8802.5 protocol.

- A Supervisory Unit (SU) managing the activities in a PCA.

- One or more NODAL Interpreter modules (NI) interpreting the high

level commands.

- A FORTRAN Processing unit (FP) when fast data processing is

required.

- An Equipment Directory unit (ED) which acts primarily as the local

data~base.

- Several Multidrop Bus controller (BC) modules conforming to the
MIL-1553-B protocol linking many Equipment Control Assemblies (ECA) to

the PCA for control and monitoring.
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Additional functions may be added to a PCA to complement the basic
functionality, i.e. graphics, man-machine interfaces, mass storage drivers,
etc. Modules can evolve at their own pace changing and improving with
advances in technology; this function-to-function architecture provides a

clear path to 68020 32-bit multiprocessor configurations.

3.2 Message Passing Protocol

The function-to-function architecture implies a message passing protocol
between microcomputer boards for data exchange. This concept is extensively
supported in the MULTIBUS II architecturell. Two intermodule communication
protocols are.generally used in multiprocessor systems "pass-by-reference"”
and “"pass-by-value™. In "pass-by-reference"” the communicating modules
exchange pointers to gain addressability to the shared data structures, while
in "pass-by-value" modules exchange a copy of the data structure. Both

methods have their relative merits and inconveniences.

The CERN multiprocessor pilot project uses a flexible event interrupt
method to communicate the type of message to be transferred and the "pass-by-
value” method for the data exchange between the source processor and the

destination processor.

The ability of all processors to share portions of physical memory is

fundamental to the design of a closely coupled multiprocessor system. CERN's
design allows a processor access to a local physical memory that, while
reserved primarily for its own use, is also shared among other processors.
Arbitration logic resolves competition for use of each processor's memory
bus. The principle of a safe “circuit-switching"” whereby a direct signal
path is established between a source memory and a destination processor is
implemented, Fig. 6. The shared local memory is partionned in small blocks
of 256 words each allocated to one corresponding source processor. The memory
mapping and the address generation and decoding is arranged by hardware logic
in such a way that any processor can physically only access its own pre-
defined and reserved area in the shared memory of any other processor. Thus
corruption of data is prevented by hardware protection and moreover is re-
inforced by a "Read mostly™ approach of the messages out- of shared memory.
This organization of the memory mapping allows the maximum number of
pluggable processors (20) in a VME crate. The multicrate architecture
developed at CERN for the VMEbus extends theoretically this capability up

to 256 processors.
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3.3 Resource Allocation and Protection

With functional partitioning of the tasks only the data that must be
shared by individual processors passes over the function-interconnect bus.
Resources may be either private, thus only accessible by a single processor
or resources may be global and shared by several processors. In this latter

case a reservation mechanism by semaphore and TEST and SET functions

associated with a source signature mechanism has been implemented following
the ESONE E3S standard system specification proposallz. One byte of the
24-bit address on the communication bus, representing the source processor
identifier, is automatically loaded into a signature register of the resource
during a successful reservation access. From this instant on, this signature
becomes part of the full 24 bit address decoding while before reservation the
resource responded to 16 bit address. Subsequently only the successful
processor can access this resource or release it. Deadlock situations are

monitored by the supervisory unit.

3.4 Software aspects

The above description of the hardware structure for the LEP/SPS control

system has an important consequence on the conception of the software.

Such a structure allows the cutting of the global control problem into
units of practical and manageable size which can be solved separately. This
fragmentation capability is firstly exploited by assigning a PCA to each
geographical/functional subsystem such as the beam instrumentation,
accelerating system, vacuum, power converter. Each of these PCA's will
communicate via the token ring essentially by means of messages containing

programs or data in a canonical form.

A further level of fragmentation 1is achieved within a PCA via the
function-to-function architecture. This architecture, based on autonomous
Ceneral—purpose Processing Units (GPU) emulates a conventional real-time
multi-tasking operating system. The communication between the units is made
over the VMEbus by means of messages which contain requests for service and

data.

This implies that the elementary software package is a function which,
when it is well defined, is simple to develop and debug. The overall
distributed operating system is made by combining, in a PCA, the appropriate

functions.
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The essential element for such a system to work is a well defined
communication convention between GPU's in a PCA, and between PCA's. The

information which flows on both communication systems is basically of the

same nature, they are messages. The ISO Open System Interconnection reference
model is well suited for this kind of problem; it offers a coherent framework
for this implementation of a uniform scheme for the data flow in the overall

1
system

Another important aspect of the hardware structure comes from the fact
that a function beingvlogically defined is independent of the hardware module
which realizes it physically! If tomorrow a better hardware module is found
for performing a specified function we could use it without any major change

in the design.

For this statement to be fully true it requires that the software which

was in the module can be mostly re-used. The achievement of this requires
the use of a high level language widely accepted in order to guarantee the

availability of compilers. It has been decided to use the Modula-2 language
which offers all the necessary features for writing the operating systen

programs.

4. THE VMEbus USED FOR MULTIPROCESSING

4.1 Advantages and limitations

In 1982 CERN choose the VMEbus and the 68000 microprocessor family for
all future projects following the recommendations of an internal Working
Croup. Thus the multiprocessor pilot project for the LEP/SPS control systen
has been implemented in VME. The large industrial VME support allowed us to
concentrate our effort on the implementation of the distributed multi-
processor concepts and to use standard products available from many VME
manufacturers for all common facilities 1like: SASI drivers, display
functions, diagnostics modules, memory extensions, crates, busses and power

units, etc.

While the VMEbus specification provides good facilities for a few
master-processors plugged in a crate its architecture is not ideal for true
distributed processing with up to twenty closely coupled microcomputers
communicating by message protocol in multimaster mode. To achieve its goal
CERN has studied and developed new facilities fully compatible with the

VMEbus specification. In the future some of the missing facilities will be
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provided by the serial VMSbus chip set. These compatible developments and
operation procedures include a distributed arbitration mechanism, a
programmable interrupt system, a specification for an extension of the
microprocessor private bus over P2 connector and a multimaster-multicrate
highway linking up to seven VME crates. All these extensions allow the use

of standard VME manufacturers' products.

4.2 Distributed arbitration

A fully distributed multimaster-multiprocessor architecture must provide
an arbitration mechanism suitable for an unlimited number of independent
processors in the same crate. Most new multiprocessor busses have adopted
the distributed arbitration mechanism: FASTBUS, SMBUS, MULTIBUS II, NUBUS,
P896 FUTURE BUS. Distributed arbitration offers position independence and
the possibility to implement easily fairnmess and dynamic high priority
amongst an unlimited number of independent processors. The fairness
algorithm ensures that every board gets its fair_chance to access the bus; no
board is forever locked-out by a higher priority master. The high priority
algorithm allows the designer to define a priority structure among all of the
boards in the system. Modules handling real-time events are usually given
the highest priority while less critical boards get a lower priority. 1In the
CERN pilot project this capability is used extensively for passing urgent
messages and event-like interrupts between processors. Changing between the
two algorithms can be done dynamically; the designer is free to choose one or
the other, or a combination of the two. Distributed arbitration avoids the
burden of manipulating numerous daisy-chain jumpers on the backplane in case
of system reconfiguration, as processor's relative priority is position
independent. But the biggest advantage given by distributed arbitration is
the diagnostic possibilities. While it is difficult with the daisy-chain
mechanism to know at any instant which processor has generated the current
erroneous bus cycle it is straight forward with distributed arbitration.
Each bus cycle is accompanied with the priority code of the current master
processor thus, bus activity monitoring can be flexible and very selective;

a bus error can be trapped and attributed to the faulty master.

CERN's development allows to mix in the same VME crate modules working
with the daisy chain arbitration and modules using a distributed arbitration

R . . . . 14
approach in conjunction with a special system controller plugg in slot 1 .
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The implementation of the VME compatible distributed arbitration uses
three - of the four pairs of Bus-Request Bus-Grant In/Out lines. BR3 and BG
IN/OUT3 are not touched but are reserved for simultaneous daisy-chain VME
arbitration. All three BG IN/OUT pairs of pins are strapped at all module
slots including the first and the last positions. This gives six lines (BRO,
1, 2 and BG 0, 1, 2) which are terminated on each side of the dataway by the
standard VME resistor network. These six lines are used for priority
encoding; five lines for priority 0-31 and the 6th for exceptional high
priority access, typically for urgent messages or event-like interrupt cycles
as explained later. Processors developed for the CERN multiprocessor pilot
project support either arbitration methods by replacement of a macro-
component mounted on a small daughter board. To provide full mixing

capability the system controller in slot 1 combines the daisy-chain
arbitration BR3 with the distributed arbitration and leaves the BR3 chain for

top priority as specified by the VME standard.

4.3 Module and crate addressing

The VMEbus speéification allows for Standard Address Modifier codes (AM)
and User Defined AM codes. For the design of a modular multiprocessor system
it is very useful to introduce the concept of Crate (C), Module (M) and
Register (R) addressing similary to CAMAC. For our multiprocessor pilot
project, the ESONE - E3S proposal for a standard system specification has
been implementedlz. This document recommends a particular memory and
peripheral addressing, for which two VME User Defined AM codes have been
allocated in addition to the usual AM codes. A homogenousAinternal register
addressing for processor and peripheral modules is recommended, also free or
protected access methods to common memory or peripheral resources are

specified. More information about the E3S implementation for this project is

given in Ref. 13.

Having specified a crate number and a module number several advantages
can be gained. It becomes easy to define a general source and destination
concept for interprocessor transactions in single or multiple crate systems.
It is also simple to protect hardware wise access to resources by a source
signature mechanism carried over the VMEbus by each individual read or write
cycle. In addition, a generalized programmable event-like interrupt method

(described in section 4.4) can be implemented and last, but not least,
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multiprocessor systems can be debugged more rapidly and more efficiently by
identification of the processor's number which is the current master of the

VMEbus.

4.4 Programmable Interrupt System

The VMEbus provides seven Interrupt Request lines IRQl1-7 and a single
daisy-chained Interrupt Acknowledge line. In a multiprocessor system the
seven IRQ lines may be activated each by any processor or slave module and
each request line ends in one of seven processor boards. Unless several
interrupt sources share a given interrupt line using software polling, and
the same interrupt line is connected to several destination processors, seven
is the maximum number of bus-master processors one can use in a VME crate
system. Each interrupted processor has first to become the master of the bus
before it can acquire the interrupt vector. This is a serious limitation for
the implementation of a flexible multiprocessor architecture. When the VMS
chip set become available this VME problem will partially be solved. The
CERN project has therefore developed a programmable and addressable
interrupt -event concept which is nowadays becoming used on other standard

11
busses

The principle 1is the .following: when a source processor needs to
interrupt a destination processor it requests bus mastership with high
priority, i.é. its normal priority code plus activation of the sixth priority
code line. The source processor performs a programmable write cycle
associated with a 16 bit interrupt vector data word; the high byte contains
the source processor code (3 bits for crate number and 5 bits for the
processor number) and the low byte contains the interrupt vector code. The
16 bit address is generated with the standacd short I/b address modifier
code. All processors contain an Interrupt FIFO (16 bit wide, 256 words deep)
receiving these interrupt vector codes. Thus each processor can interrupt or
be interrupted by up to 20 processors in a single crate system and by up to
140 processors in a multicrate system with seven VME crates. The
multimaster-multicrate highway carries these interrupt vector words as any

other programmed Input/Output transaction.

This simple but very powerful interrupt mechanism uses the dynamical
high priority arbitration implemented either with the four-level daisy-chain
priority or with the distributed arbitration as explained above. It allows

straight forward interrupt source idehtification provided that a coherent
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module and crate memory address-mapping has been adopted during system
configuration. This method can be seen as memory-mapped interrupts where the
source module performs a write into the register address space of the
destination processor to trigger an interrupt. This creates so many
“virtual” lines that the designer has not to worry about running out of

interrupt lines among modules.

4.5 Local Bus

In the CERN multiprocessor project the VMEbus is used mainly as a
function to function interconnect bus carrying messages from source to
destination processor. Considering the small size of the VME card and the
functionality required from the various microcomputer boards an extension
capability is often required for additional memory or private I/0. This
extension can be done via rows a and ¢ of the P2 connector, either by
following the VMXbus specification or by using these 64 pins freely as User
I/0 pins according to the VMEbus specification. For private memory extension
on a local bus the full microprocessor speed must be wusable without
introducing , wastfull wait states and additional logic __between the
microprocessor and its memory. As VMXbus specifies multiplexing of address
and data it has been considered too stringent to multiplex A/D at twice the
microprocessor speed to benefit from the full microprocessor power. Thus to
satisfy CERN's requirements a straight forward expanded local bus for the
68000 processor family has been specified on the 64 User I/0 pins and named

16
VMCbus

The VMCbus is an extension of the 68000 processor bus to provide a high
speed secondary path which is optimised for connecting up to six boards in a
subsystem configuration. This subsystem can transfer data from board to
board over its VMCbus interface without waiting for and without burdening the
primary bus (VMEbus). A set of two or more modules interconnected via the
VMCbus behaves like one big VMEbus module with its own internal bus, freeing

the VMEbus for other transfers.

The 68000 vectorised and autovectorised interrupt mechanism is provided
over the VMCbus allowing any card connected to the VMCbus to interrupt the
processor card directly, thus saving unnecessary mastership arbitration in
a multiprocessor system over the VMEbus with improved response time. The
68000 Direct Memory Access mechanism is supported as well over the VMCbus and
multiple DMA masters can communicate over the VMCbus with the processor's

private memory.
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The VMCbus specification permits to wuse directly all 68000 family
peripheral chips as the timing and control signals and the address and data

lines are those of the 68000 processor.

A board that is inserted from the front of the card rack may have a
VMEbus interface, a VMCbus interface, or both. For example, a global I/0
board might have only a VMEbus interface, a CPU or a memory board might have
both; while a private memory, a private I/0 or a math-processor might have
only a VMCbus interface. Any board that has a VMCbus interface uses the two

outer rows of the J2/P2 connector.

The use of a ribbon cable or alternatively a small PC backplane to bus
the P2 connectors allows any group of up to six adjacent slots to function as
a subsystem. The user can install two or more P2 cables or backplanes to
create sever§1 VMCbuses in a single card rack. Each of these VMCbus
subsystems can operate independently of the primary system bus (VMEbus) and
independently of each other. It also permits some slots to be used for other

purposes such as I/0 signals.

4.6 Multimaster-multicrate highway

An accelerator control system needs provision for connecting numerous
equipments to the local process computer. At the SPS for example, up to eight
CAMAC crates are controlled by the minicomputer I/0 bus and up to eight
serial multidrop busses (MPX system) connect 32 crates each to serial drivers
located in CAMAC crates. In addition local intelligence has to be associated
logically with some I/0 subsystems, similarly to CAMAC-ACC's. As a
consequence for the LEP/SPS control system an homogenous communication
amongst these intelligent VME process and I1/0 crates is necessary for large
and powerful systems. This example demonstrates the need for a multicrate
highway allowing several VME crates to interface equipment either directly in
a point to point distribution or via a MIL-1553-B multidrop serial bus over

long distances.

The LEP/SPS multiprocessor assemblies must be expandable over more than
one VME crate. To satisfy this requirement a VME multimaster-multicrate

17
highway has been developed .

For the multimaster-multicrate highway (Fig. 7) the following design

criteria have been fulfilled:
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- All standard VMEbus cycles with all address modifiers are supported.

- Full 32-bit address and data are transferred over the highway in an

A/D multiplexed mode.

- Differential drivers and receivers according to RS-485 use a
twisted pair line for each signal allowing interconnection of seven VME

crates over distances of 30 meters.

- Each VME crate can support several processor modules capable of
gaining mastership of the highway and accessing memory or I/0 resources
in any other crate. A daisy-chain arbitration organises the priority
amongst the VME crates. EBach highway bus linker module has top priority
in the crate it is located to minimise arbitration time in the destina-
tion crate. Crates not concerned by a data transfer 6ver the highway do
not participate in the arbitration; only the source and destination

crates are involved in a transaction.

- Data transfer can be fully interleaved at a cycle by cycle basis,

but sending small data blocks saves arbitration time.

- Interrupt-like events are sent over the highway by the method
described in section 3.2. Any slave or any processor can send its
interrupt vectors with source identification to any other processor in a

single high priority transaction.

- When a processor tries unsuccessfully to access a remote resource
over the highway due to heavy traffic it uses the microprocessor's
re-run facility to try again later. Bus error conditions and deadlock

situations have been taken care of .

5. MERITS OF THIS VME MULTIRPOCESSOR_ARCHITECTURE

Compared with conventional computer systems the function-to-function
multiprocessor architecture implemented in VME for the LEP/SPS controls

system offers a number of present and future advantages:

- This architecture allows simple designs of complex systems by
permitting system requirements to be broken down into identifiable,
manageable tasks associated with real world needs (DL, BC, SU, ED, MS,
NI, FP modules, etc.).
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v

- It provides excellent system throughput, with very low bandwidth
over the function-interconnect systém bus (VMEbus) and very high
bandwidth through the private local bus (VMCbus) of each processing

module.

- Low cost, high density electronics following VLSI improvements is
offered. Tomorrow's components will permit to build functional modules
tailored to an application using just the components necessary for
processing, memory and I/0 operations. (Replacement of VMC and VME cards

by a single equivalent VME module.)

- Functional modules can be grouped into clusters or duplicated to
raise significantly the performance level of a particular function.
(Several NI modules in a PCA allow parallel interpretation of commands

expressed in high level language.)

- Functional modules can be duplicated to increase a function's
reliability. (In a PCA two DL modules allow connection on a dual

communication network for redundancy.)

- This architecture allows hardware/software transportability of
functions without impacting system operation. Versions of the same

function can be implemented in software, embedded in firmware with a

microprocessor, or for highest performance, designed in hardware. (In
the future, a language processor module, NI or FP, méy be implemented by
a special microprocessor with an instruction set optimized for this

language.)

- Designs are simple to upgrade or modify provided the VMEbus
interconnection 1logic remains the same. Functions litterally can be
plugged into or be removed from an existing system with no adverse

effects on control or scheduling operations.

- Alternatively FFA functions are bus independent. Functions
developed for the VMEbus can operate without modification on other

computer system buses. Only dedicated bus-coupling circuitry adjusts
for differences.

- This architecture offers economy by permitting functions to be

implemented in any technology that can perform the desired function.
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This also applies to software and hardware. A function constructed in
software can be converted to hardware to satisfy the higher performance

requirements of a particular part of a system.
6. CONCLUSIONS

It is most interesting to compare the mini-computer based architecture
of the SPS controls system built in 1972 and the VME-based nultimaster
multiprocessor architecture planned for LEP and SPS in 1987-1988.

The first SPS generation consisted of a NORD-10-CPU with 16 kword core
memory, and a 128 kword drum filling a 1.5 meter height, 19 inch rack, a
separate crate for the point-to-point star network connection and seven CAMAC
crates driving up to eight MPX multidrop links in command/response mode.

The initial LEP installations will be based on a single VME crate with
up to 20 processors of the 68000 family each having at least 1 Megabyte of
memory and a token-ring network interface module. In addition, up to eight
MIL-1553-B multidrop bus controllers will plug in that VME crate; each
controller will drive in message mode a cluster of 32 equipment crates

containing as well at least one microprocessor.

A new generation of mini-computers (NORD-100) had to be installed in
1980 to upgrade the SPS control system. Today the 16-bit CPU architecture
-shows its limitation and a new upgrade is to be envisaged by the end of the

decade.

The main advantage expected from using VMEbus is the fact that it is an
OPEN SYSTEM available from many manufacturers, controlled by an international
standardization body and supported by a strong User's Group. We are
confident that its lifetime will be much longer than that of any PROPRIETARY
SYSTEM and that a smooth upgrading to full 32-bit multi- processor systems
can be achieved by this VME functional architecture, thus saving the large

capital investment of the future LEP/SPS control system.
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DRM SYSTEM
A DISTRIBUTED REALTIME MULTIPROCESSOR SYSTEM

Hugh Maaskant

Nederlandse Philips Bedrijven B.V.
1&E, Industrial Data Processing
Eindhoven, The Netherlands

Based on extensive research efforts Philips has developed an
integrated software package for distributed, real-time
applications, called DRM System. The DRM System comprises an
application development environment and a distributed target
environment.

The central concept of the DRM System is called SOMA (for
software machine), which allows the construction of hardware
independent, distributed, application programs. These programs
consist of a number of SOMAs which communicate via message
passing.

INTRODUCTION

Because of the growing interest in distributed computer architectures the Philips
Research Labs began, in the early 1970's, a research project on the hardware and
software aspects of distributed systems. As one of the results of this project a
prototype system, called PHIDIAS, was built. This system has been evaluated in a
robot control research project and is still in use today.

In 1983 the Philips divisions Elcoma (Electronic Components and Materials) and S&I
(Scientific and Industrial Equipment), in cloae cooperation with the Research
Labs, started work on a distributed computing system based on the PHIDIAS research
effort and experiences with the robot application. The resulting product is the
DRM System, which stands for Distributed Real-time Multi-processor System; it is
now commercially available.

The remainder of this paper first briefly discusses the product DRM System, then
it introduces the concepts used within the DRM System. The following sections give
an overview of the application development tools and the top level design of the
operating system. The last section reports on the current status of the product
and the development plans for the near future.

THE PRODUCT

The DRM System is a software package consisting of:

- A configurable operating system for loosely coupled distributed computing
systems.

- A set of tools to develop application programs to be run under the control of
the operating system.

- A set of standard application programs.

Within the DRM System we recognise two different environments: the development
environment and the target environment. The development environment is a
conventional, interactive computer system on which the usual tools like editors
and a number of DRM System specific tools can be used to develop application
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programs. The target environment consists of the actual distributed computer
system under control of the DRM System's real-time operating system. The
development and target environments may be connected through an appropriate link
to allow files in the development environment to be accessed from the target
environment.

CONCEPTS

One of the PHIDIAS resesrch goals was to develop a methodology that would allow
programmers to construct parallel and distributed programs to a large extent
independent of the actual hardware configuration. The resulting concept is called
a8 SOMA, which is an acronym for software machine. The 50MA concept is also the
basic DRM System concept. Other concepts are HAMA, configuration, application and
Jjob.

SOMA

A SOMA is an entity consisting of one or more (typically 1) sequential processes
and zero or more mailboxes (see fig. 1). The SOMA's processor cannot directly
access data belonging to another SOMA but they may communicate by sending messages
to and receiving them from mailboxes. A mailbox is a typed data structure
belonging to 8 particular SOMA. It consists of a fixed, non-zero, number of slots
where each slot can contain exactly one message of the same type as the mailbox.

send receive - | send

il

fig. 1, graphical model of a SOMA

To support communication an asymmetric pair of primitives is available called send
and receive. With the receive primitive a process obtains a message from the
specified mailbox (which must belong to the same SOMA}. If, at the time of
invocation of the receive primitive, no message is available in the mialbox the
invoking process will be suspended until the arrival of a message. The send
primitive is never suspended.

The send operation is transparent to the location of the destination mailbox, i.e.
the sending process does not need to be aware of the HAMA on which the mailbox has
been loaded.

HAMA

HAMA is an acronym for hardware machine; a HAMA consists of one or more processors
with a common memory. A HAMA's processor cannot directly access another HAMA's
memory but HAMAs may communicate through communication links. HAMAs may have 1/0
ports.

Configuration

A collection of one or more HAMAs connected through communication links is called
a configuration. The DRM System imposes no requirements on the interconnection
structure, so a meshed network may be used.
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Application

An application is a collection of one or more SOMAs that are designed to be
controlled as a unit.

Job

When an application is loaded on a configuration it is called a job; a job is the
dynamic image of the application template. When loading a job the SOMA is the unit
of distribution. One SOMA cannot be distributed over HAMAs.

APPLICATION DEVELOPMENT TOOLS

The major development tools are the Application Builder, the Distribution Handler
and the Operating System Builder. They all run on the development environment
while the Distribution Handler also runs on the target environment.

Application Builder

The Application Builder takes as input a text file containing a description of the
application. This file contains among other items the declarations of SOMAs with
their processes and mailboxes, and it names the files comprising the sequential
processes. From these files the Application Builder generates a load file which
contains a coded application description and the relocatable images of each SOMA.

Distribution Handler

A distribution is the mapping of the application's SOMAs onto the HAMAs in the
configuration. The Distribution Handler generates a coded set of permitted
distributions from a user provided distribution description file.

The information in the load file and the distribution file together is sufficient
to start an application on a configuration (i.e. a job).

Operating System Builder

The Operating System Builder is analogous to the Application Builder but instead
of generating an application load file it generates an operating system load file.
As input it requires a file containing a partial description of the configuration
and a file containing information specific to the HAMA.

OPERATING SYSTEM DESIGN

Each HAMA contains a specific copy of the operating system, therefore HAMAs can
operate autonomously and they can be added to or removed from a configuration

dynamically. After booting each HAMA will attempt to establish a connection with
all other HAMAs.

The Operating System (0S) has been divided into two parts: the local 0S and the
global 0S. The local 0S consists of a conventional kernel that implements the SOMA
concept and provides preemptive, priority based process scheduling, interrupt
handling and timer functions. The global 0S consists of three functional elements:
the Network System, the Job Control System and the File Management System. Each of
these elements has knowledge of and can cooperate with the corresponding element
on the other HAMAs. Unlike distributed systems based on existing operating

systems, the DRM System has its communication layer at the bottom of the global

0S so that the Job Control System and File Management System can make use of the
Network System services, allowing for an efficient operation.

Network System

The Network System provides reliable inter HAMA message transport which is
implemented through packet switching. Packets are dynamically routed using a
least cost algorithm based on link costs. Another function of the Network System
is to detect disconnections.
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Job Control System

The Job Control System controls the starting and stopping of jobs. To start a job
a load file and a distribution file must be specified. The Job Control System
examines each distribution in turn until a valid one (i.e. one for which all
resources are available) has been found. Then the job is loaded according to that
distribution.

A job is called severed if, due to a disconnection, any of its SOMAs cannot be
reached by any of its other SOMAs. Severed jobs are automatically stopped by the
Job Control System. This means that, within a job, no unreachability handling or
resynchronisation is required.

File Management System

The File Management System provides a uniform view of files and devices, which is
compatible with UNIX (*). Files can be accessed independently of the location
(HAMA) of the devices on which the files reside. In addition the File Management
System provides access to the files belonging to the development environment.

STATUS AND NEW DEVELOPMENTS

Release 1.B of the DRM System is now available. It implements a HAMA on a series
of VMEbus/68000 CPUs with up to 4 Mbyte of local memory. The links supported are
VMEbus and V11/V24. The supported development environment is VAX/UMS (**).

In the near future UNIX will be supported as a development environment.
Furthermore Ethernet (***) communication will be supported.

(*) UNIX is a registred trademark of AT&T Technologies
(**) VAX/UMS is a registred trademark of Digital Equipment Corporation

(#*+) Ethernet is a registred trademark of Xerox Corporation
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BUFFERED PIPE PROTOCOL

J. Werdehausen

Technical Marketing Manager
Motorola Microsystems Europe
Taunusstrasse, 51
8000 Munich 40
Federal Republic of Germany

Abstract

A standard is presented for a processor to processor communications mechanism. The
procedure is applicable to any two generic processors (tasks) which can access a
common address space, though it is primarily intended for use in a CPU - IPC
environment. Conceptually, information is passed as a fixed length message in an
envelope through a pipe shared by two processors. The processors must supply the
envelope when sending a message, and are given an envelope when receiving a
message. The message is typically a pointer to a data structure, but may be any
application defined data.

1. INTRODUCTION
1.1 Overview

This document is but one of several describing various aspects of the CPU-IPC interface. A
mechanism is described here which allows messages to be passed from one processor to another with a
minimal set of restrictions. Other documents will treat such issues as the content of the messages.

1.2 Definitions

Busy Interface In this context, an interface between two boards which may require one of the
two processing elements to wait idly (in a software loop) for the right to
access some resource.

CPU Central Processing Unit; this document uses the acronym to refer to a
microprocessor-based board-level product whose function is to ru application
software and, in so doing, direct peripheral controllers to control devices.
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IPC Intelligent Peripheral Controller; a microprocessor-based board-le product
whose function is to control peripheral devices under the direction of one or
more CPUs.

1.3 Assumptions

For all practical purposes, the IPC must be microprocessed-based. The interface proposed here
involves queue manipulations algorithms, currently executable only in software.

The use of this interface assumes the existence of a relatively large body of RAM (typically many
Kbytes) which is accessible to both the processors being interfaced. Ordinarily this will be what is
usually called “system RAM”, which is RAM accessible by any bus master on the system bus.

2. REQUIREMENTS
2.1 Features

® Range of wse: the interface is intended to be (within reason) operating system- and
board-independent. Both UNIX and VERSAdos can make fine use of the interface, and it
will serve for virtually any IPC and CPU.

® Supports both interrupt-driven and polled modes of operation:

® Low hardware requirements: essentially all that is required is that both boards be able to
access a nontrivial region of shared RAM. For interrupt-driven operation, each processor
must have the ability to interrupt the other.

® “Nonbusy” handling: when one processor accesses the interface, the other processor is not
prevented from accessing the interface at the same time.

® "Infinitely long” queue of messages: there’s always rooms for another message in the interface,
without waiting,

® Low, constant overfiead: message sending and receiving is always accomplished by the same
small set of instructions. There are no “worst cases” to worry about which consume
substantially more time than the “normal” case.

® Ease of use: there are only a few simple procedure calls in the package, and their operation is
straightforward. Only one data structure - a relatively simple one - is defined by the protocol.

o Completely symmetrical interface: the same mechanism can be used for virtually all
communication between the two processors.

® Complete flexibility in message definition: this protocol in no way restricts the content of the
information sent.

® Order preservation: Even though messages are being exchanged between two asynchronous
processors, each processor will receive messages in the order in which they were sent to it.
Equally important, though, is the fact that the receiving processor is in no way constrained
to process the messages in that same order.

2.2 Functional Description

Conceptually, we would like the interface between a CPU and a device on an IPC to consist of a
set of pipes: some for the host to send commands to the IPC, and others for the IPC to send status
back to the host.

The pipes should be able to hold an arbitrarily large number of messages, so that the case never
arises in which an urgent message cannot be delivered. In order to prevent arbitrarily long delays in
which a driver waits for the right to access data structures, the pipes should be constructed in such a
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Figure 1. The concept of a pipe.

way that they are always available to both the CPU and the IPC; that is, software trying to access a
pipe (to put a message in or take a message out) must never be turned away because the pipe is
“busy”.

Implementing the pipe as a simple queue, in which entries are connected as a forward linked list,
would satisfy the requirement that the pipe have an “unlimited” capacity for messages. However,
without special assistance from hardware it is difficult for two processors to simultaneously access a
queue (one enqueueing an entry while the other is dequeueing an entry) in a reliable manner.

The problem centers around the fact that the routines must behave differently depending on
whether or not the queue is empty. A processor must observe whether or not the queue is empty and
then take an action appropriate to that case. But since the observation and action cannot be performed
as an indivisible operation (without special hardware), the observation may be invalidated by the other
processor by the time the action is taken. Hence use of a simple queue would require that both
processors treat the instructions which access the queue as a critical section and somehow ensure that
the two processors are never in their critical sections at the same time. Typically this is done by having
a semaphore represent the right to enter the critical region, and having each processor loop on a TAS
instruction until the condition codes say “it’s your turn”. This “spin lock” carries with it certain
liabilities, however:

® Since it is impossible to predict how many times the loop must be executed before gaining
access to the resource, the containing algorithm has a non-deterministic execution time. This
is undesirable in real-time systems.

® As a lockable resource, the data structure would introduce possibilities for deadlock (e.g.,
several processors may be consuming the total bus bandwidth trying to win the TAS, while
the processor which has control of the resource can’t get to the bus to release it).

e It requires that both processors have a compatible TAS-like instruction. If an IPC possesses
a more modest MPU such as a 6809, or if the MPU's only access to the bus is through a
DMA controller, then no such capability exists.

e It requires that the code accessing the structure be able to disable interrupts, perhaps
requiring that the code run in supervisor mode. If a module were to win the TAS with
interrupts enabled, servicing an interrupt at that point might cause the structure to be tied up
for milliseconds.

Fortunately it is possible to construct a queue which never becomes empty, and therfore requires
no observation prior to taking action. In a nutshell, the technique involves keeping a dummy entry at
the end of the queue at all times. The receiver knows never to dequeue the dummy entry. The sender
adds to the queue by first adding a new dummy entry and then using the old dummy entry to hold
usefull information. Because the dummy entry buffers the queue from going empty, the data structure
into which the messages are put is called a “buffered pipe”.
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byte 3 byte 0

long word 0

Forward Link long word 1

Figure 2. Buffered Pipe Envelope (BPE).

Messages cannot be queued directly on the queue. Instead, a data structure called a “buffered pipe
envelope” is enqueued, and this envelope may contain a message. While the message could be of any
length, for efficiency reasons they are fixed at four bytes for this interface. The envelope, called a BPE,
is diagramed in figure 2.

If the envelope is full, the message field contains a valid message. If the forward link field is even,
then the envelope is full (it may be dequeued) and the forward link is the address of the next BPE in
the queue. However, if the forward link field is odd, then the envelope is empty (i.e. it is a dummy
entry) and should not be dequeued; this entry marks the end of the pipe. Note that the nuil address
convention, as commonly used in the C language, is not employed here. Access to an address value
can not be guaranteed to be an indivisible operation, but access to the least significant bit of an address
is guaranteed to be indivisible. Since it is very possible that both the sender and receiver processors
may be accessing the same forward link field simultaneously, it is essential that the consistency of the

data structure be maintained even as the sender is updating the forward link and the receiver is testing
it.

Note: BPE's are required to begin on an even address.

MESSAGE #1
PUT ‘
oo EMPTY FLAG L PO"ET
SENDER MESSAGE FLOW seemsems——l)- RECEIVER

Figure 3. Implementation of a buffered pipe.

It is important to keep the concept seen by the user, the buffered pipe, distinct from its physical
implementation as queue. What the user of the interface sees is a virtual data structure called a buffered
pipe into which can be put a 4-bytc message; the pipe is sometimes empty. The physical
implementation, as seen in figure 3, is a queue of BPE's, there is always at least one BPE on the
queue, and the last BPE on the queue is always marked “empty”.

A buffered pipe is initialized to have a dummy entry (an empty envelope) on its queue. The
following figures and pseudocode describe the sending and receiving of messages on the pipe:
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Figure 4. Putting a message in a buffered pipe
To put a message in the pipe:

Add an empty envelope to the queue. . ‘
Put the message in the preceeding envelope (which is empty) and mark it full,

MESSAGE #2
PO?NJT‘:EH -~ EMPTY FLAG) LINK
SENDER = MESSAGE FLOW sy RECE|VER

Figure 5. Getting a message from a buffered pipe.
To get a message from the pipe:

If the next envelope on the queue is empty. then
There are no messages to receive.
Else

Dequeue the envelope and take out the message.

3. AN EXAMPLE USE OF THE PROTOCOL

While the definition of the protocol was intentionally left as general as possible so that it could be
used in many different environments, it is possible to discuss a simple set of circumstances surrounding
the use of the protocol and to discuss its use in that context. Those circumstances are:

® A new microprocessor-based IPC is produced, and a driver for an operating system such as
VERSAdos or UNIX must be written to support it. The IPC controls eight independent
devices (e.g. serial ports).

® Two buffered pipes are used: one for the CPU to send commands to the IPC, and the other
for the IPC to send status back to the host.

® The interface between CPU and IPC is interrupt-driven.

® Messages are actually just pointers to memory-resident data structures, which we will call
“packets”.

® Packets are fixed in length.
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¢ A pool of packets is created by the driver at initialization time, as well as a pool of BPEs.
e Status for a command is returned in the same packet in which the corresponding command
was received. This can simplify housekeeping for the driver.

~ PACKET PACKET

PUT
POINTER

MESSAGE FLOW messsmee————fp RECEIVER

Figure 6. Example: Messages in the BPE’s are packet pointers

SENDER

3.1 CPU Function
The CPU has the following functionality in its driver:
In the initialization routine:

e Get memory from the OS kernel and use it to make a pool of N packets (all of which are of
the same size), and a pool of N+ 2 BPEs.

® Get a BPE from the BPE pool and initialize a pipe for sending commands to the IPC.

¢ Get a BPE from the BPE pool and initialize a pipe on which the IPC will send status to the
CPU.

® Pass the address of the BPE’s use to initialize the two pipes to the IPC, using some
mechanism (other than the pipes) appropriate to the particular IPC.

In the user request handler(s):

¢ Get a packet from the packet pool.

¢ Get a BPE from the BPE pool.

o Fill in the packet according to the user request.

¢ Put pointers to the task and its request block in the packet, or someplace associated with it.
¢ Send the address of the packet as a message to the IPC on the command pipe.

¢ Interrupt the IPC.

In the interrupt service routine, or a routine activated by it:

® Try to get a message from the status pipe.
¢ While there is a message to get,

Return the obtained BPE to the BPE pool.

Using the message as a pointer to the packet,
extract the status from the packet, as

well as pointers to the task that made the request
originally and to the block representing the request.

Use the info to signal I/O completion to somebody.
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Try to get another message from the status pipe.

3.2 IPC Function
The IPC contains the following functionality:
In the initialization routine:

¢ Receive pointers to the command and status queues via some mechanism appropriate to the
IPC.

® Initialize a pool header for BPEs (the pool is empty).
® Initialize queue headers for holding incoming commands when they arrive, as appropriate to

the functionality of the IPC.
In the handler for interrupts from the CPU:

® Try to get a message from the command pipe.
® While there was a message to get,

Add the BPE to the IPC’s BPE pool.

Using the message as a pointer to the packet,
look at the command packet.

Determine the packet’s priority and do something
appropriate with it, like putting
it in one of the IPC’s command queues.

Try to get another message from the command pipe.
In the logic that recognizes a command has been completed:
® Put status in the packet that the command came over in.

® Get a BPE from the IPC’s BPE pool.

® Put a pointer to the packet (as a message to the CPU) into the status pipe.
® Interrupt the CPU.
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PERSONAL COMPUTER ACCESS TO THE VME BUS

B.G. Taylor
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Abstract

The marriage of a mass-produced personal computer with the versatile
VMEbus environment creates a cost-effective solution to many laboratory
instrumentation requirements. This paper describes a novel means of
providing direct memory-mapped access from a 68000-based personal
computer to single or multiple VMEbus and CAMAC crates which are
interconnected by a ribbon cable bus. The system is called MacVEE
(Microcomputer Applied to the Control of VME Electronic Equipment).

In an implementation for the Apple Macintosh, the bus is driven by an
electronics plinth called MacPlinth, which attaches to Macintosh and
becomes an integral part of the computer. The total external address space
accessed via MacPlinth is over 100 Mbytes, in up to 8 VME crates, or up to
7 VME crates and up to 8 CAMAC crates, in any mix. MacVEE
applications can be programmed in any of the Macintosh resident languages.

Introduction

In recent years, the growth in the demand for personal computers has justified investment in
highly automated facilities for their manufacture, and the most popular machines are now
produced on assembly lines with capacities exceeding 1000 computers per day. The
application of consumer electronics mass production techniques makes such personal
computers available at prices which compare very favourably with those of microcomputer
systems produced in small quantities for professional instrumentation applications.

The large market for low-cost personal computers stimulates the creation of a wide range of
compatible hardware and software products by third-party vendors. Numerous software
developers in educational or research environments contribute public domain programs and
utilities for the popular personal computers, whilst the large user base is a factor in thorough
debugging and influences positively the quality of the documentation available.

The M68000-based Apple Macintosh, the architecture of which is indicated in Fig. 1, has
enjoyed considerable popularity since its introduction in January 1984 and over 500,000
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machines are now estimated to be in service. Some 25 software houses have generated a
range of resident programming languages for the Macintosh which includes 68000
Assembler, Basic, BCPL, C, Cobol, Forth, Fortran-77, Lisp, Logo, Modula-2, Neon,
Pascal, Prolog, Scheme, Simula-67 and Smalltalk-80.

The language support, compact size, fast high-resolution graphics and friendly
Smalltalk-inspired user interface of the Macintosh are attractive features for an
instrumentation-development and experiment-monitoring microcomputer, but the Macintosh is
only provided with 2 serial ports for external device connections. Furthermore, there are

already several candidates for these ports, such as Imagewriter or Laserwriter printers,
digitizers, Winchester disk units, modems, or the Appletalk local area network.

To provide a high performance direct link between the Macintosh and VMEbus and CAMAC
crates, a memory-mapped system called MacVEE (Microcomputer Applied to the Control of
VME Electronic Equipment) has been developed. In a MacVEE system, selected VME or
CAMAC crates simply appear within the address space of the Mac's M68000 microprocessor,
so that no special software drivers are required to access them. There is no address
translation, so that MacVEE is not limited to the execution of position-independent code, and

VME-resident software has direct access to all Macintosh resources and the powerful toolbox
ROM.

MacPlinth

The VME or CAMAC crates in a MacVEE system are interconnected by a ribbon cable bus,
which is driven by an electronics plinth called MacPlinth (See Fig. 2). The total external
address space accessed via MacPlinth is over 100 Mbytes, in up to 8 VME crates, or up to 7
VME crates and up to 8 CAMAC crates, in any mix. In a VME system, Mac can execute

programs in VME RAM or EPROM, and programs resident in one crate can access facilities in
any of the others.

The MacPlinth pc board mounts below the Macintosh cabinet, from which it is thermally
isolated by a heat shield. It is powered by a miniature high-efficiency primary-switching
power supply, which dissipates very little heat, and has a fringing magnetic field below that
which would cause any detectable disturbance of the CRT display.

Two short ribbon cables interconnect MacPlinth with the Mac logic board, on which a number
of pc traces are cut to permit signal merging and masking. The plinth directly controls the
enabling of the pair of Macintosh toolbox ROMs, which otherwise drive the microprocessor
data bus when no other internal devices are accessed. MacPlinth can accommodate 32 - 128
Kbytes of local EPROM for permanent library enhancements.

Adequate crosstalk margins are achieved with a limited total number of conductors by
appropriate signal grouping, and the provision of ground isolation only for selected strobe
lines. In addition to microprocessor signals, line and frame timebase and video signals are
transmitted to MacPlinth, for the generation of a composite video signal for external remote
monitors able to accept the line scan frequency of 22.25 kHz. A high resolution monitor with
a video bandwidth exceeding 16 MHz is required for a sharp display comparable with that of
Mac's internal screen.

An abort switch is provided for program development use, as well as separate internal and
external reset switches, so that Mac can be reset without disturbing a running VME
multiprocessor system.
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MacVEE Memory Mapping

In the MacVEE memory mapping scheme, the 16 Mbyte address space of the Macintosh
M68000 is divided into 256 segments of 64 Kbytes each. A 4-bit descriptor for each segment
is programmed in a Schottky 'emmental' PROM, which maps the segments to internal
Macintosh space, MacPlinth EPROM, external system space or external common space. A
typical memory map is shown in Fig. 3.

Substantial address space in Macintosh is occupied by the images created by the incomplete
address decoding of internal hardware facilities, such as the SCC (Serial Communications
Controller), IWM (Integrated Woz Machine disk controller) and VIA (Versatile Interface
Adaptor). SCC read and write functions, for example, occupy 1 Mbyte each.

The emmental PROM allows 'holes' to be assigned to the addresses actually referenced by the
system software, while the image spaces are mapped to VMEDbus 'cheese’. This technique
increases the external addressing range by 4.5 Mbytes per map. The emmental PROM pattern
can be readily changed to adapt to other personal computers, or possible address changes in
future versions of Macintosh.

A second level of mapping, which can be programmed through a control register on
MacPlinth, allows the external system space of over 12.5 Mbytes to be allocated dynamically
to any of up to 8 VMEbus crates. Up to 8 Mac-CC dedicated Macintosh CAMAC crate
controllers, which occupy an address space of only 64 Kbytes each, can be connected in place
of one of the VME crates. The control register is accessed at address $14, the unused most
significant byte of the M68000 zero divide exception vector.

Common Area

Any segment or group of segments in the external system space may be defined by the
emmental PROM to be common address area. References in that area are then executed in
map 1, independent of the current selection in the map control register.

Macintosh software which must access resources in all VME crates may reside either in Mac
internal RAM, in Plinth EPROM, or in VME crate no. 1.

Bugs

Program or compiler bugs in normal Macintosh applications could result in spurious
references to MacVEE external system address space. Such bugs could escape attention
because Mac's internal DTACK generator does not verify that all addresses accessed are in
fact valid. However, if these accesses were mapped to the external system, they would
timeout if the corresponding VMEbus address space is unallocated, or could cause an
undesired action there if it is occupied.

To allow pure-Macintosh applications containing such bugs to be run on MacVEE without this
inconvenience, the entire external address area is mapped to Macintosh internal space except
when an external enable bit in the MacPlinth control register is set. This bit is set by a
MacVEE application which requires external access, and cleared otherwise.

In the case of a spurious access to a non-implemented Macintosh address, data bus pull-ups
ensure that MacPlinth returns the same (invalid) data as an unmodified Mac. Hence if such a
bug does not cause a problem on an unmodified Mac, the application runs on MacVEE also.
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MacVEE VMEbus Master

VME crate access in MacVEE systems is achieved via a low-cost VMEbus master module (see

Fig. 4) incorporating a release-on-request (ROR) data transfer bus (DTB) requester and a
3-level interrupt handler.

This 6U-4HP module includes slot-1 functions (system clock, option-1 bus arbiter, and a
global crate data-transfer timeout). It can be employed as a normal DTB master in a
multi-processor system, or as a system controller. As far as possible, the design is
personal-computer independent.

Mac-CC

CAMAC crates equipped with Al or A2 controllers can be accessed by MacVEE viaa VME
4600 branch driver or a SuperCAVIAR VME interface, located in one of the VME crates.
Alternatively they can be accessed directly via Mac-CC dedicated crate controllers, which can
be intermixed with MacVEE VMEbus master modules on the same bus from MacPlinth.

Mac-CCs also allow CAMAC crates to be accessed without an intermediate VME crate and
branch driver in pure CAMAC (CAVIAR replacement) environments. In this case the
CAMAC library subroutines can be accommodated in MacPlinth EPROM. The MacVEE bus
uses RS485 differential transmission, and permits greater ranges than a 4600 branch.

Mac-CC is a memory-mapped dedicated crate controller (see Fig. 5) with address assignments
in accordance with CERN recommendations!. Additional functions have been chosen to be as
compatible as possible with the VME CAMAC branch driver and Type A2 crate controllers, as
appropriate. All Mac-CCs are accommodated within map 8, and the addresses which they
occupy remain free for VMEbus use in maps 1 - 7.

Mac-CC is equipped with an EUR 6500 auxiliary controller bus, supporting multiple
controllers in a CAMAC crate with either R/G (request/grant) arbitration or ACL (auxiliary
controller lockout). It is compatible with CERN standard LAM graders.

MacVEE Interrupt Handling

Macintosh internal interrupt codes are decoded on MacPlinth, merged with external interrupt
sources, and re-encoded before application to the M68000.

MacPlinth assigns three interrupt levels to Macintosh internal auto-vectored (AV) interrupts,
three levels to external user-vectored (UV) interrupts, and one non-maskable level to external
AV interrupts. These assignments can be altered by jumpers on MacPlinth, but only if
appropriate system software changes are implemented. The Mac M68000 executes in
supervisor state continuously, not just during exception processing.

During a Macintosh IACK bus cycle, MacPlinth decodes the interrupt level being
acknowledged from the LS bits of the address bus. If the level is one which has been
assigned to external system UV interrupts, the assertion of VPA* by the Mac interrupt
circuitry is inhibited, and a vector number is fetched from the VME interrupter via the
MacVEE VMEbus master module.

In a multi-crate VME system, MacPlinth automatically accesses only the crate containing the
source of the interrupt, independent of the map no. currently in its control register.
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M68000 UV interrupts would normally be vectored through RAM locations $100 - $3FF,
which are used by Macintosh system software for global variables. On MacPlinth, the 4 MS
bits of the vector number are masked, and an offset is added to translate the 16 possible vector
numbers to the range $30 - $3F. These vector numbers cause the M68000 to fetch its vectors
from RAM addresses $0CO - $0FF, which are not used by Mac software.

Interrupts produced by the optional interrupt actuator, which may be installed at the left side of
a Macintosh cabinet, can be at levels 4, 5, 6 or 7. The MacPlinth Abort switch, which
interrupts at level 7 only, is used instead and the optional interrupt actuator removed when
MacPlinth is fitted.

Software

MacVEE provides direct multi-crate VMEbus and CAMAC access to any resident Macintosh
language capable of reading and writing at known absolute addresses. At CERN, extensive
use is made of the Macintosh M68000 resident development system (MDS) incorporating an
editor, an assembler, a linker, an executive, and a program for creating resource files.

MDS includes two families of debug monitors. MacDB provides the most powerful facilities
using a two-Macintosh configuration, while the Macsbug family comprises a set of
one-machine debuggers using part of the internal screen, or an external terminal, for data
display. The MDS allows MacVEE tests or applications in assembly language to be written,
run and debugged entirely on the Macintosh.

Microsoft Basic can prove a useful tool for MacVEE systems. MBasic 2.1 is fully integrated
with the Macintosh, is comprehensively documented, and has excellent facilities for editing,
syntax-checking and program-tracing. It supports calls to toolbox ROM routines and allows a
Macintosh environment to be created from within a Macintosh environment. Frequently-used
programs can easily be implemented as Macintosh applications with customized pull-down
menus, multiple windows, and dialog boxes with unlimited numbers of option selections.

For MacVEE applications programming or testing where execution speed is more important
than interactive facilities, Microsoft resident Fortran (formerly Absoft MacFortran) may be
used. The compiler is a full implementation of Fortran-77 with some extensions. It is rapid,
and generates a Macintosh application which can interface with assembly language routines
and access the toolbox.

MacFortran has been used successfully with the CERN Fastbus library and Fortran test
proggams, and with the ESONE standard CAMAC library for Mac-CC stored in MacPlinth
EPROM.

Conclusion

The MacVEE system described provides an intimate connection from the Apple Macintosh to
multiple VMEbus and CAMAC crates. It allows a low-cost personal computer with a wide
range of commercially-supported resident programming languages to be used as a
development tool for new instrumentation, and as a control and monitoring device in high
energy physics experiments.

A more detailed description of the system is given in the Mac VEE Hardware User Manual?,
while the equipment itself is now manufactured by European industry.



- 254 -
Acknowledgments

The author is indebted to C. Rubbia and S. Cittolin for their support of the development of
MacVEE, and to A. Contin, M. Demoulin, P. Giacomelli, W. Haynes, P. Petta, J.-P. Porte,
D. Samyn and other members of the UA1 collaboration, to G. Cabras, A. Marchioro and W.
von Riiden of ALEPH, and to H. von der Schmitt of OPAL, for their valuable assistance.

References

1  Rimmer, EM., CERN Implementation Recommendations for M68000-based CAMAC
Port Controllers, Version 1, DD Division, CERN. (September 1983).

2  Taylor, B.G., The MacVEE Hardware User Manual, EP Division, CERN. (October
1985).

DATA CTL ADDR

———D— MODEM
ser f—-LPoRT
COMM .
- D—{Printer
35" wM | CTLR <}_ PORT
MICRODISK DisK |, R [
UNIT CTLR
‘ l MOUSE I
A ers [32288KH
SPD A 1FAcE RTC
VIDED .
AMP ADAPT | KBD
DEFL
DRIVERS ovLAY
BUS MANAGEMENT O !: ﬂm THTR
BUS MANAEE_PE&II 1 Rk
I MPU/VIDEQ, SOUND
LINEAR ADDRESS GEN | A
— TN STATE M/C_ T RAM R
512 KBYTES
—ol TIMING SIGNAL GEN .I
— q
w
ANALOG SIGNAL GEN R — fr
2
YIDEO SR ' SOUND
PWMCNTR
voL
CLK ROM ¢ l ‘
15,6672 647128 KBYTES]' SOUND |
INT& AMP
o EXT
AF

M68000

Fig.1 Macintosh Block Diagram

|



bata CIL

11

MACPLINTH BUS

ADDR

DIFFERENTIAL TRANSCEIVERS i
BRI
r‘—'—‘—"“:! MEMORY
VECTOR - MAPPER
OFFSET 5 :
[re DispLay
GLOBAL é r
"i’xmmm
] g § i -
&
L PLINTH EPROM
32-128 KBYTES
FNT LEVEL
DECODE
o YIDEQ EXT
ASORT 1/ GEN VIDEQ
A T
v | 7 L teerver et CONTL o= ROM
i L MERGER MERGER | o ENABLE
- POWER
SUPPLY
FL2-0 BERR, DTACK, ai:
 S— — —
M68000 TooLB
MACINTOSH

Fig.2 MacPlinth Block Diagram

HMacVEE YMEbes MASTER STATUS REGISTERS

Sfundard
exiernal
addresses

Short
exiernal
sddresses

Fig.3 MacVEE Address Map - Typical Allocations

- §67 -



DATA CTL ADDR

¥~

CAMAC bPATAWAY
UTL ARB INT DTB HORMAL STATION CONTROL STATION
3

P N i R W H LTL  STAY B A F L
BYSCLk b —— . ¢ ’
i : CTLR - :

AN 1 rEAD REGISTER H O E
1B
ARBITER §§§§ e
FUNCTION | wr [ " ;‘
CODE | HANDLER | GRADER
5L
DATAWAY
1 coNTL &
| TIMING
1 rorovs |
bre | RequesTER | ®
PR ﬁAg‘p&R B
\ BERR/DTACK |
GEN :
| o pa— L N Y
" PRIORITY CRANT ;
g g ARBITER ouT
="
&
: R61 AcL gr-tc
WATCHDOG | \ { B
7 TIMER .,
DEMAND ]
MASK
‘a .
[
I 23 A SYSFAIL a
= ACFAIL DATA CTL ADDR
;-, %
Nl s
,l — g A émpas
RS . 5
MACPLINTH BUS , |
ME 8us MACPLINTH BUS

Fig.4 MacVEE VMEbus Master Module Block Diagram Fig.5 Mac-CC Block Diagram



- 257 -

Fig. 6

Macintosh equipped
with MacPlinth

Fig. 7
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Abstract

Electronic equipment testing in High Energy Physics (HEP) requires a low cost, easy
to use, /O efficient system interfaced to the HEP standard buses such as CAMAC,
FASTBUS, VMEbus and GPIB. This system should replicate the test environment
found on larger computers used in experiments. VALET-Plus is 2 system which meets
these criteria. It consists of a VALET (VMEbus Applied to Laboratory Equipment
Test) PLUS a personal computer.

This approach isolates the HEP-specific hardware and software in a VMEbus crate
which is driven by a M68000 processor. This processor runs application programs
using ROM based standard libraries and PILS (Portable Interactive Language
System), and accesses the HEP buses with minimum overheads. Peripheral support for
keyboard, screen, printer, and disc, and the interface to control the application
processor are provided in a user transparent way, by a computer connected to the
M68000 by means of a standard communications link, presently RS-232-C, The
firmware running in the VMEbus M68000 is independent of the type of computer
chosen. The communication software “Bridge” in the connected computer is written in
PASCAL and is easily portable. This allows a variety of choices and expansion, both
on the VMEDbus and the computer side, without loss of previous investment.
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1. INTRODUCTION

The needs of today’s large and complex physics experiments together with the increasing
maintenance cost of aging mini-computers obliged CERN in 1983 to review its strategy for electronic
equipment and detector test facilities. The technical requirements which emerged included a small
computer test system with a large address space, easy and efficient physics I/O (CAMAC, FASTBUS,
VMEbus, IEEE-488), modularity, and potential portability of test software. Economic factors such as
low cost, competitive price/performance ratio over a reasonably long time and manufacturing origin in
CERN member states also had to be taken into account as well as a good support in CERN
collaborators’ home institutes.

2. THE VALET-PLUS APPROACH

Given these aims, the approach adopted for the VALET-Plus takes into account today’s
economic and manpower situation as well as the rapid evolution of technology. The present trend is
towards a widespread ownership of personal computers with associated peripherals and commercial
software packages. It makes sense to reuse this functionality by adding to it a “naked” application, in
this way retaining the low cost, modularity and maintainability.

Following this approach, the VALET-Plus architecture consists of:

The VALET: An optimum environment for the application and the physics I/O
The application software and libraries execute in a VMEbus M68000 processor which has
direct control of VMEbus and of all HEP buses interfaced to it. Consequently physics
input and output are made directly with minimum system overhead. Rapid expansion in
the VMEbus market ensures upgrade possibilities according to user needs.

The Personal Computer: A cheap peripheral server and user interface
Console and standard peripheral access needed in application programs are provided by a
personal computer via an RS-232-C asynchronous connection to the VALET M68000.
This connection is supported by a BRIDGE program running in the personal computer.
As RS-232-C connections are to be found on most PC’s, there is little or no restriction
on the user choice: hence the “favourite” in the title of this paper. Since most test

application software is not disc intensive, the bandwidth limit of RS-232-C is rarely an
inconvenience.

3. THE HARDWARE
A VALET-Plus consists of:
¢ A fully equipped VMEDbus crate
¢ Three mandatory VMEbus modules
® Optional VMEbus modules

® A personal computer
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3.1 VMEbus Crate

Recommended VMEDbus crates featuring adequate power, cooling, power fail handling and J1 as
well as J2 backplanes are available from two commercial sources. Special care has been taken to leave
rear access to all J2 connectors free to allow I/O cabling and possible extension bus connections and to
permit daisy chain jumpering (Bus Grant, IACK) from the front face.

These chassis are available in three sizes, 5, 9, 20 slots and in table top or rack mounting versions.

3.2 Mandatory Modules

3.2.1 Processor Module

The VALET processor module is the MVMEI10]1 General Purpose Monoboard Microcomputer.
Our experience with it to date has been good. It is a low cost, reliable, easily available module with

good documentation. Nevertheless, new modules are under study to take advantage of the on-going
improvements.
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The VALET uses the following features of the MVME101:
¢ 8MHz M68000 processor

¢ 8 x 28-pin JEDEC compatible memory sockets (2 equipped with 16 kbytes of RAM and 6
equipped with 192 kbytes of EPROM)

¢ 2 x programmable RS-232-C ports (up to 19.2 kbaud)
® A VMEDbus single-level arbiter and seven-level interrupt handler
3.2.2 Read Only Memory

For convenience and efficiency the VALET-Plus software and the run-time system are in EPROMs.
In the present configuration, these are installed on both the Motorola MVMEI0] processor module
(128 kbytes in addition to the monitor/debugger) to take advantage of zero-wait state memory access
and on a Force SYS68K/RR-1 (or the Plessey PME CRR-1 equivalent) memory module. The Force
SYS68K/RR-1 universal memory module (or the PME CRR-1), is not fully used when equipped with
32 kbyte EPROMs. There is, therefore, some room for growth in the code. However, for operational
reasons a module capable of using EEPROMs (Electrically Erasable and Programmable Read Only
Memories) is obviously desirable. Whilst such devices are not yet of sufficiently high density, trends are
being closely watched.

3.2.3 Random Access Memory

The VALET-Plus is configured with the Force SYS68K/DRAM-1 module equipped with 512 kbytes
of random access memory. '

3.3 Optional Modules
3.3.1 FASTBUS Connection

The Super-VIOR is a VMEbus module used to connect to FASTBUS interfaces. It has been specified
by CERN, and marketed by ANTARES. It is a dual 16-bit input/ output register module with a
DMA capability. It can drive the FASTBUS interfaces commonly used at CERN, namely, the FIORI,
the CFI, and the Fast Sequencer.

3.3.2 CAMAC Interfaces

The VALET-Plus can be equipped with a CAMAC Branch driver complying with the CERN
recommendations for CAMAC/VMEbus address mapping. Two modules are in use, the Data-Sud
DSSECAMAC and the Creative Electronic Systems C.E.S. CBD 8210. The CBD 8210 is foreseen to
have a DMA option available at some later date.

3.3.3 Graphics

The VALET-Plus is capable of graphics display on either the screen of the personal computer or on a
colour monitor driven by a VMEbus graphics controller module, or both. The Eltec GRAZ Colour
Graphics Controller is based on the Thomson 936x series of Graphic Display Processors. For the
VALET-Plus the GRAZ is used to give a resolution of 512 x 256 pixels and reasonable, flicker-free
pictures even when used with low-cost monitors.
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3.4 The Personal Computer and its Link to the VALET

The connection between the VMEbus system and the personal computer is made at present by means
of an RS-232-C connection at 19.2 kbaud, using one of the 2661 USARTs on the MVMEI0I]
processor module. Consequently, the constraints put on the personal computer are few. The hardware
must include:

¢ ] RS-232-C port, preferably running at 19200 bauds

® A disc drive

® A printer

® Graphics
The software must have:

e A PASCAL compiler

® Full program control of the serial port

4. SOFTWARE

4.1 In the VALET

All software modules in the VALET and the tools to develop programs to be executed in the
VALET-Plus are based on CERN standard software packages supported independently from
VALET-Plus.

4.1.1 MoniCa

MoniCa is a monitor for the M68000 microprocessor family. It provides run time support for
Assembler and higher level languages such as C, Fortran, Modula-2 and Pascal. Powerful debugging
aids are available. A logical channel concept and interrupt driven input/output operations are
implemented. MoniCa is written in Assembler and Pascal and is in widespread use at CERN.

4.1.2 PILS

PILS, a Portable Interactive Language System, is designed to improve portability of application
software and programming environment. It has been installed with identical application libraries on
VAX, NORD, and VALET-Plus systems. PILS contains ANSI Minimal BASIC as a subset, with
additional features which create a more powerful language.

A PILS compiler, which improves execution speed, is presently available for the VAX and will be
released for the M68000 in the coming months.

4.1.3 The Application Libraries
Standard libraries also available on VAX and NORD systems are installed with PILS:
e ESONE/IEEE/NIM CAMAC Subroutines

e CERN FASTBUS Subroutines
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® CERN Histogram package (HMINI)
o CERN Graphics (PIGS with a Mini-GD3 Interface)
e Math and Trigonometric routines
® ISA Bit manipulation routines
Two additional libraries have been implemented specifically on VALET-Plus:
VMEbus Specific Routines
This is a set of six routines to put or get data to or from any VMEbus address. The routines can
handle 8, 16 and 32 bit data. These simple routines are included to allow convenient testing and
debugging of almost any VMEbus module from PILS.
. GPIB (IEEE 488) Library

A library is available, though not yet released, for the Motorola MVME300 controller, which has
DMA transfer rates of up to 500 kbytes/sec.

4.1.4 The Communication Facilities

VALET-Plus offers several possibilities for communication with other computers.

RS-232-C

As previously mentioned, one of the serial ports of the VALET M68000 CPU module is used to
communicate with the personal computer. The second serial port can be used to connect the VALET
to remote Hosts, allowing the personal computer to be used as a remote terminal and ASCII file
transfers between the personal computer disc and a remote VAX/VMS system.

The CERN Network (CERNET)

For installations with a CAMAC link to CERNET, a MoniCa command permits downloading of

absolute programs into the VALET processor from any CERNET host. A utility program handles
ASCII file transfers between the personal computer disc and any CERNET host.

4.2 In the Personal Computer
4.2.1 The BRIDGE
The BRIDGE is the utility program which allows the personal computer to act as:
® A terminal emulator
e A server of the remote procedure calls sent by the VALET through the serial link

Depending on the type of personal computer, it can also be programmed to provide special user
interface features such as menus, windows, etc.

The remote procedure calls are of two kinds:
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o File management requests issued by the PILS Host Interface (PHI) in the VALET M68000
and served by a corresponding “Remote PHI” in the personal computer BRIDGE.

e Graphics requests containing records of the “metafile” issued by the VALET graphics library
to be interpreted and plotted on the personal computer screen.
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The BRIDGE has been written in PASCAL for portability. System specific code such as control of
the seral port, file and graphic management is well isolated and easily modifiable between
implementations.
The BRIDGE utility has been installed on:

® Apple Macintosh

® Apple Lisa (MacXL)

e IBM-PC/MS-DOS and compatibles

¢ Hewlett Packard 200/300 Series

® VAX/VMS

4.3 Programming in Languages other than PILS

Though primarily offered as a PILS machine, VALET-Plus can be programmed in Assembler,
PASCAL or FORTRAN 77, by means of a suite of CERN cross-software.

4.3.1 The CERN 68000 Cross-Software

The CERN cross-software for the M68000 family includes Assembler, PASCAL, FORTRAN 77, C
and Modula 2. With the exception of the FORTRAN 77 compiler, the cross-software is written in
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PASCAL. A FORTRAN 77 compiler written in PASCAL is under development. The compilers
generate a common relocatable format CUFOM for which link editors and loaders exist. The output
of this chain is an absolute image of the program represented as an ASCII file of S-Records, which can
be loaded by the VALET monitor MoniCa. The cross-software is available wunder
VAX/UNIX-BSD4.2, VAX/VMS, IBM/MVS and on several other minicomputers and mainframes.
When substantial non-PILS program development is required, the cross-software should be installed, if
possible, on the local personal computer, with good hard-disc support. It has been installed on the
HP200 family under the PASCAL Work Station System PWS (with the exception of the cross
FORTRAN compiler).

A command file allows users to link FORTRAN programs to the libraries which are resident in the
VALET EPROM. This reduces the number of S-Records, and therefore the load time, required for
main programs which make extensive use of libraries.

5. DEVELOPMENTS
5.1 PILS

A PILS compiler for the M68000, to improve run-time execution speed, is in its final test phase and
will be available in the coming months. Compilation will not require any disc access, and PILS
programs developed interactively will be compilable at any time. A PILS error recovery facility is
under test. It allows a PILS program to branch to a user written error recovery procedure when a run
time error is detected, a necessary safety feature of any process control system. PILS event handling
will follow, to allow execution of a specified sequence of PILS code on receipt of an external event
such as a CAMAC LAM interrupt.

5.2 Communications
ETHERNET is being introduced at CERN and although several personal computers do not support
direct interfaces to ETHERNET, it is possible to provide LAN services through a VMEbus
connection. Such possibilities are under investigation.
5.3 VALET-Plus to Personal Computer Link
The speed of the link between the VALET and the personal computer could be improved by a factor
2 to 3 by using a synchronous mode of transfer over the serial line. In addition, an ETHERNET /
CHEAPERNET connection between a VALET module and a personal computer supporting
ETHERNET will be considered for cases where:

® The VALET is far from the PC

o Geographically distributed control of the VALET is required

® ETHERNET access is necessary both on the PC and on the VALET for other reasons.

Support of binary transfers and transmission error recovery capabilities will also be studied.
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5.4 New Hardware (MC68020, MC68881, VM Xbus, etc.)

The MVME101 CPU and SYS68K DRAM boards could be replaced with a single CPU board with a
large on-board memory, bringing the following advantages:

® A saving of one VMEbus slot
e Increased performance because of faster CPU access to (local) memory
® Reduced VMEbus load

High performance CPU modules with MC68020 processor and MC68881 floating point co-processors
are being evaluated. These processors increase integer processing speed by a factor of 3 to 5 and
floating point processing by orders of magnitude. This is likely to be an expensive option but will
provide VALET-Plus users with high performance if required.

5.5 Real time capabilities (RMS68K)

Studies are being carried out to offer RMS68K, the MOTOROLA Real Time kemnel, selected by
CERN for M68000 applications. Integration of this product with the standard CERN 68000
cross-software package is being done and its availability on VALET-Plus should permit the porting of
a basic data acquisition package required by more demanding test applications.

5.6 Data Recording

A binary data recording capability, essential to all data acquisition and even to some test systems, is
not available for present VALET-Plus. Two options, the use of a LAN connection to remote hosts
with conventional peripherals, and support for a VMEDbus based, low cost recording medium are being
investigated.

6. STATUS

Six months after the release of VALET-Plus, more than 40 requests have been registered from
scientific laboratories and institutes in 10 countries. Most systems incorporate an APPLE Macintosh
or an IBM-PC; a few systems use APPLE Lisa, HP200, or VAX.

A complete set of documentation is available on a self-help basis on CERN IBM WYLBUR service.
A VALETNEWS scheme based on electronic mail has also been implemented under WYLBUR to
communicate with the user community.

7. CONCLUSIONS

The current interest in VALET-Plus, the spectrum of personal computers used, the high competition
on the VMEbus market and the recognized benefit of real portability of application programs seem to
indicate that the concept is valid and the choice of standard basic hardware and software components

is right.
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Interest in the concept have also resulted into implementations with other 68000/MoniCa based
designs and porting of the VALET-Plus environment has been achieved on the FASTBUS General
Purpose Master (GPM) by the DELPHI collaboration and on the CAMAC “Controlleur de Branche
d’Acquisition” (CBA) by the OPAL collaboration. A feasability study of a generalization of this
concept might be initiated to benefit from the user-friendly interfaces available on low cost personal
computers from a PC independent Command/Menu package running in a separate application
Processor.
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ABSTRACT

We describe a test system we have set-up to be used in LEP experiments. Un-

der VME standard, "open", stand-alone under CP/M, VAX "like", it is very
powerful in CAMAC, VME and FASTBUS applications. An optimized multi-user
possibility is set-up just by adding CPU cards.

The FORTRAN 77 native compiler developped by one of us, processes all stan-
dard packages avaiflable at CERN ( CAMAC - FASTBUS- MZCEDEX- HMINI-
HPLOT....) with very good performances and makes the system user friendly.
PASCAL and C native and cross compilers are available.

An ETHERNET link with a VAX VMS has been developped above level two in C
allowing a file transfer of 100 kbits/second.

Performances are competitive with larger configurations. Cheap price makes
such a system very promising for future large experiments which need more
distributed CPU power, specially for test and monitoring.

1 INTRODUCTION

The most popular computers associated to test systems generally don't meet
well the requirements for fast hardware applications. But the simultaneous avail-
ability of 68K microprocessors and of the VME bus allows setting-up of new,
cheap and well suited configurations. Preparation of LEP experiments leads lab-
oratories in charge of electronic tests to update their system. Several set-ups
can be considered, provided they meet CERN standard requirements for CAMAC
and FASTBUS both in hardware and software aspects.

L.A.P.P has the responsability to develop CAMAC and FASTBUS hardware
units and to set-up a test system of the second level trigger of the L3 experi-
ment.



- 270 -

To achieve our goals we need a powerful "hardware oriented" tool verifying the
following requirements:

Stand alone .

Fast in hardware debugging and tests.

User friendly for non informatician people (VAX like)

Supporting a fast native FORTRAN 77 compiler .

Able to use the CERN PRIAM cross software .

With an efficient connection to ethernet allowing file transfers with a VAX
VMS.

Easily upgradable.

o Cheap (less than 25000 SF totally equipped).

Because VME has been designed to work in a multi-CPU environment, these
considerations have oriented our choice to a mono-task mono-user disk operating
system. Therefore, a multi-user configuration is set-up just by adding extra
CPU cards,in such a way that the multi-user is taken care directly by VME
hardware i.e without system overhead for hardware performances.

The popular CP/M system enriched by the Fortran-77 compiler developed by
one of us (Hans Von Der Schmitt) fits well our requirements.

The ETHERNET connection will aliow the system to be integrated in the L3
ON-LINE configuration to perform trigger tests under VAX's control.

2 SYSTEM OVERVIEW
2.1 HARDWARE

The hardware, built around VME bus, allows to define an "open" system, com-
patible with a wide range of modules, without excessive manufacturer depen-
dance. We chose the 12 Mhz "ELTEC"” CPU driven by the CP/M disc operating
system for the following reasons:

This CPU was the fastest 68K available. It includes a 1 Mbytes memory on the
board avoiding unnecessary bus access. The same board includes also the flop-
py disk interface and two RS232 ports. In a multi-CPU environment, these fea-
tures increase the performances.

The bus arbitration unit is not implemented on our CPU. The Motorola MVME
101, introduced for some extra reason, takes care of this function.

In order to boost the system performances we have added two memories:

The first one is a RAM memory, which emulates a disk, used exactly like a
fast disk.

The second one is a ROM module containing utility programs (actually Fortran
77 and libraries).

To avoid the associated back-up constraints, we chose not to use hard disks
as mass storage but only two 1 Mbyte floppy disks. While slow, this solution is
sufficient.

CAMAC is driven via the DATA-SUD interface.

FASTBUS is driven via the VIOR-FIORI interface and soon via the CFl inter-
face.
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ETHERNET is connected via the LRT interface which is a master.
XOP, a fast processor develdpped at CERN, is driven via its VME interface.

To be compatible with MONICA applications, we have added a MVME 101 CPU
with its external RAM memory. As stated before, this CPU is also used as our
VME arbitration unit.

The VME address space of the entire configuration is described in figure 1.

2.2 SOFTWARE
In High Energy Physics, the most commonly used machines are VAX and IBM.
To avoid users to learn a new system, we have created an environment as close
as possible to the VAX context. |t has been possible since the very primitive
operating system we have selected, let say CP/M, is easily hidden for the most
common applications.

But primitive does not mean not efficient. On the contrary, the mono-task/mono-
user feature is a great advantage for speed and efficiency.

The multi-cards possibility being arbitrated by hardware directly on the bus,
we take advantage of this feature.The multi-users possibility is implemented just
by adding extra CPU cards. So, in a multi-users configuration, speed penalty
will appear only during conflictual access to the bus. It is reduced to a mini-
mum by using CPU cards with a large memory on board and with direct access
to peripherals.

If a file has to be edited, a full screen editor behaving just like the VAX EDIT
is invoked by the command: EDT Filename.

Cross-compiling is a very useful tool, but we have to remember that object file
has to be downloaded after each modification of the source code. Downloading of
large files via RS232 line, can reach up to one hour.Such a procedure becomes
unusable for development of large programs. As FORTRAN is the most common
language in our applications we feel important to use a native compiler.

The FORTRAN 77 native compiler developped by one of us (HVS) ensure com-
patibility with CERN utility standard packages as:

- MZCEDEX : command processor and menu facility.

- HMINI] and HPLOT : standard graphic packages.

- CAMAC : standard ESONE calls

- CERN FASTBUS :

This compiler is available in the native mode and as cross compiler on the VAX
VMS. It satisfies almost all F77 requirements except real*8 and direct access for
files manipulations. Its run-time performances have been particularly developed.

Some performances of the compiler are summarized in table 2.

As for an example, the development of a F77 program will be achieved as fol-
lows:

FOR test (compilation: produces ASM code, then object code)

LINK test (links program with FORTRAN libraries)
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TEST (starts execution of program TEST)

If the program has to be recalled from VAX, the sequence available is the fol-
lowing one:

HOST (transparency on host)
SUP - (initiates on VAX the facility for file transfer)
XFER (on CP/M initiates file transfer)

is the host a VAX 7 (Y/N)
host file name:

local file name:

host to local 7 (Y/N)

The file transfer is initiated and is available in both directions, either for text
files or 68k images which are decoded from S format to binary format to be
stored on the CP/M mass storage.

For small tests, a basic-like language may be useful, we intend to install PILS
on our system before the end of 85.

in the LEP context with ETHERNET environment, it is obvious that a fast con-
nection with the usual host ( VAX) will be a major feature and will make possi-
ble a new range of applications during setting up of the experiment . A task

to task link above ETHERNET has been realized and is described in a following
subsection.

3 DEVELOPMENTS AT LAPP
3.1 VME

Initially, we chose to built the test system around the VME bus, because VME is
an industrial standard, able to manage multi-master configurations with good
performances. We have never foreseen to perform development on VME, but we'll
certainly be obliged to understand why mixing units from different manufactur-
ers in a same crate is not straightforward. We have to understand and solve
this problem because we need at least three masters in the same crate. We hope
the problem will be solved by using a more efficient general purpose arbitration
unit... which has been missing up to now.

As many modules are provided with fixed addresses, especially in the short
1/0 range, we often had to reconfigure our VME space.

3.2 CAMAC

With the VME-CAMAC interface, we have run CAMAC under excellent conditions:
Being our system a mono-user one, we can switch CAMAC on and off at any
time.

After optimisation of the CAMAC library, CAMAC cycles (standard ESONE
calls), have been measured at less than 60 microseconds with the 12 MHZ CPU.
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in our FORTRAN compiler , the CAMAC interface is a part of the VME memo-
ry.This allows- FORTRAN programs to run CAMAC cycles in a few microseconds.

3.3 FASTBUS

Developments will increase in the next months at LAPP. The L3 trigger is
largely based on FASTBUS. FASTBUS is actually running on our VME system
and the last FB package has been implemented. The commonly used test pro-
grams(FBMON,FDMTST) are being implemented. We have tested that we are re-
ally able to compile and link FBMON locally as well as with the cross-compiler
(4500 FORTRAN lines giving 19000 assembly code lines).

The first farge FASTBUS prototype, a 500 components module developped by
CAD, with a local developed integrated circuit on board, is just completed.
Hardware debugging and maintenance tests will be performed with this system.

3.4 NETWORKS

ETHERNET is the most popular LAN used at CERN. Most mini's such VAX's,
APOLLO's UNIX VME systems can communicate on ETHERNET via TCP/IP,
TCP/IP however is UNIX oriented and except for the VMS VAX, not adapted
outside UNIX environment. Another problem is the cost of the connection.
Among the ETHERNET cards presently on the market, there are intelligent ones,
with firmware on board up to level 4 (transport in 1SO model). This solution is
attractive but expensive ($4000) and in fact only adapted to UNIX systems.
Moreover, it requires to install the TCP/IP package on VMS VAX ($4000) which
doubles the overall price. In fact for a VME UNIX or UNIX like system the con-
nection would actually equal the total price of the system.

For small, low-cost systems another solution was suitable. A classical scheme,
particularly developed at CERN is the SERVER/CLIENT couple.
A SERVER, installed on the HOST is waiting for requests from different
CLIENTS and must be able to satisfy several of these requests.

We have realized such a connection above level 2 of ETHERNET, with the pres-
ent restriction that the SERVER on the VMS VAX is able to satisfy only the re-
quest from one VME's CLIENT.

The software has been derived from the existing package developed at CERN
Ben Segal, private communication) for the link between the PRIAM VAX UNIX
and the MOTOROLA MVME CPU running MONICA in VME.

This sofware, written in C had to be adapted to other machines (VAX VMS and
CP/M VME 68k). The development, started last spring is now completed. It
has been facilitated by the portability of the C language and the support we
found at CERN. However this implementation has obliged us to considerably
modify the original software.

The encountered difficulties were both on software and on hardware.

For the hardware the board delivered by LRT at the end of july 85 presented
a serious bug. This bug did not appear systematically on all cards delivered at
CERN, and consequently slowered its debugging. After having delivered a
packet the card was unabled to "hear" any incoming packet unless a carrier was
present on the cable just before. :
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This has been temporary solved by preceeding each VME destination packet by
any packet bringing the required carrier shot.

The sofware also carried up some difficulties. The native VME/C compiler de-
livered by WESTERN DIGITAL comprises some bugs and does not implement some
features of the C language.

All these considerations have obliged us to modify the code written for a VAX
(we had previously developed the SERVER/CLIENT couple between two VAX's).

This solution, which exhibits a connection cost of about $1000 (plus transceiv-
er)allows a 100 kbits/sec file transfer between the VAX VMS and a VME system.

3.5 L3 DEVELOPMENTS

Our main applications with this system are done on L3 experiment and specially
on the second level trigger

In this framework we are developping some new, fast FASTBUS interface
{slaves and master),as well as some CAMAC modules.

Using VME CP/M system in this context allows us to replace heavy slow VAX's
by little, fast, self configurable 68000 cpu's. One of these systems will stand
on the L3 experiment as the second level survey and maintenance system.

4 CONCLUSION

We presented a stand-alone 68K test system running the standard FNRTRAN
CERN packages.

Very good performances obtained in CAMAC and FASTBUS meet well require-
ments needed for hardware developments.

The new coming tools as : native F77 compiler, VAX compatible screen editor,
remote login, file transfer... make the system powerfull and user friendly for
program developments and hardware tests.

The ETHERNET connection will allow the system to be integrated in the L3 on-
line structure to perform second-level trigger tests "in situ” under VAX's con-
trol.

This system has been running for six months without serious problems. its low
cost, (less than 25000SF totally equipped), with all needed interfaces needed in
CERN experiments, boosted by 5 Mbytes memories {(RAM*mass storage) makes it
very attractive. If desired, the multi user feature can be obtained virtually by
adding extra CPU's, or by using the CERN cross software on the VAX and
downloading S records from VAX to VME.

To go further, we have to investigate the multi-master aspect. This work has
pointed out the problem of hardware compatibility between some VME manufac-
turers.
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Abstract

For stand-alone applications of 68000 processor boards a runtime library was
developed. It consists of routines for I/O to serial, parallel, and IEEE bus ports,

exception handling, floating point emulation, and most function calls available under

UNIX. The major part of it is written in C and follows the UNIX calling conventions.

The library, which may be stored in EPROM, was used with VMEbus cpu-boards from
. different manufacturers. Program development (C and assembler) is done on a UNIX host

system.

Introduction

At the accelerator laboratory of the Munich universities, we use VMEbus based 68000

processors for two kinds of applications:

- in dedicated systems (e.g. a CAMAC auxiliary controller interfacing our old
PDP-15 online stations)
- in a multiprocessor system for data acquisition and analysis (MLLE) [1,2]

For these purposes, we needed

- a powerful software production environment (programmer’s workbench)

- a unified runtime system for processor modules from different manufacturers
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Furthermore, the minicomputer used for program development also works as the user
interface of the MLLE multiprocessor system. This leads to demanding similar
environments (e.g. equal languages) for programs on the minicomputer and on the

VMEbus board.

We found, these requirements could be best served by using UNIX (System III and V) as
our host system and writing ULRIKE, a UNIX like Runtime Kernel for the 68000

microprocessor.

Some_words about UNIX as a development system;

- Multi-user timesharing system:
running on a wide scale of computers (from micros to mainframes) with some

interesting features with respect to the development of large program systems

- Hierarchical, tree structured file system: very well suited to keep an order

among numerous source files

- Source Code Control System (SCCS):
Keeps track on the development of source files. All changes are added as Deltas
to the original version and labelled with version numbers. Any previous version
may be recovered with a simple command. Further it is effectively guaranteed

that only one user at a time makes changes on a specific version of a file.

- Make utility:
Can be used to describe even very complex building processes of target files
from numerous source files. Works well together with SCCS. Only those files are
processed (compiled, assembled, etc.) that are necessary due to recent changes
on the source files. Prerequisites of files may be declared, so e.g. untouched

files will be newly compiled if changes were made on their include files.

- Programmable user surface (shell):
Procedures may be written in the command language which compress complex lists
of commands into shorthand. These procedures may use variables from a

user-specific environment. The functionality is comparable to the VAX DCL.
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- Availability of source code:
UNIX system sources are available at moderate costs for educational institu-
tions. A lot of our microprocessor software is directly taken from the UNIX

System V sources.

Cross Software for the Motorola 68000 (languages)

All software development for microprocessors is done on the UNIX host computer. Our
present microprocessor software is entirely written in C, with only a few percent of
assembler code in the runtime kernel. We used (until recently) a C compiler written

at Siemens which was adapted to our PDP-11/55 UNIX System III computer, and a
self -written assembler. The assembler has no real macro features, but uses the
standard C preprocessor which allows a lot of useful things like include files,
symbolic constants, conditional assembly/compilation etc. We found a macro assembler
unnecessary, because complicated things are better done in a high-level language.
Assembler and C both produce relocatable binaries in UNIX standard format. Linking is
done with a modified version of the UNIX /d link editor which allows relocation to
given physical addresses. Base addresses may be given independently for text (=code),

(initialised) data, and bss segments (=uninitialised data), respectively.

More languages -

Since recently we also use a 68000 based UNIX system (CADMUS of PCS). Because we use
the standard UNIX object format, all compilers available on this machine (C, FORTRAN,
PASCAL, MODULA-2 etc.) may be used for cross software production. Till now we tried
FORTRAN-77 besides the native C compiler.

ULRIKE - the UNIX like Runtime Kernel

Our ULRIKE system consists of four basic components,
- an inner kernel which contains startup routines, exception handlers and device
drivers,

- a system library with functions for all layers of software,
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- a downline loader to load programs from the host system, and

- a command decoder to interface the intrepid user.

The figure shows a layer diagram of ULRIKE. The top layer(s) are formed either by
application software in a single processor, or the DAMOS operating system [2] with

its current task in a multiprocessor configuration.

Application
Software

/
Loader \
/
| \
| DAMos)
| Library tbrary l
\ /
\ Command /
\ Decoder /
or DAMOS Multiprocessor /
\ Operating System N/
N /7
~ e
Current Task _
-~ —

———

— —

Software Layers of ULRIKE
We do not support multitask programming on a single processor, because we think that

every task should have its own processor. However, as several programs may reside in

core simultaneously, they can be started sequentially by the command decoder.

The Inner Kernel

The inner kernel performs the very basic system functions:

On power-up or reset, all devices are initialised, stacks and trap tables are set up,

and control passes to the command decoder.
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Exception handling is either done by standard exception handlers, or co‘ntrol is
passed to user-defined routines. The assignment of new exception routines is made at
runtime by entering the new start addresses into the appropriate tables. In C, this
can be done very simply, because the start address of a function is accessible within

a program as a pointer to that function.

The terminal driver is compatible with UNIX System V. It consists of two parts, one
generic with all the special character handling like XON/XOFF, rubout etc., and the

other one device dependent, containing all the special features of the utilised hard-

ware. The latter was adapted to several commonly used serial I/O chips (Valvo

DUART 68881, Motorola ACIA 6850, Rockwell 68560, Mostek MFP 68901 and SIO 68564).
Only few definitions have to be changed (base address etc.) to fit the driver to a

new CPU or serial I/O-board, if it uses one of the already implemented chips.

As a special feature we implemented virtual terminal lines, which can connect any two
processors in a multiprocessor system. This communication uses the common VMEbus
memory or, if available, the VMSbus. By choosing the appropriate line mode, this link

can be used for very different applications in a multiprocessor system:

- error message output to a single terminal or host computer,
- system initialisation and shutdown,

- inter-processor task communication and synchronisation.

A modified UNIX driver serves the IEEE 448 bus. We use a MIZAR interface with a
TMS9914 chip from Texas Instruments. Also, a simple straightforward driver for the
Motorola PI/T (MC68230) parallel interface chip is available.

Realtime clocks accessible with the standard UNIX calls work with the timer part of

the Motorola PI/T, Mostek MFP (MK68901), and National Semiconductor’s battery
buffered MM58167A realtime clock chip.

Access to CAMAC is done with a dedicated processor (AIAC), briefly described
elsewhere [2]. We also intend to use a VMEbus CAMAC branch driver.

At the moment, we don’t plan to connect other peripheral devices, especially no file
structured devices like floppies or winchester disks. We think, they are better
handled by the operating system of a host computer. On the long run, however, bulk
storage devices like streamer tapes or optical disks might be interesting for the

fast storage of raw data.
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Svystem Library

The system library offers all the routines that make the runtime environment look
very similar to UNIX.
It holds

- the standard C I/O library

- Motorola’s fast floating point library

- emulations of all UNIX system calls applicable to a single-task system

(routines to handle timers, semaphores, signals, etc.)

- the UNIX libraries of mathematical and string handling functions
- miscellaneous other functions, mostly for system programming purposes (such as

priority setting, linking of exception routines, etc.)

All these functions are reentrant and reside, except for debugging purposes, in
EPROM. They can be called from every layer of software. Application programs are
linked only with a symbol table describing all entry points and execute the code
directly from EPROM. This keeps the size of the application program small (and

downline loading fast).

The Loader

With the downline loader, code files are loaded from the UNIX file system to the
microprocessor memory. We either use a serial line or an IEEE 488 bus for program
loading. In any case, code is transferred in slightly modified UNIX loadmodule
format, using 8-bit transfers. So far, no problems with transfer errors on RS232
lines at 9600 baud arose, even at program sizes of about 256 Kbyte. The transfer

speed is about a factor of 2.5 faster compared to ASCII-coded S-records.

The Command Decoder "

The command decoder parses the input string of a communication line and dispatches to

the appropriate routine.

A command line consists of a command name, an optional set of switches, and a list of
arguments. Possible argument types are integer, floating point, and character string.
Command and switch names may be abbreviated and are tested for uniqueness. A command
may be connected to several routines using different argument lists. The decoder pro-

vides function calls to add new commands and to define their argument lists. The
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default command list includes standard commands like help, initialise, and show, and

some facilities known from the Berkeley shell such as alias and history.

* * *

[1] G. Beier et al., IEEE Transactions on Nuclear Science, Vol. NS-32, No 4, 1985,
p. 1426

[2] H. Wilhelms et al., MLLE, A Dataflow Controlled Multiprocessor System,
talk given at this conference
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Abstract

General view to program standardized multiprocessor bus systems from the user level
is presented, covering: configuration management, ligical-to- physical mapping,
resource sharing, and interprocess communication. The project goal is to establish
conventions which allow for programming idependent of the architectural differences
and for producing portable application software. Emphasis in examples is given to
programs expressed in Ada.

1. INTRODUCTION

In programming standardized bus systems like CAMAC, Fastbus, Multibus, VMEDbus, it is extremely
important to have a consistent set of rules governing the access to modules and transfers of data. It
was recognized in the early days of CAMAC that widely accepted routines are of substantial assistance
to the programmers. First such rules have been prepared long ago and published as the “Subroutines
for CAMAC”. Their application in practice has led to the high increase of programmers’ productivity.
Numbers reported from CERN said of about 7 times increase, at least in certain application. From
my own experience I know that the complexity of programming was reduced so drastically that all
application software for quite sophisticated control systemns was possible to be done by technicians.

This trend is still vital and the next generation of subroutines has been published - “Standard Routines
for PFastbus® [1]. However, this document when presented may cause head-ache to the
non-experienced users as being very complicated, despite the explanation that it is complicated
proportionally to the complexity of Fastbus. The users’ need is evident: even if a hardware
architecture is far more sophisticated than ever before, software must be simple. What we are
suggested to do then is to simplify the programming principles.

The importance of simplicity issues was confirmed by an earlier language selection study [2]. The
investigation which language is best suited to programming modular interfacing systems led to the
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conclusion that even with properly selected but purely technical criteria one cannot diversify languages
like C, Modula-2 and Ada

® a statement known also from more recent publication [3]. However, if we take into account
one meta-criterion - simplicity of use -the choice is more straightforward.

To explain further this philosophy it would be instructive to repeat a statement by Harlan D. Mills of
IBM:

“Software stands between the user and the machine”.

In terms of Fig. 1 it means that the portability has two faces. The term stands not only for a mobility
from one machine to another but also - from one user to another. The users who want to have
friendly systems, in addition to simplicity of languages and simplicity of calls would prefer an operating
system to be transparent. The approach taken here starts at the user level and does not go down to
the operating system kernel.

We identified four in principle different problems, which cause most severe difficulties to an average
user when programming multi- microprocessor bus systems. Two of them are rather static in nature:

¢ configuration management, that is identification and initialization of boards before any
application task is running

® logical-to-physical mapping, relying on partitioning the overall system tasks among the
available processors. During the execution of tasks, when a bus traffic is concerned, two
kinds of things may happen in general, connected with the distribution of processors along
the bus:

e communication between tasks located on different processors
o collision in their access to certain resources.

The next sections will discuss proposed technical solutions.

2. CONFIGURATION MANAGEMENT

The purpose of a configuration management is to allow software to identify, configure, initialize, and
diagnose the boards. Regarding the complexity of all contemporary bus system architectutes,
automatic configuration management is essential for the user. Configuration manager should be able
first of all to recognize the current system configuration, installed processors, memories, and other
modules and resources.

The solution is to have a table for configuration information. This may be a software table, a
configuration ROM or a whole space for storing this kind of data. Fastbus and NuBus, for instance,
have separate control spaces in addition to the normal data or global memory space. In Multibus II
there is a separate interconnect space, where all this configuration information is contained. The space
splitting concept is most useful in that it resembles in hardware data typing in programming languages.
If there is no separate space the hardware environment may be described by means of a small
configuration table. :

The report on configuration status (status selfcheck) should contain all relevant information and
provide it to the application program. Except of submitting and updating the configuration status, the
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configuration manager should be able to perform initializations and tests or initiate self-test routines of
the configured equipment. Whenever it is run from a terminal, a console panel or a program, before
any application task is executed, the user should know all the available resources and their location,
and be sure this is safe and consistent information.

Unfortunately, due to the diversity of architectures, the unification of the form in which this
information should be presented is hard to achieve. One bus architecture (NuBus) may contain 64 or
more contiguous bytes of information on each board in the system, and for another (Multibus II) this
is well-organized for each module as an interconnect template consisting of a header, function and
EOT record. Therefore, a variety of configuration information should be available to the user via
standard software databese being an interface to application programs.

Visibility of configuration registers to the users is then limited. Users do not know what information is
located where in the registers and need access to the database only. A system database may contain
names for boards in the system, their addresses (logical and geographical), connection tables, and other
relevant information [1]. It seems, however, that there is no common practice in this respect. The
Fastbus Software Working Group has left the issue for further revisions of the standard.

Essential of the proposed database organization follow the work of the IEEE P896 System
Architecture Subgroup [4], although may be incomplete for non-conventional architectures. The
principle is that the information is splitted into 2 categories:

¢ administrative, like serial number, part number, vendor id, board type, revision level, etc.,
which is mostly read only

¢ program-related, like device driver, diagnostics and flag register offsets, resource type, bus
options etc. (acces to this portion of database is strictly controlled).

3. LOGICAL-TO-PHYSICAL MAPPING

The issue of allocating tasks to processors is certainly a central one in programming multiprocessor bus
systems. It is desirable that all mapping be done automatically. Given the device/processor
connections map to the busses, software should allocate tasks onto the available hardware.

Conceptually this can be done in a language or by a tool in an environment. However, in
contemporary high-level languages there are no explicit mechanisms for the control of the distribution
of tasks among processors. There is no common programming language in terms of which one can
describe target configuration and allocation of program units to physical nodes according to application
requirements.

If one drops a solution based on a language extension, and there does not exist a compiler which
translates any of the program texts into code mapped to the individual nodes (hardware modules), the
conversion is still possible of a single program to multiple programs by a preprocessor, which will use
a representation specification to convert code. This also looks like working with a tool. Therefore a
clear need exists to create an environment for developing and executing software that is targeted to a
distributed system.

The most comprehensive study related to this subject was conducted by the Ada community [5] (this
is the point where we tie to Ada, since no respective investigations have been done for other
languages). The main result is that preference should be given to implement the application software as
one portable program, and that the tasks should be grouped on processors to match their functions,
and to minimize code duplication and remote communications.
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It is required that the user provide - except of a source code - the following specifications (Fig. 2):
e task groups composition
e target system description
e composition of nodes (consisting of processors)
® allocation of task groups to nodes.

Decisions should also be made regarding the static or dynamic allocation. If objects created at
run-time are involved, allocation could be left to the responsibility of the user, but not recommended.
In a real time environment there is a heavy target dependence of tasks, because of the unavoidable
representation specifications in programs. This helps to automate the allocation process and to make
it static. For dynamic mapping the information from the configuration database can be used to map
tasks onto nodes. The description of the distribution of tasks should have no effect when the program
is compiled for a single processor, thus allowing exactly the same text to work on uni- or
multiprocessor.

An elementary exa.mple of Ada program distribution among processors was given in [6]. The criterion
for partitioning is the minimization of remote data transfers. For a procedure P (Fig.3) to be executed
on 4 processors, A, B, C, and D, a module is expressed in extended Ada (Fig. 4) and mutual references
between objects are voted as a basis for allocation.

4. RESOURCE SHARING

Multiple processors in a bus system may share a global resource. Examples include sharing common
peripherals, high speed math boards performing floating point operations, network communication
controllers etc. As far as a kernel can provide software regions to prevent collisions between tasks
sharing resources, numerous languages equally allow expressing mutual exclusion by lock operations
and resource sharing by semaphores with read-modify-write sequence. Bus lockin is typically used for
indivisible test and set instructions used to implement semaphores for interprocess communications.
Nevertheless on the language level it is highly desirable to have a single construct to express the
intention of resource sharing in a program. This is rarely provided even in most advanced languages,
where the mutual exclusion is typically achieved by creating a critical section, i.e. a code segment that
once begun must complete execution before it, or another critical section that accesses some shared
resource, can be executed.

An interesting solution is the addition of a LOCK statement to Modula-2 [7], giving a simple syntax
for mutual exclusion:

LOCK <mutex> DO statement_sequence END

where <mutex> is a designator of type Mutex provided by additional module THREADS, which
also provides another type Condition used in connection with some mutex, and several procedures for
operation on mutexes and conditions. This solution is both more safe and simpler for multiprocessor
applications than the original constructs in Modula-2.

5. INTERPROCESS COMMUNICATION

An important aspect of a multiprocessor architecture is the exchange of data between processors. In
fact, the data transfer is the main objective of setting up a bus system. Although it has much common
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with sharing resources along the same bus, both problems are conceptually different (Fig. 5). As far as
sharing the resources should be explicitly expressed in the application program, the communication
between processors may not be. This is because of the preference given here to write an application
software as one portable program. Then the user has no a priori knowledge of the distribution of
communicating tasks (processes) along the processors, and the single construct in a language is only
needed for intertask (interprocess) communication.

Though the interprocess communication is separated from the interprocessor communication, both
may overlap when defined groups of processes are placed on several processors. The implementation
of an Ada rendezvous for this purpose reveals a number of dangerous situations, which may cause
severe difficulties in processing as results of:

e idenfinite waiting for a response message (timed or conditional entry call after the start of the
rendezvous will not avoid the problem)

¢ unlimited block transfer length
® remote procedure calls, and others.

The asynchronous nature of tasks execution on different processors means that the operating system
must have some facility for buffering information, e.g. through a mailbox structure. Another
assumption is that it should handle the communications between processes on different processors in a
way transparent to the user. Although there are other solutions, message passing with strictly defined
protocol is the most natural choice for interprocessor communication. Essential for message passing
and all communication interchange is data typing. Sending and receiving only messages of the
associated type may eliminate a lot of the danger.

6. SUMMARY

In a contemporary multi-microprocessor bus systems it is necessary for the user to provide something
more in the program than the conventional data, address and operational information related to the
system response or status. We identified the additional areas, where establishing conventions is
essential to facilitate the users to write distributed programs. These are: configuration management,
logical-to-physical mapping, resource sharing and interprocess communication.

As they are related to the application program not only during execution but also in the static phase, it
would be helpful to have a configuration language to deal with the specification of software
components and their interconnections. The Ada language may serve the purpose after being
augmented as a Program Design Language [8]. Its private data types hide the representation and
generics may circumvent more serious differences in physical systems.

The language approach to programming multi-microprocessor bus systems cannot be regarded as
generally superior than building application software on the top of the real time kemel. It seems that
in a short time scale the former is more costly. The economic justification is in favor of it for longer
-periods due to the better portability of programs. Whenever a community of users realize that they
can, with minor effort devoted to learn a highly efficient language, master the programming of
sophisticated systems and exchange the programs as they are, this approach would survive.
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procedure P is
X,Y * INTEGER := 0;
function F(I : INTEGER) return INTEGER is
begin
return I + 1;
end;
begin
Y := FOX);
end;

Fig. 3. Procedure to be partitioned.

procedure P at A,B is
Y : INTEGER at C,D;
function F(I : INTEGER) raturn INTEGER at C,D
return INTEGER at C,D;
access
use Y : INTEGER
do VOTE;
use function F(I : INTEGER) return INTEGER
do VOTE;
end P;

Fig. 4. Expressing a procedure when voting for distribution.

Task #1 Resource Task #2

Fig. 5. Sharing resources and intertask communication.
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A VME INTERFACE TO AN IBM MAINFRAME COMPUTER

J. Alexander
Daresbury Laboratory, Warrington WA4 4AD, England

Abstract

The development of a VME interface to an IBM 360/370 1I/0 channel 1is
described. The interface 1is capable of emulating IBM I/0 devices to
minimise the software development required in the IBM computer. Burst data
rates in excess of 750 Kbytes per second have been achieved. The use of the
interface, together with a VME to Ethernet interface board, to allow
minicomputer-based data collection systems to exchange files directly with
an IBM mainframe is also described.

Introduction

At Daresbury Laboratory we have a requirement to connect our central
IBM-compatible computer to an Ethernet local area network, so that data
acquisition stations on the laboratory's Synchrotron Radiation Source can
transfer data directly to the mainframe for analysis and long term storage.
It was decided to do this by developing an IBM to VMEbus interface to be
used in conjuction with a commercially available VME to Ethernet interface.
In this way it should be possible to connect other networks and devices to
an IBM in the future with minimal hardware development. This paper
describes the IBM to VME interface design, and outlines the way in which it
is to be used in the IBM to Ethernet interface project.

Interface Design Philosophy

The interface is designed to connect to a 'standard' IBM I/0 channel
(referred to as a channel throughout this paper) without using any of the
additional features, such as 16-bit-width data transfers or data streaming,
specified in reference 1. It is able to emulate different IBM I/0 control
units since it contains a 68000 microprocessor which determines the way in
which it interacts with the channel. It can operate on all three channel
types: Selector, Block Multiplexer or (Byte) Multiplexer; although in the
last case it can only emulate a control unit interfacing a single device.

The block diagram of the interface, Figure 1, shows that it consists of
four sections: the microprocessor and its associated program and data
memory, an interface to the channel, an interface to the VME bus, and a
fast data path between the last two. The fast data path allows data to be
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transferred between the channel and a unit on the VME bus (such as a memory
card or a data link controller), without the involvment of the
microprocessor other than to set up the transfer. The microprocessor
controls, monitors and exchanges data and parameters with the other
sections of the unit via memory-mapped registers.

This architecture was chosen to give the microprocessor overall control of
the interface, while not loading it or its bus (by use of a DMA chip) with
end-to-end data transfers, - to maximise the end-to-end data transfer rate.
This assumes that the microprocessor does not need to process the data,
which is generally the case in the communications environment for which the
interface is intended. However the capability is provided for the
microprocessor to transfer data directly to or from the channel, and it is
perfectly feasible to transfer part of a block this way and part via the
fast data path. This might be used, for example, if the block consisted of
a header section containing control information and a separate data
section. Alternatively, if the fast data path is used to transfer data
between the channel and a VME memory module, the microprocessor can
directly access the data in the memory.

The last is achieved by mapping most of the microprocessor's address range
onto the VME bus, as shown in Figure 2. Any microprocessor access to an
address above 64 Kbytes automatically generates a VME bus cycle with the
same address (via the VME interface section). The Address Modifier code is
determined by the microprocessor's Function Code outputs and by whether the
address is in the top 64 Kbytes, the latter determining whether the
'Standard' or 'Short' address codes are used.

Communication between the on-board microprocessor and another VME based
processor is expected to be via VME memory accessible to both.
Synchronisation between the processors is achieved by the unit's ability to
generate a VME interrupt; and to accept a 4-byte 'message' written to it as
a VME slave. The message is stored for the microprocessor to read later,
and the microprocessor interrupted.

Channel Interface Section

The channel interface section is built around a PROM-based sequencer, which
responds to the handshake sequences of the 'Tag lines' used by the channel
to communicate with control units. As it does so it loads information from
the channel (addresses, command codes and data) into registers which can be
read by the microprocessor; and transmits information to the channel
(addresses, status and data) from other registers which are loaded by the
microprocessor. The microprocessor controls the order of Tag sequences
performed, and monitors their progress, via control and status registers.
It also loads registers to specify to which channel addresses the sequencer
will respond, and to specify the Initial Status byte returned to the
channel for all possible commands. Thus the sequencer handles the (fixed)
hardware level protocol of the channel, while the microprocessor handles
the higher 1level protocols determined by the programs running in the
channel controller. The microprocessor can be programmed to emulate
standard I/0 control units, to obviate the need to write channel control
programs specifically for the interface.
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Completion of a transfer via this path is signalled to the microprocessor
when the transfer length counter has been decremented to zero and the FIFO
in use has emptied. It 1is also signalled (as a different event) if the
channel uses the STOP sequence to indicate that its byte count is
exhausted.

VME Interface Section

This section receives, and arbitrates between, requests to use the VME bus
by the microprocessor and by the fast data path. Upon receipt of such a
request it arbitrates for mastership of the bus (if it has not already got
it), and upon gaining mastership gates the address, data and timing signals
between the selected source (microprocessor or fast data path) and the bus,
inserting appropriate delays to comply with the VME timing specifications.
The VME ‘'Release When Done' algorithm is used to release the bus if the
fast data path is not in use, and the 'Release On Request’ algorithm if it
is (to achieve maximum data transfer rates). The arbitration level used is
selected by on-board patching.

This section will also respond as a Dl6 slave to three consecutive
'double~byte' addresses in the VME Short Address range. (The addresses it
recognises can be set by on-board patching.) Two of these addresses are
used to accept a 'message' to the on~board microprocessor. The third can be
used to access the fast data path as a slave, but only if the on-board
microprocessor permits this via the contents of a control register. Without
such permission an access to this address causes a Bus Error response; as
does a read if the fast data path is set up for an IBM read operation, and
vice versa.

The interface generates a VME interrupt, on a patch selectable level, when
the microprocessor loads a 'vector' into one of its registers. The vector
is transmitted to the VME bus during the subsequent interrupt acknowledge
bus cycle.

Fast Data Path

The fast data path contains a FIFO (First~-In First-Out) de-randomising
buffer for each direction of data transfer, and logic to convert between
the 16-bit words transferred over the VME bus and the 8-bit bytes
transferred over the channel. It also has a VME address register/counter
and a transfer length counter, which are loaded by the microprocessor to
specify a DMA-style transfer over the VME bus. The operation of the fast
data path is described for an IBM write command; a read is simply a
reversal of this process.

When enabled by the microprocessor, the channel interface loads data bytes
received from the channel into the write-FIFO as long as this has space
available and the transfer 1length counter is non-zero. (If space is not
available the channel handshake is witheld until it 1is.) The transfer
length counter is decremented for each byte loaded. As bytes become
available at the VME end of the FIFO they are extracted and paired to form
16-bit words. The order of bytes within a word is determined by a control
register loaded previously by the microprocessor. Each word 1is presented,
together with the VME address, to the VME interface section for transfer
over the bus; after which the VME address is incremented, decremented, or
held unchanged - this also being determined by the control register.
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Test Facilities

To facilitate initial testing and to allow confidence checking of the unit
prior to going online to the channel, a data loopback path at the channel
interface is made whenever the unit is offline. This allows the
microprocessor to check its data, address, status and command paths to and
from the channel. It can also exercise the fast data path by writing bytes
into the write-FIFO or reading them from the read-FIFO (using test
addresses), while at the VME end transfers occur on the bus as normal. (The
microprocessor can become bus master to address the fast data path as a VME
slave if the slave mode is enabled!)

Current Status of the IBM to VME Interface

A prototype unit has been built and commissioned. It occupies 3 VME boards
interconnected by a front panel bus, with a further small board located on
the remote panel supporting the channel interface connectors. (The last
holds circuitry to buffer the channel signals, and a relay to provide an
onward path for the daisy-chained Select Out signal when the interface is
offline or powered down.) When tested on the laboratory's central NAS (IBM
compatible) computer, the data rate via the fast data path, on a 15 metre
long channel cable, was measured to be over 850 Kbytes/sec during the data
transfer phase of a channel operation. The overhead time for the channel to
issue a command, the sequencer to respond with an initial status byte and
to inform the microprocessor, the microprocessor to set up a fast data path
transfer, the transfer termination to be indicated, and the microprocessor
to direct the sequencer to send 'ending status' to the channel was measured
to be 130 microseconds. This gave an average data throughput rate of
770 Kbytes/sec when transferring 1 Kbyte data blocks.

The IBM to Ethernet Interface Project

As stated earlier, the IBM to VME interface was designed as part of a
project to connect data acquisition stations on the Synchrotron Radiation
Source to the 1laboratory's central computer. There are currently 23
stations, with some 10 more projected, each controlled by a PDP 11/04,
LSI 11/23 or (in the future) microVAX computer. These currently communicate
with a VAX 11/750 computer which carries out some data analysis and has a
network 1link to the central computer for onward transfer of data. The
direct communication links between the experimental stations and the VAX
are currently being converted to use a single Ethernet network. This
carries a Remote Procedure Call (RPC) protocol designed, at Daresbury, to
permit the reliable and rapid transfer of large volumes of data with
minimal software overhead (references 2 and 3). It is intended to extend
the Ethernet to the central computer, so that data acquisition stations can
transfer data directly to it. This will permit a greater overall rate of
data throughput, free the VAX to concentrate on analysis work, and
facilitate interactive working with the central computer by a user at a
data acquisition station.

The IBM to Ethernet interface is currently undergoing software development;
its hardware configuration is shown in Figure 3. It uses the IBM to VME
interface described here, together with a commercially available Ethernet
interface, memory card and CPU card in a VME crate. The 68000
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microprocessor on each of the IBM and Ethernet interfaces will simply
direct the transfer of data to and from buffers within the memory card,
while the 68000 on the CPU card handles the details of the RPC protocol.
The CPU card, together with a small amount of software in the central
computer, implements the RPC 'manager' process for this Ethernet node.
Software will be written to implement 'server' processes within the central
computer: initially file servers to write incoming data to disk.

It wmay eventually prove feasible to dispense with the CPU card by
amalgamating the RPC manager process with processes on one or both of the
interfaces. Initially, however, it was felt that the comparatively small
extra cost of a separate CPU card was justified by making the software
easier to develop and de-bug, since in this way each microprocessor handles
a well defined and separate task.
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REMUS-VME-VMX BRANCH DRIVER (RVMEX) TYPE V385

C. Engster and L.G. van Koningsveld

October 23, 1985

ABSTRACT

The RVMEX is a D16,A24 VME SLAVE with a D16,SEQ VMX MASTER and 2 "REMUS"
front panel connections. The card can be used as a CERN RWBD1 type 283.

Controlled via VME , the card may perform autonomous data transfers
between a REMUS branch and a VMX bus. The RVMEX can be a VMX PRIMARY
MASTER if alone or a VMX SECONDARY MASTER if used in conjunction with
another VMX PRIMARY MASTER. Only 16 bit block transfers with sequential
addressing and auto-increment are allowed.

The REMUS branch can also be read by VME under program control. The
RVMEX has 2 REMUS connectors which allows it to be used as a branch
DRIVER if a RVMEX DRIVER TERMINATOR is connected to the upper connector,
or as a branch SPY if connected within a branch.

When the card is initialized to "VME-VMX" then block transfers from VME
to VMX for both read and write are possible.

1. INTRODUCTION
CAMAC equipment is widely used in high energy physics experiments.

The reading of multi-crate, multi-branch systems in a tree structure has
been satisfied by the REMUS concept.

see EP-Electronics Note 80-01, February 1980
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REMUS is used in the parallel readout of the UAl experiment2 at CERN
where 170 CRATES are grouped in 28 BRANCHES.

Due to the upgrading of the UAl experiment the need of a specific REMUS
BRANCH DRIVER in a VME environment has arisen.

2. APPLICATION AND OUTLINE

This new module , the RVMEX (Remus VME VMX Branch Driver) type V385 is
described in this paper. For the UAl event builder a VME system has
been chosen. The REMUS readout for the CAMAC crates in the experiment
was kept. Thus the VME bus for control and the REMUS branch for data
readout were imposed. As a local DMA bus the VMX bus (Rev. A) has been
chosen. The Rev. A version of the VMX bus is well suited for large data
block transfers with unknown block length, since the auto-increment
addressing mode allows the full VMX address space. Since REMUS data are
16 bits wide and the CPUAl contains a 68010 both the VME port and the
VMX port were limited to 16 bits. This allowed the implementation of
VME-VMX transfers with few additional electronics. Controlled via VME ,
the card may perform autonomous DATA transfers between a REMUS branch
and a VMX bus. In the UAl experiment the VMX bus is connected to a
CPUA1l and a DPRX (128 or 256 kbyte dual port memory).See fig. 1. The
RVMEX can be a VMX PRIMARY MASTER if alone or a VMX SECONDARY MASTER if
used in conjunction with another VMX PRIMARY MASTER. The REMUS branch
can also be read by VME under program control. The RVMEX, which has 2
REMUS connectors, can be used as a branch DRIVER, if a RVMEX DRIVER
TERMINATOR is connected to the upper connector, or as a branch SPY if
connected within a branch.

When the card is initialized to "VME-VMX" then block transfers from VME
to VMX, for both read and write, are possible.

Due co the dedicated use of the RVMEX some restrictions to the VME
specifications have been made. Only WORD access and only 24 bit
addressing are allowed. The card will respond to Standard Supervisory
Data Access or to Standard Non-Privileged Data Access or to both,
depending on the programming of a PAL on the card. Normally the RVMEX is
programmed to respond to both.

The REMUS branch driver is restricted to "single word" operation. This
means that the mode of operation in which the N-lines of the REMUS
branch are transfered together with every data word is NOT supported
(see RWBD type 283). The REMUS functions are generated by writing a bit
pattern into' a register via VME. Since the generation of the REMUS
"read-in" signal is also programmable, the "Prepare & Go" can be
connected to any sub-address.

see The UA1l Data Read-Out System in this proceedings
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The card contains a 512 word FIFO between REMUS and VMX or VME.

Up to 15 RVMEX cards may be set at the same coarse-base-address. A
hexadecimal switch on the front panel allows to differentiate the actual
base-addresses of the individual RVMEX cards from 1 to F. This is at
the same time the BRANCH NUMBER. Branch number zero corresponds to a
broadcast address to which all cards respond to write functions. This
allows the generation of REMUS functions on up to 15 branch drivers
simultaneously. An EVENT count is sent together with the BRANCH NUMBER
in order to verify the synchronization of data belonging to the same
event.

3. MODULE DESCRIPTION

3.1 COST REGISTER

The COntrol and STatus register controls the data flow and the type of
operation of the module. See fig. 2. The COST can be accessed while
autonomous REMUS to VMX transfers are taking place.

3.2 REMUS FUNCTION REGISTER

The REMUS function register is used to generate the REMUS functions on
the branch. When the RVMEX is in TEST mode then the REMUS Functions are
generated but only used inside the card.

When used as a SPY then the REMUS Functions are not generated by the
RVMEX (even if programmed) but are spied from the REMUS BRANCH.

3.3 TEST REGISTER

The TEST register can be used to simulate a REMUS branch. The same
register serves as data register for REMUS write functionms.

3.4 COUNTERS

The branch driver has to generate count words which have to be inserted
in the REMUS data structure. Therefore a WORD COUNTER and a BRANCH

COUNTER are part of the RVMEX hardware. A sequencer takes care of the
correct insertion of the count words.
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3.5 REMUS DATA BLOCK FORMAT

BLOCK FORMAT:
i I
DATA WORD
b
b 28 |
L )
| MARKER WORD |
L J
| WORD COUNT
L J
DATA WORD
3
LI
L 22 ]
MARKER WORD |
L J
| WORD COUNT |
L J
| BRANCH NUMBER |
L J
| BRANCH COUNT |
| J

There are no reserved bits to distinguish between the different types of
words used within a REMUS data block. Therefore the data has to be
sorted out scanning backwards through the data block, knowing the total
length (BRANCH COUNT) and the individual data block length (WORD COUNT).
The last four words are always as indicated in the block format and the
word before a WORD COUNT is always a MARKER WORD. DATA WORDS and MARKER
WORDS are read from the REMUS BRANCH while WORD COUNT, BRANCH NUMBER and
BRANCH COUNT are generated by the RVMEX. WORD COUNT and BRANCH COUNT are
16 bits wide and include themselves. The BRANCH NUMBER generated by the
RVMEX has a special format since it also contains data of an EVENT
COUNTER.
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THE NEW CONTROL SYSTEM OF THE SACLAY LINEAR ACCELERATOR

J.F. Gournay, G. Gourcy, F. Garreau, A. Giraud, J. Rouault
Service de Physique Nucléaire~ Accélérateur Linéaire, CEN Saclay
91191 Gif-sur~Yvette, France

A new control system for the Saclay Linear Accelerator designed
during the two past years is now in operation. The computer control
architecture is based on 3 dedicated VME crates : one crate with a
disk-based operating system runs the high level application programs
and the database management facilities, another one manages the man-
machine communications and the third one interfaces the system to the
linac equipments. At the present time,communications between the VME
micro-computers are done through 16 bit parallel 1links. The software
is modular and organized in specific 1layers, the database 1is fully
distributed. About 90% of the code is written in Fortran. The present
status of the system 1is discussed and the hardware and software
developments are described.

INTRODUCTION

The ALS, in operation since 1969 [1], was primarily manually
controlled, a computer was introduced into the accelerator control
system in 1974 for centralization of informations, automatic surveillance
of the main parameters and control of the beam switchyard [2,3]. During
the next 8 years this system was expanded with a second computer and
with ponctual 1local processing power (8 bit micro-processors), but
it became obvious in 1982 that the system had to be replaced very
soon. The old technology computers were completely obsolete, their
maintenance was difficult and expensive and the software developments
very tedious. In this paper we describe the solutions that we have
adopted for the new system.

HARDWARE SYSTEM

For the new control system it was decided to take advantage of
the progresses in the micro-processors technology to ensure reliability,
flexibility, versatility and a good cost effectiveness. A solution
based on a standard and modern bus with powerful CPU and I/0 boards
available from many different manufacturers 1looked very attractive.
Among the different possible choices, the VMEbus and the MC68000
microprocessors family seemed to be the best solution for the process
computers.
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Process computers

The functions of the system are distributed between 3 dedicated
VME crates (fig.1)

. the '"HOST" crate with 1MByte of memory, a 20 MByte disk drive, a

floppy disk for backup. This station is running under a disc-based
operating system.

. the "LINA" crate with 512kByte of memory and all the interfaces to
the equipements of the linac.

. the "OPER" crate with 1MByte of memory and all the interfaces to
the man-machine communication devices.

The LINA and OPER stations have no disk and their software is
downloaded from the HOST station. The three stations are close enough
to be 1interconnected with parallel 1links, the protocol used enables
50 kBaud data transfer rates on these links. The stations are equiped
with "first generation" VME CPU boards: 8MHz MC68000, small in-board
memory size, no MMU, no floating-point coprocessor and a limited private
bus reserved for I/0.

OPER HOST LINA
/7 link // link
CM CM CiM
PIE PIE PIE
UM uM UM
i L L L :
Digital Magnets
link to the inputs Control
i - interlocks p—— |
o) TP | |BW RGB] @ automat CAMAC
xnoby B }‘, ER [ :
o 17 | [8w] [ree b0 ———

Fig.l - Hardware Configuration

Interface to the equipments

All the equipments were previously interfaced through CAMAC modules.
This solution suffers important disadvantages (expensive, relatively
fragile, nuclear but no industrial standard) compared to its advantages
(international recognised system, great variety of modules), so it
was decided to progressively replace CAMAC by more modern standards.
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One solution could be to interface the equipments directly to
the VMEbus but this solution is rather expensive due to the complexity
of the bus. So direct I/O interfaces on the VMEbus are reserved for
the console equipments where fast response is primordial and for digital
inputs where the VME module can directly interrupt on the CPU board.
This last module was designed in our laboratory. For the comnsole
operation most modules were commercially available (high resolution
colour graphic boards, touch panel and keyboard interfaces) except
a shaft encoder interface that we have also designed. This module handles
a pair of encoders and provides two conv:nient features: a software
controllable brake for limiting the operator actions and 2 software
controllable LEDs for warning the operator of the encoder(s) assignment.

For machine equipments interfacing we prefered to use a low cost
8-bit standard bus with industrial cards mechanically and electrically
robust. The French EUROMAK bus was chosen : it uses single EUROcards,
MC6809 micro-processors and 15 slots crates. A lot of industrial modules
are available from the manufacturer. A first experience with EUROMAK
is now acquired with the digitization of about 300 analog input channels
splitted in 3 crates each containing multiplexers and ADC boards. The
LINA station and the EUROMAK crates are temporarily linked with serial
RS232C channels.

Future improvements

The major improvements planned in the next few months concern
the hardware links between the VME crates and between the VME and EUROMAK
crates. An ETHERNET network is now available in the VME standard and
will replace our parallel links, the data transfer rates will be much
higher and it will be easy to interconnect the VME crates to the micro-
computer development system (MOTOROLA EXORmacs ) for software
down-loading.

It is planned also to interconnect our system to the nuclear
physicist computers through the ETHERNET network, in order to make
the 1linac parameters directly available to the physicists. Due to
the bus structure of this network, it will be straightforward to add
new VME crates if they are needed to increase the power of the system.
The objection that this network is not very suitable for a control
system since a maximum response time is not guaranteed [4] is not founded
in our case: we have a small number of stations and the stations exchange
only non time critical messages (updates of 1local and central data
bases, operator commands, display lists).

The same type of network could be used to interconnect the VME
and the EUROMAK crates, however as we planned in the future to increase
the number of EUROMAK crates, an ETHERNET network will become
prohibitively expensive. Following the choice of CERN for the LEP project
[4] the aircraft MIL/STD-1553B network will be used for this purpose.
The 1553B interfacing to the EUROMAK bus was done in our 1laboratory,
two boards are used to manage the communications: the bus controller
(BC) and the remote terminal unit (RT), one BC can control a network
of up to 30 RTs. Following arrangements with the manufacturer the
EUROMAK 1553B network is now commercially available.
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To interconnect a VME master crate with EUROMAK slave crates
equipped with 1553B RTs a VME compatible BC must be furnished. One
such module for the military and aerospace market is available, but
its price is incompatible with the type of applications aimed here.
Therefore, taking advantage of the experience gained with the EUROMAK
modules the VME BC module was also designed in our laboratory. As shown
in figure 2, it is built around the SMC COM 1553B chip and is controlled
by a MC6809 microprocessor which unloads the main processor from the

1553B hardware
of the command

two semaphores
MC6809 and the
independantly:

protocol (management of the 32 words

and status words).

are used to manage the exchanges

1553B messages,
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while the MC6809 performs

a list of commands
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one
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An interrupt is sent

on the VME bus to signal the end of processing of a list by the local
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Fig.2 - MIL STD-1553B Bus Controller Block Diagram

SOFTWARE SYSTEM

A proportion of 80% of the old system software was written in
and therefore must be completely
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rewritten. An high level language was needed to rewrite rapidly all
the software developed during 8 years and FORTRAN was chosen because
it is widely used and understood in our Laboratory. Furthermore many
of its disadvantages against more structured languages have vanished
with the 77 versions.

The ease to write and maintain the programs with a high level
language is paid by their least efficiency : the response times are
increased by a factor from 4 to 6 regarding our previous system.
Improvements are expected with the new generation of VME boards and
also with the availability of a better FORTRAN compiler.

The software developments are done with an EXORmacs micro-computer
from MOTOROLA. It supports easily 4 to 6 simultaneous users with 1
Mbyte of memory. '

3 layers can be distinguished in the control system software:

Operating system

The EXORmacs and HOST station run the same VERSAdos disk-based
0.8. The LINA and OPER stations use the RMS68k real-time kernel. VERSAdos
is built around this kernel. This feature is very convenient : the
programs are almost completely debugged on the development system before
their final integration on the target systems.

Service software

This level concerns all the general purpose services which are
furnished to the high level application software.

Intertask Communication : A message system has been developped
which handles in the same way local messages in one station as well
as messages exchanged between two different stations. The receiver
of a message is addressed with a symbolic name :

name = STAT, SSTA, TASK

where STAT is the name of the VME station

SSTA will be used to address a substation connected to the 1553B
network

TASK is the name of the receiving task in a VME station or an
EUROMAK substation.

The management of the transfers can be modified by attributes
specified by the receiving task:

. the receiving task can be blocked until a message is sent to it
(default option) . :

. the receiving task can test if there is a pending message for it.

. the receiving task can receive only messages of selected sending
tasks,and in this case, discard or delay the other messages.
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Data base management system : A distributed data base contains
all the informations concerning the accelerator parameters. The data
base management system was strongly influenced by the system used at
SLAC for the SLC control system [5,6]. The accesses to the data base
are done through standard functions with symbolic parameters. The
data base is structured in subsets belonging to each station. The
HOST station maintains a copy of the whole data base. Each subset is
structured in blocks, the first block contains all the pointers necessary
to access the data contained in the other blocks. In the four other
blocks, the data are structured regarding their types : stable
parameters, HOST write only parameters, HOST read only parameters,
HOST only parameters. A Fortran-like format with or without a repeat
specification 1is associated with each piece of information : integer
16 or 32 bits, real, character string.

Man-Machine communication facilities : A graphics support has
been provided to display informations on the console screens. The
output commands (draw a set of vectors, display a string of characters,
fill an area) are passed to the graphics software and are stored in
device independent graphic segments. Another set of commands is wused
to manipulate the segments (initialization, deletion, drawing, erasing,
windowing) and to send them to specific device drivers.

The operator commands are communicated to the system through the
use of touch panels and their operation are defined by symbolic files
compiled by a specific program. This compiler allows the specifications
of the location of a button, its label, and the actions to be taken
when it is touched : e.g. the command:

COMMAND: 05,07, sRUN SURVEILLANCE, SURV,RUN-SURV

generates a button at 1location 5,7 with the 1label RUN SURVEILLANCE
and when it 1is touched, the message "RUN-SURV" will be sent to the
task SURV. The command:

MENU :05,08, M, INDEX » IDLE ,MENUINDX

generates a button at location 5,8 with the label "INDEX" in a medium
size and, when it is pushed, the menu called '"MENUINDX" will replace

the current one.

Error handling facility

Based on the existing VERSAdos Error Messages Handler, a facility
is provided to edit the warning or error messages in a standard way
on the terminal attached to the HOST station. The messages appear always
with the same format : date, originating task , message (with or without
variable fields) - For example :

05/07 9h30m LINA-....-LACQ CAMAC ERROR IN CSSA C=3 N=10 A=0 F=0
05/07 10h15m HOST-....~DBEX Protect code error (+4)

The most recent 200 messages are also logged on the disk for later
analysis
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Application software

The LINA station rums all the acquisition and control software
under the control of interactive programs im the HOST station. It
does also autonomous <cyclic acquisition and surveillance. The
interactive tasks running in the HOST station are disk resident except
two tasks which display, on two dedicated screens, permanent informations
about the accelerator status.

All the basic tasks available on the old system are now implemented.

CONCLUSION

According to the schedule, the system described here is operational
since September 1985. Less than one month after the system start-up,
it is obvious that some unavoidable youth problems are still present
(minors bugs in the network software and in some application tasks,
poor quality of our VME power supplies). Also as stated before the
time responses must be decreased to improve the operator comfort.
Nevertheless, with more than one year of experience in using VME
microcomputers we can draw some conclusions:

. The choice of the VME standard, 2 years ago, was relevant : the number
of vendors is extremely large and the module available are more and
more performant, but the software furnished (compilers, utilities,
system generation tools) is not always flawless or sufficient,

. The number of hardware failures is drastically decreased compared
to our old technology system.

. The use of FORTRAN and of the software services mentioned above have
been very successful to write efficiently the appplication programs.

. The hardware and software distributed architecture gives the system
a great flexibility. This point will be particularly valuable for the
extension of the control system to the ALSII project [7].
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INTEGRATION OF VMEbus MODULES

IN A SM90 MINICOMPUTER RUNNING UNIX ON A M68000

G. Fontaine, L. Guglielmi
Laboratoire de Physique Corpusculaire
Collége de France, Paris

ABSTRACT

SMI0 is a multiple bus, multiprocessor structure commer-
eially available in France.

A simple adaptator has been developped to allow the use
of slave VMEbus cards on loecal buses. VMEbus standard CAMAC
branch driver and intelligent graphic controller have already
been used and easily integrated into the software.

More complex applications can be tackled by a dual port
memory module linking the VMEbus to the SM global bus.

SMI0 native compilers (C and F77) have been extended and
merged with CERN ecross-software to produce object code running
under MoniCa in the satellite VMEbus crates.

SM90

The SM90 is a multiple bus, multiprocessor structure
developped in 1981 by CNET for communication needs. It can run
under various operating systems, most of them developped by CNET
and INRIA. The machine is now commercially available from TELMAT
and BULL-SEMS and we are using it since 1983 (ref. 1).

Its structure is based on two buses : the global bus is a

multimaster system bus devoted to Eﬁter—processor communications,

CNET : Centre National 4'Etude des Télécommunications
INRIA : Institut National de Recherche en Informatique et Automa-
tique

UNIX is a trademark of Bell Laboratories.
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while the local bus is used by each CPU for fast access to its
local own ressources such as memory or specific interfaces (see
fig. 1).

This structure anticipated the VME/VMX organisation, but
did not use it, since the VME/VMX standard 4id not exist at SM90
design time. However, this machine uses double euro-mechanics

which helps for adapting VMEbus cards.

The processor boards use the MC680XX family : MC68000,
MC68010 and soon MC68020, with a CNET designed MMU (Memory Mana-
gement Unit) and optional FPU (Floating Point Unit). A lot of in-
telligent I/0 controllers connected to the global bus are now
available : SASI, Serial I/0, Ethernet, X25, magnetic tapes, gra-
phics... The operating system running on our machine is SMX 4.3,
a multiprocessor implementation of UNIX V7, with additions from
Berkeley 4.2.

Local Bus - VME Adaptator

The local bus, a single master bus, is in fact a subset
of the MC68000 bus, and as well a subset of the VMEbus. We have
developped a very simple hardware adaptator, which allows the use
of slave VME cards on the local bus. The main goal was to use the
Data-Sud VME-Camac interface on SM90, but other kinds of VME
cards can be, and have been, used, such as a graphic card or sim-

ple memory cards.

For the I/O cards, such as Camac interface, the implemen-
tation can be very easy, just by mapping physical addresses of
the card into the process logical addresses. A system call provi-
des this facility. This method does not need a sophisticated dri-
ver, but does not provide interrupt possibilities. We have imple-
mented in this way a subset of the ESONE Camac routines, written
in C language. It gives a block data transfer rate of about 20 ps
per Camac word, not so bad for a high level language implementa-
tion under UNIX.

In addition to the Camac Interface, we have also instal-
led a VME Data-Sud 512 x 512, 8 color graphic card (DSSES512-
chroma8) accessible through GKS.
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If one needs to deal with interrupt capabilities, it is
necessary to write a specific driver, and to 1link it into the
‘operating system. This driver has then to deal with the single

level of auto-vectored interrupts, provided on the local bus.

Global Bus - VME Interface

A more powerful interface has been implemented by INRIA
and the french firm DIGITONE, enabling the dialogue between the
SM90 and a full VME system. A dual port memory is connected on
one side to the global bus (or system bus) of the SM90, and on
the other side to the VMEbus. The memory, with a capacity of 256
kbytes or 1 Mbyte is located in the SM90 chassis. Twisted pair
cables link the card to the adaptator located in the VME crate.

Writing at the first address of the card, by any SMS0
master, triggers a vectorized interrupt on the VMEbus. The vector
number is software selected and the interrupt level is selected
by straps. In a similar way, writing at the same address by a VME

master, triggers an interrupt on the SM90 global bus.

A UNIX driver for that card has been written by INRIA,
following the SM90 dialogue conventions between masters and sla-
ves. At Collége de France, we are working on VME drivers for this

link, running under MoniCa or 0S-9.

This makes a full VME system act as a SM90 standard 1I/0
processor, with the full power and versatility of the VMEbus. The
VME crate can then be used for data-acquisition and prefiltering
in a real time environment. Data, in this case are transmitted
via the fast interface to the SM90 where they can be analysed,

displayed and stored on the SM90 mass storage.

Software Development

Programs to be run in a VME processor can be developped
on the SM90 and quickly downloaded into the VME crate.
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We have already installed on the SM90 most of the CERN's
cross software :

~ CUFOM processors (linker, pusher)

- M68MIL assembler

~ SIEMENS PASCAL compiler.

In addition, SM90 native compilers (C and F77) have been
extended and merged with CERN cross software. They can now produ-
ce CUFOM output and the generated code can be run under the con-

trol of MonicCa.

A PILS Host Interface can be implemented through the
SM90-VME Interface, enabling high speed file transfers between
PILS, running in the VME and the SM90.

Many other utilities are available on the SM90 :

- CERN's M680X assemblers

- Prom and Pal programmers accessible via the local bus
Camac Interface

- PATCHY

- Most of the CERNLIB

- GKS

Conclusion

These two VME interfaces enhance the power of the SM90
through real-time data acquisition possibilities, and make it a
very suitable work-station for electronic tests and small data

acquisition systems.

Reference

1 "Stations de travail intégrées sous UNIX pour le développe-
ment de logiciels et le test d'équipements" (LPC 83-35), and
in proceeding of "Forum sur la micro-informatique en physique

nucléaire et physique des particules" Paris 1983 (LPC 83-36).
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USE OF 0S9/68K ~ A UNIX LIKE, REAL TIME OPERATING SYSTEM -

IN PARTICLE PHYSICS VMEbus APPLICATIONS

G. Fontaine, L. Guglielmi
Laboratoire de Physique Corpusculaire

Collége de France, Paris

ABSTRACT

05-9/68K is an industrial operating system for real-time
multitasking applications of M68000 processors.

It is a modern, UNIX-like, system offering most of the
high level facilities needed for software development, and gain-
ing efficiency through an assembly coded kernel and an original
memory management structure.

05-9/68K has rich real-time possibilities due to the sim-
plicity and efficiency of inter-process communication schemes. It
is very modular and can be easily configured, extended or ported
to almost any M68000 system.

This presentation will be based on our experience of sys-
tem transport to several VMEbus configurations, and on the use of

a similar 0S5-9/6809 system in a CERN test beam for CAMAC data
acquisition.

05-9/68K is the MC680XX version of the 0S-9 operating
system originally developped for the MC6809 microprocessor as a
joint effort by Microware and Motorola. Since its introduction in
1979, 0S-9 has become one of the most popular systems in indus-
trial automation and communication applications. It is used by
our laboratory to provide testing tools for high energy physics
equipment, and has been and will be used in some experiments.
This paper describes briefly the way in which these application

requirements are well matched to 05-9 features and how 0S-9's

C) 0S-9 and BASICN9 are trademarks of Microware and Motorola.
UNIX is a trademark of Bell Laboratories.

CP/M is a trademark of Digital Research.
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versatility makes it the present best choice for small and medium

size real-time systems.

A UNIX-Like System

Unix, now established as a standard, has proved to be a
very effective operating system for the development of computer
software.

0S5-9 provides a Unix-style environment, with essentially
all the functions which make the programmer's job a lot easier.
Like Unix, it is a multi-tasking, multi-user operating system
featuring a unified device independant I/0 scheme. It also provi-
des redirection mechanisms and pipes allowing the use of filter
tools. The hierarchical file management system too is very simi-
lar to Unix with tree-structured directories, and the human
interface is done via a replaceable independant task whose usual

implementation is the Shell.

However, 0S-9 also has some important differences from
Unix (fig. 1). In addition of being a real time system with more
modularity (see below), it requires much fewer hardware ressour-
ces : 0S-9 can be effectively used on systems with medium size
memory, small disks or low cost floppy disks, or even on systems
without any mass storage at all (such as ROM-based control sys-
tems).'It offers additional features such as file locking and
record locking, and eliminates the fearsome disk recovery pro-
blems by using a more reliable "crash proof" disk management
technique. Finally, 0S-9 runs faster since the assembly coded
kernel is specific to the MC6809 or MC680XX, and its high modu-

larity makes it very easy to port to new hardware.

A Real-Time System

The 0S-9 kernel provides a comprehensive assortment of
multitasking functions, including creation (via a fork mecha-
nism), scheduling (time slicing for active, sleeping or waiting

tasks) and prioritization.

Task synchronisation can be done on the real-time clock

or on external events causing interrupts. Inter-task communica-
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tions are provided by several mechanisms : signals, semaphores,
pipes or shared memory modules.

Real-time performance is achieved by keeping all tasks
resident (no swapping) and by an assembly-coded kernel. An inter-
rupt can be serviced in less than 100 ps (measured on a 8MHz CPU
with 350 ns access time memory). 0S-9 can be ROMed for high se-

curity control systems or for small single board controllers.

An Open System

Versatility is achieved by a unique modular design and
support for sophisticated modular software techniques. 0S-9 pro-
grams (as well as 0S-9 itself) are built up from groups of memory
modules. These are named objects having a standard format. They
can contain program code, tables, subroutine packages or any
other kind of data. Code modules contain position independant
code and use separate data areas allocated at run time by the
system. Code modules are thus ROMable. All modules are under
control of the system kernel using a module directory for memory
space management. Modules can locate each other by means of sys-

tem calls and can be shared simultaneously by several tasks.

rThis technique as well as reentrant coding, are.supported
by all languages under 0S-9 and provide a very efficient use of
memory space. It allows complex software (system or application)
to be broken into smaller, more manageable modules that can be
individually written, tested and maintained. For instance, it 1is
possible to dynamically replace an existing module, even in ROM,
by an updated version, located elsewhere, bearing a higher revi-

sion level in its header.

The operating system itself is also modular and is broken
into a dozen memory modules (fig. 2). It can thus be easily con-
figured or customized by the user without any need to access the

system source code.

Adding support for a new I/0O device may require only the
creation of a new table module (device descriptor), or in the
worst case the writing of a driver module. Both can be installed
without a new system generation and without stopping the system,
by a simple load into memory, 0S-9 hooking them automatically in

its tables while it is running.
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Programming Languages

05-9 is supported by a relocatable assembler and a series
of high level language compilers providing reentrant and position
independant ROMable code in memory module format. All languages
use a common IEEE standard floating point library making easier

the integration of a floating point coprocessor.

The macro assembler is Motorola compatible and supports
0S-9 system calls.

The C compiler is a complete implementation of the Kerni-
ghan and Ritchie specifications and is compatible with applica-
tion software written in the C language for Unix System V and BSD
4.2 Unix. (The C 1library supports both 08-9 and Unix system
calls).

rBasic09 is much more than a Basic ; it is a structured
language providing Pascal-type loop constructs and typed data
structures. It is procedure oriented (with argument passing) and
supports the 0S-9 modular software environment. Being compiled,
it runs rather fast, while maintaining interactive symbolic debug

facilities.

Pascal follows the ISO 7185.1 standard and includes a
large number of extensions. Two different compilers are now avai-

lable, one from Microware, the other from Omegasoft.

A Fortran-77 compiler is announced to be available by the
end of 1985.

For graphic applications, a VDI (Virtual Device Interfa-
ce) standard binding package is available for C and Basic09. A

GKS library (level 2B), implemented in C, is in progress.
Versions
05-9 exists in two flavours :

- Level 1 with software memory management,

- Level 2 for systems with hardware memory management.
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MC6809 versions (Levels 1 and 2) have been in use for

several years in industry.

MC68000 Level 1 version was released in mid'84, it is
regularly updated, and Level 2 should be available now. A MC68020

version is announced for the end of 1985.

A networked version is also under development for both
MC6809 and MC680XX series. It incorporates, in the modular 0S-9
structure, an hardware independant Network Manager associated
with drivers for various links such as Ethernet, X25, RS232C,
GPIB...

Use of 0S-9

Our laboratory has been and is still doing software deve-
lopment on a Unix computer for various microprocessor targets in-
cluding VME systems (ref. 1). This kind of environment has been
very much appreciated but all these nice facilities were absent
at run time since the applications were either too small or real-

time oriented, thus excluding Unix from their domain.

0S-9 seemed attractive to provide such a continuation

with the required flexibility and performance.

Our first exercise has been to write a disk driver for a
6809 version running on a Motorola Exorset 165. This being com-
pleted we added a Camac branch interface and a graphic control-
ler. It was then possible in a few days to write and debug an
acquisition and monitoring program which included histogramming
and graphical data presentation, for a real test of a particle
shower position detector in test beam X5 at CERN. The system was
easily prepared and installed for acquisition of several LRS 2280
48 channel ADC. It worked as expected, giving us confidence in

0S-9 qualities.

A similar system is now prepared for a control applica-
tion. It will provide user friendly monitoring of a high voltage

system in a p p collider experiment.
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For 05-9/68K on VME hardware, we also started with a
commercial system (Eltec Eurocom 3) and were soon followed by two
other groups of our lab buying the same system. Given the wide
variety of applications considered (including the data acquisi-
tion for a neutrino oscillation experiment) we did not want to
stay dependant on a single hardware vendor, and thus needed to be
able to transport the 08-9 system to any mixed configuration.

This transport is best done with a port-pack license,
available at reasonable cost from Microware. It includes the few
modules that have to be adapted (Boot module, clock driver, ter-—
minal driver, disc driver) in source code for various popular
hardware items. Software tools are also provided to help starting
the process, and it is quite easy to modify the supplied modules

to tailor them to specific needs.

This work has been done for various VME cards that can
now be used in any combination. These include four CPU cards :

- Thomson EFD~-CPUI1

- Motorola MVME 101 and MVME 110

- Data-Sud DSSECPUA1 (in progress)
and two disk interfaces :

- Data-Sud DSSEFDCONT (floppies)

- Motorola MVME 315 (floppies + SASI hard disk, in pro-

gress).

This choice, together with the three Eltec VME cards
Eurocom 3 will enable the physics groups involved to choose the

configuration that best fits their needs for 0S-9/68K applica-

tions.
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A 1 Mbit/s Communication Interface for a VMEbus System

P. Heimann
Max-Planck-Institut fiir Plasmaphysik (IPP),
EURATOM Association, D-8046 Garching

The communication interface presented in this paper is built around the
VLSI device WD2511 manufactured by Western Digital Corporation /1/. It
handles bit oriented, full duplex data communication which conforms to
CCITT X.25 level 2 LAPB (link access protocol balanced). Those protocols
include zero bit insertion and deletion, automatic appending and testing of
frame check sequences (CRC) and automatic appending of address and con-
trol fields for level 2 protocols. The device also contains two direct mem-
ory access (DMA) channels, one for transmit and one for receive, to gain
access to data buffers. Serial transmission rates of up to 1.1 Mbit/s in full

duplex operation can be obtained.

16 on-chip 1/O registers are used to control and monitor the operation of
the controller. Two control registers provide means to initiate link set up,
set the receiver to ready condition and start sending data. Three status re-
gisters contain fields for the transmit and receive counters, link status in-
formation, and interrupt causing state. Severe changes in link state or fail-
ures on the link level are indicated in the error register. Other registers
are used to set the timer and retransmission counter, load the address

field, and set the pointer to the cyclic buffer management queue.

Transmit data is accessed by the WD2511's DMA channels through cyclic
buffer queues, one for transmit (TLOOK) and one for receive (RLOOK).
Both queues consist of 8 elements containing buffer addresses and trans-

mission counts.
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At a serial transmission speed of 1 Mbit/s (and neglecting zero bit inser-
tion/deletion) the controller would access a new data byte every 8 micro-
second for either transmit and receive. This would introduce a heavy load
on the computer bus, especially when several DMA devices are present on
the same bus. To avoid this problem a dual port memory is provided on
the board to separate the computer bus and the serial transmission opera-
tion. Communication between CPU and serial transmission line is therefore
only possible via this dual port memory by moving messages between the

main computing memory and the on-board memory.

The block diagram of the controller board is shown in figure 1. It can be
devided into several functional modules. The VMEbus interface provides ac-
cess to the computer bus signals. Only those signals are used that are ne-
cessary for slave data transfer operation /2/. Service requests to the CPU
are initiated by the interrupt requester. All 7 interrupt levels may be se-
lected by jumper option. Interrupt acknowledge cycles are answered by the
slave device with the assertion of an interrupt vector that is also settable

by jumpers.

VMEbus INTERFACE
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DECODER WORDI
— INTERRUPT arie
REQUESTER ,J
wD2511 > 05-Dss
| > RAM <
ARBITER H oK ~
- g M
T |
DMA — u|
> -0
LOGIC R RAM < bty
| 4545 > 0k 2 R0,
T DDyt B !
WD 2511 < I
AE:
. RAM
v ARBITER)
{

Figure 1: Block diagram of the communication interface
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Access to the registers of the WD2511 and the 20 kByte on-board memory
is accomplished through two dual port controllers. They arbitrate requests

from the VMEbus and the DMA controllers of the WD2511 on a first come
first served basis. A total of 32 kBytes address space on the VMEbus (the
start address is jumper selectable) is necessary to operate the board. The

status register is used for modem control and modem status information

/3/.

Programming of the board is simple. After initially setting the registers of
the WD2511 and establishing the TLOOK and RLOOK queues the receiver
is set ready and link set up is initiated. Data to send is moved to a free
transmit buffer and the corresponding entry in TLOOK is made ready. Then
the WD2511 is commanded to send the packet. After successful transmis-
sion a block acknowledge interrupt is generated and the TLOOK entry is
freed again. Received data packets are stored into a free buffer from

RLOOK and a received packet interrupt is generated.

An application example of the controller board is shown in Figure 2. In a

data acquisition system /4/, where large amounts of data have to be pro-

CAMAC CAMAC
Q-8US . . VMEbus
System | fiberoptic System
1 Mbitls 1 Mbitls
gz g 3 g C} Communication
ula MM mim| Node
VME bus 12 MBytels
H
c
0
M
10 Mbitls
Mainframe
Figure 2: High bandwidth communication node in a data acquisition

system
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cessed in short time intervals, a mainframe computer is used for data a-
nalysis. The communication net connecting the various components of the
system has to transfer the measured data as fast as possible to satisfy the

user requirement of a sufficiently short response time.

The front end computers, that may be Q-Bus or VMEbus systems (both
controller board versions are available), sample data from CAMAC crates.
The preprocessed data are then transferred to a communication node via a
fiber optics link built with the 1 Mbit/s communication controller. Incoming
data packets interrupt the CPU. According to the routing information con-
tained in the packets, data is transferred by the DMA controller (maximum
transfer rate 1.2 MByte/s) from the receiver memory to the memory of
the destination device. When data is sent to the mainframe computer the
destination device is a 10Mbit/s communication board. In this example a

throughput of 1 MByte/s may be achieved in the communication node.

References:

/1/ WD2511 X.25 Packet Network Interface (LAPB), data sheet, Western
Digital Corporation

/2/ VMEbus specification manual, VMEbus Manufacturers Group, Rev. B,
Aug. 1982

/3/ P. Heimann, A 1 MBit/s communication interface for VME/Q-Bus sys-
tems, AMOS development note DI105.0, Max-Planck-Institut fiir Plas-
maphysik, Informatik

/4/ F. Hertweck, AMOS/D the data acquisition system for ASDEX-Up-
grade, AMOS development note D100.0, Max-Planck-Institut fiir Plas-
maphysik, Informatik



- 329 -
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like Operating Systems
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ABSTRACT

In our age of automation and data communication real-
time data processing has encreased considerably. Formerly
users implemented their application on naked hardware. Today
they demand real-time operating systems so that safer and
quicker development becomes possible - which of course implies
a decrease of expenses. Following this trend a UNIX-like
operating system with real-time features seems to stand a fair
chance of selling extremely well.

There are various ways of trying to develop such an
operating system. This essay describes the difficulties and
introduces the different methods of approach. Afterwards one
system is described more closely.

1. Introduction

1969 UNIX (TM)* was developed as an operating system in Bell Labora-
tories. Because of its clear structure which proved to be of great advan-
tage to the developers of programs, UNIX circulated quickly in Bell
Laboratories, and soon spread to the universities.

However, it was not before the end of the Seventies that UNIX was
really wide-spread - after interested firms and then AT&T itself had dis-
tributed it with the necessary support. This development was encouraged by
the decision of leading software firms to use UNIX as standard develop-
ment system.

* UNIX is a trade mark of Bell Laboratories
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UNIX was not planned as a real-time operating system. The develop-
ers of UNIX probably never thought of using their operating system in
such a way. The wish to be able to develop and operate real-time systems
under UNIX rather originated with thrilled UNIX-users who did not want to
miss the valuable development environment when working on real-time
tasks. The wish can be explained by the fact that there is no real-time
operating system available on the market that combines any of the advan-
tages of UNIX, as for instance portability, powerfulness and wide circula-
tion.

From a technical standpoint it is difficult to give reasons for
equipping UNIX with real-time features. Seen technically, the best solution
would be the development of a new operating system with real-time
features. It would be wise to evaluate the experiences made with UNIX and
other operating systems during the last 15 years, and make use of them
when developing such a new operating system. That would solve the prob-
lem of having to be compatible on one level (e.g. the system call level). If
the demands of real-time data processing are taken into consideration
when planning the new operating system, the realization should give more
satisfaction than the supplementary remodeling of an existent operating
system. However, this is not the subject of the essay, but I do think these
aspects should not be ignored.

2. Real-Time Requirements

The expression 'real time' has been mentioned several times., It is used
frequently nowadays. People demand the real-time capability of UNIX.
Operating systems with real-time kernels are presented. But what does
‘real-time capability' mean? I shall examine the question in this chapter
without claiming to undertake an all-round investigation.

2.1. Response Time

DIN 44 300, No.161 defines real-time operation as the operating of a
computer system, where programs for processing data are ready for ser-
vice permanently and the results are at disposal after a certain period of
time.

This period of time is also called response time. Put differently,
the response time is the time the real-time system needs to react to an
event in the real world or in the computer itself.

The response time is determined by the specifications of a system. It
may be the result of physical laws or of an optional determination. To be
able to guarantee the response time, it is necessary that the user’'s pro-
gram runs fast enough and is scheduled as soon as the event has occurred.
The operating system is responsible for this. Here we have come upon the
first approach for thinking about real-time capability.

A general-purpose real-time operating system should, of course,
enable response times which are as short as possible. And there is a
further demand: To be able to check whether a system keeps to a certain
specification it must be possible to calculate the maximum response time
exactly.
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2.1.1. Context-Switch Time

The Context-Switch Time is that characteristic of a real-time operat-
ing system which is spread most widely. The period of time defined by the
expression ‘'context-switching' is the time between the end of the perfor-
mance of one, and the beginning of the performance of another process.
This period of time is generally not added to one or the other process. It
is needed to identify the new process, to safeguard the context of the old
process and to generate the context of the new process. Therefore users
of a real-time operating system want those periods of time to be as short
as possible.

2.1.2. Critical Regions

Critical regions are program parts which must not be interrupted
whilst working. Critical regions are unavoidable in programs which compete
for mutual resources and/or communicate with one another. An operating
system contains critical regions. No switch of context is allowed when
such a program part is being executed. Therefore it is important to know
the length (period of time) of the longest critical region existing.

2.1.3. Memory Residence

The knowledge about the context-switch time and the length of the
longest critical region is not sufficient to guarantee a certain response
time. If the process image is not resident in the memory it has to be
loaded first. The amount of time needed for such an operation is too large
for several applications. Nevertheless loading must not exceed a certain
period of time even when dealing with applications which have 1long
response times. It is difficult to calculate the time, especially if one has
to load from a disk. The period of time varies amazingly. 1Its length
depends on hardware characteristics, on the position of the heads and on
the physical distribution of the process image on the disk. Therefore it
seems sensible to ask for real-time operating systems with the ability of
keeping the processes memory resident.

2.2. Programming Environment

Real-time systems have to work on various tasks simultaneously.
Accordingly they are always implemented as multi-tasking systems. Thus
demands arise which a developer of purely sequential programs does not
have.

2.21. Interprocess Communication and Synchronization

Interprocess Communication is needed for data transfer (e.g status or
measure data) between co-operating processes. Interprocess Communication
has to be reliable and should be capable of eliminating error situations,
i.e. in case of an error (e.g. awaiting of a message which will never come)
a process must not be delayed endlessly.

When competing for mutual resources processes have to be synchron-
ized. When competing for a printer, for instance, a good operating system
should handle synchronization. However a general-purpose real-time
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operating system cannot manage peripherals which are different from sys-
tem to system. This task must be handled by the user's programs. The syn-
chronization of processes is another problem for which an interprocess
communication is necessary.

2.2.2. Time Management

The operating system must provide a real-time clock and be capable
of executing tasks at specified times.

2.3. High Reliability

Real-time operating systems must be extremely reliable. They should
be implemented with a tolerance towards errors. After having detected an
error they should eliminate it (if it's a temporary error like a transmis-
sion error). If elimination should prove impossible (as with a permanent
error) the effects of the error should be reduced to a minimum.

Quite a number of errors -especially those detected in connection
with the peripheral- can only be handled satisfactory by users' programs.
2 real-time operating system should be prepared for this possibility.

2.4. Hardware Access

A typical requirement in the programming of real-time systems is the
direct access to the hardware. The hardware of conventional operating sys-
tems consists of terminals, disks, tapes and the like. For safety reasons
the operating system does not allow any of the user processes to access
the hardware directly, and serves the user an abstract model of these dev-
ices instead. (In UNIX, for example, all devices appear as (special-) files
to a user process.) The abstraction is possible, because the devices are
more or less similar.

In real-time applications, however, the hardware components that have
to be controlled often vary extremely. For that reason the operating sys-
tem cannot anticipate the structure of the I/0 system, and the application
process has to be provided with the means to access the hardware directly.
This immediately creates a conflict with the safety aspects of an operat-
ing system, and is completely unacceptable to a multi-user operating sys-
tem like UNIX.

3. UNIX as Real-Time Operating System

The ordinary UNIX like version 7, system III or system V cannot be
used as a real-time operating system without modification, because the
response time cannot be guaranteed. To achieve real-time capability UNIX
either has to be modified or run in a different environment.

3.1. Rewriting UNIX

All UNIX processes are the same: They have a variable priority
assigned dynamically by the kernel. The user only has little influence on
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the priorities via NICE-value. UNIX would have to be modified in a way
enabling the user himself to determine priorities.

The UNIX scheduling£ concept seems very suitable for real-time activi-
ties, since context-switching takes place after every interrupt if neces-
sary. There is, however, one exception: There is no context-switching if a
process is running in kernel mode when the interrupt occurs.

Processes in UNIX alternate between user mode and (in case of a sys-
tem call) kernel mode. Kernel mode processes cannot be interrupted unless
they call up 'sleep’ themselves. Some UNIX system calls are of a consider-
able length, For that reason it is intolerable for real-time applications
that they cannot be interrupted. Hence there must be modifications to
enable interrupts of kernel processes but excluding certain critical
regions from this operation.

These are the most important alterations of those necessary. Espe-
cially the alteration mentioned last represents a severe interference with
the kernel. It is impossible to anticipate all consequences straightaway.
Thus the anticipation of the expenditure of work becomes very difficult.
There is another disadvantage: The whole procedure has to be repeated
every time a new version of UNIX is issued.

3.2. Writing UNIX New

The best solution would be the development of a new operating system
with real-time features. The final product could not be called UNIX any
longer, but it would possess UNIX features on a level specified before
(syscall level or command level). Expenditure would be enormous, and the
compatibility with later UNIX releases could only be guaranteed at great
expense, too. The market has seen some examples of this approach, but
they can either not satisfy in a real-time area or in respect to UNIX,
because of great compatibility problems.

3.3. UNIX as Real-Time Process

Another possibility would be the implementation of UNIX as a process
of a real-time operating system. The real-time processes would then be
managed by the real-time operating system directly, and one of the
processes scheduled would be UNIX itself as a whole (including the kernel
and the user processes). This scheme is similar to IBM's VM operating system
where different operating systems (DOS/CMS) work under one supervisor
operating system (CP).

If this concept is followed strictly all real-time tasks are separated
from UNIX (they don't appear in a 'ps' command), and run at a higher prior-
ity than the UNIX processes. The result would be more or less the same as
that presented in the next chapter - except for the fact that the real-
time processes run on separate processors there.

3.4. The Shifting of Real-Time Processes to a Slave Processor

This method of approach does not alter the UNIX kernel. As usual
the kernel runs on a processor. This approach allows an additional proces-
sor which has a real-time kernel and works on real-time tasks.
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On the hardware level the processors can communicate via interrupts
and shared RAM. On the process level UNIX and real-time processes commun-
icate via special file. A special device driver has to be integrated for
that purpose.

This method of approach has several advantages:

) UNIX is not altered. The system running is the original UNIX. So
there are no problems when a new version of UNIX is released.

-) Real-time processes do not become a burden to UNIX.

-) If a good real-time kernel is chosen for the second processor all
problems created by the rewriting of UNIX can be avoided. Real-time
processes run in a most favourable environment.

) Experiments (like the testing of real-time software) can be made dur-
ing the phase of development without running the risk of the whole
system crashing, if hardware means have been established to prevent
the real-time processor from accessing the rest of the system.

4. A Multi-Processor Example

This chapter presents a model of a real-time system implemented by
moving the real-time task to specialized processors, and leaving the
overall system control and maintenance task under the control of the UNIX
operating system. The division of a whole application into two parts
(where one part can be implemented to run under a real-time operating
system, and the other -which does not need real-time response- can run
under UNIX) can often be achieved very easily. As an example take a
measuring system: The manual operator can start a measuring task (UNIX),
then the system has to sample a huge amount of data in a very short time
without data loss (real time), and afterwards the data is evaluated (again
UNIX).

4.1. Hardware

The system in question is a VMEbus system. Since you can connect
several processors to the VMEbus it is ideal for realizing the project. The
UNIX system consists of a CPU board with local RAM, a hard-disk con-
troller and a board for serial and parallel 1/0.

To be able to tackle real-time tasks one or more additional CPU-
boards are put onto the VMEbus. These CPU- boards are also equipped with
a local RAM and a real-time clock.

The real-time boards can handle interrupts as well as receive inter-
rupts in a special way. There is an interrupt register on this kind of
board. When this register is written into, an interrupt is generated on the
board. This interrupt mechanism is used for the communication between the
UNIX- and real-time CPU.
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Each real-time CPU can generate an interrupt on the VMEbus too. This
mechanism is used when a real-time CPU wants to interrupt the UNIX CPU.

The memory of all CPU boards can be addressed by way of the
VMEbus. The UNIX CPU can read and write into the memory of each real-time
CPU. Real-time CPUs have similar possibilities, but a certain address space
can be blocked for them by a PROM. This is important to protect the UNIX
memory from being written over by a real-time process.

4.2, Real-Time Kernel

The system described here uses the real-time kernel pSOS-68K (TM)*
from Software Components Group Inc., Santa Clara, to run on the ‘'real-time
CPUs'. pSOS is a multi-tasking operating system kernel. It offers the
following facilities:
(-) Process Management

(-) Memory Management

(-) Interprocess Communication

* pSOS is a trade mark of Software Components Group
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With pSOS the user has an enriched message-passing-model from Han-
sen at his disposal. Here messages are not bound to processes, but sent per
exchanges. Several exchanges may exist. One or more processes can send
messages to one exchange or receive them. Generally spoken, this model
represents an n-to-m process communication. All typical interprocess com-
munication tasks (sending/receiving data, synchronization and mutual
exclusion) can be implemented easily with this scheme.

A process is also associated with seven events. Each process can indi-
cate one or more events by means of signal_v. A process can await one or
more events by calling up wait_v.

The event system is not as flexible as the message-passing-system,
but easier to handle and more efficient.

(-) Time Management
-) I/0 System

Before talking about the connection between the two (operating) sys-
tems a brief description of the pSOS real-time kernel is necessary, since
the latter is not so well known as the UNIX operating system.

4.2.1. Process Management

From the pSO0S standpoint a process is the smallest program unit
which can compete for resources itself. pSOS establishes an environment
for processes in which they can use all resources of the system without
regard for other processes.

Processes can be created dynamically. Process priorities are deter-
mined by the user and can even be changed during execution. Process
scheduling is tackled by round-robin procedure, priority basement or both.
Processes are sorted in respect to their priority, so that no search has to
be undertaken to g8et the next process to a running state, if a context
switch occurs.

4.2.2, Memory Management

pSO0S-Memory~Management 1is realized by three calls: alloc_seg,
free_seg and assign_seg. Memory can be called up with alloc_seg, and is
distributed in accordance to the first-fit algorithm. Free_seg sets a seg-
ment of the memory free, and assign_sef€ hands over the segment to
another process.

4.2.3. Interprocess Communication

Two different mechanisms for interprocess communication are avail-~
able. There is a message-passing system and an event system. Strategies
for avoiding deadlocks are not part of the pS0S-kernel. They have to be
realized by the user.
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4.2.4. Time Management

The time management provides the processes with date and time. More-
over, it realizes the timeout times of the system calls, and places an
absolute wait call at the systems disposal.

4.25. I/0 System

The I/0 system in the pSOS kernel is a very thin layer. It only
serves to define a standardized interface between user processes and dev-
ice drivers. The structure of the drivers is similar to the structure of
UNIX drivers. A driver is selected by a major device number. A minor device
number is passed on to the driver by the call. A driver consists of six
routines: device_init, device_open, device_close, device_read, device_write
and device_control.

5. The UNIX-pSOS Connection

This section describes in detail the connection between the UNIX
operating system and the pSOS real-time kernel over the VMEbus. The
description is divided into three parts: Part One discusses the various
possibilities of connecting operating systems. Part Two gives an idea of
how the connection can be used, and the final part discusses implementa-
tion details.

5.1. Basic Design of the UNIX-pSOS Connection

Three possibilities of connecting the operating systems have to be
considered: A) a connection by means of the interprocess communication
facilities of the operating system, B) a connection over the networking
facilities of the operating system, and C) a connection of the I/0 systems.

5.1.1. ICP-Connection

It seems natural to connect the interprocess communication facilities,
because communication takes place between two processes, and because data
can be transferred from one process's address space to the other process
directly in a tightly coupled system like the connection via a computer
bus,

The interprocess communication facility of pS0S is the message
exchange. A pSOS process sends and receives messages (4 longs of net data)
to/from a certain exchange. Interprocess communication facilities have
been established in UNIX recently - in release V. They include three dif-
ferent means of communication: shared memory, semaphores and message
passing.

The connection of the interprocess communication facilities of the
operating system would have the following effect: When a pSOS process
sends data to a certain exchange, the data appears as a message in a cer-
tain message buffer of UNIX. This concept has several disadvantages. 1)
PSOS uses its message exchanges to solve three different kinds of inter-
process activities (data transmission, synchronization and mutual exclu-
sion), whereas UNIX has at least two different kinds of interprocess com-
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munications for that purpose (messages and semaphores). 2) The implementa-
tion includes a modification of the UNIX kernel to enhance the semantic of
the interprocess communication operations, and 3) the interprocess facili-
ties are not used by standard UNIX tools and programs currently. It is
not possible for a UNIX utility to redirect its input from a message Qqueue.

5.1.2. Network Connection

The connection of operating systems using the network facilities
appears to be an attractive solution, however, pS0OS does not offer any
network features, and UNIX does not offer a unique network concept. The
socket concept in the Berkeley-UNIX environment could be used to imple-
ment a pSOS network connection. Such a connection would have the fol-
lowing advantage: The same communication scheme could be used, if the two
systems were connected by means other than the VMEbus. However, as the
system we are considering includes the standard AT&T-UNIX, we have decided
to connect the two operating systems by way of their I/0 system.

5.1.3. 1/0 Connection

The connection of the operating systems over their I/0 systems means
that each 0S takes the other as a peripheral device. In both operating
systems peripheral devices are characterized by a major and a minor device
number specifying€ a device type and a unit respectively. In UNIX the dev-
ice numbers are obtained from the file system as a 'special file'. For the
connection of the I/0 systems the write operation of a process in one
system is interpreted by the 0S in a way that a read operation in the
other 0S gets the data that has been written.

Advantages of this communication scheme are threefold: The I/0 system
of an OS (UNIX and pSOS are no exceptions) can be modified easily. Modifi-
cations of the UNIX I/0 system like adding a device driver can be achieved
without modifying the kernel, and additionally, it does not require an
AT&T source licence - a commercially important point. As all devices are
accessed through the UNIX file system, the UNIX file protection mechanism
applies to the UNIX-pSOS connection.

Another advantage of the I/0 system is the fact that the data is
moved by the operating systems. If, for example, the message passing system
of pSOS is used, the amount of data sent or received at once is four long
words. If large amounts of data are to be moved within pS0S, the informa-
tion passed normally consists of pointers which point to data themselves.
Moving these pointers from one system to the other causes a problem, as
local addresses within a system (e.g. a VMEbus board) differ from global
addresses (the base address of the VMEbus board itself must be added as an
offset). The whole problem disappears, if the I/0 system is used for com-
munication, since data is moved directly.

The discussion of the pros and cons of the different approaches may
lead to the wrong impression, that the decision for one of them excludes
the other possibilities completely. In fact, only the basic interface
between the operating systems is affected by this decision. If, for example,
it becomes necessary to use the message-system for communication, it can
easily be put on top of the I/0 system. A pSOS process would send data to
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a specialized message exchangfe which is served by a process that sends the
messafe to the other operating system by way of the I/0 system. This
implementation is completely transparent to the sending process.

5.2. Using the UNIX-pS0S Connection

Assume, a pSOS process generates ascii data and sends the data to the
I/0 port connected to the UNIX system. In the UNIX system the data can be
received with cat </dev/pSOS assuming that /dev/pSOS is installed with the
appropriate major/minor device numbers. To bring the data onto the
printer the simple command seguence pr < /dev/pSO0S/lpr is sufficient.

For large-scale control tasks a UNIX program can simply use the UNIX
‘open(2) system call to open the channel to pS0S, and then read from and
write data to the pS0OS system.

From the pSOS side the communication works much the same. pS0S
processes open the device attached to UNIX and execute read/write supervi-
sor calls, It will often be necessary for pSOS processes to have access to
resources of the UNIX system. As those resources most often are an
integral part of the UNIX file system (data files, printer, terminals,
IEEEbus), a simple server process giving access to the UNIX file system is
sufficient for a large group of applications. If a pSOS process wants to
open a UNIX file, it calls the Qibrary-) function 'u_open', that sends the
open request (via UNIX-pSOS connection) to a UNIX process serving this
request. The server process executes the ‘'real' UNIX system call and passes
the result back to the pSOS process. Read/write requests are executed in a
similar way. More demanding requests from pSOS to UNIX, say queries from a
data base, must be served by more specialized server processes.

Another task often required in a multi-processor application is pro-
cess synchronization which can be achieved directly by the I/0 1link. A
process on one side of the link (either UNIX or pS0S) can wait for an
event on the opposite side by simply reading from the I/0 link. If there
is no data, the process is deferred until a write from the other side
occurs.

More sophisticated synchronization tasks include semaphores and
mutual exclusion. They can be implemented by a specialized message
exchange on the pSOS board. A server process in pS0S allows UNIX processes
to send and receive messages to resp. from a pSOS exchange. If multiple
pSOS systems are connected to each other, each operating system wanting to
access an exchange remotely has to have a remote server process. The
remote exchange scheme provides all synchronization means necessary in a
multi processor environment.

A last feature of the UNIX-pSOS connection should be .described
separately: the so-called pROBE channel. pROBE is a debugger with special
enhancements to debug pSOS applications. If processes are executed under
the control of pROBE, the operator has the possibility to look at process
states, message queues and the like. Hhen a UNIX user connects his terminal
to the pROBE channel logically, he has complete control over the real-time
processes. This feature is especially useful during the test phase of pro-
gram development for the real-time system, as debugging takes place
without having to use a serial channel of the real-time processor.
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5.3. Implementation of the UNIX-pS0S Connection
5.3.1. Moving Data

The read/write operations of each operating system are the central
action of information transfer. When a process executes a read system
call, the events following depend on two circumstances: (a) whether a pro-
cess on the opposite side already has a write operation (with enough data
to satisfy the read request) on the same channel, and (b) whether the chan-
nel was opened to operate in blocking or non-blocking mode.

A read request in both operating systems specifies the channel to be
used (coded by major/minor device numbers), the number of bytes to be read,
and the addresses of data location., If sufficient data is available from a
previous write on the other side of the channel, the data is transferred
to the specified address, and the read operation is terminated. If no (or
not sufficient) data is available, further action depends on the channel
mode. In non-blocking mode the read system call returns immediately indi-
cating that only part (or none) of the read request could be satisfied. It
is then up to the process that executed the read to proceed appropriately
(e.g. retry). If the channel operates in blocking mode, process execution is
suspended until enough write operations from the other side have occured,
so that the read can be satisfied. Afterwards the waiting process is
prepared for running again.

The write system call operates in a similar way. If a read request on
the other side is already pending for the amount to be written, the system
call is executed. If no read is pending, the channel mode flag decides,
whether the writing process is to be suspended or should return indicat-
ing its disability to transfer data.

It should be obvious from the discussion above that successful data
transfer is impossible if both sides try to operate the channel in non-
blocking mode, as it is very unlikely that both sides execute the system
calls at exactly the same moment. The proper set-up of the channel is
ensured during the open system call to the channel. The open system call
returns successfully, if a process on the other side is already waiting
for the channel to be opened. In case there should be no process waiting
on the other end, the open request either will return without having been
successful or will block - depending on the mode specified for the chan-
nel (blocking/non-blocking).

If a process at one end of a channel is waiting (due to a read, write
or open request), it has to be informed that the other side of the channel
has acted. This is done by interrupting the operation at the other end.
The interrupt service procedure can then wake up the process waiting. More
about interrupts in a later paragraph.

5.3.2. Global Considerations

Assuming the co-existence of a UNIX system and several pSOS boards
on one VMEbus, communication should be possible between UNIX and each
pSOS board, as well as between all pSOS boards. Since addressing requires a
major/minor device number only, it is completely transparent to the com-
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municating processes whether they are accessing another pSOS board or the
UNIX system. Each system is processed by one VMEbus board. Some boards
are configured to have access to other VMEbus boards; others are config-
ured for local resources. For the latter there is only one way of
attracting the attention of other systems: by executing a VMEbus inter-
rupt.

If two systems (i.e. two VMEbus boards) want to communicate, at least
one of the boards needs global VMEbus access in order to move the data
from one system to the other.

The distinction of links and channels has been introduced to manage
the different aspects of inter-system communication. A link can be set up
between two system boards. Whether it is possible to set up a link to
another system depends on: the accessibility of the system (physical avai-
lability, system software initialized and running), getting the permission
from the other side, and as mentioned above the VMEbus access of at least
one of the systems. When establishing the link the decision is made as to
which of the two systems is responsible for the actual data transferring.

Max. 16 channels can be operated on each link. A channel is the main
communication path between two processes. It can be opened, closed and
operated independent from all other channels. Thus several independent
communication processes can take place between two systems. A link is
established automatically by the first open of one of the channels
between two systems. At the same time the place of residence is fixed for
the channel descriptors. The system not responsible for actual data
transfer has to have the channel descriptor inside his local memory. The
channel descriptor contains various information e.g. whether a process is
waiting for data to arrive.

5.3.3. Initialization

During the powering up of the system the UNIX kernel (or more
exactly the initialization procedure of the device driver) reads in the
physical characteristics of the VMEbus system from the file system. The
information includes the VMEbus addresses of the real-time boards, and
information on the capability of a board to access the VMEbus.

With this scheme the addition, removal or reassignment of addresses
to boards does not imply the recompilation of either operating system. The
only thing necessary is the editing of a UNIX file.

If one of the pS0S operating systems executes its start-up phase
(which may happen either before or after UNIX has come up), the communica-
tion initialization procedure gives an interrupt to the UNIX system. Some
time after its own initialization is completed UNIX is ready for processing
the interrupt, and sends the information on the VMEbus configuration to
the requesting board. So after all boards have come up, they have enough
information to establish links to one another.

5.3.4. Interrupts

The most critical part of UNIX-pSOS connections are the interrupts.
It is possible that several processes on a board try to access one or more
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VMEbus boards at the same time. However, it may be impossible to execute
an interrupt immediately, because the interrupt handler procedure on each
board takes quite some time to be completed. For this reason, processes
may be deferred until they gain access to their local interrupt resource.
Hereby an acknowledge interrupt is automatically introduced with the pur-
pose of waking up sleeping processes.

Another limitation that has to be overcome is the number of inter-
rupt levels on the VMEbus. The VMEbus only has 7 interrupt levels, and
some of them could already be being used by the UNIX system for its own
resources (terminals, disks etc.). Therefore each real-time board has a
local (mailbox) interrupt, which is triggered when local memory location 1
is written to by another VMEbus board. Unfortunately, this mechaniam can
only be used by processes that have global VMEbus access.

A special interrupter process must be introduced into the system.
The process (which can be located in any of the systems) can be inter-
rupted by a VMEbus interrupt, and will then post that VMEbus interrupt to
another board as mailbox interrupt.
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IBM /| VME CHANNEL
HIGH SPEED PARALLEL INTERFACE

B. Merry, A. Moreton, A. Smith

Department of Physics
University of Liverpool
Liverpool
United Kingdom

HARDWARE FEATURES

HIGH SPEED DATA TRANSFER RATES - 700 K BYTES/SEC
ACHIEVED ON A BLOCK MULTIPLEXER CHANNEL.

SIMPLE PHYSICAL CONNECTION TO CHANNEL VIA STANDARD
CONNECTORS, AND RIBBON CABLE TO VMEBUS P2 1/0

CONNECTOR.

THE INTERFACE SUPPORTS ALL STANDARD CHANNEL 1/0
INSTRUCTIONS; (SIO HALTIO TIO); PLUS RESET AND STACK
STATUS CONDITIONS GENERATED BY THE CHANNEL.

INTERRUPT FACILITIES PROVIDED TO THE CHANNEL ALLOWING
INTERRUPT DRIVEN PROGRAMS TO RUN ON THE IBM AND
REMOVING THE NEED FOR TIME CONSUMING POLLING.
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** 16K DUAL PORTED MEMORY ADURESSABLE FRUM THE VMEBUS AND
APPEARING TO THE IBM CHANNEL AS FOUR BYTE SERIALLY
ACCESSIBLE BLOCKS OF 4K BYTES.

**  COMPLETION STATUS BITS SET AFTER EACH BLOCK HAS BEEN
ACCESSED BY THE CHANNEL.

** A NMICROCODED STATE MACHINE HANDLES ALL COMMUNICATIONS
WITH THE CHANNEL WITHOUT INTERVENTION BY A VME CONTROL
PROGRAM.

**  SWITCHES SELECT ANY CHANNEL ADDRESS OR VMEBUS BASE
ADDRESS -

HARDWARE

- GENERAL

THE INTERFACE APPEARS AS A DUAL PORTED MEMORY WHICH IS
RANDOMLY ACCESSIBLE BY THE VMEBUS, AND IS BYTE SERIALLY

ACCESSIBLE IN FOUR 4K BYTE BLOCKS BY THE IBM CHANNEL-

ALL CHANNEL CONTROL AND DATA-TRANSFER SEQUENCES ARE
HANDLED BY A MICROCODED STATE MACHINE (SM). THIS APPROACH
MINIMISES CHANNEL OVERHEAD: BY RESPONDING QUICKLY TO

CHANNEL SEQUENCES; AND BY REQUIRING NO INTERVENTION FROM A

CONTROL PRCGRAM-
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OPERATION

THE SM CONTINUOUSLY MONITORS THE CHANNEL FOR ITS OWN
DEVICE ADDRESS- WHEN THIS IS DETECTED IT CAPTURES THE
CHANNEL AND WAITS FOR A COMMAND- WHEN A COMMAND IS
RECEIVED, IT IS LATCHED AND DECODED TO PRODUCE A VECTOR TO
A MICROCODE ROUTINE WHICH HANDLES A PARTICULAR COMMAND- A
DATATRANSFER™DIRECTION BIT AND A BLOCK—SELECT BIT ARE ALSO
LATCHED AT THIS TIME- INITIAL STAfUS IS NOW PRESENTED;
THIS [INFORMS THE CHANNEL THAT THE OPERATION IS CbHPLETE,
THE DEVICE 1S BUSY, OR THAT A DATA TRANSFER IS ABOUT TO

START-

IF THE COMMAND 1S ACCEPTED AND IS A READ OR WRITE
COMMAND, THE ADDRESS COUNTER IS CLEARED, AND A
HANDSHAKING~DATA-"TRANSFER SEQUENCE IS STARTED- Iwo BITs oOF
THE COMMAND ARE USED TO SELECT ANY ONE OF FOUR 4K SEGHﬁNTS
IN THE MEMORY- AFTER EACH BYTE IS TRANSFERRED, THE
ADDRESS COUNTER IS [INCREMENTED AND ANOTHER TRANSFER IS
REQUESTED- THIS SEQUENCE 1S REPEATED UNTIL THE CHANNEL
INDT'CATES THAT IT HAS TRANSFERRED THE REQUIRED NUMBER OF
BYTES - IF MORE THAN 4K BYTES ARE SENT OR RECEIVED,
WRAPAROUND WILL OCCUR WITHIN THE BLOCK SELECTED BY THE

COMMAND -

WHEN THL CHANNEL INDICATES STOP, THE SM STOPS ISSUING
TRANSFER REQUESTS; A TRANSFER-COMPLETE-STATUS BIT IS SET
FOR THE BLOCK SELECTED BY THE COMMAND; (THIS MAY BE READ
AND CLEARED BY THE VME CONTROL PROGRAM); AND ENDING STATUS

IS PRESENTED TO THE CHANNEL-
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A INTE‘RRU‘PT‘REGUEST' REGISTER (wéul“cfﬁ | MAY BE URITTEN
T,  AWD nounonen BY THE VHE coumal_ PRosRAu),_ ALLows‘
INTERRUPTS To BE SENT To THE CHANNEL- WHEN THE CHANNEL:
necslves A Reaussr, T Pou_s THE ATTACHED DEVICES- lF THE:F‘

INTERFACE HAS A PENDIHG REGUEST HHEH IT DETECTS A POLLIHG‘

sEaUENCE, THE SH CAPTURES TI-IE CHANNEL Aun PRESENTS "iTs

DEVICE ADDRESS- HHEH THE ADDRESS HAS BEEH ACCEPTED;
STATUS ls SENT TO THE CHAHHEL- HHEH STATUS IS ACCEPTED‘

THE REQUEST 18 CLEARED-

Tue smms' PRESENTED CONTAINS ATTENTION; = ‘DEVICE END,
AND A‘uvk ONE OF FOUR POSSIBLE COMBINATIONS oF THE UNIT=
EXCEPTION AND STATUS"MODIFIER an- Tuese BITS ALLow THE
VHE coumou_ PROGRAH TO , PAss i INFORHATION ABOUT nEnon‘

AVAILABILITY ETC-,' HITHOUT THE HEED FOR A DATA TRAHSFER-‘
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PHYSICAL ATTACHMENT

THE INTERFACE BOARD IS INSTALLED IN A 9 sLor VME
CRATE, AND IS ATTACHED To THE [IBM4331 oN a BLocx
MuLTIPLEXOR CHANNEL SHARED BY 2 MEMOREX TAPE DRIVES. THE
VMEBUS CRATE ALSO CONTAINS A 68000 SINGLE BOARD COMPUTER, A

6 cHANNEL 1/0 carD, AND A GPIB carD.

SOFTWARE

THE IBM SIDE OF THE INTERFACE IS CONTROLLED BY A
PROGRAM RUNNING UNDER CMS ON A DEDICATED VIRTUAL MACHINE-
IT PACKS USER DATA INTO A PoOL OF UK BYTE BUFFERS FOR

TRANSMISSION TO THE VMEBUS PROGRAM.
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THE VMEBUS soFTWARE RUNS ON THE 68000 SINGLE BOARD
COMPUTER- IT TAKES 4K BYTE BUFFERS FROM THE INTERFACE,
UNPACKS THEM AND QUEUES THE DATA FOR THE APPROPRIATE
DRIVERS - DATA FROM THE DEVICES IS PACKED IN AN IDENTICAL
MANNER AND TRANSFERRED To THE [BHM.

QuUTPUT BUFFER CLEAR AND INPUT BUFFER FULL SIGNALS ARE
PASSED BY ATTENTION INTERRUPTS GENERATED BY THE VMEBUS

PROGRAM-

A SeT OF FORTRAN CALLABLE ROUTINES ALLow IBM useRrs
ACCESS TO DEVICES ON THE VMEBUS THRoOuGH THE STANDARD IBM
COMMUNICATIONS PACKAGE [UCV. THE USER CAN REQUEST THE
ATTACHMENT OF A DEVICE AND THEN WRITE TO IT, AND REQUEST
INPUT VIA READ PROMPT, AN INPUT QUEUE, OR INTERRUPT

CONTROL INTO A SPECIFIED FORTRAN EXIT ROUTINE-

ALTERNATIVELY USERS MAY LOGON TO THE IBM IN LINE EDIT
MODE - THE LOGON SOFTWARE USES THE STANDARD IBM PACKAGE

LDSF wiTH RUTHERFORD LABORATORY MODIFICATIONS FOR LINE EDIT
TERMINALS -

THE INTERFACE IS CURRENTLY DRIVING A SIGMA GRAPHICS
TERMINAL ON A 38.4K BAUD SERIAL LINE, AND As CALCOHP
PLOTTER ON A 9.6K BAUD LINE- WORK IS IN PROGRESS ON A GP1lB
DRIVER FOR A MEGATEK GRAPHICS DISPLAY AND A PARALLEL

INTERFACE TO A 370/E IBM EMULATOR-

THE DIAGRAM SHOWS SOME OF THE OTHER AVAILABLE VMEBUS

HARDWARE THAT MIGHT BE USEFULLY ATTACHED To AN IBM THROUGH
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MOTOROLA ETHERNET BOARD

DEPARTMENTAL LAN AND AN HDLC BOARD FOR CONNECTION TO THE

THE INTERFACE- THE FOR A
NATIONAL PACKET SWITCHING NETWORK ARE OF PARTICULAR INTEREST

TO THE DEPARTMENT-

ANY FUTURE DEVELOPMENT WORK ON THE INTERFACE WILL BE

CONCENTRATED ON THE HUDLC AND ETHERNET CONNECTIONS-

PRESENT STATUS
& FUTURE POSSIBILITIES

IBM ' VME bus
[ ]
VIRTUAL SERIAL 1/0 |
MACHINE ———1 CARD | _
RUNNING TN . _
X25 NETWORK
SOFTWARE
GPIB
GRAPHICS v
] L~/
U;i“ VIRTUAL 68000
SOFTWAR
FORTRAN tUCV| MACHINE E M
INTERFACE CONTROLLING CONTROLLING |
IUCV] nTeRuPT DISTRIBUTION| E
IBM OF /0
IUCV/| BASED 110 |[CHANNELl  raom B ETHERNET
: LAN
TO VME INTERFACE
VIRTUAL LDSF| \nterFacE
MACHINE 4 TO DEVICE |
CONTROLLING CARD DRIVERS _ﬂ
370/E - S
JOB STREAM
HDLC
TO
X25
NETWORK
GRAPHICS
USER
LoGaED ON  ——
THROUGH
INTERFAGE PARALLEL
INTERFACE
! TO 370/E
1
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Part 3
LIST OF PARTICIPANTS

Total number of registered participants: 294
Breakdown:
® Industry: Total 52

e Member states: Total 188
Austnia: 1
Belgium: 4
Denmark: 4
France: 52
Germany (Federal Republic): 40
Italy: 26
The Netherlands: 11
Norway: 7
Switzerland: 23
Sweden: §
United Kingdom: 15

¢ Other Countries: Total 22
Canada: 2
Finland: 3
Iraq: 2
Poland: §
U.S.A.: 10

o CERN: Total 84
DD Division: 27
EF Division: 8
EP Division: 34
LEP Division: 3
PS Division: 2
SPS Division: 10
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VIA VALERIO 2 (C. BUFFAM)
34127 TRIESTE 13 CHEMIN DU LEVANT
ITALY 01210 FERNEY-VOLTAIRE
FRANCE

BURCKHART, MME D. /CERN — DIVISION DD

CIAPALA, E. /CERN — DIVISION LEP
BURCKHART, H. /[CERN — DIVISION EF

CITTOLIN, S. /CERN — DIVISION DD
CAIRANTI, S. /CERN ~ DIVISION EF

CLEMENT, J
CAMTO LTD GANIL
(F. THOMSEN) B.P. 5027
LINDEENGEN, 10 14021 CAEN CEDEX
2740 SKOVLUNDE FRANCE
DENMARK
COMYN, M
CAMTO LTD TRIUMF
(W. ADBRSEN) 4004 WESBROOK MALL
LINDEENGEN, 10 VANCOUVER, B.C,, V6T 2A3
2740 SKOVLUNDE _ CANADA
DENMARK
CREATIVE ELECTRONICS SYSTEMS
CARLEN, L (J. BOVIER)
UNIVERSITY OF LUND ROUTE DU PONT BUTIN 70
DEPARTMENT OF PHYSICS 1213 PETIT-LANCY/GENEVA
SOLVEGATAN, 14 SWITZERLAND
223 62 LUND
SWEDEN ‘ CREATIVE ELECTRONIC SYSTEMS
(F. WORM)
CARLES, G ROUTE DU PONT BUTIN 70
CEN-SACLAY 1213 PETIT-LANCY/GENEVA
DPHPE/SEIPE SWITZERLAND
91191 GIF SUR YVETTE CEDEX
FRANCE CROSETTO, D
UNIVERSITA DI TORINO
CAVALLARI, G. /CERN — DIVISION EF ISTITUTO DI FISICA
CORSO M D’ AZEGLIO 46
CECCHET, G 10125 TORINO
UNIVERSITY OF PAVIA ITALY
INFN
V BASSI 6 CUTTONE, G
27100 PAVIA LABORATORIO CICLOTRONE
ITALY VIA CELORIA, 16
20133 MILANO
CHIEFARI, G. [CERN - DIVISION EP ITALY
CHRISTENSEN, P D’ANONE, I
RISOE NATIONAL LABORATORY INFN
ELECTRONICS DEPARTMENT 46 VIA IRNERIO
4000 ROSKILDE 40126 BOLOGNA

DENMARK ITALY
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DARBO, G. /CERN - DIVISION EF

DARNAUER, §

20 YORKTON CT
ST PAUL MN 55055
USA

DATACARE AG

(H. MITTENDORF)

UNTERE BAHNOFSTRASSE, 19
9500 WIL

SWITZERLAND

DE CLERCQ, C

VRIJE UNIVERSITEIT BRUSSEL
DIENST ELEM

PLEINLAAN 2

1050 BRUXELLES

BELGIUM

DEGRE, A. /CERN - DIVISION EP
DEHAVAY, C. /CERN — DIVISION PS

DESCHAMPS, |

UNIVERSITE PARIS-SUD

INSTITUT DE PHYSIQUE NUCLEAIRE
SERVICE ELECTRONIQUE PHYSIQUE
BATIMENT 102

91406 ORSAY

FRANCE

DI GIOVANNI, P. /CERN — DIVISION SPS

DICK, P

SIN

5234 VILLIGEN
SWITZERLAND

DORENBOS, T. /CERN — DIVISION PS

DORNIER

(R. WILCKE)
MUHLENKAMP 32
2000 HAMBURG 60
WEST GERMANY

DUCORPS, A

LAB. ACCELERATEUR LINEAIRE
GROUPE CHAMBRE A BULLES
91405 ORSAY

FRANCE

DUMONT, G. /[CERN — DIVISION EP

ECK, C. /CERN — DIVISION DD

EHS

(M. SADELER)
INDUSTRIE STRASSE
8000 MUNICH

WEST GERMANY

ELTEC ELECTRONIC

(J. BULLACHER)

POSTFACH 65

GALILEO GALILEI STRASSE,
6500 MAINZ 42

WEST GERMANY

ELTRADE SCHRODEL AG
(K. SCHRODEL)
SEESTRASSE, 323

8038 ZURICH
SWITZERLAND

ELECTRONIC MODULAR SYSTEMS

(M. SCHACHT)
ACKERSTRASSE, 71-76
1000 BERLIN 65

WEST GERMANY

ENGSTER, C. /CERN — DIVISION EP

ERNI + CO AG

(M. HUGELOHOFER)
STATIONS STRASSE, 31
8306 BRUTTISELLEN
SWITZERLAND

EYRING, A. /CERN - DIVISION EP

FABBRO, B

C.E.N. SACLAY DPH-N/ME
91191 GIF SUR YVETTE CEDEX
FRANCE

FABRIMEX AG
(J. SILHAVY)
KIRCHENWEG, 5
8032 ZURICH
SWITZERLAND

FABRIMEX AG
(C. BAERISWYL)
KIRCHENWEG 5§
8032 ZURICH
SWITZERLAND



FAIVRE, ]

C.ENN. SACLAY DPH-N/ME
91191 GIF SUR YVETTE CEDEX
FRANCE

FARTHOUAT, P

CEN-SACLAY

DPHPE,B P 2

91191 GIF SUR YVETTE CEDEX
FRANCE

FEYT, J. |CERN - DIVISION EF

FONTAINE, G

LABORATOIRE DE PHYSIQUE CORPUSCULAIRE

COLLEGE DE FRANCE

11 PLACE MARCELIN BERTHELOT
75231 PARIS CEDEX 05

FRANCE

FORCE COMPUTERS GMBH
(L. PAYERL)
DAIMLERSTRASSE, 9

8012 OTTOBRUN

WEST GERMANY

FORCE COMPUTERS GMBH
(M. LOESEL)
DAIMLERSTRASSE, 9

8012 OTTOBRUNN

WEST GERMANY

GALLICE, P

DEIN/SIR

CEN SACLAY

91191 GIF SUR YVETTE CEDEX
FRANCE

GALLNO, P. /CERN — DIVISION DD

GAMBA, D

UNIVERSITA DI TORINO
ISTITUTO DI FISICA
CORSO M D’ AZEGLIO 46
10125 TORINO

ITALY

GANDOIS, B

CEN-SACLAY

DPHPE, B P 2

91191 GIF SUR YVETTE CEDEX
FRANCE
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GENTIT, F

CEN-SACLAY

DPHPE,B P 2

91191 GIF SUR YVETTE CEDEX
FRANCE

GIACOMELLI, P. |/CERN — DIVISION DD

GIOVE, D

INFN

SEZIONE DI MILANO
VIA CELORIA, 16
20133 MILANO
ITALY

GOSMAN, G

NIKHEF

P.O. BOX 41882

1009 DB AMSTERDAM
THE NETHERLANDS

GOURCY, G

CEN-SACLAY

DPHN/AL

91191 GIF SUR YVETTE CEDEX
FRANCE

GOURNAY, J
CEN-SACLAY

DPHN/AL

91191 GIF SUR YVETTE CEDEX
FRANCE

GRASSO, A

ISTITUTO FISICA GENERALE
UNIVERSITA DI TORINO
CORSO M D’AZEGLIO 46
10125 TORINO

ITALY

GRILLO, A

INFN

CASELLA POSTALE, 13
00044 FRASCATI
ITALY

GRINDHAMMER, G
DESY F36
NOTKESTRASSE, 85
2000 HAMBURG 52
WEST GERMANY



GRUNG, B

UNIVERSITY OF BERGEN
DEPARTMENT OF PHYSICS
ALLEGT 55

5014 BERGEN

NORWAY

GUGLIELMI, L

COLLEGE DE FRANCE

PHYSIQUE CORPUSCULAIRE

11 PLACE MARCELIN BERTHELOT
75231 PARIS CEDEX 05

FRANCE

GUILLAUME, C. /CERN — DIVISION SPS
GUO, Y. /|CERN — DIVISION EP
GUSTAFSSON L. /CERN — DIVISION DD
HAGLUND, R. /CERN — DIVISION EP

HAMEL, J

LABORATOIRE NATIONAL SATURNE
CEN SACLAY

91191 GIF SUR YVETTE CEDEX
FRANCE

HANSEN, S. /CERN - DIVISION LEP

HARROCH, H

INSTITUT DE PHYSIQUE NUCLEAIRE
BP1

91405 ORSAY CEDEX

FRANCE

HAYNES, W J. |/CERN - DIVISION EP

HECK, B. [CERN — DIVISION EF

HEIMANN, P

MAX-PLANCK INSTITUT FUR PLASMAPHYSIK
8046 GARCHING

WEST GERMANY

HERTWECK, F
MAX-PLANCK-INSTITUT
FUR PLASMAPHYSIK
BEREICH INFORMATIK
8046 GARCHING

WEST GERMANY
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HERVE, C

LABORATOIRE NATIONAL SATURNE
CEN SACLAY

91191 GIF SUR YVETTE CEDEX
FRANCE

HEWLETT-PACKARD GMBH
(M. WIPPERFELD)
RCD-RND

WIRT 3

HERRENBERGER STR 130
7030 BOBLINGEN

WEST GERMANY

HEWLETT-PACKARD GMBH
(W. BRAUN)

BCD-RND

WIRT 3

HERRENBERGER STR 130
7030 BOBLINGEN

WEST GERMANY

HOEY-CHRISTENSEN, P

NIELS BOHR INSTITUTE

TANDEM ACCELERATOR LABORATORY
4000 ROSKILDE

DENMARK

HONSCHEID, K
PHYSIKALISCHES INSTITUT
DER UNIVERSITAT BONN
NUSSALLEE, 12

5300 BONN

WEST GERMANY

HORKY, V

SIN

5234 VILLIGEN
SWITZERLAND

HUET, M

DPHN/HE

CEN - SACLAY

91191 GIF SUR YVETTE CEDEX
FRANCE

HUGHES-JONES, R
UNIVERSITY OF MANCHESTER
HEP GROUP

SCHUSTER LAB.

MANCHESTER M13 9PL
UNITED KINGDOM



INTERACTIVE CIRCUITS SYSTEMS LTD
(S. DEWAR)

3101 HAWTHORNE ROAD

OTTAWA

ONTARIO K1G-3V8

CANADA

JAASKELAINEN, M
UNIVERSITY OF JYVASKYLA
DEPARTMENT OF PHYSICS
§40100 JYVASKYLA
FINLAND

JACQUET, G

INST DE PHYSIQUE NUCLEAIRE
43 BD DU 11 NOV 1918

69622 VILLEURBANNE CEDEX
FRANCE

JEFFERY, D

H H WILLS PHYSICS LABORATORY
UNIVERSITY OF BRISTOL
TYNDALLS AVENUE

BRISTOL BS8 1TL

UNITED KINGDOM

JOHANSSON, T. /CERN — DIVISION EP

JOVANOVIC, P

UNIVERSITY OF BIRMINGHAM
PHYSICS DEPARTMENT

P.O. BOX 363

BIRMINGHAM B15 2TT
UNITED KINGDOM

KERZENDORF, W
MAX-PLANCK INSTITUT

FUR PLASMAPHYSIK
RECHENZENTRUM

8046 GARCHING BEI MUNCHEN
WEST GERMANY

KISIELEWSKI, B

INST OF NUCLEAR PHYSICS
UL KOWIORY 26A

30-055 KRAKOW

POLAND

KLESSE, R

ILL GRENOBLE

B.P. 156

X CENTRE DE TRI

38042 GRENOBLE CEDEX
FRANCE
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KLOK, P

UNIVERSITY, PHYSICS DEPARTMENT
TOERNOOIVELD

6525 ED NIJMEGEN

THE NETHERLANDS

KO, W. /[CERN - DIVISION EP
KUZMINSK]I, J. /CERN — DIVISION EP

LE CROY RESEARCH SYSTEMS SA
(M. VINCELLI)

101 ROUTE DU NANT-D’AVRILL
1217 MEYRIN 1

SWITZERLAND

LEDU,P

CEN-SACLAY

DPHPE, B P 2

91191 GIF SUR YVETTE CEDEX
FRANCE

LECOQ, J

LAPP

CHEMIN DE BELLEVUE
B.P. 909

74019 ANNECY CEDEX
FRANCE

LESQUOY, E

CEN-SACLAY

SECB

91191 GIF SUR YVETTE CEDEX
FRANCE

LEYENDECKER, P
EMBL

POSTFACH 10-22-09
6900 HEIDELBERG
WEST GERMANY

LIGUORI, C

INFN - SEZ DI MILANO
VIA CELORIA, 16

20133 MILANO

ITALY

LOVDE,J

INSTITUT DE PHYSIQUE NUCLEAIRE
UNIVERSITE DE LAUSANNE
BATIMENT DES SCIENCES PHYSIQUES
DORIGNY

1015 LAUSANNE

SWITZERLAND
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LUONG, T

GANIL

B.P. 5027

14021 CAEN CEDEX
FRANCE

LUTTER, L

BESCHLEUNIGERLABOR

DER UNIVERSITAT UND

TECHNISCHEN UNIVERSITAT MUNCHEN
HOCHSCHULGELANDE

8046 GARCHING

WEST GERMANY

MACAVERO, E

ISTITUTO DI FISICA
UNIVERSITA DI MILANO
VIA CELORIA, 16

20133 MILANO

ITALY

MADICHARD, M

CEN SACLAY

SAP

91191 GIF SUR YVETTE CEDEX
FRANCE

MANDRIOLI, G
ISTITUTO DI FISICA
46 VIA IRNERIO
40126 BOLOGNA
ITALY

MARBOT, R

ECOLE POLYTECHNIQUE
LPNHE

ROUTE DE SACLAY

91128 PALAISEAU
FRANCE

MARKT UND TECHNIK
(R. HUTTENLOHER)
HANS PINSEL STRASSE, 2
8013 HAAR BEI MUNCHEN
WEST GERMANY

MARON, G

INFN

LABORATORI NAZIONALI LEGNARO
35020 LEGNARO

ITALY

MARZANO, F

INFN

VIALE REGINA ELENA 299
00161 ROMA

ITALY

MATTSSON, S

UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF PHYSICS
41296 GOTEBORG

SWEDEN

MAZZANTI, M

ISTITUTO DI FISICA
UNIVERSITA DI MILANO
VIA CELORIA, 16

20133 MILANO

ITALY

MCLAREN, R. /CERN - DIVISION DD

MCPARLAND, C
COMPUTATION DEPARTMENT,
BLDG 50, ROOM 250

LAWRENCE BERKELEY LABORATORY

BERKELEY, CA 94720
USA

MENCIK, M

LAB. ACCELERATEUR LINEAIRE
BAT 200

91405 ORSAY CEDEX

FRANCE

MERCER, D

HIGH ENERGY PHYSICS GROUP
SCHUSTER LABORATORY

THE UNIVERSITY, BRUNSWICK ST
MANCHESTER M13 SPL

UNITED KINGDOM

MME E MERONI,
ISTITUTO DI FISICA
UNIVERSITA DI MILANO
VIA CELORIA, 16
MILANO

ITALY

MERRY, B

PHYSICS DEPARTMENT
LIVERPOOL UNIVERSITY
LIVERPOOL 169 3BX
UNITED KINGDOM



MERTENS, V
DESY-F12
NOTKESTRASSE, 85
2000 HAMBURG 52
WEST GERMANY

MIDTTUN, G
INSTITUTE OF PHYSICS
UNIVERSITY OF OSLO
OSLO 3

NORWAY

MINOR, M
LOS ALAMOS NATIONAL LABORATORY
P.O. BOX 1663, MS G776

LOS ALAMOS, NM 87545

USA

MJORNMARK, U. /CERN — DIVISION EP

MONTANARI, P
INFN BOLOGNA
VIA IRNERIO 46
40126 BOLOGNA
ITALY

W. MOOR S.A.
(P. BARDET)
C.P.57

1026 DENGES
SWITZERLAND

MORANDO, M
UNIVERSITA DEGLI STUDI
ISTITUTO DI FISICA

VIA MARZOLO 8

35100 PADOVA

ITALY

MORETON, T

PHYSICS DEPARTMENT
LIVERPOOL UNIVERSITY

P.O. BOX 147, OXFORD STREET
LIVERPOOL 169 3BX

UNITED KINGDOM

MORGUE, M

INST. DE PHYSIQUE NUCLEAIRE
43 BD DU 11 NOVEMBRE 1918
69622 VILLEURBANNE CEDEX
FRANCE
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MOSTEK INTERNATIONAL

(W. OSSWALD)

51 RUE DE MOULIN A PAPIER BTE 3
1160 BRUXELLES

BELGIUM

MOTOROLA MICROSYSTEMS
(M. RUDYK)
TAUNUSSTRASSE, 51

8000 MUNCHEN 40

WEST GERMANY

MOTOROLA MICROSYSTEMS
(J. WERDEHAUSEN)
TAUNUSSTRASSE, 51

8000 MUNICH 40

WEST GERMANY

MUGNALI, G. /[CERN — DIVISION SPS
MULLER, H. /CERN - DIVISION EP
NAPPEY, P. /CERN - DIVISION EF

NATIONAL INSTRUMENTS
(W. NOWLIN)

12109 TECHNOLOGY BLVD
AUSTIN, TEXAS 78729

USA

NAVARRE, J

LABORATOIRE NATIONAL SATURNE
CEN SACLAY

91191 GIF SUR YVETTE CEDEX
FRANCE

NIEUWENHUIS, C. /CERN — DIVISION EP

NORSK DATA AS
(S. JOHANSEN)
BOX 25 BOGERUD
0621 OSLO 6
NORWAY

NORSK DATA AS
(E. KRISTIANSEN)
BOX 25 BOGERUD
0621 OSLO 6
NORWAY

NOTZ, D

DESY F1
NOTKESTRASSE, 85
2000 HAMBURG 52
WEST GERMANY



NYFFENEGGER P. /CERN — DIVISION DD

OWEN, B

DARESBURY NUCLEAR PHYSICS LAB.
DARESBURY, WARRINGTON WA4 4AD
UNITED KINGDOM

PAIN, J

C.E.N. SACLAY

DPH-N/ME

91191 GIF SUR YVETTE CEDEX
FRANCE

PARKMAN, C. /CERN - DIVISION DD

PASSENEAU, MME M
PNHE
TOUR32RDEC

4 PLACE JUSSIEN
75230 PARIS
FRANCE

PAWLAK, T

INSTITUTE OF PHYSICS

WARSAW TECHNICAL UNIVERSITY
UL KOSZYKOWA 75

00-662 WARSZAWA

POLAND

PERRIN, Y. /CERN — DIVISION DD

PERYT, W

INSTITUTE OF PHYSICS

WARSAW TECHNICAL UNIVERSITY
UL KOSZYKOWA 75

00-662 WARSZAWA

POLAND

PETERSEN, J. /CERN — DIVISION DD

PHILIPS EXPORT BV
(M. KLEWER)
BUILDING TQ II1-2
5600 MD EINDHOVEN
THE NETHERLANDS

PHILIPS CTI

(MME M. PAUKER)

4-16 AVENUE DU GENERAL LECLERC
92260 FONTENAY AUX ROSES
FRANCE
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PHILIPS INDUSTRIAL DATA PROCESSING
(H. MASSKANT)

BUILDING TQ III-1

P.O. BOX 218

5600 MD EINDHOVEN

THE NETHERLANDS

PHILIPS INTERNATIONAL

(A. SCHELLEKENS)

DEP. EXTERNAL STANDARDISATION
5600 MD EINDHOVEN

THE NETHERLANDS

PICCINELLI, G

DIP FISICA UNIVERSITA
PIAZZALE A MORO
2-00185 ROMA

ITALY

PIERSCHEL, G

PHYSIKALISCHES INSTITUT III A
PHYSIKZENTRUM
SOMMERFELD STRASSE, 4

5100 AACHEN

WEST GERMANY

PIETARINEN, B

DEPARTMENT OF HIGH ENERGY PHYSICS
UNIVERSITY OF HELSINKI
SILTAVUORENPENGER 20C

SF-0170 HELSINKI

FINLAND

PIGNARD, C. /CERN — DIVISION SPS
PIJLGROMS, B. /CERN — DIVISION EP

PIQUET, B

CEN SACLAY

91191 GIF SUR YVETTE CEDEX
FRANCE

PLESSEY MICROSYSTEMS LTD
(A. WAIGHTS)

WATER LANE

TOWCESTER

NORTHANTS NN12 7JN
UNITED KINGDOM

PLESSEY MICROSYSTEMS LTD
(P. BURNLEY)

WATER LANE

TOWCESTER

NORTHANTS NN12 7JN
UNITED KINGDOM



PLUTA, ]

INSTITUTE OF PHYSICS

WARSAW TECHNICAL UNIVERSITY
UL KOSZYKOWA 75

00-662 WARSZAWA

POLAND

PONTING, P J. /CERN — DIVISION EP

POVEL, H

INSTITUT FUR ASTRONOMIE
ETH-ZENTRUM

8092 ZURICH

SWITZERLAND

PROME, M

GANIL

PB 5027

14021 CAEN CEDEX
FRANCE

PROTOULIS, K. /CERN — DIVISION DD
RABANY, M. /[CERN - DIVISION SPS

RAINE, B

GANIL

B.P. 5927

14021 CAEN CEDEX
FRANCE

RAUSCH, R. /CERN — DIVISION SPS

REHLICH, K

DESY F 52
NOTKESTRASSE, 85
2000 HAMBURG 52
WEST GERMANY

REICHART, W

PHYSIK INSTITUT DER UNIVERSITAT
SCHONBERGGASSE 9

8001 ZURICH

SWITZERLAND

REITHLER, H

PHYSIKALISCHES INSTITUT III A
PHYSIKZENTRUM

A SOMMERFELD STRASSE

5100 AACHEN

WEST GERMANY

REYNAUD, S. /CERN — DIVISION EF
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RIBORDY, L

INSTITUT DE PHYSIQUE
PEROLLES

1700 FRIBOURG
SWITZERLAND

RICHTER, H

MAX-PLANCK INSTITUT FUR PLASMAPHYSIK
8046 GARCHING

WEST GERMANY

RIIJLLART, A. /CERN — DIVISION EP

RIMMER, E. /|CERN - DIVISION DD

RISTORI, C

CENTRE D’ETUDES NUCLEAIRES
38 AVENUE DES MARTYRS

38041 GRENOBLE CEDEX
FRANCE

ROBCON OY
P.0. BOX 9
00391 HELSINKI
FINLAND

ROCH G. /CERN - DIVISION DD

ROOSEN, R

MHE

VRIJE UNIVERSITEIT BRUSSEL
PLEINLAAN 2

1050 BRUSSELS

BELGIUM

ROSSA, E. /CERN — DIVISION LEP
ROUGEVIN-BAVILLE, P
CEN-SACLAY

DPHPE, SEPH

91191 GIF SUR YVETTE CEDEX
FRANCE

RUHM, W. /[CERN — DIVISION EP
SAINSON, J. /CERN ~ DIVISION SPS

SALA, S. /CERN ~ DIVISION EP

SANDOVAL, A. /[CERN - DIVISION EP
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SCHAER, M

ECOLE POLYTECHNIQUE FEDERALE
INSTITUT DE GENIE ATOMIQUE
ECUBLENS

1015 LAUSANNE

SWITZERLAND

SCHARFF-HANSEN, P. /CERN — DIVISION DD

SCHMAL, N

UNIVERSITAT KOLN
INSTITUT FUR KERNPHYSIK
ZULPICHER STRASSE, 77

5000 KOLN

WEST GERMANY

SCHMICKLER, H

PHYS INSTITUT

DER UNIVERSITAT BONN
NUBALLEE, 14

5300 BONN

WEST GERMANY

SCHUTT, J. /CERN — DIVISION EP

SCHWAB, H

ILL GRENOBLE

B.P. 156

X CENTRE DE TRI

38042 GRENOBLE CEDEX
FRANCE

SCIUBBA, A

DIP FISICA UNIVERSITA
PIAZZALE A MORO
2.00185 ROMA

ITALY

SEMMEL, P

INSTITUT FUR KERNPHYSIK DER UNIVERSTAT
J J BECHERWEG 33

6500 MAINZ

WEST GERMANY

SENDALL, D. /CERN — DIVISION DD

SEYERLEIN, J

MAX-PLANCK-INSTITUT FUR ASTROPHYSIK
FOHRINGER RING 6

8000 MUNCHEN 40

WEST GERMANY

SHEA, M
FERMILAB

P.O. BOX 500
BATAVIA IL 60510
USA

SHERA, E

LOS ALAMOS NATIONAL LABORATORY
P.O. BOX 1663, MS D443

LOS ALAMOS, NM 87545

USA

SIMONS, W

20 YORKTON COURT
ST PAUL MN 55424
USA

SINTRA

(A. AMIEL)

74 AVENUE GABRIEL PERI
92230 GENNEVILLIERS
FRANCE

SINTRA

(G. PEROT)

74 AVENUE GABRIEL PERI
92230 GENNEVILLIERS
FRANCE

SITRUK, MMEM

COLLEGE DE FRANCE
PHYSIQUE CORPUSCULAIRE
PLACE MARCELLIN BERTHELET
78005 PARIS

FRANCE

SKAALL B

UNIVERSITY OF OSLO

INSTITUTE FOR THEORETICAL PHYSICS
BLINDERN

OSLO 3

NORWAY

SMITH, T

PHYSICS DEPARTMENT
LIVERPOOL UNIVERSITY
LIVERPOOL 169 3BX
UNITED KINGDOM

SPHICAS, P. |CERN - DIVISION DD



STEINBERGER, K
BESCHLEUNIGERLABOR

DER UNIVERSITAT UND

TECHNISCHEN UNIVERSITAT MUNCHEN
HOCHSCHULGELANDE

8046 GARCHING

WEST GERMANY

STUCKENBERG, H
DESY
NOTKESTRASSE, 85
2000 HAMBURG 52
WEST GERMANY

STUMPE, B. /CERN -~ DIVISION SPS

TAGESEN, §

INSTITUT FUR RADIUMFORSCHUNG UND
KERNPHYSIK DER AKADEMIE
BOLTZMANNGASSE 3

1090 WIEN

AUSTRIA

TAVERNIER, §
VUB DIENST ELEM
PLEINLAAN 2

1050 BRUSSELS
BELGIUM

TAYLOR, B. /[CERN — DIVISION EP

TELELOGIC

(R. NILSSON)

DAG HAMMARSKIOLDS VAG, 31
75237 UPPSALA

SWEDEN

TELELOGIC

(A. FLODIN)

DAG HAMMARSKIOLDS VAG 31
75237 UPPSALA

SWEDEN

THENARD, J

LAP - ANNECY
CHEMIN DE BELLEVUE
B.P. 909

74019 ANNECY CEDEX
FRANCE

TORELLI, M

INFN

VIALE REGINA ELENA 299
00161 ROMA

ITALY

- 365

TRAINITO, G. /CERN — DIVISION DD
TREMBLET, L. /CERN — DIVISION DD
TROSTER, D. /[CERN — DIVISION EP
TUUVA, T. /CERN — DIVISION EP

VALVO APPLIKATIONS LABORATORIUM
(N. NISSEN)

VOGT-KOLLN STRASSE, 30

2000 HAMBURG 54

WEST GERMANY

VAN DER VLUGT, C. /CERN — DIVISION EP
VAN KONINGSVELD, L. /CERN — DIVISION EP
VANUXEM, ] P. /CERN — DIVISION EP

VERMEULEN, J
NIKHEF

P.O. BOX 41882

1009 DB AMSTERDAM
THE NETHERLANDS

VERWEI], H. /CERN -~ DIVISION EP
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